
Fault-Based Testing of Combining Algorithms in
XACML3.0 Policies

Dianxiang Xu, Ning Shen, Yunpeng Zhang
Department of Computer Science

Boise State University
Boise, ID 83725, USA

{dianxiangxu, ningshen, yunpengzhang}@boisestate.edu

 Abstract— With the increasing complexity of software, new
access control methods have emerged to deal with attribute-
based authorization. As a standard language for attribute-based
access control policies, XACML offers a number of rule and
policy combining algorithms to meet different needs of policy
composition. Due to their variety and complexity, however, it is
not uncommon to apply combining algorithms incorrectly, which
can lead to unauthorized access or denial of service. To solve this
problem, this paper presents a fault-based testing approach for
determining incorrect combining algorithms in XACML 3.0
policies. It exploits an efficient constraint solver to generate
queries to which a given policy produces different responses than
its combining algorithm-based mutants. Such queries can
determine whether or not the given combining algorithm is used
correctly. Our empirical studies using sizable XACML policies
have demonstrated that our approach is effective.

Keywords— Combining algorithm, constraint solving, fault-
based testing, test generation, XACML.

I. INTRODUCTION

In security-intensive software, access control is a
fundamental mechanism for preventing malicious or accidental
violation of security requirements by regulating user access to
resources. An access control policy defines the conditions
under which access to resources can be granted and to whom.
Given an access request, it yields an access decision such as
permit or deny. With the increasing complexity of software,
access control methods have evolved from popular role-based
access control to Attribute-Based Access Control (ABAC).
ABAC enables fine-grained access control by combining
various attributes of authorization elements into access control
decisions. These attributes are predefined characteristics of
subjects (e.g., job title and age), resources (e.g., data, programs,
and networks), actions, and environments (e.g., current time
and IP address) [7]. ABAC also facilitates collaborative policy
administration within a large enterprise or across multiple
organizations. In a large enterprise, for example, elements of
authorization policies may be managed by different
departments, such as the Information Technology department,
Human Resources, the Legal department, and the Finance
department [13]. Individual rules or policies are composed into
a whole in order to make consistent access decisions.

XACML (eXtensible Access Control Markup Language)
[13] is an OASIS standard for specifying ABAC policies in the

XML format. To support flexible policy composition, XACML
3.0 provides 11 rule combining algorithms and 12 policy
combining algorithms. A combining algorithm aims at
rendering a single access decision by combining the decisions
of individual access control rules or policies. Due to the variety
of combining algorithms and subtle similarities between the
combining algorithms, it is not uncommon to use them
incorrectly when XACML3.0 policies are authored. A user
may inadvertently select an incorrect combining algorithm or
intentionally apply an incorrect combining algorithm due to
misunderstanding. Furthermore, for certain rules (or policies),
different combining algorithms can be functionally equivalent
and result in the same response to every access request. In an
evolving process of policy development and maintenance,
however, a previously working combining algorithm may
become incorrect after new rules or policies are added in a way
that implicitly breaks the constraints on functional equivalence.
Needless to say, incorrect combining algorithms in XACML
policies can lead to devastating consequences, such as
unauthorized access and denial of service.

This paper presents a fault-based testing approach for
determining existence or absence of incorrect combining
algorithms in XACML 3.0 policies. Given an XACML policy
(or policy set), our approach analyzes whether the given
combining algorithm is functionally equivalent to each of the
candidate combining algorithms with respect to the rules in the
given policy (or policies in the given policy set). If they can be
different, our approach exploits a constraint solver to generate
a query to which the two combining algorithms result in
different responses. The combining algorithm is correct only if
it produces correct responses to such queries. In theory, the
query generation involves an NP-hard problem because the
targets and conditions in XACML rules, policies and policy
sets can be complex first-order logic formulas with user-
defined functions. In practice, our case studies have
demonstrated that the implementation of our approach based
on an efficient constraint solver Z3-str [6][15] is both feasible
and effective for dealing with sizable XACML policies.

The remainder of this paper is organized as follows.
Section II gives a brief introduction to XACML policies and
combining algorithms. Section III describes the fault-based
testing approach. Section IV elaborates on fault-based test
generation. Section V presents the empirical studies. Section
VI reviews related work. Section VII concludes this paper.

(DOI reference number: 10.18293/SEKE2015-244)

II. XACML POLICIES AND COMBINING ALGORITHMS

 The main components of the XACML3.0 model are rule,
policy, and policy set. A rule consists of a target, a condition,
and an effect. The target is a logical expression that specifies
the set of requests to which the rule is intended to apply. The
condition is a Boolean expression that refines the applicability
of the rule established by the target. Predicates in target and
condition are defined over attributes and attribute values (e.g.,
age>=18). A policy comprises a policy target, a rule-combining
algorithm identifier, and a list of rules. A policy set consists of
a policy set target, a policy-combining algorithm identifier, and
a list of policies or policy sets. Figure 1 shows the relationships
between the main elements of XACML3.0. For simplicity, this
paper focuses on policies and rule combining algorithms.

Figure 1. Main language elements of XACML 3.0

 Formally, a policy P= <PT, CA, R> consists of a policy
target PT, a rule combining algorithm CA, and a list of rules R1.
Each rule ri∈R is a triple <rti, rci, rei>, where rti is the rule’s
target, rci is the rule’s condition, and rei is the rule’s effect
(either Deny or Permit). ri is called a permit rule if rei=Permit;
ri is called a deny rule if rei=Deny; rti and rci are optional. A
rule without target and condition, denoted by <_, _, rei> is
called a default rule.

 An access request (also called query) consists of a list of
attribute assignments: {x1=V1, x2=V2,…}, where xi is an
attribute name and Vi is a value assigned to xi. The decision of
rule r=<rt, rc, re> with respect to request q, denoted by d(r,
q), is defined as follows:

 Permit: access is granted when rule effect re = Permit,
query q matches policy target PT and rule target rt, and
rule condition rc is true with respect to q.

 Deny: access is denied when re = Deny, q matches PT
and rt, and rc is true with respect to q.

 N/A: q is not applicable – q does not match rt or rc
evaluate to false with respect to q.

 I(D): An error occurred when rt or rc was evaluated and
re=Deny. The decision could have evaluated to Deny if
no error had occurred.

1 In XACML, a policy also has other components, such as obligations

and advice. We do not consider these components due to their
irrelevance to the research in this paper.

 I(P): An error occurred when rt or rc was evaluated and
re=Permit. The decision could have evaluated to
Permit if no error had occurred.

 For convenience, we use N/A, I(D), I(P), and I(DP) to
denote the following decisions respectively: NotApplicable,
Indeterminate {D}, Indeterminate {P}, and Indeterminate
{DP}. So d(r, q) {Permit, N/A, I(P)} if r is a permit rule, and
d(r, q) {Deny, N/A, I(D)} if r is a deny rule. For a default rule
r = <_, _, re>, d(r, q) = re for any q.

 Given query q, rules r1, r2…, rn in policy P=<PT, CA, R>
may yield different decisions. The rule combining algorithm
CA combines the decisions of individual rules into a single
policy-level decision, denoted as d(P, q). In XACML 3.0, there
are 11 rule combining algorithms. Four are for compatibility
support of old versions - Legacy Ordered-deny-overrides,
Legacy Permit-overrides, Legacy Ordered-permit-overrides,
and Legacy Ordered-permit-overrides. In Balana [1] (an open
source implementation of XACML3.0 based on which our
approach is developed), the implementations of Ordered-deny-
overrides and Ordered-permit-overrides are the same as Deny-
overrides and Permit-overrides. Thus, this paper focuses on
five rule combining algorithms: Deny-overrides, Deny-unless-
permit, Permit-overrides, Permit-unless-deny, and First-
applicable. Their meanings are as follows:

 Deny-overrides: Intended for those cases where a deny
decision should have priority over a permit decision;

 Permit-overrides: Intended for the cases where a permit
decision should have priority over a deny decision.

 Deny-unless-permit: Intended for those cases where a
permit decision should have priority over a deny
decision, and an “Indeterminate” or “NotApplicable”
must never be the result.

 Permit-unless-deny: Intended for those cases where a
deny decision should have priority over a permit
decision, and an “Indeterminate” or “NotApplicable”
must never be the result.

 First-applicable: Rules are evaluated in the order in
which they are listed. If a rule’s target matches and
condition evaluates to "True", then return the rule’s
effect (Permit or Deny). If the target or condition
evaluates to "False", the next rule is evaluated. If no
further rule exists, then return "NotApplicable". If an
error occurs, then return "Indeterminate", with the
appropriate error status.

 Given policy P=<PT, CA, R>, the set of possible policy
decisions depends on CA. For example, Deny-overrides,
Permit-overrides, and First-applicable may yield one of the
following six decisions: {Permit, Deny, N/A, I(D), I(P),
I(DP)}, where I(DP) refers to Indeterminate{DP}. I(DP)
results from one of the following situations: (a) an error
occurred when policy target PT was evaluated and the decision
could have evaluated to Deny or Permit if no error had
occurred; (b) there is a permit rule that evaluates to I(P) and a
deny rule that evaluates to I(D) or Deny when CA=Permit-
overrides; (c) there is a deny rule that evaluates to I(D) and a
permit rule that evaluates to I(P) or Permit when CA=Deny-
overrides. Deny-unless-permit and Permit-unless-deny result in
either Permit or Deny.

III. FAULT-BASED TESTING OF COMBINING ALGORITHMS

 Fault-based testing aims to determine the existence or
absence of a hypothesized fault [12]. It has been widely used to
generate test cases or evaluate the quality of given tests. This
paper focuses on fault-based test generation for incorrect
combining algorithm in policy P = <PT, CA, R>. The basic
idea is as follows: assuming CA is faulty and CA' is the correct
combining algorithm, the fault-based approach generates a
query q such that d(P, q) ≠ d(P', q), where P' = <PT, CA', R>,
called P’s mutant. P' has the same policy target and rules as P.
According to the correct response to q (called oracle value,
denoted as o(q)), we can determine whether CA or CA' is
faulty. Note that, when testing P, we do not know which
combining algorithm is the right one. However, it must be in
the given set of rule combining algorithms (denoted as RCA).
RCA does not have to contain all the combining algorithms in
XACML. It can be a subset, depending on the application. For
instance, a meaningful set of combining algorithms to be
considered for a particular application might be {Permit-
overrides, Permit-unless-deny, First-applicable}, rather than
all the 11 rule combining algorithms in XACML 3.0. As such,
our approach considers each possible mutant P' = <PT, CA',
R> where CA' ∈ RCA and CA'≠CA and aims to generate a
query to show the difference between P and each P'.

Although CA and CA' are meant to be different, P and P' can
be functionally equivalent for certain PT and R, i.e., d(P,
q)=d(P', q) for any query q. For example, if R has only permit
rules, Deny-overrides and Permit-overrides would make no
difference. Let query (P, P') denote the function that returns
null if P and P' are functionally equivalent, otherwise returns a
query q such that d(P, q) ≠ d(P', q). Let Q = {q: q= query (P,
P’) q ≠ null for each mutant P' =<PT, CA', R>, CA' ∈ RCA
and CA'≠CA}. CA in P is correct if and only if d(P, q)=o(q) for
any q∈ Q. In other words, CA is incorrect if there exists q∈Q
such that d(P, q) ≠ o(q). Here, determining whether the given
combining algorithm is correct or not requires user to define
o(q) according to the access control requirements. In our
approach, the maximum number of queries for which user
needs to define oracle values is |RCA| -1. This is much more
effective than reviewing all the rules in the policy or testing the
policy with many queries. As reviewed in Section VI, the
existing testing methods for XACML policies do not target the
detection of incorrect combining algorithms. They all generate
a large number of queries to which user has to define the oracle
value of each query.

The fault-based testing of XACML combining algorithms
in our approach involves two issues: (1) determine when P and
P' are functionally equivalent with respect to the given policy
target and rules; and (2) when P and P' are not functionally
equivalent, find a query q such that d(P, q) ≠ d(P', q). To
address the first issue, our technical report [14] has formalized
the semantic differences between the five rule combining
algorithms and between the six policy combining algorithms
with 49 theorems. These theorems describe the necessary and
sufficient conditions under which different combining
algorithms are functionally equivalent. Based on [14], this
paper focuses on the second issue by exploiting a constraint
solver for automated test generation. For example, the
following two theorems capture the semantic difference

between rule combining algorithms Deny-overrides and
Permit-overrides. Detailed proofs can be found in [14].

Theorem 1. Given policy P = <PT, Deny-overrides, R> and
P'= <PT, Permit-overrides, R>. If ri (1 i n) are all permit
rules or ri (1 i n) are all deny rules, then P and P' are
functionally equivalent.

Theorem 2. Given policy P=<PT, Deny-overrides, R> and
P'=<PT, Permit-overrides, R>, where R has at least one permit
rule and at least one deny rule. For any q, d(P, q) ≠ d(P', q) if
and only if there exists permit rule ri=<rti, rci, Permit> R,
deny rule rj =<rtj, rcj, Deny> R , and query q, such that:
 (a) d(ri, q) = Permit d(rj, q) ∈{Deny, I(D)} or

(b) d(ri, q) = I(P) d(rj, q) = Deny.

 The above theorems lay the foundation for generating
query q such that d(P, q) ≠ d(P', q). The corresponding test
generation algorithm is described in the next section.

IV. FAULT-BASED TEST GENERATION

This section discusses how to design and implement query
(P, P') using constraint solver Z3-str. Z3 [6] is an efficient
SMT (Satisfiability Modulo Theories) Solver from Microsoft
Research. SMT generalizes Boolean Satisfiability (SAT) by
adding equality reasoning, arithmetic, fixed-size bit-vectors,
arrays, quantifiers, and other useful first-order theories. Z3
supports basic data types (e.g., Int and Bool) as well as data
structures (e.g., Array, List, BitVec, and Records). However,
Z3 does not directly deal with strings. To address this issue,
Z3-str [15] extends Z3 by treating strings as a primitive type
and supporting common string operations.

 In the following, we first introduce the basic functions that
generate queries for a pair of rules and then describes how they
are used in the query generation algorithms for comparing
combining algorithms. These basic functions represent the
queries used in the detailed proofs of the theorems [14]. We
also discuss how to implement the basic query generation
functions by transforming the corresponding targets and
conditions of an XACML policy into the input of Z3-str.

A. Query Generation Functions

Suppose r1 =<rt1, rc1, re1> and r2 =<rt2, rc2, re2> are two
rules. E, N, and I stand for Effect (Permit or Deny), N/A, and
Indeterminate, respectively. For simplicity, here we do not
consider targets of policies or policy sets, which are handled
similarly. The basic query generation functions are as follows:

 queryE_E(r1, r2): generate a query q to make both r1
and r2 produce the specified effects re1 and re2,
respectively (i.e., d(r1, q) = re1 and d(r2, q) = re2). In
this case, the rule targets and conditions are all satisfied,
i.e., rt1 rc1 rt2 rc2.

 queryE_N(r1, r2): generate a query q to make r1 produce
the specified effect re1 and r2 produce N/A (i.e., d(r1, q)
= re1 and d(r2, q) = N/A). In this case, rt1 rc1 (rt2
 rc2).

 queryE_I(r1, r2): generate a query q to make r1 produce
the specified effect re1 and r2 produce Indeterminate

(i.e., an error in the process of evaluation). d(r1, q) = re1
and d(r2, q) = I(D) when re2= Deny or I(P) when re2=
Permit.

 queryI_N(r1, r2): generate a query q to make r1 produce
Indeterminate and r2 produce N/A. In this case, d(r1, q)
= I(D) when re1= Deny or I(P) when re1= Permit. d(r2,
q) = N/A.

 queryN_N(r1, r2): generate a query q to make both r1
and r2 produce N/A (i.e., d(r1, q) = N/A, d(r2, q) = N/A).
In this case, (rt1 rc1) (rt2 rc2).

 queryI_I(r1, r2): generate a query to make both r1 and r2
produce Indeterminate.

Using the above functions, we can formalize the algorithms
for each pair of the combining algorithms according to the
formalized semantic difference [14]. Consider Deny-overrides
and Permit-overrides as an example. Algorithm 1 below
describes the query generation process based on Theorems 1
and 2. According to Theorem 1, if the rules are all permit rules
or all deny rules, they are functionally equivalent and thus no
query can be generated. This is corresponding to lines 1-4 in
Algorithm 1. According to Theorem 2, if a query makes a pair
of permit and deny rules produce Permit and Deny (or I(D))
respectively (i.e., condition (a) in Theorem 2), then Deny-
overrides and Permit-overrides produce different responses to
this query. This is corresponding to lines 6-18 in Algorithm 1.
Similarly, if a query makes a pair of deny and permit rules
produce Deny and I(P) respectively (i.e., condition (b) in
Theorem 2), Deny-overrides and Permit-overrides also
produce different responses to this query. This is done by lines
19-26 in Algorithm 1.

Algorithm 1: query(P=<PT, Deny-overrides, R>, P'=<PT,
Permit-overrides, R>)
Function: generate q such that d(P, q) ≠ d(P', q) if feasible.
Input: P=<PT, Deny-overrides, R>, P'=<PT, Permit-
overrides, R>
Output: query q or null

1. if rei= Permit for all i (1 i n) // Theorem 1
2. return null;
3. else if rei= Deny for all i (1 i n) // Theorem 1
4. return null;
5. else // Theorem 2
6. for ri = 1st permit rule to last permit rule, do
7. for rj =1st deny rule to last deny rule, do:
8. q = queryE_E(ri, rj);
9. if (q!=null)
10. return q;
11. else
12. q = queryE_I(ri, rj);
13. if (q!=null)
14. return q;
15. end if
16. end if
17. end for
18. end for // condition (a)
19. for ri = 1st deny rule to last deny rule, do:
20. for rj = 1st permit rule to last permit rule, do:
21. q = queryE_I(ri, rj);
22. if (q!=null)
23. return q;

24. end if
25. end for
26. end for // condition (b)
27. return null;
28. end if

B．Transforming XACML Constructs to Z3-str

The aforementioned basic query generation functions are
realized by transforming XACML constructs (i.e., targets and
conditions) to the input of Z3-str, executing Z3-str with the
transformed input, and translating the result of Z3-str to an
XACML query. Converting XACML targets and conditions
consists of two steps. In the first step, attributes in the given
targets and conditions (i.e., rt1, rc1, rt2, and rc2 in the
aforementioned basic query generation functions) are defined
as typed variables in Z3-str. The attributes have to be renamed
in Z3-str because the syntax of identifiers is different. The data
type of each XACML attribute is also changed to a data type in
Z3-str. XACML3.0 has 17 basic data types: string, Boolean,
integer, double, time, date, dateTime, anyURI, hexBinary,
base64 Binary, dayTimeDuration, yearMonthDuration,
rfc822Name, x500Name, xpathExpression, ipAddress, and
dnsName. Each of these data types can be mapped to a basic
data type or data structure in Z3-str. For example, date in
XACML can be corresponding to a record with three integer
fields. In the second step, the logical expressions of targets and
conditions are converted into Z3-str expressions. As the
conversion involves many non-trivial details, here we use some
examples to illustrate the idea. Consider the following rule
target in XACML (for clarity, URI links are omitted):

<AnyOf>
 <AllOf>
 <Match MatchId="…:function:string-equal">
 <AttributeValue DataType="…string">book</AttributeValue>
 <AttributeDesignator AttributeId="…resource:resource-id"
 Category="…attribute-category:resource"
 DataType="…string" MustBePresent="true"/>
 </AttributeDesignator>
 </Match>
 <Match MatchId="…:function:string-equal">
 <AttributeValue DataType="…string">buy</AttributeValue>
 <AttributeDesignator AttributeId="…:action:action-id"
 Category="…:attribute-category:action"
 DataType="…string" MustBePresent="true"/>
 </AttributeDesignator>
 </Match>
 </AllOf>
 <AllOf>
 <Match MatchId="…function:string-equal">
 <AttributeValue DataType="…string">teacher</AttributeValue>
 <AttributeDesignator AttributeId="…subject:subject-id"
 Category="…subject-category:access-subject"
 DataType="…string" MustBePresent="true"/>
 </AttributeDesignator>
 </Match>
 </AllOf>
</AnyOf>
<AnyOf>
 <AllOf>
 <Match MatchId="…function:string-equal">
 <AttributeValue DataType="…string">workday</AttributeValue>
 <AttributeDesignator AttributeId="…environment:day"
 Category="…environment-category: environment"
 DataType="…string" MustBePresent="true"/>
 </AttributeDesignator>

 </Match>
 </AllOf>

</AnyOf>

The above target has the same meaning as the following
logic formula:

((resource-id = book action-id = buy)
 subject-id = teacher) (day=workday)

where attributes resource-id, action-id, subject-id, and day are
all of the string type. A non-error query should provide a value
for each attribute because of MustBePresent="true". To
generate a query to satisfy the target condition, it can be
converted into the following Z3-str input:

(declare-variable resourceid String)
(declare-variable actionid String)
(declare-variable subjectid String)
(declare-variable day String)
(assert (and (or (and (=resourceid "book")(= actionid

"buy")) (and (=subjectid "teacher"))) (or (and (= day
"workday")))))

(check-sat)
(get-model)

The “declare-variable” statements define variables for the
attributes, and the “assert” expression describes the constraint
to be solved.

For query generation functions queryE_E(r1, r2),
queryE_N(r1, r2), queryN_N(r1, r2), we only need to make the
targets and conditions true or false (e.g., rt1 rc1 rt2 rc2 for
queryE_E(r1, r2)). The other functions, queryE_I(r1, r2),
queryN_I(r1, r2), and queryI_I(r1, r2), however, generate
queries to produce Indeterminate by triggering an error status.
Generation of such queries is much more complicated as
discussed below. Typically, such a query should make part of a
target (or condition) produce an error while ensuring the other
part to evaluate to true or false. Therefore, query generation
may involve selecting an appropriate attribute to trigger an
error. In the above example, if we choose attribute day to
trigger an error (e.g., a query that provides no value for day),
then we have to ensure the resultant query must satisfy the
following condition:

 ((resource-id=book action-id = buy) subject-id = teacher)

If a query does not meet this condition, then day=workday
will not be evaluated. Thus, it will not produce an error. If we
choose subject-id to produce an error, then the resultant query
should make (resource-id = book action-id = buy) evaluate
to false, otherwise subject-id = teacher will not be evaluated.

Generally, there are a great variety of errors that can result
in a response of Indeterminate in XACML 3.0 [12]. The errors
can be caused by problematic policies, queries, or both. Here
our focus is on the errors caused by queries, assuming that the
given policy is well-defined except for incorrect combining
algorithm. In addition, queryE_I(r1, r2), queryN_I(r1, r2), and
queryI_I(r1, r2) need to consider interactions of attributes in
both rules. When both rules use the same set of attributes, it
may be infeasible to create a particular type of error to obtain
Indeterminate. This is because a query making one rule
evaluate to I(D) or I(P) may also make the other rule evaluate
to I(D) or I(P).

V. EMPIRICAL STUDIES

We have implemented our approach based on Balana [1]
and applied it to nine case studies with different levels of
complexity. The case studies are summarized in Table I. K-
market is a sample application of Balana with a total of 12
rules in three policies. It is the only one that is originally
encoded in XACML 3.0. itrust, pluto, conference, and fedora
are real-world policies from literature. They were originally
encoded in XACML 2.0 or 1.0. In this paper, we manually
converted them into XACML 3.0 with the same semantics.
itrustX (X=5, 10, 20, or 40) is a policy synthesized from itrust.
It has X times as many rules as itrust. The new rules in itrustX
are created by replicating the existing rules with new attribute
values. Because the real-world policies from literature have a
small number of rules, we use itrustX to evaluate whether or
not our approach is applicable to large-scale policies.

TABLE I. SUBJECT POLICIES OF EMPIRICAL STUDIES

Name #Rules
Combining
algorithm

Equivalent
combining
algorithms

K-market [1] 12 Deny-overrides None

itrust2 64 First-applicable
Permit-overrides/
Deny-overrides

pluto 21 Permit-overrides None

conference 15 Permit-overrides None
fedora3 12 Deny-overrides None

itrust5 320 First-applicable
Permit-overrides/
Deny-overrides

itrust10 640 First-applicable
Permit-overrides/
Deny-overrides

itrust20 1,280 First-applicable
Permit-overrides/
Deny-overrides

itrust40 2,560 First-applicable
Permit-overrides/
Deny-overrides

We treat the combining algorithm in each original policy as

the correct one and inspect each policy to determine which
combining algorithms are functionally equivalent and which
are non-equivalent for each given policy. As shown in Table I,
the policies in itrust and its variations have equivalent
algorithms. As the correct combining algorithms in the given
policies are already assumed, the goal of our evaluation is to
demonstrate whether or not our approach can detect incorrect
combining algorithms and functionally equivalent combining
algorithms. Let P0 and CA0 denote the correct policy (or policy
set) and original combining algorithm respectively. We used
the following protocol to conduct the experiment:

 Use the correct policy P0 to create a policy or policy
set P with a different combining algorithm CA (i.e.,
CA ≠ CA0);

 Apply our approach to P, comparing CA to each of
the other combining algorithms (including CA0) and
try to generate a query for each pair;

 If no query is generated for <P, P0> and d(P, q) =
d(P0, q) for each query q generated in the above step,
then CA is correct and functionally equivalent to CA0,
otherwise CA is incorrect.

2 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=start
3 http://www.fedora.info

The results of our experiments have shown that our
approach was able to identify all correct and equivalent
combining algorithms as defined in Table I. Consider itrust (or
itrustX). First-applicable, Deny-overrides, and Permit-
overrides are equivalent. When any two of them were
compared, no query was generated, which means they have no
difference. When one of them was compared to Deny-unless-
permit or Permit-unless-deny, however, a query was generated,
which means they are different. In K-market, pluto, conference,
or fedora, a query was generated for each pair of combining
algorithms. This means that all the combining algorithms are
different with respect to the given policy target and rule.

VI. RELATED WORK

In Cirg [9], tests are generated from counterexamples
produced by the change-impact analysis of two synthesized
versions. The difference of the two versions of a policy targets
a test coverage goal (e.g., rule, or condition). Targen [10] is a
test generator for XACML policies that derives access requests
to satisfy all the possible combinations of truth values of the
attribute id-value pairs found in a given policy. Access requests
generated by Cirg and Targen typically use a limited number of
subject, resource, action, and environment attributes. A real
request, however, could use any combination of attributes.
Because requests are encoded in XML, they must conform to
the XML Context Schema. To address this issue, Bertolino et
al., have developed different test generation algorithms by
considering the structures of the Context Schema [2][3][5].
These algorithms can generate requests that use more than one
subject, resource, action, or environment attribute. They can
also produce robustness tests, where invalid attribute values are
generated randomly.

Li et al. have applied symbolic execution technique to
generation of access requests for testing XACML policies [8].
They convert the policy under test into semantically equivalent
C Code Representation (CCR) and symbolically execute CCR
to create test inputs and translate the test inputs to access
control requests. Mutation of the XACML policies [4][11] has
been commonly used to evaluate the above testing methods. In
this paper, however, we use combining algorithm-based
mutants to generate queries for determining whether or not the
given combining algorithm is correct.

VII. CONCLUSIONS

We have presented the fault-based approach to automated
test generation for determining existence or absence of
incorrect combining algorithms in XACML3.0 policies. Based
on the formalized semantic differences between combining
algorithms, our approach exploits a constraint solver to
generate a query to show the difference between the given
combining algorithms and each of the mutants. Our case
studies have demonstrated that the approach is effective and
applicable to sizeable policies. As a byproduct, our approach
can be a useful tutoring tool for learning about XACML
combining algorithms and their essential differences. When a
user is uncertain about which combining algorithm should be
used, she may compare similar algorithms and generate
requests to show the difference. This will help the user get an

accurate understanding and choose the right combining
algorithm.

This paper offers a first step towards general fault-based
testing of XACML policies. Incorrect combining algorithms
are just one type of faults in XACML policies. Other fault
types include incorrect (policy set, policy, and rule) target,
incorrect rule effect, and incorrect rule conditions [4][11]. Our
future work will investigate fault-based test generation
algorithms for each of these uncovered fault types.

ACKNOWLEDGMENT

This work was supported in part by US National Science
Foundation (NSF) under grants CNS 1123220 and 1359590.

REFERENCES
[1] Balana, “Open source XACML 3.0 implementation,”

http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-
implementation/, 2012.

[2] A. Bertolino, S. Daoudagh, F. Lonetti, and E.marchetti. "Automatic
XACML requests generation for policy testing." Fifth IEEE
International Conference on Software Testing, Verification and
Validation (ICST), 2012, pp.842-849.

[3] A. Bertolino, S. Daoudagh, F. Lonetti, and E.marchetti. "The X-
CREATE Framework-A Comparison of XACML Policy Testing
Strategies." Proc. of the 8th International Conference on Web
Information Systems and Technologies (WEBIST). pp.155-160.

[4] A.Bertolino, S.Daoudagh, F.Lonetti, and E.Marchetti. "Xacmut: Xacml
2.0 mutants generator." Sixth IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW),.
2013, pp.28-33.

[5] A.Bertolino, S.Daoudagh, F.Lonetti, E.Marchetti and L.Schilders.
"Automated testing of extensible access control markup language-based
access control systems." Software, IET 7.4 (2013), pp.203-212.

[6] L.De.Moura, and N.Bjørner. "Z3: An efficient SMT solver." Tools and
Algorithms for the Construction and Analysis of Systems. Springer
Berlin Heidelberg, 2008, pp.337-340.

[7] V.C.Hu, D.Ferraiolo, R.Kuhn, A.Schnizer, K.Sandlin, R.Miller and
K.Scarfone. "Guide to Attribute Based Access Control (ABAC)
Definition and Considerations." NIST Special Pub 800 (2014): 162.

[8] Y.C.Li, Y.Li, L.Z.Wang, and G.Chen. "Automatic XACML Requests
Generation for Testing Access Control Policies." Proc. of the 26th
International Conf. on Software Engineering and Knowledge
Engineering (SEKE'14), Vancouver. July 2014.

[9] E. Martin and T. Xie. “Automated test generation for access control
policies,” in Supplemental Proc. of ISSRE, November 2006.

[10] E.Martin, and T.Xie. "Automated test generation for access control
policies via change-impact analysis." Proceedings of the Third
International Workshop on Software Engineering for Secure Systems.
IEEE Computer Society, 2007, pp.5-11.

[11] E.Martin, and T.Xie. "A fault model and mutation testing of access
control policies." Proceedings of the 16th International Conference on
World Wide Web. ACM, 2007, pp.667-676.

[12] L.J. Morell. “A theory of fault-based testing”, IEEE Trans. on Software
Engineering, Vol. 16, no.8, August 1990, pp. 844-857.

[13] OASIS, “eXtensible Access Control Markup Language (XACML)
Version 3.0,” http://www.oasisopen.org/committees/xacml/. 2013.

[14] D. Xu, Y. Zhang, N. Shen. “Formalizing semantic differences of
combining algorithms in XACML 3.0,” Technical Report, Boise State
University. http://cs.boisestate.edu/~dxu/research/TR-BSU-CS-
SEAL2014-001.pdf

[15] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A Z3-based string solver
for web application analysis,” Proc. of the 9th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE’13), pp.114-124.

http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-implementation/
http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-implementation/
http://www.oasisopen.org/committees/xacml/

