
Modeling and Analyzing Publish-Subscribe
Architecture using Petri Nets

Junhua Ding1, 2

1) Dept. of Computer Science
East Carolina University

Greenville, NC 27587
dingj@ecu.edu

Dongmei Zhang2

2) School of Computer Sciences
China University of Geosciences

Wuhan, Hubei, China
jjielee@163.com

Abstract — Software architecture is the foundation for the
development of software systems. Its correctness is important to
the quality of the software systems that have been developed
based on it. Formally modeling and analyzing software
architecture is an effective way to ensure the correctness of
software architecture. However, how to effectively verify
software architecture and use the results from formal modeling
and analysis is important to the application of the approach. In
this paper, software architecture is modelled using high level
Petri nets, and the model is then checked with a model based
testing tool called MISTA, and bounded model checking tool
Alloy to ensure the correctness of the model. The approach is
designed as a two-phase process consisting of model-based testing
and bounded model checking to ensure it is both practical and
rigorous for analyzing software architecture. We illustrated the
idea and procedure via modeling and analyzing the Publish-
Subscribe architecture. The result has shown that combining
bounded model checking with model based testing is an effective
extension to ensure the development quality.

Keywords- software architecture; Petri net; model checking; model
based software testing; publish-subscribe architecture

I. INTRODUCTION
Software architecture is an overall structure of a software

system, which consists of a group of components and the
connections among components in addition to the constraints
applying to the connections. It is the foundation of product
lines and many software systems were developed based on it.
Therefore, correctness of software architecture is important to
the quality of software systems that have been built on it.
Formal modeling and analysis of software architecture offers a
rigorous way to ensure the correctness of software architecture,
which has been discussed in many articles [5]. However,
results of formal modeling and analysis are difficult to be
directly used for analyzing software implementation that was
built based on the formal models due to the specification gap
between models and their implementations. For example, if a
model is specified using Petri nets, and the implementation
language is Java, then the model checking results (e.g., counter
examples) of the Petri nets model cannot be directly used for
testing the Java program. But model checking a complex Java
application is infeasible and testing is still the practical way for
program verification. Model-based software testing is an
approach to bridge the gap between testing of a software model
and its implementation, where models are used for guiding the
test generation. In some cases, model level tests are first
generated, and then they are transformed into program level
tests. MISTA [17] is a model based software testing tool,

which models a software system in high level Petri nets, and
then the Petri net model is analyzed with simulation and model
checking. Model level tests can be automatically generated
according to selected test coverage criteria, and then these tests
are automatically transformed into program level tests with
help from mapping files. The program level tests can be
directly used for testing the implementation. However, due to
the grand challenge of modeling of a high level Petri net, model
checking capability in MISTA is limited. In this paper, we
extended MISTA with bounded model checking for analyzing
Petri nets. Alloy analyzer is a bounded model checker for
analyzing models specifying in Alloy language, which is a
formal specification language based on first order relational
logic [3][10]. Alloy analyzer is a constraint solver for
automatically checking an Alloy model that specifies the
structural constraints and behaviors of a software system [3].
Alloy finds all model instances for satisfying a checked
property within the bounded scope, and it provides a
visualization tool to illustrate all instances. Comparing the
graphic instance to the corresponding Petri net model will be
useful to better understand the Petri net model and create a
better model. In addition, the instances are also useful for
creating tests for testing interesting properties in the Petri net.

Publish-Subscribe (pub-sub) architecture is a well adopted
event-based software architecture. The pub-sub architecture
includes one or more components that publish events, and one
or more components that subscribe them. The loose coupling of
publish and subscribe components offers the flexibility of
updating components and events in a system, but it also brings
the complexity of analysis due to the large number of
possibility of combination of event transferring scenarios [6].
Several analysis approaches such as model checking [6][8]
have been attempted for analyzing pub-sub models. In this
paper, we introduce Alloy into MISTA for analyzing Petri nets.
First, a Petri net model is modeled and simulated, and then
simple properties are verified using MISTA. After that, the
Petri net model is converted into an Alloy model, which will be
analyzed using Alloy analyzer. The analysis results can be used
for improving the Petri net model and guiding generating tests
for interesting properties. The analysis process is illustrated
through modeling a general model of the pub-sub architecture
in Petri nets. The general model can be easily extended for
different versions of the pub-sub architecture. Based on the
Petri net model, the pub-sub architecture was modelled in
Alloy, and analyzed for interesting properties using Alloy
analyzer. A Petri net model can be automatically transformed
into an Alloy model.

DOI reference number: 10.18293/SKE2015-232

The main contribution of this paper is due to a two-phase
rigorous and practically useful approach for analyzing software
architecture. Since software architecture is the foundation for
the implementation of many software systems, it is important
to provide an easy-to-use technique such as simulation and
testing for analyzing software architecture when they are still in
the early development phase. But simulation and testing is not
enough to ensure the correctness of important properties in
software architecture. Rigorously checking the architectural
model is necessary for ensuring the quality of the architecture
especially in the later modeling phase. In our approach, the
model-based testing assists ones to understand the modeling of
software architecture, to check simple assertions and to test
special scenarios for building a correct software architecture. In
addition, model checking ensures the correctness of important
properties modeled in the architectural model. The bounded
model checker Alloy was smoothly extended to model based
testing tool MISTA for enhancing the features in MISTA.
Modeling and analyzing the pub-sub architecture is used to
explain the idea and process, and to show the effectiveness of
the proposed approach.

The rest of this paper is organized as follows: Section 2
presents a brief introduction to Alloy, PrT nets, model-based
software testing and its tool MISTA. Section 3 introduces the
proposed model based testing of the pub-sub architecture in
Petri nets using MISTA. Section 4 discusses how to extend
Alloy into MISTA, model and analyze the pub-sub architecture
using Alloy, and how to convert a Petri net into an Alloy
model. Section 5 reviews the related work, and section 6
concludes this paper.

II. BACKGROUND

A. Alloy
Each Alloy model is specified in Alloy language to define

how to check the occurrence of a state change [3]. Each model
represents a set of model instances, and Alloy analyzer is used
to search for instances or counterexamples of a model. Alloy
analyzer is a bounded model checker for analyzing a model
within a finite scope a user specifies [3]. The analysis is sound
and complete within the scope so that it never misses a
counterexample within the scope. Alloy analyzer either finds a
solution that satisfies a predicate defined in the model, or a
counterexample that violates a given assertion [11]. An Alloy
model includes a number of signatures and facts. A signature
defines a set and a group of atoms associating with the set, and
a fact defining a constraint that is assumed always to hold in
the model. Analysis of a model is conducted for checking a
predicate or an assertion of the model. The details of Alloy
analyzer and language can be found in the project website [3]
and the book [10]. Fig. 1 is an Alloy model (modified based
on the original model described in the tutorial of Alloy [3]) for
defining a simple file system, which includes files, directories
and root. sig FSObj defines objects in a file system, sig File,
sig Dir and sig Root define files and directories, which are also
objects. The three facts define the global constraints that are:
each directory is the parent of its contents, each object is either
a file or directory, and a root does not have a parent. The
assert declares that a path is acyclic, and check it for scope of
5 [3].

module fileSys
 abstract sig FSObj { parent: lone Dir}
 sig Dir extends FSObj { contents: set FSObj}
 sig File extends FSObj { }
 one sig Root extends Dir { } { no parent }
 fact {all d: Dir, o: d.contents | o.parent = d}
 fact { File + Dir = FSObj}
 fact { FSObj in Root.*contents}
 assert acyclic {no d: Dir | d in d.^contents}
check acyclic for 5

Figure 1. A sample Alloy model

B. PrT Nets
Predicate/Transition (PrT) nets are a high level Petri net for

specifying concurrent systems. The definition of PrT nets used
in this paper is same as the one defined in [18].

Definition 1 (PrT net) A PrT net is a tuple (P, T, F, 6, L,
M, M0), where: P is a finite set of predicates (first order places),
T is a finite set of transitions and F is a flow relation. (P, T, F)
forms a directed net. 6 is a structure consisting of sorts of
individuals (constants) together with operations and relations. L
is a labeling function on arcs. M is a mapping from a set of
inscription formulae to transitions, and M0 is the initial or
current marking.

Fig. 2 shows a simplified PrT net model for 5 dining
philosophers’ problem. The model includes transitions Pickup,
and Putdown represent the action for picking up chopsticks and
putting down chopsticks, respectively. The distribution of
tokens in places Phi, Chop and Down represents the three states
of each philosopher: thinking, full and eating, respectively.
Places Phi and Chop include tokens that are nature numbers
representing philosophers or chopsticks, and each token in
place Down represents a philosopher and his/her two
chopsticks. Transition Pickup has two input places Phi and
Chop, and one output place Down. The guard condition in
transition Pickup is defined based on the relation between the
tokens in place Phi and Chop: x=c&&d=(x+1)%5,
representing that a philosopher must get both of his or her left
and right chopstick before he or she can eat (pickup) The guard
condition in transition Putdown is defined based on the relation
between the tokens in place Phi and Chop: x=c, representing a
philosopher puts down chopsticks at both left side and right
side.

C. Model-based Testing and MISTA
MISTA [14][17] is a model-based testing tool for

automated generation and execution of tests. It generates tests
in model level first and then program level tests are produced
through transforming the one at model level. It specifies
models in function nets, which is a type of PrT nets extended

Figure 2. A PrT nets model for dining philosophers

with inhibitor arcs and reset arcs [18]. It also provides a
language for mapping the elements in function nets to
implementation constructs so that it is possible to transform the
model level tests into program level tests that can be executed
against the system under test. In addition to test generation,
MISTA includes simulation and limited model checking
functions. It supports the step by step execution and random
execution of a function net, and the execution sequences and
token changing in each place are visualized for inspection. The
test generator generates adequate model level tests (i.e., firing
sequences of a function net) according to a selected coverage
criterion such as reachability coverage, transition coverage,
state coverage, depth coverage, and goal coverage. Test code
generator generates test code in a target program language like
Java or C++ from a given transition tree [17].

III. MODELING AND TESTING SOFTWARE ARCHITECTURE
USING PRT NETS

In this section, we are going to discuss an approach for
analyzing a PrT net model using model-based software testing
technique. In order to illustrate the basic idea and the process of
the two-phase analysis approach, we model and analyze a pub-
sub model using MISTA in this section and Alloy in next
section.

A. Modeling the Pub-Sub Architecture
The pub-sub architecture is an event-based architecture,

which includes one or more publishers that publish contents,
and one or more subscribers that consume the contents. The
publisher sends its contents as event messages through an event
bus, and a subscriber subscribes its contents through an event
message classification mechanism that classifies contents as
channels [1].

In the PrT net model shown in Fig. 3, a publisher publishes
its content as a message msg through transition pub, and the
published content is notified to subscribers via transition notify,
which models the event bus, and messages are classified as
channels and stored in place channel by transition classify. A
subscriber subscribes a channel message via transition sub, and
the subscribed channel message is sent to the subscriber by
transition classify when the message is available.

Figure 3. A PrT net model for the pub-sub architecture

B. Testing the Pub-Sub Architecture
As soon as a PrT net model is created and successfully

compiled in MISTA, run it with random inputs to help
developers to understand the model and detect easily found
problems. If the simulation result is acceptable, verification of
the goal reachability, assertions and deadlock states is
conducted. After that, a set of tests can be generated based on
selected coverage criteria, and these tests will be converted into
program level tests for testing the corresponding
implementation.

First, execute the PrT net model for the pub-sub with valid
initial markings to simulate normal running scenarios of the
model. For example, check a normal scenario that a publisher
publishes a message, which is the type of messages that a
subscriber has subscribed. It is important to check that the
message is successfully classified and stored in the channel and
the subscriber is notified, and finally the message is delivered
to the subscriber. An example of the initial marking for
checking above scenario in the PrT net in Fig. 3 is:
INIT Event(1,"1"), Publisher(1,"2"), Publisher(1,"1"), Subscriber(11, "0"),
Subscriber(11, "s")

Second, verify the reachability of goal states and transitions,
assertions and deadlock states in the PrT net for the pub-sub
using the model checking capability in MISTA. When the
reachability of all transitions of the PrT net in Fig. 3 was
checked, transition RecMsg was unreachable was found since
no any message with ID=5 was ever sent from any publisher.
If a token such as (“5, “2”) for place Publisher is added to the
initial marking, all transitions will be reachable. Given a goal
state such as GOAL Subscriber(5, “2”), then MISTA will find
that the state is reachable. The PrT net model has termination
states because published messages are delivered to subscribers
and removed from their channels and it is possible that any
channel has a message. The model has to be updated if a
subscriber only receive copies of its subscribed messages and
all messages will stay in the channel for a period of time.

Third, generate adequate tests for selected test coverage
criteria using MISTA. For the PrT net model defined in Fig. 3,
generate model level tests covering all states, all executable
paths, goal states, and others. Since complex scenarios are not
feasible to be checked with simulation or the limited model
checking in MISTA, these complex scenarios shall be
rigorously tested with model level tests thanks to the
executable capacity of PrT nets. The model level tests are also
used for generating program level tests via mapping the model
to its corresponding programs. The program level tests will be
used for testing the implementation of the model.

Although the PrT net model was checked with simulation of
execution scenarios, verification of important properties, and
testing with adequate tests for selected coverage criteria, the
model is not guaranteed to be correct. Formal verification of a
PrT net model is very difficult, but the analysis process of
bounded model checking is fully automatic and it can
guarantee the correctness of the checked properties within
specified scope. Therefore, bounded model checker Alloy was
chosen as an addition to MISTA to further analyze a PrT net
model.

IV. ANALYZING SOFTWARE ARCHITECTURE USING ALLOY
In this section, first we discuss how to model and analyze

the pub-sub architecture in Alloy, and then we introduce a
procedure for transferring a PrT net into an Alloy model.

A. Analysis of the Pub-Sub Architecture
The architecture defined in this section is specified

following Acme style [1], which defines software architecture
as a group of components and the connection for connecting
the components via interfaces in addition to the constraints
applying to the connection. The Alloy model of the pub-sub is
defined in a hierarchical structure. The basic elements of the
general software architecture are defined in an Alloy model
serving as the foundation for modeling specific software
architecture, and then a model of event based architecture is
defined. The foundation model and the model of event based
architecture were created based on those models introduced in
[11]. The model for the pub-sub architecture was developed
through extending above two models. In the foundation model,
common software architecture elements such as components,
connectors, ports and roles are defined as signatures, and basic
constraints of software architecture are defined as facts. The
model also defines a group of built-in functions and predicates
for checking specific properties or looking for
counterexamples. The pub-sub architecture is an event-based
architecture that consists of loosely-coupled components that
produce and consume events through the ports. In the model
of event-based architecture, the signatures include two
components: AnnounceComponent, and ReceiveComponent,
for modeling an announce component and a receive
component, respectively. Each component includes a set of
ports as interfaces; one connector EventConnector, models the
connector for connecting between roles and ports. Each
connector includes two sets of roles as interfaces, two types of
roles AnnoucerRole and ReceiverRole, and two types of ports
AnnoucePort and ReceivePort. The connection between
components is implemented through connecting ports to the
corresponding roles. The pub-sub architecture is an extension
of the event-based architecture with the subscriber selects
messages through a message classification mechanism called
channel. The following Alloy code is partial of the Alloy
model for the pub-sub architecture, and the model was
developed based on the Alloy models described in [11].
Channel is defined as a component, and a channel connector is
defined for connecting a channel and its subscribers.

sig PubPort extends AnnouncePort {}
sig SubPort extends ReceivePort {}
sig PubRole extends AnnouncerRole {}
sig SubRole extends ReceiverRole {}
sig PubComp extends Component{pubPort: PubPort}
sig SubComp extends Component {subPort: SubPort}
sig Channel extends Component {channelPort1:

SubPort, channelPort2: SubPort}
sig EventBusConn extends EventConn {pubRole:

PubRole, subRole: SubRole}
sig ChannelConn extends Connector {subRole:

SubRole, channelRole: ReceiverRole}

One fact described as follows is defined to ensure that each
component or connector has appropriate number of roles or
ports.

fact{
 (PubComp<:pubPort) in ports
 (SubComp<:subscribePort) in ports
 (Channel<:channelPort1) in ports
 (ChannelConn<:channelRole+ChannelConn<:subRole)in roles
 (EventBusConn<:pubRole+EventBusConn<:subRole)in roles
}

Based on above model, one can check interesting properties of
the model, such as an architectural configuration or a set of
constraints. The following predicate defines a set of
constraints that define the mapping between ports and roles,
and the essential elements in the pub-sub architecture. In the
code, self is a term defined in Acme as a signature for
extending System, and all and some represent universal and
existential quantification, respectively.

abstract sig System {components: set Component,
connectors: set Connector}
one sig self extends System {}

pred pubsub_constraints(){
 some c:self.components|declaresType[c,PubComp]
 some k:self.components|declaresType[k,SubComp]
 some m:self.components|declaresType[m,Channel]
 some n:self.connectors|declaresType[n,EventBusConn]
 some f:self.connectors|declaresType[f,ChannelConn]
 all self:PubPort|
 (all r: self.~attachment|declaresType[r, PubRole])
 all self: SubPort|
 (all r:self.~attachment|declaresType[r, SubRole])
 all self:PubRole |
 (#(self.attachment)=1)&&
 (all p: self.attachment|declaresType[p, PubPort])
 all self:SubRole |
 (#(self.attachment)=1)&&(all p: self.attachment|
declaresType[p, SubPort])
 all self:EventBusConn |
 (some e:self.pubRole|declaresType[e, PubRole] &&

some f:self.subRole|declaresType[f, SubRole])
 all self:ChannelConn|
 (some e:self.channelRole|declaresType[e, ReceiverRole]
&& some f:self.subRole|declaresType[f, SubRole])
}

Figure 4. A snapshot of an instance for pub-sub architecture

Checking the predicate with a specified scope such as 5 using
Alloy analyzer shall find instances that satisfy the predicate in
the pub-sub model. The instances are helpful to understand the
architecture and create better PrT net model. Fig. 4 shows a
snapshot of an instance. One also can check whether a
particular instance of pub-sub can be found or not in the model
such as the following configuration of a pub-sub can be found
with scope of 4. The configuration defines a simple pub-sub
instance which consists of one subscriber, one publisher, one
channel, one event bus connection, and one channel
connection.

 pred Config_0(s:SubComp,e:EventBusConn,c:Channel,
 cc:ChannelConn, p:PubComp){
 attached[s.subscribePort, cc.subscriberRole]
 attached[cc.channelRole, c.channelPort2]
 attached[c.channelPort1, e.subscriberRole]
 attached[e.publisherRole, p.publishPort]
}

B. Translating a PrT Net into an Alloy Model
The Alloy model discussed in previous section was built

directly according to the pub-sub architecture defined in Acme
[1] for explaining the analysis process in a better way. In this
section, we discuss how to translate a PrT net into an Alloy
model to ensure the consistency between a PrT net and its
corresponding Alloy model. Since Alloy models are
declarative for defining how to recognize something has
happened, and PrT net models are operational for defining
how something can be accomplished [3]. It is fairly challenge
to automate the transformation between a PrT net model and
an Alloy model. In this section, we introduce a basic structure
of the transformation using the dinning philosopher problem
defined in Fig. 2 as an example. The idea of the transformation
was developed based on the one for translating a regular place
transition Petri nets into an Alloy model discussed in [16],
which was extended for high-level Petri nets (i.e. PrT nets).

First, translate the basic elements (i.e. places, transitions,
arcs and tokens) and basic constraints in a PrT net into
signatures in Alloy.

abstract sig Node{flow: set Node}
abstract sig Token{}
abstract sig Place extends Node{tokens:set

Token}{#tokens >= 0}
abstract sig Transition extends Node{inp:set

Place, outp:set Place}
abstract sig Arc{place:Place,tran:Transition}

Define common constraints as facts, such as a net consists

of places and transitions, and a flow relation is only applied to
a place to a transition or a transition to a place:

fact {Node = Place + Transition}
fact {all p: Place | p.flow & Place = none}
fact {all t: Transition|t.flow&Transition=none}

Since each place has its own type of tokens, it is necessary

to define a type of tokens for each place and define each place
with its tokens. For example, we defined three types of tokens
for the dinning philosopher problem.

 sig Eating extends Token{phi:set Int,left:set
Int,right:set Int}
 sig Chop extends Token{left:set Int,right:set Int}
 sig Ph extends Token{phi: set Int}

And then each place in the PrT net is defined as a signature
with its tokens and each transition in the PrT net is also
defined as a signature. The constraints are defined by the
number of outward flows of each place or transition in the PrT
net:

 sig phP extends Place{token: Ph}{#flow = 1}
 sig chopP extends Place{token:Chop}{#flow=1}
 sig eatP extends Place{token:Eating}{#flow= 1}
 sig Pick extends Transition {}{#flow = 1}

 sig Down extends Transition {}{#flow = 2}

Now, the structure of the net is defined as facts in Alloy

based on the flow relations in the PrT net. The following Alloy
code defines the connections between places and transitions of
the PrT net in Fig. 2.

fact {all p: phP|one t: Pick|t in p.flow}
fact {all t: Pick|one p: phP|p in t.~(flow}
fact {all p: phP|one t: Down|t in p.flow}
fact {all t: Down|one p: phP|p in t.~(flow}
fact {all p: chopP|one t: Pick|t in p.flow}
fact {all t: Pick|one p: chopP|p in t.~(flow}
fact {all p: chopP|one t: Down|t in p.flow}
fact {all t: Down|one p: chopP|p in t.~(flow)}
……
fact {all t: Pick|one p:chopP|p in t.flow}
fact {all p: chopP|one t:Pick|t in p.~(flow)}
fact {all t: Pick|one p:phP|p in t.flow }
fact {all p: phP|one t: Pick|t in p.~(flow)}
fact {all t: Pick|one p: eatP|p in t.flow }
fact {all p: eatP|one t: Pick|t in p.~(flow)}
……

Finally, translate the fire conditions of all transitions as a

predicate. The constraints for each transition include a pre-
condition that is defined based the flow relation of the
transition and the guard conditions of the transition, support
functions, and a post-condition to define the effect of the
firing.

-- pre-condition of transition Pick

pick in c.flow and pick in p.flow
and #(pick.~(flow)) = 2
and e in pick.flow and #pick.flow = 1
and #p.token.phi>0 and #c.token.right > 0
and #c.token.left > 0
and #(p.token.phi&c.token.right)>0
and some x:Int in c.token.right and some y:Int

in c.token.left and x = mod(y,5)
 ……

-- post-condition of transition Pick
some x: Int in c.token.right and some y:Int in

c.token.left
and p.token.phi = p.token.phi - x
and c.token.left = c.token.left - y
and c.token.right = c.token.right - x
and e.token.phi = e.token.phi + x
and e.token.left = e.token.left + y

 and e.token.right = e.token.right + x

-- pre and post-condition of transition Down
……

Important properties such as safe or reachability can be

defined as assertions to be analyzed by Alloy analyzer. Check
the predicate fire with specified scope such as 6, Alloy
analyzer will find instances for the model, which can be used
for checking the original PrT net.

V. RELATED WORK
Software architecture has become an essential part in almost

every phase of software development lifecycle [5]. Therefore,
many researchers have proposed approaches and built tools for
modeling and analyzing software architecture. In order to
improve rigorousness of the analysis of software architecture
and confidence of the quality of the architectural model, a

variety of formal modeling and analysis approaches and tools
have been introduced during past two decades. Garlan [5] has
summarized the representative results of formal modeling and
analysis of software architecture. Allen and Garlan [2]
described a formal basis for an architectural connection, which
has become the one of the most important work on formal
modeling of software architecture. Model checking has been
reported for formally analyzing software architecture. In [7],
He and et. al. reported approaches for formally analyzing Petri
nets using model checking and formal proof techniques. Ding
and He proposed an approach for modeling checking a type of
high level Petri nets in [4]. Several other researchers defined an
executable semantics for software architectural modeling and
analysis through simulation and/or formal verification [13]. For
example, formal specification language Rapide [12] supports
simulation, Chemical Abstract Machine [9] and Wright [1]
support limited formal verification. However, few work on
testing of software architecture have been reported [15] due to
its nature of informal and non-executable of architecture
models in general. Zhu and He [19] proposed a methodology
for testing design and architectural models in high level Petri
nets. Model based testing uses results from testing architectural
models for testing their corresponding implementations. For
example, model level tests for testing an architecture are
transformed into program level tests for testing its
implementation [17][19]. The approach discussed in this paper
is used for analyzing software architecture in Petri nets via
naturally combing informal analysis techniques like software
testing and formal analysis techniques like bounded model
checking in two-phase analysis. The integration of bounded
model checking with model based testing improves the
rigorousness of model-based testing so that to improve the
confidence of the correctness of important properties holding in
the architecture. Although the pub-sub architecture has been
widely implemented in many software systems, formal
modeling and analyzing of its architecture is difficult. Garlan,
Khersonsky and Kim [6] introduced a reusable generic
framework for modeling and checking the model using model
checker SMV. Kim and Garlan [11] also investigated how to
analyze software architecture using Alloy. The approaches
introduced in the two papers are similar to the approach of
bounded model checking of architectural models discussed in
this paper. The technique was also extended for model-based
testing to improve the analysis performance and effectiveness.

VI. SUMMARY AND FUTURE WORK
In this paper, we presented an approach for modeling and

analyzing software architecture through studying the pub-sub
architecture. The approach is designed as a two-phase process
to ensure it is both practical and rigorous for analyzing
software architectures in PrT nets. In the first phase, a PrT net
model is analyzed using model-based testing techniques
including simulation, model checking and testing with tool
MISTA. The bounded model checking is conducted by
converting a PrT net into an Alloy model inputting to model
analyzer Alloy. Then model-based test cases are generated
from the checked model for selected test coverage criteria and
finally they are converted into the program level tests for
testing the corresponding implementation. Model-based
software testing with MISTA has been introduced in other

publications [14][17], but the focus of this paper is on how to
integrate bounded model checking into the process. The
process of modeling and analysis of software architecture was
illustrated by modeling and analyzing the pub-sub architecture.
The approach is useful for analyzing software architecture in
general, and also provides a framework for modeling and
analyzing variety versions of pub-sub architecture. We plan to
develop a tool to automate the transformation from a PrT net to
an Alloy model.

ACKNOWLEDGMENTS
This research is supported in part by award #CNS-1262933

from the National Science Foundation. Junhua Ding’s research
was also partially supported by the guest professorship grant
from school of computer sciences at China University of
Geosciences.

REFERENCES
[1] Acme, http://www.cs.cmu.edu/~acme/, last accessed on March 10, 2015.
[2] R. Allen, D. Garlan. “A formal basis for architectural connection.” ACM

TOSEM 6 (3), pp. 213–249, 1997.
[3] Alloy: http://alloy.mit.edu, last accessed on March 10, 2015.
[4] J. Ding, X. He. “Formal Specification and Analysis of an Agent-Based

Medical Image Processing System.” Intl. Journal of SEKE, Vol. 20, No.
3, pp. 1 – 35, 2010.

[5] D. Garlan, “Formal Modeling and Analysis of Software Architecture:
Components, Connectors, and Events”, in Formal Methods for Software
Architectures, LNCS, Vol. 2804, pp. 1 -24, 2003.

[6] D. Garlan, S. Khersonsky, and J.S. Kim, “Model Checking Publish-
Subscribe Systems”, Proc. of SPIN 03, Portland, Oregon, 2003.

[7] X. He, H. Yu, T. Shi, J. Ding, and Y. Deng, “Formally Specifying and
Analyzing Software Architectural Specifications Using SAM”, Journal
of Systems and Software, vol.71, no.1-2, pp.11-29, 2004, 1994.

[8] P. Hens, M. Snoeck, G. Poels, D. B. Manu, “A petri net formalization of
a publish-subscribe process system”, FBE Research Report KBI_1114,
K.U.Leuven - Faculty of Business and Economics, June 2011.

[9] P. Inverardi, A. Wolf. “Formal specification and analysis of software
architectures using the chemical abstract machine model.” IEEE TSE, 21
(4), 373–386, 1995.

[10] D. Jackson, “Software Abstractions: Logic, Language and Analysis”, the
MIT Press, 2012.

[11] J. S. Kim, and D. Garlan, “Analyzing architectual styles”, Journal of
Systems and Software, 83(2010), pp. 1216-1235, 2010.

[12] D. C. Luckham, J. Kenney, et al. “Specification and analysis of system
architecture using rapide.” IEEE TSE 21 (4), 336–355, 1995.

[13] N. Medvidovic, R. Taylor, 2000. “A classification and comparison
framework for software architecture description languages”. IEEE TSE
26 (1), 70–93, 2000.

[14] MISTA, http://cs.boisestate.edu/~dxu/research/MBT.html, last accesed
on March 12, 2015.

[15] D. Richardson, A. Wolf. “Software testing at the architectural level.” In:
Proc. of the 2nd Intl. Soft. Architecture Workshop. pp. 68–71, 1996.

[16] J. A. Robles, G.A. Solano, "Modeling Petri nets using Alloy," TENCON
2012 - 2012 IEEE Region 10 Conference , vol., no., pp.1,6, 19-22 Nov.
2012.

[17] D. Xu, “A Tool for Automated Test Code Generation from High-Level
Petri Nets”. 32nd Int. Conf. on Apps. and Theory of Petri Nets ,
Newcastle, UK, June 20-24, 2011.

[18] D. Xu, D., K. E. Nygard, “Threat-Driven Modeling and Verification of
Secure Software Using Aspect-Oriented Petri Nets”. IEEE TSE. 32(4),
265–278, 2006.

[19] H. Zhu, and X. He, “A methodology of testing high-level petri nets”.
Journal of Information and Software Technology. v44, pp. 473-489,
2002.

