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Abstract — Software architecture is the foundation for the 
development of software systems. Its correctness is important to 
the quality of the software systems that have been developed 
based on it. Formally modeling and analyzing software 
architecture is an effective way to ensure the correctness of 
software architecture. However, how to effectively verify 
software architecture and use the results from formal modeling 
and analysis is important to the application of the approach. In 
this paper, software architecture is modelled using high level 
Petri nets, and the model is then checked with a model based 
testing tool called MISTA, and bounded model checking tool 
Alloy to ensure the correctness of the model. The approach is 
designed as a two-phase process consisting of model-based testing 
and bounded model checking to ensure it is both practical and 
rigorous for analyzing software architecture. We illustrated the 
idea and procedure via modeling and analyzing the Publish-
Subscribe architecture. The result has shown that combining 
bounded model checking with model based testing is an effective 
extension to ensure the development quality. 

Keywords- software architecture; Petri net; model checking; model 
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I.  INTRODUCTION  
Software architecture is an overall structure of a software 

system, which consists of a group of components and the 
connections among components in addition to the constraints 
applying to the connections. It is the foundation of product 
lines and many software systems were developed based on it. 
Therefore, correctness of software architecture is important to 
the quality of software systems that have been built on it. 
Formal modeling and analysis of software architecture offers a 
rigorous way to ensure the correctness of software architecture, 
which has been discussed in many articles [5]. However, 
results of formal modeling and analysis are difficult to be 
directly used for analyzing software implementation that was 
built based on the formal models due to the specification gap 
between models and their implementations. For example, if a 
model is specified using Petri nets, and the implementation 
language is Java, then the model checking results (e.g., counter 
examples) of the Petri nets model cannot be directly used for 
testing the Java program. But model checking a complex Java 
application is infeasible and testing is still the practical way for 
program verification. Model-based software testing is an 
approach to bridge the gap between testing of a software model 
and its implementation, where models are used for guiding the 
test generation. In some cases, model level tests are first 
generated, and then they are transformed into program level 
tests. MISTA [17] is a model based software testing tool, 

which models a software system in high level Petri nets, and 
then the Petri net model is analyzed with simulation and model 
checking. Model level tests can be automatically generated 
according to selected test coverage criteria, and then these tests 
are automatically transformed into program level tests with 
help from mapping files. The program level tests can be 
directly used for testing the implementation. However, due to 
the grand challenge of modeling of a high level Petri net, model 
checking capability in MISTA is limited. In this paper, we 
extended MISTA with bounded model checking for analyzing 
Petri nets. Alloy analyzer is a bounded model checker for 
analyzing models specifying in Alloy language, which is a 
formal specification language based on first order relational 
logic [3][10]. Alloy analyzer is a constraint solver for 
automatically checking an Alloy model that specifies the 
structural constraints and behaviors of a software system [3]. 
Alloy finds all model instances for satisfying a checked 
property within the bounded scope, and it provides a 
visualization tool to illustrate all instances. Comparing the 
graphic instance to the corresponding Petri net model will be 
useful to better understand the Petri net model and create a 
better model. In addition, the instances are also useful for 
creating tests for testing interesting properties in the Petri net.  

Publish-Subscribe (pub-sub) architecture is a well adopted 
event-based software architecture. The pub-sub architecture 
includes one or more components that publish events, and one 
or more components that subscribe them. The loose coupling of 
publish and subscribe components offers the flexibility of 
updating components and events in a system, but it also brings 
the complexity of analysis due to the large number of 
possibility of combination of event transferring scenarios [6].  
Several analysis approaches such as model checking [6][8] 
have been attempted for analyzing pub-sub models. In this 
paper, we introduce Alloy into MISTA for analyzing Petri nets. 
First, a Petri net model is modeled and simulated, and then 
simple properties are verified using MISTA. After that, the 
Petri net model is converted into an Alloy model, which will be 
analyzed using Alloy analyzer. The analysis results can be used 
for improving the Petri net model and guiding generating tests 
for interesting properties. The analysis process is illustrated 
through modeling a general model of the pub-sub architecture 
in Petri nets. The general model can be easily extended for 
different versions of the pub-sub architecture. Based on the 
Petri net model, the pub-sub architecture was modelled in 
Alloy, and analyzed for interesting properties using Alloy 
analyzer. A Petri net model can be automatically transformed 
into an Alloy model.  
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The main contribution of this paper is due to a two-phase 
rigorous and practically useful approach for analyzing software 
architecture. Since software architecture is the foundation for 
the implementation of many software systems, it is important 
to provide an easy-to-use technique such as simulation and 
testing for analyzing software architecture when they are still in 
the early development phase. But simulation and testing is not 
enough to ensure the correctness of important properties in 
software architecture. Rigorously checking the architectural 
model is necessary for ensuring the quality of the architecture 
especially in the later modeling phase. In our approach, the 
model-based testing assists ones to understand the modeling of 
software architecture, to check simple assertions and to test 
special scenarios for building a correct software architecture. In 
addition, model checking ensures the correctness of important 
properties modeled in the architectural model. The bounded 
model checker Alloy was smoothly extended to model based 
testing tool MISTA for enhancing the features in MISTA. 
Modeling and analyzing the pub-sub architecture is used to 
explain the idea and process, and to show the effectiveness of 
the proposed approach. 

The rest of this paper is organized as follows: Section 2 
presents a brief introduction to Alloy, PrT nets, model-based 
software testing and its tool MISTA. Section 3 introduces the 
proposed model based testing of the pub-sub architecture in 
Petri nets using MISTA. Section 4 discusses how to extend 
Alloy into MISTA, model and analyze the pub-sub architecture 
using Alloy, and how to convert a Petri net into an Alloy 
model. Section 5 reviews the related work, and section 6 
concludes this paper. 

II. BACKGROUND 

A. Alloy 
Each Alloy model is specified in Alloy language to define 

how to check the occurrence of a state change [3]. Each model 
represents a set of model instances, and Alloy analyzer is used 
to search for instances or counterexamples of a model.  Alloy 
analyzer is a bounded model checker for analyzing a model 
within a finite scope a user specifies [3]. The analysis is sound 
and complete within the scope so that it never misses a 
counterexample within the scope. Alloy analyzer either finds a 
solution that satisfies a predicate defined in the model, or a 
counterexample that violates a given assertion [11].  An Alloy 
model includes a number of signatures and facts. A signature 
defines a set and a group of atoms associating with the set, and 
a fact defining a constraint that is assumed always to hold in 
the model. Analysis of a model is conducted for checking a 
predicate or an assertion of the model. The details of Alloy 
analyzer and language can be found in the project website [3] 
and the book [10]. Fig. 1 is an Alloy model (modified based 
on the original model described in the tutorial of Alloy [3]) for 
defining a simple file system, which includes files, directories 
and root. sig FSObj defines objects in a file system, sig File, 
sig Dir and sig Root define files and directories, which are also 
objects. The three facts define the global constraints that are: 
each directory is the parent of its contents, each object is either 
a file or directory, and a root does not have a parent. The 
assert declares that a path is acyclic, and check it for scope of 
5 [3].  
 

module fileSys 
    abstract sig FSObj { parent: lone Dir} 
    sig Dir extends FSObj { contents: set FSObj} 
    sig File extends FSObj { } 
    one sig Root extends Dir { } { no parent } 
    fact {all d: Dir, o: d.contents | o.parent = d} 
    fact { File + Dir = FSObj} 
    fact { FSObj in Root.*contents} 
    assert acyclic {no d: Dir | d in d.^contents} 
check acyclic for 5 
 

Figure 1. A sample Alloy model 

B. PrT Nets 
Predicate/Transition (PrT) nets are a high level Petri net for 

specifying concurrent systems. The definition of PrT nets used 
in this paper is same as the one defined in [18].  

Definition 1 (PrT net) A PrT net is a tuple (P, T, F, 6, L, 
M, M0), where: P is a finite set of predicates (first order places), 
T is a finite set of transitions and F is a flow relation. (P, T, F) 
forms a directed net. 6 is a structure consisting of sorts of 
individuals (constants) together with operations and relations. L 
is a labeling function on arcs. M is a mapping from a set of 
inscription formulae to transitions, and M0 is the initial or 
current marking.  

 
 

Fig. 2 shows a simplified PrT net model for 5 dining 
philosophers’ problem. The model includes transitions Pickup, 
and Putdown represent the action for picking up chopsticks and 
putting down chopsticks, respectively. The distribution of 
tokens in places Phi, Chop and Down represents the three states 
of each philosopher: thinking, full and eating, respectively. 
Places Phi and Chop include tokens that are nature numbers 
representing philosophers or chopsticks, and each token in 
place Down represents a philosopher and his/her two 
chopsticks. Transition Pickup has two input places Phi and 
Chop, and one output place Down. The guard condition in 
transition Pickup is defined based on the relation between the 
tokens in place Phi and Chop: x=c&&d=(x+1)%5, 
representing that a philosopher must get both of his or her left 
and right chopstick before he or she can eat (pickup) The guard 
condition in transition Putdown is defined based on the relation 
between the tokens in place Phi and Chop: x=c, representing a 
philosopher puts down chopsticks at both left side and right 
side. 

C. Model-based Testing and MISTA 
MISTA [14][17] is a model-based testing tool for 

automated generation and execution of tests. It generates tests 
in model level first and then program level tests are produced 
through transforming the one at model level. It specifies 
models in function nets, which is a type of PrT nets extended 

Figure 2. A PrT nets model for dining philosophers 



with inhibitor arcs and reset arcs [18]. It also provides a 
language for mapping the elements in function nets to 
implementation constructs so that it is possible to transform the 
model level tests into program level tests that can be executed 
against the system under test. In addition to test generation, 
MISTA includes simulation and limited model checking 
functions. It supports the step by step execution and random 
execution of a function net, and the execution sequences and 
token changing in each place are visualized for inspection. The 
test generator generates adequate model level tests (i.e., firing 
sequences of a function net) according to a selected coverage 
criterion such as reachability coverage, transition coverage, 
state coverage, depth coverage, and goal coverage. Test code 
generator generates test code in a target program language like 
Java or C++ from a given transition tree [17].  

III. MODELING AND TESTING SOFTWARE ARCHITECTURE 
USING  PRT NETS  

In this section, we are going to discuss an approach for 
analyzing a PrT net model using model-based software testing 
technique. In order to illustrate the basic idea and the process of 
the two-phase analysis approach, we model and analyze a pub-
sub model using MISTA in this section and Alloy in next 
section.  

A. Modeling the Pub-Sub Architecture 
The pub-sub architecture is an event-based architecture, 

which includes one or more publishers that publish contents, 
and one or more subscribers that consume the contents. The 
publisher sends its contents as event messages through an event 
bus, and a subscriber subscribes its contents through an event 
message classification mechanism that classifies contents as 
channels [1].   

In the PrT net model shown in Fig. 3, a publisher publishes 
its content as a message msg through transition pub, and the 
published content is notified to subscribers via transition notify, 
which models the event bus, and messages are classified as 
channels and stored in place channel by transition classify. A 
subscriber subscribes a channel message via transition sub, and 
the subscribed channel message is sent to the subscriber by 
transition classify when the message is available.  

 

 
Figure 3. A PrT net model for the pub-sub architecture 

B. Testing the Pub-Sub Architecture 
As soon as a PrT net model is created and successfully 

compiled in MISTA, run it with random inputs to help 
developers to understand the model and detect easily found 
problems. If the simulation result is acceptable, verification of 
the goal reachability, assertions and deadlock states is 
conducted. After that, a set of tests can be generated based on 
selected coverage criteria, and these tests will be converted into 
program level tests for testing the corresponding 
implementation. 

First, execute the PrT net model for the pub-sub with valid 
initial markings to simulate normal running scenarios of the 
model. For example, check a normal scenario that a publisher 
publishes a message, which is the type of messages that a 
subscriber has subscribed. It is important to check that the 
message is successfully classified and stored in the channel and 
the subscriber is notified, and finally the message is delivered 
to the subscriber.  An example of the initial marking for 
checking above scenario in the PrT net in Fig. 3 is:  
INIT Event(1,"1"), Publisher(1,"2"), Publisher(1,"1"), Subscriber(11, "0"), 
Subscriber(11, "s") 

Second, verify the reachability of goal states and transitions, 
assertions and deadlock states in the PrT net for the pub-sub 
using the model checking capability in MISTA. When the 
reachability of all transitions of the PrT net in Fig. 3 was 
checked, transition RecMsg was unreachable was found since 
no any message with ID=5 was ever sent from any publisher.  
If a token such as (“5, “2”) for place Publisher is added to the 
initial marking, all transitions will be reachable. Given a goal 
state such as GOAL Subscriber(5, “2”), then MISTA will find 
that the state is reachable. The PrT net model has termination 
states because published messages are delivered to subscribers 
and removed from their channels and it is possible that any 
channel has a message. The model has to be updated if a 
subscriber only receive copies of its subscribed messages and 
all messages will stay in the channel for a period of time.  

Third, generate adequate tests for selected test coverage 
criteria using MISTA. For the PrT net model defined in Fig. 3, 
generate model level tests covering all states, all executable 
paths, goal states, and others. Since complex scenarios are not 
feasible to be checked with simulation or the limited model 
checking in MISTA, these complex scenarios shall be 
rigorously tested with model level tests thanks to the 
executable capacity of PrT nets. The model level tests are also 
used for generating program level tests via mapping the model 
to its corresponding programs. The program level tests will be 
used for testing the implementation of the model.  

Although the PrT net model was checked with simulation of 
execution scenarios, verification of important properties, and 
testing with adequate tests for selected coverage criteria, the 
model is not guaranteed to be correct. Formal verification of a 
PrT net model is very difficult, but the analysis process of 
bounded model checking is fully automatic and it can 
guarantee the correctness of the checked properties within 
specified scope. Therefore, bounded model checker Alloy was 
chosen as an addition to MISTA to further analyze a PrT net 
model.  



IV. ANALYZING SOFTWARE ARCHITECTURE USING ALLOY 
In this section, first we discuss how to model and analyze 

the pub-sub architecture in Alloy, and then we introduce a 
procedure for transferring a PrT net into an Alloy model. 

A. Analysis of the Pub-Sub Architecture 
The architecture defined in this section is specified 

following Acme style [1], which defines software architecture 
as a group of components and the connection for connecting 
the components via interfaces in addition to the constraints 
applying to the connection. The Alloy model of the pub-sub is 
defined in a hierarchical structure. The basic elements of the 
general software architecture are defined in an Alloy model 
serving as the foundation for modeling specific software 
architecture, and then a model of event based architecture is 
defined. The foundation model and the model of event based 
architecture were created based on those models introduced in 
[11]. The model for the pub-sub architecture was developed 
through extending above two models. In the foundation model, 
common software architecture elements such as components, 
connectors, ports and roles are defined as signatures, and basic 
constraints of software architecture are defined as facts. The 
model also defines a group of built-in functions and predicates 
for checking specific properties or looking for 
counterexamples. The pub-sub architecture is an event-based 
architecture that consists of loosely-coupled components that 
produce and consume events through the ports. In the model 
of event-based architecture, the signatures include two 
components:  AnnounceComponent, and ReceiveComponent, 
for modeling an announce component and a receive 
component, respectively. Each component includes a set of 
ports as interfaces; one connector EventConnector, models the 
connector for connecting between roles and ports. Each 
connector includes two sets of roles as interfaces, two types of 
roles AnnoucerRole and ReceiverRole, and two types of ports 
AnnoucePort and ReceivePort. The connection between 
components is implemented through connecting ports to the 
corresponding roles. The pub-sub architecture is an extension 
of the event-based architecture with the subscriber selects 
messages through a message classification mechanism called 
channel. The following Alloy code is partial of the Alloy 
model for the pub-sub architecture, and the model was 
developed based on the Alloy models described in [11]. 
Channel is defined as a component, and a channel connector is 
defined for connecting a channel and its subscribers.  

 
sig PubPort extends AnnouncePort {} 
sig SubPort extends ReceivePort {} 
sig PubRole extends AnnouncerRole {} 
sig SubRole extends ReceiverRole {} 
sig PubComp extends Component{pubPort: PubPort} 
sig SubComp extends Component {subPort: SubPort} 
sig Channel extends Component {channelPort1: 

SubPort, channelPort2: SubPort} 
sig EventBusConn extends EventConn {pubRole: 

PubRole, subRole: SubRole} 
sig ChannelConn extends Connector {subRole: 

SubRole, channelRole: ReceiverRole} 
 
One fact described as follows is defined to ensure that each 
component or connector has appropriate number of roles or 
ports.  

 

fact{ 
 (PubComp<:pubPort) in ports 
 (SubComp<:subscribePort) in ports 
 (Channel<:channelPort1) in ports 
 (ChannelConn<:channelRole+ChannelConn<:subRole)in roles 
 (EventBusConn<:pubRole+EventBusConn<:subRole)in roles 
} 

 

Based on above model, one can check interesting properties of 
the model, such as an architectural configuration or a set of 
constraints. The following predicate defines a set of 
constraints that define the mapping between ports and roles, 
and the essential elements in the pub-sub architecture. In the 
code, self is a term defined in Acme as a signature for 
extending System, and all and some represent universal and 
existential quantification, respectively.  

 
abstract sig System {components: set Component, 
connectors: set Connector} 
one sig self extends System {} 

 
pred pubsub_constraints(){ 
 some c:self.components|declaresType[c,PubComp] 
 some k:self.components|declaresType[k,SubComp] 
 some m:self.components|declaresType[m,Channel] 
 some n:self.connectors|declaresType[n,EventBusConn] 
 some f:self.connectors|declaresType[f,ChannelConn] 
 all self:PubPort|  
  (all r: self.~attachment|declaresType[r, PubRole]) 
 all self: SubPort| 
  (all r:self.~attachment|declaresType[r, SubRole]) 
 all self:PubRole | 
  (#(self.attachment)=1)&& 
  (all p: self.attachment|declaresType[p, PubPort]) 
 all self:SubRole | 
  (#(self.attachment)=1)&&(all p: self.attachment| 
declaresType[p, SubPort]) 
 all self:EventBusConn | 
  (some e:self.pubRole|declaresType[e, PubRole] && 

some f:self.subRole|declaresType[f, SubRole]) 
 all self:ChannelConn| 
  (some e:self.channelRole|declaresType[e, ReceiverRole] 
&& some f:self.subRole|declaresType[f, SubRole]) 
} 
 

 
 

Figure 4. A snapshot of an instance for pub-sub architecture 
 
Checking the predicate with a specified scope such as 5 using 
Alloy analyzer shall find instances that satisfy the predicate in 
the pub-sub model. The instances are helpful to understand the 
architecture and create better PrT net model.  Fig. 4 shows a 
snapshot of an instance. One also can check whether a 
particular instance of pub-sub can be found or not in the model 
such as the following configuration of a pub-sub can be found 
with scope of 4. The configuration defines a simple pub-sub 
instance which consists of one subscriber, one publisher, one 
channel, one event bus connection, and one channel 
connection. 



  
 pred Config_0(s:SubComp,e:EventBusConn,c:Channel,   
               cc:ChannelConn, p:PubComp){ 
   attached[s.subscribePort, cc.subscriberRole] 
   attached[cc.channelRole, c.channelPort2] 
   attached[c.channelPort1, e.subscriberRole] 
   attached[e.publisherRole, p.publishPort] 
} 

B. Translating a PrT Net into an Alloy Model 
The Alloy model discussed in previous section was built 

directly according to the pub-sub architecture defined in Acme 
[1] for explaining the analysis process in a better way. In this 
section, we discuss how to translate a PrT net into an Alloy 
model to ensure the consistency between a PrT net and its 
corresponding Alloy model. Since Alloy models are 
declarative for defining how to recognize something has 
happened, and PrT net models are operational for defining 
how something can be accomplished [3]. It is fairly challenge 
to automate the transformation between a PrT net model and 
an Alloy model. In this section, we introduce a basic structure 
of the transformation using the dinning philosopher problem 
defined in Fig. 2 as an example. The idea of the transformation 
was developed based on the one for translating a regular place 
transition Petri nets into an Alloy model discussed in [16], 
which was extended for high-level Petri nets (i.e. PrT nets).   

First, translate the basic elements (i.e. places, transitions, 
arcs and tokens) and basic constraints in a PrT net into 
signatures in Alloy.  

 
abstract sig Node{flow: set Node} 
abstract sig Token{} 
abstract sig Place extends Node{tokens:set 

Token}{#tokens >= 0} 
abstract sig Transition extends Node{inp:set 

Place, outp:set Place} 
abstract sig Arc{place:Place,tran:Transition} 
 
Define common constraints as facts, such as a net consists 

of places and transitions, and a flow relation is only applied to 
a place to a transition or a transition to a place: 

 
fact {Node = Place + Transition} 
fact {all p: Place | p.flow & Place = none} 
fact {all t: Transition|t.flow&Transition=none} 
 
Since each place has its own type of tokens, it is necessary 

to define a type of tokens for each place and define each place 
with its tokens. For example, we defined three types of tokens 
for the dinning philosopher problem. 

 
 sig Eating extends Token{phi:set Int,left:set 
Int,right:set Int} 
 sig Chop extends Token{left:set Int,right:set Int} 
 sig Ph extends Token{phi: set Int} 

 

And then each place in the PrT net is defined as a signature 
with its tokens and each transition in the PrT net is also 
defined as a signature. The constraints are defined by the 
number of outward flows of each place or transition in the PrT 
net: 

 
   sig phP extends Place{token: Ph}{#flow = 1} 
   sig chopP extends Place{token:Chop}{#flow=1} 
   sig eatP extends Place{token:Eating}{#flow= 1} 
   sig Pick extends Transition {}{#flow = 1} 

   sig Down extends Transition {}{#flow = 2} 
 
Now, the structure of the net is defined as facts in Alloy 

based on the flow relations in the PrT net. The following Alloy 
code defines the connections between places and transitions of 
the PrT net in Fig. 2.  

 
fact {all p: phP|one t: Pick|t in p.flow} 
fact {all t: Pick|one p: phP|p in t.~(flow} 
fact {all p: phP|one t: Down|t in p.flow} 
fact {all t: Down|one p: phP|p in t.~(flow} 
fact {all p: chopP|one t: Pick|t in p.flow} 
fact {all t: Pick|one p: chopP|p in t.~(flow} 
fact {all p: chopP|one t: Down|t in p.flow} 
fact {all t: Down|one p: chopP|p in t.~(flow)} 
…… 
fact {all t: Pick|one p:chopP|p in t.flow} 
fact {all p: chopP|one t:Pick|t in p.~(flow)} 
fact {all t: Pick|one p:phP|p in t.flow } 
fact {all p: phP|one t: Pick|t in p.~(flow)} 
fact {all t: Pick|one p: eatP|p in t.flow } 
fact {all p: eatP|one t: Pick|t in p.~(flow)} 
…… 
 
Finally, translate the fire conditions of all transitions as a 

predicate. The constraints for each transition include a pre-
condition that is defined based the flow relation of the 
transition and the guard conditions of the transition, support 
functions, and a post-condition to define the effect of the 
firing. 

 
-- pre-condition of transition Pick 

pick in c.flow and pick in p.flow 
and #(pick.~(flow)) = 2 
and e in pick.flow and #pick.flow = 1 
and #p.token.phi>0 and #c.token.right > 0  
and #c.token.left > 0 
and #(p.token.phi&c.token.right)>0 
and some x:Int in c.token.right and some y:Int  

in c.token.left and x = mod(y,5)  
     …… 

-- post-condition of transition Pick 
some x: Int in c.token.right and some y:Int in 

c.token.left   
and p.token.phi = p.token.phi - x 
and c.token.left = c.token.left - y 
and c.token.right = c.token.right - x 
and e.token.phi = e.token.phi + x 
and e.token.left = e.token.left + y 

   and e.token.right = e.token.right + x 
 

-- pre and post-condition of transition Down 
…… 
 
Important properties such as safe or reachability can be 

defined as assertions to be analyzed by Alloy analyzer. Check 
the predicate fire with specified scope such as 6, Alloy 
analyzer will find instances for the model, which can be used 
for checking the original PrT net.  

V. RELATED WORK 
Software architecture has become an essential part in almost 

every phase of software development lifecycle [5]. Therefore, 
many researchers have proposed approaches and built tools for 
modeling and analyzing software architecture. In order to 
improve rigorousness of the analysis of software architecture 
and confidence of the quality of the architectural model, a 



variety of formal modeling and analysis approaches and tools 
have been introduced during past two decades. Garlan [5] has 
summarized the representative results of formal modeling and 
analysis of software architecture. Allen and Garlan [2] 
described a formal basis for an architectural connection, which 
has become the one of the most important work on formal 
modeling of software architecture. Model checking has been 
reported for formally analyzing software architecture. In [7], 
He and et. al. reported approaches for formally analyzing Petri 
nets using model checking and formal proof techniques. Ding 
and He proposed an approach for modeling checking a type of 
high level Petri nets in [4]. Several other researchers defined an 
executable semantics for software architectural modeling and 
analysis through simulation and/or formal verification [13]. For 
example, formal specification language Rapide [12] supports 
simulation, Chemical Abstract Machine [9] and Wright [1] 
support limited formal verification. However, few work on 
testing of software architecture have been reported [15] due to 
its nature of informal and non-executable of architecture 
models in general. Zhu and He [19] proposed a methodology 
for testing design and architectural models in high level Petri 
nets. Model based testing uses results from testing architectural 
models for testing their corresponding implementations. For 
example, model level tests for testing an architecture are 
transformed into program level tests for testing its 
implementation [17][19]. The approach discussed in this paper 
is used for analyzing software architecture in Petri nets via 
naturally combing informal analysis techniques like software 
testing and formal analysis techniques like bounded model 
checking in two-phase analysis. The integration of bounded 
model checking with model based testing improves the 
rigorousness of model-based testing so that to improve the 
confidence of the correctness of important properties holding in 
the architecture. Although the pub-sub architecture has been 
widely implemented in many software systems, formal 
modeling and analyzing of its architecture is difficult. Garlan, 
Khersonsky and Kim [6] introduced a reusable generic 
framework for modeling and checking the model using model 
checker SMV. Kim and Garlan [11] also investigated how to 
analyze software architecture using Alloy. The approaches 
introduced in the two papers are similar to the approach of 
bounded model checking of architectural models discussed in 
this paper. The technique was also extended for model-based 
testing to improve the analysis performance and effectiveness.  

VI. SUMMARY AND FUTURE WORK 
In this paper, we presented an approach for modeling and 

analyzing software architecture through studying the pub-sub 
architecture. The approach is designed as a two-phase process 
to ensure it is both practical and rigorous for analyzing 
software architectures in PrT nets. In the first phase, a PrT net 
model is analyzed using model-based testing techniques 
including simulation, model checking and testing with tool 
MISTA. The bounded model checking is conducted by 
converting a PrT net into an Alloy model inputting to model 
analyzer Alloy. Then model-based test cases are generated 
from the checked model for selected test coverage criteria and 
finally they are converted into the program level tests for 
testing the corresponding implementation. Model-based 
software testing with MISTA has been introduced in other 

publications [14][17], but the focus of this paper is on how to 
integrate bounded model checking into the process. The 
process of modeling and analysis of software architecture was 
illustrated by modeling and analyzing the pub-sub architecture. 
The approach is useful for analyzing software architecture in 
general, and also provides a framework for modeling and 
analyzing variety versions of pub-sub architecture. We plan to 
develop a tool to automate the transformation from a PrT net to 
an Alloy model. 
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