
 

DOI reference number: 10.18293/SEKE2015-226   

 

Figure 1. The classification technique of the SAM framework 

An approach for classifying design artifacts  

Sébastien Adam, Ghizlane El Boussaidi, Alain Abran  

Department of Software and IT engineering 

École de technologie supérieure 

 Montréal, Canada 

 
Abstract—Software designers have to deal with a large number 

of distinct software design artifacts (SDAs), including 

requirements, patterns, and tactics. This paper proposes a 

technique that systematizes the classification of SDAs, and a 

classification scheme (CS) which organizes the SDAs into a 

matrix, in a manner derived from the Zachman Framework 

for enterprise architecture. An instantiation of this CS is a 

traceability matrix called a software-structure map (SSM) that 

records the SDAs and their relationships. The approach is 

illustrated through the analysis of the Template Method (TM) 

design pattern as an example of a SDA.   

Keywords-software knowledge management, software 

artifacts, multi-dimension analysis, decision support systems  

I.  INTRODUCTION 

During the development of a software system, the 
software designers deal with numerous software design 
artifacts (SDAs) such as goals, concerns, requirements, and 
design patterns. A SDA can be characterized using some 
related SDAs and issues that may threaten the success of a 
project. For instance, a design pattern [1] is a SDA that is 
characterized by a rationale, a solution, some consequences, 
and trade-offs. Somehow, the SDAs constitute the assets that 
embody decisions and trade-offs applied during the project. 
Several approaches propose a process or a technique aiming 
at managing the software artifacts (e.g., [3, 7, 8]). These 
approaches usually focus on a subset of the artifacts involved 
in the development process and on a specific development 
perspective. However, there is a lack of works that support a 
methodical management of the SDAs and their relationships. 

The SAM (Software Architecture Mapping) framework 
[9] was proposed to manage the accumulated knowledge 
related to software design in an integrated and systematic 
manner. SAM enables to: 1) relate the SDAs to their factors 
of influence; 2) offer support to use the relevant SDAs and to 
appropriately solve their related issues; and 3) keep track of 
the adopted arguments and resolved issues. The SAM 
framework relies on a knowledge base that is populated by 
creating a set of matrices called software structure maps 
(SSMs). A SSM is a matrix that organizes software design 
artifacts and their relations. It is built using a classification 
scheme that is derived from the Zachman framework [8].  

This paper presents the proposed classification technique 
that systemizes the creation of the SSMs (see Figure 1). The 
technique uses the classification scheme (CS) of the SAM 
framework for classifying the SDAs according to their 
descriptions in the literature – see Figure 2 [1. 2, 3, 10]. The 
technique is illustrated through the analysis of the Template 
Method (TM) design pattern as an example of a SDA.  

The contributions of this paper are: 1) reusable 
specifications of the SDAs and their relationships based on a 
uniform SSM format; 2) a systematic technique for 
extracting and structuring the SDAs using the SSMs; 3) a 
flexible technique to transform textural descriptions to 
networks of SDAs. This paper is organized as follows. 
Section II presents an overview of the proposed classification 
technique. Section III introduces a case study to illustrate the 
classification technique. Section IV presents the related 
works and section V presents conclusions and future works. 

II. OVERVIEW OF THE CLASSIFICATION TECHNIQUE  

Figure 1 presents the proposed classification technique 
which aims at creating a SSM by extracting the verbs and 
nouns for structuring the SDAs and relationships that 
constitute the description of a style, a design pattern, or a 
tactic. The resulting SSM is a matrix of traceability that 
records design knowledge (DK) about the problem and 
solution spaces of a software design. The SSMs should be 
managed as part of the DK. A SSM captures DK about direct 
or indirect relationships between SDAs; it supports analyzing 
as presented in [9] how the SDAs impact the capacity of the 
software design to satisfy targeted objectives. 



 

  

 

Figure 2. The classification scheme of the SAM framework 

 

 

Figure 3. The decision tree of the SAM framework 

A. The tasks of the classification technique 

Six tasks constitute the proposed classification technique: 
extract verbs and nouns, identify SDAs and relationships, 
classify the SDA, normalize the relationship, relate the 
SDAs, and infer the SSM. The first and second tasks aim at 
identifying the candidate SDAs and relationships from the 
analysis of the description of a style, a design pattern, or a 
tactic using the identification heuristics. Then, the third and 
fourth tasks aim at classifying the SDAs using the decision 
tree and the classification scheme, and formatting the 
relationships using a list of formatted relationships. The fifth 
and sixth tasks aim at relating the SDAs and inferring the 
SSM by using the relationships and inference heuristics. 

B. The proposed identification heuristics 

For guiding the identification of the SDAs, we use in the 
SAM framework a set of identification heuristics. We 
consider that a SDA is: 1) less specific than implementation 
artifacts, i.e. implementation may be selected, within a 
particular technological context, to accomplish the intent of a 
SDA; 2) more enduring than implementation artifacts, i.e. a 
SDA should be described in a way that allows multiple 
implementations; 3) typically discovered or abstracted from 
practice and should have some correspondence with best 
practices such as styles, design patterns, and tactics; 4) 
coherent with more general or specific artifacts; 5) precise 
enough to be capable of analysis; and 6) related to one or 
more SDAs. 

C. The proposed classification scheme 

Figure 2 presents the proposed classification scheme 
(CS) of the SAM framework. The CS organizes the SDAs 
extracted from our analysis of the descriptions of styles, 
design patterns, and tactics. The CS captures the SDAs about 
the design problem and solution spaces, and about explicit or 
implicit relationships between the SDAs. The CS captures 
only the SDAs that influence the life cycle of a system. 

The CS organizes the SDAs into a matrix that is based on 
the Zachman Framework for enterprise architecture [8]. The 
matrix classifies the SDAs according to their descriptions 
and relationships, as described in [1, 2, 3]. More specifically, 
the CS uses a matrix where the rows represent the activities 
of the software design process and the columns, the 
interrogatives (why, when, what, which, how, and where). 
The outcomes of the following activities occupy the row 
labels: select the objectives, identify the knowledge that has 
been successful in achieving similar objectives, and define, 
specify, describe, and evaluate the software architecture. The 
problem space is split into the interrogatives why, when, and 
what. The rationale (WHY issues) provides reasoning about 
the problem. The context (WHEN issues) describes the 
environment and hypotheses that influence the solution 
space. The drivers (WHAT issues) define the problem. The 
solution space is split into the interrogatives: which, how, 
and where. The domain objects and architectural elements 
have roles (WHICH issues) in realizing the solution. The 
execution of their behaviors (HOW issues) at the assigned 
locations (WHERE issues) shall satisfy the objectives for 
which a SSM is done. The SDAs in the top row of Figure 2 
define the problems and solutions from an organizational 
perspective. The ones in the five lower rows do the same 
from a design perspective. Each lower-row contains artifacts 
for refining the interrogatives of the row that is above it, 
from the general objectives to the specific system artifacts. 

D. The proposed decision tree 

We propose to use the decision tree in Figure 3 for 
classifying the SDAs, and the following questions for 
supporting the classification task. The questions begin with 
the prefix “Does the SDA describes”. Each question relates 
to one of the four main questions presented in the decision 
tree: which interrogative, space, activity, and artifact best 
render the meaning of the SDA in the context of a SSM?  



 

  

- Which interrogative? 

 - why: “… a reasoning for the SSM?” 

 - when: “…a contextual information for the SSM?” 

 - what: “… a target for a solution?” 

 - which: “… the element of a solution?” 

 - how: “… the behavior of an element?” 

 - where: “… the allocation of an element?” 

- Which space? 

 - organizational: “… the organizational space? ” 

 - design: “… the design space? ” 

- Which activity? 

- reusing knowledge: “… an information that is part 

of the design knowledge base?” 

- architecting software: “… an information about a 

design fragment?” 

- designing software: “… an information about a 

design structure?” 

- Which artifact? 

 - use the SDAs’ descriptions 

E. The proposed SDAs descriptions 

For classifying an artifact, we propose to use the SDAs 
described in Tables I to III. We extracted the proposed 
SDAs’ descriptions from our review of the literature. 
Because of the lack of space, we describe only some SDAs 
that relate to the top four rows of the classification scheme. 

TABLE I.   THE DESCRIPTIONS OF SOME SDAS RELATED TO THE  

WHY INTERROGATIVE  

Why: These SDAs provide reasoning for the SSM 

Architectural / Design concern: an area of interest specified with respect 

to a goal in terms relevant for architecting / designing 

Architectural rationale: a statement of reasons for a design fragment (e.g., 

isolate each layer from changes in other layers) 

TABLE II.  THE DESCRIPTIONS OF SOME SDAS RELATED TO THE 

WHAT INTERROGATIVE  

What: These SDAs provide the targets for the solution space 

Architectural property: a condition about a property of the elements or 
relations of a design fragment (e.g., performance)  

Scenario: a description of how a software product should respond to a 

stimulus 

TABLE III.  THE DESCRIPTIONS OF SOME SDAS RELATED TO THE 

WHICH INTERROGATIVE  

Which: These SDAs provide the elements of the solution space 

Design pattern: a description of how the elements of a design fragment 
relate to each other in order to address a design concern  

Structural fragment: a set of elements and relationships of a design 

fragment (e.g., instantiation of the template method) 

F. The proposed relationships description format 

We identified some relationships between the SDAs from 
the literature [1, 2, 3, 4, 5, 6, 7, 10] – see Table IV. The SAM 
framework proposes to format each relationship using a 
unique identifier, a description of the relation, and the SDAs 
between which the relationship applies, as example:  

Identifier Description SDA-to-SDA 

Generalize A SDA generalize another SDA Structure-to-Structure 

TABLE IV.  THE FORMATTED RELATIONSHIPS OF THE SAM 

FRAMEWORK  

Relationship Description 

Mandatory A SDA requires the presence of another SDA 

Optional A SDA optionally implies another SDA 

Constraint A SDA constraints another SDA 

Encapsulate A SDA encapsulates another SDA 

Generalize A SDA generalizes another SDA 

Specialize A SDA specializes another SDA 

Realize A SDA realizes another SDA 

G. The proposed SSM’s inference heuristics 

Due to the lack of space, Table V presents only some of 
the inference heuristics we propose for inferring a SSM using 
the classified SDAs and the normalized relationships. These 
inference heuristics aim at controlling the level of cohesion 
between the SDAs of a SSM. Only one SDA drives the 
cohesion of the SSM. All SDAs within a SSM shall be 
cohesive with the driver SDA. 

TABLE V.  THE INFERENCE HEURISTICS FOR THE SDAS RELATED TO 

THE WHY INTERROGATIVE  

SDAs Inference heuristics 

Architectural 

concern, Design 
concern 

- Part of the design knowledge base 

- Describe concerns for the SSM’s design space  
- Influence all SDAs of a SSM’s design space 

- Relate to a goal in the SSM 

Architectural 

rationale 

- Set rationale for elements of a design fragment 

- Relate to an architectural concern in the SSM 

Design 
rationale 

- Set rationale for elements of a structure 
- Relate to a design concern in the SSM 

 

III. CASE STUDY - APPLYING THE CLASSIFICATION 

TECHNIQUE  

This section presents an overview of the case study 
selected for applying the classification technique of the SAM 
framework. We analyzed the descriptions of multiple 
architectural tactics in [3], design patterns in [1], and 
architectural style in [2] for creating their SSMs using the 
proposed classification technique. 

A. Mapping for the Template Method design pattern 

Table VI presents the SSMs of the Template Method 
(TM) design pattern described in [1]. The TM design pattern 
is used for providing reusability and extensibility of 
algorithms in object-oriented software. It aims to implement 
the skeleton of an algorithm in a base class, and calls 
primitive methods that subclasses override to provide 
concrete behavior. The base class interface declares the 
algorithm as a template method, which calls abstract 
primitive methods that represent the algorithm’s variation 
points. The subclasses implement the primitives to specialize 
the algorithm. As a result, the algorithm’s structure is written 
only once and indirectly specialized in subclasses, which 
reduces duplication of code and enforces class interface 
stability. Also, the template method allows the addition of 
instrumentation in the base class, and lightens users' duty 
since it is no longer required to call a primitive.  

 



 

  

TABLE VI.  THE SSM OF THE TEMPLATE METHOD DESIGN PATTERN  

SDA Description 

Concern Avoid code duplication 

Concern Control subclasses extension 

Concern Localize changes 

Concern Prevention of ripple effect 

Rationale Fix the steps of the algorithm and ordering 

Rationale Let subclasses define the steps of the algorithm 

Rationale Maintain the algorithm’s structure 

Rationale Limit extension points 

Rationale Provide default behavior 

Rationale Control access to the operations 

Situational f. Multiple kinds of primitive operations 

Convention Naming convention 

Symbol UML notation 

Property Object-oriented paradigm 

Property Object-oriented programming language 

Property Reusability 

Property Extensibility 

Operational. Define an abstract base class 

Operational. Define a template method 

Operational. Define a concrete child class 

Operational. Define hook operations 

Viewpoint Class diagram 

Viewpoint Sequence diagram 

Pattern Template Method 

Tactic Abstract Common Services 

Fragment Class library 

Structure Abstract class definition 

Structure Concrete class definition 

Behavior The TM controls the order of execution 

Behavior The hook operations do nothing by default 

IV. RELATED WORKS 

To take full advantage of the accumulated design 
knowledge, the designers need frameworks and tools not 
only to manage this knowledge but also to relate it to the 
decisions taken and artifacts produced during the design 
activity. However, most of models, methods, and tools 
provide limited views into this knowledge base [2, 5, 6, 7, 
10]. Many approaches were proposed to support the design 
process [3, 5, 6, 7], but few approaches support the designers 
in managing and keeping track of the accumulated 
knowledge during the design process. One of the most used 
approaches is the Attribute-Driven Design method (ADD) 
[3]. The focus of ADD is the process of architecting systems 
in order to satisfy a set of quality attributes and to manage 
tradeoffs between these attributes (quality dimension). Our 
approach can be used to analyze and keep track of the 
artifacts and knowledge produced by the ADD.  

Many architectural styles and patterns have been 
described and cataloged in the literature [1, 2, 3], but few 
approaches support the designers in extracting the design 
knowledge from textual descriptions. We believe that the 
proposed classification technique can be used to 
systematically analyze textual descriptions provided in the 
literature, organize the design artifacts, and to explicitly 
relate the artifacts used during the design process. 

 

Finally, our work is closely related to Ovaska et al.’s 
work [5]. They proposed an approach to fully integrate 
quality requirements into the software design process. Their 
approach allows the architect to manage and track the quality 
attributes from the requirements specification to the 
architecture design. This approach focuses on finding styles 
and patterns using some quality attributes. While this is very 
useful, an architect still needs to keep track of the rationale, 
objectives and other constraints that led to choose these 
quality attributes. Our framework can be useful to manage 
these relationships into a SSM that relates in a finer-grained 
manner the artifacts of the problem space to the ones of the 
solution space, from the organizational goals to the specific 
system artifacts. We believe a SSM is a valuable artifact for 
providing an integrated view of the knowledge. 

V. CONCLUSION 

In this paper, we described a classification technique to 
populate a design knowledge base by extracting the software 
design artifacts and their relationships from the description 
of a style, a design pattern, or a tactic. We applied the 
classification technique for classifying the SDAs according 
to their descriptions and relationships, as described in the 
literature [1, 2, 3]. This work produced evidences that the 
multi-dimensional analysis approach introduced in [9] is a 
valuable step towards handling artifacts as an integrated set 
of factors of influence. The proposed classification technique 
can be customized to better support particular development 
process and systems’ needs. In particular, the SAM 
framework may be adapted to sustain different CS. In the 
near future, we plan to propose a tool support and guidelines 
to support the process of creating a SSM, eliciting related 
arguments, and analyzing these arguments. The ultimate goal 
of this work is to build a reference model of SDAs and 
arguments linked formally and exploited by algorithms.  

REFERENCE 

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns: 
Elements of Reusable Object-Oriented Software”, A.-Wesley,  (1995) 

[2] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., 
Nord, R., Stafford, J., “Documenting Software Architectures – Views 
and Beyond”, Addison Wesley, Boston (2003) 

[3] Bass, L., Clements, P., Kazman, R., “Software Architecture in 
Practice”, Addison Wesley, Boston (2003) 

[4] Kim, S., Kim, D.K., Lu, L., Park, S., “Quality‐ driven Architecture 
Development Using Architectural Tactics”, Journal of Systems and 
Software 82, pp. 1211-1231 (2009)  

[5] Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., Aho, P., 
“Knowledge Based Quality-driven Architecture Design and 
Evaluation”, Journal of Info. and Soft. Tech. 52, 577-601 (2010) 

[6] Shahin, M., Liang, P., Khayyambashi, M.R., “Architectural Design 
Decision: Existing Models and Tools”, In: WICSA/ECSA 2009, 
IEEE, Cambridge, pp. 293-296 (2009)  

[7] Parizi, R.M., Ghani, A., “Architectural Knowledge Sharing (AKS) 
Approaches: a Survey Research”, Journal of Theoretical and Applied 
Information Technology, 1224--1235 (2008)  

[8] The Zachman Framework, http://zachman.com/about-the-zachman-
framework (2008) 

[9] Adam, S., El-Boussaidi, G., "A multi-dimensional approach for 
analyzing software artifacts", 25th SEKE, June 27-29, Boston (2013). 

[10] Standard, I.: ISO/IEC 42010 Systems and Software Engineering - 
Recommended Practice for Architectural Description of Software-
Intensive Systems. ISOIEC 42010, (2011) 

http://zachman.com/about-the-zachman-framework
http://zachman.com/about-the-zachman-framework

