
Towards Knowledge-intensive Software Engineering

Framework for Self-Adaptive Software

Hyo-Cheol Lee

Dept. of Computer Engineering, Ajou University

NiSE Research Group

Suwon, South Korea

mytion7@ajou.ac.kr

Seok-Won Lee

Dept. of Computer Engineering, Ajou University

NiSE Research Group

Suwon, South Korea

leesw@ajou.ac.kr

Abstract—A self-adaptive system reacts to the changing

environment by modifying its functionality in relation to the

encountered state of the environment. In order to adapt to a new

situation, such system goes through many decision points during

the adaptation process. Knowledge forms the basis of decision

making within the adaptation process. There are already many

existing self-adaptive system frameworks. However, these

frameworks have limitation in the way they represent the

rationale for adaptation and the semantics behind the knowledge

they use. This paper takes a step forward by proposing a

knowledge-intensive adaptation framework to both manage

knowledge and support the analytical decision making process.

The proposed approach represents the adaptation knowledge by

using ontology which helps to organize, analyze and extend

knowledge. Ontology is able to represent the semantics behind

knowledge and provide the evidence for the adaptation. The

proposed approach uses a special ontology named the Adaptation

Problem Domain Ontology. It specifies the system goals, features,

architectures, and the relationship between them. This ontology

is used to answer the problem of adaptation at each decision

point and determine the appropriate system structure by

reasoning the semantics behind knowledge. Thus, the system can

consider the semantics behind knowledge for adaptation, and

then the stakeholders can understand the adaptation process. We

apply the proposed framework to the smart grid domain and

show how the system adapts to a new situation using rationale for

adaptation and the semantics behind the knowledge.

Index Terms—Self-adaptive system, decision making, ontology,

goal model, feature model, role-based architecture

I. INTRODUCTION

As humans interact with changing environments, so a

system encounters many different situations which demand

different requirements or capabilities. Thus, a system should be

able to provide a specific functionality, which is appropriate to

the encountered situation, for the user. This has been a great

motivator for the development of self-adaptive systems. A self-

adaptive system can handle many situations by modifying the

system goals, architecture, and functionality in response to

changing environments without any human intervention [1].

For self-adaptation, the MAPE-K (Monitor/Analysis/Plan/

Execute and Knowledge) process is widely used [2]. Following

this process, the system encounters many decision points that

determine what is appropriate in a given situation and achieves

the emergent system objectives [3]. At that time, knowledge

plays a critical role as the foundation for decision making [4].

Many kinds of knowledge can be used to determine the results

and quality of the entire self-adaptation process. That is, the

way to use and represent knowledge is important in the self-

adaptation.

Many existing self-adaptive system frameworks already

regard knowledge as the basis for the adaptation. However, in

these frameworks, knowledge is considered as predefined rules,

logic and formulas mapping between input and system

structures and functionality [5][6][7]. The adaptation process is

therefore simplified as mapping between problem and

predefined solution. This is similar to the black box testing,

where the tester does not consider the internals of the system

during testing. This results in the semantics and rationale

behind the adaptation to be ignored and implicitly implied. The

rationale aspect behind adaptation is essential for stakeholders

to understand the reason behind decision making. Existing

frameworks are insufficient to illustrate the semantics and

rationale behind the adaptation process.

In this paper, we propose the NiSE (kNowledge-intensive

Software Engineering) framework for self-adaptive system.

The proposed framework adopts an ontological approach to

represent knowledge for the adaptation process. Various types

of knowledge needed for self-adaptation are systematically

organized, connected, and used in the form of ontology. So,

using this ontological approach, we are able to provide

knowledge-intensive adaptation process including the decision

making process which uses the rationale and semantics behind

the adaptation [8]. In this adaptation process, the decisions do

not just follow predefined logic or formulas as seen in existing

approaches [10][11][12], but infer the appropriate ones using

the relationship among knowledge. For that, the APDO

(Adaptation Problem Domain Ontology) is a key component.

APDO is special ontology containing adaptation knowledge

such as system goals, features, architecture, and their

relationships. During the adaptation, a system infers the

appropriate decision using APDO by answering a question at

each decision point. It gives support to know which knowledge

has been used in the adaptation process. Thus, the proposed

approach supports a comprehensive adaptation process through DOI reference number: 10.18293/SEKE2015-222

an ontological approach, and helps stakeholders to understand

the rationale and semantics behind the adaptation [9].

This paper is organized as follows: Section 2 introduces the

application domain, which is used to illustrate the proposed

approach. In Section 3, the proposed approach is described

with the help of a case study. We examine other frameworks in

Section 4. Section 5 concludes with future works.

II. APPLICATION DOMAIN

In order to verify the applicability of the proposed NiSE

framework, we have used a case study in the smart grid domain.

A smart grid is next generation electricity grid which

simultaneously interacts with demand and supply side using

their information [24]. The behavior of a smart grid

corresponds with that of a self-adaptive system. The smart grid

system also includes and manages many kinds of knowledge

such as domain, context, and system structure for adaptation.

This provides a domain that is suitable for us to test the

feasibility of the NiSE framework.

In this case study, APDO for the smart grid includes the

following knowledge: 1) goal model for what a smart grid

wants to achieve, 2) feature model to represent variability of a

smart grid behavior and component, 3) role-based architecture

model which a smart grid can have, and 4) other context and

policy related to the smart grid domain. These are correlated

with each others and used to make an appropriate decision.

We will use the electricity shortage scenario in this case

study [25]. In the smart grid, backup power is stored for

emergency situations and should be maintained with certain

proportions. Based on the amount of a backup power in a smart

grid, there are three states of power warning: Ready, Warning,

and Severe. Ready is safe state with enough backup power and

it maintains its goal and policy. Warning is careful state where

it needs volunteers to reduce electricity consumption. Severe is

the most critical state and it is compulsory to regulate

electricity consumption. In each state, there is a certain policy

to return to the Ready state. Thus, maintaining Ready state is

one of the goals of a smart grid. It means that if the backup

power is decreased and the power warning state is changed

from Ready to Warning or Severe, a smart grid should change

its behavior based on a policy in order to adapt to new situation.

In the case study, we assume that the energy consumptions

on the end-users side is suddenly increased due to unexpected

weather change. It causes the usage of a backup power to

resolve the emergent situation and changes power warning

state from Ready to Warning. A smart grid system monitors

these changes and reconfigures its goal, feature, or architecture

for return to Ready state without any failure. In the next section,

the details of NiSE framework is described and explained

based on this case study.

III. NISE FRAMEWORK FOR SELF-ADAPTIVE SYSTEM

NiSE framework for self-adaptive system is proposed to

deal with knowledge aspect in the adaptation process and

improve the stakeholders’ understanding of adaptation by

considering the rationale behind the adaptation. The NiSE

framework mainly focuses on two perspectives: 1) adaptation

knowledge and 2) associated adaptation process using that

knowledge.

A. Adaptation Knowledge Perspectives

In the perspective of adaptation knowledge, we introduce

APDO for the knowledge base of the self-adaptation. APDO is

a special ontology, which defines knowledge including system

structure, rules, and relationships between them [22]. Figure 1

describes the relationships among the various kinds of

knowledge. It shows not only the main system structures such

as goal, feature, and role architecture, but policy, software

engineering process, context, and domain knowledge as well.

These kinds of knowledge are used to determine the system

behavior and the system architecture. By using these multi-

dimensional relationships among many different types of

knowledge for the adaptation, we are able to understand the

internal process of decision making for the adaptation and

support for the stakeholders to comprehensively understand the

rationale behind the adaptation.

Behavior Feature ModelTarget System Goal Model

External

Self
Sufficiant

Control
Necessary

Regular
Shortage

Regular
Excess

Supply
Decrease

Demand
Increase

Unstable Inefficient

Supply
Collapse

Demand
Jump

... ...

Context

Internal

...

Context Model Policy Model

Target System
Architecture Model

Engineering Process Model

Monitoring
Adaptation

Trigger
Validation Reconfig.

Req.
Modeling

B.Feature
Extraction

C.Feature
Selection

Arch.
Organizatin

Player
Assignment

Action Control

Notify

...

Process
...

...

...

Target
System
Policy

...

...

P
ro

d
u

ce

C
o

m
p

lySe
le

ct

Component Feature
Model

Domain Goal Model

Feature Extraction

Goal Projection

D
o

m
ain

 G
o

al
P

ro
je

ctio
n

Targe
t G

o
al

Extractio
n

C
o

m
p

o
n

e
n

t
Fe

atu
re

P

ro
je

ctio
n

B
e

h
avio

r
Fe

atu
re

Extractio

n

Quality

Attribute

ExtractionGoal
Extraction

Capability
Extraction

Component
Feature

Projection

Figure 1 Overview of Adaptation Problem Domain Ontology

Among many types of knowledge, goal, feature and

architecture models are directly related to the system structure.

As we move from goal models to architecture model, the

degree of abstraction is decreased and the details of the system

structure are extracted. In order for each model to be associated,

we explain the meaning and characteristics of each model.

Goal is the objective that the system wants to achieve [5]. It

is used to represent the system’s functional and quality

requirements [14][15]. In NiSE framework, there are two types

of goal model: domain goal model and target system goal

model. Domain goal model has all possible goals that a system

can achieve. As a subset of domain goal model, target system

goal model only includes the goals that the system needs to

achieve in given situation.

Goal model is the highest level of abstraction in NiSE

framework. When a system goal changes, the purpose of a

system behavior also changes. If a system needs to change its

goal, it should find a new goal, which can resolve the problem

in a new situation, among domain goal model. Thus, setting

domain goal model is defining the available adaptation

strategies that a system can have.

Feature is defined as “A prominent or distinctive user-

visible aspect, quality, or characteristic of a software system or

systems” [16] and used to represent the system variability and

commonality [17]. In NiSE framework, feature model is used

not only to represent the variable points at which the system

can have diverse options of its functionalities or architectures,

but also to reduce the abstraction gap between goal model and

architecture model.

For this purpose, NiSE framework includes two types of

feature model: behavior and component feature model.

Behavior feature model represents atomic actions and

component feature model represents functional modules that

realize those atomic actions. Behavior feature model is close to

goal level and component feature model is close to architecture

level. Using these models, a system can connect goal problem

space and architecture solution space smoothly and represent

variability and commonality with specific articulation [7].

The NiSE framework includes the system architecture using

the role-based design approach [18]. It has many advantages to

specify adaptive architectural design. Role is the abstract

architecture unit, which does not exist in real world. The

system is composed with the organization, which is comprised

of several roles. The real system components play certain role

to make a complete organization. This mapping is separately

processed with constructing organization. Therefore, late

binding between role and player is possible. It makes loose

coupling between the system architecture and real

implementation, and flexible architecture to easily change the

system components [19][20].

Role model can represent quality requirements of the

system through a contract. A contract is the specification of the

interaction between roles [21]. A contract includes the process

and the measurement. A process describes how the roles

interact with each other and the measurement specifies

achieving a contract. By measuring the degree of satisfaction of

a contract, we can quantify the quality requirements as well.

Furthermore, knowledge of context, policy, software

engineering and etc. are able to be represented following

diverse models and standards. The form of these kinds of

knowledge is not strictly restricted. Furthermore, in APDO, the

system engineer can define and add new knowledge.

When a system encounters decision point, including a set of

decision questions, the system queries APDO using the above

mentioned knowledge as a form of ontology for determining

appropriate decision. For example, in order to answer the

question “Whether the current structure is in need of

adaptation?”, first of all, the system checks whether current

system structure is appropriate for a given context or not. For

that, the relations between context model and the system

structure models are used to infer the answer. If the situation is

changed, the system determines the level of adaptation based

on the different system structure models and starts adaptation

to satisfy new objective of the current situation by changing its

goal, feature, role-based architecture or all of them.

The advantages of APDO are 1) supporting intuitive way to

manage adaptation knowledge and 2) providing the evidence of

the decision making during the adaptation process. When

knowledge is extended and modified, the engineer has a trouble

to predict the available situation and architecture based on new

knowledge. Thus, it takes a lot of time and effort to infer the

available situations and appropriate architecture corresponding

to each situation [23]. However, if the engineer uses ontology,

the engineer just defines knowledge and relationship among

them in ontology. And then, the unpredictable and emergent

solutions, which were difficult to determine by human, can be

automatically inferred by the system. Besides, because many

kinds of knowledge are used, it is able to provide the evidence

of the adaptation to understand the rationale and semantics of

the adaptation. This enhances the traceability between the

situation and the adaptation outcome. It makes the stakeholders

understand the adaptation process and application result.

The system engineer or domain experts define APDO,

because it needs many kinds of knowledge of the system and

domain. The system structures such as goals, features and

architecture models have formalized engineering method which

helps to define them. All models are converted to ontology

classes using those meta-models and the relations between

them are represented as object and data properties in ontology.

Other knowledge such as policy and context are also illustrated

in ontology based on the engineer-defined models. Therefore,

the preprocessing of knowledge is required.

B. Adaptation Process Perspectives

Monitoring

Adaptation
Trigger

Verification
&

Validation

Reconfiguration

Target System

System Players

Domain Component
Features

Domain Behavior
Features

Requirement
Instances

...

Domain Goals

Domain Policy

Requirement
Modeling

Behavior
Feature

Extraction

Role-based
Organization

Modeling

Component
Feature

Selection

Player
Assignment

Adaptation
Process

Figure 2 NiSE Adaptation Process

With the purpose of making a proper decision based on

knowledge, Figure 2 shows the NiSE adaptation process. The

adaptation starts from monitoring the environmental factors to

reconfiguring current system architecture into the inferred

system architecture. By following this process and answering

the adaptation questions using knowledge, a system can make

an appropriate decision, and then consequently adapt to the

new situation. Each adaptation phase has unique decision

points and several adaptation questions for making a decision.

For instance, in the scenario described in Section 2, when the

weather suddenly changes, the system can raise a question such

as “Whether it is needed to adapt?” And then, through

Smart GridSmart Grid

Reward and
penalty
Control

Recruit
participant

Demand
Respond

Demand
respond

determine fee

Electricity
Market
Analysis

Recruit
voluntarily
participants

Construct
load control

plan

Control
manage
system

Smart Grid

Regional
Transmission
Organization

 Energy
Management

Demand
response

management
system

Distribution
Management

Systems

Demand
bidding

Direct load
control

requires

Customer
information

system

act

act
act

act

Smart Grid
System

Reward and
Penalty

Direct Load
Control

Demand Bidding

Load
Interruptible Circulation

Blackout

satisfy

satisfy

satisfy

Energy Controller

Distribution
manager

Energy
planner

Smart Grid Stable system

Recruiter
Energy

controller

Volunteer Recruiter

Customer
selector

Information
collector

Efficiency
Power

Stability

Economical
Efficiency

Power
Efficiency

convert

convert

convert

satisfy

Adaptation Process
and Questions

How to satisfy the goals
by behavior features?

Q

Which composition of
component feature is
appropriate for the
behaviors?

Q

Which roles are required
and How to organize the
system with the roles?

Q

Which player is proper to
play the roles in
organization? And why?

Q

Which goals are proper to
context and the system
policies?

Q

Whether it is needed to
adapt?

Q

Smart Grid System
Goal-based Requirement Model

Smart Grid System
Behavior and Component
Feature Model

Smart Grid System Role-based
Architecture Model

Plan to
support

electric rate

Gather
customer

information

Data
manager

Intelligent
core

convert

Figure 3 Example of NiSE Adaptation Process Using APDO

knowledge of context, policy and goals and the relationship

between them in APDO, the system answers these questions

and makes an appropriate decision. These decisions finally

affect the system structure in order to satisfy new policies,

contexts or requirements.

In order to understand the knowledge-intensive adaptation

process, we show a simple example of the adaptation process

using APDO. In this example, we define APDO with 70 classes,

68 object properties, and 25 data properties with respect to the

smart grid system’s context, policy, goal, feature and

architecture to answer the questions shown in Figure 3 in

accordance with the scenario in Section 2.

Figure 3 shows the adaptation process with questions at

each decision point. Main adaptation process including from

goal-oriented requirement modeling to role-based architecture

design is shown based on predescribed scenario. The blocks in

Figure 3 represent goals, behavior features, component features,

and organizations with roles. Each goal is satisfied by behavior

features. These behavior features are also performed by

component features. Based on selected goals, behaviors and

components, which are able to perform the given behaviors, are

determined. Lastly, these features are connected to organization

and role which are composed of the corresponding capabilities.

In the scenario, energy warning state is changed from

Ready to Warning. To address this change and return to a stable

state, the system should increase backup power and decrease

current usage of electricity. This is a smart grid domain policy

used when energy warning state is changed to Warning. For

this scenario, APDO includes several knowledge areas such as

knowledge of policy, context, and system structure with three

abstraction levels (Goal, Feature, and Role-based Architecture)

and the relationship among them.

At first, based on the policy, the smart grid system

determines that it needs to adapt, and through the defined

relationship between Warning state and Demand Bidding goal

in APDO, Demand Bidding goal is selected as the proper goal,

which are the answers of the first and second questions in

Figure 3. Demand Bidding goal has satisfy relations with

Recruit Participant, Plan to Support Electric Rate, Construct

Load Control Plan and Control Manage Systems behavior

features. These relations support that these four behavior

features become the answer of the third question. Using act

relation between behavior feature and component feature,

Customer Information System, Distribution Management

Systems, Energy Management, and Demand Response

Management System are selected as the appropriate component

features. It is the answer of the fourth question in Figure 3. In

the fifth and sixth questions, these component features are

converted to the roles and organization shown in the bottom of

Figure 3 via convert relation between them, and these roles or

organizations are played by the smart grid system components

capable to perform them to change its architecture and satisfy

the new goal. Consequently, during the adaptation process,

these decisions are addressed by answering the questions

shown in Figure 3 through APDO and the system changes its

goals, features, and architecture [13].

Using the proposed adaptation process, the system makes

an appropriate decision with convincing evidences to assure the

high quality of the adaptation based on the answer to decision

questions. It also support the stakeholders in understanding the

rationale behind the adaptation, as they are able to know why

the adaptation happens and how it is processed.

IV. RELATED WORKS

In related work, we examine existing self-adaptive system

frameworks. We will compare other frameworks with the one

proposed in this paper, especially in terms of decision making

in the adaptation process and knowledge representation.

Rainbow is a framework for developing customized self-

adaptive system [10]. It is composed of two components:

managed system and manage system. Managed system is the

system, which directly adapts to the environment. Manage

system controls managed system through MAPE-K process. In

rainbow, the strategies are defined as the adaptation unit, which

a system can take. A strategy contains the system architecture

and several tactics. And, it is defined through Stitch and Acme.

Using utility theory, a system is able to quantify which strategy

can achieve system objective with the highest utility value.

Based on these results, a system selects and changes its

architecture that is suitable for new situation.

As mentioned before, the adaptation unit for rainbow is

strategy. All the strategies that the system can take are already

defined at design time. Thus, a system cannot consider various

adaptation problems and provide enough flexibility of the

system architecture. However, proposed approach models only

knowledge for adaptation and a system infers the appropriate

decision using that knowledge at run-time. In other words, the

proposed approach does not determine the available

architecture, but design knowledge in order to determine

appropriate architecture at run-time. It supports high flexibility

and traceability by providing the evidence of the adaptation.

Proposed approach provides high understanding of the

adaptation process to the stakeholders as well.

MADAM (Mobility and Adaptation enabling Middleware)

is specially focused on the middleware for the self-adaptation

at mobile platform [11]. Through MDA (Model-Driven

Architecture), the user defines the system architecture model

and the system adapts to new situation by changing the

architecture model. In order to select the most suitable

architecture model, MADAM uses parameterization, which is a

method to apply the external variables to the predefined

adaptation formula. The adaptation is processed through

functionalized decision making process which means that the

situations which the system can face are mapped one-to-one

with each architecture model.

MADAM has adaptation middleware to manage system

architecture and adaptation process. Thus, the engineer defines

this middleware at design time. This adaptation is performed by

predefined mapping knowledge, therefore MADAM is not able

to consider run-time perspective in the adaptation such as

constructing new architecture model, which is more suitable

than other defined architecture model. In the proposed

framework, we refer MDA approach to represent system

architecture with various abstract level, but we infer the

adaptation result through knowledge at run-time in order to

make an appropriate decision. Namely, we define no direct

solution for each situation, but provide knowledge to support

decision making process and decide the solution for the system.

DiVA (Dynamic Variability in complex, Adaptive systems)

is the framework to support developing the self-adaptive

system using AOP (Aspect-oriented Programming) [12]. They

use base model and aspect model as the adaptation units for the

system adaptation. The base model is designed from the

essential components and the aspect model is designed based

on the optional component that is able to be added or modified.

Simultaneously using both the models, the engineer can easily

design the system variability and consider various situations.

At design time, not only base and aspect model, but

dependency between aspects in variable points, policy and

context are defined as well. Each context and policy is

connected to the available aspects, and the system is weaving

with base model and selected aspect models at runtime to

construct complete system architecture.

In DiVA, the adaptation units are defined at design time as

aspect models and it constructs complete system architecture

using these models at run-time. It is impossible that a system

uses undefined and new aspect for comprising new system

architecture. Therefore, it is impossible to consider semantic

dependencies when new dependency is defined or many

aspects are intertwined. However, proposed approach can

manage not only the syntactic relation, but also the semantic

relation through ontology by defining knowledge and reasoning

the semantics behind that knowledge. It also assures that a self-

adaptive system can make a more appropriate decision.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a knowledge-intensive software

engineering framework for self-adaptive systems. The

proposed framework supports the decision making process and

the traceability of the adaptation knowledge through

knowledge-intensive inference and questions. Thus, the system

engineer and stakeholders are able to comprehensively

understand the adaptation process and analyze the problem and

solution to change non-adaptive systems to be self-adaptive.

The limitation of software adaptability is mitigated by

extending ontology to add new knowledge for the needed

adaptation such as new models or emergent relationships

between existing models.

In future works, we need to define an ontology-based

software development methodology. In this methodology, the

process of knowledge construction about the domain and target

system, and the fundamentals for self-adaptation should be

defined. Also, inference in decision making process should be

extended to resolve uncertainty problems. Uncertainty is an

emergent issue in the self-adaptive system. Lastly, the

verification and validation of the adaptation framework are

needed in order to determine the correctness of knowledge and

the decisions made during the adaptation.

ACKNOWLEDGMENT

This research was supported by Next-Generation

Information Computing Development Program through the

National Research Foundation of Korea (NRF) funded by the

Ministry of Science, ICT & Future Planning (No.

2013M3C4A7056233).

REFERENCES

[1] Betty H. Cheng et al., Software Engineering for Self-Adaptive Systems:

A Research Roadmap, Software Engineering for Self-Adaptive Systems,

Springer, 5525, Lecture Notes in Computer Science, 2009, 1-26.

[2] IBM, An architectural blueprint for autonomic computing, Autonomic

Computing White Paper, 2006

[3] De Lemos, Rogério, et al. "Software engineering for self-adaptive

systems: A second research roadmap." Software Engineering for Self-

Adaptive Systems II. Springer Berlin Heidelberg, 2013. 1-32.

[4] Kephart, Jeffrey O., and David M. Chess. "The vision of autonomic

computing." Computer 36.1 (2003): 41-50.

[5] Yijun Yu, et al. 2008, From Goals to High-Variability Software Design,

Foundations of Intelligent Systems, Springer, 4994, Lecture Notes in
Computer Science (2008), 1-46.

[6] Brice Morin, et al. 2009. Taming Dynamically Adaptive Systems using

models and aspects. In Proceedings of the 31st International Conference
on Software Engineering. IEEE Computer Society, Washington, DC,

USA, 122-132.

[7] Nelly Bencomo, et al. 2008, Dynamically Adaptive Systems are Product

Lines too: Using Model-Driven Techniques to Capture Dynamic

Variability of Adaptive Systems, 2nd International Workshop on
Dynamic Software Product Lines.

[8] Seedorf, Stefan. "Applications of ontologies in software engineering." In

2nd International Workshop on Semantic Web Enabled Software
Engineering held at the 5th International Semantic Web Conference.

2006.

[9] Gruber, Thomas R. "Toward principles for the design of ontologies used

for knowledge sharing?" International journal of human-computer

studies 43.5 (1995): 907-928.

[10] David Garlan, et al. "Rainbow: architecture-based self-adaptation with

reusable infrastructure," Computer, vol.37, no.10, pp. 46- 54, Oct. 2004

[11] Sebastiano Lombardo, “D.8.9: Mobility and Adaptation enabling

Middleware: Final Report”, MADAM final report, 2007

[12] DiVA Project Consortium, “D7.4: A Model-based Approach for
Construction and Run-time Management of Adaptive Systems: DiVA

practices and Lessons Learned”, DiVA White Paper, 2011.

[13] Brice Morin, et al., 2009, “Models@ Run.time to Support Dynamic

Adaptation”, IEEE Computer, 42, 10, 2009, 44-51.

[14] Goldsby H.J. et al. 2008. Goal-Based Modeling of Dynamically

Adaptive System Requirements. International Conference on

Engineering of Computer-Based Systems.

[15] Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, Yijun Yu,

2005, Towards requirements-driven autonomic systems design,

Proceedings of the 2005 workshop on Design and evolution of

autonomic application software

[16] Kang, Kyo C., et al. Feature-oriented domain analysis (FODA)
feasibility study. No. CMU/SEI-90-TR-21. CARNEGIE-MELLON

UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 1990.

[17] Capilla, Rafael, Jan Bosch, and Kyo-Chul Kang. "Systems and Software
Variability Management.” pp. 25-32, 2013

[18] Colman, Alan Wesley. “Role oriented Adaptive Design”. Swinburne
University of Technology, Faculty of Information & Communication

Technologies, 2006

[19] Oreizy, Peyman, et al. "An architecture-based approach to self-adaptive
software." Intelligent Systems and Their Applications, IEEE 14.3

(1999): 54-62.

[20] Colman, Alan, and Jun Han. "Roles, players and adaptable

organizations." Applied Ontology 2.2 (2007): 105-126. Korea Power

Exchange, "Power market operating rule", 2013

[21] Colman, Alan, and Jun Han. "Using role-based coordination to achieve

software adaptability." Science of Computer Programming 64.2 (2007):
223-245. Korea Power Exchange, "Power market operating rule", 2013

[22] Lee, S.W. and Gandhi, R. A., Ontology-based Active Requirements

Engineering Framework, In Proceedings of the 12th Asia-Pacific
Software Engineering Conference, 2005. IEEE Computer Society

[23] Daniel M. Berry, Betty H. C. Cheng, Ji Zhang, 2005, The Four Levels of
Requirements Engineering for and in Dynamic Adaptive Systems, In

11th International Workshop on Requirements Engineering Foundation

for Software Quality.

[24] U.S Department-of-energy. ”Grid 2030: a national Vision for electricity’

second 100 years”. Tech. report, Department of energy, 2003

[25] Korea Power Exchange, "Power market operating rule", White Paper,

2013

