
How Does Defect Removal Activity of Developer
Vary with Development Experience?

Reou Ando, Seiji Sato, Chihiro Uchida,
Hironori Washizaki, and Yoshiaki Fukazawa

Department of Computer Science and
Engineering

Waseda University
Tokyo, Japan

Email: waseda-reou@suou.waseda.jp,
r0d8h8i0h@asagi.waseda.jp,

c.u.0224@ruri.waseda.jp, {washizaki,
fukazawa}@waseda.jp  

Sakae Inoue, Hiroyuki Ono, Yoshiiku Hanai,
Masanobu Kanazawa, Kazutaka Sone,

Katsushi Namba, and Mikihiko Yamamoto
Fujitsu Limited

Kanagawa, Japan
Email: {inoue.sakae, ono.hiro, hanai.yoshiiku,

kanazawa.masano, sone.kazutaka, nanba,
yamamoto.mikihi}@jp.fujitsu.com

Abstract—Because developers significantly impact software
development projects, many researchers have studied
developers as a means to improve the quality of software.
However, most works have examined developers in a single
project, and research involving multiple projects has yet to
be published. Herein we propose an analysis method which
investigates whether an evaluation of developers based on
individual experience is feasible when targeting more than
one project by the same organization transversely. Our
method deals with the logs of the version control system and
the bug tracking system. To support this method, we also
propose two models to evaluate developer, the defect
removal overhead rate (DROR) and developer’s experience
point (EXP). The results reveal the following. 1) DROR
cannot be used to compare different projects in the same
organization. 2) There is certainly a difference in DROR’s
between experienced and inexperienced developers. 3) EXP
should be a useful model to evaluate developers as the
number of projects increases. The data obtained from our
method should propose the personnel distribution measures
within the development framework for future developments,
which might lead to improve the quality of software.

I. INTRODUCTION

In software development projects, developers and
organizations are said to significantly impact software
[1-15, 17]. A 1968 study on the organization when
analyzing software quality resulted in Conway’s law [2],
which states that “organizations that design systems are
constrained to produce systems which are copies of the
communication structures of these organizations.”
Recently, researchers have examined defect prediction in
software using metrics based on hypotheses formed by the
structure of an organization [12], and have investigated
the effects of software in a project involving multiple
organizations due to mergers and acquisitions [14], etc.
Such studies have found that organizational structures
greatly influence software quality [2, 3, 12, 14]．

On the other hand, research on developers has
proposed techniques to improve the prediction of potential
defects in software by utilizing the quality of the
developer. The quality of the developer is defined as how
much his commits lead to defects in a project [17]. Defect
prediction using metrics, such as the number of commits
and LOC for each developer [6], assesses the impact of

developers on the quality and reliability of software [1,
4-9, 11, 13, 15, 17].

Most studies focus on the organizational structure and
the quality of the developers with respect to a single
project or a group project involving different organizations.
However, the results across multiple projects by the same
organization have yet to be published. With regard to the
experience of developers who belong to the same
organization，it is easy to imagine that the development
experience in past projects affects later software
development. In fact, although the target of their research
was a single project, A. Mockus et al. [11] found that
developer’s experience significantly affects the possibility
of defects; more experienced developers tend to have
fewer defects.

If the results about developers based on past
development experience are obtained by traversing
multiple projects, it may be possible to improve a new
project by structuring it so that is similar to developers’
previous experiences. Moreover, assuming a developer
with little development experience introduces more
defects, the development system should be arranged so
that inexperienced developers work with experienced
developers. This should improve the quality of software
while simultaneously educating inexperienced developers.
Therefore, we propose a technique to evaluate developers
by analyzing their previous experiences from logs stored
in the version control system and the bug tracking system
in multiple projects. To determine how the defect removal
activity of developers varies with development experience,
we divided the issue into evaluable components. Hence,
we formulated our study in the form of three research
questions:

・ RQ1: As an organization gains project experience,
does the defect removal overhead rate (DROR) of
developers tend to decrease?

・ RQ2: Is there difference in DROR based on
development experience?

・ RQ3: Is there difference in DROR between
developers based on experience in a similar project?

In order to respond to these research questions, we
carried out evaluation experiments using our method. The

(DOI reference number: 10.18293/SEKE2015-221)

subjects of our study are developers in a real company
involved in three projects, which do not overlap in the
development periods.

The contributions of this study are:

・ A method to evaluate developers based on past
development experience using logs stored in the
version control system and the bug tracking system.

・ Understanding the trend of DROR based on
developer experience.

・ Obtaining resources to help improve measures of
personnel distribution within the development
framework for future developments.

The rest of the paper is organized as follows. Section 2
presents the background of our study through related
work. Section 3 introduces our analysis method to address
the problem described in Section 2. Then two analysis
models to support our method are proposed in Section 4.
In Section 5, we conduct experiments to evaluate our
method and investigate the proposed research questions.
Next Section 6 explains summary of findings and the
practical application of our method. Finally we describe
the conclusion in Section 7.

II. BACKGROUND AND RELATED WORK

A. Prior works focusing on developers

In software quality analysis, several works propose
methods to predict defects in software based on the
characteristic of developers [1, 4-9, 11, 13, 15, 17]. For
example, Kamei et al. [6] observed the histories of
developers commits. They proposed change measures,
which extract the number of modified files recorded for
each commit, lines of code added, and whether or not the
change is a defect fix, etc. They found that by predicting
software defects through change measures, high-risk fixes
and the cost of high-quality software could be reduced.

Matsumoto et al. [9] extracted metrics such as the
number of commits and LOC for each developer from the
logs of the version control system. They supposed that
these are useful for fault-prone analysis, which specifies
the module containing defects. Besides, Y. Wu et al. [16]
defined the quality for each developer from the proportion
of commits that introduce defects into a project. They
found that using their proposed eight metrics as
parameters as lead to better fault-prone analysis compared
to traditional process metrics.

B. One of the problems in related works

Developer experience varies by the individual.
Numerous works deal with it [5-8, 11, 15], but the
research focuses on evaluating a single project or a group
of different organizations. Research on multiple projects
in the same organization has yet to be published. Most
prior works probably evaluate a single project, even
though they considered developer experience.

If developers with experience are compared to those
without experience, it is conceivable that there will be
differences. In addition, it is possible that the type of
experience leads to differences among experienced
developers. Therefore, the research aims to evaluate

developers based on their development experience in
multiple projects within the same organization in a
cross-sectional way.

III. ANALYSIS METHOD

The participants in our study are developers involved
in large-scale projects in an organization that uses a
version control system and a bug tracking system.

Our analysis involves the following steps:

(i) Extract logs from the version control system and the
bug tracking system used in completed projects.

(ii) Collect the names of developers, the number of files
they changed, the names of the absolute path that they
changed files, and the number of changes in them
from the log of version control system. In addition,
identify files recorded as defect fixes after detecting
the defect; that is, files related with a defect
(hereinafter referred to as defect files), from the logs of
the version control system and the bug tracking system.
Then collect the name of developer who changed
defect files and the number of changed defect files.

(iii) Gather the number of changed files, the changed
absolute path’s name and its number, and the number
of changed defect files by developer name.

(iv) Calculate each developer’s defect removal overhead
rate (DROR), which is detailed in Section 4, from the
number of changed files for each developer.

(v) Repeat steps (i) to (iv) for each completed project.
(vi) If a developer’s name exists in different projects,

consider the developer to be experienced in later
projects. Then calculate the developer’s experience
point (EXP) in the project, which is detailed in Section
4.

Finally, analyze each developer based on the gathered
data. Incidentally, we assumed that a function should be
implemented not by single file, but by all files included in
the absolute path, which is why we use the number of
changed absolute paths and not the number of changed
files. In this method, the number of changed files includes
the number of changing defect files.

IV. ANALYSIS MODEL

It seems important to prepare an indicator to link
developers with the number of defect to evaluate
developers individually. In this paper, we present a metric
called defect removal overhead rate (DROR) for each
developer. Moreover, in order to examine precisely what
area and how much ability a developer has acquired, we
also suggest a measure named developer’s experience
point (EXP) for each experienced developer.

A. Defect removal overhead rate (DROR)

In a large-scale development, it is important that
people who are not engaged in implementation are
involved in detecting defects. For this reason, it is
probable that developers differ from testers. A developer
who modifies certain defect files should have changed it
because he induced the defects that testers requested to be
fixed.

Table 1. Example each ’s DROR calculation

Hence, we assume that the person who injected defects
into a file is the person who changed it. This assumption
is used to define defect removal overhead rate (hereinafter
referred to as DROR) of a developer.

DROR of a developer is calculated as the proportion
of fixing defect files compared to the total number of files
that he changed. When developer involved in project
 , ’s DROR is defined as

 The project which evaluates developer
 Developer who involved in

: The total number of changing file in

 The number of fixing defect file in

Equation (1) can also be understood as the probability that
the developer fixes a defect file when changing a file. The
higher DROR, the more the developer is evaluated badly.
It is because developers who write low-quality code
should change more files related with a defect than
developers who write high-quality program. Table 1 gives
an example of each ’s DROR calculation. When
developer x changed files f1, f2 and f3 on 2015/1/10,
DROR of x is calculated as

 because he didn’t fix defect

files. Besides, developer y changed file f3, in which he
might have induced a defect at that time, on 2015/1/11.
And he fixed defect files f1, f2 and f3 on 2015/1/15. Then,
DROR of y is measured as

. In addition, developer z

changed file f4, in which he might have introduced a
defect, on 2015/1/12. If he fixed file f4 on 2015/1/16,
DROR of z is figured out as

. If comparing these

developers, developer y is evaluated the worst.

B. Developer’s experience point (EXP)

Developer’s experience point (hereinafter referred to
as EXP) is measurement that considers his development
experience. When there is developer who has
experienced past projects and is involved in the project
 , ’s EXP in is defined as

 Past projects
 The project which evaluates developer
 Developer who experienced and
 The number of appearing absolute path

which changed in

Equation (2) means that if absolute path in which
 changed files in also exists in , the number of
changing files in in , defined , is weighted
by that in , which defined . The higher EXP, the
more experience the developer has. The thought of (2) is
developed by referring to A. Mockus et al. [11] and Y.
Kamei et al. [6]. Figure 1 gives an example calculation of
EXP when changed the contents of path1 6 times,
path2 10 times, and path3 30 times in P1. Moreover, he
also edited path1 5 times, path2 2 times, and path4 100
times in P2. Then, his EXP in P2 is calculated as 50 (i.e.
(6×5) + (10×2) + (0×100)). Note that path3 in P1 is not
used in this example because he did not change it in P2.
Figure 3 gives another example of EXP calculation. When
 changed the contents of files shown in Fig. 2,
his EXP in P3 is figured out as 777 (i.e. ((9+0)×3) +
((50+20)×5) + ((0+40)×10))).

There are two purposes to define EXP using Eq. (2).
First developers can be separated according to
development experience. Although many developers have
some experience, the amount likely varies by developer. If
they are treated equally, the evaluation of developers can
be mistaken. The other purpose is to consider developers
with some experience but not in the type of project. As a
result of taking these purposes into account, we adopted
the system that is weighted by . Scale
type of EXP is ratio scale; EXP takes value from 0
indicating that the corresponding developer has no
experience.

Date

x y z f1 f2 f3 f4

2015/1/10 ✓ ○ ○ ○

2015/1/11 ✓ ◎

2015/1/12 ✓ ◎

2015/1/15 ✓ ● ● ◉

2015/1/16 ✓ ◉

○: Changed file
◎: Changed file (defect occurred)
●: Defect-fixed file
◉: Defect-fixed file (defect removed)

Figure 1. Example ’s EXP calculation

Figure 2. Example ’s EXP calculation

V. EMPIRICAL EVALUATION

To evaluate the proposed method in this paper, we
analyzed hundreds of developers who were involved in
three different completed projects of embedded system
development in a real company. In these three projects,
developers released software that is enhanced seasonally.
Thus, it is reasonable that the order of time is about the
same for each project and it is unlikely that the projects
were carried out simultaneously. In the following, three
projects by this company are named project A, B, and C
in order of time. Incidentally, the scale of this company’s
project ranges from 200,000 LOC to 300,000 LOC per
project. There were hundreds or a few thousands of
defects and thousands of commits per project1.

A. Experiment

We obtained the logs of the version control system
(Perforce2) and the bug tracking system (Prismy3) used in
projects A，B, and C. Then, we gathered data for
developers in each project according to procedure
described in Section 3. Next, we set up evaluation
experiments to correspond to each research question
presented in Section 1. Finally, we divided the developers
into several groups (Fig. 3).

・ Evaluation experiment 1 corresponding to RQ1
divides the developers into three groups depending
on whether they are involved in project A, B, or C.

・ Evaluation experiment 2 corresponding to RQ2
divides the developers into two groups according to
whether they have experience in previous projects.

・ Evaluation experiment 3 corresponding to RQ3
divides developers into two groups with median of
EXP as a boundary on those who have experience in
projects B and C.

With respect to the results, we created boxplots and
graphs of the empirical cumulative distribution function,
that is to say ECDF, for DROR of a developer for each
evaluation experiment. Reading the vertical axis of an
ECDF graph when the horizontal axis is fixed allows the
proportion of developers who have DROR up to a value
that the horizontal axis indicates to be determined. On the
other hand, if the graph is read through the horizontal axis
with the vertical axis fixed, the maximum DROR can be
grasped in proportion of developers.

1 Due to a confidentiality agreement, we do not show precise numbers.
2 http://www.perforce.com
3 http://www.tjsys.co.jp/page.jsp?id=742

B. Results and discussion

RQ1: As an organization gains project experience,
does the DROR of developers tend to decrease?

Figure 4 shows a boxplot and an ECDF of DROR in
evaluation experiment 1. Many developers in project A
have a higher DROR than those in project B and C.
Considering this and the fact that projects B and C are
derived from project A, DROR seems to depend on
organization experience. However, comparing ECDF of
project B with that of project C shows that the proportion
of developer in project B with a 0.2 or less DRORs is
more than that in project C. Furthermore, comparing the
boxplot of project B and that of project C indicates that
the DROR of project C is more scattered than that of
project B, suggesting that the DROR of developers varies
with factors other than their development experience. It
might be because some of developers are already at their
peak and did not improve significantly.

These findings show that we cannot affirm that DROR
tends to decrease as an organization experiences
projects.

RQ2: Is there difference in DROR based on
development experience?

Figure 5 shows the boxplots of the DROR in
evaluation experiment 2. There is a gap in the DROR’s
for both project B and C according to developer
experience. In addition, the width of boxplots for DROR
of inexperienced developers in project B differs from that
in project C, but the width of the boxplots of experienced
developers in project B is in good agreement with that in
project C. These results suggest that experienced
developers are free not influenced by changes in the
development system or software design in between
projects B and C.

A B C

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

D
R

P
R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

DRPR

E
C

D
F

 o
f
D

R
P

R

A

B

C

D
R
O
R D
R
O
R

DROR

(a) Subject of evaluation experiment 1

Figure 4. Boxplot and graph of ECDF of DROR in experiment 1

(b) Subject of evaluation experiment 2 (c) Subject of evaluation experiment 3

Figure 3. Subject of each evaluation experiment

Figure 6 represents the ECDF graphs of DROR in
evaluation experiment 2. The proportion of developers
with experience and a DROR of 0.1 or less is higher than
that in project B. On the other hand, the relation is
opposite if the proportion is more than 0.1. In project C,
regardless of reading the vertical axis with any position of
a horizontal axis fixed, Fig. 6 indicates that DROR’s of
developers with experience is lower than those without
experience. Moreover, judging from ECDF of
inexperienced developers in both of project B and C, their
DROR differs by project.

The above results show that the DROR of experienced
developers is lower than that of inexperienced
developers. The difference between the groups depends
on the inexperienced developers and varies by project.

RQ3: Is there difference in DROR between developers
based on experience in a similar project?

Figure 7 shows a graph of ECDF of EXP in evaluation
experiment 3. EXP depends greatly on the number of
changing files in a project due to its definition. Thus,
ECDF of EXP differs by project, indicating that EXP
cannot be used to compare traversing projects of
developers.

Figure 8 shows the boxplots of the DROR in
evaluation experiment 3, while Fig. 9 graphs ECDF of the
DROR. With regard to project B, the width of the boxplot
of developers with a high EXP is wider than those with a
low EXP (Fig. 8). In addition, more than 60 percent of
developers with high EXP in project B have greater than 0
DRORs (Fig. 9). These results suggest that other factors,
which cannot be measured in terms of EXP, lead to
defects. On the other hand, there is a gap between
developers with high EXP and those with low EXP. This

result suggests that when a developer involved in one
project decides to engage in a similar one, his DROR
should be reduced.

It remains to be seen if there is the difference of
DROR’s between developers with different experience
levels. However, as the number of projects increases,
our analysis method and EXP should be a useful metric
to evaluate developers.

C. Threats to validity．

Internal validity:
This research focused on projects B and C, which

were derived from the development of project A. Except
for the notation variability of the absolute path among
projects, if the absolute paths of a file in current
development corresponded to that in past development,
they were regarded as the same development function.
Otherwise, they were viewed as quite different functions.
This is a threat to internal validity. In the future, the
influences of this assumption on this analysis method
must be confirmed by comparing the similarity between

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Project B

DRPR

E
C

D
F

 o
f
D

R
P

R

Low EXP

High EXP

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Project C

DRPR

E
C

D
F

 o
f
D

R
P

R

Low EXP

High EXP

D
R
O
R

D
R
O
R

DROR DROR

High EXP Low EXP

0
.0

0
0
.0

4
0
.0

8
0
.1

2

Project B

D
R

P
R

High EXP Low EXP

0
.0

0
0
.1

0
0

.2
0

0
.3

0

Project C

D
R

P
R

D
R
O
R

D
R
O
R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Project B

DRPR

E
C

D
F

 o
f
D

R
P

R

Inexperienced

With experience

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Project C

DRPR

E
C

D
F

 o
f
D

R
P

R

Inexperienced

With experience

D
R
O
R

D
R
O
R

DROR DROR

With experience Inexperienced

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0

.1
2

Project B

D
R

P
R

With experience Inexperienced
0
.0

0
0

.0
5

0
.1

0
0
.1

5
0

.2
0

Project C

D
R

P
R

D
R
O
R

D
R
O
R

Figure 5. Boxplots of DROR in experiment 2

Figure 8. Boxplots of DROR in experiment 3

Figure 7. Graph of ECDF of EXP in experiment 3

Figure 6. Graphs of ECDF of DROR in experiment 2

0 5000 10000 15000 20000 25000 30000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

EXP

E
C

D
F

 o
f

E
X

P

B

C

Figure 9. Graphs of ECDF of DROR in experiment 3

path names or function names inferred from path name,
not the coincidence between absolute paths.

In addition, we determined the DROR based on the
hypothesis that the developer who changed a file related
to defect also induced the defect. As a result, some
developers had a DROR of 1.0; in other words, some
developers always caused defects. Although they worked
as debuggers in actual development, this may affect the
experimental results. This is also a threat to internal
validity. In the future, who induced a defect must be more
accurately identified by applying the SZZ algorithm
proposed by J. Sliwerski et al. [12]. This algorithm infers
commits, which brought about defects from diff and
annotate commands of the version control system. By the
additional investigation, we will clarify the correctness
and limitation of the above-mentioned hypothesis in
detail.

External validity:

In this experiment, we used Perforce as the version
control system and Prismy as the bug tracking system.
This is a threat to external validity. However, the analysis
method of this paper is not designed for this experiment.
So it may be effective in the same way for the domain that
uses both a version control system and a bug tracking
system. In the future, the efficiency of other domains and
companies that handle version control systems and bug
tracking systems must be verified.

VI. SUMMARY OF FINDINGS AND USAGE

Summary of findings are: 1) DROR cannot be used to
compare different projects in the same organization. 2)
There is certainly a difference in DROR’s between
experienced and inexperienced developers. 3) EXP should
be a useful model to evaluate developers as the number of
projects increases.

If the next development project is similar to past
projects, our method provides useful information to
improve personnel assignments. It can arrange the system
so that experienced developers guide inexperience ones as
they work on development together. This should improve
the quality of the software developed in the next project.

VII. CONCLUSION AND FUTURE WORK

To examine the tendency of DROR of developers
based on development experience, we propose an analysis
method and two models, which evaluate developers
across multiple projects using their records in the same
organization. The research found that despite being the
same domain, comparing projects directly is not useful
and that DROR of the developers with experience is lower
than those without experience. Although it is unclear
where there is a difference in the defect flow rates
between developers with much and some experience, our
proposed analysis model, EXP, should help evaluate
developers for future projects.

As a future work, we will investigate files or absolute
paths changed by developers who had high DROR despite
having a lot of experience. If this is understood, it might
be possible to evaluate the difficulty of functions to be
developed, which may improve the precision of EXP.
Moreover, we would like to try to discuss relations among
defect removal overhead, defect inflow (how many

defects a developer introduced in files he changed) and
defect removal efficiency (how many fixes a developer
processed in all defects) to improve the precision when
evaluating developer.

ACKNOWLEDGMENT

Our thanks go to anonymous reviewers who gave us a
lot of valuable comments to improve this paper.

REFERENCES
[1] C. Bird, N. Nagappan, B. Murphy et al., “Don’t Touch My

Code!  Examining the Effects of Ownership on Software Quality,”

ESEC/FSE '11 Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software
engineering, pp.4-14, 2011.

[2] M. Conway, “How Do Committees Invent?”, Datamation, vol.14,
no.4, pp.28-31, 1968.

[3] P. Donzelli, R. “Handling the knowledge acquired during the
requirements engineering process - a case study -,” SEKE '02
Proceedings of the 14th international conference on Software
engineering and knowledge engineering, pp. 673-679, 2002.

[4] J. Eyolfson, L. Tan, P. Lam, “Do Time of Day and Developer
Experience Affect Commit Bugginess?”, MSR '11 Proceedings of
the 8th Working Conference on Mining Software Repositories, pp.
153-162, 2011.

[5] F. Fagerholm, M. Ikonen, P.Kettunenet al., “How do Software
Developers Experience Team Performance in Lean and Agile
Environments?”, EASE '14 Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering,
No.7, 2014.

[6] Y. Kamei, E. Shihab, B. Adams et al., “A Large-scale Empirical
Study of Just-in-Time Quality Assurance,” IEEE Transactions on
Software Engineering, vol.39, no.6, pp. 757-773, 2013.

[7] E. Kocaguneli, A. T. Misirli, B. Caglayan et al., “Experiences on

Developer Participation and Effort Estimation,” SEAA 2011 37th
EUROMICRO Conference on Software Engineering and Advanced
Applications, pp.419-422, 2011.

[8] R. Latorre, “Effects of Developer Experience on Learning and
Applying Unit Test-Driven Development,” IEEE Transactions on
Software Engineering, vol.40, No.4, pp. 381-195, 2014.

[9] S. Matsumoto, Y. Kamei, A. Monden et al., “An Analysis of
Developer Metrics for Fault Prediction,” PROMISE '10
Proceedings of the 6th International Conference on Predictive
Models in Software Engineering, No.18, 2010.

[10] A. Mockus, “Organizational Volatility and its Effects on Software
Defects,” FSE '10 Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering,
pp.117-126, 2010

[11] A. Mockus, D. M.weiss, “Predicting Risk of Software Changes,”
Bell Labs Technical Journal, Vol.5, No.2, pp.169-180, 2000.

[12] N. Nagappan, B. Murphy, and V. Basili, “The Influence of

Organizational Structure on Software Quality: An Empirical Case
Study,” ICSE ’08 Proceedings of the 30th international conference

on Software engineering, pp.521–530, 2008.
[13] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Programmer-based

Fault Prediction,” PROMISE '10 Proceedings of the 6th
International Conference on Predictive Models in Software
Engineering, No.19, 2010.

[14] S. Sato, H. Washizaki, Y. Fukazawa, S. Inoue, H. Ono, Y. Hanai
and M. Yamamoto, et al., “Effects of Organizational Changes on

Product Metrics and Defects,” APSEC 2013 20th Asia-Pacific
Software Engineering Conference, vol.1, pp.132-139, 2013.

[15] E. Shihab, A. E. Hassan, B. Adams et al., “An Industrial Study on
the Risk of Software Changes,” FSE '12 Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, No.62, 2012.

[16] J. Sliwerski, T. Zimmermann, and A. Zeller, “When Do Changes
Induce Fixes?” MSR '05 Proceedings of the 2005 international
workshop on Mining software repositories, pp.1-5, 2005.

[17] Y .Wu, Y. Yang, Y.Zhao et al., “The influence of developer quality
metrics for fault prediction,” SERE 2014 Eighth International
Conference on Software Security and Reliability, pp.11-19, 2014.

