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Abstract—Class temporal specification is a kind of important 

program specifications, which specifies that methods of a class 

should be called in a particular sequence. Dynamic specification 

mining is a promising approach to achieve this kind of 

specifications automatically. However, they always infer partial 

specifications, that is, the mined specifications are biased to input 

programs or program execution traces. In this paper, we propose 

to mine class temporal specifications based on a probabilistic 

model in an online mode. Since our method can evolve mined 

specifications persistently, universal specifications can be 

achieved. To investigate our technique’s feasibility and 

effectiveness, we implemented it in a prototype tool ISpecMiner 

and used the tool to perform experiments. Experimental results 

show that our method is promising to infer universal 

specifications if sufficient traces are provided for mining.  

Keywords- program specification mining; Markov model; class 

temporal specification; dynamic analysis; program execution trace 

I.  INTRODUCTION 

Class temporal specification (which is also referred to as 
component interface [1], object behavior model [2], object 
usage model [3], [4], etc.) is an important kind of program 
specifications, which imposes temporal constraints regarding 
the order of calls of class public methods (a public method of 
class c is a method that can be accessed outside c). For example, 

calling peek() on java.util.Stack without a preceding 

push() gives an EmptyStackException, and calling 

next() on java.util.Iterator without checking 

whether there is a next element with hasNext() can result in 

a NoSuchElementException. Client programs that 
violate such specifications do not obtain the desired behavior 
and may even crash the program [5]. However, class temporal 
specification is always implicit in programs and undocumented. 
Even when available, there is no guarantee of their consistence, 
completeness, and correctness. Dynamic specification mining 
is a promising approach to resolve the problem.  

Dynamic specification mining techniques [6]-[8] run 

applications with test cases generated automatically or 
manually, and extract specifications from program execution 
traces. Since dynamic specification mining techniques do not 
require program source code as input, compared with static 
specification mining [9]-[11], they can be used extensively, 
especially when source code is unavailable. However, existing 

dynamic specification miners (such as ADABU [2]) always 
achieve partial specifications. In order to mine specifications, 
these miners first run an application program and collect 
program execution traces into a traces file leveraging 
instrumentation techniques. Then, they take the trace file as 
input and synthesize specifications based on various kinds of 
sequential data mining approaches. Each run of an application 
will generate a trace file and corresponding specifications. The 
problem with this approach is that mined specifications may be 
biased to the application program and input traces. 

In this paper, we propose to mine class temporal 
specifications in an online mode. Different from existing work, 
our approach does not save program execution traces in any file. 
It takes each method call from an execution trace sequentially 
and evolves existing specifications or creates a new one. The 
online approach does not require loading all traces into 
memory at once. Thus, it has minimum space overhead. 
Additionally, since execution traces extracted from different 
application programs can be used to refine existing 
specifications persistently, universal specifications may be 
achieved. Another characteristic of our technique is that, we 
describe class temporal specification using a probabilistic 
model extended from Markov chain. Compared with 
commonly used Finite State Automaton (FSA), probabilistic 
model has an inherent ability to tolerate noise. Above all, it can 
facilitate our online mining strategy. 

To investigate the effect of our approach, we implemented 
our technique in a prototype tool ISpecMiner and used it to 
conduct experiments. Experimental results show that, our 
approach is promising to achieve universal specifications, if 
enough application programs are provided for learning. 

The contributions of this paper are as follows: 
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 An online approach is used to mine class temporal 
specifications. 

 A probabilistic model extended from Markov chain is 
used to describe class temporal specifications. 

 A prototype tool ISpecMiner that implements our 
technique is presented. 

 Experiments are performed to investigate the effect of 
our method. 

The rest of this paper is organized as follows: Section II 
discusses related work. Section III introduces our technique. 
Section IV presents our experimental results. Section V gives 
our conclusions. 

II. RELATED WORK 

Generally, program specification mining techniques can be 
categorized into static analysis approaches and dynamic 
analysis approaches. These two kinds of approaches collect 
method call sequences (or program execution traces) in 
different manners. Static analysis approaches do not require 
running application programs. They extract method call 
sequences from program source code, bytecode or other 
artifacts based on program static analysis techniques [12]. 
Dynamic analysis approaches do not take program source code 
as input. They collect program execution traces by running 
instrumented application programs. After that, temporal 
specifications can be synthesized from method call sequences 
(or program execution traces) based on sequential data mining 
techniques. 

Currently, a commonly used mining approach is based on 

FSA. For instance, Wasylkowski et al. [1] proposed to mine 
object usage models (which are finite state automata) from Java 

bytecode and a tool JADET was developed. Lorenzoli et al. 
[13] modeled class temporal specification using EFSM which 

extends from FSM. Alur et al. [14] synthesized FSA model of 
class temporal specification using L* learning algorithms 
combined with model checking and abstract interpretation 
techniques. These approaches work in a similar manner. First, 
they split program execution traces into a set of object usage 
scenarios (an object usage scenario is a method call sequence, 
all method calls of which have the same receiver object). Then, 
they reduce the problem of inferring temporal specifications 
from a set of method call sequences (or traces) to the well 
known grammar inference problem [15] by regarding method 
call sequences and specifications as sentences and languages 
respectively. As a result, a specification is described using one 
or multiple finite state automata, where states represent states 
of involved objects and transitions represent method calls. 
Method calls in each path from an initial state to a final state 

constitute a valid execution trace. Figure 2 shows an example 

of specification for class java.io.FileOutputStream. 
The specification illustrates that, to use class 

FileOutputStream, we should first initiate it through 
calling its constructor method. Next, we can call method 

write(byte[],int,int) multiple times to write data 

into the stream. Finally, method close() should be called to 
close the stream. 

FSA is a kind of deterministic model with inability to 

tolerate noise. Ammons et al. [16] proposed to mine temporal 
specifications among application programming interfaces (API) 
or abstract data types (ADT) based on probabilistic finite state 
automaton (PFSA). A PFSA is a nondeterministic finite 
automaton (NFA), in which each edge is labeled by an abstract 
interaction and weighted by how often the edge is traversed 
while generating or accepting scenario strings. To mine 
temporal specifications, first an off-the-shelf PFSA learner was 
used to analyze scenario strings and generated a PFSA. Next, 
another component corer was employed to transform PFSA to 
NFA by discarding rarely-used edges and weights. The NFA 
obtained was used for program verification and manual 
inspection. 

However, existing tools (such as Daikon [17] and 

ADABU [2]) always work in a two-step mode. In the first step, 
they collect execution traces from application programs using a 
tracer and then store the traces in a trace file. In the next step, 
they take the trace file as input and synthesize specifications. 
Each run of an application will generate a trace file and 
corresponding specifications. The problem with this approach 
is that results of multiple runs cannot be merged. Thus, the 
mined specifications are biased to the input trace file. In this 
work, we mine class temporal specifications based on an online 
approach. In addition, a probabilistic model extended from 
Markov chain is employed to describe specifications. 

III. OUR TECHNIQUE 

In this section, we present our online specification mining 
technique. We first provide an intuitive description of our 
technique and then discuss its main characteristics in detail. 

A. General Approach 

The working principle of our approach is illustrated in 

Figure 2. The tracer is responsible for collecting program 
execution traces from application programs via instrumentation 
technique. Different from existing approaches, our method 

does not save execution traces into any file. The tracer 

passes each method call of a trace sequentially to the online 

specification miner. The online 

specification miner learns class temporal 
specifications based on a probabilistic model. For each class, it 
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Figure 1. Temporal specification of class FileOutputStream described 

using FSA.  
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Figure 2. Working principle of our online specification mining technique. 



first creates an empty specification described using the 
probabilistic model. Then, it evolves the probabilistic models 

persistently in terms of method calls passed by the tracer. 

As we can see, our approach does not require loading all 
traces into memory. It refines existing probabilistic models 
based on a method call continuously. Therefore, compared with 
existing approaches, our method has lower space overhead. 
Furthermore, since method calls of any traces or application 
programs can be used to learn specifications, universal 
specifications may be achieved. 

B. Collecting Program Execution Traces 

To collect program execution traces, we should instrument 
application programs. Many approaches and frameworks exist 
to instrument Java applications statically or dynamically. We 
adopt Java agent technique, which is a service provided by Java 
since 1.5 [18]. Java agents can instrument classes at bytecode 
level. When a class is loaded, a Java agent catches the bytecode 
of this class on the fly. Then, it parses the class, injects new 
bytecodes. Finally, the instrumented class is returned back to 
the JVM. 

To manipulate class bytecodes, we utilize a library 

Javassist [19], [20]. Compared with similar tools [21], [22], 

Javassist can provide the source level API, which enables 
programmers to edit a class file without knowledge of Java 
bytecodes. Furthermore, code can be inserted into class files in 

the form of Java source text and Javassist will compile it 
on the fly. 

In order to collect program execution traces from an 

application program, we load a Java agent at startup using the -

javaagent command-line switch. The agent will insert an 

event writer into the body of interested methods. Once 

the methods are called, the embedded event writer passes 
all necessary information regarding the method call to the 
specification miner for learning. 

C. Mining Specification 

1) Markov Chain with Final Probability 
We mine class temporal specifications based on an 

extended Markov chain with final probability (MCF) [23]. 
MCF extends Markov chain by introducing a probability 
distribution over final states (final probability). The final 
probability is similar to initial probability. The difference is 
that final probability indicates which states a chance process 
should end with (rather than start from). The formal definition 
of MCF is given below. 

DEFINITION 1 (Markov chain with final probability). A Markov 

Chain with Final Probability (MCF) M is a 4-tuple ( , , , )Q    , 

where Q is a set of states,  : [0,1]Q Q   is the transition 

probability function, which is always described using a 
transition matrix P,  : [0,1]Q   is the probability 

distribution over initial states.  : [0,1]Q   is the probability 

distribution over final states. The functions   and   must 

satisfy the requirements: q Q  , ( ) 1q Q q   and 

( ) 1q Q q  . 

As shown in the definition, MCF preserves most of 
characteristics of Markov chain, except violation of the 

requirement: q Q  , ' ( , ') 1q Q q q  , because of 

introduction of final states. 

Relying on MCF, we can model class temporal 
specification by regarding states as methods and transitions as 
temporal relationships among methods. Consider the class 
temporal specification described using FSA illustrated in 
Figure 1, it can be described using a MCF as shown in Figure 3. 
The rounded rectangles are states labeled with method 
signatures above the line. Arrows denote transitions with 

transition probability labeled beside them. InitPro is the 

probability of a state to be initial state. FinalPro is the 
probability of a state to be final state. Actually, all the states 

have properties InitPro and FinalPro. We omit the ones 
whose value is zero. From the MCF, we can see that the usage 

of class FileOutputStream should start with a method call 

FileOutputStream(String). At the end, methods 

close(), FileOutputStream(String) and 

write(byte[],int,int) may be called with a 
probability of 0.9, 0.05 and 0.05 respectively. 

2) Online Specification Learning 
Our approach learns class temporal specifications described 

using MCF in an online mode. It accepts a method call of an 
OUS as input and evolves existing specifications or creates a 
new one. 

Let R be a repository of OUSs for learning, M be the MCF 
specification synthesized from R, q be a state of M, tij be a 
transition from state i to j. Our learning strategy represents M 
using a weighted directed graph GM, where nodes and edges 
denote states and transitions respectively. In addition, the 
following properties are attached to GM. 

 ouscount(M) denotes the number of OUSs, which have 
been used to learn M. 

 emgcount(q) denotes the total occurrence number of 
state (or method) q in R. 

 initcount(q) denotes the count of q to be beginning 
method in all the OUSs of R. 

 finalcount(q) denotes the count of q to be end method 
in all the OUSs of R. 

 emgcount(tij) denotes the total occurrence number of 
method pair (i, j) in all the OUSs of R. 

At the beginning, we initialize GM to be an empty graph. 
Then, we pick up a method call from an OUS in R sequentially 
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0.9
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Figure 3. Class temporal specification of FileOutputStream described 

using MCF 



and update GM continuously until all OUSs have been 
processed. For each pair of method calls q and p received 
currently and previously, we update GM based on the following 
strategy. 

 if node q does not exist in GM, add q to GM or else 
update properties associates with q. 

 if edge (p, q) does not exist in GM, add (p, q) to GM or 
else update properties associated with (p, q). 

 if q is the end method of an OUS, update ouscount(M). 

After that, we recompute probabilities  ,   and   

according to the following equations. 

( , ) ( ) / ( )
ij

i j emgcount t emgcount i   (1) 

( ) ( ) / ( )q initcount q ouscount M   (2) 

( ) ( ) / ( )q finalcount q ouscount M   (3) 

In words, ( , )i j  is the ratio between count of transition (i, j) 

and that of state i in all the OUSs used for learning. ( )q  is the 

ratio between number of OUSs beginning with state q and the 

total number of OUSs. ( )q  is the ratio between number of 

OUSs ending with state q and the total number of OUSs. 

3) Transformation from Probabilistic Model to 

Deterministic Model 
MCF is a kind of probabilistic model, including frequent 

behaviors and infrequent behaviors. In order to use the mined 
specifications for program verification, we should prune away 
infrequent behaviors (noise) in the model and obtain a 
deterministic model. Chen et al. [23] proposed a deterministic 
model Class Interface Model (CIM) and showed that it is 
straightforward to transform MCF to CIM. 

DEFINITION 2 (Class interface model). A Class Interface Model 

(CIM) M of class c is a 4-tuple ( , , , )M S F , where M is the 

set of public methods of c, M M    is a binary relation on 

M, S M  is the set of beginning methods, F M  is the set 

of end methods. Let ,p q M  be two methods, if they have 

the relation   (denoted by ( , )p q  ), it means that method p 

should be called preceding q. 

A CIM of class c specifies that the usage of c should start 
from a method in S and then moves successively from a 

method mi to mj, where ( , )i jm m , finally ends in a method of 

F. Any violations of the above rules are taken as errors. 

In order to transform MCF to CIM, we first prune away 
infrequent behaviors according to initial threshold (Ti), final 
threshold (Tf) and transition threshold (Tt), which are used to 
filter initial states, final states and transitions respectively. 
After that, we discard all the probabilities attached with states 

and transitions. In detail, given a MCF : ( , , , )Q    , we 

transform   to CIM : ( , , , )M S F  in terms of the 

following rules: 

 q Q  , add ( )q  to M, where :Q M   is a 

function which maps a state in MCF to a method in 
CIM with method names the same as state labels. 

 q Q  , if ( )
i

q T  , add ( )q  to S. 

 q Q  , if ( )
f

q T  , add ( )q  to F. 

 ,i Q j Q   , if ( , )
t

i j T  , we have ( )i j  . 

Figure 4 presents the CIM of class FileOutputStream, 
which is transformed from the MCF illustrated in Figure 3 
based on threshold values Ti = 0.2, Tf  = 0.2, Tt = 0.2. In the 
CIM, each ellipse represents a public method of the class. 
Arrows denote temporal relationships between pairs of 
methods. The methods with an arrow coming in from nowhere 
are beginning methods and those denoted graphically by a 
double ellipse are end methods. The dashed-line arrows 
represent the discarded transitions of MCF. As we can see, the 
previous MCF before transformation has three possible final 

states FileOutputStream(String), close() and 

write(byte[],int,int) with a probability of 0.9, 0.05 
and 0.05 respectively. The CIM discards the first and last final 
states because they are infrequent. In addition, the transition 

from state FileOutputStream(String) to close() is 
also pruned away due to a lower probability than Tt. 

What should be noted is that results of transforming MCFs 
to CIMs largely depend upon values of thresholds. If thresholds 
are set too high, useful information will be discarded 
mistakenly. If thresholds are set too low, noise will remain. 
Even worse for our work, improper thresholds will cause 
unconnected CIMs. We employ the method proposed by Chen 
et al. [23] to compute threshold values, which can eliminate 
noise utmostly and obtain connected CIMs. 

IV. EXPERIMENTS 

In order to investigate the effectiveness of our technique, 

we implemented it in a prototype tool ISpecMiner and used 
the tool to mine specifications from several real-world 
applications. In this section, we first introduce subjects used in 
our experiments. Then, we present specifications mined by 

ISpecMiner. 

A. Subjects 

The subjects used in our experiment are listed in Table I, 
which consists of four real-world Java applications. We 
selected them based on the following criteria: 

FileOutputStream(String) write(byte[], int, int) close()

 

Figure 4. Class temporal specification of FileOutputStream described 

using CIM.  



 Open source software. Though ISpecMiner is a 
dynamic specification miner and source code is not 
necessary, it is helpful for us to figure out problems 
encountered in the mining process and validate results. 

 Mature software. Mature software contains fewer bugs 
than the unstable one. Thus, program execution traces 
with less noise can be collected, which is essential for 
dynamic mining tools to learn precise specifications. 
There exist many methods to measure the maturity of 
software. We perform the task based on a heuristic: if 
an application has been maintained for a long time and 
undergone a large number of revisions, we believe it is 
mature. 

 Large-scaled software. Large-scaled software can 
provide abundant program execution traces for 
learning, which is the basis of mining useful program 
specifications. 

 Applications coming from various domains. 
Applications from various areas can provide diverse 
program execution traces, which is a strong assurance 
for mined specifications to be complete. 

B. Mining Specifications 

In this experiment, we used ISpecMiner to mine 
specifications from the subject programs presented in Table I. 
We ran each application once with manual input data 

sequentially in the order of FreeMind, RapidMiner, 

SQuirreL SQL Client and OpenProj. After that, we 
examined the university of mined specifications achieved at the 
end of each run. The classes that we investigated are illustrated 
in Table 2. We selected these classes based on the following 
considerations: (1) they are widely used in various Java 
applications and well documented; (2) they are familiar to us; 
and (3) since their class temporal specifications have some 
distinguishing characteristics (such as the usage of a class 

should end with a method call close() ), we can check their 
validity conveniently. 

Figure 5 shows an example of mined specification for class 

java.io.FileInputStream, where (a), (b), (c) and (d) 
were achieved when we finished the run of subject programs 

FreeMind, RapidMiner, SQuirreL SQL Client and 

OpenProj respectively. As we can see, along with more 
applications used for mining, the specification grew universal, 
that is, more states and transitions were added to the 
specifications. For example, after the run of application 

TABLE I. THE SET OF SUBJECTS 

Subject Version Description KLoCa # Revisions Create Date Last Update Date 

FreeMind 0.9 Mind-mapping software 22 6469 March, 2001 April, 2013 

RapidMiner 5.3 
Environment for machine learning and data 

mining 
513 867 August, 2004 April, 2013 

SQuirreL SQL Client 3.4 Java SQL client 253 3272 June, 2004 May, 2013 

OpenProj 1.4 Project management software 120 1498 January, 2008 October, 2012 

a. Kilo lines of code. 

TABLE 2 INVESTIGATED CLASSES 

 Class  Class 

1 java.io.FileInputStream 6 java.io.InputStreamReader 

2 java.io.BufferedReader 7 java.io.PushbackInputStream 

3 java.io.FileOutputStream 8 java.io.FileReader 

4 java.io.ByteArrayOutputStream 9 java.io.PrintWriter 

5 java.io.BufferedWriter 10 java.util.Stack 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Example of mined probabilistic specification 



RapidMiner, a new state 

FileInputStream(FileDescriptor) and transition 

<FileInputStream(File), close()> shown in Figure 
5 (b) were added to the previous specification illustrated in 
Figure 5 (a). Furthermore, since more applications were used to 
evolve the specification, probabilities of normal and abnormal 

behaviors (such as the FinalPro of state close() and that 

of state FileInputStream(File)) in the specification 
were increased and decreased respectively. Finally, the gap 
between probabilities of useful information and noise will 
become large, and then correct deterministic specifications can 
be achieved by transforming the final MCF to CIM. The 

specification of class FileInputStream described using 
CIM is illustrated in Figure 6, which is transformed from the 
final MCF under threshold values computed according to the 
method by [23]. After a close investigation, the CIM is correct 
and consistent with JDK documentations. 

In conclusion, we used ISpecMiner to mine class 
temporal specifications from four real-world Java applications 
and examined specifications of 10 JDK classes. We found that 
our technique can refine mined specifications persistently. In 
addition, the probabilities of useful information will be 
enhanced, which is beneficial for transforming probabilistic 

models to correct deterministic models. ISpecMiner and 
other specifications mined in our experiment can be obtained at 
the URL http://ispecminer.com. 

V. CONCLUSIONS 

In this paper, we proposed an online program specification 
mining approach based on an extended Markov model. 
Different from existing approaches which work in a two-step 
mode, our method does not require saving collected program 
execution traces into a trace file. It first creates an empty 
probabilistic model for each class, and then evolves the 
probabilistic model persistently based on method calls in input 
traces. Since our approach does not require loading traces into 
memory at once, it has low space overhead. Additionally, if 
enough applications are provided for mining, universal 
specifications may be achieved. 
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