
An Evaluation Study of Architectural Design Decision Paradigms
in Global Software Development

Meiru Che, Dewayne E. Perry
Department of Electrical & Computer Engineering

The University of Texas at Austin, Austin, Texas, USA
meiruche@utexas.edu, perry@mail.utexas.edu

Abstract—Global software development (GSD) is considered
as the coordinated activities of software development that are
geographically and temporally distributed. The management
of architectural knowledge, specifically, architectural design
decisions (ADDs), becomes important in GSD due to the
geographical, temporal, and cultural challenges in global envi-
ronments. Based on our previous work on ADD management
in localized software development (LSD), we present five ADD
paradigms used for GSD projects with different organizational
structures. We also investigate the benefits and the challenges
of the ADD paradigms by conducting an evaluation of the
paradigms using extensive archived semi-structured interview
data from industrial GSD projects. We aim to provide a
fundamental framework for managing ADD documentation
and evolution in GSD, as well as offer useful insights into
managing architectural knowledge in a global setting.

Keywords-architectural design decisions; global software de-
velopment; documentation; evolution

I. INTRODUCTION

Global software development (GSD) is an increasing fo-
cus in the field of software engineering. It can be considered
as the coordinated activities of software development that
are not localized and centralized but geographically and
temporally distributed [12]. Little attention has been paid
to software architecting processes and software architectural
knowledge management in the context of GSD. Similar
to localized software projects, software architecting and
architectural knowledge are important to support design-
ing, developing, testing, and evolving software. We note,
however, that in the global development of large complex
systems, architecture plays an even more critical role in
the structure of the project [11]. Therefore, managing and
coordinating architectural knowledge such as architectural
design decisions (ADDs) is a significant and also relatively
new research problem in the context of GSD.

In our previous work on ADD management, we had
an overall goal of providing a systematic approach that
supports ADD documentation and evolution in a localized
software development (LSD) context. Based on this, in this
paper, we present and discuss five typical ADD management
paradigms for global software projects, and we also conduct
an evaluation on these paradigms using archived semi-
structured interview data from industrial GSD projects to

investigate the benefits and the challenges of each paradigm
in the GSD contexts. Since little work has been done on
ADD documentation and evolution in GSD research and
practice, we aim to provide a fundamental framework for
managing ADD documentation and evolution in a global
setting, and also provide better insights into architectural
knowledge management for researchers and practitioners in
GSD contexts in the field of software architecture.

To the best of our knowledge, our study is the first to
provide ADD management paradigms in GSD projects and
to support architectural knowledge management in global
settings. Our study provides evidence that managing ADDs
in the GSD contexts reduces the complexity of coordination
and integration among multiple distributed sites, decreases
misunderstanding among different people, and also offers
useful documentation for project planning and other man-
agement policies. Our evaluation is also the first industrial
investigation into the benefits and the challenges of global
ADD management in practice.

II. BACKGROUND: ADD MANAGEMENT IN LSD

In order to capture the ADD set, we proposed the Triple
View Model (TVM) to clarify the notion of ADDs and to
cover key features in an architecting process [3]. The TVM
is defined by three views: the element view, the constraint
view, and the intent view. This is analogous to Perry/Wolf
model’s elements, form, and rationale but with expanded
content and specific representations [18]. Each view in the
TVM is a subset of ADDs, and the three views together
constitute an entire ADD set.

Based on the TVM, we proposed the scenario-based ADD
documentation and evolution method (SceMethod) [3], and
we specified the element view, constraint view, and intent
view through end-user scenarios, which are represented by
message sequence charts (MSCs) [19]. By documenting
all the possible ADDs and evolving these decisions with
changing requirements, the SceMethod effectively helps us
to make architectural knowledge explicit and to reduce
architectural knowledge evaporation. Basically, we have four
steps in the SceMethod to derive ADDs in a software project.
For the sake of brevity, we will not discuss the detailed
process of each step. We have the full illustration in [4].

(DOI reference number: 10.18293/SEKE2015-215)



Figure 1. Product-based Paradigm in GSD (for network product)

Figure 2. Product-based Paradigm in GSD (for single product)

III. ADD MANAGEMENT PARADIGMS IN GSD
In order to support ADD management in GSD projects,

we proposed three strategies for managing ADDs in a
distributed context, and discussed how distributed sites co-
ordinate with each other to share and maintain consistent
architectural knowledge. The three strategies for multi-site
ADD management are federated strategy, client-server strat-
egy, and incremental strategy respectively [5].

Given the foregoing discussion, we develop and discuss
the following five paradigms for global software projects.
Each paradigm adopts one strategy and is applied to one of
the different organizational structures.

1) Product-based Paradigm (Product-based Structure /
Federated Strategy): We consider two cases for product-
base paradigm, which are shown in Fig. 1 and Fig. 2.

In Fig. 1, the global organization works on a network
product (such as the case in our evaluation in the next
section), and each individual site is responsible for one indi-
vidual/dependent product. In Fig. 2, the global organization
works on a single product, then the product is decomposed
into components and the different components are allocated
to distributed sites.

We adopt the federated strategy to manage ADDs in the
GSD projects with product-based structures. As shown in
Fig. 1 and Fig. 2, each site manages ADD documentation
and ADD evolution locally according to the TVM and the
SceMethod. In addition, one of the global sites is selected
as the headquarters and is to set up a central repository for
recording and storing architectural decisions, which enables
all the geographically distributed sites to share ADDs in
the global context. These multiple sites have the access to
the central repository, so that they can check in their local
ADDs to the repository, read ADDs come from other sites,
and even reuse ADDs from other sites when necessary.

Figure 3. Process-based Paradigm in GSD

The headquarters with the central repository coordinates
architectural knowledge in the repository and keep them
consistent without conflicts. During the evolutionary process,
the evolved ADDs from each site are also transferred to the
central repository.

2) Process-based Paradigm (Process-based Structure /
Client-Server Strategy): For the process-based structures
in GSD, the architecting process mainly occurs in the
architecture phase, and all the other subsequent development
phases are considered as the clients who access the ADDs
derived in the architecture phase. Therefore, the client-server
strategy provides us with suitable support for GSD projects
with process-based structures.

In Fig. 3, we note that the architecting process is con-
ducted in the site with architecture phase, relying on our
TVM and SceMethod to derive the typical ADD set. More-
over, a repository is set up in the same site to manage
architectural knowledge documentation and evolution. This
repository is also regarded as a central repository among
the global sites, and all the other sites have access to the
repository for sharing and reusing ADDs in their specific
development phases. In some cases, the subsequent devel-
opment phases, such as design phase, may also come up
with new architectural decisions as the process proceeds.
However, we do not deal with this kind of exceptions
for now, but only explore the general paradigms that are
normally used in GSD.

3) Release-based Paradigm (Release-based Structure /
Incremental Strategy): The last two paradigms are both for
GSD projects with release-based structures. We also discuss
two formats in the release-based structures. One is for core-
customized releases (which is the case in our evaluation in
the next section), and the other is for incremental releases.
Since different product releases are allocated to different
sites, it is obvious that in the release-based paradigm each
site derives its ADD set locally, and maintains ADD docu-
mentation and evolution in its local repository.

Figure 4 and Figure 5 show the ADD paradigms for
the global projects with release-based structures. In Fig.
4, we can see that the ADDs from the core site are
transferred to the customized sites. Besides combining the
ADDs from the core site, each customized site has its local
ADD management. Similarly, as illustrated in Fig. 5, each
repository plays an important role in establishing a bridge
to transfer architectural knowledge, which complies with



Figure 4. Release-based Paradigm in GSD (for core-customized releases)

Figure 5. Release-based Paradigm in GSD (for incremental releases)

the mechanism in the incremental strategy. In the release-
based structure, the core-customized releases or the multiple
releases contain similar or even the same functionalities and
product features, which implies that the ADDs derived from
these different releases may have similarities as well. By
adopting the incremental strategy in these two paradigms,
each repository can serve as a reused ADD pool, and it is
easy to combine, reuse, and modify ADDs.

IV. EVALUATION

In order to compare the ADD paradigms and evaluate
whether they will bring benefits or introduce more chal-
lenges into global software projects, we investigate the
aforementioned paradigms using extensive archived semi-
structured interview data from Lucent Technologies [11], a
telecommunications systems company with a number of ge-
ographically separated software projects. In our evaluation,
we discuss the global projects in the following three aspects:
degree of autonomy, resource requirement, and coordination
complexity, which are the three factors largely influenced by
the global settings.

A. Research Questions

We investigate the ADD paradigms by considering the
following research questions:
RQ1: What are the benefits of each ADD paradigm regard-
ing the aspects of degree of autonomy, resource requirement,

and coordination complexity in different GSD organizational
structures?
RQ2: What are the challenges of each ADD paradigm
regarding the aspects of degree of autonomy, resource re-
quirement, and coordination complexity in different GSD
organizational structures?
RQ3: How do the intent-related decisions and the evolu-
tionary history of ADDs improve architectural knowledge
management and project management in GSD projects?

B. Overview of the GSD projects
Twenty-seven interviews were conducted in six different

organizations throughout Lucent Technologies. The inter-
views provided us with information about the project man-
agement and project evolution, as well as the distribution of
work, and organizational and development situations.

We plan to look into the interview data from four orga-
nizations among the total ones. They respectively have dif-
ferent organizational structures. Each organization is briefly
described here [11]:
Org A produces a series of smaller products that are mar-
keted together. Each product is developed by a single site,
and all the different sites jointly provide a network product,
including a manager component that ensures that all the
others work together.
Org B and Org C build a very large telecommunications
product together. They broke up their work into several
process steps, and these steps are then used as handoffs
among various locations.
Org D has numerous sites. They produce software that is
used for monitoring and managing networks. The basic prod-
uct is built in USA, and the additional work for deliveries
to particular customers is performed in Europe.

C. Analysis
To examine whether the ADD paradigms for GSD projects

have visible benefits, or even bring in new challenges,
we analyze the interview data from the four organizations
above. We identify the characteristics of degree of autonomy,
resource requirement, and coordination complexity for each
organization, in order to obtain deep insights on the influence
of ADD paradigms. We present our analysis in Table I.

As shown in Table I, we can see that in each organization,
the interviews are conducted with several different roles
in the software projects in order to provide GSD projects
information from various points of view. Based on the
organizational structures, we respectively adopt different
ADD paradigms in each organization. Basically, Table I
summarizes the organizations that we investigated from three
aspects, which helps us understand how each ADD paradigm
works in the corresponding organization.

Org A has a high degree of autonomy, since each
site works on an independent products/components. There
are well defined interfaces and component functionalities



Table I
THE ANALYSIS AND COMPARISON OF THE GSD PROJECTS

Org A Org B, Org C Org D

Role of Participants

Project Manager;
Department Head;
Software Developer;
Tester;
Software Architect

In Org B:
Senior Software Developer;
Technical Manager; Quality Manager;
Director
In Org C:
Assistant Manager; Development Head;
Software Developer

Technical Manager;
Developer;
Assistant Architect

Organizational Structure Product-based Structure Process-based Structure Release-based Structure

Paradigm Product-based Paradigm
(for network product) Process-based Paradigm Release-based Paradigm (for incremental releases)

Strategy Federated Strategy Client-Server Strategy Incremental Strategy

Degree of Autonomy

Needs network level testing;
Has a coordinator for each release;
Each site has a very close relation
with the element manager;
Needs lots of integration testing

The work in one site depends on that in
another site;
Needs to know the status of each site;
Reports issues to other sites;
Keeps consistent with requirements;
A very clear agreement on handoff policy

A hybrid composition of component separation
and process step;
Core codes should be done before the customization;
Needs to contact with customers;
Needs to gather requirement for customization

Resource Requirement

Integration phase needs a
lot of people;
Every site needs experts;
A defined process;
Training & Tools

A well-defined software process;
Defines the interface between sites;
A documentation platform;
Product architecture;
Experts on each site;
A stable plan on handoff policy and
development process

Training;
Documentation system;
Expertise at custom site;
Agreed plan for handoff

Coordination Complexity

Coordinates the combination;
Defines interface across sites;
Shares documents among sites;
Phones & Emails & Meetings;
Travelling

Phones & Emails & Meetings;
Travelling;
Different languages and time zones;
Web is heavily used

Coordination with customers;
Negotiations between customization people and
core code people;
Different languages, cultures, and time zones;
Phones & Emails;
Continuous Communication among different sites

Summary
High degree of autonomy;
Normal resource requirement;
High coordination complexity

Low degree of autonomy;
High resource requirement;
Normal coordination complexity

Normal degree of autonomy;
Normal resource requirement;
High coordination complexity

that contribute to the high autonomy. However, they do
need to coordinate features across all the individual prod-
ucts/components and this need of being consistent on fea-
tures does introduce a high degree of coordination com-
plexity, for they need to coordinate when integrating the
products/components to make sure everything works con-
sistently. The following quotes show a few examples of the
high autonomy and coordination in Org A.
“We are doing the testing of the element manager in combination
with all the different network elements.”
“Make sure the network management can manage the network
elements and they also interwork.”
“What we will do is try to combine all those products together in
a single network.”

As for Org B and Org C, they have multiple sites with
different development phases of the project, and the work
in one site depends on that in another site. Thus the main
challenges for these two organizations are the high depen-
dency between sites and the agreed handoff plan describing
the points on what is to be handed off, and how and when to
do so. In our investigation, we found that Org B and Org C
have low degree of autonomy due to the dependency, as well
as high resource requirement especially for a well-defined
software process, the interfaces between sites, and a clear
handoff plan. The following quotes describe the responses
from different interviewees about their work.
“One feature was developed here in X and the other one in Y and
I could say that we could not test our feature if we didn’t have
their feature.”

“Well what we needed to know was if the planning that they had
in X was just a little bit in front of our planning since that we
didn’t have to lose time because we just had to wait for them to
finish.”
“Here I have sort of a pretty well-defined software process.”

Org D has the release-based structure, and it contains one
site responsible for the core code, as well as all the other
sites for the custom codes. Basically, the customization site
obtains the core code from the core site, and customizes the
code according to the requirements from local customers.
From our investigation on the interview results, Org D
normally requires high coordination, since there are much
negotiation between the customization site and core site, as
well as coordinations with various customers. We can see
more examples from the interview.
“once the allocation has been made of where different processes
are going to be developed, there is a need for continuous commu-
nication coordination.”
“there is much negotiation between customization people and the
core code people, but what most of the time happens then is that
an expert from our site takes a look at it.”

D. Results
In this section, we look into what kinds of benefits and

challenges will be brought in when adopting the ADD
paradigms in these organizations with different structures,
and answer the research questions.
RQ1: What are the benefits of each ADD paradigm regarding
the aspects of degree of autonomy, resource requirement,



and coordination complexity in different GSD organizational
structures?

We adopt the product-based paradigm in Org A. In this
paradigm, each site manages its ADDs locally, and the
multiple sites share their ADDs in a central repository.
This enables us to keep architectural knowledge consistent
among different sites, and decreases the resources which
are used for product training and documentation. Most
importantly, the explicit architectural knowledge provides
us with more detailed and clearer architecture issues and
specifications, which reduces the complexity of coordination
and integration among different sites.

The main benefit provided by the process-based paradigm
for Org B and Org C is that it is easier to establish a well-
defined architecture and software process for the organi-
zation with process-based structure. Moreover, the ADDs
capture key constraint decisions, which leads to a clear
and consistent agreement on the handoff specifications. The
recording and sharing of ADDs largely decreases the cost
of resource requirement in the global organizations, as well
as the issues in the dependency among sites.

Similarly, Org D with release-based paradigm for the
ADD management has high coordination complexity. How-
ever, the ADDs can be kept up-to-date and consistent
with changing requirements from customers by using our
TVM and SceMethod, which provides the core site and the
customization sites with consistent project information, and
decreases the negotiation between them. Moreover, ADDs
offer a agreed plan for handoff policy used between the core
site and the customization sites.

Overall, we find that ADD paradigms make ADDs ex-
plicit, and the pre-written architectural knowledge decreases
misunderstanding in the global development context. In the
meanwhile, the communication among different sites is in
consistency from the beginning of the project, which reduces
the degree of intensive coordination across the multiple sites.
RQ2: What are the challenges of each ADD paradigm
regarding the aspects of degree of autonomy, resource re-
quirement, and coordination complexity in different GSD
organizational structures?

The main challenge when adopting the ADD paradigms
in these global organizations is that more resources are
required due to the ADD repositories. For Org A with the
product-based structure, the headquarters site has to set up
a repository for storing ADDs, and this would increase
the resource requirement but will not influence a lot. We
have the similar problem in Org B and Org C with the
process-based structure, i.e., one ADD repository needs to
be set up at the headquarters site. However, for Org D with
the release-based paradigm, each local site needs an ADD
repository, which takes up more requirements for hardware
and software resources in the entire global project. The other
challenge is that the access to ADD repositories among
multiple sites also increases the coordination complexity in

the global organization.
RQ3: How do the intent-related decisions and the evolu-
tionary history of ADDs improve architectural knowledge
management and project management in GSD projects?

In our TVM and SceMethod, we can document the intent-
related decisions and also update ADDs when software
requirements change. This is consistent when we investigate
the GSD project contexts. For the global settings, the ADD
paradigms collect the intent from stakeholders located at
different sites. During the process of integration and com-
bination, which happens a lot in Org A and Org D, the
stakeholders are more likely to have consistent architectural
knowledge. Therefore, misunderstanding and negotiation
among different sites and people are much decreased.

In addition, keeping the evolutionary history of ADDs
in the global organizations helps the project maintain the
documentation system in GSD settings and reduce the
inconsistent issues. Specifically, in Org D the evolutionary
history of ADDs provides us with effective way to track the
changes of the requirements, thus providing a better control
on the customized requirements from customers, as well as
the changing features under each release.

E. Threats to Validity
1) Construct validity: We select to evaluate the benefits

and the challenges on introducing the ADD paradigms into
the GSD projects. Specifically, we focus on how these
ADD paradigms affect the autonomy, the resource, and the
coordination of the GSD projects. We believe that what
we investigate in our evaluation are commonly used and
considered in the ADD management, and thus provide good
insights into the research and the practice of architectural
knowledge management.

2) Internal validity: The primary threat to the internal
validity of our evaluation is overlooking relevant problems in
the extensive interview data of the GSD projects. This could
affect our analysis on ADD management in global contexts.
We controlled for this threat by focusing carefully on the
specific organizational structures, i.e., the product-based,
process-based, and release-based structures, and narrowing
the interview data down to no more than five interviewees.

3) External validity: In our evaluation, we use the
archived interview data from software industry to investigate
the ADD paradigms. As opposed to formal experiments that
generally have an emphasis on controlling variables, our
evaluation analyzes the data through observations in an open
and unmoderated setting. Our evaluation on the archived data
may not generalize to other global projects. We controlled
for this threat by observing the three most typical aspects
that influence GSD projects, i.e., degree of autonomy, re-
source requirement, and coordination complexity.

V. RELATED WORK

The key concepts of the traditional view on software
architecture are components and connectors [18]. Currently,



software architecture is viewed as a set of ADDs [14],
[22]. The architectural decisions in the software architecting
process are increasingly focused on by researchers and
practitioners [10], [16], and ADDs are also considered to be
a part of architectural knowledge [17]. In [9], a systematic
review for architectural knowledge is presented, and differ-
ent definitions on architectural knowledge and how they are
relevant to each other are discussed as well.

Guidelines for documenting software architecture has
been provided in [6], [13], however, those documentation
approaches do not explicitly capture ADDs in the archi-
tecting process. Recently, many models and tools have
been proposed for capturing, managing, and sharing ADDs,
most of which are discussed and used within a localized
software development context [23], [15] and [21] . A detailed
comparison of these existing models and tools has been done
in [20]. However, the existing models are hard to support
architecture evolution very well [2].

With the increasing attention paid to GSD, ADD manage-
ment should be able to effectively applied in a GSD setting
as well. However, little work has be done on ADD manage-
ment in the GSD. A few of general architectural knowledge
management practices for GSD have been proposed and
evaluated in [7] and [8]. Furthermore, a literature review
has been done [1] to explore architectural knowledge in a
GSD context, and six architectural viewpoints are defined to
model GSD systems in [24].

Notably, ADDs have not been widely discussed and
supported in GSD, and the aforementioned approaches do
not address in detail how to capture, share, and evolve ADDs
in a global software project. Our current study in this paper
is significantly different from these prior studies by focusing
on the ADD management in the global practice and by
providing the specific ADD paradigms that can be adopted
in the global software industry.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we develop and discuss five typical ADD
management paradigms that can be widely used in GSD,
and provide a high-level methodology on how to manage
the documentation and the evolution of ADDs in the GSD
context. We also investigate the benefits and the challenges
of the ADD paradigms by conducting an evaluation on the
paradigms using extensive archived semi-structured inter-
view data from industrial GSD projects.

Our study is the first to provide ADD management
paradigms in GSD projects and to support architectural
knowledge management in global settings. In our future
work, we plan to implement the ADD paradigms by provid-
ing tool support, and apply them to more GSD projects to
investigate their impact on GSD contexts and environment.

REFERENCES
[1] N. Ali, S. Beecham, and I. Mistrı́k. Architectural knowledge

management in global software development: A review. In
ICGSE, pages 347–352, 2010.

[2] R. Capilla, F. Nava, and A. Tang. Attributes for characterizing
the evolution of architectural design decisions. Software
Evolvability, IEEE International Workshop on, 0:15–22, 2007.

[3] M. Che and D. E. Perry. Scenario-based architectural design
decisions documentation and evolution. In ECBS, pages 216–
225, 2011.

[4] M. Che and D. E. Perry. Managing architectural design
decisions documentation and evolution. International Journal
Of Computers, 6:137–148, 2012.

[5] M. Che and D. E. Perry. Exploring architectural design deci-
sion management paradigms for global software development.
In SEKE, pages 8–13, 2013.

[6] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers,
and R. Little. Documenting Software Architectures: Views and
Beyond. Pearson Education, 2002.

[7] V. Clerc. Towards architectural knowledge management
practices for global software development. In SHARK, pages
23–28, 2008.

[8] V. Clerc, P. Lago, and H. v. Vliet. The usefulness of
architectural knowledge management practices in gsd. In
ICGSE, pages 73–82, 2009.

[9] R. C. de Boer and R. Farenhorst. In search of ‘architectural
knowledge’. In SHARK, pages 71–78, 2008.

[10] J. C. Dueñas and R. Capilla. The decision view of software
architecture. In European Workshop on Software Architecture,
pages 222–230, 2005.

[11] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The geography
of coordination: dealing with distance in r&d work. In
GROUP, pages 306–315, 1999.

[12] J. D. Herbsleb. Global software engineering: The future of
socio-technical coordination. In FOSE, pages 188–198, 2007.

[13] C. Hofmeister, R. Nord, and D. Soni. Applied software
architecture. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[14] A. Jansen and J. Bosch. Software architecture as a set of
architectural design decisions. In WICSA, pages 109–120,
2005.

[15] A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer.
Tool support for architectural decisions. In WICSA, pages 4–,
2007.

[16] P. Kruchten, R. Capilla, and J. C. Dueñas. The decision view’s
role in software architecture practice. IEEE Softw., 26:36–42,
March 2009.

[17] P. Kruchten, P. Lago, and H. V. Vliet. Building up and
reasoning about architectural knowledge. In QOSA, pages
43–58, 2006.

[18] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. SIGSOFT Softw. Eng. Notes, 17:40–
52, October 1992.

[19] D. M. A. Reniers. Message sequence chart: Syntax and
semantics. Technical report, Faculty of Mathematics and
Computing, 1998.

[20] M. Shahin, P. Liang, and M.-R. Khayyambashi. Architectural
design decision: Existing models and tools. In WICSA/ECSA,
pages 293–296. IEEE, 2009.

[21] A. Tang, Y. Jin, and J. Han. A rationale-based architecture
model for design traceability and reasoning. J. Syst. Softw.,
80:918–934, June 2007.

[22] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. Wiley, 2009.

[23] J. Tyree and A. Akerman. Architecture decisions: Demysti-
fying architecture. IEEE Softw., 22:19–27, March 2005.

[24] B. M. Yildiz and B. Tekinerdogan. Architectural viewpoints
for global software development. In ICGSE, pages 9–16,
2011.


	Introduction
	Background: ADD management in LSD
	ADD Management Paradigms in GSD
	Product-based Paradigm (Product-based Structure / Federated Strategy)
	Process-based Paradigm (Process-based Structure / Client-Server Strategy)
	Release-based Paradigm (Release-based Structure / Incremental Strategy)


	Evaluation
	Research Questions
	Overview of the GSD projects
	Analysis
	Results
	Threats to Validity
	Construct validity
	Internal validity
	External validity


	Related Work
	Conclusions and Future Work
	References

