
Automatically Evaluating the Efficiency of
Search-Based Test Data Generation for Relational Database Schemas

Cody Kinneer H Gregory M. Kapfhammer H Chris Wright I Phil McMinn I

H Allegheny College I University of Sheffield

Abstract

The characterization of an algorithm’s worst-case time
complexity is useful because it succinctly captures how its
runtime will grow as the input size becomes arbitrarily
large. However, for certain algorithms—such as those per-
forming search-based test data generation—a theoretical
analysis to determine worst-case time complexity is diffi-
cult to generalize and thus not often reported in the liter-
ature. This paper introduces a framework that empirically
determines an algorithm’s worst-case time complexity by
doubling the size of the input and observing the change in
runtime. Since the relational database is a centerpiece of
modern software and the database’s schema is frequently
untested, we apply the doubling technique to the domain
of data generation for relational database schemas, a field
where worst-case time complexities are often unknown. In
addition to demonstrating the feasibility of suggesting the
worst-case runtimes of the chosen algorithms and configu-
rations, the results of our study reveal performance trade-
offs in testing strategies for relational database schemas.

1 Introduction
Many disciplines, such as science, finance, and

medicine, rely on relational databases to maintain large
amounts of critical information [1]. The relational database
schema defines the structure of a database and protects
the integrity of the data. This makes testing the database
schema necessary to avoid the corruption of data. Search-
based algorithms, that use a fitness function to offer guid-
ance to a desirable solution, have been applied to this chal-
lenging problem [2]. Although data generation for rela-
tional schemas may also be handled, albeit less effectively,
with random generation techniques [3], the use of search-
based approaches ensures that data creation methods can
actively seek out test inputs that best fulfill testing goals [4].

Despite the effectiveness of search-based data generation
methods, there is, to the best of our knowledge, little prior
research that fully studies their efficiency and characterizes
their worst-case time complexity. In part, we attribute this
dearth of past work to the fact that these systems are com-
plex, thus making a generalizable theoretical analysis hard.

In response to the lack of insight into the performance
of search-based methods, this paper presents a fully au-
tomated performance evaluation framework that employs

doubling experiments to suggest worst-case time complex-
ities and conditional inference trees to identify efficiency
trends. Applying this framework to the automated perfor-
mance evaluation of search-based test data generation for
database schemas, the results reveal trade-offs in efficiency
with respect to the chosen testing goals, the structure of the
relational schema, and the data generation strategy.

Since the presented approach is fully automated, it en-
abled a comprehensive study suggesting the worst-case time
complexity of all the relevant data generator configurations.
Although this paper focuses on automatically evaluating
the efficiency of search-based test data generation for the
database schema, the presented technique can be applied to
a wide range of other methods using heuristic search. In
summary, this paper’s important contributions include:

1. A performance evaluation framework that automati-
cally conducts and analyzes the results from doubling
experiments with search-based methods.

2. Empirically derived suggestions for the worst-case
time complexity of search-based test data generators.

3. With a systematic focus on a wide variety of configura-
tions, an empirical study revealing trade-offs in search-
based test data generation for relational schemas.

2 Background and Related Work
Testing Database Schemas. The relational database, a

cornerstone of modern software, is protected by a schema
that defines integrity constraints ensuring the coherence of
data. These constraints defend the schema from manipula-
tions that could violate requirements such as “user names
must be unique” or “the host name cannot be missing or un-
known”. Prior work in this area proposed coverage criteria,
derived from logic coverage criteria, that establish different
levels of testing for the formulation of integrity constraints
in a database schema [3]. These range from simple crite-
ria that mandate the testing of successful and unsuccess-
ful INSERT statements into tables to more advanced crite-
ria that test the formulation of complex integrity constraints
such as multi-column PRIMARY KEYs and arbitrary CHECK
constraints. This family of criteria has been organized
into a subsumption hierarchy, with criteria such as Clause-
Based Active Integrity Constraint Coverage (ClauseAICC)
emerging as a stringent testing strategy. Space constraints
limit further commentary on testing methods for database
schemas; prior work [3] provides additional details.

DOI reference number: 10.18293/SEKE2015-205

Ratio f(2n)/f(n) Worst-Case Conclusion
1 constant or logarithmic
2 linear or linearithmic
4 quadratic
8 cubic

Table 1: Conclusions for worst-case time complexity.

Search-Based Test Data Generation. When testing a
schema’s integrity constraints for correctness, it is often
necessary to provide input to the database and then ob-
serve and evaluate its execution [2]. Since the database’s
behavior is dependant on the input from INSERTs, the input
space must be sufficiently explored to ensure thorough test-
ing. Due to the fact that it is challenging to manually create
input that supports high-quality testing, test data generation
is used to automatically produce it according to a criterion,
like ClauseAICC. A search-based test data generator is one
that explores that input space using, among other compo-
nents, a fitness function that rates the data’s quality, thus al-
lowing it to improve by repeatedly seeking better inputs [4].

Worst-Case Time Complexity. A useful understanding
of an algorithm’s efficiency, the worst-case time complex-
ity gives an upper bound on how an increase in the size of
the input, denoted n, increases the execution time of the al-
gorithm, f(n). This relationship is often expressed in the
“big-Oh” notation, where f(n) is O(g(n)) means that the
time increases by no more than on order of g(n). Since the
worst-case complexity of an algorithm is evident when n
is large [5], one approach for determining the big-Oh com-
plexity of an algorithm is to conduct a doubling experiment
with increasingly bigger input sizes. By measuring the time
needed to run the algorithm on an input of size n and the
time needed to run with input of size 2n, the algorithm’s
order of growth can be empirically determined [5, 6].

The goal of a doubling experiment is to draw a conclu-
sion regarding the efficiency of the algorithm from the ratio
f(2n)/f(n) that represents the factor of change in runtime
from input sizes n to 2n. For instance, a ratio of 2 would in-
dicate that doubling the input size resulted in the runtime’s
doubling, thus leading to the conclusion that the algorithm
under study is O(n) or O(n log n). Table 1 shows some
common time complexities and their corresponding ratios.

Related Work. Goldsmith et al. [7] developed a tool,
called Trend-Prof, that empirically evaluates the computa-
tional complexity of a program by using code instrumen-
tation to count the number of times each block of code is
executed and then grouping these blocks by their behav-
ior. Trend-Prof takes in a collection of workloads, user-
specified features of the workloads, and the program to be
studied. While this technique results in a more detailed
analysis than the one presented in this paper, Goldsmith et
al. did not address the issue of generating the workloads
necessary to achieve a meaningful result, which this paper’s
technique can handle automatically. Our paper is also con-

trasted with this prior work because it describes experiments
in a domain, search-based test data generation, where the
method’s worst-case time complexity is not always known.

Zhao et al. presented an empirical study of the perfor-
mance of search-based test data generation for extended fi-
nite state machine (EFSM) models [8]. Although this paper
focused on efficiency and made preliminary observations
about the relationship between performance and the charac-
teristics of an EFSM model, it did not, like our paper, use
doubling experiments to suggest worst-case time complex-
ities. Lakhotia et al. also reported on an experimental anal-
ysis of the efficiency and effectiveness of search-based test
data generation for C programs [9]. While our paper looks
at generator performance in a holistic manner, this prior
work considered the number of fitness evaluations during
data generation. Similar to our use of doublers that system-
atically increase the size of a schema, Mehrmand and Feldt
empirically studied, with a focus on code coverage, search-
based data generation as program size increased [10].

The empirical work presented in this paper is comple-
mented by theoretical runtime analyses in prior research.
For instance, Arcuri presented the first runtime analysis of a
search-based test data generator called the alternating vari-
able method (AVM) [11], which is also studied in this pa-
per. Arcuri proved the worst-case time complexity of AVM
when it generates data for a simple program called “trian-
gle classification”. More recently, Kempka et al. extended
the work of Arcuri with a theoretical and empirical run-
time analysis revealing that the use of certain local search
techniques with AVM yields better performance than AVM
alone [12]. While our paper’s automated framework can
easily be applied to new schemas—and even to other types
of search-based test data generators—the results in these
two aforementioned papers are more difficult to generalize.

3 Automated Doubling Experiments
Overview. The presented technique for performing au-

tomatic doubling experiments consists of two key compo-
nents. The first is a method for systematically doubling the
initially input relational schema, and the second is a rule for
determining when a valid conclusion can be drawn from the
experiment, thus allowing the doubling process to stop.

Doubling Schemas. Determining worst-case complex-
ity by a doubling experiment requires that the size of the
input be doubled. A relational database schema is a com-
plex artifact with many features and interrelationships. This
makes doubling rule implementation a non-trivial task.

A relational database schema contains tables and
columns, and constraints that restrict the values allowed into
these entities. Since the runtime of a schema testing tech-
nique may be affected by the number of any of these, it is
desirable to have a strategy for doubling each one. Dou-
bling the number of tables or columns in a schema is rel-
atively easy. It is possible to double the number of tables

SchemaAnalyst

Database
Schema

Schema
Doubler

Coverage
Criterion

Data
Generator

Doubler
Choice

Data
Generator

Coverage
Criterion

Database
Schema

Test Suite Runtime
Records

Runtime
Records

Convergence
Algorithm

Continue Experiment

SchemaAnalyst Execution

Experiment Manager

Figure 1: Technique for conducting automatic doubling experiments.

in a schema by following this rule: for every table present
in the schema, create a new empty table. It is important
that the new tables be empty to avoid changing more than
one doubling parameter at once—if the new tables con-
tained columns, for instance, then the number of tables and
columns in the schema both would be increased, thus in-
terfering with assessing table doubling’s impact on perfor-
mance. Additionally, doubling the number of columns can
be accomplished by, for every table in the schema, and for
every column, adding a new column to that table.

Doubling integrity constraints is more challenging. The
FOREIGN KEY constraint, for instance, denotes a relationship
between two tables, thus making it difficult to double with-
out introducing extraneous database entities or cyclic de-
pendencies. Since a CHECK constraint can express arbitrary
conditions, it is also challenging to double if the meaning
of each constraint must be considered to ensure satisfiabil-
ity. Since a table can only contain one PRIMARY KEY, if a
schema contains five tables, then at most it can have five
PRIMARY KEY constraints, as adding more keys would re-
quire creating more tables, which should be avoided.

Because of these issues, and others like them, we focus
our attention on constraints that can be doubled as follows:
for every table and for every constraint, duplicate that con-
straint and re-add it to the table. Constraints such as NOT
NULL, UNIQUE, and CHECK are amenable to doubling in this
fashion. It is worth noting that, since they amount to a re-
statement of existing constraints, entities doubled this way
would not have an impact on what data the schema would
allow or disallow into a database, However, since the goal is
to evaluate performance, the timing results should not be ad-
versely affected as long as the test data generation technique
must still process and consider these additional constraints.

Automatic Experimentation. To determine worst-case
complexity, an input of size n is doubled until the ratio
f(2n)/f(n) converges to a stable value. To account for ran-
dom error, every time n is doubled, f(n) is computed ten
times and the median time is used for calculating the ratios;

we chose the median to minimize the effect of outliers. If
the mean is used instead, then a single abnormally long run
could have an outsized impact on the result. Figure 1 shows
the overall structure of the experimentation framework.

Convergence checking is necessary because of the fact
that worst-case time is only evident for large values of n.
If too few doubles are tried, then the experiment may termi-
nate before n reaches a value where the true worst-case time
complexity is apparent. At the same time, for inefficient al-
gorithms, each additional doubling run incurs a substantial
time overhead. For the sake of efficiency, the doubling ex-
periment should terminate as quickly as is possible.

To test for convergence, for every time t, where t de-
notes the number of times the input has been doubled, we
record the doubling ratio rt = f(2tn)

f(2t−1n) . The current ra-
tio rc is compared to a previous ratio rp where p is deter-
mined by a lookback value, such that p = c − lookback .
The result of the comparison is a difference value, given by
difference = |rc−rp|. This is then compared to a tolerance
value, and the experiment is judged to have converged when
difference < tolerance. The lookback and tolerance val-
ues are both configured before the experiment is run.

Another consequence of worst-case time only being ap-
parent for large n is that a very small initial n may appear to
converge to 1, which would indicate constant time complex-
ity. To prevent the experiment from incorrectly terminating
given a small starting n, our method requires that a program
under study display a ratio of 1 for a minimum number of
times before judging that the ratio does in fact converge to
1. That is, if rc = 1, t > minimum must be true, in addi-
tion to the tolerance test, before the experiment is declared
convergent. The minimum parameter is also configured
before an experiment. Because a doubling ratio of 1 signi-
fies constant or logarithmic time complexity, requiring these
doubles does not significantly increase the experimentation
time needed, all the while providing further assurance that
a small ratio is not due to an insufficiently small n.

Schema Tables Columns Constraints
BioSQL 28 129 186

Cloc 2 10 0
iTrust 42 309 134

JWhoisServer 6 49 50
NistWeather 2 9 13
NistXTS748 1 3 3
NistXTS749 1 3 3

RiskIt 13 57 36
UnixUsage 8 32 24

Table 2: Database schemas used in the experiments.

4 Empirical Analysis
Experimental Design. To gain a full picture of the per-

formance trade-offs, we conducted an experiment for every
configuration of the parameter space (i.e., schema, cover-
age criterion, data generator, and doubling technique). Ta-
ble 2 shows that the experiments focused on nine database
schemas containing between 1 and 42 distinct tables, 3 to
309 columns, and up to 186 constraints. Including all of the
test adequacy criteria proposed by McMinn et al. [3], the ex-
periments study “weak” criteria (i.e., APC, NCC, ICC, and
UCC), “moderately strong” ones (i.e., ANCC, AICC, and
AUCC), and “strong” criteria (i.e., CondAICC and Clause-
AICC). More details about each criterion, including its for-
mal definition and relationship to the other criteria, are
available in prior work [3]. We used all six test data gen-
erators provided by the SchemaAnalyst tool for automated
test data generation [2], with four techniques employing a
variant of random search and two based on Korel’s alternat-
ing variable method. After a restart of the search, each data
generator could start with either default or random values.

In our study, we set tolerance to 0.40 and lookback to
4. These values were chosen by performing doubling ex-
periments on various algorithms, with known worst-case
time complexities, and observing that the ratio converged
to the correct value with this configuration. After observ-
ing that SchemaAnalyst stopped displaying constant behav-
ior after around five doubles, we set minimum to be four
times this number. Preliminary studies showed that, while
experiments for “fast” configurations could be completed
in less than an hour, “slower” configurations required days.
Since there are over two thousand possible configurations,
the study needed a substantial amount of computational
resources. As a solution, we ran the experiments on a
high-performance computing (HPC) cluster containing 195
worker nodes of various hardware configurations, ranging
from 12 to 16 CPU cores and 24 to 256 GB of memory, and
using a 64-bit GNU/Linux operating system.

Results. Our experiments reveal that, when doubling
UNIQUEs, NOT NULLs, and CHECKs, SchemaAnalyst displays
linear or linearithmic worst-case time complexity. Out of
the 699 experiments performed to double these schema
structures, 72% converged to linear or linearithmic. An-
other 8% failed to converge, and of these experiments, 80%

Tables
p < 0.001

1

≤ 196608 > 196608

Criterion
p < 0.001

2

ai, ap, i, n, u an, au, lai, oai

Node 3 (n = 19868)

0

200

400

600

800

1000
Node 4 (n = 15319)

0

200

400

600

800

1000

Tables
p < 0.001

5

≤ 393216 > 393216

Node 6 (n = 259)

0

200

400

600

800

1000
Node 7 (n = 111)

0

200

400

600

800

1000

Figure 2: Tree model using all variables to predict runtime
in minutes, demonstrating the important of the table count.
Due to space constraints, criterion names are abreviated.

failed because of memory limitations, 13% exceeded the
maximum time limit, and 8% failed for reasons that could
not be determined. The doubling ratios among these ex-
periments were primarily linear or linearithmic at the time
they were terminated, however there were 14 that were
quadratic and 3 that were cubic. The experiments that failed
to converge were primarily generating test data for complex
schemas, such as iTrust and BioSQL, and the most stringent
adequacy criteria, such as ANCC and AUCC. The remain-
ing 20% of the 699 experiments converged on constant or
logarithmic. Since there did not seem to be a pattern in
which configurations converged this way compared to lin-
ear or linearithmic, it is likely that they terminated before
the true worst-case time complexity was apparent.

When doubling the tables and columns in the schemas,
the results were less conclusive. Doubling the number of ta-
bles in the schema caused the runtime of SchemaAnalyst to
increase much faster than it did for the other integrity con-
straints. As a result, 56% of the 467 experiments doubling
this schema feature were terminated before convergence be-
cause they exceeded the time limit. Of the experiments that
converged, 72 converged to quadratic and 10 converged to
cubic. Of the experiments that terminated before they con-
verged, the doubling ratios for 205 indicated quadratic, 18
suggested cubic, and 37 were worse than cubic.

Experiments on the number of columns were also incon-
clusive. We noted that 208 of the converged experiments
showed linear or linearithmic time complexity, while 28
converged to quadratic and 2 cubic. Another 203 experi-
ments failed to converge; however, unlike the experiments
that doubled the number of tables, the experiments for dou-
bling the number of columns most frequently failed by run-
ning out of memory rather than exceeding the time limit.
The experiments that did not converge included 106 ratios
indicating quadratic behavior, 73 cubic, and 3 worse.

To gain a more nuanced understanding of the results, our
tool constructed a conditional inference tree model using

−12

−8

−4

0

4

APC
NCC ICC

UCC
ANCC

AICC
AUCC

CondAICC

Clause
AICC

Criterion

T
im

e
lo

g(
m

in
ut

es
)

Criterion vs log(Minutes)

(a) Coverage criterion versus runtime in minutes.

−12

−8

−4

0

4

Dire
cte

d Random Defaults

Dire
cte

d Random

AVM Defaults
AVM

Random Defaults

Random

Data Generator

T
im

e
lo

g(
m

in
ut

es
)

Data Generator vs log(Minutes)

(b) Data generator versus runtime in minutes.

Figure 3: Box and whisker plots for criterion and data generator.

the ctree package in the R language. These trees use the
values of predictor variables (e.g., the adequacy criterion)
to model the value of a response variable (e.g., Schema-
Analyst’s runtime); ctree accomplishes this by repeatedly
splitting the data according to what predictor variable has
the most influence on the response variable. Each tree node
represents a choice of predictor variable, and the level of the
node indicates its importance to the prediction, with higher
nodes being more important to predicting generation time.

Using predictor variables for the number of tables,
columns, UNIQUEs, NOT NULLs, and CHECKs; and the chosen
criterion and data generator, ctree produced the tree model
in Figure 2. In addition to confirming that the number of ta-
bles has the greatest impact on runtime, the tree also reveals
that, when the number of tables in the schema is small, the
choice of coverage criterion is most significant. While the
number of tables had a large impact when over 197, 000,
in practice schemas are unlikely to be this large. Another
invocation of ctree, excluding tables from the list of pre-
dictors, provided insight into the behavior of SchemaAna-
lyst for more practical table sizes. In this tree, not shown
due to space constraints, the coverage criterion emerged as
the most important predictor for runtime, followed by the
choice of data generator, and then the number of columns.

While the trees provide insight into the relative impact
of each predictor, the box and whisker plots shown in the
leaves of the trees do not furnish a detailed view of the
choices within each predictor. To gain a finer-grained un-
derstanding, we created box and whisker plots of our own:
Figure 3a shows the influence of coverage criterion on run-
time, while Figure 3b shows the effect of data generator on
runtime. Figure 3a shows that the strongest coverage crite-
ria in the subsumption hierarchy (i.e., AUCC, ClauseAICC,
and CondAICC) cause runtime to increase the most, fol-
lowed by ANCC and AICC, and then the remaining criteria
(i.e., APC through UCC). We anticipate that the stronger
criteria always lead to higher time overheads because they
force SchemaAnalyst to generate more tests. Also, criteria
at the same level in the hierarchy engender similar runtimes.

Figure 3b reveals that, by a substantial margin, the Ran-
dom and Random Defaults generators took the most time
to generate data. This counterintuitive result suggests that
less effective data generators actually take longer to create
data than those that are known to be more effective [2]. A
less pronounced difference between the remaining genera-
tors can be observed, with the use of default values consis-
tently being faster than the use of random values at restart.

While the box and whisker plots show how choices be-
tween coverage criteria and data generators affect runtime,
the question remains if these differences are statistically and
practically significant. To answer this question, we employ
the Wilcoxon rank-sum test and the Â12 effect size [3].

The Wilcoxon rank-sum test is a non-parametric test for
hypothesis testing. If the result of the test is greater than the
significance level (0.05 is frequently used), then the con-
figurations are indistinguishable. If, however, the result is
less than the chosen level, then they are different. The Â12

test is similar, but for drawing conclusions about the prac-
tical difference between two collections of data. A result
of Â12 = 0.50 means that any difference is not practically
significant, while Â12 > 0.56 or < 0.44 signifies a small
difference, Â12 > 0.64 or < 0.36 denotes a medium differ-
ence, and Â12 > 0.71 or < 0.29 indicates a large difference.

Table 3 shows the statistical tests calculated for every
pair of coverage criteria. The Wilcoxon rank-sum test
reveals that changing the criterion results in statistically
significant differences in runtimes, with the exception of
changing between the four criteria at the top of the sub-
sumption hierarchy and the two criteria at the bottom. The
Â12 results generally show a small to medium practical ef-
fect size when switching between criteria at the high or low
end of the hierarchy, and small or no effect when switching
between criteria at the same level of the hierarchy.

The statistical tests were calculated for all pairs of data
generators, but the resulting table was omitted due to space
constraints. All comparisons of data generators were sta-
tistically significant according to the Wilcoxon rank-sum
test. The Â12 values show that all choices of data gener-

APC ANCC CondAICC NCC AUCC AICC ClauseAICC ICC UCC
APC NA 0.425 0.337 0.484 0.334 0.413 0.329 0.481 0.449
ANCC 2.20E-16 NA 0.407 0.561 0.405 0.484 0.399 0.554 0.526
CondAICC 2.20E-16 2.20E-16 NA 0.671 0.503 0.581 0.492 0.656 0.634
NCC 1.20E-02 2.20E-16 2.20E-16 NA 0.335 0.417 0.322 0.491 0.461
AUCC 2.20E-16 2.20E-16 6.92E-01 2.20E-16 NA 0.577 0.490 0.651 0.628
AICC 2.20E-16 1.70E-02 2.20E-16 2.20E-16 2.20E-16 NA 0.412 0.571 0.547
ClauseAICC 2.20E-16 2.20E-16 2.72E-01 2.20E-16 1.40E-01 2.20E-16 NA 0.662 0.641
ICC 4.00E-03 2.20E-16 2.20E-16 1.83E-01 2.20E-16 2.20E-16 2.20E-16 NA 0.472
UCC 9.30E-16 3.83E-05 2.20E-16 7.36E-10 2.20E-16 5.73E-13 2.20E-16 9.29E-06 NA

Rank-Sum: significant insignificant Â12: none small medium large

Table 3: For each pair of coverage criteria, lower left shows Wilcoxon Rank-Sum Test, upper right shows Â12.

ator have at least a small practical impact, with the excep-
tion of choosing between random and random defaults, and
directed random and directed random defaults. Changing
between these data generators results in a large to medium
effect size, and comparing either of the AVM-based gener-
ators to the other primarily resulted in a small difference.

Threats to Validity. Our technique for doubling the
number of constraints in the schema is simply to duplicate
the existing constraints. It is possible that SchemaAnalyst
does less work processing these redundant constraints than
it would given non-restated ones. However, doubling the
constraints in this way is easy to implement and, as the re-
sults show, good at revealing performance trade-offs. Ad-
ditionally, since worst-case time is only apparent for large
n, it is possible that the experiments terminated too quickly.
While we attempted to configure the parameters of our tool
using algorithms with known worst-case complexities and
conducting preliminary experiments with various settings
and under manual supervision, it is possible that our config-
uration was not optimized for use on the HPC cluster.

5 Conclusions and Future Work
This paper presented an automated method for empiri-

cally suggesting the worst-case time complexity of search-
based test data generation methods. Focusing on the do-
main of relational database schemas, our approach repeat-
edly doubles the size of the input schema and observes the
commensurate change in runtime. Although some results
are inconclusive, we find that, in many cases, data genera-
tion is linear or linearithmic and, in others, it is quadratic,
cubic, or worse. Our automated method also revealed that,
for all of the test adequacy criteria in the subsumption hi-
erarchy presented by McMinn et al. [3], stronger criteria
always necessitate more time for test data generation.

Since this paper’s technique did not consider the dou-
bling of constraints like FOREIGN KEYs, future work will
focus on creating doublers for these unstudied constraints.
Additionally, the current doubling mechanism avoids intro-
ducing semantically invalid constraints by restating existing
constraints; in future work we plan to implement and eval-
uate more realistic ways to double relational schemas. Be-
cause certain experiments timed out before converging, we

also want to re-run these configurations with longer time
limits and more memory. Finally, we will investigate how
automated parameter tuning, instead of manual tuning be-
fore experimentation in a new execution environment, can
support choosing the convergence condition. Ultimately,
the combination of the presented framework with the com-
pleted future work will yield an effective way to empirically
understand the worst-case case time complexity of search-
based test data generation for relational database schemas.

References
[1] G. M. Kapfhammer, “A comprehensive framework for testing

database-centric applications,” Ph.D. dissertation, University of
Pittsburgh, 2007.

[2] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-based
testing of relational schema integrity constraints across multiple
database management systems,” in 6th ICST, 2013.

[3] P. McMinn, C. J. Wright, and G. M. Kapfhammer, “An analysis of
the effectiveness of different coverage criteria for testing relational
database schema integrity constraints,” Department of Computer Sci-
ence, University of Sheffield, Tech. Rep., 2015.

[4] P. McMinn, “Search-based software test data generation: A survey,”
Soft. Test., Verif. and Reliab., vol. 14, no. 2, pp. 105–156, 2004.

[5] C. C. McGeoch, A Guide to Experimental Algorithmics. Cambridge
University Press, 2012.

[6] R. Sedgewick and M. Schidlowsky, Algorithms in Java: Fundamen-
tals, Data Structures, Sorting, Searching, 3rd ed. Addison-Wesley
Longman Publishing Co., Inc., 1998.

[7] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson, “Measuring em-
pirical computational complexity,” in 6th ESEC/FSE, 2007.

[8] R. Zhao, M. Harman, and Z. Li, “Empirical study on the efficiency
of search based test generation for EFSM models,” in 3rd ICSTW,
2010.

[9] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: An open source
tool for search based software testing of C programs,” Inf. Softw.
Technol., vol. 55, no. 1, 2013.

[10] A. Mehrmand and R. Feldt, “A factorial experiment on scalability of
search-based software testing,” in 3rd AITSE, 2010.

[11] A. Arcuri, “Full theoretical runtime analysis of alternating variable
method on the triangle classification problem,” in 1st SSBSE, 2009.

[12] J. Kempka, P. McMinn, and D. Sudholt, “Design and analysis of
different alternating variable searches for search-based software test-
ing,” Theor. Comp. Sci., 2015, In Press.

