
To Enlighten Hidden Facts in The Code: A Review
of Software Visualization Metaphors

Yangyang XU∗, Yan LIU† and Jiabin ZHENG‡
School of Software Engineering, Tongji University

Shanghai, China
Email: ∗1334902@tongji.edu.cn, †yanliu.sse@tongji.edu.cn, ‡1434321@tongji.edu.cn

Abstract—Software visualization has been adopted to help
engineers understand the design and functionality better and
faster. A number of visualization techniques have been developed
in the field of structure, behavior and evolution recently. However,
there is little attempt to comprehensively review current state
of the art for software professionals. As a consequence, this
paper employs a systematic review of research literature on the
visualization of code, to identify current application tasks, discuss
variety effectiveness of visual representations, and sort out their
relationships to improve usability. Finally, unsolved issues and
future research opportunities have been discussed.

Keywords-code visualization; metaphor; mapping; systematic
literature review;

I. INTRODUCTION

Software systems have increasingly grown in size and com-
plexity. Due to the high turnover rate and changing industry en-
vironments, engineers have encountered challenge in software
comprehension and maintenance. Particularly, studies indicate
that 80% of the software costs are used for maintenance,
in which 40% is devoted to understand source code[1]. It
is recognized that people are better at deducing information
from graphical image than numerical and textual formats[2].
Therefore, Software visualization(SV) is defined as a technique
which transfers hidden facts into visual forms like images,
diagrams or animations[3]. However, most of the current
research focuses on specific technique of analysis, there is little
work on how visualization techniques really facilitate general
tasks for stakeholders. Critically, the challenge is to find a good
visual structure which maintains fulfilled information of tasks
and can be perceived easily. As a consequence, SV techniques
have not been widely adopted in the industry[4].

The body of work on SV is such that, at first, it is
important to identify visualization tasks and select adap-
tive metaphors. This is because SV should always be goal-
oriented[5]. Namely, visualization goals drive the definition of
SV techniques. Efforts on this research can be categorized in
two approaches: empirical study and literature review. With
the limitation of quantitative analysis for SV, we decided to
conduct a systematic literature review(SLR) of software code
visualization. On the basis of running through state of the
art, we could summarize existing visual metaphors, understand
analytic tasks and obtain a better mapping between them. The
results are expected to be utilized as a foundation for potential
experimentation and professional scholars.

DOI reference number: 10.18293/SEKE2015-203

TABLE I. Research questions of SLR

Number Research question
RQ1 What analytic tasks does current SV support?
RQ2 What types of perspectives do engineers use SV techniques?
RQ3 What types of visual metaphors are available in the study?
RQ4 Which tools are used to support software code visualization?
RQ5 What is the correlation between tasks and visual metaphors?

II. RESEARCH METHODS

A. Planning the Review

Prior to undertaking a SLR it is necessary to identify
the purpose[6], namely, to explore relevant literature through
research question “how visualization metaphors facilitate tasks
supported in current techniques?”

1) Research questions: Relavant research questions(RQs)
to guide SLR have been formulated in Table I.

The motivation of RQ1 and RQ2 is to identify the goal
of SV techniques. RQ3 and RQ4 get a comprehensive set
of available visualization techniques. The objective of RQ5 is
to investigate relationship between techniques and supported
tasks.

2) Review protocols: With the definition of RQs, it is
essential to specify review protocols to reduce possibility of
bias[6]. It includes search terms, search resources, selection
criteria and data extraction strategy.

In this SLR, initial search terms were “software visual-
ization” and “visualization techniques”. Moreover, “visual”,
“visualize” and other synonyms could be considered as search
terms. Query of this review were built mainly in 6 top publica-
tion venues of SV area, along with research in 4 representative
databases: IEEE Xplore, Sciencedirect, ACM Digital Library
and Springer Link.

Selection criteria are listed in Table II. Data items to
extract related information are defined as follows: analytic

TABLE II. Inclusion and exclusion criteria of SLR

Inclusion criteria
1 A study is published after 2007.
2 A study discusses about SV supported tasks, metaphors, tools, and evaluation.

Exclusion criteria
1 A study does not include code visualization.
2 A study is with little evidence or outdated.
3 A study is duplicate.



TABLE III. Number of paper per step for per venue

Public venue Search Selection1 Selection2
ICSE 115 89 12
ICPC 79 70 10
ICSM 77 48 5
SoftVis 96 14 2
WCRE 68 50 7
WICSA 9 8 1

tasks/visualization activities for RQ1, RQ2; visualization rep-
resentation/metaphors for RQ3; tool support for RQ4; and
conclusion/relationship/correlation for RQ5.

B. Conduct the Review

SV papers have been published in many venues. We se-
lected 6 representative ones as paper sources, including ICSE,
ICPC, ICSM, SoftVis, WCRE and WICSA. Table III indicates
selected number of papers in each step for each venue. Initial
results were achieved with query of search terms. Due to
the large number of papers, we applied selection criteria in
Table II to concentrate the results. We limited the date of
publication to consult mature theory in the first selection. And
manual search method was performed in the second round.
As a result, 37 papers were selected from these venues. In
addition, same research method has been explored in 4 famous
public databases and we retrieved 50 results. After removing
duplicate ones within two approaches, finally we identified 81
papers for the review. Due to the limited space, selected papers
are listed in “http://SSE.tongji.edu.cn/liuyan/sv papers.html”.

III. VISUALIZATION REVIEW RESULT

After conducting the review, this section reports results
based on the synthesis and analysis of data extraction activities
to answer RQs.

A. Supported Tasks

Software visualization focuses on diverse aspects through
development stages[7]. Selected papers have indicated an in-
creasing interest in not only visualization of software compo-
nents, their properties, relationships, but also their evolution,
behavior and instruction execution[1][3][7]. In order to present
various tasks clearly, this review adopted the classification
proposed by Stephan Diehl[3], concerning with visualizing
static analysis, dynamic execution of program and evolution
of code.

Figure 1. Number of studies per category

1) Static analysis: According to statistics, 54 studies in
our selection have reported this aspect, including control-flow
analysis[3], code map[8], dependency relationship between
software components[9], software architecture[9] and code
metrics[7].

Control-flow analysis (S1): It is used to depict sequential
order of the program in source code which helps developers
to think in an orderly manner[10].

Code map (S2): This visualization maps the relationships
between pieces of code. Recent studies have indicated full
interests in this analytic task.

Dependency relationship (S3): This is an essential part
of software visualization owing to tremendous amount of
interactions between components. It provides a visual approach
for engineers to obtain an overview of dependencies for entire
solution without viewing all the files and lines of source code.

Software architecture (S4): Because the focal point is code
visualization, here software architecture focuses on hierarchy.
It is one of core topic in SV that is used to help engineers
organize artifacts into logical, abstract groups and make sure
code remains consistent with the design.

Code metrics (S5): Typical static metrics of source code
include size of code, number of components and complexity.
However, visualization techniques discussed in 10 studies have
no great changes in the past few years.

2) Dynamic analysis: In contrast with static properties of
source code, merely 15 studies involved in research support
dynamic analysis visualization. The motivation is to present
what happens at run time, concerning executed time, statement
coverage, dynamic architecture and program slice.

Executed time (D1) and statement coverage (D2) are
aimed to optimize system performance[3][11]. 8 studies
(R9,R12,R15,R19,R25,R52,R53,R64) mentioned visualization
of code coverage which helps users pay more attention on
frequent lines and non-executed ones.

Dynamic architecture (D3): Behavior diagrams are gener-
ated to describe changes at the level of architecture.

Program slice (D4): A dynamic slice is the set of all
program points that actually affect a program point for a given
input(R7,R11,R13). This is intended to find patterns in source
code, and users can eliminate and sort procedures based on
whether or not they are in the slice.

3) Evolution: Tracking changes between different versions
can be meaningful for code management and maintenance[12].

Evolution metrics (E1) in this aspect include who edited
specific parts of code; when each line was last modified;
where bugs were located, who fixed these bugs and how the
evolution processed. As a consequence, the visualization can
be used in the field of code discovery and code decay[13].
Visualization of software archives (E2) which comes up from
a whole overview of system updating has been reported in 3
papers. Added lines, deleted lines and changed lines reflect
which class is added or removed in one file version. At the
same time, visualization techniques to depict structural changes
(E3) are limited[7][13].



Above all, Fig. 1 reveals that majority of selected studies
investigate visualization of static aspects especially in depen-
dency relationships and software architecture. While dynamic
analysis visualization is a broad and relatively young research
field due to the limitations of implementation techniques.
Visualization of evolution has attracted great interests in recent
year. Nevertheless, most of the analyzed work intends to
visualize evolution metrics with fewer on complex structural
change.

B. Principal Visual Representation

The focal step of the visualization process is to choose
effective visual representations for facts in source code. They
are built from points, lines, areas, and volumes with various
properties: size, length, width, height, volume, position, orien-
tation, angle, slope, color, grayscale, texture, and shape[3].

To better address RQ3, we have tried to combine rep-
resentations which use different terms with same essence.
Those rarely used or supported with little evidence have been
excluded. Therefore, Fig. 2 presents various types of visual
representations that are currently used in code visualization,
ranging from simple to complex.

1) Line representation: Relevant visual representations in-
clude pie and bar graph, histograms and pixel representation.
It makes the entire file visible with the attributes of length,
indentation and color. According to the effective technique of
color-coding which is beneficial for layering information, it is
possible to show a million lines of code in a screen and make
it easy to find different parts. However, it might be shrunk to
a single row of pixels which is less readable with large scale
programs.

2) Node-link layout: This is the most well-known metaphor
to represent the relationship and hierarchy of software
components[1]. It uses nodes and links to represent ele-
ments(files, packages, classes) and structural relationships re-
spectively. Studies in selected research have indicated that rep-
resentation becomes too large due to the high interconnectivity
between components[7]. Related terms such as Sunburst tree
layout and hyperbolic tree layout[14] have moved to more
sophisticated ones to deal with the problem.

3) Matrix views: It is an effective visualization to display
two-dimensional grid with rows corresponding to one index
and columns to another[15]. In contrast to graph-based visual-
ization, this representation provides complementary informa-
tion for large programs with no overplotting. This is owing to

Figure 2. Number of studies per metaphor

strength of matrix that a single image contains thousands of
cells[15]. One weakness of the representation is that adjacent
modules are unordered and the display is irrelevant to the
structure of source code tree.

4) Treemap: The metaphor is an effective means to visual-
ize hierarchical decompositions of software. It executes tiling
algorithm to slice the view into several parts corresponding
to the number of subsystem. The space-filling technique visu-
alizes methods as elementary boxes and classes as composed
boxes which helps to address space problem in comparison
with node-link graph. However, it has common problem with
matrix views which is impossible to map the structure.

5) Notation views: This type of visualization presents the
relationship between elements in a structure which is currently
used for UML diragram. In contrast to node-link layout, it is
reported that type of the nodes is important information in
notation views.

6) Cityscape views: 15 studies reported this type of visu-
alization which uses physical contexts to represent software
components and relationships[16]. Similiar metaphors include
forest metaphor (R39) and network view. Comparing with
matrix views, it provides more intuitive view for users[17]
and enhances the visualization of metrics. Nevertheless, weak-
nesses of 3D technology like object occlusion and performance
issues have limited the usability.

7) Metric views: The implementation of metric view dis-
plays information on the top of UML diagram. UML is an
visual modeling language to specify, design and construct
software systems[18]. An extension metaphor of metric views
is “areas of interest” proposed by Byelas and Telea[19].

Visualization representations proposed in research range
from simple “line representation” to complex n-dimensional
visualization and even animation. We do not describe these
visual representations in detail, rather we consider factors that
relate software visualizations to particular perspectives. As
shown in Fig. 2, there is a significant difference in popularity
of these visual representations. Node-link layout and line
representation are still the most popular metaphors despite they
have notable limitations in visualizing large scale program. 3D
cityscape views and even n-dimensional representations have
been proposed with the development of 3D technology. How-
ever, further research is needed for addressing the weakness
of this metaphor.

TABLE IV. Number of papers associated to each analysis task
and visual metaphor

Tasks Line Node
link

Matrix
View Treemap Notation Cityscape Metric

View

control-flow analysis 1 5 1
code map 5 3
dependency relationship 15 5 2 3 7 2
software architecture 10 1 4 2 1
code metric 5 1 1 1 3

executed time 3
statement coverage 6 1
dynamic architecture 2
program slice 1 1

evolution metrics 5 1 3 5
software archives 2 1
structural change 1 2 2



C. Relationship between Analysis Task and Visual Metaphor

It makes no sense to translate mere source code information
into a massive graph. The utility of visualization lies in
an appropriate, understandable and effective abstraction of
the data in order to present significant information[20]. An
increasing number of visual metaphors have been proposed to
address different concerns which have been reported above.
In order to develop suitable SV techinques, it is necessary to
understand the correlation between analysis task and visual
metaphor.

Table IV has listed the number of studies which mentioned
visual metaphors for respective tasks. There is a many-to-many
relationship between analysis task and visual metaphor. As
little attention has been paid on the visualization of control-
flow analysis and code map, metaphors for these tasks are
relatively few. Notation view is the most popular representation
which has been employed to visualize control-flow of code.
In contrast, visual representations have supported dependency
relationships and architecture quite a lot. This is due to the
importance of understanding structural elements for software
maintanence. Common method to visualize relationship among
components is graph. In particular, node-link layout has been
widely used in dependency and architecture domains with 15
and 10 studies respectively. Because of increasing relations
in code, matrix views which address space problem of node-
link layout have been used for visualizing dependency in 5
studies. And cityscape views provide more vivid representation
in comparison with previous two representations. Treemap is
also applied to visualize relationship and software architecture,
especially good at representing hierarchical information.

Few studies described the visualization of dynamic anal-
ysis. Among them, line representation is dominant metaphor
which is applied for the visualization of dynamic aspect while
node-link layout is rarely used.

With respect to the evolution, line representation and metric
views are popular metaphors to depict change of metrics.
While node-link and treemap can be used to visualize changes
in structure.

IV. CONCLUSION AND FUTURE WORK

This paper presents a systematic review of code visu-
alization which is intended to provide an understanding of
current metaphors used for tasks. However, there still exists
limitations for our review. First of all, we focused on English
articles in six famous public venues and four large digital
database which excluded several valuable literature. Secondly,
the variants of search terms might cause the missing of articles.
Therefore, visual concerns that we consider do not exhaust all
the possibilities. Instead, they are examples to illustrate certain
problems and represent most popular concepts in our review.

We have specified 3 categories of visual tasks and syn-
thesized 7 types of metaphors from SLR. However, it is
argued that what is visualized is what can be visualized,
not necessarily what needs to be visualized in peer academic
literature[21]. Most studies try to develop new visualization
techniques as oppose as to validate or add value to existing
ones. This implies importance to move from the state of the
art to state of practice. Simple mapping between them has

provided theoretical evidence for deeper quantitative analysis.
Consequently, to evaluate the utility of visualization metaphors
and select appropriate one for specific task, next step is
to make research on the higher level of abstraction with
experimentation in cognitive and perceptive activities.

REFERENCES

[1] A. Telea, L. Voinea, and H. Sassenburg, “Visual tools for software
architecture understanding: A stakeholder perspective,” IEEE software,
vol. 27, no. 6, pp. 46–53, 2010.

[2] I. Spence, “Visual psychophysics of simple graphical elements.” Journal
of Experimental Psychology: Human Perception and Performance,
vol. 16, no. 4, p. 683, 1990.

[3] S. Diehl, Software visualization: visualizing the structure, behaviour,
and evolution of software. Springer, 2007.

[4] H. A. Duru, M. P. Çakır, and V. İşler, “How does software visualization
contribute to software comprehension? a grounded theory approach,”
International Journal of Human-Computer Interaction, vol. 29, no. 11,
pp. 743–763, 2013.

[5] V. R. Basili, J. Heidrich, M. Lindvall, J. Münch, M. Regardie,
D. Rombach, C. Seaman, and A. Trendowicz, “Linking software de-
velopment and business strategy through measurement,” arXiv preprint
arXiv:1311.6224, 2013.

[6] S. Keele, “Guidelines for performing systematic literature reviews in
software engineering,” Technical report, EBSE Technical Report EBSE-
2007-01, Tech. Rep., 2007.

[7] T. Khan, H. Barthel, A. Ebert, and P. Liggesmeyer, “Visualization and
evolution of software architectures,” in OASIcs-OpenAccess Series in
Informatics, vol. 27. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2012.

[8] “Visual studio 2013,” http://msdn.microsoft.com/zh-cn/library/
dd831853.aspx, accessed: Sept. 22, 2014.

[9] “Visualizing and understanding code,” http://msdn.microsoft.com/
zh-cn/library/dd409365.aspx, accessed: Sept. 22, 2014.

[10] I. Nassi and B. Shneiderman, “Flowchart techniques for structured
programming,” ACM Sigplan Notices, vol. 8, no. 8, pp. 12–26, 1973.

[11] T. Ball and S. G. Eick, “Software visualization in the large,” Computer,
vol. 29, no. 4, pp. 33–43, 1996.

[12] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr, “Seesoft-a tool for
visualizing line oriented software statistics,” Software Engineering,
IEEE Transactions on, vol. 18, no. 11, pp. 957–968, 1992.

[13] M. Lanza, “The evolution matrix: Recovering software evolution using
software visualization techniques,” in Proceedings of the 4th interna-
tional workshop on principles of software evolution. ACM, 2001, pp.
37–42.

[14] W. Randelshofer, “Visualization of large tree structures,” 2011.
[15] S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and P. Schuster, “Vi-

sualizing software changes,” Software Engineering, IEEE Transactions
on, vol. 28, no. 4, pp. 396–412, 2002.

[16] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
Visualizing Software for Understanding and Analysis, 2007. VISSOFT
2007. 4th IEEE International Workshop on. IEEE, 2007, pp. 92–99.

[17] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz, “Software
landscapes: Visualizing the structure of large software systems,” in
Proceedings of the Sixth Joint Eurographics-IEEE TCVG conference
on Visualization. Eurographics Association, 2004, pp. 261–266.

[18] M. Clauß, “Generic modeling using uml extensions for variability,” in
Workshop on Domain Specific Visual Languages at OOPSLA, vol. 2001,
2001.

[19] T. Barlow and P. Neville, “A comparison of 2-d visualizations of
hierarchies,” in Information Visualization, IEEE Symposium on. IEEE
Computer Society, 2001, pp. 131–131.

[20] M. Petre, E. de Quincey et al., “A gentle overview of software
visualisation,” PPIG News Letter, pp. 1–10, 2006.

[21] M. Petre, “Mental imagery and software visualization in high-
performance software development teams,” Journal of Visual Languages
& Computing, vol. 21, no. 3, pp. 171–183, 2010.


