
Combining Feature Subset Selection and Data
Sampling for Coping with Highly Imbalanced

Software Data
Kehan Gao

Eastern Connecticut State University
Willimantic, Connecticut 06226

gaok@easternct.edu

Taghi M. Khoshgoftaar & Amri Napolitano
Florida Atlantic University
Boca Raton, Florida 33431

khoshgof@fau.edu, amrifau@gmail.com

Abstract—In the software quality modeling process, many
practitioners often ignore problems such as high dimensionality
and class imbalance that exist in data repositories. They directly
use the available set of software metrics to build classification
models without regard to the condition of the underlying software
measurement data, leading to a decline in prediction performance
and extension of training time. In this study, we propose an
approach, in which feature selection is combined with data
sampling, to overcome these problems. Feature selection is a
process of choosing a subset of relevant features so that the
quality of prediction models can be maintained or improved. Data
sampling seeks a more balanced dataset through the addition
or removal of instances. Three different approaches would be
produced when combing these two techniques: 1- sampling
performed prior to feature selection, but retaining the unsampled
data instances; 2- sampling performed prior to feature selection,
retaining the sampled data instances; 3- sampling performed
after feature selection. The empirical study was carried out on
six datasets from a real-world software system. We employed
one filter-based (no learning algorithm involved in the selection
process) feature subset selection technique called correlation-
based feature selection combined with the random undersampling
method. The results demonstrate that sampling performed prior
to feature selection, but retaining the unsampled data instances
(Approach 1) performs better than the other two approaches.

Index Terms—software defect prediction, feature selection,
data sampling, subset selection

I. INTRODUCTION

Quality and reliability are the most important factors that
determine success or failure of software projects, especially
for high-assurance and mission-critical systems. Early detec-
tion of faults prior to system deployment and operation can
help for reducing development costs and allowing for timely
improvement to the software product. Various techniques have
been developed for this purpose, and some of them have
achieved beneficial results. One such technique is software
quality classification, in which a classifier is constructed
on historical software data (including software metrics and
fault data) collected during the software development process,
then that classifier is used to classify new program modules
under development as either fault-prone (fp) or not-fault-prone
(nfp) [1]. This prediction can help practitioners to identify
potentially problematic modules and assign project resources

accordingly. However, two problems, high dimensionality and
class imbalance, may affect the classifier’s performance.

In the software quality modeling process, high dimension-
ality occurs when a data repository contains many metrics
(features) that are either redundant or irrelevant to the class
attribute. Redundant features refer to those having information
which is already contained in other features, while irrelevant
features are features with no useful information related to
the class variable. Several problems may arise due to high
dimensionality, including high computational cost and memory
usage, a decline in prediction performance, and difficulty of
understanding and interpreting the model.

Feature selection is a process of selecting a subset of rele-
vant features for use in model construction, so that prediction
performance will be improved or maintained, while learning
time is significantly reduced. Feature selection techniques
can be categorized as either wrappers or filters based on
whether a learning algorithm is involved in the selection
process, or be classified into feature subset selection and
feature ranking depending on whether features are assessed
collectively or individually [2]. Feature ranking scores the
attributes based on their individual predictive power. A po-
tential problem of feature ranking is that it neglects the
possibility that a given attribute may have better predictability
when combined with some other attributes, as compared to
when used by itself. Feature subset selection that evaluates a
subset of features as a group for suitability can overcome this
problem. Wrappers evaluate each subset through a learning
algorithm, while filters use a simpler statistical measure or
some intrinsic characteristic to evaluate each subset rather
than using a learning algorithm. Unfortunately, the building of
the classifiers required for wrapper-based feature selection are
frequently computationally infeasible. Thus, filter-based subset
selection is a promising option as it evaluates subsets but is
relatively faster than wrapper-based methods. In this study, we
would like to examine one filter-based feature subset selection
technique called correlation-based feature selection [3] in the
context of software quality modeling.

In addition to an excess number of features, many real-
world software datasets have the class imbalance problem,

(DOI reference number: 10.18293/SEKE2015-182)

wherein nfp modules significantly outnumber fp modules
(the class of interest). When training data is imbalanced,
traditional machine learning algorithms may have difficulty
distinguishing between instances of the two classes. In this
scenario, they tend to classify the fp modules as nfp modules
to increase overall prediction accuracy. However, these models
are rarely useful, because in software engineering practice,
accurately detecting the few faulty modules is of upmost
importance at the final stage of system testing, as it can
avoid defective software in deployment and operation. Many
solutions have been proposed to address the class imbalance
problem. A frequently used method is data sampling [4], which
attempts to achieve a certain balance (ratio) between the two
classes by adding instances to (oversampling), or removing
instances from (undersampling), the dataset. In this work, we
employ a simple and effective sampling technique, random
undersampling.

To cope with both high dimensionality and class imbalance,
we proposed a data pre-processing technique in which feature
selection is combined with data sampling. Some questions
may arise when we combine the two techniques, such as
which activity, feature selection or sampling, should be per-
formed first? In addition, given the subset of selected features,
should the training data be formed based on the sampled
dataset or unsampled dataset? To answer all these questions,
we investigate three different approaches: 1- data sampling
performed prior to feature selection and the training data
formed using selected features along with unsampled data;
2- data sampling performed prior to feature selection and
the training data formed using selected features along with
sampled data; and 3- data sampling performed after feature
selection. In this study, we are interested in learning the impact
of the feature subset selection technique on classification
results when used along with a sampling method as well as the
effects of three approaches on classification performance. To
our knowledge, no study have been done for combining a filter-
based feature subset selection method with data sampling and
investigating the three approaches in the domain of software
quality engineering.

The empirical study was carried out over two groups of
datasets (each group having three datasets) from a real-
world software system, all of which exhibit a high degree
of class imbalance between the fp and nfp classes. Five
different learners were used to build classification models. The
experimental results demonstrate that data sampling performed
prior to feature selection and the training data formed using
selected features along with unsampled data (Approach 1)
had significantly better performance than sampling performed
after feature selection (Approach 3), or retaining the sampled
data (Approach 2). As to the classification algorithms, Support
Vector Machine presented the best (or close to the best)
performance irrespective of training data or approach adopted,
and therefore was recommented. Multilayer Perceptron and K
Nearest Neighbors showed moderate performance, followed
Naı̈ve Bayes. Logistic Regression had fluctuate performance
with respect to various approaches used.

The rest of the paper is organized as follows. Section II
discusses related work. Section III provides methodology,
including more detailed information about feature subset se-
lection, data sampling, three combination approaches, learners,
performance metric, and cross-validation applied in this work.
A case study is described in Section IV. Finally, the conclusion
and future work are summarized in Section V.

II. RELATED WORK

Feature selection is an effective technique to solve the high
dimensionality problem, and therefore has been significantly
researched. Liu et al. [2] provided a comprehensive survey
of feature selection and reviewed its developments with the
growth of data mining. At present, feature selection has been
widely applied in a range of fields, such as text categoriza-
tion, remote sensing, intrusion detection, genomic analysis,
and image retrieval [5]. Hall and Holmes [6] investigated
six attribute selection techniques (information gain, ReliefF,
principal components analysis, correlation-based feature se-
lection (CFS), consistency-based subset evaluation (CNS), and
wrapper subset evaluation) and applied them to 15 datasets.
The comparison results show no single best approach for all
situations. However, a wrapper-based approach is the best
overall attribute selection schema in terms of accuracy if speed
of execution is not a considered factor. Otherwise, CFS, CNS,
and ReliefF are overall good performers. Feature selection also
gets more attention in the software quality assurance domain
[7]. Akalya et al. [8] proposed a hybrid feature selection model
that combines wrapper and filter methods and applied it to
NASA’s public KC1 dataset obtained from the NASA IV&V
Facility Metrics Data Program (MDP) data repository.

Besides an excess number of attributes, many real-world
classification datasets suffer from the class imbalance prob-
lem. A considerable amount of research has been done to
investigate this problem. Weiss [4] provided a survey of the
class imbalance problem and techniques for reducing the
negative impact imbalance has on classification performance.
An important technique discussed for alleviating the problem
of class imbalance is data sampling. The simplest form of
sampling is random sampling. Besides that, several more
intelligent algorithms for sampling data have been proposed,
such as SMOTE [9] and Wilson’s Editing [10].

While a great deal of work has been done for feature
selection and data sampling separately, limited research has
been done and reported on both together, especially in the
context of software quality assurance. Among the few studies,
Wahono et al. [11] proposed the combination of genetic
algorithms with the bagging (bootstrap aggregation) technique
for improving the performance of software defect prediction.
Genetic algorithms were applied to deal with the feature
selection, and bagging was employed to deal with the class
imbalance problem. In one of our previous studies [12], we
investigated combing feature ranking techniques with data
sampling and also examined different combination scenarios.
That previous study was focused on feature ranking, while the
present research concentrates on feature subset selection.

III. METHODOLOGY

A. Feature Subset Selection

For any feature subset selection method, a key issue dis-
cussed is the search strategy which determines how the subsets
are generated in the first place in order to avoid the O(2n)
models built with exhaustive search. We use the Greedy
Stepwise search mechanism in this paper. Greedy Stepwise
starts with an empty working feature set and progressively add
features, one at a time, until a stopping criterion is reached.
Greedy Stepwise uses forward selection to build the full
feature subset starting from the empty set. At each point in the
process, the algorithm creates a new family of potential feature
subsets by adding every feature (one at a time) to the current
best-known set. The merit of all these sets are evaluated, and
whichever performs best is the new known best set. This
process is repeated until none of the new subsets improve
performance. The final new “known-best” subset (that is, the
last subset which improved performance over its predecessor)
is then given as the procedure’s output.

The main goal of feature selection is to select a subset
of features that minimizes the prediction errors of classifiers.
In this study, we employ correlation-based subset selection
algorithm [3].

The correlation-based algorithm uses the Pearson correla-
tion coefficient [3], which can be calculated using the follow-
ing formula:

MS =
krcf√

k + k(k − 1)rff

In this formula, MS is the merit of the current subset of
features, k is the number of features, rcf is the mean of the
correlations between each feature and the class variable, and
rff is the mean of the pairwise correlations between every
two features.

B. Data Sampling

A variety of data sampling techniques have been studied
in the literature, including both majority undersampling and
minority oversampling techniques [9], [13]. We employ ran-
dom undersamping as the data sampling technique in this
study. Random undersampling is a simple, yet effective, data
sampling technique that achieves more balance in a given
dataset by randomly removing instances from the majority
(nfp) class. The post-sampling class ratio (between fp and nfp
modules) was set to 50:50 throughout the experiments.

C. Three Combination Approaches

The primary goal of this study is to evaluate the data pre-
processing technique in which the correlation-based feature
subset selection technique is combined with random under-
sampling. Three different scenarios (also called approaches)
would be produced depending on whether sampling is per-
formed before or after feature selection and which dataset,
sampled or unsampled data, is used to build a classifier. The
three different approaches are described as follows:

• Approach 1: sampling then feature selection retaining the
unsampled data instances

• Approach 2: sampling then feature selection retaining the
sampled data instances

• Approach 3: feature selection then sampling
Fig. 1 shows the three approaches denoted as DS-FS-

UnSam, DS-FS-Sam, and FS-DS, respectively.

D. Learners

The software defect prediction models in this study are
built using five different classification algorithms, including
Naı̈ve Bayes (NB) [14], MultiLayer Perceptron (MLP) [14],
K Nearest Neighbors (KNN) [14], Support Vector Machine
(SVM) [15], and Logistic Regression (LR) [14]. Due to space
limitations, we refer interested readers to these references
to understand how these commonly-used learners function.
The WEKA machine learning tool is used to instantiate the
different classifiers. Generally, the default parameter settings
for the different learners are used (for NB and LR), except for
the below-mentioned changes. A preliminary investigation in
the context of this study indicated that the modified parameter
settings are appropriate.

In the case of MLP, the hiddenLayers parameter was
changed to ‘3’ to define a network with one hidden layer
containing three nodes, and the validationSetSize pa-
rameter was changed to ‘10’ to cause the classifier to leave
10% of the training data aside for use as a validation set to
determine when to stop the iterative training process. For the
KNN learner, the distanceWeighting parameter was set
to ‘Weight by 1/distance’, the kNN parameter was set to ‘5’,
and the crossValidate parameter was turned on (set to
‘true’). In the case of SVM, two changes were made: the
complexity constant c was set to ‘5.0’, and build
Logistic Models was set to ‘true’. A linear kernel was
used by default.

E. Performance Metric

The Area Under the ROC (receiver operating characteristic)
curve (i.e., AUC) is one of the most widely used single
numeric measures that provides a general idea of the predictive
potential of the classifier. The ROC curve graphs true positive
rates versus the false positive rates. Traditional performance
metrics for classifier evaluation consider only the default de-
cision threshold of 0.5. ROC curves illustrate the performance
across all decision thresholds. A classifier that provides a large
area under the curve is preferable over a classifier with a
smaller area under the curve. A perfect classifier provides an
AUC that equals 1. AUC is of lower variance and is more
reliable than other performance metrics such as precision,
recall, and F-measure [16].

F. Cross-Validation

For all experiments, we employed 10 runs of 5-fold cross-
validation (CV). That is, for each run the data was randomly
divided into five folds, one of which was used as the test data
while the other four folds were used as training data. All the

Selected

Attributes

Sampled

Fit Data

Original

Fit Data

Selected

Attributes

Data

Sampling

(DS)

Feature

Selection

(FS)

Original

Fit Data

DS-FS-UnSam

(Approach 1)

FS-DS

(Approach 3)

DS-FS-Sam

(Approach 2)

Feature

Selection

(FS)

Fig. 1. Three approaches for combining feature selection with data sampling

TABLE I
DATA CHARACTERISTICS

Dataset Rel. thd #Attr. #Inst. fp nfp
% # %

2.0 10 209 377 23 6.1 354 93.9
Eclipse 1 2.1 5 209 434 34 7.8 400 92.2

3.0 10 209 661 41 6.2 620 93.8
2.0 5 209 377 52 13.8 325 86.2

Eclipse 2 2.1 4 209 434 50 11.5 384 88.5
3.0 5 209 661 98 14.8 563 85.2

preprocessing steps (feature selection and data sampling) were
done on the training dataset. The processed training data was
then used to build the classification model and the resulting
model was applied to the test fold. This cross-validation was
repeated five times, with each fold used exactly once as the
test data. The five results from the five folds then was averaged
to produce a single estimation. In order to lower the variance
of the CV result, we repeated the CV with new random splits
10 times. The final estimation is the average results over the
10 runs of 5-fold CV.

IV. A CASE STUDY

A. Datasets

In our experiments, we use publicly available data,
namely the Eclipse defect counts and complexity met-
rics dataset obtained from the PROMISE data repository
(http://promisedata.org). In particular, we use the metrics and
defects data at the software packages level. The original data
for Eclipse packages consists of three releases denoted 2.0, 2.1,
and 3.0 respectively. Each release as reported by Zimmerman
et al. [17] contains the following information: the name of
the package for which the metrics are collected (name), the
number of defects reported six months prior to release (pre-
release defects), the number of defects reported six months
after release (post-release defects), a set of complexity metrics
computed for classes or methods and aggregated in terms of
average, maximum, and total (complexity metrics), and the

abstract syntax tree of the package consisting of the node size,
type, and frequency (structure of abstract syntax tree(s)). For
our study we transform the original data by: (1) removing all
non-numeric attributes, including the package names, and (2)
converting the post-release defects attribute to a binary class
attribute with fault-prone (fp) being the minority class and not-
fault-prone (nfp), the majority class. Membership in each class
is determined by a post-release defects threshold thd, which
separates fp from nfp packages by classifying packages with
thd or more post-release defects as fp and the remaining as
nfp. In our study, we use thd = {10, 5} for releases 2.0 and
3.0 while we use thd = {5, 4} for release 2.1. This results
in two groups. Each group contains three datasets, one for
each release. The reason why a different set of thresholds is
chosen for release 2.1 is that we would like to keep similar
class distributions for the datasets in the same group. All
datasets contain 209 attributes (208 independent attributes and
1 dependent attribute). Table I shows the characteristics of the
datasets after transformation for each group. These datasets
exhibit different distribution of class skew (i.e., the percentage
of fp examples).

B. Results and Analysis

The results (in terms of AUC) of the correlated-based
feature subset selection technique combined with random
undersampling averaged over 10 runs of 5-fold CV for each
dataset are reported in Table II, which contains the results for
all five learners and three combination approaches. For a given
learner, the best combination approach is highlighted in bold
for each dataset. Among the 30 best performers, 23 are from
Approach 1, 6 from Approach 3 and the remaining one from
Approach 2.

Fig. 2 provides comparisons of three combination ap-
proaches along with various classification algorithms averaged
over the respective groups of datasets. The charts intuitively
demonstrate that

• Approach 1 performed better than the other two ap-
proaches for all the learners in Eclipse 1 (see Fig. 2(a)).

TABLE II
CLASSIFICATION PERFORMANCE

(a) Eclipse 1
Release Approach NB MLP KNN SVM LR

1 0.8437 0.8513 0.8738 0.8772 0.8657
2.0 2 0.8234 0.8301 0.8555 0.8488 0.7626

3 0.8205 0.8011 0.8606 0.8458 0.7193
1 0.8312 0.8612 0.8688 0.9031 0.8730

2.1 2 0.8204 0.8327 0.8507 0.8734 0.7894
3 0.8319 0.8371 0.8867 0.8861 0.7885
1 0.8891 0.8844 0.8834 0.9146 0.9097

3.0 2 0.8843 0.8605 0.8747 0.9075 0.8445
3 0.8783 0.8696 0.8628 0.9068 0.7721

(b) Eclipse 2
Release Approach NB MLP KNN SVM LR

1 0.8273 0.8654 0.8705 0.9064 0.8880
2.0 2 0.8302 0.8624 0.8736 0.8807 0.8383

3 0.8397 0.8580 0.8656 0.8934 0.7865
1 0.8219 0.8509 0.8377 0.8909 0.8818

2.1 2 0.8150 0.8355 0.8364 0.8657 0.8395
3 0.8119 0.8363 0.8544 0.8828 0.8548
1 0.8766 0.8963 0.8915 0.9336 0.9348

3.0 2 0.8708 0.8951 0.8878 0.9180 0.9186
3 0.8777 0.9025 0.9006 0.9222 0.9268

TABLE III
ANOVA FOR THE ECLIPSE DATASETS

(a) Eclipse 1
Source Sum Sq. d.f. Mean Sq. F p-value
Approach 0.1217 2 0.0609 25.89 0.000
Error 1.0508 447 0.0024
Total 1.1725 449

(b) Eclipse 2
Source Sum Sq. d.f. Mean Sq. F p-value
Approach 0.0156 2 0.0078 5.20 0.006
Error 0.6701 447 0.0015
Total 0.6856 449

• Approach 1 performed better than the other two ap-
proaches for the MLP, SVM, and LR learners in Eclipse
2, while for the NB and KNN learners, Approach 1
displayed similar or slightly worse performance than
Approach 3 (see Fig. 2(b)).

• The advantage of Approach 1 is obvious when the SVM
and LR learner were employed.

• Some learners, like LR, are significantly affected by the
combination approach adopted, while others, like NB and
KNN, are more robust with different approaches.

We further carried out a one-way analysis of variance
(ANOVA) F-test on the classification performance to examine
if the three combination approaches are statistically different
or not. Note that all the statistical analysis was performed over
each individual group of datasets, since each group displayed
a distinct degree of class imbalance. In addition, as learner is
not the focus of this paper, the factor taken into account only
is the three combination approaches. The null hypothesis for
the ANOVA test is that all the group population means are the
same, while the alternate hypothesis is that at least one pair of

0.65

0.70

0.75

0.80

0.85

0.90

0.95

NB MLP KNN SVM LR

Eclipse 1

Approach 1

Approach 2

Approach 3

(a) Eclipse 1

0.80

0.82

0.84

0.86

0.88

0.90

0.92

NB MLP KNN SVM LR

Eclipse 2

Approach 1

Approach 2

Approach 3

(b) Eclipse 2

Fig. 2. Comparisons of three approaches

means is different. Table III shows the ANOVA results. The
p-value is less than the cutoff 0.05 for the factor, meaning
that the alternate hypothesis is accepted, namely, at least two
approach means are significantly different from each other.

We further conducted a multiple comparison test on the
factor with Tukey’s honestly significant difference (HSD)
criterion. For both the ANOVA and multiple comparison tests,
the significance level was set to 0.05. Fig. 3 shows the multiple
comparisons for both groups of datasets. The figures display
graphs with each group mean represented by a symbol (◦)
and 95% confidence interval as a line around the symbol. Two
means are significantly different if their intervals are disjoint,
and are not significantly different if their intervals overlap.
The assumptions for constructing ANOVA and Tukey’s HSD
models were validated. From these figures we can see the
following points:

• Approach 1 had significantly better classification per-
formance than Approaches 2 and 3 for both groups of
datasets.

• Approach 2 and Approach 3 showed similar performance
(no significant difference). Approach 2 performed slightly
better than Approach 3 for Eclipse 1, while Approach
2 had slightly worse performance than Approach 3 for
Eclipse 2.

Overall, when the correlation-based feature selection tech-
nique is used along with the random undersampling method,
we strongly recommend the data pre-processing approach in
which sampling is performed prior to feature selection and
the training data is formed using selected features along with
unsampled data. This approach is especially effective when
SVM and LR are used as classifiers.

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

Approach 3

Approach 2

Approach 1

(a) Eclipse 1

0.855 0.86 0.865 0.87 0.875 0.88 0.885 0.89

Approach 3

Approach 2

Approach 1

(b) Eclipse 2

Fig. 3. Multiple comparison for three approaches

V. CONCLUSION

In this study, we proposed feature subset selection combined
with data sampling to overcome the high dimensionality and
class imbalance problems that often affect software quality
classification. Three approaches were investigated: 1- sampling
performed prior to feature selection, retaining the unsampled
data instances; 2- sampling performed prior to feature selec-
tion, retaining the sampled data instances; and 3- sampling
performed after feature selection. More specifically, we were
interested in investigating the correlation-based feature se-
lection method used along with random undersampling and
studying the effect of three combination approaches.

In the experiments, we applied these techniques to six
datasets from a real-world software system. We built classifi-
cation models using five learners. The results demonstrate that
among the three data pre-processing approaches, sampling per-
formed prior to feature selection and retaining the unsampled
data (Approach 1) had significantly better performance than
sampling performed after feature selection (Approach 3) or
sampling performed prior to feature selection but retaining the
sampled data (Approach 2). Of the five learners, Support Vec-
tor Machine presented the best performance, while Multilayer
Perceptron and K Nearest Neighbors demonstrated average
performance. Logistic Regression performed variously with
respect to different data pre-processing approaches. In contrast,
Naı̈ve Bayes showed relatively consistent performance for
various approaches.

Future work will involve comparisons between feature rank-

ing and feature subset selection as well as between wrapper
subset selection and filter subset selection.

REFERENCES

[1] A. K. Pandey and N. K. Goyal, “Predicting fault-prone software module
using data mining technique and fuzzy logic,” Special Issue of Interna-
tional Journal of Computer and Communication Technology, vol. 2, no.
2-4, pp. 56–63, 2010.

[2] H. Liu, H. Motoda, R. Setiono, and Z. Zhao, “Feature selection: An
ever evolving frontier in data mining,” in Proceedings of the Fourth In-
ternational Workshop on Feature Selection in Data Mining, Hyderabad,
India, 2010, pp. 4–13.

[3] M. A. Hall, “Correlation-based feature selection for machine learning,”
Ph.D. dissertation, The University of Waikato, Hamilton, New Zealand,
1999.

[4] G. M. Weiss, “Mining with rarity: A unifying framework,” SIGKDD
Explorations, vol. 6, no. 1, pp. 7–19, 2004.

[5] V. Kumar and S. Minz, “Feature selection: A literature review,” Smart
Computing Review, vol. 4, no. 3, pp. 211–229, June 2014.

[6] M. A. Hall and G. Holmes, “Benchmarking attribute selection techniques
for discrete class data mining,” IEEE Transactions on Knowledge and
Data Engineering, vol. 15, no. 6, pp. 1437 – 1447, Nov/Dec 2003.

[7] K. Gao, T. M. Khoshgoftaar, and N. Seliya, “Predicting high-risk pro-
gram modules by selecting the right software measurements,” Software
Quality Journal, vol. 20, no. 1, pp. 3–42, 2012.

[8] C. Akalya devi, K. E. Kannammal, and B. Surendiran, “A hybrid feature
selection model for software fault prediction,” International Journal on
Computational Sciences and Applications, vol. 2, no. 2, pp. 25–35, Apr.
2012.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, and P. W. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[10] R. Barandela, R. M. Valdovinos, J. S. Sanchez, and F. J. Ferri, “The
imbalanced training sample problem: Under or over sampling?” In Joint
IAPR International Workshops on Structural, Syntactic, and Statistical
Pattern Recognition (SSPR/SPR’04), Lecture Notes in Computer Science
3138, no. 806-814, 2004.

[11] R. S. Wahono, N. Suryana, and S. Ahmad, “Metaheuristic optimization
based feature selection for software defect prediction,” Journal of
Software, vol. 9, no. 5, pp. 1324–1333, May 2014.

[12] K. Gao and T. M. Khoshgoftaar, “Software defect prediction for high-
dimensional and class-imbalanced data,” in Proceedings of the 23rd
International Conference on Software Engineering & Knowledge Engi-
neering (SEKE’2011), Eden Roc Renaissance, Miami Beach, USA, July
7-9, 2011, 2011, pp. 89–94.

[13] C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano,
“Rusboost: A hybrid approach to alleviating class imbalance,” IEEE
Transactions on Systems, Man, and Cybernetics, Part A, vol. 40, no. 1,
pp. 185–197, 2010.

[14] I. H. Witten, E. Frank, and M. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed. Morgan Kaufmann, 2011.

[15] J. Shawe-Taylor and N. Cristianini, Support Vector Machines, 2nd ed.
Cambridge University Press, 2000.

[16] Y. Jiang, J. Lin, B. Cukic, and T. Menzies., “Variance analysis in
software fault prediction models,” in Proceedings of the 20th IEEE In-
ternational Symposium on Software Reliability Engineering, Bangalore-
Mysore, India, Nov. 16-19 2009, pp. 99–108.

[17] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of the 29th International Conference on Soft-
ware Engineering Workshops. Washington, DC, USA: IEEE Computer
Society, 2007, p. 76.

