
Creating User Scenarios through User Interaction
Diagrams by Non-Technical Customers

Douglas Hiura Longo and Patrícia Vilain
Informatics and Statistics Department,
 Federal University of Santa Catarina,

Florianopolis, Brazil
douglashiura@inf.ufsc.br, patricia.vilain@ufsc.br

Abstract—This paper investigates the applicability of User
Interaction Diagrams (UIDs) as user scenarios for specifying
requirements of software built by non-technical customers. User
scenarios represent an alternative to representation of
Acceptance Test-Driven Development (ATDD). Two methods for
building user scenarios using UIDs were proposed: the
progressive and the regressive methods. The progressive method
for construction of scenarios provides a description from any
starting point until the expected result is reached. The regressive
method is based on the Assert-First technique, introduced in
Test-Driven Development (TDD), where the user scenario is
constructed the other way round, that is, from the expected result
to the starting point. These two methods were applied in an
experiment where the results demonstrated that the regressive
method requires significantly less effort as compared to the
progressive method. The quality criteria of the two methods were
different, where the regressive method yielded better results.

Keywords: Requirements Engineering; ATDD; Assert First;
TDD; User Scenarios.

I. INTRODUCTION
It is known that understanding user requirements is critical

to the success of a project [1]. The basic idea of Automated
Acceptance Testing - AAT is to document requirements and
desired outcomes in a format that can be automatically and
repeatedly tested [2]. AAT represents customer expectations
[1] and was adopted in agile software development holding
great promise of improving communication and collaboration
among those involved [2, 3, 4].

According to Hoffmann et al., Acceptance Test-Driven
Development - ATDD facilitates the requirements
specification, raising awareness, to those involved, of the
importance of testing as an auxiliary mechanism for quality
assurance. In theory, the customer expresses requirements as
input to the software paired with some expected result [5].
However, in practice, customers prefer to express requirements
at interaction meetings, while acceptance tests are written by
developers [2].

Alvestad investigated whether a non-technical customer
could express requirements based on domain specific
languages, but was not successful in confirming his
assumptions [6]. Domain specific languages are used by tools
for automated tests. The tools for AAT support these

requirements representations: formal, semi-formal and informal
(NL, Stories, Tables). However, such tools do not include the
end user in the requirements specification process [7].
According to Haugset and Hanssen, the application of AATs is
barely reflected in practice and it is somewhat inappropriate for
customers to express requirements in the form of automated
acceptance tests [2].

The tools or languages in general induce the sequential
creation of a requirement specification, which is where the
requirement is specified, starting from any point towards the
desired outcome. This is called the progressive method.

However, Test-Driven Development - TDD is a set of
development practices, where the code is developed from tests.
The Assert-First technique has a powerful simplifying effect
during test development [8]. This technique consists of writing
the test assertions first by following a regressive process in
order to complete the test, writing the minimum of code lines.
In this way, the regressive method consists of creating the
requirement specification from the result.

User Interaction Diagrams (UIDs) represent the interaction
between the user and the system, and can support the users’
representation of scenarios [9, 10]. The present study
investigates the possibility of a non-technical customer to
express the system requirements by using UIDs as user
scenarios. However, it also investigates the creation of
requirements specification using the progressive and regressive
methods.

To evaluate the proposal, we considered an experiment with
21 non-technical participants, and the requirements
specification for a game. The objective of the experiment is to
demonstrate the use of UIDs as an agile method for
requirements specification, and check different results between
the two methods.

This paper is organized as follows: Section II presents
details of the proposal. Section III describes the evaluation
methodology for verifying the proposal’s efficacy. The results
of the study are presented in Section IV. Section V presents
threats to validity. Finally, the conclusions are presented.

II. RESEARCH PROPOSAL
This study uses UIDs for representing software

requirements. This proposal replaces the information types

DOI reference number: 10.18293/SEKE2015-179

represented in the UIDs by values of the user scenarios. Fig. 2
shows an example of user interaction with a calculator and the
representation of a user scenario through a UID.

Figure 1. User scenario of a calculator for the sum function, with sample

pictures of the user’s interaction (points) with the calculator.

Fig. 1 shows the user's interaction with the calculator,
following the user scenario. In this example, the user enters the
values for the sum (3 + 1 =) and the system displays the result
(4).

Table 1 below presents the symbols for the language to
represent user scenarios through UIDs.

TABLE I. SYMBOLS FOR THE LANGUAGE OF USER SCENARIOS
REPRESENTATION THROUGH UIDS.

Symbol Use

Ellipse - represents a state of interaction

 Arrowed line - represents the transition
between interaction states and flow direction.

Rectangle – represents the user input, its
value is represented by a set of characters
contained within the ellipse.

Characters
sequence

Value - represents the system output, where a
set of characters is contained within the
ellipse.

Every interaction state (ellipse) contains the values of the
user input and system output. The flow of the interaction states
is represented by the direction of the transition. The initial state
is the first interaction state following the direction of the
arrows. The final state, in turn, is the last interaction state of the
flow. For the construction of the requirements specification as
user scenarios, the following methods are presented:

• Progressive: it indicates the expected result only at the
end of the construction flow. Initially, the interaction states are
built in order to achieve the expected result. Fig. 1 shows the
progressive flow of the construction of a requirement
specification, that is, every specification of the sum function is
constructed, and its result is shown only at the end of the flow.

• Regressive: similarly to the Assert-First technique [8],
the regressive method starts the construction of the user
scenario from the result, and adds other interaction states
specifically to reach the outcome (initial state). Fig. 2 shows
the scenario where the requirement is constructed with the
regressive method.

Figure 2. Regressive method to create the sum function scenario of a

calculator.

III. ASSESSMENT OF THE PROPOSAL
The purpose of user scenarios is the specification of

software requirements. Customers and developers to promote
communication and collaboration can use these scenarios
during development. However, it is important that such
requirements be complete, consistent and realistic [11, 12].

To assess applicability and usefulness of the proposal in
relation to completeness and consistency of requirements
represented by non-technical1 participants, we conducted an
experiment. The experiment aimed at the construction of user
scenarios of the 8-Puzzle game. We proposed to investigate the
following questions:

 RQ1: What quality factors (completeness and
correctness) of the requirements are represented in user
scenarios?

 RQ2: Are such quality factors (completeness and
correctness) associated with progressive or regressive methods?

 RQ3: Which of the proposed methods facilitates the
construction of user scenarios?

A. The 8-Puzzle Game
8-Puzzle is a game consisting of a board with 3 rows and 3

columns. The board has a number sequence from 1 to 8 and an
empty space. The goal is, starting from a random state, to order
the sequence of numbers. Fig. 3 shows the final state.

Figure 3. Final state of the 8-Puzzle game.

The operations for the configuration of the board include
moving the empty space up, left, right or down. In digital
implementations, the empty space is moved by using the
keyboard arrow keys or by clicking on a number next to the
empty space.

B. Methodology for assessment
For the assessment, we considered the construction of user

scenarios for the requirements specification of the 8-Puzzle
game with non-technical participants. The materials needed
were: a pencil or pen, an eraser, and blank paper. Fig. 4 shows
the diagram with the activities carried out during the three
evaluation stages: preparation, experiment and result analysis.

1 Non-Technical participants are not knowledgeable about UIDs, FIT,

and Automated Acceptance Testing.

Figure 4. Diagram of activity for assessment of user scenarios through UID.

1) Preparation: In order to answer the questions and
analyze the differences between the methods, the participants
were divided into three groups: progressive, regressive and
control (progressive/regressive). In the preparation stage, the
participants were trained for about 15 minutes, according to
each group. So, during the preparation stage of the progressive
group, explanation activities were carried out about: UIDs, the
progressive method, and the 8-Puzzle game. The regressive
group carried out explanation activities about: UIDs, the
regressive method, and the 8-Puzzle game. For the control
group, explanation activities were performed about: UIDs, the
progressive and regressive methods, and the 8-Puzzle game.
This way, the participants of the control group made their own
choice of method during the experiment. During the
explanations, the participants were allowed to use a pencil and
some paper in case they wanted some practice.

2) Experiment: In the experiment stage, each participant had
to specify the final state of the 8-Puzzle game, or victory, still
considering some user interaction for the board configuration.
The user scenarios had to be developed using paper and a
pencil or pen, at the participant's choice. Each participant had
the maximum time limit of 15 minutes for the experiment
performance. The time spent by each participant to complete
the task was collected during the experiment.

C. Analysis of question RQ1
Fig. 6 shows an expected user scenario of the 8-Puzzle

game.

Figure 5. Expected user scenario of the 8-Puzzle game.

User scenario variations such as user input to move the
pieces (numbers) on the board, quantity of interactions, and
direction of transition flows were considered adequate even
being different from the diagram in Fig. 5. Question RQ1 can
be answered by evaluating the user scenarios. The analysis
considered the evaluation of the quality factors: completeness
and correctness.

1) Completeness: It means that all user-required services
must be defined [11, 12]. Completeness can be evaluated by
assigning complete/incomplete values. It is considered to be
complete the user scenario that presents:

• The end result or state of victory; and

• At least one user input to the board configuration.

In [13], incompleteness is defined as ambiguity type. It
occurs when a statement fails to provide enough information to
have a single clear interpretation. It is considered to be
incomplete the user scenario that:

• Does not present state of victory;

• Does not present interaction of playing; or

• Is incorrect.

2) Correctness: It is the quality factor indicating whether
the participant understands and correctly applies the UID
language. Correct/incorrect values are assigned for this quality
factor. The correct value is assigned to the user scenarios
where the language symbols are properly applied in
accordance with Table I. The incorrect value is assigned to the
user scenario that:

• Contains cyclic transitions;

• Contains transitions to more than one interaction state;

• Contains transitions to random values; or

• Does not consider the flow of transitions.

D. Analysis of Question RQ2
Question RQ2 can be answered by the formula below with

the following hypothesis:

H! ∶ F!"#$"%&&'(% ! F!"#$"!!"#$

 And (1)

H! ∶ F!"#$"%&&'(% ! F!"#$"%%&'"

• F!"#$"%&&'(% is completeness and correctness of the
user scenarios progressively specified; and

• F!"#$"%%&'" is completeness and correctness of user
scenarios regressively specified.

The decision to accept H! or H! is made from the data
collected from the experiment. By accepting the H! hypothesis,
it can be stated that the quality factors of the expressed
requirements are indifferent, that is, these quality factors are
not associated with the method. However, by accepting the H!,
hypothesis, we affirm that the quality factors are different
between the two methods, that is, these quality factors are
associated with the method. The statistical test significance
level should be at least 5% (𝛼 = 0.05).

E. Analysis of Question QR3
The easiness or effort to construct the user scenarios are

analyzed through time data. Therefore, it is necessary to carry
out a distribution analysis of the time spent by the participants
according to the method used for comparison.

IV. RESULTS

A. Preparation Stage
The experiment was conducted with 21 participants. The

participants were prepared according to the progressive and/or
regressive methods, resulting in three groups. The progressive
group consisted of 8 participants. The regressive group was
composed of 6 participants. The control group consisted of 7
participants. The graph in Fig. 6 shows the education level of
the participants.

Figure 6. Education level of the participants.

 The participants’ ages range from 22 to 45 years. Fig. 7
shows box plots with the participants’ age variation in each
group.

Figure 7. Participants’ age variation in each group.

B. Experiment results
The user scenarios delivered by the participants were

initially classified according to the progressive or regressive
methods. Ten participants used the progressive method and
eleven participants used the regressive method. The choices of

the control group were 29% progressive method and 71%
regressive method. Table II presents the correlation matrix
between methods used during preparation and methods used by
the participants during the experiment.

TABLE II. CORRELATION MATRIX BETWEEN PREPARATION AND
EXPERIMENT.

Correlation Matrix Experiment
Progressive Regressive

Preparation
Progressive 8 0
Regressive 0 6
Control 2 5

The quality factors (completeness and correctness) of user
scenarios are evaluated according to Section IV (Analysis of
question RQ1).

1) Complete and Correct: The assessment considered
fourteen of the user scenarios as complete and correct. As an
example, Fig. 8 shows a user scenario that applied the
progressive method, which was assessed as correct and
complete.

Figure 8. Complete and correct user scenario using the progressive method.

Fig. 9 and 10 show two scenarios that applied the regressive
method and were assessed as correct and complete.

Figure 9. Complete and correct user scenario using the regressive method,

applying movement to the number adjacent to the empty space.

Figure 10. Complete and correct user scenario using the regressive method,
applying movement to the empty space.

2) Incomplete and Correct: The assessment considered five
of the user scenarios as incomplete and correct.

Figure 11. Incomplete and correct user scenario using the regressive method,

not specifying interaction of playing.

3) Incorrect and Incomplete: In only two cases, the
participants used UID incorrectly. In such cases, it is assumed
that the requirement was incomplete due to absence of syntax.

Figure 12. Incomplete and incorrect user scenario using the progressive

method, an unintelligible user scenario.

In an overall assessment result, the participants delivered
67% complete user scenarios where 90% of them used UIDs
correctly.

The graph in Fig. 13 displays the completeness and
correctness distribution divided according to the scenario
method of construction.

Figure 13. Graph showing the probability of correctness and completeness,

divided according to construction method.

Axis "x" on the graph in Fig. 13 represents the distribution
of correctness and axis "y" represents completeness. The
positive area of axes "x" and "y" represents the best quality
factor. It can be seen that the user scenarios specified by the
progressive method have a 40% probability of being complete,
and 80% of being correct. And the regressive method has 91%
probability of being complete, and 100% of being correct
(RQ1).

To demonstrate the difference of quality factors between
the methods, we used Fisher's statistical test [14].

Figure 14. Fisher's statistical test applied with the statistical tool R.

According to Fisher’s statistical test, p-value is 0.04928.
However, the confidence level of the test must be (𝛼 = 0.05).
Thus, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 then the alternative hypothesis (H!) is
considered, allowing to conclude that the quality factors are
different between the methods (RQ2).

The box plot in Fig. 15 shows the distribution of the time
spent divided according to the construction method.

Figure 15. Distribution of time spent, according to construction method.

The time spent by the progressive group is between 3 and
15 minutes, and the regressive group is between 1 and 6
minutes. The regressive method has an outlier. The outlier (6
minutes), out of the distribution of time spent by the group,
indicates that a participant may have found it more difficult to
specify and develop the user scenario. The average time used
by the progressive and regressive groups is 9 minutes and 3
minutes, respectively. Thus, according to the time distribution
analysis, the regressive method involves less effort (RQ3).

V. THREATS TO VALIDITY
While the 8-puzzle is simple and effective for experimental

purposes, abstracting from this game scenario to the use of UID
in real-world software project requirements is not easy. The
case study research is incomplete without a discussion of
concerns that may threaten results validity. Internal validity
refers to the causal inferences made based on experimental data
[15]. Our goal is simply to determine whether and how
participants create user scenarios through UIDs.

The case study has two important considerations:
knowledge of the case study; creation process of user scenarios.

The knowledge of the case study by participants refers to the
domain on the 8-puzzle, considering the logic and rules. This
knowledge is common to the participants. The user scenarios
creation process is different from the process of reproduction
(copy) of user scenarios. An example of reproduction is to copy
the calculator user scenario (Fig. 1) and simply change the user
setting values. Our case study avoids the process of
reproduction of the participants, considering only the creation
of user scenarios. We also observed that the problem domain
allowed the evaluation of the effort to create user scenarios
without interruption for fatigue.

Construct validity refers to the appropriate use of evaluation
metrics and measures [15]. We specifically avoid the use of
absolute measures of completeness and correctness conforms
the term as expressed in accepted IEEE standards [16]. To
calculate other statistical measures, we used accepted statistics
for agreement (Fisher's Exact Test) and scrupulously followed
recommended practices in applying them.

External validity refers to the ability to generalize the
findings to other domains [15]. The external validity of
research contains two threats: the problem domain studied and
the population of participants. The problem domain (8-puzzle)
contains user interactions with the system. These user
interactions are similar, such as: a calculator; authentication
systems; or in areas of other studies that consider the
applicability of UIDs in software engineering, as in [9] [10]
[17].

Unfortunately, the study used a small population of
participants, rather than a large population of participants.
However, the population of participants was composed of
different educational levels, and related areas of business,
engineering and science.

Reliability refers to the ability of other researchers to
replicate methodology [13]. We detail the proposal and the
evaluation technique and the result, and we consider important
other researchers to reproduce our study.

VI. CONCLUSIONS
The challenge of eliciting requirements from customers is

worthy of investigation and so is any effort to simplify or assist
in the process. The paper does both and some interesting results
are shared. The applicability of user scenarios in the present
study is related to agile software development, where
requirements are customer expectations and should as well be
used as tests for the application code. UIDs were used to allow
non-technical customers to represent user scenarios. In this
context, UIDs were quite suitable for creating user scenarios to
specify software requirements.

As for the assessment of this proposal, an experiment was
conducted with 21 non-technical participants to specify the
requirements of a game. With statistical analysis of the
experiment results, it was observed that the progressive and
regressive specification methods are different. The regressive
method resulted in 91% of complete requirements while the
progressive method resulted in 40% of complete requirements.
The participants delivered 67% complete user scenarios where
90% of them used UIDs correctly. However, in our study case,
the novelty of the proposed regressive method based on the

TDD assert-first technique is the reduction of effort, and
improvement in the assessed quality factors of the
requirements.

In spite of the fact that this study has considered only UIDs
for representing user scenarios, a tool for automated acceptance
tests is being built, with support for direct execution of user
scenarios.

REFERENCES
[1] R. Miller and C. T. Collins, “Acceptance testing,” Proc.

XPUniverse. 2001.
[2] B. Haugset and G. K. Hanssen, “Automated acceptance testing:

A literature review and an industrial case study,” Agile, 2008.
AGILE'08. Conference, IEEE. 2008, pp. 27-38.

[3] T. Dybå and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review,” Information and software
technology. Elsevier, vol. 50, 2008, pp. 833-859.

[4] G. K. Hanssen and B. Haugset, “Automated acceptance testing
using fit,” System Sciences, HICSS'09, 42nd Hawaii
International Conference on. IEEE, 2009, pp. 1-8.

[5] L. F. S. Hoffmann, L. E. G. D. Vasconcelos, E. Lamas, A. M. D.
Cunha and L. A. V, Dias, “Applying Acceptance Test Driven
Development to a Problem Based Learning Academic Real-
Time System,” Information Technology: New Generations
(ITNG), IEEE, 11th International Conference on. 2014, pp. 3-8.

[6] K. Alvestad, “Domain Specific Languages for Executables
Specifications,” Institutt for datateknikk og
informasjonsvitenskap. p. 63, 2007.

[7] M. Kamalrudin, S. Sidek, M. N. Aiza, and M. Robinson,
“Automated Acceptance Testing Tools Evaluation in Agile
Software Development,” Sci. Int. 2013, pp. 1053-1058.

[8] K. Beck, Test Driven Development: By Example. Addison-
Wesley Professional, 2003.

[9] N. Güell, D. Schwabe and P. Vilain, “Modeling interactions and
navigation in web applications,” Conceptual Modeling for E-
Business and the Web. Springer, 2000, pp. 115-127.

[10] P.Valderas, V. Pelechano, “A survey of requirements
specification in model-driven development of web applications,”
ACM Transactions on the Web (TWEB). ACM, Vol. 5, p.10,
2011.

[11] I. Sommerville, Software Enginnering. 9th ed, p. 773. Addison-
Wesley, 2011.

[12] A. D. Lucia and A. Qusef, “Requirements engineering in agile
software development,” Journal of Emerging Technologies in
Web Intelligence. vol. 2, 2010, pp. 212-220.

[13] A. K. Massey, R. L. Rutledge, A. I. Anton, P. P. Swire,
“Identifying and classifying ambiguity for regulatory
requirements, ” Requirements Engineering Conference (RE),
2014 IEEE 22nd International, IEEE, 2014, pp. 83-92,

[14] E. L. Lehmann, and J. P. Romano, “Testing statistical
hypotheses”. Springer, 2006.

[15] R. K. Yin, Case Study Research: Design and Methods, 3rd ed.,
ser. Applied Social Research Methods Series, L. Bickman and
D. J. Rog, Eds. Sage Publications, 2003, vol. 5.

[16] IEEE Recommended Practice for Software Requirements
Specifications," IEEE Std 830-1998 , pp.1-40, 1998.

[17] N. V. Zeferino and P. Vilain, “A model-driven approach for
generating interfaces from user interaction diagrams,”
Proceedings of the 16th International Conference on Information
Integration and Web-based Applications & Services. ACM,
2014, pp.474-478.

