
Using Time Series Models for Defect Prediction in
Software Release Planning

James Tunnell and John Anvik
Computer Science Department
Central Washington University
Ellensburg, WA 98926, USA
[tunnellj, janvik]@cwu.edu

Abstract—A time series model is presented that uses historical
project information to predict the number of future defects, given
the number of proposed features and improvements to be
completed. This allows for hypothetical release plans to be
compared by assessing their predicted impact on testing and
defect-fixing time. We selected the VARX time series model as a
reasonable approach. The accuracy of the model appeared low
for a single dataset, but the error was found to be normally
distributed.

Keywords-software defect prediction; quality assurance; release
planning; time series model;

I. INTRODUCTION

There are two primary concerns in software release
planning: improving functionality and maintaining high
quality. Both objectives are constrained by limits on
development time and budget, so the scope of the planned work
must be limited to accommodate fixing inevitable defects
(bugs) that will arise. In this way, a high quality software
product can be produced while also improving its functionality.

A significant consideration in the release planning process
is the amount of time allocated for testing and bug-fixing. If
this factor is not considered, the project risks a slip in the
schedule or in the quality of the product. As the time and effort
required for testing and bug-fixing will likely be a function of
the defects introduced during development, it is desirable to be
able to predict the number of expected defects.

A potential application for defect prediction is to compare
different release plans according to their estimated bug fallout
and subsequent impact on testing and bug-fixing times. This
would assist release planners in ensuring that the total
development time does not exceed the project’s time budget for
a release. The comparison of different release plans is integral
to release plan optimization, which is the focus of The Next
Release Problem [2], a key problem in Search-Based Software
Engineering (SBSE) [9, 13].

Most approaches to defect prediction focus on either code
analysis [1, 5, 6, 8, 11] or historical defect information [7, 10,
13]. However, for the defect prediction model to be useful in
comparing release plans, the model should also depend on the
planned features and improvements planned for the next
release, as well as the defects from past releases.

This paper presents an approach to defect prediction that
can be applied for a proposed release. A multivariate time
series model is used that incorporates information about
proposed features, improvements, and historical defect data.

The paper proceeds as follows. First, Section II presents
further motivation for the use of a time series model for
predicting defects. Next, we present an overview of concepts in
time series modeling in Section III. Section IV presents our
modeling methodology and Section V presents the application
of the approach, which is applied to a software project dataset.
Related work is presented in Section VI, and the paper
concludes in Section VII.

II. MOTIVATION

Release planners typically rely on both their experience and
project conventions to generate a release plan by selecting
planned features and improvements such that the estimated
time to test for and fix defects will not cause a schedule slip.

However, if the defect estimation technique is only loosely
based on past experience, as with a rule-of-thumb, then it may
prove too coarse for comparing multiple release plans, and may
not provide any quantitative difference between release plans
that are similar (but not the same). Even for dissimilar release
plans, such an approach still has the disadvantage of lacking
confidence intervals to quantify prediction uncertainty.

An alternative approach is to develop a model that will take
into account the differences in composition of features and
improvements between the release plans. Such a model would
assume some explanatory relationship.

Since predictive models rarely have perfect accuracy,
confidence levels are an important part of any prediction to
allow release planners to assess the risk of relying on the defect
prediction. Planners can choose a more narrow prediction
window, in exchange for a larger risk that the prediction is
inaccurate. Conversely, a wider prediction window means that
the potential cost range is also wider with a lower risk of
inaccuracy.

III. TIME SERIES MODELING

In this section, time series and autoregressive models are
introduced. Then, further concepts related to modeling,
exogeneity and stationarity, are discussed.

(DOI reference number: 10.18293/SEKE2015-174)

A. Time Series

A time series is a collection of observations that occur in
order, with an underlying process that is stochastic. Critically,
the sequence of observations cannot be re-arranged, as each
observation is typically dependent on one or more previous
observation. This dependence is termed autocorrelation and
accounting for it is one of the primary functions of a time series
model.

B. Autoregressive Models

A basic autoregressive (AR) model is formed as a linear
combination of previous values, plus a white noise term that
accounts for random variations (the stochastic portion). When
the AR model is extended to the multivariate case (i.e. allowing
for multiple time series), a Vector AR (VAR) model is formed.
This model will support not only a time series for defect count,
but also time series for the two release plan variables:
improvements and new features.

The VAR model can be further extended by considering
one or more variables to be exogenous, making a VARX
model. Exogenous variables are used to explain the other non-
exogenous variables, but the model does not attempt to explain
the exogenous variables themselves. This model meets the
requirements of the explanatory model described in the
Motivation section, since it would allow release plan variables
to be kept exogenous and used only to explain defect count.

C. Stationarity and Trends

A strictly stationary process has a probability distribution
that is time-invariant. This means statistics such as mean and
variance do not change. The AR, VAR, and VARX models
discussed so far require time series data that is stationary,
where the probability distribution of the underlying stochastic
process is time-invariant. Testing can identify a time series as
being stationary, trend stationary, or non-stationary.

A time series can be established as non-stationary by testing for
the presence of a unit root in the underlying AR model. The
unit root test used is the Augmented Dickey Fuller (ADF) test.
On the other hand, a stationarity test establishes a time series as
trend stationary by testing for the presence of a deterministic
trend function (either a constant or a line). The stationarity test
used is the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test.

IV. MODELING METHODOLOGY

The typical methodology used for building time series
models involves specification, estimation, and diagnostics
checking [4, p. 478]. Once specified and estimated, the
diagnostic checking step ensures that only valid models are
considered for selection. The final step of modeling is
selection, where the models are compared by some model
selection criterion [4, p. 581]. This section presents our
approach to specifying, estimating, diagnostics checking, and
model selection for defect prediction.

A. Model Specification & Estimation

The specification of a VARX(p) model is accomplished by
choosing an order p, which is the number of autoregressive

terms to include in the model. Then the model parameters can
be estimated by a procedure such as least squares regression.

The model order will directly affect the number of
parameters included in the model. One goal of specification is
to avoid having too many parameters relative to the number of
observations. To this end, we establish a ratio K of the number
of observations to the number of parameters. By choosing a
minimum value for this ratio, Kmin, and using the formula for
the number of parameters in a VARX(p) model, the following
equation can be used to obtain a maximum model order pmax:

where there are m time series variables and n samples. This
establishes an upper bound on model order, so model
specification will include the generation of models having
order 1, 2, …, pmax. These models, with their estimated
parameters, will be candidates for final model selection after
undergoing diagnostic checking.

B. Diagnostics Checking

Diagnostic checking is performed to verify that a model can
be accepted. This step includes testing for stability and for
model inadequacy. A stability test checks that the roots of the
AR process characteristic equation lie outside the unit circle [4,
p. 56]. To test inadequacy, the Ljung-Box is used to compare
the model residuals to white noise.

C. Model Selection

Model selection criteria are used to compare models by
their fit, to minimize residual error, and to penalize the model
to some degree based on the number of parameters. Of the
commonly used selection criteria, the standard Akaike
Information Criterion (AIC) was used because “[t]he penalty
for introducing unnecessary parameters is more severe for BIC
and AICC than for AIC” [3]. A less severe penalty for the
number of parameters would be preferred in this case, since we
are already limiting the number of parameters in the model
specification step, and because additional parameters may in
fact be necessary to account for time series autocorrelations
with higher lags.

V. APPLICATION OF METHODOLOGY

To validate our approach of using a time series model to
predict defects, we used historical data taken from a software
project’s issue tracking system. Issue tracking systems are used
by projects for tracking development tasks, features,
enhancements, and bugs, both past and present.

We chose the MongoDB1 Core Server project as the data
set. This project was chosen as it has been active since May
2009 and uses JIRA2 for issue tracking, which made it easy to
collect data. Issues for versions 0.9.3 through 3.0.0-rc6 were
exported from the project’s JIRA web interface into XML

1 MongoDB is an open source, document-oriented database system.
2 JIRA is an issue tracking and project management system made by

Atlassian.

format. The fields collected from each issue report were: type,
priority, creation date, and resolution date.

Only issues marked as fixed, complete, or done were used
for modeling. In the data collected, 18 (0.26%) issues did not
meet this criterion and were excluded. Also, JIRA supports
issues having sub-tasks. Any sub-task whose parent issue was
not in the dataset was considered orphans and discarded. There
were 20 (0.28%) orphaned sub-tasks in the dataset. The final
dataset contained 7042 issues.

A. Data Preparation

After creation, the dataset was operated on to prepare it for
time series modeling. The data was sampled, made stationary,
and windowed. These three steps are discussed next.

1) Sampling
First, the data was sampled at regular periods to measure

the following: number of improvements resolved, number of
features resolved, and number of bugs created. A 7-day
sampling period was used.

2) Establishing Stationarity
To establish stationarity, the ADF unit root and KPSS

stationarity tests were applied. In both tests, it was assumed
that the deterministic component was constant (without slope).
These test results did not agree, so the time series data was
differenced and the tests were rerun. The test results then
agreed, establishing the stationarity of the differenced data.

3) Time Windowing
It can be assumed that the software development process

underlying a given project changes over time. Rather than
developing a model that also changes over time, the data was
kept for modeling only if it occurred within a time window.
This was done to limit the effect of process change on the
model. A time window of 78 weeks (approximately 18 months)
was selected to balance between more observations (to capture
consistent long-term behaviors), and fewer observations (to
limit exposure to behavioral changes).

Applying this time window, the data was divided into three
78-week windows. As the data was differenced, the first
sample was skipped in each data period. These windowed
periods are denoted W2-79, W80−157, and W158−235.

B. VARX Modeling

1) Use of the VARX Model
The VARX model was chosen to model the time series

because there are multiple time series to be considered jointly.
The Y∆imp and Y∆new time series were both considered exogenous,
so that hypothetical future values could be considered when
comparing release plans. And by selecting Kmin = 4, a
maximum model order of pmax = 6 is obtained, so only model
orders 1 through 6 were estimated for later diagnostic checking.

C. Model Diagnostic Checking

Candidate models were tested for stability and inadequacy.
A 5% significance level was used in the Ljung-Box test. All
model orders were found stable for all windowed periods.

Several model orders were found to be inadequate, specifically
orders 1-2 for period W2-79, and order 5 for period W158−235.

D. Model Selection

Models that were not rejected for instability or inadequacy
were then compared and the best for each windowed period
was selected by AIC selection criterion. The best model orders
found were 4, 1, and 1, for windowed periods W2-79, W80−157,
and W158−235, respectively. The fit for each of these models was
demonstrated by plotting one-step predictions along with actual
values, as shown for each model in Fig. 1. The fit for each
appears to track well with many of the significant changes in
the time series.

Figure 1. One-step predictions vs actual values, for each model selected by
AIC score.

E. Forecasting

Selected models were used to forecast the number of
defects in the next sample after the end of the window. The
input for making these predictions was the number of
improvements and features that were expected to be resolved.

Table I shows the resulting single-step, out-of-sample
defect prediction data for the first time window, W2-79,
including the upper and lower bounds of the confidence
intervals. The actual number of improvements, features, and
bugs in the prediction sample period was 4, 0, and 18,
respectively. Notice that the actual number of bugs, 18, is
outside of the 90% confidence interval, which spans from 6.4
to 13.79 (see the outlined row in Table I). On the other hand,
the actual number of future defects in the next window,
W80−157, was 17. This was inside the 90% confidence interval,
which spans from 13.38 to 18.00.

TABLE I. FORECASTING AT THE END OF THE FIRST TIME WINDOW, W2-79.

FUTURE OUTPUT VALUES ARE PREDICTED FOR A NUMBER OF HYPOTHETICAL
INPUT VALUES.

Improvements Features
90%

lo
75%

lo mean
75%

hi
90%

hi
2 0 5.61 6.72 9.31 11.89 13.00
2 1 5.54 6.66 9.24 11.82 12.93
2 2 5.48 6.59 9.17 11.75 12.86
2 3 5.41 6.52 9.10 11.69 12.80
4 0 6.40 7.51 10.09 12.68 13.79
4 1 6.33 7.44 10.03 12.61 13.72
4 2 6.27 7.38 9.96 12.54 13.65
4 3 6.20 7.31 9.89 12.48 13.59

To gauge how well prediction will work in general, a

sliding 78-week window was applied, starting at the first
sample period, and shifting by one sample period after
modeling. Only actual numbers were used in this forecasting.
The resulting distribution of errors between the mean
forecasted bugs and the actual number of bugs is shown as a
histogram in Fig. 2. Note that the histogram appears to be
normally distributed. The actual number of bugs was inside the
90% confidence interval for 23.87% of the sliding window
ranges.

Figure 2. Histogram of forecast mean errors obtained using a 78-week
sliding window.

VI. RELATED WORK

Prior defect prediction techniques generally fall into two
categories: those based on code analysis and those based on
statistical analysis.

Code analysis techniques typically involve a detailed
analysis of code, using metrics such as lines of code (LOC) [1]
or decision points [5]. Henry and Kafura [8] defined metrics
from design document information for use in defect prediction.

Statistical analysis techniques create mathematical models
based on historical defect occurrence information, such as
regression analysis and extrapolation [10]. Graves et al. [7]
developed a weighted time-damping model using a statistical
analysis of change management data. And Singh et al. [12]
applied the Box-Jenkins method to time series datasets from
the Eclipse and Mozilla projects to predict defect counts using
an ARIMA model, though their model is non-explanatory and
is only in terms of past defects. We included past features and
improvements as model inputs, so defects can be predicted
using values for any given hypothetical release plan.

VII. CONCLUSIONS AND FUTURE WORK

The VARX modeling methodology was successfully
applied to the time series data collected from the MongoDB
project. A model was created for each of three time windows
and then used to make defect predictions for a range of
hypothetical values for the number of improvements and
features. Also, a picture of the prediction performance was
obtained by applying the approach with a sliding window. This
resulted in a normally distributed error between the mean
forecasted and actual number of bugs. A low proportion
(23.87%) of the sliding window ranges included the actual
number of bugs using a 90% confidence interval. These results
indicate that the VARX model had a low prediction accuracy
for the actual number of defects in the MongoDB dataset.

Having applied the VARX time series model to one project
dataset, a next step is to apply the methodology to other
software project data sets, such as Eclipse or Firefox, to better
determine the applicability of the modeling approach.

REFERENCES
[1] F. Akiyama. An example of software system debugging. In IFIP

Congress (1), volume 71, pages 353–359, 1971.

[2] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The next release
problem. Information and software technology, 43(14):883–890, 2001.

[3] S. Bisgaard and M. Kulahci. Time series analysis and forecasting by
example. John Wiley & Sons, 2011.

[4] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis.
John Wiley, 2008.

[5] J. E. Gaffney. Estimating the number of faults in code. Software
Engineering, IEEE Transactions on, SE-10(4):459–464, July 1984.

[6] E. Giger, M. Pinzger, and H. C. Gall. Comparing fine-grained source
code changes and code churn for bug prediction. In Proceedings of the
8th Working Conference on Mining Software Repositories, pages 83–92.
ACM, 2011.

[7] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault
incidence using software change history. Software Engineering, IEEE
Transactions on, 26(7):653–661, 2000.

[8] S. Henry and D. Kafura. The evaluation of software systems’ structure
using quantitative software metrics. Software: Practice and Experience,
14(6):561–573, 1984.

[9] H. Jiang, J. Zhang, J. Xuan, Z. Ren, and Y. Hu. A hybrid ACO algorithm
for the next release problem. In Software Engineering and Data Mining
(SEDM), 2010 2nd International Conference on, pages 166–171. IEEE,
2010.

[10] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam. Empirical
evaluation of defect projection models for widely-deployed production
software systems. SIGSOFT Softw. Eng. Notes, 29(6):263–272, Oct.
2004.

[11] N. Nagappan and T. Ball. Use of relative code churn measures to predict
system defect density. In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, pages 284–292. IEEE,
2005.

[12] L. L. Singh, A. M. Abbas, F. Ahmad, and S. Ramaswamy. Predicting
software bugs using arima model. In Proceedings of the 48th Annual
Southeast Regional Conference, page 27. ACM, 2010.

[13] J. Xuan, H. Jiang, Z. Ren, and Z. Luo. Solving the large scale next
release problem with a backbone-based multilevel algorithm. Software
Engineering, IEEE Transactions on, 38(5):1195–1212, 2012.

