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Abstract—A time series model is presented that uses historical 
project information to predict the number of future defects, given 
the number of proposed features and improvements to be 
completed. This allows for hypothetical release plans to be 
compared by assessing their predicted impact on testing and 
defect-fixing time. We selected the VARX time series model as a 
reasonable approach. The accuracy of the model appeared low 
for a single dataset, but the error was found to be normally 
distributed. 
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I.  INTRODUCTION 

There are two primary concerns in software release 
planning: improving functionality and maintaining high 
quality. Both objectives are constrained by limits on 
development time and budget, so the scope of the planned work 
must be limited to accommodate fixing inevitable defects 
(bugs) that will arise. In this way, a high quality software 
product can be produced while also improving its functionality. 

A significant consideration in the release planning process 
is the amount of time allocated for testing and bug-fixing. If 
this factor is not considered, the project risks a slip in the 
schedule or in the quality of the product. As the time and effort 
required for testing and bug-fixing will likely be a function of 
the defects introduced during development, it is desirable to be 
able to predict the number of expected defects. 

A potential application for defect prediction is to compare 
different release plans according to their estimated bug fallout 
and subsequent impact on testing and bug-fixing times. This 
would assist release planners in ensuring that the total 
development time does not exceed the project’s time budget for 
a release. The comparison of different release plans is integral 
to release plan optimization, which is the focus of The Next 
Release Problem [2], a key problem in Search-Based Software 
Engineering (SBSE) [9, 13]. 

Most approaches to defect prediction focus on either code 
analysis [1, 5, 6, 8, 11] or historical defect information [7, 10, 
13]. However, for the defect prediction model to be useful in 
comparing release plans, the model should also depend on the 
planned features and improvements planned for the next 
release, as well as the defects from past releases.  

This paper presents an approach to defect prediction that 
can be applied for a proposed release. A multivariate time 
series model is used that incorporates information about 
proposed features, improvements, and historical defect data. 

The paper proceeds as follows. First, Section II presents 
further motivation for the use of a time series model for 
predicting defects. Next, we present an overview of concepts in 
time series modeling in Section III. Section IV presents our 
modeling methodology and Section V presents the application 
of the approach, which is applied to a software project dataset. 
Related work is presented in Section VI, and the paper 
concludes in Section VII. 

II. MOTIVATION 

Release planners typically rely on both their experience and 
project conventions to generate a release plan by selecting 
planned features and improvements such that the estimated 
time to test for and fix defects will not cause a schedule slip. 

However, if the defect estimation technique is only loosely 
based on past experience, as with a rule-of-thumb, then it may 
prove too coarse for comparing multiple release plans, and may 
not provide any quantitative difference between release plans 
that are similar (but not the same). Even for dissimilar release 
plans, such an approach still has the disadvantage of lacking 
confidence intervals to quantify prediction uncertainty. 

An alternative approach is to develop a model that will take 
into account the differences in composition of features and 
improvements between the release plans. Such a model would 
assume some explanatory relationship. 

Since predictive models rarely have perfect accuracy, 
confidence levels are an important part of any prediction to 
allow release planners to assess the risk of relying on the defect 
prediction. Planners can choose a more narrow prediction 
window, in exchange for a larger risk that the prediction is 
inaccurate. Conversely, a wider prediction window means that 
the potential cost range is also wider with a lower risk of 
inaccuracy. 

III. TIME SERIES MODELING 

In this section, time series and autoregressive models are 
introduced. Then, further concepts related to modeling, 
exogeneity and stationarity, are discussed. 
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A. Time Series 

A time series is a collection of observations that occur in 
order, with an underlying process that is stochastic. Critically, 
the sequence of observations cannot be re-arranged, as each 
observation is typically dependent on one or more previous 
observation. This dependence is termed autocorrelation and 
accounting for it is one of the primary functions of a time series 
model. 

B. Autoregressive Models 

A basic autoregressive (AR) model is formed as a linear 
combination of previous values, plus a white noise term that 
accounts for random variations (the stochastic portion). When 
the AR model is extended to the multivariate case (i.e. allowing 
for multiple time series), a Vector AR (VAR) model is formed. 
This model will support not only a time series for defect count, 
but also time series for the two release plan variables: 
improvements and new features. 

The VAR model can be further extended by considering 
one or more variables to be exogenous, making a VARX 
model. Exogenous variables are used to explain the other non-
exogenous variables, but the model does not attempt to explain 
the exogenous variables themselves. This model meets the 
requirements of the explanatory model described in the 
Motivation section, since it would allow release plan variables 
to be kept exogenous and used only to explain defect count. 

C. Stationarity and Trends 

A strictly stationary process has a probability distribution 
that is time-invariant. This means statistics such as mean and 
variance do not change. The AR, VAR, and VARX models 
discussed so far require time series data that is stationary, 
where the probability distribution of the underlying stochastic 
process is time-invariant. Testing can identify a time series as 
being stationary, trend stationary, or non-stationary. 

A time series can be established as non-stationary by testing for 
the presence of a unit root in the underlying AR model. The 
unit root test used is the Augmented Dickey Fuller (ADF) test. 
On the other hand, a stationarity test establishes a time series as 
trend stationary by testing for the presence of a deterministic 
trend function (either a constant or a line). The stationarity test 
used is the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. 

IV. MODELING METHODOLOGY 

The typical methodology used for building time series 
models involves specification, estimation, and diagnostics 
checking [4, p. 478]. Once specified and estimated, the 
diagnostic checking step ensures that only valid models are 
considered for selection. The final step of modeling is 
selection, where the models are compared by some model 
selection criterion [4, p. 581]. This section presents our 
approach to specifying, estimating, diagnostics checking, and 
model selection for defect prediction. 

A. Model Specification & Estimation 

The specification of a VARX(p) model is accomplished by 
choosing an order p, which is the number of autoregressive 

terms to include in the model. Then the model parameters can 
be estimated by a procedure such as least squares regression. 

The model order will directly affect the number of 
parameters included in the model. One goal of specification is 
to avoid having too many parameters relative to the number of 
observations. To this end, we establish a ratio K of the number 
of observations to the number of parameters. By choosing a 
minimum value for this ratio, Kmin, and using the formula for 
the number of parameters in a VARX(p) model, the following 
equation can be used to obtain a maximum model order pmax: 

 

where there are m time series variables and n samples. This  
establishes an upper bound on model order, so model 
specification will include the generation of models having 
order 1, 2, …, pmax. These models, with their estimated 
parameters, will be candidates for final model selection after 
undergoing diagnostic checking. 

B. Diagnostics Checking 

Diagnostic checking is performed to verify that a model can 
be accepted. This step includes testing for stability and for 
model inadequacy. A stability test checks that the roots of the 
AR process characteristic equation lie outside the unit circle [4, 
p. 56]. To test inadequacy, the Ljung-Box is used to compare 
the model residuals to white noise.  

C. Model Selection 

Model selection criteria are used to compare models by 
their fit, to minimize residual error, and to penalize the model 
to some degree based on the number of parameters. Of the 
commonly used selection criteria, the standard Akaike 
Information Criterion (AIC) was used because “[t]he penalty 
for introducing unnecessary parameters is more severe for BIC 
and AICC than for AIC” [3]. A less severe penalty for the 
number of parameters would be preferred in this case, since we 
are already limiting the number of parameters in the model 
specification step, and because additional parameters may in 
fact be necessary to account for time series autocorrelations 
with higher lags. 

V. APPLICATION OF METHODOLOGY 

To validate our approach of using a time series model to 
predict defects, we used historical data taken from a software 
project’s issue tracking system. Issue tracking systems are used 
by projects for tracking development tasks, features, 
enhancements, and bugs, both past and present. 

We chose the MongoDB1 Core Server project as the data 
set. This project was chosen as it has been active since May 
2009 and uses JIRA2 for issue tracking, which made it easy to 
collect data. Issues for versions 0.9.3 through 3.0.0-rc6 were 
exported from the project’s JIRA web interface into XML 

                                                           
1  MongoDB is an open source, document-oriented database system. 
2  JIRA is an issue tracking and project management system made by 

Atlassian. 



format. The fields collected from each issue report were: type, 
priority, creation date, and resolution date. 

Only issues marked as fixed, complete, or done were used 
for modeling. In the data collected, 18 (0.26%) issues did not 
meet this criterion and were excluded. Also, JIRA supports 
issues having sub-tasks. Any sub-task whose parent issue was 
not in the dataset was considered orphans and discarded. There 
were 20 (0.28%) orphaned sub-tasks in the dataset. The final 
dataset contained 7042 issues.  

A. Data Preparation 

After creation, the dataset was operated on to prepare it for 
time series modeling. The data was sampled, made stationary, 
and windowed. These three steps are discussed next. 

1) Sampling 
First, the data was sampled at regular periods to measure 

the following: number of improvements resolved, number of 
features resolved, and number of bugs created. A 7-day 
sampling period was used. 

2) Establishing Stationarity 
To establish stationarity, the ADF unit root and KPSS 

stationarity tests were applied. In both tests, it was assumed 
that the deterministic component was constant (without slope). 
These test results did not agree, so the time series data was 
differenced and the tests were rerun. The test results then 
agreed, establishing the stationarity of the differenced data. 

3) Time Windowing 
It can be assumed that the software development process 

underlying a given project changes over time. Rather than 
developing a model that also changes over time, the data was 
kept for modeling only if it occurred within a time window. 
This was done to limit the effect of process change on the 
model. A time window of 78 weeks (approximately 18 months) 
was selected to balance between more observations (to capture 
consistent long-term behaviors), and fewer observations (to 
limit exposure to behavioral changes). 

Applying this time window, the data was divided into three 
78-week windows. As the data was differenced, the first 
sample was skipped in each data period. These windowed 
periods are denoted W2-79, W80−157, and W158−235. 

B. VARX Modeling 

1) Use of the VARX Model 
The VARX model was chosen to model the time series 

because there are multiple time series to be considered jointly. 
The Y∆imp and Y∆new time series were both considered exogenous, 
so that hypothetical future values could be considered when 
comparing release plans. And by selecting Kmin = 4, a 
maximum model order of pmax = 6 is obtained, so only model 
orders 1 through 6 were estimated for later diagnostic checking. 

C. Model Diagnostic Checking 

Candidate models were tested for stability and inadequacy. 
A 5% significance level was used in the Ljung-Box test. All 
model orders were found stable for all windowed periods. 

Several model orders were found to be inadequate, specifically 
orders 1-2 for period W2-79, and order 5 for period W158−235. 

D. Model Selection 

Models that were not rejected for instability or inadequacy 
were then compared and the best for each windowed period 
was selected by AIC selection criterion. The best model orders 
found were 4, 1, and 1, for windowed periods W2-79, W80−157, 
and W158−235, respectively. The fit for each of these models was 
demonstrated by plotting one-step predictions along with actual 
values, as shown for each model in Fig. 1. The fit for each 
appears to track well with many of the significant changes in 
the time series. 

 

 

 

Figure 1.  One-step predictions vs actual values, for each model selected by 
AIC score. 

E. Forecasting 

Selected models  were used to forecast the number of 
defects in the next sample after the end of the window. The 
input for making these predictions was the number of 
improvements and features that were expected to be resolved. 

Table I shows the resulting single-step, out-of-sample 
defect prediction data for the first time window, W2-79, 
including the upper and lower bounds of the confidence 
intervals. The actual number of improvements, features, and 
bugs in the prediction sample period was 4, 0, and 18, 
respectively. Notice that the actual number of bugs, 18, is 
outside of the 90% confidence interval, which spans from 6.4 
to 13.79 (see the outlined row in Table I). On the other hand, 
the actual number of future defects in the next window, 
W80−157, was 17. This was inside the 90% confidence interval, 
which spans from 13.38 to 18.00. 



TABLE I.  FORECASTING AT THE END OF THE FIRST TIME WINDOW, W2-79. 

FUTURE OUTPUT VALUES ARE PREDICTED FOR A NUMBER OF HYPOTHETICAL 
INPUT VALUES. 

Improvements Features 
90% 

lo 
75% 

lo mean 
75% 

hi 
90% 

hi 
2 0 5.61 6.72 9.31 11.89 13.00 
2 1 5.54 6.66 9.24 11.82 12.93 
2 2 5.48 6.59 9.17 11.75 12.86 
2 3 5.41 6.52 9.10 11.69 12.80 
4 0 6.40 7.51 10.09 12.68 13.79 
4 1 6.33 7.44 10.03 12.61 13.72 
4 2 6.27 7.38 9.96 12.54 13.65 
4 3 6.20 7.31 9.89 12.48 13.59 

 
To gauge how well prediction will work in general, a 

sliding 78-week window was applied, starting at the first 
sample period, and shifting by one sample period after 
modeling. Only actual numbers were used in this forecasting. 
The resulting distribution of errors between the mean 
forecasted bugs and the actual number of bugs is shown as a 
histogram in Fig. 2. Note that the histogram appears to be 
normally distributed.  The actual number of bugs was inside the 
90% confidence interval for 23.87% of the sliding window 
ranges. 

 

Figure 2.  Histogram of forecast mean errors obtained using a 78-week 
sliding window. 

VI. RELATED WORK 

Prior defect prediction techniques generally fall into two 
categories: those based on code analysis and those based on 
statistical analysis. 

Code analysis techniques typically involve a detailed 
analysis of code, using metrics such as lines of code (LOC) [1] 
or decision points [5]. Henry and Kafura [8] defined metrics 
from design document information for use in defect prediction. 

Statistical analysis techniques create mathematical models 
based on historical defect occurrence information, such as 
regression analysis and extrapolation [10]. Graves et al. [7] 
developed a weighted time-damping model using a statistical 
analysis of change management data. And Singh et al. [12]  
applied the Box-Jenkins method to time series datasets from 
the Eclipse and Mozilla projects to predict defect counts using 
an ARIMA model, though their model is non-explanatory and 
is only in terms of past defects. We included past features and 
improvements as model inputs, so defects can be predicted 
using values for any given hypothetical release plan. 

VII. CONCLUSIONS AND FUTURE WORK 

The VARX modeling methodology was successfully 
applied to the time series data collected from the MongoDB 
project. A model was created for each of three time windows 
and then used to make defect predictions for a range of 
hypothetical values for the number of improvements and 
features. Also, a picture of the prediction performance was 
obtained by applying the approach with a sliding window. This 
resulted in a normally distributed error between the mean 
forecasted and actual number of bugs. A low proportion 
(23.87%) of the sliding window ranges included the actual 
number of bugs using a 90% confidence interval. These results 
indicate that the VARX model had a low prediction accuracy 
for the actual number of defects in the MongoDB dataset. 

Having applied the VARX time series model to one project 
dataset, a next step is to apply the methodology to other 
software project data sets, such as Eclipse or Firefox, to better 
determine the applicability of the modeling approach. 
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