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Abstract—Defect prediction is an important activity to make 
software testing processes more targeted and efficient. Many 
methods have been proposed to predict the defect-proneness of 
software components using supervised classification techniques in 
within- and cross-project scenarios. However, very few prior 
studies address the above issue from the perspective of predictive 
analytics. How to make an appropriate decision among different 
prediction approaches in a given scenario remains unclear. In 
this paper, we empirically investigate the feasibility of defect 
numbers prediction with typical regression models in different 
scenarios. The experiments on six open-source software projects 
in PROMISE repository show that the prediction model built 
with Decision Tree Regression seems to be the best estimator in 
both of the scenarios, and that for all the prediction models, the 
results yielded in the cross-project scenario can be comparable to 
(or sometimes better than) those in the within-project scenario 
when choosing suitable training data. Therefore, the findings 
provide a useful insight into defect numbers prediction for those 
new and inactive projects. 

Keywords: defect prediction; predictive analytics; cross-project 
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I.  INTRODUCTION 
Nowadays, defect prediction has attracted much attention 

from both academia and industry because of its importance in 
software quality assurance. It has been widely recognized that 
the defect-proneness of software components (such as classes 
and code modules) is closely related to a considerable number 
of software metrics (the so-called features) [1], e.g., static code 
metrics, code change history, process metrics and network 
metrics [2], all of which are easy to collect now. Therefore, 
many defect prediction approaches using statistical methods or 
machine learning techniques have been proposed to forecast 
defect-prone software components [3].  

To the best of our knowledge, the vast majority of prior 
defect prediction approaches predict whether a given software 
component is defect-prone by means of binary classification 
techniques [3, 4]. However, estimating the defect-proneness of 
a given set of software components is not enough for software 
testing in practice due to plenty of criticisms of practicality [4]. 
Furthermore, if we are able to predict the exact number of bugs 
in each software component to be tested, software developers 
or software testers will pay special attention to those software 
components that contain more defects, which can make testing 
processes more efficient in the case of limited time and human 
resources. Thus, defect prediction is not just a simple binary 
classification problem but a specific problem with predictive 
analytics [5].  

Due to the limitations of data analysis techniques and 
available training data, the focus of early studies about this 
topic was on building linear prediction models based on the 
correlations between defects and some important code features, 
e.g., lines of code [6] and McCabe’s cyclomatic complexity. 
After object-oriented design metrics and process quality 
metrics were proposed in the 1990s, the researchers in this filed 
developed many new prediction models by means of multiple 
regression analysis [7]. With the development of data mining 
and machine learning techniques, a few of complex prediction 
models for the number of defects were presented in recently 
published literature. For example, Wang et al. proposed an 
approach based on a defect state transition model [8]. The 
experimental results on open-source software projects showed 
that the complex models outstripped other competing models in 
terms of evaluation measures such as the mean absolute error, 
but their generality and construction cost were questioned. 

Interestingly, several recent studies with respect to software 
defect classification [3, 9, 10] have found that simple classifiers, 
e.g., Naïve Bayes and Logistic Regression, were able to 
perform well in both within-project and cross-project scenarios, 
though those complex ones always achieved high precision. As 
we know, newly created or unpopular software projects have 
little historical data available to train any classifiers, which is 
very similar to the typical problem cold start in recommender 
systems [11]. Hence, cross-project defect prediction (CPDP) 
emerges as a promising solution to the above issue. Overall, it 
applies the prediction model learned from other selected 
projects to a target project [12], and the feasibility of CPDP has 
been widely examined by the researchers in this field [13, 14]. 
However, compared with within-project defect prediction 
(WPDP), in most cases the prediction performance of CPDP is 
relatively poor on account of the diversity of data distributions 
between source and target projects [10, 12-14].   

As far as we know, very few prior studies evaluated and 
compared the existing approaches that predict defect numbers 
in different scenarios. How to make an appropriate decision 
among those prediction approaches in a given scenario remains 
unclear. Inspired by the recent studies on software defect 
classification, in this paper our goal is to validate the feasibility 
of CPDP approaches (based on regression models) to 
predicting defects, and to investigate which frequently-used 
regression model can achieve the best result in both within- and 
cross-project scenarios. With the pre-designed experiments that 
were conducted on six open-source software projects in the 
famous PROMISE repository, we hope our empirical findings 
could refine the previous work on predicting software defects. 
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In particular, we provide a more comprehensive and detailed 
suggestion about choosing appropriate predictive modeling 
approaches and training data to build a simple, highly cost-
effective prediction model according to specific requirements.   

The remainder of this paper is organized as follows: Section 
II introduces the related work; the research questions to be 
discussed are presented in Section III; Section IV and Section 
V show the experimental setups and results, respectively; in the 
end, Section VI concludes this paper and gives a research 
agenda for our future work. 

II. RELATED WORK 
Defect prediction has been an active research topic in 

software engineering for decades [3]. For the theme of this 
paper, earlier studies focused on analyzing the relationship 
between defects and code complexity metrics (such as lines of 
code) with the methods of linear regression [15]. With the rapid 
development of object-oriented programming and software 
process management techniques, some of new prediction 
models began to utilize more types of metrics to predict defect 
numbers by means of multiple regression analysis [7, 16]. 
According to a recent survey [1] conducted on 106 papers that 
were published between 1991 and 2011, the proportions of 
object-oriented, source code, and process metrics used are 
about 49%, 27%, and 24%, respectively. Radjenovic et al. also 
find that the Chidamber and Kemerer (CK) metrics are the 
most commonly used metrics [1]. However, the accuracy of 
these prediction models is not completely satisfying. 

The rise of data mining and machine learning techniques 
fosters a few complex prediction models using random forest 
[17], linear discriminant analysis (LDA) [18], artificial neural 
networks [19], k-nearest neighbors (KNN) algorithm [20], 
Bayesian networks [21], support vector machines (SVM) [22], 
and so on. For example, Nguyen et al. proposed a similarity-
based approach employing an improved KNN algorithm to 
predict defect numbers [5]. So far, they have been widely used 
to estimate the defect-proneness of software components, and 
more details of these approaches can refer to the recent surveys 
[3, 4]. On the other hand, considering a large number of 
software metrics, feature subset selection and dimensionality 
reduction techniques have also been applied to these new 
defect prediction methods [22, 23], and many empirical studies 
have demonstrated that they are able to achieve higher 
accuracy and computing efficiency by removing redundant and 
irrelevant software metrics [10]. 

Generally speaking, most of the above-mentioned studies 
about defect prediction are conducted in WPDP settings, 
because this is intuitive and easy to use. But, WPDP is not 
always practicable when lacking historical defect data in a 
given project. So, CPDP models are investigated to predict 
defect-prone software components according to the information 
or knowledge extracted from other similar software projects.  

To the best of our knowledge, CPDP was first introduced to 
this field by Briand et al. [24]. They trained a prediction model 
according to the Xposem project, and used it to predict the 
defect-proneness of the Jwriter project. The experimental result 
showed that CPDP outperformed a random prediction model. 
Then, Zimmermann et al. [12] employed 622 cross-project 

combinations among 12 open-source software projects to 
validate the feasibility of CPDP, but they found that only 21 
out of 622 combinations worked successfully. In fact, the 
quality of cross-project training data, rather than the total 
quantity of data available from other projects, is more likely to 
affect the performance of CPDP models to some extent [25]. 
Hence, how to select the most appropriate cross-project data for 
a target project has recently become an interesting problem 
[26]. For example, Turhan et al. [26] applied a nearest neighbor 
filtering technique to filter out those irrelevant project data in 
the setting of CPDP, leading to a better prediction performance. 
More discusses on the comparison between WPDP and CPDP 
please refer to [4, 10, 27, 28]. Unfortunately, very few prior 
studies paid attention to the issue in question in CPDP settings. 

III. RESEARCH QUESTIONS 
Regression analysis is a commonly-used, effective method 

for predictive analytics, which analyzes current and historical 
data to make predictions on future or unknown events by 
estimating the relationships among different variables. In this 
paper, we investigate the problem related to defect numbers 
prediction by means of regression analysis. More specifically, 
we attempt to find empirical evidence to address the following 
two research questions: 

• RQ1: Which type of regression models is the most 
suitable approach to predicting the number of defects 
in different scenarios? 

As mentioned earlier, many prediction models, built with 
regression analysis (such as linear regression, Bayesian 
regression, and SVM regression), have been used to predict the 
number of defects. They are a group with excellence as well as 
shortcomings. So, we should take into consideration various 
factors (rather than just accuracy) when applying them to 
different types of actual projects with limited resources, which 
is required to make an optimal (or near-optimal) tradeoff 
among generality, performance and construction cost. That is, 
we want to find one or more appropriate regression models that 
can be used in different scenarios, because the previous studies 
about defect-proneness prediction have showed that the 
classifiers which are simple and easy to use tend to perform 
well in both within- and cross-project scenarios [10, 27]. In 
particular, is this still practicable for defect numbers prediction? 

• RQ2: Are the accuracies of CPDP regression models 
under discussion comparable to those of WPDP 
regression models? 

It is acknowledged that the defect prediction models trained 
from the same project are, in general, better than those trained 
from other similar projects, because different projects may 
have different contextual characteristics, e.g., development 
process, developers, and project organization. But, does it 
definitely happen when training data and test data have similar 
distributional features? So, we attempt to empirically compare 
the performance differences among the regression models 
discussed in this paper in both within- and cross-project 
scenarios. Note that, if the distributions of two sets of 
prediction results (A and B) have no statistically significant 
difference, in our opinion, A is comparable to B. 



IV. EXPERIMENTAL SETUPS 

A. Data Collection 
To validate the feasibility of defect numbers prediction in 

the cross-project scenario, six open-source software projects 
with 26 releases collected from the online, publicly available 
PROMISE repository are used as our experimental data set. 
The brief introduction to all releases of the projects is shown in 
Table I, where #Instances indicates the number of instances 
(class files), #Defects denotes the total number of defects in the 
release, %Defect represents the percentage of defect-prone 
instances, and Max is the maximum value of defects. 

 Due to space limitations, the list of software metrics used 
as features in different regression models please refer to [10]. 
In our experiments, there are 20 independent variables (such as 
the CK metrics suite and LOC) and one dependent variable (the 
number of degects), and the goal of our experiments is to 
estimate the prediction results calculated using six commonly 
used regression models in different scenarios. 

TABLE I.  BRIEF INTRODUCTION TO THE EXPERIMENTAL DATA SET 

Project Release #Instances #Defects %Defect Max 

Ant 

Ant-1.3 125 33 16.0% 3 
Ant-1.4 178 47 22.5% 3 
Ant-1.5 293 35 10.9% 2 
Ant-1.6 351 184 26.2% 10 
Ant-1.7 745 338 22.3% 10 

Camel 

Camel-1.0 339 14 3.4% 2 
Camel-1.2 608 522 35.5% 28 
Camel-1.4 872 335 16.6% 17 
Camel-1.6 965 500 19.5% 28 

Forrest 
Forrest-0.6 6 1 16.7% 1 
Forrest-0.7 29 15 17.2% 8 
Forrest-0.8 32 6 6.3% 4 

Jedit 

Jedit-3.2 272 382 33.1% 45 
Jedit-4.0 306 226 24.5% 23 
Jedit-4.1 312 217 25.3% 17 
Jedit-4.2 267 106 13.1% 10 
Jedit-4.3 492 12 2.2% 2 

Prop 

Prop-1 18471 5493 14.8% 37 
Prop-2 23014 4096 10.6% 27 
Prop-3 10274 1640 11.5% 11 
Prop-4 8718 1362 9.6% 22 
Prop-5 8516 1930 15.3% 19 
Prop-6 660 79 10.0% 4 

Synapse 
Synapse-1.0 157 21 10.2% 4 
Synapse-1.1 222 99 27.0% 7 
Synapse-1.2 256 145 33.6% 9 

B. Experiment Design 
To answer the two research questions presented in Section 

III, the overall framework of our experiments and empirical 
analysis is shown in Figure 1. 

First, for a target release (test data) of a given project, two 
training data selection approaches (viz. application scenarios) 
are considered in our experiments. (1) WPDP: all historical 

releases prior to the target release within the same project are 
used as training data; and (2) CPDP: all available releases from 
the most suitable project (rather than from the same project) are 
used as training data. Take Ant-1.7 as an example, the four 
releases from the same project, namely Ant-1.3, Ant-1.4, Ant-
1.5, and Ant-1.6, are selected as training data in the within-
project scenario, and all of the releases from the Camel project 
are chosen as training data in the cross-project scenarios (see 
the example in Figure 1).  

 
Figure 1. Overall Framework of Our Experiments: An Example of Ant-1.7 

Second, we determine the number of experiments according 
to the experimental data and the training data selection methods. 
Because the first release of each project is impossible to be test 
data in the within-project scenario, there are 20 (4 + 3 + 2 + 4 + 
5 + 2 = 20) groups of tests among all the releases of the six 
projects. To keep the comparison between WPDP and CPDP in 
the same condition, we select only 20 groups of corresponding 
tests for CPDP, though there is a total of 26 test data sets. 

Third, according to the 20 software metrics (independent 
variables) and the number of bugs (dependent variable), we 
build different prediction models based on six commonly used 
regression methods (see the upcoming subsection) and apply 
them to 12 (2 × 6 = 12) cases. For each case (in either WPDP 
or CPCP scenario) in question, we conduct the above-
mentioned experiment (viz. prediction) 20 times. 

Fourth, we preprocess the predicted defect numbers of all 
experiments before estimating the experimental results. Since 
the number of bugs in every software component must be a 
non-negative integer, we make appropriate adjustments for 
those original defect numbers if necessary. That is, if the 
predicted defect number is negative, it will be set to 0; if the 
result is a positive decimal, it will be set to an integer by a 
rounding method. 

Finally, we compute the accuracy of a prediction model in 
terms of several evaluation measures, and compare the 
differences on the distributions of prediction results using 
statistical methods such as the Wilcoxon signed-rank test. 

C. Regression Models 
Regression methods assess the expectation of a dependent 

variable according to a set of given independent variables. 
More specifically, a regression model can help understand how 
a dependent variable changes when independent variables vary 
in training data sets, and tries to estimate the expectation of the 
dependent variable with those given independent variables in 



test data sets. For the issue discussed in this paper, we assume 
that the vector X of software metrics includes all independent 
variables and the numerical value of defect number y is the 
dependent variable. Each regression model under discussion 
learns a function y = f(X) according to the relationship between 
X and y extracted from training data, and then uses the function 
f to predict defect numbers of test data. Considering the 
motivation of this paper, we select only six typical regression 
models, excluding those complex ones. To avoid reinventing 
the wheel all the time, we build and implement these regression 
models based on the python machine learning library sklearn. 
Unless otherwise specified, the default parameter settings for 
different regression models used in our experiments are 
specified by sklearn. That is, we do not perform additional 
optimization for each regression model. The brief introduction 
to the six regression models is described as follows: 

• LR (Linear Regression): it is always used to solve the 
least squares function of the linear relationship 
between one or multiple independent variables and one 
dependent variable. 

• BRR (Bayesian Ridge Regression): it is similar to the 
classical Ridge Regression. The hyper parameters of 
such type of models are introduced by prior probability 
and then estimated by maximizing the marginal log 
likelihood with probabilistic models. 

• SVR (Support Vector Regression): it is extended from 
the well-known Support Vector Machines, which only 
depends on a subset of training data, because the cost 
function for building a SVR model ignores any training 
data close to the prediction results of the model. 

• NNR (Nearest Neighbors Regression): it is based on 
the k-nearest neighbors algorithm, and the regression 
value of an instance is calculated by the weighted 
average of its nearest neighbors. And, the weight is 
settled proportional to the inverse of the distance 
between the instance and its neighbors. 

• DTR (Decision Tree Regression): it learns simple 
decision rules to approximate the curve of a given 
training data set, and then predicts the target variable. 

• GBR (Gradient Boosting Regression): it is in the form 
of an ensemble of weak prediction models. Several 
base estimators are combined with a given learning 
algorithm in order to improve the prediction accuracy 
over a single estimator. 

D. Evaluation Measures 
To evaluate the prediction results of our experiments, in this 

paper we utilize the metrics precision (P) and root mean square 
error (RMSE), which are described as follows: 

• P: Precision addresses the percentage of correctly 
predicted instances to the total number of test data. The 
higher the precision, the better accuracy a prediction 
model achieves. 

P = 𝑁𝑟�=𝑟
𝑁

,                                (1) 

where N is the number of instances in test data, and 
𝑁�̂�=𝑟  indicates the number of instances whose 
predicted values (�̂�) are equal to their real values (r). 

• RMSE: It measures the difference between the values 
predicted by a model or an estimator and the values 
actually observed. Compared with the mean absolute 
error, because of being scale-dependent, RMSE is a 
good measure of accuracy to compare prediction errors 
of different models for a given variable, e.g., the 
number of defects in this paper. 

RMSE = �∑ |𝑟𝚤�−𝑟𝑖|2𝑁
𝑖=1

𝑁
.                     (2) 

V. EXPERIMENTAL RESULTS 

A. Answer to RQ1 
First, for each prediction model built with a regression 

model in question, we conduct the pre-designed experiment 20 
times in the scenario of WPDP. The prediction results of an 
example are shown in Table II, where each record in the table 
is denoted by a two-tuple/pair (P, RMSE). In this example, the 
last release of each project is used to be test data, and all of the 
previous releases in the same project are selected as training 
data. The number in bold in this table indicates the best 
estimator among the six prediction models. Note that BRR and 
GBR achieve the same value of precision, but the former is 
better than the latter because of a smaller RMSE value. 

 
Figure 2. Standardized box plots of evaluation measures for the six prediction 

models in the scenario of WPDP (P: left, RMSE: right) 

 Moreover, the distributions of the values of P and RMSE 
for the 20 experiments are shown in Figure 2, where the X-axis 
means the prediction models under discussion and the Y-axis 
indicates the value of an evaluation measure. The legends from 
the bottom to the top of a standardized box plot are minimum, 
first quartile, median (red line), third quartile, and maximum. 
Note that the small cycle within each box is the mean value of 
the 20 predictions. It is obvious from Figure 2 that the median 
and mean of DTR are larger than those of the other five 
prediction models with respect to precision. On the other hand, 
considering the distribution of RMSE values, DTR is similar to 
LR and BRR, closely followed by GBR and NNR. To sum up, 
in the scenario of WPDP, DTR seems to be the best estimator 
for the experimental data in this paper. 

Second, in the scenario of CPDP, we conduct the pre-
designed experiment 20 times in a similar way as described for 
WPDP. The prediction results of an example corresponding to 
the above example are listed in Table III. In this example, for 
each target release, we select all available releases from the 



most appropriate project as training data. That is, each record in 
this table represents the best outcome among the other projects. 
Surprisingly, the results about precision in Table III are, on 

average, higher than those in Table II, implying that CPDP 
achieves better performance than WPDP in this example. This 
finding is different from the results of many prior studies [3, 9]. 

TABLE II.  ESTIMATING PREDICTION RESULTSS IN THE SCENARIO OF WPDP: AN EXAMPLE 

Project LR BRR SVR NNR DTR GBR 
Ant-1.7 0.740, 0.924 0.753, 0.924 0.771, 1.227 0.719, 0.987 0.761, 0.943 0.754, 0.921 

Camel-1.6 0.616, 1.868 0.614, 1.813 0.550, 1.761 0.694, 1.775 0.739, 1.862 0.662, 1.686 
Forrest-0.8 0.750, 0.728 0.531, 0.952 0.906,  0.810 0.812, 0.847 0.718, 1.457 0.714, 1.794 
Jedit-4.3 0.597, 1.954 0.583, 1.941 0.706, 0.832 0.691, 1.651 0.798, 1.666 0.680, 2.068 
Prop-6 0.886, 0.421 0.887, 0.419 0.868, 0.447 0.809, 0.554 0.868, 0.483 0.887, 0.431 

Synapse-1.2 0.632, 1.011 0.668, 0.988 0.656, 1.208 0.636, 1.077 0.652, 1.034 0.652, 1.019 

TABLE III.  ESTIMATING PREDICTION RESULTS IN THE SCENARIO OF CPDP: AN EXAMPLE 

Project LR BRR SVR NNR DTR GBR 
Ant-1.7 0.762, 1.016 0.764, 1.015 0.756, 1.132 0.745, 1.128 0.756, 1.132 0.775, 1.113 

Camel-1.6 0.771, 1.752 0.773, 1.770 0.842, 1.599 0.754, 1.807 0.778, 1.795 0.764, 1.145 
Forrest-0.8 0.931, 0.780 0.938, 0.791 0.894, 0.792 0.875, 0.829 0.927, 0.740 0.786, 1.804 
Jedit-4.3 0.821, 0.666 0.823, 0.664 0.749, 0.687 0.829, 0.813 0.880, 0.486 0.896, 0.789 
Prop-6 0.779, 0.529 0.826, 0.488 0.891, 0.421 0.818, 0.486 0.885, 0.478 0.849, 0.478 

Synapse-1.2 0.668, 1.084 0.648, 1.046 0.711, 1.240 0.648, 1.137 0.684, 1.093 0.664, 1.108 
 

Similarly, Figure 3 shows that in the scenario of CPDP 
DTR is also the best estimator when considering precision. 
With regard to RMSE, DTR is similar to LR, which is next to 
BRR. Note that any data not included between the whiskers is 
plotted as a cross in Figure 3. 

 
Figure 3. Standardized box plots of evaluation measures for the six prediction 

models in the scenario of CPDP (P: left, RMSE: right) 

 

 

B. Answer to RQ2 
In both within- and cross-project scenarios, the results of a 

prediction model are actually two groups of samples, and the 
goal of RQ2 is to assess whether their population mean ranks 
differ. The Wilcoxon signed-rank test, also known as a non-
parametric statistical hypothesis test, is suitable for this case, 
because the population cannot be assumed to be normally 
distributed (see Figures 2 and 3, the median and mean within 
each box are not equal). The software program for such tests is 
realized based on scipy, which is a Python-based software 
ecosystem for mathematics, science, and engineering. 

Assuming that two groups of samples are drawn from the 
same distribution (null hypothesis), the Wilcoxon signed-rank 
test is executed with an alternative/opposite hypothesis. A p-
value generated in the test is used to reject the null hypothesis 
in favor of the opposite hypothesis. But, if the p-value is more 
than 0.01, one cannot reject the null hypothesis. The test results 
are shown in Table IV, which highlights that there are no 

significant differences among WPDP and CPDP models, 
indicated by the majority of p > 0.01 (10/12) for these models 
evaluated by the two measures, though two exceptions (whose 
numbers are in bold font) exist with respect to precision. More 
interestingly, for the two exceptions, the Cliff’s effect sizes for 
NNR and DTR are negative, which suggests that the results of 
CPDP models are better. From the perspective of statistical 
analysis, the finding indicates that in this paper CPDP models 
are comparable to (or sometimes better than) WPDP models 
with regard to accuracy, largely due to that in some cases we 
select a large and mature project (Prop) as training data in the 
scenario of CPDP. Hence, the selection of historical data from 
those suitable mature projects to train a prediction model for 
defect numbers is a significant factor for the success of CPDP. 

TABLE IV.  A COMPARISON OF THE DISTRIBUTIONS OF  PREDICTION 
RESULTS IN BOTH SCENARIOS USING THE WILCOXON SIGNED-RANK TEST 

Measure LR BRR SVR NNR DTR GBR 
Precision 0.011 0.044 0.030 0.002  0.001 0.033 
RMSE 0.314 0.108 0.941 0.970 0.084 0.296 

 

 

C. Threats to Validity 
Although we obtain some interesting findings to answer the 

research questions, there are still potential threats to the validity 
of our work, one of which concerns the generalization of the 
results obtained in this paper. The main reasons include the 
following four aspects: (1) we randomly select six projects (a 
very small subset of all of the projects) from the PROMISE 
repository when conducting the experiments; (2) we only use 
the 20 static code metrics when building prediction models, 
because the six projects do not include the information of 
process metrics and social network measures [29]; (3) we select 
training data in a simple way, though there are many time-
consuming but effective selection methods [30]; and (4) we 
only utilize six typical regression methods without additional 
optimization for a given data set. 

The prediction model based on Decision Tree Regression is 
the best estimator for defect numbers in different scenarios. 

CPDP models are comparable to (or sometimes better than) 
WPDP models with respect to prediction performance. 



VI. CONCLUSION AND FUTURE WORK 
Defect numbers prediction is an interesting problem in the 

field of defect prediction. Compared with the prior studies on 
defect classifiers (viz. supervised classification models), in this 
paper we empirically investigate the feasibility of defect 
numbers prediction using regression methods in both within-
project and cross-project defect scenarios. The experiments on 
six open-source software projects show that those simple, 
typical regression methods are also able to perform well in 
different scenarios, e.g., the prediction model built with 
Decision Tree Regression is proven to be the best estimator in 
our experiments, and that the six prediction models under 
discussion can achieve similar (or sometimes even better) 
results in both within- and cross-project scenarios. The findings 
would provide useful empirical evidence for software 
developers or software testers to choose appropriate training 
data and regression methods in the case of urgent deadlines and 
limited resources. 

Our future work will further investigate the issues related to 
defect numbers prediction so as to improve prediction precision, 
including (1) building the best prediction model according to 
the actual distribution of defects in a given software project, 
and (2) selecting the most suitable training data for defect 
numbers prediction using transfer learning techniques [31] in 
the scenario of CPDP.  
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