
An empirical study on predicting defect numbers
Mingming Chen1,2 and Yutao Ma2,3,*

1. State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China
2. School of Computer, Wuhan University, Wuhan 430072, China

3. WISET Automation Co., Ltd., Wuhan Iron and Steel Group Corporation, Wuhan 430080, China
*E-mail: ytma@whu.edu.cn

Abstract—Defect prediction is an important activity to make
software testing processes more targeted and efficient. Many
methods have been proposed to predict the defect-proneness of
software components using supervised classification techniques in
within- and cross-project scenarios. However, very few prior
studies address the above issue from the perspective of predictive
analytics. How to make an appropriate decision among different
prediction approaches in a given scenario remains unclear. In
this paper, we empirically investigate the feasibility of defect
numbers prediction with typical regression models in different
scenarios. The experiments on six open-source software projects
in PROMISE repository show that the prediction model built
with Decision Tree Regression seems to be the best estimator in
both of the scenarios, and that for all the prediction models, the
results yielded in the cross-project scenario can be comparable to
(or sometimes better than) those in the within-project scenario
when choosing suitable training data. Therefore, the findings
provide a useful insight into defect numbers prediction for those
new and inactive projects.

Keywords: defect prediction; predictive analytics; cross-project
scenario; regression model

I. INTRODUCTION
Nowadays, defect prediction has attracted much attention

from both academia and industry because of its importance in
software quality assurance. It has been widely recognized that
the defect-proneness of software components (such as classes
and code modules) is closely related to a considerable number
of software metrics (the so-called features) [1], e.g., static code
metrics, code change history, process metrics and network
metrics [2], all of which are easy to collect now. Therefore,
many defect prediction approaches using statistical methods or
machine learning techniques have been proposed to forecast
defect-prone software components [3].

To the best of our knowledge, the vast majority of prior
defect prediction approaches predict whether a given software
component is defect-prone by means of binary classification
techniques [3, 4]. However, estimating the defect-proneness of
a given set of software components is not enough for software
testing in practice due to plenty of criticisms of practicality [4].
Furthermore, if we are able to predict the exact number of bugs
in each software component to be tested, software developers
or software testers will pay special attention to those software
components that contain more defects, which can make testing
processes more efficient in the case of limited time and human
resources. Thus, defect prediction is not just a simple binary
classification problem but a specific problem with predictive
analytics [5].

Due to the limitations of data analysis techniques and
available training data, the focus of early studies about this
topic was on building linear prediction models based on the
correlations between defects and some important code features,
e.g., lines of code [6] and McCabe’s cyclomatic complexity.
After object-oriented design metrics and process quality
metrics were proposed in the 1990s, the researchers in this filed
developed many new prediction models by means of multiple
regression analysis [7]. With the development of data mining
and machine learning techniques, a few of complex prediction
models for the number of defects were presented in recently
published literature. For example, Wang et al. proposed an
approach based on a defect state transition model [8]. The
experimental results on open-source software projects showed
that the complex models outstripped other competing models in
terms of evaluation measures such as the mean absolute error,
but their generality and construction cost were questioned.

Interestingly, several recent studies with respect to software
defect classification [3, 9, 10] have found that simple classifiers,
e.g., Naïve Bayes and Logistic Regression, were able to
perform well in both within-project and cross-project scenarios,
though those complex ones always achieved high precision. As
we know, newly created or unpopular software projects have
little historical data available to train any classifiers, which is
very similar to the typical problem cold start in recommender
systems [11]. Hence, cross-project defect prediction (CPDP)
emerges as a promising solution to the above issue. Overall, it
applies the prediction model learned from other selected
projects to a target project [12], and the feasibility of CPDP has
been widely examined by the researchers in this field [13, 14].
However, compared with within-project defect prediction
(WPDP), in most cases the prediction performance of CPDP is
relatively poor on account of the diversity of data distributions
between source and target projects [10, 12-14].

As far as we know, very few prior studies evaluated and
compared the existing approaches that predict defect numbers
in different scenarios. How to make an appropriate decision
among those prediction approaches in a given scenario remains
unclear. Inspired by the recent studies on software defect
classification, in this paper our goal is to validate the feasibility
of CPDP approaches (based on regression models) to
predicting defects, and to investigate which frequently-used
regression model can achieve the best result in both within- and
cross-project scenarios. With the pre-designed experiments that
were conducted on six open-source software projects in the
famous PROMISE repository, we hope our empirical findings
could refine the previous work on predicting software defects.

(DOI reference number: 10.18293/SEKE2015-132)

In particular, we provide a more comprehensive and detailed
suggestion about choosing appropriate predictive modeling
approaches and training data to build a simple, highly cost-
effective prediction model according to specific requirements.

The remainder of this paper is organized as follows: Section
II introduces the related work; the research questions to be
discussed are presented in Section III; Section IV and Section
V show the experimental setups and results, respectively; in the
end, Section VI concludes this paper and gives a research
agenda for our future work.

II. RELATED WORK
Defect prediction has been an active research topic in

software engineering for decades [3]. For the theme of this
paper, earlier studies focused on analyzing the relationship
between defects and code complexity metrics (such as lines of
code) with the methods of linear regression [15]. With the rapid
development of object-oriented programming and software
process management techniques, some of new prediction
models began to utilize more types of metrics to predict defect
numbers by means of multiple regression analysis [7, 16].
According to a recent survey [1] conducted on 106 papers that
were published between 1991 and 2011, the proportions of
object-oriented, source code, and process metrics used are
about 49%, 27%, and 24%, respectively. Radjenovic et al. also
find that the Chidamber and Kemerer (CK) metrics are the
most commonly used metrics [1]. However, the accuracy of
these prediction models is not completely satisfying.

The rise of data mining and machine learning techniques
fosters a few complex prediction models using random forest
[17], linear discriminant analysis (LDA) [18], artificial neural
networks [19], k-nearest neighbors (KNN) algorithm [20],
Bayesian networks [21], support vector machines (SVM) [22],
and so on. For example, Nguyen et al. proposed a similarity-
based approach employing an improved KNN algorithm to
predict defect numbers [5]. So far, they have been widely used
to estimate the defect-proneness of software components, and
more details of these approaches can refer to the recent surveys
[3, 4]. On the other hand, considering a large number of
software metrics, feature subset selection and dimensionality
reduction techniques have also been applied to these new
defect prediction methods [22, 23], and many empirical studies
have demonstrated that they are able to achieve higher
accuracy and computing efficiency by removing redundant and
irrelevant software metrics [10].

Generally speaking, most of the above-mentioned studies
about defect prediction are conducted in WPDP settings,
because this is intuitive and easy to use. But, WPDP is not
always practicable when lacking historical defect data in a
given project. So, CPDP models are investigated to predict
defect-prone software components according to the information
or knowledge extracted from other similar software projects.

To the best of our knowledge, CPDP was first introduced to
this field by Briand et al. [24]. They trained a prediction model
according to the Xposem project, and used it to predict the
defect-proneness of the Jwriter project. The experimental result
showed that CPDP outperformed a random prediction model.
Then, Zimmermann et al. [12] employed 622 cross-project

combinations among 12 open-source software projects to
validate the feasibility of CPDP, but they found that only 21
out of 622 combinations worked successfully. In fact, the
quality of cross-project training data, rather than the total
quantity of data available from other projects, is more likely to
affect the performance of CPDP models to some extent [25].
Hence, how to select the most appropriate cross-project data for
a target project has recently become an interesting problem
[26]. For example, Turhan et al. [26] applied a nearest neighbor
filtering technique to filter out those irrelevant project data in
the setting of CPDP, leading to a better prediction performance.
More discusses on the comparison between WPDP and CPDP
please refer to [4, 10, 27, 28]. Unfortunately, very few prior
studies paid attention to the issue in question in CPDP settings.

III. RESEARCH QUESTIONS
Regression analysis is a commonly-used, effective method

for predictive analytics, which analyzes current and historical
data to make predictions on future or unknown events by
estimating the relationships among different variables. In this
paper, we investigate the problem related to defect numbers
prediction by means of regression analysis. More specifically,
we attempt to find empirical evidence to address the following
two research questions:

• RQ1: Which type of regression models is the most
suitable approach to predicting the number of defects
in different scenarios?

As mentioned earlier, many prediction models, built with
regression analysis (such as linear regression, Bayesian
regression, and SVM regression), have been used to predict the
number of defects. They are a group with excellence as well as
shortcomings. So, we should take into consideration various
factors (rather than just accuracy) when applying them to
different types of actual projects with limited resources, which
is required to make an optimal (or near-optimal) tradeoff
among generality, performance and construction cost. That is,
we want to find one or more appropriate regression models that
can be used in different scenarios, because the previous studies
about defect-proneness prediction have showed that the
classifiers which are simple and easy to use tend to perform
well in both within- and cross-project scenarios [10, 27]. In
particular, is this still practicable for defect numbers prediction?

• RQ2: Are the accuracies of CPDP regression models
under discussion comparable to those of WPDP
regression models?

It is acknowledged that the defect prediction models trained
from the same project are, in general, better than those trained
from other similar projects, because different projects may
have different contextual characteristics, e.g., development
process, developers, and project organization. But, does it
definitely happen when training data and test data have similar
distributional features? So, we attempt to empirically compare
the performance differences among the regression models
discussed in this paper in both within- and cross-project
scenarios. Note that, if the distributions of two sets of
prediction results (A and B) have no statistically significant
difference, in our opinion, A is comparable to B.

IV. EXPERIMENTAL SETUPS

A. Data Collection
To validate the feasibility of defect numbers prediction in

the cross-project scenario, six open-source software projects
with 26 releases collected from the online, publicly available
PROMISE repository are used as our experimental data set.
The brief introduction to all releases of the projects is shown in
Table I, where #Instances indicates the number of instances
(class files), #Defects denotes the total number of defects in the
release, %Defect represents the percentage of defect-prone
instances, and Max is the maximum value of defects.

 Due to space limitations, the list of software metrics used
as features in different regression models please refer to [10].
In our experiments, there are 20 independent variables (such as
the CK metrics suite and LOC) and one dependent variable (the
number of degects), and the goal of our experiments is to
estimate the prediction results calculated using six commonly
used regression models in different scenarios.

TABLE I. BRIEF INTRODUCTION TO THE EXPERIMENTAL DATA SET

Project Release #Instances #Defects %Defect Max

Ant

Ant-1.3 125 33 16.0% 3
Ant-1.4 178 47 22.5% 3
Ant-1.5 293 35 10.9% 2
Ant-1.6 351 184 26.2% 10
Ant-1.7 745 338 22.3% 10

Camel

Camel-1.0 339 14 3.4% 2
Camel-1.2 608 522 35.5% 28
Camel-1.4 872 335 16.6% 17
Camel-1.6 965 500 19.5% 28

Forrest
Forrest-0.6 6 1 16.7% 1
Forrest-0.7 29 15 17.2% 8
Forrest-0.8 32 6 6.3% 4

Jedit

Jedit-3.2 272 382 33.1% 45
Jedit-4.0 306 226 24.5% 23
Jedit-4.1 312 217 25.3% 17
Jedit-4.2 267 106 13.1% 10
Jedit-4.3 492 12 2.2% 2

Prop

Prop-1 18471 5493 14.8% 37
Prop-2 23014 4096 10.6% 27
Prop-3 10274 1640 11.5% 11
Prop-4 8718 1362 9.6% 22
Prop-5 8516 1930 15.3% 19
Prop-6 660 79 10.0% 4

Synapse
Synapse-1.0 157 21 10.2% 4
Synapse-1.1 222 99 27.0% 7
Synapse-1.2 256 145 33.6% 9

B. Experiment Design
To answer the two research questions presented in Section

III, the overall framework of our experiments and empirical
analysis is shown in Figure 1.

First, for a target release (test data) of a given project, two
training data selection approaches (viz. application scenarios)
are considered in our experiments. (1) WPDP: all historical

releases prior to the target release within the same project are
used as training data; and (2) CPDP: all available releases from
the most suitable project (rather than from the same project) are
used as training data. Take Ant-1.7 as an example, the four
releases from the same project, namely Ant-1.3, Ant-1.4, Ant-
1.5, and Ant-1.6, are selected as training data in the within-
project scenario, and all of the releases from the Camel project
are chosen as training data in the cross-project scenarios (see
the example in Figure 1).

Figure 1. Overall Framework of Our Experiments: An Example of Ant-1.7

Second, we determine the number of experiments according
to the experimental data and the training data selection methods.
Because the first release of each project is impossible to be test
data in the within-project scenario, there are 20 (4 + 3 + 2 + 4 +
5 + 2 = 20) groups of tests among all the releases of the six
projects. To keep the comparison between WPDP and CPDP in
the same condition, we select only 20 groups of corresponding
tests for CPDP, though there is a total of 26 test data sets.

Third, according to the 20 software metrics (independent
variables) and the number of bugs (dependent variable), we
build different prediction models based on six commonly used
regression methods (see the upcoming subsection) and apply
them to 12 (2 × 6 = 12) cases. For each case (in either WPDP
or CPCP scenario) in question, we conduct the above-
mentioned experiment (viz. prediction) 20 times.

Fourth, we preprocess the predicted defect numbers of all
experiments before estimating the experimental results. Since
the number of bugs in every software component must be a
non-negative integer, we make appropriate adjustments for
those original defect numbers if necessary. That is, if the
predicted defect number is negative, it will be set to 0; if the
result is a positive decimal, it will be set to an integer by a
rounding method.

Finally, we compute the accuracy of a prediction model in
terms of several evaluation measures, and compare the
differences on the distributions of prediction results using
statistical methods such as the Wilcoxon signed-rank test.

C. Regression Models
Regression methods assess the expectation of a dependent

variable according to a set of given independent variables.
More specifically, a regression model can help understand how
a dependent variable changes when independent variables vary
in training data sets, and tries to estimate the expectation of the
dependent variable with those given independent variables in

test data sets. For the issue discussed in this paper, we assume
that the vector X of software metrics includes all independent
variables and the numerical value of defect number y is the
dependent variable. Each regression model under discussion
learns a function y = f(X) according to the relationship between
X and y extracted from training data, and then uses the function
f to predict defect numbers of test data. Considering the
motivation of this paper, we select only six typical regression
models, excluding those complex ones. To avoid reinventing
the wheel all the time, we build and implement these regression
models based on the python machine learning library sklearn.
Unless otherwise specified, the default parameter settings for
different regression models used in our experiments are
specified by sklearn. That is, we do not perform additional
optimization for each regression model. The brief introduction
to the six regression models is described as follows:

• LR (Linear Regression): it is always used to solve the
least squares function of the linear relationship
between one or multiple independent variables and one
dependent variable.

• BRR (Bayesian Ridge Regression): it is similar to the
classical Ridge Regression. The hyper parameters of
such type of models are introduced by prior probability
and then estimated by maximizing the marginal log
likelihood with probabilistic models.

• SVR (Support Vector Regression): it is extended from
the well-known Support Vector Machines, which only
depends on a subset of training data, because the cost
function for building a SVR model ignores any training
data close to the prediction results of the model.

• NNR (Nearest Neighbors Regression): it is based on
the k-nearest neighbors algorithm, and the regression
value of an instance is calculated by the weighted
average of its nearest neighbors. And, the weight is
settled proportional to the inverse of the distance
between the instance and its neighbors.

• DTR (Decision Tree Regression): it learns simple
decision rules to approximate the curve of a given
training data set, and then predicts the target variable.

• GBR (Gradient Boosting Regression): it is in the form
of an ensemble of weak prediction models. Several
base estimators are combined with a given learning
algorithm in order to improve the prediction accuracy
over a single estimator.

D. Evaluation Measures
To evaluate the prediction results of our experiments, in this

paper we utilize the metrics precision (P) and root mean square
error (RMSE), which are described as follows:

• P: Precision addresses the percentage of correctly
predicted instances to the total number of test data. The
higher the precision, the better accuracy a prediction
model achieves.

P = 𝑁𝑟�=𝑟
𝑁

, (1)

where N is the number of instances in test data, and
𝑁�̂�=𝑟 indicates the number of instances whose
predicted values (�̂�) are equal to their real values (r).

• RMSE: It measures the difference between the values
predicted by a model or an estimator and the values
actually observed. Compared with the mean absolute
error, because of being scale-dependent, RMSE is a
good measure of accuracy to compare prediction errors
of different models for a given variable, e.g., the
number of defects in this paper.

RMSE = �∑ |𝑟𝚤�−𝑟𝑖|2𝑁
𝑖=1

𝑁
. (2)

V. EXPERIMENTAL RESULTS

A. Answer to RQ1
First, for each prediction model built with a regression

model in question, we conduct the pre-designed experiment 20
times in the scenario of WPDP. The prediction results of an
example are shown in Table II, where each record in the table
is denoted by a two-tuple/pair (P, RMSE). In this example, the
last release of each project is used to be test data, and all of the
previous releases in the same project are selected as training
data. The number in bold in this table indicates the best
estimator among the six prediction models. Note that BRR and
GBR achieve the same value of precision, but the former is
better than the latter because of a smaller RMSE value.

Figure 2. Standardized box plots of evaluation measures for the six prediction

models in the scenario of WPDP (P: left, RMSE: right)

 Moreover, the distributions of the values of P and RMSE
for the 20 experiments are shown in Figure 2, where the X-axis
means the prediction models under discussion and the Y-axis
indicates the value of an evaluation measure. The legends from
the bottom to the top of a standardized box plot are minimum,
first quartile, median (red line), third quartile, and maximum.
Note that the small cycle within each box is the mean value of
the 20 predictions. It is obvious from Figure 2 that the median
and mean of DTR are larger than those of the other five
prediction models with respect to precision. On the other hand,
considering the distribution of RMSE values, DTR is similar to
LR and BRR, closely followed by GBR and NNR. To sum up,
in the scenario of WPDP, DTR seems to be the best estimator
for the experimental data in this paper.

Second, in the scenario of CPDP, we conduct the pre-
designed experiment 20 times in a similar way as described for
WPDP. The prediction results of an example corresponding to
the above example are listed in Table III. In this example, for
each target release, we select all available releases from the

most appropriate project as training data. That is, each record in
this table represents the best outcome among the other projects.
Surprisingly, the results about precision in Table III are, on

average, higher than those in Table II, implying that CPDP
achieves better performance than WPDP in this example. This
finding is different from the results of many prior studies [3, 9].

TABLE II. ESTIMATING PREDICTION RESULTSS IN THE SCENARIO OF WPDP: AN EXAMPLE

Project LR BRR SVR NNR DTR GBR
Ant-1.7 0.740, 0.924 0.753, 0.924 0.771, 1.227 0.719, 0.987 0.761, 0.943 0.754, 0.921

Camel-1.6 0.616, 1.868 0.614, 1.813 0.550, 1.761 0.694, 1.775 0.739, 1.862 0.662, 1.686
Forrest-0.8 0.750, 0.728 0.531, 0.952 0.906, 0.810 0.812, 0.847 0.718, 1.457 0.714, 1.794
Jedit-4.3 0.597, 1.954 0.583, 1.941 0.706, 0.832 0.691, 1.651 0.798, 1.666 0.680, 2.068
Prop-6 0.886, 0.421 0.887, 0.419 0.868, 0.447 0.809, 0.554 0.868, 0.483 0.887, 0.431

Synapse-1.2 0.632, 1.011 0.668, 0.988 0.656, 1.208 0.636, 1.077 0.652, 1.034 0.652, 1.019

TABLE III. ESTIMATING PREDICTION RESULTS IN THE SCENARIO OF CPDP: AN EXAMPLE

Project LR BRR SVR NNR DTR GBR
Ant-1.7 0.762, 1.016 0.764, 1.015 0.756, 1.132 0.745, 1.128 0.756, 1.132 0.775, 1.113

Camel-1.6 0.771, 1.752 0.773, 1.770 0.842, 1.599 0.754, 1.807 0.778, 1.795 0.764, 1.145
Forrest-0.8 0.931, 0.780 0.938, 0.791 0.894, 0.792 0.875, 0.829 0.927, 0.740 0.786, 1.804
Jedit-4.3 0.821, 0.666 0.823, 0.664 0.749, 0.687 0.829, 0.813 0.880, 0.486 0.896, 0.789
Prop-6 0.779, 0.529 0.826, 0.488 0.891, 0.421 0.818, 0.486 0.885, 0.478 0.849, 0.478

Synapse-1.2 0.668, 1.084 0.648, 1.046 0.711, 1.240 0.648, 1.137 0.684, 1.093 0.664, 1.108

Similarly, Figure 3 shows that in the scenario of CPDP
DTR is also the best estimator when considering precision.
With regard to RMSE, DTR is similar to LR, which is next to
BRR. Note that any data not included between the whiskers is
plotted as a cross in Figure 3.

Figure 3. Standardized box plots of evaluation measures for the six prediction

models in the scenario of CPDP (P: left, RMSE: right)

B. Answer to RQ2
In both within- and cross-project scenarios, the results of a

prediction model are actually two groups of samples, and the
goal of RQ2 is to assess whether their population mean ranks
differ. The Wilcoxon signed-rank test, also known as a non-
parametric statistical hypothesis test, is suitable for this case,
because the population cannot be assumed to be normally
distributed (see Figures 2 and 3, the median and mean within
each box are not equal). The software program for such tests is
realized based on scipy, which is a Python-based software
ecosystem for mathematics, science, and engineering.

Assuming that two groups of samples are drawn from the
same distribution (null hypothesis), the Wilcoxon signed-rank
test is executed with an alternative/opposite hypothesis. A p-
value generated in the test is used to reject the null hypothesis
in favor of the opposite hypothesis. But, if the p-value is more
than 0.01, one cannot reject the null hypothesis. The test results
are shown in Table IV, which highlights that there are no

significant differences among WPDP and CPDP models,
indicated by the majority of p > 0.01 (10/12) for these models
evaluated by the two measures, though two exceptions (whose
numbers are in bold font) exist with respect to precision. More
interestingly, for the two exceptions, the Cliff’s effect sizes for
NNR and DTR are negative, which suggests that the results of
CPDP models are better. From the perspective of statistical
analysis, the finding indicates that in this paper CPDP models
are comparable to (or sometimes better than) WPDP models
with regard to accuracy, largely due to that in some cases we
select a large and mature project (Prop) as training data in the
scenario of CPDP. Hence, the selection of historical data from
those suitable mature projects to train a prediction model for
defect numbers is a significant factor for the success of CPDP.

TABLE IV. A COMPARISON OF THE DISTRIBUTIONS OF PREDICTION
RESULTS IN BOTH SCENARIOS USING THE WILCOXON SIGNED-RANK TEST

Measure LR BRR SVR NNR DTR GBR
Precision 0.011 0.044 0.030 0.002 0.001 0.033
RMSE 0.314 0.108 0.941 0.970 0.084 0.296

C. Threats to Validity
Although we obtain some interesting findings to answer the

research questions, there are still potential threats to the validity
of our work, one of which concerns the generalization of the
results obtained in this paper. The main reasons include the
following four aspects: (1) we randomly select six projects (a
very small subset of all of the projects) from the PROMISE
repository when conducting the experiments; (2) we only use
the 20 static code metrics when building prediction models,
because the six projects do not include the information of
process metrics and social network measures [29]; (3) we select
training data in a simple way, though there are many time-
consuming but effective selection methods [30]; and (4) we
only utilize six typical regression methods without additional
optimization for a given data set.

The prediction model based on Decision Tree Regression is
the best estimator for defect numbers in different scenarios.

CPDP models are comparable to (or sometimes better than)
WPDP models with respect to prediction performance.

VI. CONCLUSION AND FUTURE WORK
Defect numbers prediction is an interesting problem in the

field of defect prediction. Compared with the prior studies on
defect classifiers (viz. supervised classification models), in this
paper we empirically investigate the feasibility of defect
numbers prediction using regression methods in both within-
project and cross-project defect scenarios. The experiments on
six open-source software projects show that those simple,
typical regression methods are also able to perform well in
different scenarios, e.g., the prediction model built with
Decision Tree Regression is proven to be the best estimator in
our experiments, and that the six prediction models under
discussion can achieve similar (or sometimes even better)
results in both within- and cross-project scenarios. The findings
would provide useful empirical evidence for software
developers or software testers to choose appropriate training
data and regression methods in the case of urgent deadlines and
limited resources.

Our future work will further investigate the issues related to
defect numbers prediction so as to improve prediction precision,
including (1) building the best prediction model according to
the actual distribution of defects in a given software project,
and (2) selecting the most suitable training data for defect
numbers prediction using transfer learning techniques [31] in
the scenario of CPDP.

ACKNOWLEDGMENT
This work is supported by the National Basic Research

Program of China (973 Program) (No. 2014CB340401), the
National Natural Science Foundation of China (Nos.
61272111and 61273216), the Youth Chenguang Project of
Science and Technology of Wuhan City in China (No.
2014070404010232), and the open foundation of Hubei
Provincial Key Laboratory of Intelligent Information
Processing and Real-time Industrial System in China (No.
znss2013B017).

REFERENCES
[1] D. Radjenović, M. Heričko, R. Torkar, A. Živkovič, “Software fault

prediction metrics: A systematic literature review,” Information and
Software Technology, 2013, 55(8): 1397-1418.

[2] A. Meneely, L. Williams, W. Snipes, J. Osborne, “Predicting failures
with developer networks and social network analysis,” in: Proc. of the
16th ACM SIGSOFT FSE, Atlanta, Georgia, USA, 2008, pp. 13–23.

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, “A systematic
review of fault prediction performance in software engineering,” IEEE
Transactions on Software Engineering, 2012, 38 (6): 1276–1304.

[4] R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Applied Soft Computing, 2015, 27: 504–518.

[5] T.T. Nguyen, T.Q. An, V.T. Hai, T.M. Phuong, “Similarity-based and
rank-based defect prediction,” in: Proc. of the 2014 Int’l Conf. on Adv.
Technol. for Commun., Hanoi, Vietnam, 2014, pp. 321-325.

[6] J.E. Gaffney Jr., “Estimating the Number of Faults in Code,” IEEE
Transactions on Software Engineering, 1984, 10(4): 459-465.

[7] N.E. Fenton, M. Neil, “A Critique of Software Defect Prediction
Models,” IEEE Transactions on Software Engineering, 1999, 25(5):
675-689.

[8] J. Wang, H. Zhang, “Predicting defect numbers based on defect state
transition models,” in: Proc. of the 6th ACM-IEEE Int’l Symp. on
Empirical Softw. Eng. and Measurement, Sweden, 2012, pp. 191-200.

[9] D.M. Ambros, M. Lanza, R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison,” Empirical
Softw. Eng., 2012, 17(4-5): 531–577.

[10] P. He, B. Li, X. Liu, J. Chen, Y.T. Ma, “An empirical study on software
defect prediction with a simplified metric set,” Information and Software
Technology, 2015, 59: 170-190.

[11] A.I. Schein, A. Popescul, L.H. Ungar, D.M. Pennock, “Methods and
metrics for cold-start recommendations,” in: Proc. of the ACM SIGIR
SIGIR’02, Tampere, Finland, 2002, pp. 253-260.

[12] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B. Murphy, “Cross-
project defect prediction: a large scale experiment on data vs. domain vs.
process,” in: Proc. of the ESEC/FSE’09, Netherlands, 2009, pp. 91-100.

[13] Z. He, F. Shu, Y. Yang, M.S. Li, Q. Wang, “An investigation on the
feasibility of cross-project defect prediction,” Autom. Softw. Eng., 2012,
19(2): 167–199.

[14] F. Rahman, D. Posnett, P. Devanbu, “Recalling the imprecision of cross-
project defect prediction,” in: Proc. of the 20th ACM SIGSOFT FSE,
Cary, NC, USA, 2012, p. 61.

[15] H.Y. Zhang, “An Investigation of the Relationships between Lines of
Code and Defects,” in: Proc. of the 25th IEEE Int’l Conf. on Softw.
Maintenance, Edmonton, Alberta, Canada, 2009, pp. 274-283.

[16] F. Lanubile, A. Lonigro, G. Visaggio, “Comparing models for
identifying fault-prone software components”, in: Proc. of the 7th Int’l
Conf. on Softw. Eng. and Knowl. Eng., USA, 1995, pp. 312-319.

[17] A. Kaur, R. Malhotra, “Application of random forest in predicting fault-
prone classes,” in: Proc. of the ICACTE’08, Thailand, 2008, pp. 37-43.

[18] J.C. Munson, T.M. Khoshgoftaar, “The detection of fault-prone
programs,” IEEE Trans. Softw. Eng., 1992, 18(5): 423–433.

[19] A. Kaur, P. Sandhu, A. Bra, “Early software fault prediction using real
time defect data,” in: Proc. of the 2nd Int’l Conf. on Machine Vision,
Dubai, UAE, 2009, pp. 242 –245.

[20] G.D. Boetticher, “Nearest neighbor sampling for better defect prediction,”
in: Proc. of the IEEE PROMISE’05, Missouri, USA, 2005, pp. 1-6.

[21] G. Pai, J. Dugan, “Empirical analysis of software fault content and fault
proneness using bayesian methods,” IEEE Transactions on Software
Engineering, 2007, 33(10): 675–686.

[22] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Transactions on Software
Engineering, 2008, 34(4): 485–496.

[23] K. Gao, T.M. Khoshgoftaar, H. Wang, N. Seliya, “Choosing software
metrics for defect prediction: an investigation on feature selection
techniques,” Softw., Pract. Exper., 2011, 41(5): 579-606.

[24] L.C. Briand, W.L. Melo, J. Wüst, “Assessing the applicability of fault-
proneness models across object-oriented software projects,” IEEE Trans.
Softw. Eng., 2002, 28(7): 706–720.

[25] P. He, B. Li, D. Zhang, Y.T. Ma, “Simplification of Training Data for
Cross-Project Defect Prediction,” CoRR, abs/1405.0773, 2014.

[26] B. Turhan, T. Menzies, A. Bener, J.D. Stefano, “On the relative value of
cross-company and within-company data for defect prediction,”
Empirical Softw. Eng., 2009, 14(5): 540–578.

[27] F. Zhang, A. Mockus, I. Keivanloo, Y. Zou, “Towards building a
universal defect prediction model,” in: Proc. of the IEEE MSR’14,
Hyderabad, India, 2014, pp. 182-191.

[28] B. Turhan, A.T. Misirli, A. Bener, “Empirical evaluation of the effects
of mixed project data on learning defect predictors,” Information and
Software Technology, 2013, 55(6): 1101-1118.

[29] T. Zimmermann, N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in: Proc. of the 30th Int’l Conf. on
Softw. Eng., Leipzig, Germany, 2008, pp. 531–540.

[30] F. Peters, T. Menzies, A. Marcus, “Better cross company defect
prediction,” in: Proc. of the 10th Workshop on Mining Software
Repositories, San Francisco, CA, USA, 2013: 409-418.

[31] Y. Ma, G. Luo, X. Zeng, A. Chen, “Transfer learning for cross-company
software defect prediction,” Information and Software Technology, 2012,
54(3): 248–256.

	I. Introduction
	II. Related Work
	III. Research Questions
	IV. Experimental Setups
	A. Data Collection
	B. Experiment Design
	C. Regression Models
	D. Evaluation Measures

	V. Experimental Results
	A. Answer to RQ1
	B. Answer to RQ2
	C. Threats to Validity

	VI. Conclusion and Future Work
	Acknowledgment
	References

