
Runtime Code Reuse Attacks: A Dynamic

Framework Bypassing Fine-Grained Address Space

Layout Randomization

Yi Zhuang
1
, Tao Zheng

12
, Zhitian Lin

1

Software Institute
1
. National Key Laboratory for Novel Software Technology

2

Nanjing University

Nanjing, China

{mg1132019, zt, mg1232007}@software.nju.edu.cn

Abstract—Fine-grained address space layout randomization

has recently been proposed as a method of efficiently mitigating

ROP attacks. In this paper, we introduce a design and

implementation of a framework based on a runtime strategy that

undermines the benefits of fine-grained ASLR. Specifically, we

abuse a memory disclosure to map an application’s memory

layout on-the-fly, dynamically discover gadgets and construct the

desired exploit payload, and finish our goals by using virtual

function call mechanism—all with a script environment at the

time an exploit is launched. We demonstrate the effectiveness of

our framework by using it in conjunction with a real-world

exploit against Internet Explorer and other applications

protected by fine-grained ASLR. Moreover, we provide

evaluations that demonstrate the practicality of run-time code

reuse attacks. Our work shows that such a framework is effective

and fine-grained ASLR may not be as promising as first thought.

Keywords-code reuse; security; dynamic; fine-grained ASLR

I. INTRODUCTION

Software vulnerabilities have been a major cause of
computer security incidents. Buffer overflows [3, 5], integer
overflows and heap overflows were used to pose a significant
threat to modern operating systems [1]. Format string
vulnerabilities [2] allow an attacker to control the first
parameter to a function of the printf-family, which can be used
to store pointers to specific addresses if it is placed on the stack.
Despite differences in the style and implementation of these
exploits, they all share a same goal: to achieve the control-flow
hijacking attempts within the vulnerable application. Nowadays,
numerous defenses have been implemented to limit the scope
of these attacks. However, well motivated attackers still
succeed in their intent. So the cat and mouse game plays on.

To thwart such attacks, many mitigation techniques have
been developed. Address Space Layout Randomization (ASLR)
[9] and Data Execution Prevention (DEP) are very real thorns
in the side of an attacker. DEP makes locating shellcode
difficult; the attacker must find a page with executable
permission and find a way to write to it when it has writable
permission and figure out the location. Attackers then redirect
to code reuse attacks. This new strategy utilizes code already
present in memory, instead of relying on code injection. The
canonical example is return-to-libc [6, 8], in which exploits
redirect control-flow to existing shared-library functions. But if

the base address of the memory segment is randomized, then
the success rate of such an attack significantly decreases.
Shacham [7] introduced a new approach named return-oriented
programming, which chains together short instruction
sequences ending with a ret instruction (called gadgets) that
already exists in the memory of the application and executes
some specific computation. The key idea of ASLR is to
randomize the base address of the stack, heap, code, and
dynamic libraries at load and link time, which offered a
plausible defensive strategy against these attacks. But a
drawback of this approach is that not all memory regions have
been protected with ASLR, the address space for 32bit binaries
is small which opens the possibility of probabilistic attacks [17].
Besides that, ASLR on 32-bit architectures only leaves 16 bit
of randomness, an attacker might attempt to perform a brute-
force attack.

After that, smart defenders have been busily working to
fortify perimeters by designing fine-grained randomization
strategies [21] for repelling the next generation of wily hackers.
Some approaches introduce randomness at compile time. For
example, compilers can be modified to generate code without
ret instructions [25]. But these mechanisms fail to handle
attacks leveraging jmp instructions. Marlin, introduced by
Gupta [18], randomizes the function-level structure of the
executable code, so denying attacker the necessary a priori
knowledge of instruction addresses for constructing such a
desired exploit payload. Other approaches have also been
proposed to randomize processes. STIR [19] and XIFER [26]
defend against ROP by randomizing at the basic block
granularity. ILR [24] randomizes the location of each
instruction in the virtual address space and uses a process-level
virtual machine to find the called code, which imposes a
significant on-going performance cost. Therefore, the attacker
is unaware of how exactly permutation is randomized for the
currently executing process image. So the radiance of
traditional ROP attack is fading away. We define these
mitigations of ROP embodied by fine-grained ASLR.

In this paper, through memory disclosure, we implement a
completely new variant of code reuse attack wherein we gather
code chunks and retrieve them to the desired payload
dynamically from memory layout during the vulnerable
application is running. Then treating the calling of virtual

This work is funded by National Natural Science Foundation of China

under Grant No.61373010

609

function as the trampoline, replace the address of function in
vtable with gadget’s first addresses in proper sequence. Finally
trigger the call of function to complete our ROP attack on-the-
fly. We show strong evidence that our variant ROP attack can
entirely bypass all fine-grained randomization scheme and
ROP mitigation. Based on the above findings, we argue that the
fine-grained ASLR strategies still have loopholes. Meanwhile,
we hope that our work will inspire others to explore more
comprehensive defensive strategy than what exists today.

II. BACKGROUND

We review the necessary technical background information
before introducing the methodology behind our attack.

A. Code Reuse Attacks

The fundamental factor for code reuse attack is that the
relative offsets of instructions in the application’s code are
constant. That is to say, if an adversary knows any symbol’s
address in the application code, then the location of all gadgets
and symbols in application’s code is deterministic.

Return Oriented Programming [14] is generalization of
return-to-libc attack [6, 8], which involves an adversary
redirecting the program execution to an existing library
function [12]. The general principle of any ROP attack is to
combine short instruction sequences found in memory (or
whatever code is not randomized), called gadget, and allowing
an adversary to perform arbitrary computation. Recently, this
concept was overthrown by removing the reliance on return
instructions [13]. However, we show the basic idea of code

reuse using ROP for simplicity in Figure 1. Steps ① to ⑦
show the entire procedure of ROP attacks.

Program Memory

SP

Stack

Heap

Return Address 1

Return Address 2

Return Address 3

Heap Vulnerability

Libraries

Add Gadget ret

Load Gadget ret

Store Gadget ret

Stack Pivot ret

SP

Stack growth

1

Adversary

2

4

3

5

6

7

Figure 1. Layout of a sample ROP attack on the heap using a sequence of

single-instruction gadgets.

Jump Oriented Programming (JOP) [10, 29] is similar to
ROP in that JOP manipulates the control flow of the
application. Jump oriented data is not limited to stack
overflows but uses modified indirect control flow transfers to
construct the chain of executed gadgets. Indirect control flow
transfers are used in the application to support, e.g., library
calls, function pointers, and object oriented programming. JOP
has similar limitations like ROP. In addition, JOP needs to
redirect control flow to the first JOP dispatcher. ASLR
severely limits the initial redirection for JOP.

B. Fine-Grained Randomization for Exploit Mitigation

A widely accepted countermeasure against code reuse
attacks is that the defender randomizes the application’s
memory layout. This scheme randomizes the base address of
segments such as the stack, heap, shared libraries, and the
executable code itself. As is shown in Figure 2, the start
address of an executable is changed and sequence of gadgets is
shuffled between consecutive runs of the same application,
which is not intended by the attacker. So the adversary must
guess the location of the instruction sequences needed for
deployment of their code reuse attack.

0x07500000

0x06500000

Program Memory

Program Memory

Executable

Add Gadget ret

Load Gadget ret

Store Gadget ret

Stack Pivot ret

Executable

Stack Pivot ret

Store Gadget ret

Add Gadget ret

Load Gadget ret

Figure 2. Mitigation of ROP attack by fine-grained memory and code

randomization

Unfortunately, current ASLR implementations only
randomize on a per-module level, which suffer from two main
problems: first, ASLR can be bypassed by means of brute force
attacks [15, 17] because the entropy on 32-bit systems is too
low. Furthermore, upgrading to 64-bit is simply not feasible.
Second, all ASLR solutions are vulnerable to memory
disclosure attacks [11, 16] where the attacker gains knowledge
of a single runtime address and uses it to re-enable code reuse.
Therefore, some gadgets from a disclosed region can be
organized deliberately by the adversary offline before
deploying the exploit. To confound these attacks, Industrious
defenders put forward a number of fine-grained ASLR and
code randomization schemes [18, 19]. The broadly idea in
these works is to randomize the data and code structure, for
instance, by shuffling address of functions or basic blocks.
Figure 2 depicts that the performance of these approaches are
that the location of all gadgets is randomized.

We assume target platform uses the following mechanisms
to mitigate the execution of malicious computations:

610

 Non-Executable Memory: We assume that the target
vulnerable application is under the protection of non-
executable memory (also called NX or DEP) applied
to the heap and the stack. It will make the traditional
code-injection attack ineffective. We also assume that
this mechanism prevents adversary from tampering all
executables and native libraries, in order to stop one
from overwriting existing code.

 Base Address Randomization: We assume that the
target platform randomizes base addresses of library
and executable segments effectively. Mappings have
been eliminated.

 Fine-Grained ASLR: We assume that the target
platform deploys strong fine-grained memory and
code randomization scheme on executables and
libraries. First, target platform shuffles the order of
functions [18] and basic blocks [19]. Second, target
platform swaps registers and replaces instructions [20].
Third, target platform randomizes the location of each
instruction [23] and performs randomization upon
each execution of vulnerable application [19].

III. OVERVIEW OF RUNTIME CODE REUSE ATTACK

Snow [30] has put forward the concept of runtime code
reuse and implemented a framework that can launch exploit
on-the-fly. But the drawback in this framework is very
obvious. First, Snow did not give out the detail about how to
obtain the entry point of memory disclosure. Second, Just-in-
time compilation is simply too heavy-weight to be consider in
a runtime framework. In our framework, we explain how to
disclose code segment in detail, propose a new method to
chain every gadget which getting rid of dependence on stack
and proved to be light-weight.

The overall work flow of our runtime exploit is shown in

Figure 3. In Step ①, we arrange objects on the heap in order by
defragmenting system heap. Next, we perform an overflow on
JS object to disclose the memory and construct our code
chunks when target vulnerable application is running. Then we

pick up some useful gadget sets from code pages. In Step ②,
through setting up fake objects on the heap, we embedded
serialized code chunks in our vtable. Through utilizing
mechanism of virtual function call in target program, unordered
gadget sets become malicious ROP payload. At last, we inject
all above information in our exploit script to trigger our

malicious attack in Step③.

A. Disclosing Memory

Because we assume our target application is running on the
most fine-grained platforms, so memory layout of application
is totally different at each execution. Therefore, the attempt to
apply static code analysis is useless and futureless. The entire
procedure of our attack is happening during the vulnerable
application is executing. We need to arrange objects on the
heap in the following order: (i) buffer to overflow, (ii) string
object, (iii) JS object. The state of a process’s heap depends on
the history of allocations and deallocations that occurred during
the process’s lifetime. Unfortunately, we do not know the heap
state resulting from a specific sequence of previous allocations.

Figure 3. Workflow of memory code reuse attack against a script-enabled

application protected by fine-grained ASLR

We can image that there are many holes of free memory. To
overcome this hurdle, we must defragment the heap. Our
purpose is to fill up these ―holes‖ which are bigger than we
allocate later on. This can be done by allocating a large number
of blocks of the size we will use. After that, every time we
allocate new blocks from the end of the heap. Thus the
behavior of the allocator will be equivalent to starting with an
empty heap.

One important exception is the data for JavaScript string
object which is stored as BSTR [27] used by the COM
interface. BSTR strings are stored in memory as a structure
containing a four-byte size field, followed by the string data
and a two-byte null terminator. The first block is the following
string object. We take advantage of unsigned int overflow, so
that actually used size in block is smaller than we allocated
earlier. Then we fill the last four-byte with ―0xffffffff‖. So the
following string object’s first four-byte is overflowed and
string length will cover entire 32-bit address space layout. This
will allow us to read bytes at any relative address in memory.
As the relative offset from string object to button object is
known, we can use the relative read to reveal the absolute

611

address through self-reference first 4-byte field in third block.
We implement a method that, given a relative address, switches
it to an absolute address and reveals the corresponding data. In
short as memory is discovered, there will be many code chunks
in code pages for us to build a useful payload, which we
elaborate on in the next sections.

B. Gadget Discovery

Now our task lies in finding out a number of gadgets to use
as our code reuse payload. Not every instruction sequence can
be used as a gadget. We choose our usable gadgets in the
following three steps:

1) Upon with the code pages dynamically discovered in
process’s memory, we generate the sequence of instruction
gadgets ended with ret by adapting the Galileo [4] algorithm
and record them in a trie.

2) Discover the gadget that has the same semantic
definitions [28] with our desired gadget of payload in the trie.
If not found, we disclose the memory to glean new code pages
and return to the first step.

3) We filter the gadgets discovered in step two using a kind
of instruction dependence method which will be illustrated later.
If no gadgets left after the filtration, we return to the first step.

Since fine-grained ASLR mitigation may change the
module of code pages on each execution, we could not have
much energy to analyze the code chunks offline. What we
could do is dynamically collect gadgets at the time exploit runs.
Furthermore, we must do this work as quickly as possible
because our attack must run in real-time before the victim
machine terminates the vulnerable application. Unfettered
access to extensive memory address space enables us to search
for gadgets. We iterates over the code pages to collect useful
gadgets by adapting the Galileo [4] algorithm. After that we
use semantic definitions to match gadgets and introduce a kind
of instruction dependence method to filter them. In terms of the
instruction dependence method, we define the dependence (Insi,
Insj) as following.

 If there exists a register Rega which serves as a
destination register in Insm and as a source register in
Insm+1, so the execution of Insm depends on Insm+1, we
define Insm depends on Insm+1.

 If Insm+1 is a jump instruction, we define Insm depends
on Insm+1. For example, jnz eax, Insm+1 strictly
associates with Insm, which sets up flag
register %eflag.

 If register is involved in accessing memory, that is,
Insi, Insj corresponding to opcode regsrc, [eax+Imms];
opcode [eax+Immt],regdes; if value in the register is
not changed and Imms = Immt, we define Insi depends
on Insj; if value is changed, we define Insm depends on
Insm+1.

 If Insm and Insm+1 correspond to stack operation
instruction sequence, such as pop and push instruction,
we define Insm depends on Insm+1.

A gadget can be determined as usable or not after we check
every adjacent two instructions’ dependence according to the

above principle. If there are some gadgets left after the three
steps, we choose them as our final gadgets and will use their
addresses in the runtime attack.

C. Forging Virtual Function

The next challenge is how to effectively use the collection
of gadgets to satisfy the exploit target program. The traditional
sense of the ROP attack lies in a stack-based buffer overflow.
A ROP attack constructs a set of stack invocation frames that
are popped one after another. Each stack invocation frame
prepares a set of parameters on the stack and targets a gadget
that uses the parameters and executes some malicious
computation. ROP works around DEP but relies on static
addresses for the stack and for the gadgets. In addition ROP
needs to initially redirect control flow to the first ROP
invocation frame.

The core notion of our attack is that we replace function
addresses in virtual function table with some gadget’s address.
When the target application use the associated object, the first
virtual function is been called, control-flow is redirected by
sequentially executing the gadgets in memory which was found
in previous step to fulfill adversary’s goal. We do not need to
arrange gadgets on stack that ends with ret instruction with the
stack pointer, %esp, to execute the next gadget. This method
can totally negate the effect of stack protection strategy.

We allocate one blocks of memory on the heap for a fake
vtable. In figure 4, fake vtable is an object similar to String
object. It has 4-byte head, following by 4-type padding content,
next the virtual function addresses, and a 2-byte null terminator.
Any virtual function call starts at offset 8 in the vtable. So if we
put our gadget’s first instruction address in this position, virtual
function call through the vtable will jump to a location of our
choosing.

Figure 4. Data structure of fake vtable

Another data structure, called fake object, contains the base
address of our fake vtable. This procedure has involved
lookaside lists maintained by the system memory allocator. The
cache consists with a number of bins, each holding 6 blocks of
a certain size range. When a block is freed, it is stored in one of
the bins. If the bin is full, the smallest block in the bin is freed
and replaced with the new block. In terms of our needs, we
apply a certain amount of blocks from memory, which size
equals to our vtable, in order to make this size on the lookaside
list empty. Now let’s free this size of block containing a vtable,
so there is a free block whose content is original vtable on the
lookaside list and lookaside head will point to this block. We
construct the fake object by assigning the lookaside head
address to the fake object pointer.

D. Trigger Vulnerability

We overwrite the object pointer with lookaside list base
address called fake object pointer in Figure 5. Now the fake
object pointer points to the virtual function address in vtable
that has been overwrote with our first gadget’s base address in
memory. Every time we call a virtual function, corresponding

Head
4 Bytes

Paddings
4 Bytes

Gadget1_
addr

4 Bytes

Paddings Terminator
2 Bytes

Gadget2_
addr

4 Bytes
...

Gadget3_
addr

4 Bytes

612

gadget will be executed. We put a number of object pointers
into an array. So if an adversary wants to do high-level
malicious computation, he just successively uses these pointers
to call virtual functions.

Memory

Some Gadget

for(…){
 object pointer array[i] -> func();
} fake object (lookaside head)

vtable

object pointer array

fake object pointer Func()

Figure 5. Workflow of virtual function call

Because the times of virtual functional calls determine the
scale of our payload constructed by gadgets, if one object is not
enough for us, we can construct more objects which include the
virtual function calls to increase the power of our attack. After
we finish the above steps, what we need is only to invoke
vulnerable object which is used by the running application.
Finally it will trigger our runtime attack.

E. Implementation

To prove the power of our framework, we use it to exploit
Internet Explorer (IE) 10 running on Windows 7 using CVE-
2013-2551. The vulnerability is an integer overflow within
certain object to achieve code execution in the context of IE
10 sandboxed process. We put our desired objects on the heap,
dynamically traverse code pages, semantically pick up gadgets
and executing a serialized payload useable through a serious
of virtual function calls. All performed at runtime in a script
environment.

In Step ① , we develop a JavaScript library called
HeapEasy that encapsulate the system allocation operations.
For example, the implementation of HeapAlloc interface
ensures each blocks allocation comes from the system heap,
and implements a HeapLookAside interface to add blocks of
the specified size to the lookaside list. Next, iteratively using
the charCodeAt() function to read data from the memory code
pages and implement a DiscloseAbsAddr interface that
translates a relative address to an absolute address. We
snapshot the memory state in our hashmap which contains the
absolute address of every instruction. At the same time, we
dynamically filter the useable gadgets which adapts the criteria
from Schwartz [28]. After that, we construct the fake vtable by

using HeapVTable interface in Step②.

Generally speaking, a virtual function call needs a
MoveRegG to get the vtable address from register ecx, and a
JumpG to invoke the function at offset 0x8 in the vtable. Our
library enables us to figure out the heap base address and the
absolute address of a jmp ecx or equivalent instruction through
the debug library called DbgHelp. When IE 10 is running on

the target machine which uses the vulnerable ActiveX widget,
our script, included in any HTML or other document-format
supporting carriers, starts by an amount of bootstrap code. At

last, our payload begins execution in Step③.

IV. EVALUATION

We evaluated the proposed attack of our framework by
applying it on real-world application under the protection of
fine-grained randomization. Overall, the evaluation
demonstrated the wide-scale applicability of our runtime code
reuse framework against Internet Explorer in Windows and
other popular applications.

A. On Runtime Performance

We performed five tests of our framework. The first test
uses integer overflow vulnerability in the context of IE10
sandboxed process. The second, third and fourth tests exploit
the Internet Explorer plugin on windows. We use a DebugLog
function that includes format string vulnerability in the second
test. We employed the family of printf functions because of no
warnings were reported. In the third test, we took advantage of
an arbitrary sequence of commands. So we chose the Windows
calculator program. The vulnerability in the fourth test is
triggered by creating an ActiveX object and calling its
KeyFrame method with an argument overflow larger than
0x07ffffff. The fifth test demonstrates the native performance
of our framework.

B. Evaluation of the Defense against Our Framework

Table 2 shows the popular mitigations used in current
operation system. First, our framework does not need to
arrange each gadget’s first instruction address on the stack and
overflow the return address in EIP. So GS strategy loses her
efficiency. The same principle applies to SafeSEH. Second,
DEP strategy introduces a no-execute bit (NX) to prevent stack
from code-injection attack. Our framework utilizes code
already present in memory, so NX strategy does no harm to our
framework. In the academic circles, randomization technique at
various levels of granularity –function level, block level and
instruction level were put forward recently. However, our
framework glean code chunks at the same time , the target
vulnerable application was loaded in memory. That is to say,
the step of collecting gadgets happens after the application was
randomized. The runtime feature of our framework determines
the fine-grained ASLR strategy is short-sighted.

Table I RUNTIME FRAMEWORK AGAINST POPULAR ATTACK MITIGATIONS

 Attack Mitigations Runtime

framework

GS Stack cookies √

Variable reordering √

SafeSEH SEH handler validations √

Permanent SEH √

DEP NX √

ASLR Function-level √

Instruction-level √

613

V. CONCLUSION

Fine-grained ASLR has been introduced as an efficient
strategy to defense the code reuse attacks like ROP. In this
paper, we introduce a dynamical framework that trigger a
runtime code reuse by exploiting the virtual function call. Our
framework consists of memory disclosure, gadget discovery
and fake virtual function call construction. All work is executed
after the vulnerable program begins, so the ASLR can hardly
affect our experiment. We demonstrate the efficiency and
complete some attacks using this framework. This kind of
strategy may be a potential signal that future hacker will use
the same or similar way to bypass the ASLR and do something
dangerous. We hope our work will attract more researchers’
attention and inspire them to bring forward more
comprehensive defense.

REFERENCES

[1] E. H. Spafford, ―The Internet Worm Program: an Analysis,‖ SIGCOMM

Computer Communication Review, vol. 19, no. 1, pp. 17–57, 1989.

[2] V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos. Memory

errors: The past, the present, and the future. In Symposium on Recent
Advances in Attacks and Defenses, 2012.

[3] Aleph One. Smashing the stack for fun and profit. Phrack Magazine,
49(14), 1996.

[4] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In USENIX

Security Symposium, 1998.

[5] D. Litchfield. Defeating the stack based buffer overflow exploitation
prevention mechanism of Microsoft windows 2003 server. In Black Hat

Asia, 2003.

[6] Solar Designer. Return-to-libc attack. Bugtraq, 1997.

[7] H. Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In ACM Conf. on Computer and

Communications Security, 2007.

[8] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi. Surgically
returning to randomized lib(c). In Proceedings of the Annual Computer

Security Applications Conference, pages 60–69, 2009.

[9] ——, ―Address space layout randomization.‖ [Online]. Available:

http://pax.grsecurity.net/docs/aslr.txt

[10] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: a new class of code reuse attack. In ACM Symp. on Info.,

Computer and Communications Security, 2011.

[11] F. J. Serna. The info leak era on software exploitation. In Black Hat
USA, 2012.

[12] Nergal. The advanced return-into-lib(c) exploits: PaX case study. Phrack

Magazine, 58(4), 2001.

[13] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In ACM

Conf. on Computer and Communications Security, 2010.

[14] D. D. Zovi. Practical return-oriented programming. Invited Talk, RSA

Conference, 2010.

[15] L. Liu, J. Han, D. Gao, J. Jing, and D. Zha. Launching return-oriented

programming attacks against randomized relocatable executables. In
IEEE International Conference on Trust, Security and Privacy in

Computing and Communications, 2011.

[16] A. Sotirov and M. Dowd. Bypassing browser memory protections in
Windows Vista, 2008.

[17] H. Shacham, E. jin Goh, N. Modadugu, B. Pfaff, and D. Boneh. On the

effectiveness of address space randomization. In ACM Conf. on
Computer and Communications Security, 2004.

[18] A. Gupta, S. Kerr, M. Kirkpatrick, and E. Bertino. Marlin: A fine

grained randomization approach to defend against rop attacks. In J.
Lopez, X. Huang, and R. Sandhu, editors, Network and System Security,

volume 7873 of Lecture Notes in Computer Science, pages 293–306.
Springer Berlin Heidelberg, 2013.

[19] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-

randomizing instruction addresses of legacy x86 binary code. In ACM
Conf. on Computer and Communications Security, 2012.

[20] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the

gadgets: Hindering return-oriented programming using in-place code
randomization. In IEEE Symposium on Security and Privacy, 2012.

[21] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced operating
system security through efficient and fine-grained address space

randomization. InUSENIX Security Symposium, 2012.

[22] S.Krahmer. x86-64 buffer overflow exploits and the borrowed code
chunks exploitation technique. http://users.suse.com/~krahmer/no-nx.pdf,

2005.

[23] J. D. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. ILR:
Where’d my gadgets go? In IEEE Symposium on Security and Privacy,

2012.

[24] Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.W.: Ilr:
Where’d my gadgets go? In: Proc. of the 2012 IEEE Symposium on

Security and Privacy, pp. 571–585 (2012)

[25] Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-free:
defeating return-oriented programming through gadget-less binaries. In:

Proc. of the 26th Annual Computer Security Applications Conference,
pp. 49–58 (2010)

[26] Davi, L., Dmitrienko, A., N ̈ urnberger, S., Sadeghi, A.R.: Xifer: A

software diversity tool against code-reuse attacks. In: 4th ACM
International Workshop on Wireless of the Students, by the Students, for

the Students, S3 2012 (August 2012)

[27] ——, ―BSTR.‖ [Online]. Available: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms221069(v=vs.85).aspx

[28] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: exploit hardening
made easy. In USENIX Security Symposium, 2011.

[29] BLETSCH, T., JIANG, X., FREEH, V. W., AND LIANG, Z. Jump-oriented

programming: a new class of code-reuse attack. In ASIACCS’11: Proc.
6th ACM Symp. on Information, Computer and Communications

Security (2011), pp. 30–40.

[30] Snow, Kevin Z., et al. "Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization." Security and Privacy

(SP), 2013 IEEE Symposium on. IEEE, 2013.

614

http://pax.grsecurity.net/docs/aslr.txt
http://users.suse.com/~krahmer/no-nx.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221069(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221069(v=vs.85).aspx

