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Abstract—Fine-grained address space layout randomization 

has recently been proposed as a method of efficiently mitigating 

ROP attacks. In this paper, we introduce a design and 

implementation of a framework based on a runtime strategy that 

undermines the benefits of fine-grained ASLR. Specifically, we 

abuse a memory disclosure to map an application’s memory 

layout on-the-fly, dynamically discover gadgets and construct the 

desired exploit payload, and finish our goals by using virtual 

function call mechanism—all with a script environment at the 

time an exploit is launched. We demonstrate the effectiveness of 

our framework by using it in conjunction with a real-world 

exploit against Internet Explorer and other applications 

protected by fine-grained ASLR. Moreover, we provide 

evaluations that demonstrate the practicality of run-time code 

reuse attacks. Our work shows that such a framework is effective 

and fine-grained ASLR may not be as promising as first thought.  
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I.  INTRODUCTION 

Software vulnerabilities have been a major cause of 
computer security incidents. Buffer overflows [3, 5], integer 
overflows and heap overflows were used to pose a significant 
threat to modern operating systems [1]. Format string 
vulnerabilities [2] allow an attacker to control the first 
parameter to a function of the printf-family, which can be used 
to store pointers to specific addresses if it is placed on the stack. 
Despite differences in the style and implementation of these 
exploits, they all share a same goal: to achieve the control-flow 
hijacking attempts within the vulnerable application. Nowadays, 
numerous defenses have been implemented to limit the scope 
of these attacks. However, well motivated attackers still 
succeed in their intent. So the cat and mouse game plays on. 

To thwart such attacks, many mitigation techniques have 
been developed. Address Space Layout Randomization (ASLR) 
[9] and Data Execution Prevention (DEP) are very real thorns 
in the side of an attacker. DEP makes locating shellcode 
difficult; the attacker must find a page with executable 
permission and find a way to write to it when it has writable 
permission and figure out the location. Attackers then redirect 
to code reuse attacks. This new strategy utilizes code already 
present in memory, instead of relying on code injection. The 
canonical example is return-to-libc [6, 8], in which exploits 
redirect control-flow to existing shared-library functions. But if 

the base address of the memory segment is randomized, then 
the success rate of such an attack significantly decreases. 
Shacham [7] introduced a new approach named return-oriented 
programming, which chains together short instruction 
sequences ending with a ret instruction (called gadgets) that 
already exists in the memory of the application and executes 
some specific computation. The key idea of ASLR is to 
randomize the base address of the stack, heap, code, and 
dynamic libraries at load and link time, which offered a 
plausible defensive strategy against these attacks. But a 
drawback of this approach is that not all memory regions have 
been protected with ASLR, the address space for 32bit binaries 
is small which opens the possibility of probabilistic attacks [17]. 
Besides that, ASLR on 32-bit architectures only leaves 16 bit 
of randomness, an attacker might attempt to perform a brute-
force attack. 

After that, smart defenders have been busily working to 
fortify perimeters by designing fine-grained randomization 
strategies [21] for repelling the next generation of wily hackers. 
Some approaches introduce randomness at compile time. For 
example, compilers can be modified to generate code without 
ret instructions [25]. But these mechanisms fail to handle 
attacks leveraging jmp instructions. Marlin, introduced by 
Gupta [18], randomizes the function-level structure of the 
executable code, so denying attacker the necessary a priori 
knowledge of instruction addresses for constructing such a 
desired exploit payload. Other approaches have also been 
proposed to randomize processes. STIR [19] and XIFER [26] 
defend against ROP by randomizing at the basic block 
granularity. ILR [24] randomizes the location of each 
instruction in the virtual address space and uses a process-level 
virtual machine to find the called code, which imposes a 
significant on-going performance cost. Therefore, the attacker 
is unaware of how exactly permutation is randomized for the 
currently executing process image. So the radiance of 
traditional ROP attack is fading away. We define these 
mitigations of ROP embodied by fine-grained ASLR. 

In this paper, through memory disclosure, we implement a 
completely new variant of code reuse attack wherein we gather 
code chunks and retrieve them to the desired payload 
dynamically from memory layout during the vulnerable 
application is running. Then treating the calling of virtual 
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function as the trampoline, replace the address of function in 
vtable with gadget’s first addresses in proper sequence. Finally 
trigger the call of function to complete our ROP attack on-the-
fly. We show strong evidence that our variant ROP attack can 
entirely bypass all fine-grained randomization scheme and 
ROP mitigation. Based on the above findings, we argue that the 
fine-grained ASLR strategies still have loopholes. Meanwhile, 
we hope that our work will inspire others to explore more 
comprehensive defensive strategy than what exists today. 

II. BACKGROUND 

We review the necessary technical background information 
before introducing the methodology behind our attack. 

A. Code Reuse Attacks 

The fundamental factor for code reuse attack is that the 
relative offsets of instructions in the application’s code are 
constant. That is to say, if an adversary knows any symbol’s 
address in the application code, then the location of all gadgets 
and symbols in application’s code is deterministic. 

Return Oriented Programming [14] is generalization of 
return-to-libc attack [6, 8], which involves an adversary 
redirecting the program execution to an existing library 
function [12]. The general principle of any ROP attack is to 
combine short instruction sequences found in memory (or 
whatever code is not randomized), called gadget, and allowing 
an adversary to perform arbitrary computation. Recently, this 
concept was overthrown by removing the reliance on return 
instructions [13]. However, we show the basic idea of code 

reuse using ROP for simplicity in Figure 1. Steps ① to ⑦ 
show the entire procedure of ROP attacks.  
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Figure 1.   Layout of a sample ROP attack on the heap using a sequence of 

single-instruction gadgets. 

Jump Oriented Programming (JOP) [10, 29] is similar to 
ROP in that JOP manipulates the control flow of the 
application. Jump oriented data is not limited to stack 
overflows but uses modified indirect control flow transfers to 
construct the chain of executed gadgets. Indirect control flow 
transfers are used in the application to support, e.g., library 
calls, function pointers, and object oriented programming. JOP 
has similar limitations like ROP. In addition, JOP needs to 
redirect control flow to the first JOP dispatcher. ASLR 
severely limits the initial redirection for JOP. 

B. Fine-Grained Randomization for Exploit Mitigation 

A widely accepted countermeasure against code reuse 
attacks is that the defender randomizes the application’s 
memory layout. This scheme randomizes the base address of 
segments such as the stack, heap, shared libraries, and the 
executable code itself. As is shown in Figure 2, the start 
address of an executable is changed and sequence of gadgets is 
shuffled between consecutive runs of the same application, 
which is not intended by the attacker. So the adversary must 
guess the location of the instruction sequences needed for 
deployment of their code reuse attack. 
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Add Gadget ret

Load Gadget ret

Store Gadget ret

Stack Pivot ret

Executable

Stack Pivot ret

Store Gadget ret
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Figure 2.  Mitigation of ROP attack by fine-grained memory and code 

randomization 

Unfortunately, current ASLR implementations only 
randomize on a per-module level, which suffer from two main 
problems: first, ASLR can be bypassed by means of brute force 
attacks [15, 17] because the entropy on 32-bit systems is too 
low. Furthermore, upgrading to 64-bit is simply not feasible. 
Second, all ASLR solutions are vulnerable to memory 
disclosure attacks [11, 16] where the attacker gains knowledge 
of a single runtime address and uses it to re-enable code reuse. 
Therefore, some gadgets from a disclosed region can be 
organized deliberately by the adversary offline before 
deploying the exploit. To confound these attacks, Industrious 
defenders put forward a number of fine-grained ASLR and 
code randomization schemes [18, 19]. The broadly idea in 
these works is to randomize the data and code structure, for 
instance, by shuffling address of functions or basic blocks. 
Figure 2 depicts that the performance of these approaches are 
that the location of all gadgets is randomized. 

We assume target platform uses the following mechanisms 
to mitigate the execution of malicious computations: 
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 Non-Executable Memory: We assume that the target 
vulnerable application is under the protection of non-
executable memory (also called NX or DEP) applied 
to the heap and the stack. It will make the traditional 
code-injection attack ineffective. We also assume that 
this mechanism prevents adversary from tampering all 
executables and native libraries, in order to stop one 
from overwriting existing code. 

 Base Address Randomization: We assume that the 
target platform randomizes base addresses of library 
and executable segments effectively. Mappings have 
been eliminated. 

 Fine-Grained ASLR: We assume that the target 
platform deploys strong fine-grained memory and 
code randomization scheme on executables and 
libraries. First, target platform shuffles the order of 
functions [18] and basic blocks [19]. Second, target 
platform swaps registers and replaces instructions [20]. 
Third, target platform randomizes the location of each 
instruction [23] and performs randomization upon 
each execution of vulnerable application [19]. 

III. OVERVIEW OF RUNTIME CODE REUSE ATTACK 

Snow [30] has put forward the concept of runtime code 
reuse and implemented a framework that can launch exploit 
on-the-fly. But the drawback in this framework is very 
obvious. First, Snow did not give out the detail about how to 
obtain the entry point of memory disclosure. Second, Just-in-
time compilation is simply too heavy-weight to be consider in 
a runtime framework. In our framework, we explain how to 
disclose code segment in detail, propose a new method to 
chain every gadget which getting rid of dependence on stack 
and proved to be light-weight.  

The overall work flow of our runtime exploit is shown in 

Figure 3. In Step ①, we arrange objects on the heap in order by 
defragmenting system heap. Next, we perform an overflow on 
JS object to disclose the memory and construct our code 
chunks when target vulnerable application is running. Then we 

pick up some useful gadget sets from code pages. In Step ②, 
through setting up fake objects on the heap, we embedded 
serialized code chunks in our vtable. Through utilizing 
mechanism of virtual function call in target program, unordered 
gadget sets become malicious ROP payload. At last, we inject 
all above information in our exploit script to trigger our 

malicious attack in Step③. 

A.  Disclosing Memory 

Because we assume our target application is running on the 
most fine-grained platforms, so memory layout of application 
is totally different at each execution. Therefore, the attempt to 
apply static code analysis is useless and futureless. The entire 
procedure of our attack is happening during the vulnerable 
application is executing. We need to arrange objects on the 
heap in the following order: (i) buffer to overflow, (ii) string 
object, (iii) JS object. The state of a process’s heap depends on 
the history of allocations and deallocations that occurred during 
the process’s lifetime. Unfortunately, we do not know the heap 
state resulting from a specific sequence of previous allocations. 

 
Figure 3.  Workflow of memory code reuse attack against a script-enabled 

application protected by fine-grained ASLR 

We can image that there are many holes of free memory. To 
overcome this hurdle, we must defragment the heap. Our 
purpose is to fill up these ―holes‖ which are bigger than we 
allocate later on. This can be done by allocating a large number 
of blocks of the size we will use. After that, every time we 
allocate new blocks from the end of the heap. Thus the 
behavior of the allocator will be equivalent to starting with an 
empty heap. 

One important exception is the data for JavaScript string 
object which is stored as BSTR [27] used by the COM 
interface. BSTR strings are stored in memory as a structure 
containing a four-byte size field, followed by the string data 
and a two-byte null terminator. The first block is the following 
string object. We take advantage of unsigned int overflow, so 
that actually used size in block is smaller than we allocated 
earlier. Then we fill the last four-byte with ―0xffffffff‖. So the 
following string object’s first four-byte is overflowed and 
string length will cover entire 32-bit address space layout. This 
will allow us to read bytes at any relative address in memory. 
As the relative offset from string object to button object is 
known, we can use the relative read to reveal the absolute 
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address through self-reference first 4-byte field in third block. 
We implement a method that, given a relative address, switches 
it to an absolute address and reveals the corresponding data. In 
short as memory is discovered, there will be many code chunks 
in code pages for us to build a useful payload, which we 
elaborate on in the next sections. 

B. Gadget Discovery 

Now our task lies in finding out a number of gadgets to use 
as our code reuse payload. Not every instruction sequence can 
be used as a gadget. We choose our usable gadgets in the 
following three steps: 

1) Upon with the code pages dynamically discovered in 
process’s memory, we generate the sequence of instruction 
gadgets ended with ret by adapting the Galileo [4] algorithm 
and record them in a trie. 

2) Discover the gadget that has the same semantic 
definitions [28] with our desired gadget of payload in the trie. 
If not found, we disclose the memory to glean new code pages 
and return to the first step. 

3) We filter the gadgets discovered in step two using a kind 
of instruction dependence method which will be illustrated later. 
If no gadgets left after the filtration, we return to the first step.  

Since fine-grained ASLR mitigation may change the 
module of code pages on each execution, we could not have 
much energy to analyze the code chunks offline. What we 
could do is dynamically collect gadgets at the time exploit runs. 
Furthermore, we must do this work as quickly as possible 
because our attack must run in real-time before the victim 
machine terminates the vulnerable application. Unfettered 
access to extensive memory address space enables us to search 
for gadgets. We iterates over the code pages to collect useful 
gadgets by adapting the Galileo [4] algorithm. After that we 
use semantic definitions to match gadgets and introduce a kind 
of instruction dependence method to filter them. In terms of the 
instruction dependence method, we define the dependence (Insi, 
Insj) as following. 

 If there exists a register Rega which serves as a 
destination register in Insm and as a source register in 
Insm+1, so the execution of Insm depends on Insm+1, we 
define Insm depends on Insm+1. 

 If Insm+1 is a jump instruction, we define Insm depends 
on Insm+1. For example, jnz eax, Insm+1 strictly 
associates with Insm, which sets up flag 
register %eflag. 

 If register is involved in accessing memory, that is, 
Insi, Insj corresponding to opcode regsrc, [eax+Imms]; 
opcode [eax+Immt],regdes;  if value in the register is 
not changed and Imms = Immt, we define Insi depends 
on Insj; if value is changed, we define Insm depends on 
Insm+1. 

 If Insm and Insm+1 correspond to stack operation 
instruction sequence, such as pop and push instruction, 
we define Insm depends on Insm+1. 

A gadget can be determined as usable or not after we check 
every adjacent two instructions’ dependence according to the 

above principle. If there are some gadgets left after the three 
steps, we choose them as our final gadgets and will use their 
addresses in the runtime attack. 

C. Forging Virtual Function 

The next challenge is how to effectively use the collection 
of gadgets to satisfy the exploit target program. The traditional 
sense of the ROP attack lies in a stack-based buffer overflow. 
A ROP attack constructs a set of stack invocation frames that 
are popped one after another. Each stack invocation frame 
prepares a set of parameters on the stack and targets a gadget 
that uses the parameters and executes some malicious 
computation. ROP works around DEP but relies on static 
addresses for the stack and for the gadgets. In addition ROP 
needs to initially redirect control flow to the first ROP 
invocation frame.  

The core notion of our attack is that we replace function 
addresses in virtual function table with some gadget’s address. 
When the target application use the associated object, the first 
virtual function is been called, control-flow is redirected by 
sequentially executing the gadgets in memory which was found 
in previous step to fulfill adversary’s goal. We do not need to 
arrange gadgets on stack that ends with ret instruction with the 
stack pointer, %esp, to execute the next gadget. This method 
can totally negate the effect of stack protection strategy. 

We allocate one blocks of memory on the heap for a fake 
vtable. In figure 4, fake vtable is an object similar to String 
object. It has 4-byte head, following by 4-type padding content, 
next the virtual function addresses, and a 2-byte null terminator. 
Any virtual function call starts at offset 8 in the vtable. So if we 
put our gadget’s first instruction address in this position, virtual 
function call through the vtable will jump to a location of our 
choosing. 

Figure 4.   Data structure of fake vtable 

Another data structure, called fake object, contains the base 
address of our fake vtable. This procedure has involved 
lookaside lists maintained by the system memory allocator. The 
cache consists with a number of bins, each holding 6 blocks of 
a certain size range. When a block is freed, it is stored in one of 
the bins. If the bin is full, the smallest block in the bin is freed 
and replaced with the new block. In terms of our needs, we 
apply a certain amount of blocks from memory, which size 
equals to our vtable, in order to make this size on the lookaside 
list empty. Now let’s free this size of block containing a vtable, 
so there is a free block whose content is original vtable on the 
lookaside list and lookaside head will point to this block. We 
construct the fake object by assigning the lookaside head 
address to the fake object pointer. 

D. Trigger Vulnerability 

We overwrite the object pointer with lookaside list base 
address called fake object pointer in Figure 5. Now the fake 
object pointer points to the virtual function address in vtable 
that has been overwrote with our first gadget’s base address in 
memory. Every time we call a virtual function, corresponding 

Head
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Paddings
4 Bytes

Gadget1_
addr

4 Bytes

Paddings Terminator
2 Bytes

Gadget2_
addr

4 Bytes
...

Gadget3_
addr

4 Bytes
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gadget will be executed. We put a number of object pointers 
into an array. So if an adversary wants to do high-level 
malicious computation, he just successively uses these pointers 
to call virtual functions. 

Memory

Some Gadget

for(…){
    object pointer array[i] -> func();
} fake object (lookaside head)

vtable

object pointer array

fake object pointer Func()

 

Figure 5.   Workflow of virtual function call 

Because the times of virtual functional calls determine the 
scale of our payload constructed by gadgets, if one object is not 
enough for us, we can construct more objects which include the 
virtual function calls to increase the power of our attack. After 
we finish the above steps, what we need is only to invoke 
vulnerable object which is used by the running application. 
Finally it will trigger our runtime attack.  

E. Implementation 

To prove the power of our framework, we use it to exploit 
Internet Explorer (IE) 10 running on Windows 7 using CVE-
2013-2551. The vulnerability is an integer overflow within 
certain object to achieve code execution in the context of IE 
10 sandboxed process. We put our desired objects on the heap, 
dynamically traverse code pages, semantically pick up gadgets 
and executing a serialized payload useable through a serious 
of virtual function calls. All performed at runtime in a script 
environment.  

In Step ① , we develop a JavaScript library called 
HeapEasy that encapsulate the system allocation operations. 
For example, the implementation of HeapAlloc interface 
ensures each blocks allocation comes from the system heap, 
and implements a HeapLookAside interface to add blocks of 
the specified size to the lookaside list. Next, iteratively using 
the charCodeAt() function to read data from the memory code 
pages and implement a DiscloseAbsAddr interface that 
translates a relative address to an absolute address. We 
snapshot the memory state in our hashmap which contains the 
absolute address of every instruction. At the same time, we 
dynamically filter the useable gadgets which adapts the criteria 
from Schwartz [28]. After that, we construct the fake vtable by 

using HeapVTable interface in Step②.  

Generally speaking, a virtual function call needs a 
MoveRegG to get the vtable address from register ecx, and a 
JumpG to invoke the function at offset 0x8 in the vtable. Our 
library enables us to figure out the heap base address and the 
absolute address of a jmp ecx or equivalent instruction through 
the debug library called DbgHelp. When IE 10 is running on 

the target machine which uses the vulnerable ActiveX widget, 
our script, included in any HTML or other document-format 
supporting carriers, starts by an amount of bootstrap code. At 

last, our payload begins execution in Step③. 

IV. EVALUATION 

We evaluated the proposed attack of our framework by 
applying it on real-world application under the protection of 
fine-grained randomization. Overall, the evaluation 
demonstrated the wide-scale applicability of our runtime code 
reuse framework against Internet Explorer in Windows and 
other popular applications. 

A. On Runtime Performance 

We performed five tests of our framework. The first test 
uses integer overflow vulnerability in the context of IE10 
sandboxed process. The second, third and fourth tests exploit 
the Internet Explorer plugin on windows. We use a DebugLog 
function that includes format string vulnerability in the second 
test. We employed the family of printf functions because of no 
warnings were reported. In the third test, we took advantage of 
an arbitrary sequence of commands. So we chose the Windows 
calculator program. The vulnerability in the fourth test is 
triggered by creating an ActiveX object and calling its 
KeyFrame method with an argument overflow larger than 
0x07ffffff. The fifth test demonstrates the native performance 
of our framework. 

B. Evaluation of the Defense against Our Framework 

Table 2 shows the popular mitigations used in current 
operation system. First, our framework does not need to 
arrange each gadget’s first instruction address on the stack and 
overflow the return address in EIP. So GS strategy loses her 
efficiency. The same principle applies to SafeSEH. Second, 
DEP strategy introduces a no-execute bit (NX) to prevent stack 
from code-injection attack. Our framework utilizes code 
already present in memory, so NX strategy does no harm to our 
framework. In the academic circles, randomization technique at 
various levels of granularity –function level, block level and 
instruction level were put forward recently. However, our 
framework glean code chunks at the same time , the target 
vulnerable application was loaded in memory. That is to say, 
the step of collecting gadgets happens after the application was 
randomized. The runtime feature of our framework determines 
the fine-grained ASLR strategy is short-sighted. 

Table I  RUNTIME FRAMEWORK AGAINST POPULAR ATTACK MITIGATIONS 

 Attack Mitigations Runtime 

framework 

GS Stack cookies √ 

Variable reordering √ 

SafeSEH SEH handler validations √ 

Permanent SEH √ 

DEP NX √ 

ASLR Function-level √ 

Instruction-level √ 
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V. CONCLUSION 

 

Fine-grained ASLR has been introduced as an efficient 
strategy to defense the code reuse attacks like ROP. In this 
paper, we introduce a dynamical framework that trigger a 
runtime code reuse by exploiting the virtual function call. Our 
framework consists of memory disclosure, gadget discovery 
and fake virtual function call construction. All work is executed 
after the vulnerable program begins, so the ASLR can hardly 
affect our experiment. We demonstrate the efficiency and 
complete some attacks using this framework. This kind of 
strategy may be a potential signal that future hacker will use 
the same or similar way to bypass the ASLR and do something 
dangerous. We hope our work will attract more researchers’ 
attention and inspire them to bring forward more 
comprehensive defense. 
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