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Abstract

Computer network systems are often subject to sev-
eral types of attacks. For example the distributed De-
nial of Service (DDoS) attack introduces an excessive
traffic load to a web server to make it unusable. A
popular method for detecting attacks is to use the se-
quence of source IP addresses to detect possible anoma-
lies. With the aim of predicting the next IP address,
the Probability Density Function of the IP address se-
quence is estimated. Prediction of source IP address
in the future access to the server is meant to detect
anomalous requests. In other words, during an access
to the server, only predicted IP addresses are permitted
and all others are blocked. The approaches used to esti-
mate the Probability Density Function of IP addresses
range from the sequence of IP addresses seen previously

and stored in a database to address clustering, normally
used by combining the K-Means algorithm. Instead, in
this paper we consider the sequence of IP addresses as a
numerical sequence and develop the nonlinear analysis
of the numerical sequence. We used nonlinear analysis
based on Volterra’s kernels and Hammerstein’s models.

1 Introduction

User modeling is an important task for web applica-
tions dealing with large traffic flows. They can be used
for a variety of applications such as to predict future
situations or classify current states. Furthermore, user
modeling can improve detection or mitigation of Dis-
tributed Denial of Service (DDoS) attack [11, 15, 13],
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improve the quality of service (QoS) [16, 10], individ-
uate click fraud detection and optimize traffic man-
agement. In peer-to-peer (P2P) overlay networks, IP
models can also be used for optimizing request routing
[1]. Those techniques are used by severs for deciding
how to manage the actual traffic. In this context, also
outlier detection methods are often used if only one
class is known. If, for example, an Intrusion Preven-
tion System wants to mitigate DDoS attacks, it usually
has only seen the normal traffic class before and it has
to detect the outlier class by its different behaviour.
In this paper we deal with the management of DDos
because nowadays it has become a major threat in the
internet. Those attacks are done by using a large scaled
networks of infected PCs (bots or zombies) that com-
bine their bandwidth and computational power in or-
der to overload a publicly available service and denial
it for legal users. Due to the open structure of the
internet, all public servers are vulnerable to DDoS at-
tacks. The bots are usually acquired automatically by
hackers who use software tools to scan through the net-
work, detecting vulnerabilities and exploiting the tar-
get machine. Furthermore, there is also a strong need
to mitigate DDoS attacks near the target, which seems
to be the only solution to the problem in the current
internet infrastructure. The aim of such a protection
system is to limit their destabilizing effect on the server
through identifying malicious requests. There are mul-
tiple strategies with dealing with DDoS attacks. The
most effective ones are the near-target filtering solu-
tions. They estimates normal user behavior based on
IP packet header information. Then, during an attack
the access of outliers is denied. One parameter that all
methods have in common is the source IP address of
the users. It is the main discriminant for DDoS traf-
fic classification. However, the methods of storing IP
addresses and estimating their density in the huge IP
address space, are different. In this paper, we present
a novel approach based on system identification tech-
niques and, in particular, on the Hammerstein mod-
els. A broader overview of state-of-the-art research
on the available methods for DDoS traffic classifica-
tion is given by [9]. The paper is organized as follows.
In Sections 2 and 3 we present our proposed a tech-
nique based based on Hammerstein models and we re-
call some similar model. Although DDoS mitigation is
the most important practical application for IP density
estimation, we do not restrict the following work on this
topic. Our generic view on IP density estimation may
be valuable to other applications as well. One might
think of preferring regular customers in overload situa-
tions (flash crowd events), identifying non-regular users
on websites during high click rates on online advertise-

ments (click fraud detection) or optimizing routing in
peer-to-peer networks. Finally, in Section 4 we draw
conclusions and indicate future work. The extended
version of this paper appears in [7].

2 Analytic Prediction

Data driven identification of mathematical models of
physical systems (i.e. nonlinear) starts with represent-
ing the systems as a black box. In other terms, while
we may have access to the inputs and outputs, the in-
ternal mechanisms are totally unknown to us. Once a
model type is chosen to represent the system, its pa-
rameters are estimated through an optimization algo-
rithm so that eventually the model mimics at a certain
level of fidelity the inner mechanism of the nonlinear
system or process using its inputs and outputs. This
approach is, for instance, widely used in the related big
data analytics area (e.g., [6, 3, 5, 8])

In this work, we consider a particular sub-class
of nonlinear predictors: the Linear-in-the-parameters
(LIP) predictors. LIP predictors are characterized by
a linear dependence of the predictor output on the pre-
dictor coefficients. Such predictors are inherently sta-
ble, and that they can converge to a globally mini-
mum solution (in contrast to other types of nonlinear
filters whose cost function may exhibit many local min-
ima) avoiding the undesired possibility of getting stuck
in a local minimum. Let us consider a causal, time-
invariant, finite-memory,continuous nonlinear predic-
tor as described in (1).

ŝ(n) = f [s(n− 1), . . . , s(n−N)] (1)

where f [·] is a continuous function, s(n) is the input
signal and ŝ(n) is the predicted sample. We can expand
f [·] with a series of basis functions fi(n), as shown in
(2).

ŝ(n) =
∞∑
i=1

h(i)fi[s(n− i)] (2)

where h(i) a re proper coefficients. To make (2) real-
izable we truncate the series to the first N terms, thus
we obtain

ŝ(n) =
N∑
i=1

h(i)fi[s(n− i)] (3)

In the general case, a linear-in-the-parameters nonlin-
ear predictor is described by the input-output relation-
ship reported in (4).

ŝ(n) = ~HT ~X(n) (4)
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where ~HT is a row vector containing predictor coef-
ficients and ~X(n) is the corresponding column vector
whose elements are nonlinear combinations and/or ex-
pansions of the input samples.

2.1 Linear Predictor

Linear prediction is a well known technique with a
long history [12]. Given a time series ~X, linear pre-
diction is the optimum approximation of sample x(n)
with a linear combination of the N most recent sam-
ples. That means that the linear predictor is described
as eq. (5).

ŝ(n) =
N∑
i=1

h1(i)s(n− i) (5)

or in matrix form as

ŝ(n) = ~HT ~X(n) (6)

where the coefficient and input vectors are reported in
(7) and (8).

~HT =
[
h1(1) h1(2) . . . h1(N)

]
(7)

~XT =
[
s(n− 1) s(n− 2) . . . s(n−N)

]
(8)

2.2 Non-Linear Predictor based on
Volterra Series

As well as Linear Prediction, Non Linear Prediction
is the optimum approximation of sample x(n) with a
non linear combination of the N most recent samples.
Popular nonlinear predictors are based on Volterra se-
ries [14]. A Volterra predictor based on a Volterra series
truncated to the second term is reported in (9).

x̂(n) =

N1∑
i=1

h1(i)x(n−i)+

N2∑
i=1

N2∑
j=i

h2(i, j)x(n−i)x(n−j)

(9)
where the symmetry of the Volterra kernel (the h co-
efficients) is considered. In matrix terms, the Volterra
predictor is represented in (10).

ŝ(n) = ~HT ~X(n) (10)

where the coefficient and input vectors are reported in
(12) and (12).

~HT =

[
h1(1) h1(2) . . . h1(N)
h2(1, 1) h2(1, 2) . . . h2(N2, N2)

]
(11)

~XT =

[
s(n− 1) s(n− 2) . . . s(n−N1)
s2(n− 1) s(n− 1)s(n− 2) . . . s2(n−N2)

]
(12)

2.3 Non-Linear Predictor based on Func-
tional Link Artificial Neural Networks
(FLANN)

FLANN is a single layer neural network without hid-
den layer. The nonlinear relationships between input
and output are captured through function expansion of
the input signal exploiting suitable orthogonal polyno-
mials. Many authors used for examples trigonometric,
Legendre and Chebyshev polynomials. However, the
most frequently used basis function used in FLANN for
function expansion are trigonometric polynomials [17].
The FLANN predictor can be represented by eq.(13).

ŝ(n) =
N∑
i=1

h1(i)s(n−i)+
N∑
i=1

N∑
j=1

h2(i, j) cos[iπs(n−j)]+

N∑
i=1

N∑
j=1

h2(i, j) sin[iπs(n− j)] (13)

Also in this case the Flann predictor can be repre-
sented using the matrix form reported in (14).

ŝ(n) = ~HT ~X(n) (14)

where the coefficient and input vectors of FLANN pre-
dictors are reported in (15) and (16).

~HT =

 h1(1) h1(2) . . . h1(N)
h2(1, 1) h2(1, 2) . . . h2(N2, N2)
h3(1, 1) h3(1, 2) . . . h3(N2, N2)

 (15)

~XT = s(n− 1) . . . s(n−N)
cos[πs(n− 1)] . . . . . . cos[πs(n−N2)]
sin[πs(n− 1)] . . . . . . sin[πx(s−N2)]


(16)

2.4 Non-Linear Predictors based on Ham-
merstein Models

Previous research [2] shown that many real non-
linear systems, spanning from electromechanical sys-
tems to audio systems, can be modeled using a static
non-linearity. These terms capture the system non-
linearities, in series with a linear function, which cap-
ture the system dynamics as shown in Figure 1.

Indeed, the front-end of the so called Hammerstein
Model is formed by a nonlinear function whose input is
the system input. Of course the type of non-linearity
depends on the actual physical system to be modeled.
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Figure 1. Representation of the Hammerstein
Models

The output of the nonlinear function is hidden and is
fed as input of the linear function. In the following,
we assume that the non-linearity is a finite polynomial
expansion, and the linear dynamic is realized with a
Finite Impulse Response (FIR) filter. Furthermore, in
contrast with [2], we assume a mean error analysis and
we postpone the analysis in the robust framework in
future work. In other word,

z(n) = p(2)x2(n) + p(3)x3(n) + . . . p(m)xm(n) =

=
M∑
i=2

p(i)xi(n) (17)

On the other hand, the output of the FIR filter is:

y(n) = h0(1)z(n− 1) + . . .+ h0(N)z(n−N) =

=
N∑
j=1

h0(j)z(n− j) (18)

Substituting (17) in (18) we have:

y(n) =

N∑
i=1

h0(i)z(n− i) =

N∑
j=1

h0(j)

M∑
i=2

p(i)xi(n− j) =

M∑
i=2

N∑
j=1

h0(j)p(i)xi(n− j) (19)

Setting c(i, j) = h0(j)p(i) we write

y(n) =
M∑
i=2

N∑
j=1

c(i, j)xi(n− j) (20)

This equation can be written in matrix form as

ŝ(n) = ~HT ~X(n) (21)

where

~HT =

 c(2, 1) c(2, 2) . . . c(2, N2)
c(3, 1) c(3, 2) . . . c(3, N2)

. . . c(M, 1) c(M, 2) . . . c(M,N)

 (22)

~XT = s2(n− 2) . . . s2(n−N)
s3(n− 2) . . . s3(n−N)
sM (n− 2) . . . sM (n− 1) . . . sM (n−N)

 (23)

3 Estimation of Predictor Parameters

So far we saw that all the predictors can be ex-
pressed, at time instant n, as

ŝ(n) = ~HT ~X(n) (24)

with different definitions of the input, ~X(n), end pa-

rameters vectors ~HT . There are two well known possi-
bilities for estimating the optimal parameter vector.

3.1 Block-based Approach

The Minimum Mean Square estimation is based on
the minimization of the mathematical expectation of
the squared prediction error e(n) = s(n)− ŝ(n)

E[e2] = E[(s(n)− ŝ(n))2] = E[(s(n)− ~HT ~X(n))2]
(25)

The minimization of (25) is obtain by setting to zero
the Laplacian of the mathematical expectation of the
squared prediction error:

∇HE[e2] = E[∇He2] = E[2e(n)∇He] = 0 (26)

which leads to the well known unique solution

~Hopt = ~R−1xx ~Rsx (27)

where
~Rxx(n) = E[ ~X(n) ~XT (n)] (28)

is the statistical auto-correlation matrix of the input
vector ~X(n) and

~Rsx(n) = E[s(n) ~X(n)] (29)

is the statistical cross-correlation vector between the
signal s(n) and the input vector ~X(n). The mathe-
matical expectations of the auto and cross correlation
are estimated using

~Rxx(n) =

∑n
k=1

~X(n) ~XT (n)

n
(30)

is the statistical auto-correlation matrix of the input
vector ~X(n) and

~Rsx(n) =

∑n
k=1 s(k)(n) ~X(n)

n
(31)
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3.2 Adaptive Approach

Let us consider a general second order terms of a
Volterra predictor

y(n) =
N−1∑
k=0

N−1∑
r=0

h2(k, r)x(n− k)x(n− r) (32)

It can be generalized for higher order term as

N∑
k1=1

· · ·
N∑

kp=1

ck1 · · · ckpHp

{
xk1(n), · · ·xkp(n)

}
(33)

where
N∑
k=1

ckxk(n). (34)

For the sake of simplicity and without loss of generality,
we consider a Volterra predictor based on a Volterra
series truncated to the second term

r̂(n) =

N1∑
i=1

h1(i)r(n−i)+

N2∑
i=1

N2∑
j=i

h2(i, j)r(n−i)r(n−j)

(35)
By defining

HT (n) = |h1(1), · · · , h1 (N1) , h2(1, 1), · · · , h2 (N2, N2)|
(36)

and

XT (n) =
∣∣r(n− 1), · · · , r (n−N1) , r2(n− 1)

r(n− 1)r(n− 2), · · · , r2 (n−N2) | (37)

Eq (35) can be rewritten as follows

r̂(n) = HT (n)X(n). (38)

In order to estimate the best parameters H, we con-
sider the following loss function

Jn(H) =
n∑
k=0

λn−k
[
r̂(k)−HT (n)X(k)

]2
(39)

where λn−k weights the relative importance of each
squared error. In order to find the H that minimizes
the convex function (39) it is enough to impose its gra-
dient to zero, i.e.,

∇HJn(H) = 0 (40)

That is equivalent to

RXX(n)H(n) = RrX(n) (41)

where

RXX(n) =
∑n
k=0 λ

n−kX(k)XT (k)
RrX(n) =

∑n
k=0 λ

n−kr(k)X(k)
(42)

It follows that the best H can be computed by

H(n) = R−1XX(n)RrX(n) (43)

Since

RXX(n) = λRXX(n− 1) +X(n)XT (n) (44)

it follows that

R−1XX(n) =

1

λ

[
R−1XX(n− 1)− k(n)XT (n)R−1XX(n− 1)

]
(45)

where k(n) is equal to

k(n) =
R−1XX(n− 1)X(n)

λ+XT (n)R−1XX(n− 1)X(n)
(46)

Instead, matrix RrX(n) in (43) can be written as

RrX(n) = λRrX(n− 1) + r(n)X(n) (47)

Thus, inserting Eq (47) and Eq (45) in Eq (43) and
rearranging the terms, we obtain

H(n) = H(n− 1) +R−1XX(n)X(n)ε(n) (48)

where
ε = r̂(n)−HT (n− 1)X(n) (49)

By recalling Eq. (46), we can write Eq. (48) as

H(n) = H(n− 1) + ε(n)k(n) (50)

By introducing, the new notation,

F (n) = ST (n− 1)X(n) (51)

The previous equations can be resumed by the follow-
ing system

L(n) = S(n− 1)F (n)

β(n) = λ+ FT (n)F (n)

α(n) = 1

β(n)+
√
λβ(n)

S(n) = 1√
λ

[
S(n− 1)− α(n)L(n)FT (n)

]
ε(n) = r̂(n− 1)− α(n)L(n)FT (n)

ε(n) = H(n− 1) + L(n) ε(n)β(n)

(52)

It should be noted that by using Eq (52) the estima-
tion adapts in each step in order to decrease the error.
Thus, the system structure is somehow similar to the
Kalman filter.

Finally, we define the estimation error as

e(n) = r(n)−HT (n)X(n) (53)

It is worth noting that the computation of the predicted
value from Eq. (38) requires 6Ntot + 2N2

tot operations,
where Ntot = N1 +N2 (N2 + 1) /2.
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4 Conclusions

In this paper, we presented a new way to deal with
cyber attack by using Hammerstein models. Future
work will have two objectives. First, we want to con-
sider the problem in a stochastic optimization set-
tings. Second, we want to test the approach on other
case studies, by also exploiting knowledge management
methodologies (e.g., [4]).
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