
Towards an Intelligent System for Supporting Gesture Acquisition and
Reproduction in Humanoid Robots

Agnese Augello
ICAR-CNR, Palermo, Italy

agnese.augello@cnr.it

Angelo Ciulla
ICAR-CNR, Palermo, Italy
angelo.ciulla@cnr.it

Alfredo Cuzzocrea
iDEA Lab, University of Calabria, Rende, Italy

alfredo.cuzzocrea@unical.it

Salvatore Gaglio
University of Palermo and ICAR-CNR, Palermo, Italy

salvatore.gaglio@unipa.it

Giovanni Pilato
ICAR-CNR, Palermo, Italy

giovanni.pilato@cnr.it

Filippo Vella
ICAR-CNR, Palermo, Italy
filippo.vella@cnr.it

Abstract

In this paper, an intelligent system for supporting gesture
acquisition and reproduction in humanoid robots, which is
based on the well-known Microsoft Kinect framework, is in-
troduced and discussed in this paper. The idea that has in-
spired the paper is represented by endowing an humanoid
robot with the capability to mimic the motion of a human
user in real time. As a further extension, the latter amenity
may serve as a basis for further gesture based human-robot
interactions.

1 Introduction

Nowadays, the interaction between human beings and
robots has become a very relevant issue in a wide range
of applications (e.g., [15, 21, 19]). It is commonly agreed
that communication between humans is based on both ver-
bal and not verbal cues. A humanoid robot capable of in-
teracting with people combining speech and gestures would
dramatically increase the naturalness of social interactions.
On the other hand, other studies like [18, 14, 8] consider
knowledge management techniques (e.g., [8]) to improve
this phase.

Furthermore, the Microsoft Kinect is a popular choice
for any research that involves body motion capture. It is
an affordable and low-cost device that can can be used for

non invasive, marker-less tracking of body gestures. As an
example, Baron et al. [5] controlled a Mindstorm NXT ar-
tificial arm with sensor Kinect, employing gesture recog-
nition to regulate arm movement. Chang et al. [6] de-
veloped a Kinect-based gesture command control method
for driving a humanoid robot to learn human actions, us-
ing a Kinect sensor and three different recognition mech-
anisms: dynamic time wrapping (DTW), hidden Markov
model (HMM) and principal component analysis (PCA).

Meanwhile, Sylvain Filiatrault and Ana-Maria Cretu
[12] used sensor Kinect to mimic the motion of a human
arm to an NAO humanoid robot. In their case, the software
architecture is based on three modules: Kinect Manager,
Interaction Manager, and NAO manager. The Kinect Man-
ager deals with the events and data captured by the Kinect.
The class Kinect Transformer is used to get the Euler angles
of the desired joints. The Interaction Manager is the inter-
mediary between the Kinect and the robot and contains the
repository for the joints used by the other two modules. The
use of a joint repository of all articulations allows reducing
the data to be processed as some joints are not needed. Fi-
nally, the NAO manager contains the static and dynamic
constraints to apply to each one of the articulations, as well
as the methods that allow the control of the robot move-
ments.

To be sure that the robot has enough time to execute the
gesture, a delay of 200 ms between one cycle and the next
has been introduced. Itauma et al. [13] used a Kinect to

DOI reference number: 10.18293/DMSVIVA2020-017

82

teach an NAO robot some basic Sign Language gestures.
The aim was teaching Sign Language to impaired children
by employing different machine learning techniques in the
process. Shohin et al. [16] used three different methods
to make a robot NAO imitate human motion: direct angle
mapping, inverse kinematics using fuzzy logic and iterative
Jacobian.

In some cases, neural networks were used: Miguel et al.
[17] used a Kinect sensor and a Convolutional Neural Net-
work (CNN) trained with the MSRC-12 dataset [1] to cap-
ture and classify gestures of a user and send related com-
mands to a mobile robot. The used dataset was created by
Microsft and had 6244 gesture instances of 12 actions. To
have gestures of the same length, without losing relevant in-
formation, the system used a Fast Dynamic Time Warping
algorithm (FastDTW) to find the optimal match between se-
quences by non linearly warping them along the time axis.
This resulted in all gestures normalized to sequences of 667
frames, with each frame having 80 variables, corresponding
to the x,y,z values for each of the 20 joints, plus a separa-
tion value for each joint. The resulting 667x80 matrix is
used as the input of the CNN, which classifies it in one of
the 12 possible gestures. The CNN was trained using two
strategies, combined training consisting of a single CNN to
recognize all 12 gestures and individual training with 12 dif-
ferent CNN, each capable of recognizing only one gesture.
The accuracy rates were 72.08% for combined training and
81.25% for the individual training.

Moreover, Unai et al. [20] developed a natural talking
gesture generation behavior for Pepper by feeding a Gener-
ative Adversarial Network (GAN) with human talking ges-
tures recorded by a Kinect. Their approach in mapping the
movements detected by Kinect on the robot is very similar
to what we used, but while they feed the resulting values
to a neural network (a GAN), we use the (filtered) values
directly.

This paper reports the implementation of a system able
to acquire and reproduce the gestures performed by a hu-
man during an interactive session. In our approach, we ex-
ploited a MicrosoftKinect sensor to capture the motion
data from a user and then, we have defined a mapping al-
gorithm to allow a SoftBank Pepper robot to reproduce the
tracked gestures as close as possible to the original ones.
In particular, we used the OpenNi driver for the Kinect, the
NiTE 2.2 libraries for detecting the user skeleton, and the
Kinetic version of ROS with the module pepper dcm to pro-
vide package exchange and bridging between the computer
and the robot and Ubuntu 16.04. We focused on the move-
ments of the arms and the head, laying the basis for the
extension of the same approach to the remaining parts. The
extended version of this paper appears in [4].

2 The Proposed Solution

The developed system is structured in a set of mod-
ules, to increase versatility for future projects and to sim-
plify possible extensions to the current project. Besides the
Kinect itself, the first module is named Viewer, which ex-
tracts data frames (consisting of nine float values: three val-
ues for a joint position in 3D space, four values for quater-
nion from the origin and reliability values for both) from
the Kinect and sends them in a pipe. The module also pro-
vides the feed of the Kinect camera with the overlay of the
tracked user’s skeleton. The pipe, long 8640 chars (64 chars
for each joint value, 9 values for each joint, 15 joints total),
is read by the second module, Gesture Brain.

The Gesture Brain module works both as a gateway for
the ROS system [2] and as the module where actual data
processing takes place. The gathered data cannot be used
directly: a mapping is required to correctly associate each
joint user position to the equivalent one in the Pepper robot.
For this reason, the data is parsed and structured in a 15× 9
float matrix, which is then separated into three matrices:
one for coordinates, one for quaternions, and one for re-
liability values. In our algorithm, we decided to use only
the first matrix for simplicity reasons, neglecting the quater-
nion matrix, and not performing any reliability check on the
joints. We assume that the joint data is accurate enough for
our purpose, as the Kinect already discards joints whose re-
liability values are too low. The joint position data is used
to estimate Pepper joint angles, specifically shoulder pitch,
shoulder roll, elbow roll and elbow yaw for both arms and
head yaw for the head (there are three more joint angles that
could be estimated, left and right wrist yaw and head pitch,
but the Kinect is too imprecise to allow a good estimate, so
they have been fixed to a value of 0). The details about this
estimation are discussed in the next section.

After all required values are collected, we can use the
ROS threads provided by the bridge pepper dcm to send the
joint angles to the robot. These threads consist of multiple
joint angles divided into groups, each group representing
a body part. As we are interested only in the movement
of arms and head, we use three: head, left arm, right arm.
The bridge reads the sent values and the time between each
capture to dynamically calculate the gesture trajectory in
real-time. This means that to allow the system to be as accu-
rate as possible, the gesture should be executed quite slowly.
The bridge itself was modified to activate the in-built Self
Collision Avoidance (part of the NaoQi library) and to de-
activate wait and breathe animations, as they interfere with
the commands sent by the pepper dcm.

83

Figure 1. Structure of a single row of the array
sent by the Viewer module

Figure 2. Structure of the algorithm

3 Mapping between User and Pepper

The Pepper robot has five Degree of Freedom for each
arm (each one associated with a joint), unlike human be-
ings who have seven. A mapping is thus required. From the
Kinect the Cartesian coordinates for each joint, the quater-
nion for each segment (both referenced globally), and a reli-
ability value for both are extracted. The bridge pepper dcm
uses Euler angles to communicate to the robot the new po-
sition of its joint angles. 3D space coordinates are thus used
since quaternions have proven unsuitable. This is because
the quaternions extracted do not represent the rotation from
the previous frame, but rather the rotation from a reference
quaternion. This leads to excessive inaccuracies once con-
verted in Euler angles.

Let x , y and z be the unit vectors for each axis, that is:

x = (1, 0, 0)
y = (0, 1, 0)
z = (0, 0, 1)

Let SL , EL and WL be the coordinates of the shoulder, the
elbow and the wrist of the left arm respectively, SLEL and
ELWL are defined as:

SLEL = EL − SL

ELWL =WL − EL
SRLis the supplementary to the angle between SLEL and
−x axis:

SRL =
π

2
− arcos(SLEL · −x) (1)

SPLis the angle between the projection of SLEL on zy
plane and z axis, shifted in range to avoid the jump dis-
continuity at 180 and -180:

SPL = π −mod2π(
3

2
π + arctan(SLELz, SLELy) (2)

For values of SRL close to π
2 , SPL become unstable. As

such, in the algorithm is assigned a value of 0 for SRL >
1.3.
ERLis the angle between ELWL and SLEL, shifted by

π
2 :

ERL =
π

2
+ arcos(ELWL · SLEL) (3)

EYLis the angle between the projection of ELWL on zy
plane and z axis, shifted in range for stability reasons, plus
−SPL:

EYL = π−mod2π(
3

2
π+arctan(ELWLz, ELWLy)−SPL

(4)
The right arm is almost the same as the left arm, the only

difference is that some angles have the opposite sign. Let
HN be the difference between the coordinates of the joints
H (head) and N :

HN = H −N

The head yawHY is the angle between the projection of
HN on the xz plane and the z axis:

HY = −arctan(HNz, HNy)−
π

2
(5)

3.1 Line of Best Fit

Kinect joint detection is based on the shape of the user,
which is redrawn at every frame. While calibrating the sen-
sor helps to reduce the resulting jerkiness, there is still a
significant amount of noise left. This noise can be approx-
imately classified in two categories: a constant Gaussian
noise caused by small alteration on the shape detected and
large ”spikes” when the Kinect fail to guess the position
of one or more joints (especially common when part of the
limb is outside of the frame or when two or more joints
overlap). A simple way to compensate part of this noise is
to use a line of best fit.

Given k points in (x, y) coordinates system, we must
find the values c0 and c1 in the equation:

84

p(x) = c0x+ c1

that define the straight line minimizing the squared error:

E =
∑k
j=0 |p(xj)− yj |2

in the equations:

x0c0 + c1 = y0
x1c0 + c1 = y1

...
xkc0 + c1 = yk

The result is a smoother movement, especially when
Kinect is not able to detect the precise coordinates of a given
joint. This is because, given a disturbing signal, the line
of best fit can be seen as an approximation of the tangent
that the signal would have at that point if the noise were re-
moved. This is not always true, especially when the signal
changes rapidly, but it’s close enough in most cases to give
a generally cleaner movement.

3.2 Modes of Operation

Besides mimicking the user movement, the Ges-
ture Brain module also has some additional features im-
plemented to increase the breadth of experiments that
can be performed with the system or to help with future
projects. The behavior of the program is managed by the
input arguments. These are, in order: mode, mirror flag,
json file name, LAjpos, RAjpos, Hjpos. The first one deter-
mines which of the three different modes of operation will
be used (default 0), the second one determines if the mirror
mode is activated or not (default false), the third defines the
name of the text file used to record (in mode 0 and 1) or
read (mode 2) the gestures (the default value is NULL, that
is no recording) and set a flag (record flag) to 1, the fourth,
fifth and sixth ones are used to determine the pose to use in
mode 1 (as default, the robot will spread its arms parallel
to the ground, in a pose that in animation is known as ”T-
pose”). More in details, the modes of operation of the main
program are:

• Mode 0 or ”Mimic Mode”, is the default mode and
makes the robot mimic the movements of the user. The
record flag makes it, so the output is not just sent to
the ROS publishers, but recorded in a JSON(JavaScript
Object Notation) file, to be reproduced later. If the mir-
ror flag is active, every movement is mirrored. In case
both the record and mirror flags are active, the mirrored
movement will be recorded and saved in the specified
txt file.

• Mode 1, or ”Pose Mode”, make the robot execute a
pose (defined at the beginning by the value of the given

arguments) that the user must try to emulate. A dis-
tance algorithm calculates how close is the user pose
to that of the robot, evaluated separately for the head,
right upper arm, left upper arm, right forearm, and left
forearm. If the user pose keeps all body parts below
their respective thresholds (defined separately for each
boy part), the program will communicate the success
and shut down. The record flag makes it, so the dis-
tance values returned are written in a file, while the
mirror flag makes it so the user must try to mirror the
pose shown.

• Mode 2, or ”Playback Mode”, consists of reproducing
a previously recorded gesture. The mirror flag, even if
selected, doesn’t have any effect on the algorithm. The
name necessary to activate the record flag is used as
the name of the file with the gesture to execute.

As an example, an experiment that was conceptualized
consisted in using the Pepper robot to show a specific pose
that the user must replicate as closely as possible. The ex-
periment envisaged the use of both the normal mode and the
mirror mode.

Figure 3. Structure of the algorithm when
recording (the text file can be either the
recorded gesture in mode 0 or the record of
distance values in mode 1)

4 Conclusions and Developments

The system illustrated in this paper is capable of detect-
ing the user poses with the Kinect with sufficient accuracy.
The first experiments show that the reproduced movements
are precise and smooth; the mirroring is accurate; the pose

85

Figure 4. Structure of the algorithm in mode
2 (the txt file in this case is the coding of a
previously recorded gesture)

evaluation is coherent; Furthermore, the recording and exe-
cution of the gestures are very close to the real-time move-
ments. However, sometimes, certain positions cannot be
reliably detected, due to imprecise behavior of the Kinect
output when joints overlap each other, and to excessive re-
liance on the silhouette to detect the human body and the
lack of joints in key points of the detected skeleton (like the
hands). There is also an environmental factor, like light-
ning and positioning, that can make accurate user detection
problematic. Currently, we are setting up two experiments:
the first one is to make the robot autonomously capable of
acting both as an instructor and a learner of the Semaphore
Flag Signalling System [3], exploiting the gesture mirror-
ing features; the second one is to make the robot capable of
both encoding and decoding simple sentences from natural
language to the flag semaphore system and vice-versa.

In future works, we plan to extend our framework as
to deal with novel and emerging big data trends including
performance (e.g., [10, 7]), and privacy and security (e.g.,
[9, 11]).

References

[1] Msrc-12 dataset, https://www.microsoft.com/en-us/
download/details.aspx?id=52283.

[2] Ros kinetic, http://wiki.ros.org/kinetic.
[3] Semaphore flag signalling system, https://en.wikipedia.

org/wiki/Flag_semaphore.
[4] A. Augello, A. Ciulla, A. Cuzzocrea, S. Gaglio, G. Pilato, and

F. Vella. A kinect-based gesture acquisition and reproduction sys-
tem for humanoid robots. In Computational Science and Its Ap-
plications - ICCSA 2020 - 20th International Conference, Cagliari,
Italy, July 1-4, 2020, Proceedings, 2020.

[5] G. Baron, P. Czekalski, D. Malicki, and K. Tokarz. Remote control
of the artificial arm model using 3d hand tracking. In 2013 Inter-
national Symposium on Electrodynamic and Mechatronic Systems
(SELM), pages 9–10. IEEE, 2013.

[6] C.-w. Chang, C.-j. He, et al. A kinect-based gesture command con-
trol method for human action imitations of humanoid robots. In
2014 International Conference on Fuzzy Theory and Its Applica-
tions (iFUZZY2014), pages 208–211. IEEE, 2014.

[7] G. Chatzimilioudis, A. Cuzzocrea, D. Gunopulos, and
N. Mamoulis. A novel distributed framework for optimizing
query routing trees in wireless sensor networks via optimal operator
placement. J. Comput. Syst. Sci., 79(3):349–368, 2013.

[8] A. Cuzzocrea. Combining multidimensional user models and
knowledge representation and management techniques for making
web services knowledge-aware. Web Intelligence and Agent Sys-
tems, 4(3):289–312, 2006.

[9] A. Cuzzocrea and E. Bertino. Privacy preserving OLAP over
distributed XML data: A theoretically-sound secure-multiparty-
computation approach. J. Comput. Syst. Sci., 77(6):965–987, 2011.

[10] A. Cuzzocrea, R. Moussa, and G. Xu. Olap*: Effectively and effi-
ciently supporting parallel OLAP over big data. In Model and Data
Engineering - Third International Conference, MEDI 2013, Aman-
tea, Italy, September 25-27, 2013. Proceedings, pages 38–49, 2013.

[11] A. Cuzzocrea and V. Russo. Privacy preserving OLAP and OLAP
security. In Encyclopedia of Data Warehousing and Mining, Second
Edition (4 Volumes), pages 1575–1581. 2009.

[12] S. Filiatrault and A.-M. Cretu. Human arm motion imitation by
a humanoid robot. In 2014 IEEE International Symposium on
Robotic and Sensors Environments (ROSE) Proceedings, pages 31–
36. IEEE, 2014.

[13] I. I. Itauma, H. Kivrak, and H. Kose. Gesture imitation using ma-
chine learning techniques. In 2012 20th Signal Processing and
Communications Applications Conference (SIU), pages 1–4. IEEE,
2012.

[14] M. C. Lau, J. Anderson, and J. Baltes. A sketch drawing humanoid
robot using image-based visual servoing. Knowledge Eng. Review,
34:e18, 2019.

[15] C. A. Monje and S. M. de la Casa Dı́az. Modeling and control
of humanoid robots. Int. J. Humanoid Robotics, 16(6):1902003:1–
1902003:3, 2019.

[16] S. Mukherjee, D. Paramkusam, and S. K. Dwivedy. Inverse kine-
matics of a nao humanoid robot using kinect to track and imitate
human motion. In 2015 International Conference on Robotics,
Automation, Control and Embedded Systems (RACE), pages 1–7.
IEEE, 2015.

[17] M. Pfitscher, D. Welfer, M. A. d. S. L. Cuadros, and D. F. T.
Gamarra. Activity gesture recognition on kinect sensor using con-
volutional neural networks and fastdtw for the msrc-12 dataset. In
International Conference on Intelligent Systems Design and Appli-
cations, pages 230–239. Springer, 2018.

[18] P. Regier, A. Milioto, P. Karkowski, C. Stachniss, and M. Ben-
newitz. Classifying obstacles and exploiting knowledge about
classes for efficient humanoid navigation. In 18th IEEE-RAS Inter-
national Conference on Humanoid Robots, Humanoids 2018, Bei-
jing, China, November 6-9, 2018, pages 820–826, 2018.

[19] S. Saeedvand, H. S. Aghdasi, and J. Baltes. Robust multi-objective
multi-humanoid robots task allocation based on novel hybrid meta-
heuristic algorithm. Appl. Intell., 49(12):4097–4127, 2019.

[20] U. Zabala, I. Rodriguez, J. M. Martı́nez-Otzeta, and E. Lazkano.
Learning to gesticulate by observation using a deep generative ap-
proach. arXiv preprint arXiv:1909.01768, 2019.

[21] A. Zhang, I. G. Ramirez-Alpizar, K. Giraud-Esclasse, O. Stasse, and
K. Harada. Humanoid walking pattern generation based on model
predictive control approximated with basis functions. Adv. Robotics,
33(9):454–468.

86

