
On the Problem-Oriented Verification of Cyber-
Physical Systems Using System-Level Test

Sequences
Changlan Fu, Xiao Zhang, Zhi Li*, Ziyan Zhao, Chao Wang, Yuekun Yu

College of Computer Science and Information Technology
Guangxi Normal University

Guilin, Guangxi, China
*corresponding author, zhili@gxnu.edu.cn

Abstract—The heterogeneous implementations of Cyber-
Physical Systems (CPS), including complex behaviors of physical
devices and human users, pose significant challenges for verifying
such systems. Since Jackson’s Problem Frames approach (PF)
provides facilities for representing interactions between the
computing and physical components of CPS, it is applicable to
the requirements analysis and modeling of CPS. In this work, we
propose an approach to verifying whether the requirements are
satisfied or not using system-level testing methods for CPS. A set
of supporting tools have been developed for modeling and
verifying CPS with test obligations and acceptance criteria for
system-level testing prior to design time, which aims at reducing
defects in requirements elicitation and documentation, thus
supporting backtracking activities in the requirements analysis of
a software development process. The work is illustrated in a real-
world example.

Keywords-Problem Frames; requirements verification; test
sequences; cyber-physical systems;

I. INTRODUCTION
With the development of information technology, we will

see increasing use of the Internet of Things, big data analytics
platforms, and appearances of Cyber-Physical Systems (CPS)[1],
which is a series of tight integration of computational processes
and physical processes. Deep integration and real-time
interaction are achieved through feedback loops in which
computational processes and physical processes interact. With
the increasing complexity of CPS, the testing and maintenance
of such systems become very difficult, which may cause faults,
failures or even great security risks.

Recently, some researchers use heterogeneous model fusion
technology to achieve integration of the computing and
physical systems[2]. For example, modeling languages such as
UML, Modelica, and Simulink have extended their modeling
elements. Although existing CPS modeling and simulation
techniques reflect some advances in its verification technology,
they are far from being able to meet the needs for verifying
large-scale CPS design processes.

The Problem Frames (PF)[3] approach, which was first
proposed by Michael A. Jackson in the field of software
engineering, has established that software development
problems can be divided into three parts: software S, real world
W, and user requirements R. S represents a software system to

be built; W represents the real-world environment in which the
software system runs; W can be regarded as the physical
component in the CPS architecture. PF provides facilities for
representing the interactions between the computing and
physical components of CPS, thus supporting the modeling and
verification of complex CPS behaviors[4,5].

In this paper, we model the behavior of CPS and its
requirements based on PF, and verify whether the integration of
its computing and physical systems meets the user's
requirements in terms of completeness and correctness, which
can help find system defects and avoid serious failures. We
propose a system-level testing method for CPS, and develop a
set of supporting tools which can systematically assist software
developers in modeling, and verifying cyber-physical systems
prior to design time.

II. SYNTACTIC CHECKING OF PF DIAGRAMS
In PF, the computing machine domain is represented by the

symbol , the problem domain is represented by the
symbol and the requirement is represented by the symbol

. The connecting lines between the machine domain and
problem domains are called interfaces, represented by the
symbol ; the connecting lines between the requirements
and problem domains can either be requirements references
(represented by the symbol) or requirement constraints
(represented by the symbol), as shown in Figure 1 (on
the next page).

A. Integrity and correctness in PF syntax
The integrity of PF diagram refers to a set of basic

completeness rules which are fundamental to PF models. Table
1 lists a sample of rules for PF. Note that rules can be
accumulated and added as practitioners gain more experience
of using the PF modeling.

Table 1. Integrity conditions of the problem diagram
No. Integrity conditions
1 The name of the domain must be not be empty.
2 There is at least one machine domain in the diagram.
3 A problem diagram has at least one requirement.

…… ……

DOI reference number: 10.18293/DMSVIVA2018-021

The correctness of PF diagram refers to the fundamental
principles that must be obeyed in PF[3], as shown in Table 2.

Table 2. Correctness conditions of the problem diagram
No. Correctness Conditions
1 The name of the domain must be unique.

2 The requirement cannot directly constrain the machine
domain.

3 Each machine domain controls at least one interface.
…… ……

When system analysts model the requirements, they hope
that the model can help the requirements analysts to check if
the design is complete and correct, so as to avoid the situation
in which the design is difficult for the developers to understand.
Here is an example of an incomplete and incorrect problem
diagram, as shown in Figures 1 and 2. One problem domain in
Figure 1 has no name, and the requirements in Figure 2 directly
constrains the machine domain (by definition, a requirement
that directly constrains the computing machine is called a
“specification”).

Detect face Detect face Video
recorder

Gate
system

Gate Lock

Feature
database

a

b

c

d

e

f

g

Fig. 1. A security gate control problem diagram (domain

nameless)

Detect face Detect face

Video
recorder

Gate
system

Gate Lock

Feature
database

a

b

c

d

e

f

g

Visitors' face

h

Fig. 2. A security gate control problem diagram (requirements

directly constrain the machine)

B. A brief description of OCL
The object constraint language (OCL) is a language for

applying constraints on specified model elements. OCLs
express constraints on the object with the conditions and
constraints attached to the model elements, including invariant
or constraint expressions attached to the model elements, pre-
conditions and post-attachments attached to operations, and
methods and conditions, etc[6-7].

C. Using OCL to implement integrity and correctness check

We adopted the OCL's consistency verification method for
UML models. We use OCLs to define PF constraints, and to
develop the integrity and correctness verification modules by

analyzing and checking OCL expressions[8]. The problem
diagram constraint conditions in Tables 1 and 2 are represented
by the following OCLs.

Constraint: The name of the domain must be set
OCL expression:
Class.allInstances()-

>select(c|c.oclAsType(Class).getValue(c.oclAsType(Class).ge
tAppliedStereotypes()->asSequence()->first(),'value')=null) -
>size()=0

Constraints: There is at least one machine domain in
the context diagram

OCL expression:
Class.allInstances()-

>forAll(p|p.oclAsType(Class).getAppliedStereotypes().name-
>includes('Machine')->size()>=1)

Constraint: A problem diagram or framework has at
least one requirement

OCL expression:
Class.allInstances()-

>forAll(p|p.oclAsType(Class).getAppliedStereotypes().name-
>includes('Requirement') ->size()>=1)

Constraint: The name of the domain must be unique
OCL expression:
Class.allInstances()-

>select(getAppliedStereotypes().name->includes('Domain'))-
>isUnique(name)

Constraint: The requirement cannot directly
constrain the machine domain

OCL expression:
Interface.allInstances()-

>select(a|a.oclAsType(Dependency).getAppliedStereotypes().
name->includes('constrains'))-
>forAll(source.getAppliedStereotypes().name-
>includes('Requirement')implies not
target.getAppliedStereotypes().name->includes('Machine'))

Constraint: Each machine domain controls at least
one interface

OCL expression:
Interface.allInstances()-

>select(getAppliedStereotypes().name-
>includes('observes')).target-
>forAll(ot|Interface.allInstances()-
>select(getAppliedStereotypes().name->includes('controls'))-
>select(target->exists(ct|ct=ot))->size()=1)

III. COMPLEX PROBLEM DECOMPOSITION
Hall provides a de-notational semantics for Problem Frames
in [9], in which a generic problem diagram can be expressed
as follows:

c, o : [K, R]={S | S controls c∧S observes o∧K, S |- DRDL R},
where S represents the software solution to be built, K

represents knowledge about S’s context (i.e., physical devices
or human-beings) and R represents user requirements. Figure 3
shows the corresponding generic problem diagram (Note: S!c
denotes "S controls c", S?o denotes "S observes o", and DRDL
is the short for a requirement and domain description language.

S K R
S!c

S?o

d

Fig. 3. A generic problem diagram

In this paper, a chain of causality is introduced to facilitate
the understanding of complex problem diagrams and to
automate the search for causal chains [10].

A. Causal chain
From Figure 3, we can see that if the domain sharing

phenomenon o results in the occurrence of c, then this is a
causal relationship.

In a problem diagram, if we find a path from R to S, or from
R to S and to R, then we say that we have found a solution to
the problem. The elements of this path populate the set of
solutions to the problem. There are multiple such paths in a
complex problem diagram, that is, there are multiple chains of
causality from R to S, and each path may be respectively
represented as R1, S1, R2, S2,... Rn, Sn .

We extend Hall's de-notational semantics by introducing
the causality chain concept, as follows:

c, o : [K, R] = {S | S ! c ∧ S ? o ∧ K, S |- DRDL R}
 = { S1|| S2||…||Sn }

Figure 4 corresponds to a partial problem diagram, which
shows a set of solution.

R

S

D1

Dn

D2

Dn-1

Dm

Dm+1

c

o

e11 e12

e1m

e1(m-1)

e1(m+1)

e1(n-2)e1(n-1)

Fig. 4. A partial problem diagram

IV. SECURITY GATE CONTROL PROBLEM DIAGRAM: A CASE
STUDY

A security gate control problem is used to illustrate the
work presented in this paper. The following is a rough sketch
of the problem:

A computer that recognizes facial features is required to
control the security gate. The face of each person who wants
to enter the security gate is captured on a video tape. The
records in the database are compared with the captured face
features. These records contain facial features that have been
explicitly accessible. Figure 5 is a diagram of the security gate
control problem.

Detect face Detect face Visitors' face
Video

recorder
Gate

system

Gate Lock

Feature
database

a

b

c

d

e

f

g

a:OpenDoor,CloseDoor
b:VideoFrames
c:FeatureInformation

d:FacialAppearance
e:OpenDoor
f:People

g:FacialAppearanceInformation

Fig. 5. Security gate control problem diagram

By comparing Figures 3 with 5, we can find the relationship

between the problem diagram and Hall's de-notational
semantics and two chains of causality, as shown in Figure 6.

S ={ Gate system },

c ={a}(b is initialized by S and therefore controlled by S),

o ={b,c}(b,c is received by S, so it is observed by S),

K ={ Gate lock, Video recorder, Visitors' face, feature
database },

R ={ Detect face },

d ={e,f,g}.

Detect face Detect face Visitors' face
Video

recorder
Gate

system

Gate Lock

Feature
database

a

b

c

d

e

f

g

Fig. 6. Security gate control problem diagram causality chain

V. REQUIREMENTS SATISFACTION VERIFICATION
STUDY

Precise mathematical methods and technologies are used in
formal requirements verification, in which requirement models,
are represented by mathematical expressions, operations and
derivations so that ambiguities, incompleteness, unachievable
expressions in requirement models can be detected or
dicovered. The research in this paper is based on the
Communication Sequential Process (CSP) algebraic theory and
CSP scripts are generated for the description and verification of
the requirements model.

A. Overview of Communication Sequential Process
The Communication Sequential Process is an algebraic

theory proposed by the well-known computer scientist C.A.R.
Hoare[11]. It is an abstract description language for parallel
algebraic systems and specifically describes message
interactions in concurrent systems. Because CSP is suitable for
modeling and analyzing systems and describes complex
message interactions, it is widely used.

B. Mapping of Problem Diagrams to Sequence Diagrams
Sequence diagrams are used to describe the sending of

messages between objects. It can intuitively convey the
interaction of various parts of the system[12]. For example, in
the chains of causality in Figure 6, f->d->b->a->e and g->c-
>a->e, the requirement is used as a starting point and an
ending point, and it is converted into a sequence diagram, as
shown in Figures 7 and 8 .

Gate system Gate Lock Video recorder Visitors' face Feature database Detect face

f

d

b

a

e

 Fig. 7. A Sequence diagram
In these two figures, you can clearly see the triggering

sequence of the sharing phenomena between various objects.
The objects in the sequence diagram correspond to the domain
and requirements of the problem diagram, while the objects in
the sequence diagram can also be mapped to the processes in
the CSP[13]. Here is an example of a vending machine for the
reader to understand the mapping relationship between the
problem diagram and CSP, as follows:

Gate system Gate Lock Video recorder Visitors' face Feature database Detect face

c

a

e

g

 Fig. 8. A Sequence diagram

A vending machine (VM) receives a coin inserted by a
customer (CUST) and automatically gives chocolate (choc) or
coffee according to the customer's purchase request and choice.

VM CUST REQ
VM!{choc,coffee}

CUST!{coin,choc,coffee} {choc,coffee}

Fig. 9. The vending machine problem diagram

According to the problem description, the vending machine
problem can be described as follows:

VM=coin→(choc→VM|coffee→VM)，
CUST=coin→(choc→CUST|coffee→CUST)，

which defines two process VM and CUST, where coin,
choc and coffee are all events. From the CSP description and
Figure 9,we can see that the domains in the problem frames can
be mapped to the CSP processes, and the sharing phenomenon
can be mapped to messages or events passed between processes.
By studying this kind of mapping relationship, we can convert
the sub-problems obtained through problem de-composition,
that is, the causality chain, into a sequence diagram, and we
have developed a tool which can automatically generate a CSP

script based on the objects in the sequence diagram and
message passing.

C. CSP script generation based on sequence diagram

The object in the sequence diagram is regarded as a
process in CSP. For example, in Figure 7, the process of
detecting face begins first, and a new process is generated by
the process and the event of the operation. The CSP is
expressed as: Detect face =f-> Visitors' face. Similarly, the
sequence diagram in Figure 7 can be described using CSP as
the following script code:

Detect face =f- > Visitors' face
Visitors' face =d-> Video recorder
Video recorder =b-> Gate system
Gate system =a-> Gate lock
Gate lock =e->STOP

In summary, the process of converting a problem
diagram into an algebraic expression is demonstrated, and
this abstract algebraic symbol can be run by a specialized
CSP verification tool, FDR[17].

D. Requirements verification
A complex problem diagram is transformed into CSP

scripts that run in the FDR tool. The requirements engineer can
write code to verify that the requirements are satisfied or not.
The support tools implemented in this paper integrate the
FDR4 tool to automate the verification of CSP scripts. The
FDR4 is a tool that can be used for model verification
developed by scholars at Oxford University in the UK.

VI. RESEARCH ON REQUIREMENTS TESTING METHOD
BASED ON PROBLEM FRAMES

Today's software systems are large and complex, and the
task of software testing becomes error-prone and complicated.
If the test task is clearly identified as early as possible, then
the quality of requirements will be greatly improved.

A. Definition of Requirements Test
The requirements analysis model can be used as the

guidance for documenting specifications in order to help the
requirements analyst understand and help developers in system
development. The requirements model can also be used as a
test model[14].

B. Extending Problem Frames
This study needs to add a causal relationship attribute to

each domain to record the triggering relationships between the
sharing phenomenon related to the domain. For example, if
there are two shared phenomena a and b in the machine domain
and phenomenon a triggers the occurrence of the b
phenomenon, then a->b is recorded. We need to expand the
domain constraint attributes to record one-to-many or many-to-
many trigger conditions. For example, in a ATM system, where
the depositor withdraws money less than the amount of the
account, then the cash is ejected; if the withdrawal amount is
greater than the amount of the account, then a display will
show that it cannot be withdrawn. This study uses the syntax of

http://dict.youdao.com/w/extend/%23keyfrom=E2Ctranslation

object-constraint language to record these domain-constraint
attributes. For example, the record is as follows:

Account (balance), Withdrawal amount (amount)

Pre process: balance>amount and amount >0

Post process:(balance=balance@Pre-amount) and balance>0

C. Generating test scenarios
The causality chain is a method of splitting complicated

problem diagrams. The sub-problems obtained are a use case of
the problem. Therefore, the sequence of causality chains is a
test scenario. Testers can design test cases based on test
scenarios generated by causali chains and constraints. Once a
system fails, only the physical systems and computing systems
related to the fault need to be tested. For example, the test trail
A->B[@balance>amount and a mount >0@(balance=balance-
amount) and balance>0]->C->D that with OCL constraint
description and test trail A->B->C->D that without OCL
constraint description, where A, C, and D are physical
components and B is control software. Assume that the C
physical device has a failure, the tester only needs to test all
the devices on the causal chain containing the shared
phenomenon triggered by B. If the system is working properly
and only the result of the operation is different from what is
expected, the design of the test case can be based on the pre-
constraint and post-constraint conditions of B, thus facilitating
the testing and maintenance of the later system.

D. Generating Test Cases
The requirement references and constraints of PF are

respectively represented by dashed lines without arrows and
dashed lines with arrows. The dashed line with an arrow
indicates that this requirement refers to the phenomenon in the
problem domain. The dashed line with an arrow indicates that
the requirement reference is a constraint reference, this
requirement not only refers to the domain phenomenon, but
also provides some desired relationships or behaviors that
involve these relationships. In layman's terms, the former
refers to a desired value or event, the latter defines a value or
event to be obtained, like the input and output in the program.
Therefore, we can develop the use case template shown in
Table 3 below.

Table 3 Test Case Template

Test scenarios Requirement reference Requirement constraints

VII. IMPLEMENTATION OF SUPPORT TOOLS
The support tools developed in this study employ a

client/server (C/S) and browser/server (B/S) hybrid
architecture, which contains features such as good openness,
easy expansion and transplantation [15].

A. Software Architecture Diagram of C/S and B/S Mixed

Web
Server

DB

Da
ta
ba
se
 S
er
ve
r

Client

BrowserB/S

C/S

Client Server

OR

Fig.10. Support tool architecture diagram

B. Main functions of the tool
In addition to the basic function of drawing problem

diagrams, this tool can also implement the function of
checking the diagram for integrity and correctness. It can
also automatically search and find causal chains and
convert them into CSP scripts and verify the model
automatically. Then test scenarios with constraints can be
generated from these causal chains.

The tool can allow the problem diagram model to be
saved in the XML format. Users can upload their own
drawings on to the cloud server database. When
modification is needed, the XML file can be opened from
the database again. We first use the tool to draw the security
gate control problem diagram (shown in Figure 11), and
then the tool can automatically check the correctness and
integrity of the diagram .

Fig.11. Drawing the right question diagram
After drawing the problem diagram, we click on the

OCL button in the Tools menu to automatically verify that
the problem diagram is complete and correct, as shown in
Figure 12 below. If an incomplete or incorrect problem
diagram is drawn, as shown in Figure 13, a domain has no
name. The problem diagram is checked for completeness
and correctness. The results are shown in Figure 14.

Once the diagram is verified to be complete, we can
use the tool to find all the causal chains from the problem
diagram (Figure 15).

Fig.12. Screenshot of OCL check result

Fig.13. Draw error question diagram

Fig.14. Screenshot of the check question diagram

Fig.15. The result of Finding causality chain

Fig. 16. The result of FDR check

Fig.17. generated test leads

Our tool can help system analysts to check if user
requirements are satisfied or not by running the FDR4 tool,
as shown in Figure 13. Based on those causality chains we
can generate test scenarios, as shown in Figure 17.

VIII. CONCLUSIONS
In this paper, we provide a solution to the problem of

automatically verifying CSP behaviors and user
requirements, and searching and finding causal chains
which helps de-compose a complex problem into sub-
problems, and transform a problem diagram into a formal
scripting language to verify whether the cyber-physical
system design can satisfy end-to-end requirements[16]. Test
scenarios for the system can be generated based on the
causality chains. Testers can derive test cases from these
test scenarios with constraints to improve the test efficiency.
This paper demonstrates the feasibility of the proposed
method by applying the support tools we develop in the
case study of a safety gate control problem. Our case study
shows that our method contributes to reducing defects in
the requirements analysis phase and increasing the success
rate of software development projects.

ACKNOLEDGEMENTS
The authors would like to thank the anonymous referees for
their valuable comments and suggestions. This work is
partially supported by the National Natural Science
Foundation of China (61262004), Guangxi “Bagui Scholar”

Teams for Innovation and Research, the Project of the
Guangxi Key Lab of Multi-source Information Mining &
Security (Director’s grant 14-A-03-01, 15-A-03-01),
Guangxi Collaborative Innovation Center of Multi-source
Information Integration and Intelligent Processing, the
Innovation Projects of Guangxi Graduate Education (No.
XYCSZ2017066), (No. XYCSZ2018075), (No.
XJGY201809), 2017 Guangxi Normal University Bilingual
Course Project (No. A-0201-00-00013F).

REFERENCES
[1] Wen J R, Mu-Qing W U, Jing-Fang S U. Cyber-physical System[J].

Acta Automatica Sinica, 2012, 38(4):507-517.
[2] Dongfang Liang, Yuying Wang, Xingshe Zhou, et al. Simulation

modeling method based on heterogeneous model fusion for CPS
system[J]. Journal of Computer Science,2012, 39(11):24-28.

[3] Jackson M. Problem frames: analyzing and structuring software
development problems[M]. Addison-Wesley Longman Publishing Co.
Inc. 2000.

[4] M. Jackson. System Behaviours and Problem frames: Concepts,
Concerns and the Role of Formalisms in the Development of Cyber-
physical Systems[M]. Dependable Software Systems
Engineering,2015:79–104.

[5] Xiaohong Chen, Bin Yin, Zhi Jin. Demand Modeling Based on Problem
Frames: A Method of Present System Guidance[J]. Journal of Software,
2011, 22(2):177-194.

[6] Gogolla M. Object Constraint Language[J]. 2016.
[7] Zefan Jiang, Linzhang Wang, Xuandong Li, et al. Test method based on

UML sequence diagram[J]. Computer Science, 2004, 31(7):131-136.

[8] Queralt A, Teniente E. Verification and Validation of UML Conceptual
Schemas with OCL Constraints[J]. Acm Transactions on Software
Engineering & Methodology, 2012, 21(2):1-41.

[9] Li Z, Hall J G, Rapanotti L. On the systematic transformation of
requirements to specifications[J]. Requirements Engineering, 2014,
19(4):397-419.

[10] Jackson M. Where, Exactly, Is Software Development?[M]// Formal
Methods at the Crossroads. From Panacea to Foundational Support.
Springer Berlin Heidelberg, 2003:115-131.

[11] C. A. R. Hoare, “Communicating Sequential Processes,” The Origin of
Concurrent Programming, Springer New York, pp 413-443, 2002.

[12] Yuzhen Wang, Wei Dong, Huowang Chen. Automatic verification of
UML sequence diagram[J]. Computer Engineering and Applications,
2003, 39(29):80-83.

[13] Shuo Zhang, He Zi, Zhi. Utilizing the Sequence chart in problem
frames[J]. Research Reports: se, 2013, 2013: 1-8.

[14] Gao M, Zhong D, Lu M, et al. Research on test requirement modeling
for software-intensive avionics and the tool implementation[C]//
International affiliation, maintenance, safety study meeting
session.2007:6.D.2-1-6.D.2-10.

[15] Chen X, Liu J L. Analysis and Comparison between the Structures of
Client/Server and Browser/Server[J]. Journal of Chongqing Institute of
Technology Management, 2000.

[16] Seater R, Jackson D. Problem frames transformations: deriving
specifications from requirements[C]// International Workshop on
Advances and Applications of Problem frames. ACM, 2006:71-80.

[17] Gibson-Robinson T, Armstrong P, Boulgakov A, Roscoe A.W, Tools
and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science, volume 8413, pages.187-201, 2014.

	I. Introduction
	II. Syntactic Checking of PF diagrams
	A. Integrity and correctness in PF syntax
	B. A brief description of OCL
	C. Using OCL to implement integrity and correctness check

	III. complex problem decomposition
	A. Causal chain

	IV. Security gate Control Problem Diagram: A Case Study
	V. Requirements Satisfaction Verification Study
	A. Overview of Communication Sequential Process
	B. Mapping of Problem Diagrams to Sequence Diagrams
	Fig. 7. A Sequence diagram
	C. CSP script generation based on sequence diagram
	In summary, the process of converting a problem diagram into an algebraic expression is demonstrated, and this abstract algebraic symbol can be run by a specialized CSP verification tool, FDR[17].

	D. Requirements verification

	VI. Research on Requirements Testing Method Based on Problem Frames
	A. Definition of Requirements Test
	B. Extending Problem Frames
	C. Generating test scenarios
	D. Generating Test Cases

	VII. Implementation of support tools
	A. Software Architecture Diagram of C/S and B/S Mixed
	B. Main functions of the tool
	/
	Our tool can help system analysts to check if user requirements are satisfied or not by running the FDR4 tool, as shown in Figure 13. Based on those causality chains we can generate test scenarios, as shown in Figure 17.

	VIII. CONCLUSIONS

