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Abstract—The heterogeneous implementations of Cyber-
Physical Systems (CPS), including complex behaviors of physical 
devices and human users, pose significant challenges for verifying 
such systems. Since Jackson’s Problem Frames approach (PF) 
provides facilities for representing interactions between the 
computing and physical components of CPS, it is applicable to 
the requirements analysis and modeling of CPS. In this work, we 
propose an approach to verifying whether the requirements are 
satisfied or not using system-level testing methods for CPS. A set 
of supporting tools have been developed for modeling and 
verifying CPS with test obligations and acceptance criteria for 
system-level testing prior to design time, which aims at reducing 
defects in requirements elicitation and documentation, thus 
supporting backtracking activities in the requirements analysis of 
a software development process. The work is illustrated in a real-
world example.  

Keywords-Problem Frames; requirements verification; test 
sequences; cyber-physical systems; 

I.  INTRODUCTION 
With the development of information technology, we will 

see increasing use of the Internet of Things, big data analytics 
platforms, and appearances of Cyber-Physical Systems (CPS)[1], 
which is a series of tight integration of computational processes 
and physical processes. Deep integration and real-time 
interaction are achieved through feedback loops in which 
computational processes and physical processes interact. With 
the increasing complexity of CPS, the testing and maintenance 
of such systems become very difficult, which may cause faults, 
failures or even great security risks. 

Recently, some researchers use heterogeneous model fusion 
technology to achieve integration of the computing and 
physical systems[2]. For example, modeling languages such as 
UML, Modelica, and Simulink have extended their modeling 
elements. Although existing CPS modeling and simulation 
techniques reflect some advances in its verification technology, 
they are far from being able to meet the needs for verifying 
large-scale CPS design processes. 

The Problem Frames (PF)[3] approach, which was first 
proposed by Michael A. Jackson in the field of software 
engineering, has established that software development 
problems can be divided into three parts: software S, real world 
W, and user requirements R. S represents a software system to 

be built; W represents the real-world environment in which the 
software system runs; W can be regarded as the physical 
component in the CPS architecture. PF provides facilities for 
representing the interactions between the computing and 
physical components of CPS, thus supporting the modeling and 
verification of complex CPS behaviors[4,5]. 

In this paper, we model the behavior of CPS and its 
requirements based on PF, and verify whether the integration of 
its computing and physical systems meets the user's 
requirements in terms of completeness and correctness, which 
can help find system defects and avoid serious failures. We 
propose a system-level testing method for CPS, and develop a 
set of supporting tools which can systematically assist software 
developers in modeling, and verifying cyber-physical systems 
prior to design time.  

II. SYNTACTIC CHECKING OF PF DIAGRAMS 
In PF, the computing machine domain is represented by the 

symbol , the problem domain is represented by the 
symbol  and the requirement is represented by the symbol 

. The connecting lines between the machine domain and 
problem domains are called interfaces, represented by the 
symbol ; the connecting lines between the requirements 
and problem domains can either be requirements references 
(represented by the symbol ) or requirement constraints 
( represented by the symbol ), as shown in Figure 1 (on 
the next page). 

A.  Integrity and correctness in PF syntax 
The integrity of PF diagram refers to a set of basic 

completeness rules which are fundamental to PF models. Table 
1 lists a sample of rules for PF. Note that rules can be 
accumulated and added as practitioners gain more experience 
of using the PF modeling.  

Table 1. Integrity conditions of the problem diagram 
No. Integrity conditions 
1 The name of the domain must be not be empty. 
2 There is at least one machine domain in the diagram. 
3 A problem diagram has at least one requirement. 

…… …… 
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The correctness of PF diagram refers to the fundamental 
principles that must be obeyed in PF[3], as shown in Table 2. 

Table 2. Correctness conditions of the problem diagram 
No. Correctness Conditions 
1 The name of the domain must be unique. 

2 The requirement cannot directly constrain the machine 
domain. 

3 Each machine domain controls at least one interface. 
…… …… 

When system analysts model the requirements, they hope 
that the model can help the requirements analysts to check if 
the design is complete and correct, so as to avoid the situation 
in which the design is difficult for the developers to understand. 
Here is an example of an incomplete and incorrect problem 
diagram, as shown in Figures 1 and 2. One problem domain in 
Figure 1 has no name, and the requirements in Figure 2 directly 
constrains the machine domain (by definition, a requirement 
that directly constrains the computing machine is called a 
“specification”). 
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Fig. 1.  A security gate control problem diagram (domain 

nameless) 
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Fig. 2.  A security gate control problem diagram (requirements 

directly constrain the machine) 

B. A brief description of OCL  
The object constraint language (OCL) is a language for 

applying constraints on specified model elements. OCLs 
express constraints on the object with the conditions and 
constraints attached to the model elements, including invariant 
or constraint expressions attached to the model elements, pre-
conditions and post-attachments attached to operations, and 
methods and conditions, etc[6-7]. 

C. Using OCL to implement integrity and correctness check 

We adopted the OCL's consistency verification method for 
UML models. We use OCLs to define PF constraints, and to 
develop the integrity and correctness verification modules by 

analyzing and checking OCL expressions[8]. The problem 
diagram constraint conditions in Tables 1 and 2 are represented 
by the following OCLs. 

Constraint: The name of the domain must be set 
OCL expression: 
Class.allInstances()-

>select(c|c.oclAsType(Class).getValue(c.oclAsType(Class).ge
tAppliedStereotypes()->asSequence()->first(),'value')=null) -
>size()=0 

Constraints: There is at least one machine domain in 
the context diagram 

OCL expression: 
Class.allInstances()-

>forAll(p|p.oclAsType(Class).getAppliedStereotypes().name-
>includes('Machine')->size()>=1) 

Constraint: A problem diagram or framework has at 
least one requirement 

OCL expression: 
Class.allInstances()-

>forAll(p|p.oclAsType(Class).getAppliedStereotypes().name-
>includes('Requirement') ->size()>=1) 

Constraint: The name of the domain must be unique 
OCL expression: 
Class.allInstances()-

>select(getAppliedStereotypes().name->includes('Domain'))-
>isUnique(name) 

Constraint: The requirement cannot directly 
constrain the machine domain 

OCL expression: 
Interface.allInstances()-

>select(a|a.oclAsType(Dependency).getAppliedStereotypes().
name->includes('constrains'))-
>forAll(source.getAppliedStereotypes().name-
>includes('Requirement')implies not 
target.getAppliedStereotypes().name->includes('Machine'))  

Constraint: Each machine domain controls at least 
one interface 

OCL expression: 
Interface.allInstances()-

>select(getAppliedStereotypes().name-
>includes('observes')).target-
>forAll(ot|Interface.allInstances()-
>select(getAppliedStereotypes().name->includes('controls'))-
>select(target->exists(ct|ct=ot))->size()=1) 

III. COMPLEX PROBLEM DECOMPOSITION  
Hall provides a de-notational semantics for Problem Frames 
in [9], in which a generic problem diagram can be expressed 
as follows: 

c, o : [K, R]={S | S controls c∧S observes o∧K, S |- DRDL R}, 
where S represents the software solution to be built, K 

represents knowledge about S’s context (i.e., physical devices 
or human-beings) and R represents user requirements. Figure 3 
shows the corresponding generic problem diagram (Note: S!c 
denotes "S controls c", S?o denotes "S observes o", and DRDL 
is the short for a requirement and domain description language. 
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Fig. 3.  A generic problem diagram 

In this paper, a chain of causality is introduced to facilitate 
the understanding of complex problem diagrams and to 
automate the search for causal chains [10]. 

A. Causal chain 
From Figure 3, we can see that if the domain sharing 

phenomenon o results in the occurrence of c, then this is a 
causal relationship. 

In a problem diagram, if we find a path from R to S, or from 
R to S and to R, then we say that we have found a solution to 
the problem. The elements of this path populate the set of 
solutions to the problem. There are multiple such paths in a 
complex problem diagram, that is, there are multiple chains of 
causality from R to S, and each path may be respectively 
represented as R1, S1, R2, S2,... Rn, Sn . 

We extend Hall's de-notational semantics by introducing 
the causality chain concept, as follows: 

c, o : [K, R] = {S | S ! c ∧ S ? o ∧ K, S |- DRDL R} 
 = { S1|| S2||…||Sn } 

Figure 4 corresponds to a partial problem diagram, which 
shows a set of solution. 
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Fig. 4.  A partial problem diagram 

IV. SECURITY GATE CONTROL PROBLEM DIAGRAM: A CASE 
STUDY 

A security gate control problem is used to illustrate the 
work presented in this paper. The following is a rough sketch 
of the problem: 

A computer that recognizes facial features is required to 
control the security gate. The face of each person who wants 
to enter the security gate is captured on a video tape. The 
records in the database are compared with the captured face 
features. These records contain facial features that have been 
explicitly accessible. Figure 5 is a diagram of the security gate 
control problem. 
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Fig. 5.   Security gate control problem diagram 

 
By comparing Figures 3 with 5, we can find the relationship 

between the problem diagram and Hall's de-notational 
semantics and two chains of causality, as shown in Figure 6. 

S ={ Gate system }, 

c ={a}( b is initialized by S and therefore controlled by S), 

o ={b,c}( b,c is received by S, so it is observed by S), 

K ={ Gate lock, Video recorder, Visitors' face, feature 
database }, 

R ={ Detect face }, 

d ={e,f,g}. 
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Fig. 6.  Security gate control problem diagram causality chain 
 

V. REQUIREMENTS SATISFACTION VERIFICATION 
STUDY 

Precise mathematical methods and technologies are used in 
formal requirements verification, in which requirement models, 
are represented by mathematical expressions, operations and 
derivations so that ambiguities, incompleteness, unachievable 
expressions in requirement models can be detected or 
dicovered. The research in this paper is based on the 
Communication Sequential Process (CSP) algebraic theory and 
CSP scripts are generated for the description and verification of  
the requirements model. 

A. Overview of Communication Sequential Process  
The Communication Sequential Process is an algebraic 

theory proposed by the well-known computer scientist C.A.R. 
Hoare[11]. It is an abstract description language for parallel 
algebraic systems and specifically describes message 
interactions in concurrent systems. Because CSP is suitable for 
modeling and analyzing systems and describes complex 
message interactions, it is widely used.  



B. Mapping of Problem Diagrams to Sequence Diagrams 
Sequence diagrams are used to describe the sending of 

messages between objects. It can intuitively convey the 
interaction of various parts of the system[12]. For example, in 
the chains of causality in Figure 6, f->d->b->a->e and g->c-
>a->e, the requirement is used as a starting point and an 
ending point, and it is converted into a sequence diagram, as 
shown in Figures 7 and 8 .  
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 Fig. 7.  A Sequence diagram 
In these two figures, you can clearly see the triggering 

sequence of the sharing phenomena between various objects. 
The objects in the sequence diagram correspond to the domain 
and requirements of the problem diagram, while the objects in 
the sequence diagram can also be mapped to the processes in 
the CSP[13]. Here is an example of a vending machine for the 
reader to understand the mapping relationship between the 
problem diagram and CSP, as follows: 
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 Fig. 8. A Sequence diagram 

A vending machine (VM) receives a coin inserted by a 
customer (CUST) and automatically gives chocolate (choc) or 
coffee according to the customer's purchase request and choice. 

VM CUST REQ
VM!{choc,coffee}

CUST!{coin,choc,coffee} {choc,coffee}

 
Fig. 9. The vending machine problem diagram 

According to the problem description, the vending machine 
problem can be described as follows: 

VM=coin→(choc→VM|coffee→VM)， 
CUST=coin→(choc→CUST|coffee→CUST)， 

which defines two process VM and CUST, where coin, 
choc and coffee are all events. From the CSP description and 
Figure 9,we can see that the domains in the problem frames can 
be mapped to the CSP processes, and the sharing phenomenon 
can be mapped to messages or events passed between processes. 
By studying this kind of mapping relationship, we can convert 
the sub-problems obtained through problem de-composition, 
that is, the causality chain, into a sequence diagram, and we 
have developed a tool which can automatically generate a CSP 

script based on the objects in the sequence diagram and 
message passing. 

C. CSP script generation based on sequence diagram  

The object in the sequence diagram is regarded as a 
process in CSP. For example, in Figure 7, the process of 
detecting face begins first, and a new process is generated by 
the process and the event of the operation. The CSP is 
expressed as: Detect face =f-> Visitors' face. Similarly, the 
sequence diagram in Figure 7 can be described using CSP as 
the following script code: 

Detect face =f- > Visitors' face 
Visitors' face =d-> Video recorder 
Video recorder =b-> Gate system 
Gate system =a-> Gate lock 
Gate lock =e->STOP 

In summary, the process of converting a problem 
diagram into an algebraic expression is demonstrated, and 
this abstract algebraic symbol can be run by a specialized 
CSP verification tool, FDR[17].  
 

D. Requirements verification 
A complex problem diagram is transformed into CSP 

scripts that run in the FDR tool.  The requirements engineer can 
write code to verify that the requirements are satisfied or not. 
The support tools implemented in this paper integrate the 
FDR4 tool to automate the verification of CSP scripts. The 
FDR4 is a tool that can be used for model verification 
developed by scholars at Oxford University in the UK. 

VI. RESEARCH ON REQUIREMENTS TESTING METHOD 
BASED ON PROBLEM FRAMES 

Today's software systems are large and complex, and the 
task of software testing becomes error-prone and complicated. 
If the test task is clearly identified as early as possible, then 
the quality of requirements will be greatly improved. 

A. Definition of Requirements Test 
The requirements analysis model can be used as the 

guidance for documenting specifications in order to help the 
requirements analyst understand and help developers in system 
development. The requirements model can also be used as a 
test model[14]. 

B. Extending Problem Frames 
This study needs to add a causal relationship attribute to 

each domain to record the triggering relationships between the 
sharing phenomenon related to the domain. For example, if 
there are two shared phenomena a and b in the machine domain 
and phenomenon a triggers the occurrence of the b 
phenomenon, then a->b is recorded. We need to expand the 
domain constraint attributes to record one-to-many or many-to-
many trigger conditions. For example, in a ATM system, where 
the depositor withdraws money less than the amount of the 
account, then the cash is ejected; if the withdrawal amount is 
greater than the amount of the account, then a display will 
show that it cannot be withdrawn. This study uses the syntax of 

http://dict.youdao.com/w/extend/%23keyfrom=E2Ctranslation


object-constraint language to record these domain-constraint 
attributes. For example, the record is as follows: 

Account (balance), Withdrawal amount (amount) 

Pre process: balance>amount  and amount >0  

Post process:(balance=balance@Pre-amount) and balance>0 

C. Generating test scenarios 
The causality chain is a method of splitting complicated 

problem diagrams. The sub-problems obtained are a use case of 
the problem. Therefore, the sequence of causality chains is a 
test scenario. Testers can design test cases based on test 
scenarios generated by causali chains and constraints. Once a 
system fails, only the physical systems and computing systems 
related to the fault need to be tested. For example, the test trail 
A->B[@balance>amount and a mount >0@(balance=balance-
amount) and balance>0]->C->D that with OCL constraint 
description and test trail A->B->C->D that without OCL 
constraint description, where A, C, and D are physical 
components and B is control software. Assume that the C 
physical device has a failure, the tester only needs to test all 
the devices on the causal chain containing the shared 
phenomenon triggered by B. If the system is working properly 
and only the result of the operation is different from what is 
expected, the design of the test case can be based on the pre-
constraint and post-constraint conditions of B, thus facilitating 
the testing and maintenance of the later system. 

D. Generating Test Cases 
The requirement references and constraints of PF are 

respectively represented by dashed lines without arrows and 
dashed lines with arrows. The dashed line with an arrow 
indicates that this requirement refers to the phenomenon in the 
problem domain. The dashed line with an arrow indicates that 
the requirement reference is a constraint reference, this 
requirement not only refers to the domain phenomenon, but 
also provides some desired relationships or behaviors that 
involve these relationships. In layman's terms, the former 
refers to a desired value or event, the latter defines a value or 
event to be obtained, like the input and output in the program. 
Therefore, we can develop the use case template shown in 
Table 3 below. 

Table 3 Test Case Template 

Test scenarios Requirement reference Requirement constraints 

   

   

VII. IMPLEMENTATION OF SUPPORT TOOLS 
The support tools developed in this study employ a 

client/server (C/S) and browser/server (B/S) hybrid 
architecture, which contains features such as good openness, 
easy expansion and transplantation [15]. 

A. Software Architecture Diagram of C/S and B/S Mixed  
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Fig.10. Support tool architecture diagram 

B. Main functions of the tool 
In addition to the basic function of drawing problem 

diagrams, this tool can also implement the function of 
checking the diagram for integrity and correctness. It can 
also automatically search and find causal chains and 
convert them into CSP scripts and verify the model 
automatically. Then test scenarios with constraints can be 
generated from these causal chains. 

The tool can allow the problem diagram model to be 
saved in the XML format. Users can upload their own 
drawings on to the cloud server database. When 
modification is needed, the XML file can be opened from 
the database again. We first use the tool to draw the security 
gate control problem diagram (shown in Figure 11), and 
then the tool can automatically check the correctness and 
integrity of the diagram . 

 
Fig.11. Drawing the right question diagram 
After drawing the problem diagram, we click on the 

OCL button in the Tools menu to automatically verify that 
the problem diagram is complete and correct, as shown in 
Figure 12 below. If an incomplete or incorrect problem 
diagram is drawn, as shown in Figure 13, a domain has no 
name. The problem diagram is checked for completeness 
and correctness. The results are shown in Figure 14.  

Once the diagram is verified to be complete, we can 
use the tool to find all the causal chains from the problem 
diagram (Figure 15).  



 
Fig.12. Screenshot of OCL check result 

 

 
Fig.13.  Draw error question diagram 

 
Fig.14. Screenshot of the check question diagram 

 

 
Fig.15.   The result of Finding causality chain 

 
Fig. 16.  The result of FDR check 

 
Fig.17. generated test leads 

Our tool can help system analysts to check if user 
requirements are satisfied or not by running the FDR4 tool, 
as shown in Figure 13. Based on those causality chains we 
can generate test scenarios, as shown in Figure 17. 

VIII. CONCLUSIONS 
In this paper, we provide a solution to the problem of 

automatically verifying CSP behaviors and user 
requirements, and searching and finding causal chains 
which helps de-compose a complex problem into sub-
problems, and transform a problem diagram into a formal 
scripting language to verify whether the cyber-physical 
system design can satisfy end-to-end requirements[16]. Test 
scenarios for the system can be generated based on the 
causality chains. Testers can derive test cases from these 
test scenarios with constraints to improve the test efficiency. 
This paper demonstrates the feasibility of the proposed 
method by applying the support tools we develop in the 
case study of a safety gate control problem. Our case study 
shows that our method contributes to reducing defects in 
the requirements analysis phase and increasing the success 
rate of software development projects. 
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