
Assessing RDF Graph Databases for

Smart City Services

Pierfrancesco Bellini, Paolo Nesi

Distributed Systems and Internet Technology Lab, DISIT, http://www.disit.org

Department of Information Engineering, DINFO, University of Florence, Florence, Italy

pierfrancesco.bellini@unifi.it, paolo.nesi@unifi.it

Abstract — RDF stores may be used to set up knowledge bases

integrating heterogeneous information for web and mobile

applications to use the data for new advanced services to citizens

and city administrators, thus exploiting inferential capabilities,

temporal and spatial reasoning, and text indexing. In this paper,

the needs and constraints for RDF stores to be used for smart

cities services, together with the currently available RDF stores

are evaluated. The assessment model allows a full understanding

of whether they are suitable as a basis for Smart City modeling

and application. The comparison of the RDF stores addressed a

number of well-known RDF stores. The paper also reports the

adoption of the proposed Smart City RDF Benchmark on the basis

of Florence Smart City model, data sets and tools accessible as

Km4City http://www.km4city.org, and adopted in the European

Commission international smart city projects named

RESOLUTE H2020, REPLICATE H2020, and in Sii-Mobility

National Smart City project in Italy.

Keywords— smart city; RDF stores; graph databases; RDF

benchmark; linked data benchmark.

I. INTRODUCTION

Smart cities produce large amount of data having a large
variability, variety, velocity, and size; and thus complexity. The
variety and variability of data can be due to the presence of
several different formats, [1], [2] and to the interoperability
among semantics of the individual fields and of the several data
sets [3]. Static data are rarely updated, for instance once per
month/year, which is quite the opposite with dynamic data:
they can be updated from once a day up to every minute so as
to get real time data. The data velocity is related to the
frequency of data update for dynamic data such as position of
buses, people flow status, position of waste collectors, etc. The
size grows over time accumulating new data every day and
week. At architectural level, smart city solutions typically
adopt n-tier architectures [4].

The usage of RDF stores in the application domain of
Smart City is quite recent, since in most cases services are
vertically provided. For example the Intelligent Transport
System, ITS, in the city provides information regarding the
location of buses and their delay, without addressing the
location of city services, flow of people, real time events in the
city. Some city data integrators are well-known services such
as bike and car sharing, navigator system, tourism information,
hotel booking, etc. All these solutions have the need to
integrate geo-located information with real time data and
events continuously arriving from updated information such as:

events, votes, traffic flows, comments, etc. [2], [5]. As to these
applications, RDF stores may be a solution to allow addressing
the variability of data, so as to make reasoning on space, time,
and concepts [6]. The Resource Description Framework
specified by W3C allows the representation of facts using
“triples” of the form (subject, predicate, object) where URIs
are used to identify the entities and the predicates connecting
them. Thus a triple represents the arc of the graph connecting
two entities and the predicate describes the kind of relation
between the two entities. Moreover the object part of the triple
can also be a low level data type as string, dates, integers etc. to
describe not only the relations among entities but also specific
information about them (e.g. name, email, birth date). RDF
stores allow storing these triples and the SPARQL query
language allows querying them. Some RDF stores can also
manage set of triples as a single graph identified by an URI, in
this way information about this graph can be provided using
other triples (where the subject is the graph itself).

For the evaluation of RDF stores specific assessment
models and benchmarks have to be adopted. For example, the
LUBM benchmark [7] uses a synthetic dataset in the university
domain and covers only the SPARQL 1.0 specification. On the
contrary, the BSBM benchmark [8] generates a synthetic
dataset in the e-commerce domain and covers the SPARQL 1.1
business analytics queries. More recently, in the Linked Data
Benchmarks Council project1 two benchmarks were proposed
both generating a synthetic dataset, one from the semantic
publishing domain (LDBC-SP) and the other from the social
networks domain (LDBC-SN). The GeoSPARQL standard has
been developed by the Open Geospatial Consortium to cover
spatial searches, while not many solutions currently support
this specification. Regarding the benchmark of geo and spatial
RDF stores the Geographica benchmark [9] was proposed by
using both a synthetic generated dataset and a real dataset. It
analyses the support and performance for advanced spatial
relationships among complex spatial entities (e.g., polygons).
In [10], the real and synthetic benchmark datasets have been
compared showing that synthetic generated datasets are similar
to datasets generated for relational database benchmarks (TPC-
H) and strongly different from real-world datasets (e.g.,
dbPedia) being much less structured. In [11], with the
SPARQL Performance Benchmark (SP2Bench) a language-
specific benchmark framework designed for the most common
SPARQL constructs has been proposed.

1 http://ldbcouncil.org

DOI reference number : 10.18293/DMSVLSS2017-008

http://www.disit.org/
mailto:pierfrancesco.bellini@unifi.it
mailto:paolo.nesi@unifi.it
http://www.km4city.org/
http://ldbcouncil.org/

Recently SPARQL has been extended to query real-time
data coming from RDF data streams. There are some
implementations as C-SPARQL [12], SparqlStream [13],
CQELS and also specific benchmarks were defined as
SRBench [14] using data from weather sensors, LSBench [15]
using data from social networks and CityBench [16] using data
from smart city sensors. Those kinds of specific benchmark are
suitable for streaming data, with queries performing specific
requests with limited number of results. W3C also reviewed
RDF store benchmarks 2 highlighting their applicability in
assessing different aspects of the RDF stores, and their
application on different stores.

Despite this wide state of the art on RDF stores
benchmarks, none of the mentioned approaches is specifically
suitable for assessing the RDF stores against Smart City. Smart
City presents extremely particular and specific conditions
exploiting the latest and most challenging constructs of the
RDF stores as geo-spatial queries, text queries, time queries
and combinations of them. On this regard, in this paper, a
Smart City RDF Benchmark, SCIRB, has been.

This paper reports the formalization of the proposed Smart
City RDF Assessment Model and Benchmark and its adoption
in comparative assessment of a number of RDF stores. The
data and queries adopted for replicating the mentioned
assessment have been published on the following web page
http://www.disit.org/smartcityrdfbenchmark. The dataset is real
and is based on Florence Smart City which in turn is grounded
on Km4City ontology and model [3].

The paper is structured as follows. In Section II, the major
smart city requirements/demands in modeling and accessing
semantic knowledge are reported. The requirements can be
used as drivers for features based selection of RDF stores.
Section III presents the general evaluation methodology for
assessing and selecting the RDF stores for smart city
applications. In Section IV, the comparison of most relevant
state of the art RDF stores is reported on the basis of the model
identified in Section III.A. Section V reports the application of
the proposed smart city benchmark in assessing the most
featured RDF stores (i.e., Virtuoso, GraphDB, Oracle and
StarDog). The analysis has highlighted several interesting
aspects connected to the performance of RDF stores in: loading
and indexing triples, and in performing geographical and
textual queries, also during store updates. Conclusions are
drawn in Section VI.

II. SMART CITY REQUIREMENTS FOR RDF STORES

When providing services to citizens of a smart city, an
RDF/graph store should provide some features that allow the
support of specific functionalities. In particular, the following
features are reported according to their relevance and
classifying them. Therefore, smart city stores should provide
support for:

 spatial indexing (must have): providing information near
to a given geographical point: as a GPS location. For
example, all the services that are currently
closed/unavailable to a given point. It should also support

2 https://www.w3.org/wiki/RdfStoreBenchmarking

advanced geo-spatial functionalities as being able to
manage complex geometries (e.g., information along a
cycle path, all elements into a given polygonal area).

 high performance on spatial querying.

 full text indexing (must have): allowing the integration of
semantic queries with keyword based searches on text
which can be present into the attributes and class
elements, as triples. Subjects and objects of triples can
contains relevant text area such as descriptions, street
names, locations names, etc.

 high performance on full text querying.

 quadruples (not only triples) to associate dataset metadata
with the loaded triples (must have). Triples are produced
on the basis of data coming from many different sources.
Therefore, it is important to track the data source, with
metadata and associated licenses. This feature is
particularly useful to solve or process licenses during the
data usage from clients and via APIs.

 some kinds of inference (good to have) such as the basic
RDFS or the more advanced OWL2 profiles allowing the
inference of new facts from the available data. This may
be used to generalize/specialize about entities, to same-as,
equivalence, transitive, symmetrical, etc. The inference
may imply the materialization of triples in the phase of
indexing [Bellini et al., 2015].

 temporal indexing (good to have): many information and
features are changing over time in smart cities. For
example, the weather situation and its related forecast, the
traffic flow detected from traffic sensors, the position of
buses, and events occurring within the city. For this
reason, it is quite important that the RDF store should
support temporal search to allow the easy retrieval of
temporal data. Moreover, the storing of temporal data
(that may change in real time) is the main source for
increasing the database size, demanding big data solutions
for smart city for volume, velocity and variety, at least.

 high volume of queries (good to have). Dealing with
bigdata RDF store with many users querying the data is
quite challenging, for this reason a clustering solution is
needed. It could be a clustering (vertical scale or scale
up/down) when the same service is duplicated to allow
many concurrent queries and to provide also a fault
tolerance solution. It could be also a scale out clustering
(horizontal) when data are split among different servers,
as a single server cannot handle all the data.

A very relevant non-functional requirement is due to the
fact that when it comes to Smart City applications, they are
often exploited by Public Administrations. They ask for: (i)
standard solution to avoid the risk of vendor lock-in especially
for very new technologies like RDF stores are; (ii) open source
solutions to be compliant with typical national laws
encouraging open solutions with source code accessible and
shareable among several public administrations. Moreover,
there should be an active community handling and supporting
the product.

http://www.disit.org/smartcityrdfbenchmark
https://www.w3.org/wiki/RdfStoreBenchmarking

III. EVALUATION METHODOLOGY

The Smart City RDF Assessment Model and Benchmark
evaluation methodology is carried out within two phases.

In the first phase the Smart City RDF Assessment Model is
applied. It consists in an analysis of some general features
according to the requirements provided in Section II, and more
particularly to verify if the RDF/graph store provides support
for: SPARQL v.1.1, inference, triples or quadruples, etc.

In the second phase, the Smart City RDF Benchmark is
applied. It is based on performance tests grounded on a set of
SPARQL queries designed by considering all the aspects, and
including spatial and full text searches (in many cases the
SPARQL queries have been designed by adopting the specific
constructs related to the different stores). The execution of the
Benchmark consists in assessing the performance on the
identified queries on three datasets with growing size
expanding temporal horizon (1 month, 2 months and 3 months
of cumulated real-time data).

A. Smart City RDF Assessment Model

As to the Smart City RDF assessment model, the features
considered to analyse the RDF stores are the following:

 SPARQL version supported being 1.0 or 1.1;

 inference type supported as full materialization of triples
at load time or materialization at query time, and the
inference profiles supported (e.g., RDFS, RDFS+, OWL,
OWL2, OWL2-DL, …);

 If the store is a triple or quadruple store, check whether it
stores only the subject predicate object or it can have also
a context URI;

 How the triples/quadruples are physically stored, namely
by using a custom indexing or an RDBMS or other
external service (e.g., HBase, Cassandra);

 If the store supports Clustering where replicated nodes are
used for high availability and fault tolerant solution;

 If the store supports Scale Out Clustering where data are
allocated on multiple nodes, while no node contains all
the data (index sharing);

 If the store supports Spatial search at Basic level
(meaning that it is able to index and retrieve only
geolocated points) or at Advanced level (meaning that it is
able to index complex shapes, for example polylines);

 If the store supports full text search, providing the ability
to search using keywords;

 If the store allows the association of triple/quadruples
with a temporal validity contexts, thus allowing to easily
filter triples by means of temporal constraints;

 Size of stores managed as the largest number of
triples/quadruples reported to be managed by the RDF
store in the literature;

 License under which the RDF store is available, being
either open source or commercial;

 Development language (e.g., Java, C);

 If the project is still an active project, date of last activity,
date of last release;

Detailed performance testing should be performed on stores
that support minimum set of requirements and in particular
providing at least support for:

TABLE I. QUERIES OF SMART CITY RDF BENCHMARK: QUERY NAME,
DESCRIPTION AND IF THE QUERY EXPLOIT INFERENCE OR NOT.

Query Description
infer

ence

Geo-

spat.

Full-

text

Find-

address

given the latitude and longitude

position it retrieves the nearest address

within 100m.

No Yes No

Municipaliti

es-florence

It retrieves the list of municipalities

within the province of Florence.

No No No

Bus-lines It retrieves the list of bus lines.
No No No

Bus-stops-

of-line

given the bus line, it retrieves the

complete bus stop list of the line.

No No No

Lines-of-

bus-stop

given a bus stop, it retrieves the lines

going past that bus stop.

No No No

Bus-stop-

latlng

given a position and a radius, it finds

the bus stops that are within the radius.

No Yes No

Bus-stop-

florence

It retrieves all the bus stops in the

municipality of Florence.

No No No

Bus-stop-

forecast

given a bus stop, it finds the next

forecasts for the lines going past that

bus stop.

No No No

AVM-

distribution

It retrieves for each day the count of

the received AVM records.

No No No

Service-

florence

It retrieves all the services in the

municipality of Florence.

Yes No No

Service-Acc-

Clt-Trs-

W&F-

florence

It retrieves all the services in the

Accommodation, Cultural Activity,

TourismService and Wine&Food

classes within the municipality of

Florence.

Yes No No

Service-Htl-

B&B-

florence

It retrieves all the services in the Hotel

and Bed&Breakfast classes within the

municipality of Florence.

Yes No No

Service-

latlng

It retrieves the services within a radius

from a latitude, longitude position.

Yes Yes No

Service-Acc-

Clt-Trs-

W&F-latlng

It retrieves all the services in the

Accommodation, Cultural Activity,

TourismService and Wine&Food

classes within a radius from a position.

Yes Yes No

Service-Htl-

B&B-latlng

It retrieves all the services in the Hotel

and Bed&Breakfast classes within a

radius from a given position.

Yes Yes No

Full-text It retrieves anything matching a

keyword

No No Yes

Service-text-

florence

It retrieves all the services in the

municipality of Florence matching a

keyword.

Yes No Yes

Service-text-

latlng

It retrieves all the services matching a

keyword given a position and a radius.

Yes Yes Yes

Sensor-

florence

It retrieves all the sensors within the

municipality of Florence.

No No No

Sensor-

latlng

It retrieves all the sensors within a

radius from a position.

No Yes No

Sensor-

status

It retrieves the latest information

associated with a sensor.

No No No

Sensor-

distribution

It finds for each day the count of the

received sensor status updates.

No No No

Parking-

status

It retrieves the latest information

associated with a parking lot.

No No No

Parking-

distribution

It retrieves for each day the count of

the acquired parking status records.

No No No

Weather-

florence

It retrieves the latest forecast available

for the municipality of Florence.

No No No

Weather-

distribution

It retrieves for each day the count of

the acquired weather forecasts.

No No No

 SPARQL 1.1 as it provides aggregation functions (group
by, count) and other features that were missing in 1.0;

 RDFS inference at load time or query time;

 Quadruples, so that correct metadata can be associated
with datasets;

 basic spatial search to allow searching services via
position;

 full text search to be able to integrate keyword search
with semantic search;

 “Big stores” management in some how: that is the
capability of managing large data store with some
technique, scaling for instance.

If the RDF store supports additional features, they are
positively considered in the context.

B. Smart City RDF Benchmark

In this section, the queries at the basis of the Smart City
RDF Benchmark are presented. The queries performed over the
datasets are mainly the ones behind a real Smart City
application and the API adopted in Km4City and used in
http://servicemap.km4city.org. ServiceMap is an accessible
smart city web application for developers to develop
informative totems, while the Km4City API is a set of services
accessible from Smart City mobile app delivered on all the
available platforms: Apple Store, Google Play, and Windows
Market.

Noteworthy is that the SPARQL recommendation does not
cover the geo-spatial queries, nor the full-text queries.
Therefore, in order to support those features, RDF store
builders/vendors implemented these features by using their
own specific syntax. Due to this reason, for some queries there
is not a unique formulation and the query has to be adapted for
each RDF store under test (they can be accessed from the web
page of the proposed benchmark
http://www.disit.org/smartcityrdfbenchmark). In Table I, the
semantic queries at the basis of the Smart City RDF Benchmark
are described and what is highlighted is whether the single
query involves in its definition according to the ontology the
exploitation of: inference

3
, geo-spatial and/or full-text aspects.

For example, the query to retrieve the last weather forecast
for the municipality of Florence is the following:

PREFIX …

SELECT ?day ?desc ?minTemp ?maxTemp ?time ?wPred

WHERE {

 {

 SELECT DISTINCT ?wRep ?time WHERE {

 ?munic rdf:type km4c:Municipality;

 foaf:name "FIRENZE";

 km4c:hasWeatherReport ?wRep.

 ?wRep km4c:updateTime/schema:value ?time.

 } ORDER BY DESC(?time) LIMIT 1

 }

 ?wRep km4c:hasPrediction ?wPred.

 ?wPred dcterms:description ?desc;

 km4c:day ?day;

 km4c:hour "giorno"^^xsd:string.

3 https://www.w3.org/TandS/QL/QL98/pp/queryservice.html

 OPTIONAL { ?wPred km4c:minTemp ?minTemp.}

 OPTIONAL { ?wPred km4c:maxTemp ?maxTemp.}

}

It uses a sub-query to find the last report received related to
the municipality and from this the prediction associated is
selected and the associated information is returned.

A query using full text search and geospatial proximity
search (using the syntax of virtuoso) is:

PREFIX …

SELECT DISTINCT ?ser ?elong ?elat ?sTypeIta WHERE {

 ?ser ?p ?txt.

 ?txt bif:contains "casa".

 {

 ?ser km4c:hasAccess ?entry.

 ?entry geo:lat ?elat;

 geo:long ?elong;

 geo:geometry ?geo.

 filter(bif:st_intersects(?geo,

 bif:st_point(11.26193046,43.77072194), 0.5))

 }UNION{

 ?ser geo:lat ?elat;

 geo:long ?elong;

 geo:geometry ?geo.

 filter(bif:st_intersects(?geo,

 bif:st_point(11.26193046,43.77072194), 0.5))

 }

 ?ser a ?sType.

 FILTER(?sType!=km4c:RegularService &&

?sType!=km4c:Service)

 ?sType rdfs:label ?sTypeIta.

 FILTER(LANG(?sTypeIta)="it")

}

As it occurs with all the RDF benchmarks, the SPARQL
queries are specifically tuned for a model. In this case, queries
have been designed for the model described in the next section.
The complete formalization of the queries, as well as the
dataset dumps adopted in the tests reported hereafter, are
available at
http://www.disit.org/smartcityrdfbenchmark

TABLE II. DATASETS CHARACTERIZATION FOR SMART CITY

BENCHMARK.

Type

1 month 2 months 3 months

Triples % triples % triples %

AVM 8.4M 19% 18M 33% 28M 43.1%

Parking 413k 0.9% 976k 1.8% 1.4M 2.1%

Sensors 900k 2% 1.7M 3.1% 2.2M 3.3%

Weather forecast 15k 0% 23k 0% 23k 0%

Total dynamic 9.7M 22% 21M 38% 32.5M 48.5%

Road graph 33.5M 75% 33.5M 60.3% 33.5M 50%

Services 681k 1.5% 681k 1.2% 681k 1%

Other static 286k 0.6% 286k 0.5% 286k 0.4%

Total static 34.5M 78% 34.5M 62% 34.5M 51.4%

Total 44.2M 100% 55.6M 100% 67.5M 100%

http://servicemap.km4city.org/
http://www.disit.org/smartcityrdfbenchmark
https://www.w3.org/TandS/QL/QL98/pp/queryservice.html
http://www.disit.org/smartcityrdfbenchmark

C. Datasets of the Smart City RDF Benchmark

The data used for the evaluation are based on the KM4City
knowledge base [3]. Some of data are static (or quasi-static)
data such as (i) the road graph modelling the roads, the public
administrations; etc. (ii) the “services” available within the city
(e.g., restaurants, hotels, cycle paths, …) and associated with
the road graph and organized in an hierarchy; (iii) the bus
stops, bus lines of the local transportation, (iv) the road sensors
available on the roads. Moreover, the Km4City model provides
a number of hierarchies and structures, and huge data with
geolocations in which the inferential aspects of SPARQL
queries can be profitably tested. Three different datasets have
been adopted for the assessment. They share the same „static‟
information and only differ for the dynamic part, having one,
two or three months of historical dynamic data, respectively. In
Table II, the numbers of triples for the different parts of the
km4city knowledge base are reported. As you can see, the
dynamic parts grow from 22% to 48.5% mostly derived from
the AVM (automatic vehicle monitoring, of the ITS) that it is
generated out of the data coming for only three bus lines, while
the static part is mostly based on structural data like road graph
with 34.5M triples, in all the cases.

D. Real-time data set context description

Since in a real context the dynamic data change regularly
(e.g., weather status, AVM, sensors and parking), the behaviour

of the RDF stores should be analysed also under dynamic
conditions like queries, while other processes are performing
update/upload. Moreover, in order to test a more realistic case
the queries retrieving the last value of dynamic data (e.g.,
sensor last value) could be arranged by using a model including
triples stating which is the latest obtained value . In this case, a
SPARQL query should be used to remove the association with
the latest received value and insert the new triple associated
with the new reading of values.

To analyse performance on dynamic update conditions a
specific test case has been set up (e.g., traffic, IOT). In order to
establish replicable conditions, a tool has been used to regularly
generate the status of the 430 sensors using the NTriples format
(stored in a specific context) as standard SPARQL 1.1 Graph
Store HTTP Protocol. They are produced and singularly loaded
into the store, together with their association with the latest
value to the corresponding sensor. Each submission stores 19
triples for each sensor and thus 8056 new triples are stored
about every 30 seconds. In this case, the 3 months dataset of
Table II has been used. Together with the process of
upload/update, the server runs at the same time all the queries
of the benchmark to assess if updating the triples while
querying, either influences or not the query time.

TABLE III. RDF STORES‟ FEATURES COMPARISON
where: OS=Open Source, Cm=Commercial, H=Horizontal cluster, V=Vertical cluster

RDF Store

Features

S
P

A
R

Q
L

v.

In
fe

re
n

ce

3
/4

-u
p
le

S
p
a
ti

a
l

 s
ea

rc
h

F
u

ll
-t

ex
t

 s
ea

rc
h

S
to

ra
g
e

T
em

p
o
ra

l
 s

ea
rc

h

S
iz

e
(m

il
li

o
n

/b
il

li
o
n

tr

ip
le

s)

L
ic

en
se

D
ev

.
L

a
n

g
u

a
g
e

C
lu

st
er

 s
u

p
p
o
rt

A
ct

iv
e

p
ro

je
ct

Virtuoso 7.2.4 OS 1.1 RDFS+ 4 Adv Y RDBMS N 50BT OS C N Y

Virtuoso 7.2.4 Comm 1.1 RDFS+ 4 Adv Y RDBMS N 50BT Cm C H Y

Graph DB SE 7.0.1 1.1 OWL2RL 4 Bas Y custom N 10BT Cm Java H Y

Stardog 4 1.1 OWL2 4 Adv Y custom N 10BT Cm Java H Y

Oracle 12c 1.1
RDFS,
OWL2

4 Adv Y custom N 1TT Cm C/Java H Y

Apache Jena-Fuseki 1.1
RDFS

OWL-Lite
3 Bas Y custom (TDB) N 1.7BT OS Java N Y

Apache Jena-Fuseki 1.1 No 4 Bas Y custom (TDB) N 1.7BT OS Java N Y

Blazegraph 2.1.2 1.1 RDFS+ 3 Bas Y custom N 50BT OS Java V&H Y

Blazegraph 2.1.2 1.1 No 4 Bas Y custom N 50BT OS Java V&H Y

CumulusRDF 1.1 No 3 No N Cassandra 1.2 N 120MT OS Java V (Y)

Strabon 1.1 No 3 Adv N RDBMS Y 500MT OS Java N (Y)

4store 1.1 No 4 No N custom N 15BT OS C V N

h2rdf+ 1.0 No 3 No N HBase N 2.7BT OS Java H&V N

[1]

TABLE IV. RDF STORES PERFORMANCE OF DATA LOADING,
“NA” MEANS THAT THE INFORMATION IS NOT AVAILABLE (IMPOSSIBLE TO MEASURE)

 Triples load time Stated triples Stored triples Size (of which: full text index size, spatial index size)

GraphDB – 1 month 1h 8m 44,274,756 84,425,185 8.5GB (299MB, 66MB)

GraphDB – 2 months 1h 48m 55,617,333 104,041,312 10GB (379MB, 67MB)

GraphDB – 3 months 2h 10m 67,082,202 124,015,329 13GB (459MB, 70MB)

Virtuoso – 1 month 16m 44,274,820 46,259,439 2.2GB (NA, NA)

Virtuoso – 2 months 21m 55,619,789 57,669,629 2.8GB (NA, NA)

Virtuoso – 3 months 31m 67,084,661 69,200,459 3.5GB (NA,NA)

Stardog – 1 month 1h 19m 44,273,368 44,273,368 4.8GB (341MB, 131MB)

Stardog – 2 months 1h 24m 55,615,945 55,615,945 5GB (318MB, 129MB)

Stardog - 3 months 2h 58m 67,080,814 67,080,814 6.2GB (493MB, 138MB)

Oracle – 1 month 6h 18m 44,270,460 78,744,647 25GB (NA, NA)

IV. COMPARING RDF STORES WITH SMART CITY RDF

ASSESSMENT MODEL

In this section, the RDF stores under assessment are
compared according to the feature model which has been
identified and discussed in Section III.A. The comparison is
carried out with the aim of identifying the stores that are better
ranked to be used on smart city applications in terms of
provided features.

In Table III, the features supported by the different RDF
stores under evaluation are summarized and the values
considered as minimum requirements are highlighted. A
description of the RDF stores considered in the assessment and
reported in Table III is given below.

Virtuoso 7.2.4 [18], it is mostly known because it is the
RDF query engine behind dbpedia.org. It is a SPARQL 1.1
quadruple store developed in C available both via open source
and commercial license. The open source version mainly
misses the clustering feature. Inference is not materialized at
load/indexing time, while query rewrite is performed to support
RDFS+ inference. It is backed by the Virtuoso RDBMS and
thus SPARQL queries are translated to SQL for that RDBMS.
It supports advanced spatial indexing and supports full text
search. The community behind virtuoso is headed by OpenLink
Software ltd and it is quite active.

GraphDB SE 7.0.1 (former OWLIM store)
4

 is a
commercial solution providing a SPARQL 1.1 endpoint
supporting triple/quadruple stores with spatial indexing of
geographic coordinates and full text indexing based on Lucene,
Apache. It supports inference at load/indexing time with
different rule sets (RDFS, OWL2RL, etc.), and such rule sets
can be selected by the user. It has been told to support up to 10
billion of triples on a single node. The Enterprise edition allows
horizontal scaling with a master node forwarding the
insert/update/delete operations to slave nodes. The solution is
implemented in Java using OpenRDF Sesame. The project is
still active and it is managed by Ontotext.

4 http://ontotext.com/products/ontotext-graphdb/

Blazegraph (ex BigData)
5

 is an open source project,
providing also a commercial license. It supports triple and
quadruple stores. With RDFS+ inference (at load time) it is
available only on triple stores. It has a full-text indexing
support, and there is a basic geospatial indexing, too. It
provides both a horizontal and vertical scaling solution, thus
allowing an index to be shared on multiple nodes. A single
computer can manage up to 50 billion triples. The project is
managed by Systap and it is still active.

CumulusRDF [19] is an open source project based on
OpenRDF Sesame using Apache Cassandra 1.2 as NoSQL
storage layer. It does not support inference and can store only
triples. Since it is based on Cassandra, it supports vertical
scaling for storage of the indexes on the nodes in the cluster,
while only one node is used to perform queries.

Stardog 4.1.1
6

 is a commercial RDF quadruple store
developed by Clark&Parsia (developer of the well-known
OWL reasoner Pellet). It supports SPARQL 1.1 and OWL2
inference at query time, full-text indexing and search, and
spatial indexing and search. It allows horizontal scaling, and it
is a quite active project. Stardog may support 10 billion triples
store on single node while the community version manages up
to 25 million triples.

Strabon [20] is an open source SPARQL 1.1 store
developed to support both spatial and temporal search [Bereta
et al., 2013] . It is based on PostGIS extension of Postgres
RDBMS; it does not support inference, nor full-text search. It
only provides support for storing triples (the context URI
associated with the triple is used for temporal linking). No
clustering solution is available.

4store
7
 is an open source quad RDF store developed in C

supporting a clustering solution which stores the quads on
different nodes (max 32). It does not support any inference, any
full-text search, nor geospatial search. The activity seems to be
moved to 5store, which is a corresponding commercial version.

5 https://wiki.blazegraph.com
6 http://stardog.com/
7 http://4store.org/

http://ontotext.com/products/ontotext-graphdb/
https://wiki.blazegraph.com/
http://stardog.com/
http://4store.org/

h2rdf+ [21] is an open source triple store based on HBase
and Hadoop platform. It supports only the SPARQL 1.0
specification, and does not support any inference, any full-text
indexing, nor geo-spatial search. Being based on HBase and
Hadoop, it provides horizontal and vertical scaling.

Apache Jena-Fuseki 2.3.1
8
is an open source SPARQL 1.1

engine integrated within the java based Apache Jena
framework. Jena provides the quads RDF storage layer which
could be native on file system (TDB), based on a SQL DBMS
(SDB) or in memory. Jena provides also the inference support
(supporting RDFS, OWL-Lite or using custom rules) but it
works only on triple stores and not on quadruples stores,
moreover it supports full-text and basic spatial indexing based
on Lucene or Solr. No clustering solution has been reported.

Oracle Database 12c, the well-known Oracle database
solution provides support for RDF graphs, full-text & spatial
indexing/search but it does not support the standard SPARQL
HTTP query protocol, it can be integrated by using the open
source Jena framework with Fuseki or Joseki tools. Moreover

8 https://jena.apache.org

Oracle solution provides inference (RDFS, OWL2RL and
custom rules).

As a conclusion of this section, it is self-evident from Table
III, that the RDF store solutions supporting all the minimum
requirements are Virtuoso 7.2.4 open source and commercial
edition, GraphDB Standard Edition 7.2, Stardog 4 and Oracle
12c. Therefore, only these RDF stores have been assessed in
term of performance, as reported in Section V.

V. ASSESSING RDF STORES WITH SMART CITY RDF

BENCHMARK

The performance evaluation has been carried out by
considering: (i) the loading/indexing time for knowledge base
initialization, (ii) the execution time without any update for
spatial and non-spatial queries, and (iii) query execution time
while the sensors data were regularly updated. The
performance has been evaluated using a server Ubuntu 14.04
with 8GB RAM, CPU, Intel Xeon E5-2680@2.8GHz with 20
logical processors, HD at 15.000 RPM. Table IV reports the
results for the loading/indexing time concerning the different
previously discussed datasets, respectively. It should remarked
that Virtuoso is the fastest, GraphDB and Stardog perform

TABLE V. RDF STORES PERFORMANCE OF NON-SPATIAL QUERIES (BEST PERFORMANCES IN BOLD)

Query

GraphDB Virtuoso StarDog Oracle

N
u

m
b
er

 o
f

re
su

lt
s

1
 m

o
n

th
 (

m
s)

2
 m

o
n

th
s

(m
s)

3
 m

o
n

th
s

(m
s)

1
 m

o
n

th
 (

m
s)

2
 m

o
n

th
s

(m
s)

3
 m

o
n

th
s

(m
s)

1
 m

o
n

th
 (

m
s)

2
 m

o
n

th
s

(m
s)

3
 m

o
n

th
s

(m
s)

1
 m

o
n

th
 (

m
s)

Municipalities-florence 7 10 121 8 15 9 127 173 129 2,391 46

Bus-lines 17 18 91 6 7 6 125 156 141 2,325 85

Bus-stops-of-line 50 26 28 65 68 62 194 211 172 36661 135 (max)

Lines-of-bus-stop 7 12 18 21 23 20 210 235 210 6457 11 (max)

Bus-stop-florence 100 113 126 374 291 281 216 258 201 34071 1108

Bus-stop-forecast 96 413 444 632 2065 2008 2028 3072 5084 259577 15

AVM-distribution 914 1893 2767 26 58 70 1442 2417 3772 26844 89 (max)

Service-florence 7106 7841 10150 2170 2135 2158 3689 3667 3514 >10min 3259

Service-Acc-Clt-Trs-W&F-

florence
8,158 8274 8318 2386 2917 2930 4118 4110 6416 >10min 1179

Service-Htl-B&B-florence 3311 3296 4,035 537 845 766 3640 3782 3448 >10min 234

Full-text 314 750 618 64 96 67 166202 214344 215937 136243 1389 (max)

Service-text-florence 286842 295057 284573 1981 3621 5661 165860 202919 209364 126833 51 (max)

Sensor-florence 21 48 46 82 93 84 785 615 483 7349 62

Sensor-status 598 1101 1560 56 146 163 295 384 392 173612 1

Sensor-distribution 939 1867 2665 174 328 341 672 1060 1,346 178272 78 (max)

Parking-status 83 188 309 72 87 100 1,388 1339 1053 40823 1

Parking-distribution 455 1096 1628 61 131 203 223 373 451 30444 83 (max)

Weather-florence 9 19 93 46 60 71 181 182 149 5047 5

Weather-distribution 12 23 19 7 18 11 126 141 128 2342 38 (max)

https://jena.apache.org/

similarly (about 5 times slower than Virtuoso) and Oracle is the
slowest being about twenty three times slower than Virtuoso.
Due to the performance of Oracle 12c in loading, the decision
was to test only the 1 month data set case. On the other hand,
GraphDB and Oracle perform inference at load time while
Virtuoso and Stardog at query time, under user request. For this
reason, the number of triples indexed by GraphDB is typically
80% bigger than those of Virtuoso. As to Virtuoso, the slight
increment of triples stored/indexed with respect to the ones
provided to the RDF store (2.1M for the 3 months case) is due
the transformation of the geo:lat and geo:long triples in a
geo:geometry with POINT() to enable the geo-spatial indexing.
While in the same case, as to GraphDB, the increment of about
57M of triples is due to the materialization of triples via
inference at the indexing/loading time.

Tables V and VI focus on the results for the query
execution time concerning GraphDB, Virtuoso, Stardog and
Oracle and related to the different time horizons of one, two
and three months, respectively. Table V reports the
performances for non-spatial queries and Table VI for spatial
queries. The queries have been tested performing a pseudo-
random sequence of 1000 queries repeated two times with
some pseudo-random arguments in order to reduce the caching
effect. The sequence of performed queries has been the same
for each test execution, so as to test the same sequence on
different systems. The table reports the maximum number of
results obtained for each type of query, when the number of
results depends on the parameter randomly chosen (e.g., lines
of a bus stop) or from the different dataset used (e.g., the AVM,
sensor, parking and weather distribution queries). When
considering the poor performance by Oracle 12c in loading and
also in the query times, it was decided to test only the 1 month

TABLE VI. RDF STORES PERFORMANCE OF SPATIAL QUERIES (THE BEST PERFORMANCES IN BOLD)

Query

GraphDB Virtuoso (intersect) Virtuoso (distance) Stardog

Number of
results 1

 m
o

n
th

(m

s)

2
 m

o
n

th
s

(m
s)

3
m

o
n

th
s(

m
s)

1
 m

o
n

th
(m

s)

2
 m

o
n

th
s(

m
s)

3
m

o
n

th
s(

m
s)

1
 m

o
n

th
(m

s)

2
 m

o
n

th
s(

m
s)

3
m

o
n

th
s(

m
s)

1
 m

o
n

th
(m

s)

2
 m

o
n

th
s(

m
s)

3
m

o
n

th
s(

m
s)

Find-address 47 180 218 219 160 143 5762 5965 5776 2495 2848 2367 1

Bus-stop-latlng(100m) 8 8 9 33 63 63 28 31 28 2105 1791 1885 1 (max)

Bus-stop-latlng(500m) 33 52 48 147 182 166 34 41 33 1781 1853 1810 20

Bus-stop-latlng(1km) 82 135 155 76 -- 265 42 43 47 2095 2116 2334 93 (max)

Bus-stop-latlng(5km) 463 669 782 -- -- -- 201 201 205 2883 3245 2815 1003 (max)

Service-latlng(100m) 691 1111 324 2788 2117 915 582 761 754 3970 4581 5123 41 (max)

Service-latlng(500m) 1131 1256 1212 627 513 549 401 421 391 4110 4303 4467 784 (max)

Service-latlng(2km) 6087 6550 6548 1377 1688 -- 1062 1167 1079 5832 6929 6204 3718 (max)

Service-latlng(5km) 11192 13069 12712 3054 -- -- 1900 1996 1912 6585 7494 6551 6666 (max)

Service-Acc-Clt-Trs-W&F-
latlng(100m) 74 125 87 880 921 773 1260 1209 1073 5978 6076 4986 37 (max)

Service-Acc-Clt-Trs-W&F-
latlng(500m) 948 1091 1602 2159 1709 1698 1159 1187 1232 6130 6738 5933 650 (max)

Service-Acc-Clt-Trs-W&F-
latlng(2km) 4731 5644 7999 -- -- -- 1706 1807 1619 6451 8669 7353 2224 (max)

Service-Acc-Clt-Trs-W&F-
latlng(5km) 7983 9610 9974 -- -- -- 1785 1938 1813 8024 9669 7646 3102 (max)

Service-Htl-B&B-latlng(100m) 29 38 29 420 466 392 541 563 631 3843 3985 3886 7 (max)

Service-Htl-B&B-latlng(500m) 293 371 393 1119 724 1032 555 666 544 4055 4605 4424 151 (max)

Service-Htl-B&B-latlng(2km) 1390 1729 2020 -- -- -- 617 683 681 5664 6573 6278 488

Service-Htl-B&B-latlng(5km) 2421 3144 8281 -- -- -- 673 744 682 6516 7009 7053 611(max)

Service-text-latlng(500m) 204936 236937 256328 433 148 324 242 64 73 >7min >7min >7min 21 (max)

Sensor-latlng(100m) 10 12 13 -- -- 63 20 27 30 1842 1639 1604 0

Sensor-latlng(500m) 41 62 198 118 73 163 18 23 26 1788 2069 1923 4

Sensor-latlng(2km) 229 335 444 -- -- -- 22 29 29 2372 2798 2670 29

Sensor-latlng(5km) 514 721 888 -- -- -- 23 30 38 2961 2947 2837 56

case. Moreover, a bug in the Oracle plugin for Apache Jena did
not allow to perform spatial queries via the HTTP protocol and
this is the reason why Oracle 12c does not appear in Table VI.

If observing the query results (see Table V), when no
spatial and full text search and inference are involved, the
performances of Virtuoso and GraphDB are comparable, in
some cases GraphDB is even better ranked. When inference is
needed (e.g., in the test cases Service-florence, Service-Acc-Clt-
Trs-W&F-florence, Service-Htl-B&B-florence), as to Virtuoso
the inference had to be enabled on the single constraint
involving a general class (e.g., all services in the
Accommodation class). While if the inference is enabled,
generally on the query, the internal automated query rewrite
takes a longer time (may be related to the size of the exploited
ontology). For example, for query Service-Acc-Clt-Trs-W&F-
florence the time grows from an average of 2.9s to an average
of 19.6s (on the 3 months dataset). In those cases, the GraphDB
results are better ranked. Stardog generally is the slowest on all
the queries.

When considering the spatial indexing (see Table VI) in
Virtuoso, some mistakes have been detected using the
st_intersection function. In some cases, Virtuoso returned an
error, in other cases it provided a smaller number of results
than the correct number; Virtuoso could provide different
results for the same query for the three different datasets, even if

they do not differ for the part considered in the query. On the
other hand, in Virtuoso, if the st_distance function is used, all
the obtained results have been verified to be correct, apart from
few cases on the border (due to the numerical computation in
measuring distances). The usage of the distance function for
Virtuoso is a good solution in most cases, while the query
optimizer seems to avoid the exploitation of the spatial index.
This fact may be deduced out of a comparison among the
results of the formalization of query Find-address: in two cases
by using: (i) st_distance function it takes about 5.7s, while (ii)
with st_intersect function it takes about 0.14s.

TABLE VII. SENSOR DATA UPLOAD PERFORMANCE

 GraphDB Virtuoso Stardog

total mean time (ms) 4135.59 1290.05 42498.80

mean upload time (ms) 2105.06 893.52 41526.02

mean update time (ms) 2030.53 396.53 972.78

minimum total time (ms) 1810.00 480.00 6050.00

maximum total time (ms) 37294.00 20678.00 791083.00

std. dev of total time (ms) 2197.81 2082.30 76121.02

TABLE VIII. STORE PERFORMANCE IN PRESENCE AND ABSENCE OF UPDATES

DURING BENCHMARK

RDF

store

MNQPH

no updates during updates

Loss in

performance

GraphDB 2117.00 1799.93 14.97%

Virtuoso 4584.16 4362.21 4.84%

Stardog 1620.24 876.63 45.89%

TABLE IX. PERFORMANCE IN ACCESSING TO THE LAST VALUE OF SENSORS

RDF

store

Mean Time to Sensor Status access, Time in ms

Case 1

(no update)

Case 2

(no update)

Case 3

(update)

GraphDB 1561 31 334

Virtuoso 163 46 174

Stardog 393 208 554

Another aspect to be considered is the mixing of spatial

query with text search query (for example, in query Service-
text-latlng(500m)). With GraphDB and also with Stardog, we
obtained a higher execution time, hitting in some cases the
timeout. In this case where spatial and text are combined for
Virtuoso, the intersect function returned an error, while the
distance function performed very well.

 Regarding the analytic queries (for example: Weather-
distribution, AVM-distribution) which count the daily number
of records of the weather forecasts, bus, sensor data, parking
status for the three datasets, both solutions have provided
acceptable execution time (less than 5s). In this case, Virtuoso
is better ranked with less than 0.5s of execution time.
Moreover, Virtuoso presents a less growing factor with respect
to GraphDB.

A. Assessing query execution time under update/load

During the test, the time to upload/update new triples for all
the sensors and mark them as the „latest value’ has been
recorded and reported in Table VII. Therefore, the minimum,
maximum, average time and the standard deviation of the
upload and update time are reported for each RDF store. From
the results, it is clear that Virtuoso turned out to be the
smartest, since it performed the update of the 430 sensors
within 20s, while GraphDB did the same in 37s, and StarDog
had an average of 42s and with a maximum time in just one
case of 13 minutes to upload new triples for all the 430 sensors.
As to Oracle with Apache Jena-Fuseki it was not possible to
send the triples for the 430 sensors through Fuseki, since the
communication was hanging; while when sending the data for
only 10 sensors the average time was about 16s with a
maximum of 2.5 min.

In order to evaluate the impact of the update/upload action
on query performance, the mean number of query per hour
(MNQPH) has been computed for each RDF store in presence
or absence of ongoing upload/updates. MNQPH has been
computed as the ratio of total time needed to run a large
number of queries of the benchmark and the number of queries.
In particular, some of the queries such as: “Service-text-
latlng(500m)”, “Service-text-florence” and “Full-text” have
been removed because they typically generate on GraphDB and
StarDog many timeouts, that could create too noise on
assessing query performance during update/load activity.

The results are reported in Table VIII, where you can see
that the MNQPH is decreased in all the cases, shifting from the
value registered with RDF store under no updates up to the
value registered during the store updates. The decrease in
performance is due to the fact that the query has to wait for the

store unlock. Among the RDF stores considered, Virtuoso
presented the lower reduction in performance. Moreover, as
stated above, the benchmark occurred in some time outs with to
GraphDB and StarDog stores in the absence of updates;
typically 46 and 96 times for the whole benchmark. The
number of timeouts is more than twice in presence of updates.

Table IX reports the mean time to get access to the latest
value of a sensor series (the Sensor-status query) in three cases:
(1) using the order by clause and without concurrent updates,
(2) using the “latest value” triple without concurrent updates
and (3) using the latest value triple during concurrent updates.
For all the stores we can see that when avoiding the sort and
using the “latest value”, the time needed to access is reduced.
However, performing a concurrent update increases access time
of a significant amount (i.e., more than 10 times for GraphDB,
3.8 times for Virtuoso and 2.7 for StarDog). According to the
access mean time values, Virtuoso could perform better than
the others in all the cases.

VI. CONCLUSIONS

The usage of RDF stores to store smart city data is
becoming of wide interest for several applications. In this paper
we have proposed a Smart City RDF Assessment Model for a
comparative study about the state of the art on RDF stores
according to their main features and in particular on the
SPARQL aspects/features. In addition, the Smart City RDF
Benchmark has been proposed. The benchmark is based on (i)
some datasets of triples (that are grounded on Km4City
ontological model) accessible from
http://www.disit.org/smartcityrdfbenchmark, it can be used
only for benchmarking purpose; (ii) a set of SPARQL queries
declined for different SPARQL constructs. The benchmark has
been defined for smart city services to compare results which
can be obtained by using different RDF Stores.

The comparison addressed a number of well-known RDF
stores such as Virtuoso, GraphDB, StarDog, and Oracle for the
performance aspects. As a general consideration about
performance, it should be noted that Virtuoso performs better
in presence of less selective queries, thus providing a higher
number of results. On the contrary, GraphDB performs better
when specific results are searched, thus when a smaller number
of results are requested.

ACKNOWLEDGEMENT

The authors would like to say thanks to ONTOTEXT for
granting us the access to a trial version of their RDF store. This
works has been developed in the framework of Km4City
activity for RESOLUTE H2020, and for REPLICATE H2020
(both are European Commission funded International Projects)
and for Sii-Mobility Smart City National project
(http://www.sii-mobility.org).

REFERENCES

[1] Mulligan, C.E.A.; Olsson, M., "Architectural implications of smart city
business models: an evolutionary perspective," Com. Magazine, IEEE,
vol.51, no.6, pp.80,85, June 2013

[2] Welington M. da Silva, Alexandre Alvaro, Gustavo H. R. P. Tomas,
Ricardo A. Afonso, Kelvin L. Dias, and Vinicius C. Garcia. 2013. Smart
cities software architectures: a survey. In Proc. of the 28th Annual ACM

Symp.on Applied Computing (SAC '13). ACM, New York, NY, USA,
1722-1727.

[3] P. Bellini, M. Benigni, R. Billero, P. Nesi, N. Rauch, “Km4City
Ontology Bulding vs Data Harvesting and Cleaning for Smart-city
Services”, International Journal of Visual Language and Computing,
Elsevier, 2014

[4] Anthopoulos, L.; Fitsilis, P., "Exploring architectural and organizational
features in smart cities," in Advanced Com. Technology (ICACT), 16th
Int. Conf. on, vol., no., pp.190-195, 16-19 Feb. 2014.

[5] Zaheer Khan, Ashiq Anjum, and Saad Liaquat Kiani. 2013. Cloud Based
Big Data Analytics for Smart Future Cities. Proc. of the IEEE/ACM 6th
Int.Conf. on Utility and Cloud Computing (UCC '13). Washington, 381-
386.

[6] Zaheer Khan, Ashiq Anjum, and Saad Liaquat Kiani. 2013. Cloud Based
Big Data Analytics for Smart Future Cities. In Proceedings of the 2013
IEEE/ACM 6th International Conference on Utility and Cloud
Computing (UCC '13). IEEE Computer Society, Washington, DC, USA,
381-386.

[7] Y. Guo, Z. Pan, and J. Heflin. “Lubm: A benchmark for owl knowledge
base systems”. J. Web Semantics, 3(2-3):158–182, 2005.

[8] C. Bizer, A. Schultz. “The Berlin SPARQL Benchmark”. International
Journal on Semantic Web & Information Systems, Vol. 5, Issue 2, Pages
1-24, 2009

[9] G. Garbis, K. Kyzirakos, M. Koubarakis. “Geographica: A Benchmark
for Geospatial RDF Stores”. In the 12th Int. Semantic Web Conf.
(ISWC). Australia, Oct. 21-25, 2013

[10] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. “Apples and
oranges: a comparison of RDF benchmarks and real RDF datasets”. In
Proc. of the 2011 ACM SIGMOD Int. Conf. on Manag. of data
(SIGMOD '11). ACM, New York, NY, USA, 145-156, 2011

[11] Schmidt, Michael, et al. "SP^ 2Bench: a SPARQL performance
benchmark." Data Engineering, 2009. ICDE'09. IEEE 25th International
Conference on. IEEE, 2009.

[12] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus.
“C-sparql: Sparql for continuous querying”. In Proc. of WWW, pages
1061–1062. ACM, 2009.

[13] J.-P. Calbimonte, O. Corcho, and A. J. G. Gray. “Enabling ontology-
based access to streaming data sources” In ISWC, pp. 96–111, 2010

[14] Y. Zhang, M.-D. Pham, O. Corcho and J.-P. Calbimonte. “SRBench: A
Streaming RDF/SPARQL Benchmark” In Proc. of the 11th International
Semantic Web Conference ISWC 2012. Boston, USA, Nov 2012.

[15] Le-Phuoc, D., Dao-Tran, M., Pham, M. “Linked Stream Data Processing
Engines: Facts and Figures” In International Semantic Web Conference
(ISWC 2012). Volume 1380, Boston, USA, Springer (2012) 300–312

[16] Muhammad Intizar Ali, Feng Gao, Alessandra Mileo, “CityBench: A
Configurable Benchmark to Evaluate RSP Engines Using Smart City
Datasets”, 14th Int. Semantic Web Conference, Bethlehem, PA, USA,
October 11-15, LNCS, 2015

[17] P. Bellini, I. Bruno, P. Nesi, N. Rauch, "Graph Databases Methodology
and Tool Supporting Index/Store Versioning", publication on JVLC,
Journal of Visual Languages and Computing, Elsevier, 2015.

[18] O. Erling and I. Mikhailov. “Virtuoso: RDF Support in a Native
RDBMS”. In Semantic Web Information Management, pages 501-519.
Springer, 2009.

[19] G. Ladwig, A. Harth, "CumulusRDF: Linked data management on
nested key-value stores", 7th International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2011), 2011.

[20] K. Kyzirakos, M. Karpathiotakis and M. Koubarakis. “Strabon: A
Semantic Geospatial DBMS”. In the 11th International Semantic Web
Conference (ISWC 2012), Boston, USA, 11-15 November 2012.

[21] N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras, N. Koziris,
“H2RDF+: High-performance distributed joins over large-scale RDF
graphs”, Big Data, 2013 IEEE International Conference on , pp.255,263,
6-9 Oct. 2013

http://www.disit.org/smartcityrdfbenchmark
http://www.sii-mobility.org/

