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Abstract

Knots occur in many areas of science and art. The mathe-
matical field of Knot Theory studies an idealised form of knots
by viewing them as closed loops in 3-space. They can be
formally studied via knot drawings which are well-behaved
projections of the knot onto the 2-D plane. Equivalence of
knots in 3-space (ambient isotopy) can be encapsulated via
sequences of diagram rewriting rules, called Reidemeister
moves, but finding such sequences demonstrating isotopy of
two knots can be immensely challenging. Whilst there are
some sophisticated tools available for some knot theoretic
tasks, there is limited (free) tool support for certain knot cre-
ation and interaction tasks, which could be useful for lecturers
and students within University courses. We present KnotS-
ketch, a tool with multiple functionalities including the ability
to: (i) read off a form of Gauss code for a user sketched dia-
gram; (ii) generate a diagram from such a code; (iii) regen-
erate a knot diagram via a different projection, thereby pro-
ducing examples of equivalent knot diagrams that may look
very different; (iv) interaction capabilities to quickly alter
the knot via crossing changes and smooth the curves of the
sketched diagram; (v) export facilities to generate svg images
of the constructed knots. We evaluate KnotSketch via a case
study demonstrating examples of intended usage within an ed-
ucational setting. Furthermore, we performing a preliminary
user study to evaluate the general usability of the tool.
Keywords: knots, sketching, gauss code, diagram generation.

1. Introduction
Knots occur within both art and science, and there are

many important scientific application domains (e.g. DNA su-
percoiling [22, 8], quantum wavefunctions [16]). The math-
ematical field of Knot Theory has been studied extensively,
providing a rigorous study of an idealised form of knots (es-
sentially closed loops in 3-space); see [27] for a standard
mathematics graduate text book, and [19] for a recent ap-
proach aiming to utilise the potential of computers within the
field. A standard mathematical approach is to define objects
under consideration, provide a formal notion of equivalence,
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and then to investigate means to try to classify the objects
(given two objects, decide if they are equivalent or inequiva-
lent). In this context, two knots are equivalent, called ambient
isotopic (isotopic for short), if there is a continuous deforma-
tion of the whole of 3-space taking one embedded loop to the
other. Knots can be studied thus, making use of knowledge of
topological methods.

However, knots can also be studied combinatorially, via
knot diagrams (which are regular projections of knots onto
a plane, so any crossings are transverse double points). Fol-
lowing Reidemeister [25], isotopy can be realised via diagram
transformations: two knots are isotopic if and only if their di-
agrams (which can be projection onto any suitable plane, so
the diagrams can look quite different) differ by a sequence of
local diagrammatic transformations (shown later, in Figure 4).
Figure 1 shows an instance of the core problem of asking
whether diagrams represent the same knot; no answer is pro-
vided here, leaving the reader to try to discover an answer for
themselves, thereby getting an initial feeling for the challenge
via this small example. This question is posed at the beginning
of an undergraduate Knot Theory course at the University of
Brighton, UK. Since there can be infinitely many diagrams of
each knot (considering that different planes of projection can
be used, and one could move parts of the knot prior to pro-
jection), identifying knot equivalence by comparing diagrams
and trying to demonstrate isotopies can be extremely difficult.

Consider the educational context of a knot theory course,
with a professor teaching, setting and marking assessments of
students, whilst the students are learning, studying, and com-
pleting the assignments. The act of drawing of knots can be
time consuming and error prone. For example, consider stu-
dents trying to reproduce the knot shown in Figure 2 in class
by hand; this is actually a diagram of the unknot (i.e. it is

Figure 1: Are these two knots equivalent (isotopic)?
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Figure 2: A knot drawing with potential for reproduction er-
rors

equivalent to a knot diagram with no crossings, which can be
depicted by a single circle), called the Haken unknot. This
motivates the need for a knot drawing tool, with export facil-
ities, and in particular the incorporation of sketch based in-
put facilities to mimic the normal knot drawing method when
constructing knots by hand.

Knot codes (like a Gauss code, discussed in Section 2.1)
provide a string based representation of the crossings (and
their relative orientations) in a knot diagram. In the process of
understanding their usage, a student may be asked to produce
the code of a given diagram or to try to construct a diagram,
given a code, for relatively simple cases. The question “which
signed Gauss codes are realisable as (classical) knots?” [17]
was open for a long time, but algorithmic solutions have been
devised (e.g. [9, 23, 28]). Kauffman [20] extended the class of
classical knots (the knots we have described are termed classi-
cal knots) to virtual knots, permitting extra crossings without
any over/under information, so that every Gauss code is then
realisable as a virtual knot. In this paper, we focus on the clas-
sical knot case, as would be common in the majority of knot
theory courses, but we adopt an underlying approach that can
be naturally extended to permit the consideration of virtual
knots. The related requirements for a tool are: the automatic
reading of the code from a knot drawing, and the automatic
generation of a knot diagram from a code.

The codes considered only determine the drawing of a knot
diagram drawn on a sphere instead of on a plane; a choice of
face (in the shadow of the knot on the sphere, which is the
underlying graph given by forgetting the over/under informa-
tion at the crossings) for stereographic projection is required
to provide a drawing in the plane. However, this property
can be turned into an interesting benefit. Different choices
of (outer) face yield isotopic diagrams (they are, after all just
different views of the same knot) but they may look very dif-
ferent. Thus, the alternative choices of outer face give rise to
a set of diagrams which are all equivalent but may not look
like it, thereby: (i) giving rise to easily constructed examples
of equivalence for students to explore; and (ii) helping stu-
dents to develop their understanding of stereographic projec-

tion. Without any tool support, students may find taking a di-
agram in the plane, considering it as drawn on the sphere and
re-projecting using a different outer face, a rather challenging
task. It also provides the teacher (or a professional mathe-
matician if the context of intended usage was widened) with a
means of examining this somewhat less-familiar relationship
between knots that may involve very complex sequences of
Reidemiester moves to realize as an isotopy.

We implemented the KnotSketch tool following these
elicited requirements. We demonstrate some of its functional-
ities via a case study, providing a series of worked examples.
We follow this up with a preliminary user study to evaluate
the general usability of the tool. There are many technicali-
ties to be dealt with in the formal setting of knot theory, but
for accessibility to a Computer Science audience we adopted
a relatively informal approach, skipping over some technical
details (e.g. we presume all knots are tame to rule out patho-
logical examples). An interested reader can refer to graduate
level text books on knot theory (e.g. [15, 18]) for more com-
plete details. Discussions about knots (single loops embedded
in space) extend to links (disjoint unions of knots) and KnotS-
ketch also supports links.

2. Preliminaries

We describe some facts about knots and their diagrams (in-
formally indicating the content of well known definitions and
theorems), and introduce Gauss codes, with examples, provid-
ing rationale for the chosen form adopted. A link is a disjoint
union of knots, and a link diagram is the image of a regu-
lar projection (i.e. the only singularities are transverse dou-
ble points) of the link L with over/under information added
at each of the double points, called crossings. Every (tame)
link has a diagram. Ambient isotopy is an equivalence rela-
tion on knots (or links). Each equivalence class of knots is
called a knot type; equivalent knots have the same knot type.
As is common, we abuse language and use the term ‘knot’ to
mean the whole equivalence class (a knot type) or a particular
representative. When we say that two knots are different (not
equal) we mean that they are inequivalent (i.e they have differ-
ent knot types). If a knot has the same type as the trivial knot
then we say it is unknotted. We can orient a knot by nominat-
ing one of the two directions along it. If K is an oriented knot
then the knot with the opposite orientation, denoted by �K, is
called the reverse of K. The knot �K

⇤ is called the inverse of
K, where K⇤ is the mirror image of K (obtainable by switch-
ing all crossings in a diagram of K). For oriented links, we
can assign to each crossing c of a diagram, its sign, which is a
value in ±1, denoted sign(c), as depicted in Figure 3.

Let R1, R2 and R3 denote the diagrammatic moves shown
in Figure 4. Two diagrams differ by one of these moves if they
are identical outside a small region, and inside the region they
differ exactly as shown in the moves. These moves are called
the Reidemeister moves [25]. We can think of R3 as moving
one of the strands across the crossings of the other two strands.
The moves are presumed to preserve orientation. Note that we
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Figure 3: The overpass is the unbroken line for each crossing
(on left figure: top left to bottom right; on right figure: bottom
left to top right) and the underpass is the broken line. The sign
of a crossing is + if traversing along the the underpass, fol-
lowing the orientation, at the crossing the overpass is passing
from the left to the right (as in the figure on the left), whilst
the sign is � if the overpass is passing from the right to the
left (as in the figure on the right).

Figure 4: The Reidemeister moves, which are diagrammatic
moves encapsulating knot equivalence.

interpret diagrams that differ by homotopy preserving the arc
and crossing structure (i.e. the arcs can be moved without
changing the underlying crossing structure; e.g. making the
knot more “wiggly”, or scaling the diagram) as the same.

We say that diagrams D and D

0 are isotopic if D can be
obtained from D

0 by a sequence of moves of type Ri, with
1  i  3. The diagrams are regularly isotopic if R1 is not
used. The following important theorem (see [25]) allows us to
study knots and links combinatorially, via diagrams: Suppose
that links L0 and L1 have diagrams D0 and D1, respectively.
Then L0 and L1 are ambient isotopic if and only if D0 and
D1 are isotopic.

2.1. Codes

Gauss codes are a means of capturing information in a
knot diagram. We adopt a richer form of the codes used in
the literature from which others can be recovered. The code
of a diagram is given by numbering the crossings, picking an
orientation on the curves and then traversing the curves one at
a time, writing down the crossings met in order in a complete
circuit, noting whether one was on the overpass or underpass
(o/u) at each crossing along with an associated sign (±). It
is well defined up to the equivalence relation generated by
these choices. Codes for different components of a link are
separated by a /.

Figure 5: Left: The enhanced Gauss code o1+ u2� o3+

u1� o2+ u3� indicates the crossings met upon traversal of
the knot, together with extra information (over/under, and
the sign of the associated immersed curve), realisable as
a (classical) knot diagram. Note that the “usual” Gauss
code would assign � to every crossing number, yield-
ing: o1� u2� o3� u1� o2� u3�. Right: the code enables
the explicit indication of the position of virtual cross-
ings: o1+ u2� o3+ u1� o4� v5+ o2+ u3� / u4+ v5� for the 2-
component virtual link. Here, we emphasized the virtual
crossing by placing a dot at the crossing (numbered 5).

We describe variations of the code used in the literature.
Kauffman, in [20], uses o/u, and the sign of the crossing
(+/� described earlier) is attached to each symbol (denoting
the number assigned to the crossing), with the same sign oc-
curring for both of the occurrences of this symbol in the code.
However, Kurlin [21] includes the same sign of the crossing
(+/�) but only attaches it to the symbol associated to the un-
dercrossing, thereby removing the need to explicitly indicate
o/u’s, since the presence of a sign indicates an undercrossing,
whilst its absence indicates an overcrossing. Carter [11], con-
siders immersed curves (so the arcs pass through each other
at the crossing instead of passing over and under), so there
are no o/u’s to consider. A variation of the sign convention is
adopted, with one + and one � associated to each occurrence
of a symbol for a crossing. An intuitive method for calcu-
lating this (enhanced) sign convention used is to imagine that
the arc under consideration (as we traverse the curve and it
passes through a crossing we write down one instance of the
symbol for that crossing and decide on its sign) is an under-
crossing and calculate the sign as per the earlier method for
knots. This leads to one of the two symbols being assigned to
a crossing being a + and the other a �.

We make use of a variation, which we call the enhanced
Gauss code (code for short) in which we use the sign conven-
tion for immersed curves, following Carter, as well as the o/u
information (as used by Kauffman) for knots. This generalisa-
tion provides us with the ability to deal with curves that do not
have any over/under information at the same time as those that
do. One application is to explicitly encode virtual crossings in
virtual knot diagrams (rather than simply ignoring their pres-
ence in the code), permitting the expression of over/under or
“through/virtual” at each crossing. The “through/virtual” op-
tion can naturally be represented by a v for virtual crossing in
the virtual knot diagram setting. Whilst we do not explicitly
consider the use of virtual knots within the educational con-
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Figure 6: A screenshot of the KnotSketch interface, with tool-
box at the top, a diagram shown in the Sketch View and its
automatically produced code in the Code View.

text in this paper, we envisage the future usage of this func-
tionality (for advanced postgraduate students or professional
mathematicians), and so we decided to adopt a notational con-
vention that would be consistent with this.

Figure 5 shows examples of the (enhanced Gauss) codes
of a classical knot diagram (top) and a virtual link diagram
(bottom). To enable a comparison with the immersed curve
codes, one can consider the shadow of these classical knot
diagrams (i.e. make all crossings “through/virtual”); the ef-
fect of this on the code is to simply remove the occurrences
of o/u, replacing them with v’s. This would have necessarily
been slightly more complicated if we had used the classical
knot sign convention in the code. KnotSketch enables the au-
tomatic interpretation of the code of (sketched) link diagrams.

3. KnotSketch
We describe KnotSketch and its main functionalities.

KnotSketch is partly based on ink recognition techniques, pre-
viously developed for other applications [6, 13, 14].

3.1. User Interface

As shown in Figure 6, the KnotSketch interface is divided
into three parts. The upper part is a toolbox with buttons to
perform the following operations (from left to right):

• change the input mode to draw;
• change the input mode to erase;
• change the input mode to move. At present it is only

possible to move whole curves, not parts of a curve (but
this would be a useful future additional functionality for
interaction);

• change the zoom level;
• clear the current drawing;
• launch the automatic diagram generation facility through

a new dialog. The dialog (see Figure 7) contains a text
field to enter the code. It is possible to use the clipboard
to paste the automatically produced code of a sketched
diagram. The code specifies the drawing of the knot on
a sphere. By clicking on the OK button, a new dialog

Figure 7: Code to diagram generation box.

is opened (an example is presented in Figure 10 of Sec-
tion 4). This dialog requires the user to choose a face as-
signed to be the outside region under stereographic pro-
jection from the sphere onto the plane from a list of pos-
sible choices (one for each region). A preview pane is
shown by the side of the list to assist the user. More-
over, it is possible to personalize the diagram appearance
with different visualization options, such as varying the
number of spring embedding iterations;

• open a previously saved diagram. If a file describing a
diagram drawing (see below) is opened then its content
is shown in the Sketch View described below, while if a
file containing the knot code is opened the diagram gen-
eration is launched;

• save the current diagram in a native drawing file format.
It is also possible to export a drawing in svg format (op-
tionally as an html file), whilst the code can be exported
in txt or html format. This facilitates the use of the tool
for the production of diagrams that occur in research pa-
pers, student submissions, or to include in web-pages;

• open the Options window in order to alter tool settings,
such as the size of the gap used in the visualisation of the
crossings;

• perform knot beautification using EulerSmooth [30].
Given a drawn diagram, the user can apply a smooth-
ing operation via EulerSmooth to improve the quality of
the sketched drawing; EulerSmooth was defined to work
with Euler diagrams but it can be heuristically applied to
knot diagrams. The smoothing function can be manually
controlled and can be applied with various parameter set-
tings.

In the middle part of the KnotSketch interface the Sketch
View contains the drawing canvas. The curves are arbitrar-
ily shaped and must be completed with a single pen stroke.
Once a stroke has been entered, its endpoints are automat-
ically joined to close the curve. If the user tries to make the
curve closed by passing the final part of the curve over the ini-
tial part, then any additional crossing created is erased. Upon
its completion, a curve is coloured with a colour chosen from
a pre-defined list (the predefined colour list can be configured
by the user). As soon as a curve is completed, a numeric la-
bel is automatically assigned to each crossing point. There
are two segments passing through each crossing, and by de-
fault the last drawn segment is shown as an over-crossing (as
a future option, the user will be able to choose the default
behaviour, permitting the automatic provision of alternating
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crossings as the knot is traversed, for example); the cross-
ing type (over/under) can be manually changed by the user
by clicking on the crossings. The length of the gap used to
indicate the crossing can also be configured by the user.

In the lower part of the interface, the Code View con-
tains the automatically generated enhanced Gauss code, as
described in Section 2.1 (it is possible to select the code and
copy it to the clipboard). At the top of this view a toolbox pro-
vides a set of options through which the user can select some
other forms of codes (that are not required for this particular
application).

A user study is discussed in Section 5, and Figures 8-12
show some related screenshots of the tool.

3.2. Back-End

KnotSketch is written as a Java 7 application. Other than
knot drawing, the main features of the application are knot in-
terpretation (i.e. computing the code of a drawn knot), knot
generation from code and knot beautification. The enhanced
Gauss code, displayed in the Code View, is incrementally con-
structed and is updated every time a curve is added or deleted.
It is stored in an internal format enabling efficient operation
executions. A knot is represented as a closed polyline.

KnotSketch can generate knot drawings from an enhanced
Gauss code using a planar graph based construction: the graph
contains one node for each crossing, and its combinatorial em-
bedding of the graph can be calculated by using the crossing
signs (+/�) and the choice of face assigned to be the outer
region. Then an algorithm from the OGDF framework [24]
can be used to embed the planar graph in the plane. The user
can optionally modify the embedding by selecting a number
of iterations of a force directed algorithm [5] to apply. The
algorithm theoretically preserves the regions, but approxima-
tion due to rounding could cause non-preservation. However,
the tool provides a post-check if the initial and final diagram
codes are equivalent. Finally, by traversing the graph edges
appropriately, the curve for the knot diagram is constructed.

The knot beatification step can be performed by using the
Ocotillo java library from EulerSmooth. The drawn knot is
treated as if it was an Euler diagram (essentially taking the
shadow of the knot, viewing all crossings as if they passed
through instead of over/under each other; note that the con-
straints of non-self intersections for Euler diagrams must be
relaxed in this context). The knot diagram is converted to the
format used by Ocotillo and the beautification process is per-
formed on it, using the parameters set by the user. After each
beautification iteration the diagram is converted back to the
original format in order to display the beautification progress
to the user. Future enhancements of EulerSmooth in this con-
text should lead to enhancements of the outputs.

4. Case study

We describe a set of activities that can be performed with
KnotSketch within an educational context, demonstrating the

capabilities of the approach and the tool. We highlight a
novel viewpoint that permits an uncommon form of user ex-
ploration, which would be challenging for students to perform
without tool-based assistance. We discuss general activities
that users may undertake along with low level tasks that users
may perform along the way.

Consider the task of starting with a code and creating a di-
agram of a knot with that code. This task can be used to test
a users’ understanding of the code to diagram process, and to
highlight how challenging the construction can be without fur-
ther assistance. In a simple case, the user can directly sketch
the requested diagram. They can check their solution via the
automatic production of the code, displayable in the Code
View. If the knot produced differs from the required solu-
tion via crossing changes alone (i.e. switching over and under
crossings) then user interaction via clicking on the crossings
can be applied to alter the diagram accordingly. If the diagram
drawn has the wrong code and the code differs by more than
crossing changes then the curve needs to be redrawn. An al-
ternative approach is to use the automatic diagram generation
facilities from a code (described in Section 3). For the task of
producing a diagram with the correct code, any choice of outer
face will do, so the user can select any of the proposed faces.
This functionality leads to an interesting possibility for the
exploration of knot equivalence (isotopy). Given a code one
can generate different views of the knot (one for each face, by
using the different choices of outer face in the plane of projec-
tion). Since each of the views are diagrams of the same knot
viewed from a different perspective, all of these diagrams are
equivalent. However, they may look very different and it may
be challenging for a user to construct an isotopy (a sequence
of Reidemeister moves) from one diagram to the other. Thus,
given two knot diagrams that potentially look very different,
but which are in fact different projections of the same knot,
the user can try to identify this knot equivalence by searching
through the options and visually comparing the outputs.

Figure 8-12 show diagrams from the tool similar to those
of the case study. In detail, Figure 8 shows a user sketched
(and smoothed) drawing of a trefoil knot with 3 crossings, its
automatically produced code, along with a more complicated
knot with 7 crossings. Figure 9 shows diagrams of a knot K,
the knot K 0 with a single crossing change, and, m(K), the
mirror of the knot K, which is shown as K with all crossings
changed; the effects on the code are also shown. Figures 7
and 10 show an example of a code being used to generate a
knot, demonstrating the user’s view at the time of selection
of outer face. The code-like information displayed for each
choice is a means of specifying the region (details are omitted
since they are unimportant for our purposes here); we display
drawings arising from all six choices of outer face for this
code. Figure 11 shows diagrams (far left and far right) and
their (not obvious) equivalence as a sequence of Reidemeister
moves (indicated by Ri’s). These two diagrams can be seen
to be equivalent via projection onto different faces; the left
and right diagrams are those shown in Figure 10(f) and Figure
10(e), respectively, up to moving the arcs without changing
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Figure 8: Screenshots of a trefoil knot (left) and a knot with seven crossings (right) and their codes.

Figure 9: A diagram of a link (left), the diagram obtained by changing crossing 4 (middle), and the mirror of original diagram,
given by changing all crossings (right).

the crossing structure. Figure 12 shows an example of gener-
ation of a knot diagram from a complicated code, showing the
initial creation of a knot, along with an initial improvement
using the EulerSmooth functionalities.

5. Experimental setup

We performed a preliminary evaluation on a student pop-
ulation to test the usability of the tool itself. In particular,
we measured the perceived usability of the system through a
System Usability Scale (SUS) [7] questionnaire. The ques-
tionnaire is composed of 10 statements to which participants
assign a score indicating their strength of agreement on a 5-
point scale. The final SUS score ranges from 0 to 100. Higher
scores indicate better perceived usability. We also gathered
some participants’ free-form comments during and after the
experiment.

The demographic mostly consisted of Computer Science
students, which may help with familiarity with the use of soft-
ware. In the future, we will also examine the usage with

Mathematics students whom may be more familiar with the
mathematical context, but perhaps less proficient in software
usage. We recruited a total of 10 participants (3 female). The
ages ranged from 21 to 51 (with mean M = 31, and standard
deviation SD = 10.4). All of them were habitual computer
users and had previous experience with touch-screens. None
of them had any prior knowledge of knot theory.

The set of tasks we considered were as follows.

TASK 1 Given the following knot code, gener-
ate a diagram of it using the “generation
from knot code” functionality of KnotSketch:
o1+ o2� u3+ u1� u4+ u5� o5+ o4� u2+ o3�;

TASK 2 Given the knot drawn on the sheet, reproduce it
using KnotSketch and save its knot code in a text file.
Moreover, save the drawing in the tool’s native file for-
mat (this task was repeated three times - TASK 2.1,
TASK 2.2, TASK 2.3 - once for each knot in Figure 13);

TASK 3 Open the native format of the drawing previously
produced in TASK 2.2 and generate its projection onto a
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(a) (b) (c)

(d) (e) (f)

Figure 10: Displaying the preview of the different choices of outer face for the projection, using the code from Figure 7.

Figure 11: A sequence of Reidemeister moves demonstrating the equivalence between the left diagram (c.f. the diagram in Figure
10(f)) and the right diagram (c.f. the diagram in Figure 10(e)).

Figure 12: Generation of a knot diagram from a complicated code, with the initial creation of a knot (left), along with an initial
improvement using the Eulersmooth functionalities (right).
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Figure 13: TASK 2 knots.

(a) Pair of knots for TASK 4.1.

(b) Pair of knots for TASK 4.2.

Figure 14: TASK 4 knot pairs.

different outer face;

TASK 4 Given the pairs of knot diagrams on the sheet, in-
dicate if they differ by redrawing via projection onto a
different outer face or not (the task was repeated twice -
TASK 4.1, TASK 4.2 - once for each knot pair in Figure
14).

The time limit for the completion of each subtask was 5
minutes.

The tasks were executed on a Dell Precision T5400 work-
station equipped with an Intel Xeon CPU at 2.50 GHz running
Microsoft Windows operating system and the Java Run-Time
Environment 8. The device used for the experiment was a
Sympodium ID250 Interactive Pen Display, attached through
both USB and RGB cables to the work station.

5.1. Results

The tasks have been successfully completed by almost all
participants. Only two tasks were not completed successfully
by all participants: TASK 2.3 and TASK 4.1, with two errors
each. The mean task completion times are reported, along
with standard deviations, in Table 1. As expected, the sub-
tasks of TASK 2 showed increasing difficulties; in particu-
lar for TASK 2.3, some users needed to attempt the drawing

Task Avg time (sec.) S.D. User errors
TASK 1 64.7 16.6 0
TASK 2.1 45.3 14.1 0
TASK 2.2 60.2 13.3 0
TASK 2.3 137.6 72.8 2
TASK 3 20.0 11.8 0
TASK 4.1 135.0 48.8 2
TASK 4.2 152.6 41.6 0

Table 1: Task completion times.

Username Score
participant 1 77.5
participant 2 85
participant 3 62.5
participant 4 75
participant 5 87.5
participant 6 75
participant 7 85
participant 8 77.5
participant 9 92.5
participant 10 85
Average 80.25

Table 2: SUS-like questionnaire scores for user satisfaction.

several times. However, the error on this task was simply an
incorrect sign on a single crossing. TASK 4 presented some
difficulties for most participants, with relatively high execu-
tion times and two errors for TASK 4.1.

The scores of the questionnaire calculated from the re-
sponses of the participants are shown in Table 2, indicating
scores ranging from 75 to 92.5, with an average value of
80.25. This value indicates a good level of satisfaction [4].
An analysis of the questionnaire scores showed that the partic-
ipants judged the tool very useful for its purpose, but they did
not find all the features simple to use and some participants
needed some learning time to be able to master them. For in-
stance, some participant lamented the lack of feedback on the
presence of errors in a written code; others had problems in
finding out how to generate the projection of a drawing onto a
different outer face.

Similar considerations emerged after a brief interview/dis-
cussion with the participants involved in the experiment to un-
derstand what aspects of the tool were of help in the execution
of the tasks: probably due to unfamiliarity with Knot Theory,
some participants expressed initial doubts about the compre-
hension of the tool’s purpose. Furthermore, some of them
had difficulty in completing TASK 4 even with the help of
the tool, with one participant stating: “I would have preferred
more support from the tool to perform TASK 4”. Neverthe-
less, he declared “I would never be able to complete that task
without the help of the tool”.
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Tool KnotSketch KnotPlot [26] Knot ID [2]
Hand sketch Yes Yes (but requires license) No (point and click/drag)
3D visualisation No Yes Yes
Link diagrams Yes Yes No
Save/Load/Export
diagram

• Supports saving and loading
diagrams
• Diagrams can be exported in
SVG and HTML format

• Supports saving and loading
diagrams
• Diagrams can be exported in
EPS format

• Load list of coordinates
• Load gauss code (no visualisa-
tion of the knot in this case)

Edit diagram • Supports adding, deleting
and moving individual compo-
nents

• Supports adding, deleting
and moving individual compo-
nents or a segment of any com-
ponent

• Supports adding, deleting or
modifying individual segments of
any component

Diagram generation
via code

Supports Gauss Code Supports Dowker code and
Braid word

No generation (but identification
available from Gauss Code)

Diagram reprojection
via outer face

Yes No (but rotation of 3D visuali-
sation is possible)

No

Diagram smoothing Yes Yes No

Table 3: Visualisation features of KnotSketch, KnotPlot and KnotID

6. Related Work

Existing knot tools have varied functionalities. Table 3
provides comparison of visualisation aspects of KnotSketch
with KnotPlot [26] and Knot ID [2]. We provide some further
details and briefly discuss other notable tools below. To the
best of our knowledge, the re-projection facility onto different
outer faces offered by KnotSketch is novel, as is the capabil-
ity to deal with (sketching, interpreting) virtual knots or links
(note that the study was restricted to classical knots and links).

KnotPlot [26] is a widely used program for visualising and
interacting with knots that has theoretical underpinnings as
described in [29]. A knot can be sketched by hand (in the up-
graded version requiring a license) or constructed from code
using a tangle notation system developed by Conway [12], or
from a braid word, or a Dowker-Thistlethwaite code (which
does not uniquely specify composite knots [26, page 98]). A
knot can be refined into a smoother configuration using a 3D
technique, which is computationally expensive, especially for
large knot diagrams with more than 50 crossings [26, page
105]. KnotPlot has a built-in database containing a wide range
of knots and links which can be viewed, modified and saved,
along with other features such as: computing the Alexander
and HOMFLY polynomials, the writhe, the average crossing
number, the thickness and the Dowker code of a knot; search-
ing for minimal stick conformations and interesting random
knots; generation of arbitrary braids; enabling the considera-
tion of open knots or links; interactive construction of knotted
and linked spheres in four dimensions.

KnotID [2] is a web application that allows the viewing of
topological information about knots. The application can be
used: (1) to import three-dimensional curves (as a list of 3D
coordinates or by generating torus knots from two coprime
numbers); (2) to draw two-dimensional curves; (3) to directly
input an enhanced version of the Gauss code similar to those
described in Section 2.1. In addition to displaying topological

information, the tool can, through the application of topolog-
ical invariants, identify if the input knot is equivalent to knots
found in a lockup table (based on [1]). It permits computation
of properties such as the Reduced crossing number, Determi-
nant |�(�1)|, |�(exp(2⇡i/3)|, |�(i)|, and Vassilev invari-
ants. Compared to KnotSketch, the software offers a non-
sketching oriented drawing interface and no features such as
delete/smoothing/load/save or the ability to display the cross-
ing numbers. Moreover it does not offer functions to gener-
ate a knot from a gauss code or to regenerate a knot by re-
projection onto a different plane.

Libbiarc [10] can be used to manipulate and analyze prop-
erties of knotted curves, compiled into a C++ library; the
most frequently used functions are available as an API. The
core library provides functions to interpolate point-tangent
data with bi-arcs, access information such as curvature and
torsion, compute the length and thickness. The library in-
cludes a viewer application, called curview, for visualisation,
in which a knot can be loaded, manipulated and saved.

KnotApp [31] is a thesis that describes a program that dis-
plays a knot and other objects, such as the knot’s crossing
map and its trisecant curve, using the jReality JOGL Viewer.
The knot may be chosen from a provided list or loaded from
the file system. Then the chosen knot can be edited by drag-
ging its vertices using the provided knot editor. The crossing
map implemented displays the set of irregular projections of
the underlying knot as curves on the unit sphere. The set of
trisecants of the underlying knot is visualised as a curve in the
3-dimensional torus. However, the KnotApp application itself
does not appear to be currently available to be tested.

Other notable knot tools, with varying functionalities in-
clude Linknot (see [19]), Knotscape [32] (uses Dowker-
Thistlethwaite codes), and MING [33] (which minimizes
MD-energy of polygonal knots, reduces the numbers of edges,
and draws/visualizes their 3-dimensional pictures).
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7. Conclusions

We have developed KnotSketch, a tool to facilitate knot ex-
ploration, with particularly interesting functionalities of per-
mitting knot sketching followed by classical knot diagram re-
generation via re-projection onto different planes via stere-
ographic projection from the diagram drawn on the sphere.
This could be particularly useful in University level educa-
tional settings, and we examine the potential capabilities via
a case study. In addition, we adopt an enhanced version of
Gauss code that enables the future handling of virtual knots.
This ability to deal with virtual knots would likely be useful
in the context of expert users, such as professional mathemati-
cians making use of the tool in exploratory mathematics or
simply to produce figures for use in publications (the use of
classical knots is of course pertinent to this user class as well).
One can also envisage different semantical interpretations of
these types of diagrams with mixed crossing types, and this
would widen the applicability even further beyond the con-
sideration of knots.

We performed a preliminary user-based empirical study to
gain insight into the usability of the toolkit, with an aim for
future improvements. We plan to perform more extensive
user testing, and adopt an iterative developmental method-
ology taking into account user-insights after testing periods.
We wish to explore the utility for both Mathematics students
and professional Mathematicians. Using the interface at Knot-
Info [3], a user can select sets of knots and request information
about them including their diagrams or compute many invari-
ants. This interface and database (and others) could be made
to be usable in conjunction with KnotSketch, thereby greatly
enhancing its functionalities.
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