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Abstract

Qualitative Spatial Reasoning (QSR) is an exceptionally
powerful tool in the fields of computer cognition and auto-
mated computer reasoning. Recent results have shown the
potential feasibility of pairing image processing techniques
with basic principles of physics that humans inherently un-
derstand in order to allow the computer to extrapolate ad-
ditional information about the environment in which it ex-
ists. Initial results showed that, while using the tenets of
conservation of mass, conservation of energy, and inertia
allowed the computer to gain more information than was
initially apparent, noise in the perceived input data resulted
in the software erroneously reasoning about the state of the
system. Hence improving the image processing techniques
used in analyzing the data should ameliorate the errors in
reasoning. In this paper, the authors investigate this claim,
and present a system that allows a more precise and correct
computational view of the environment.
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1 Introduction

Human perception of an environment is incredibly com-
plex to replicate in a computational system. Alone, the
fact that the perception of the environment is not neces-
sarily consistent between two different observers leads to
the conclusion that the results reported by a computer may
be verified by one person and invalidated by another. The
best that can be done is to have the computer deduce all
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objectively correct information: that which can be mathe-
matically proven to be true.

Previous results [9] have shown that, in the absence of
full three-dimensional knowledge of an environment, it is
feasible to use stereoscopic images to obtain information
about relative depths and shapes of objects from the com-
puter’s observation point. Augmenting this data with laws
that govern the physical world allows the computer to learn
more about the world. These physical laws were chosen
based on their relation to how humans perceive the world.
For example, the laws of Conservation of Mass and Energy
can directly be seen as a mathematical way to describe Ob-
ject Permanence [2].

In the authors’ previous work, these results showed that
noise in the input data led directly to incorrect or even im-
possible output. The observations of objects when fully vis-
ible were used to extrapolate positions of the objects when
obscured; noise in the observed positions had a deleterious
effect on the extrapolated positions, resulting in potential
incorrect assumptions about the system. Herein we discuss
the effects a more robust object segmentation algorithm has
on the quality of data used in computational reasoning.

2 Background and Related Work
2.1 Image Processing and Disparity

Image processing is an important field in computer and
robotic vision. A significant amount of research in this area
has been devoted to finding computationally efficient algo-
rithms; images are inherently two-dimensional, which im-
plies that most naive algorithms are at best O(m xn) in their
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computational complexity for an m x n image. The persis-
tence of high resolution images (full high definition already
common and 4k resolution is beginning to emerge) means
that these algorithms will be computationally expensive.
Many image formats are 4-channel (giving an m x n x 4
data structure size to hold RGBA or HSVA (Hue Satura-
tion Value Alpha) information, two popular information for-
mats), which only serves to increase the amount of compu-
tation needed for a single image.

Disparity [3, 10, 7] and the parallax effect are two con-
cepts exploited in image processing to mimic human per-
ception of depth; objects closer to the observer appear larger
than more distant objects. Thus, by determining the paral-
lax between occurrences of an object in each of a pair of
stereo images, the relative distance from the cameras to the
object can be determined. Disparity also has been used to
estimate the motion of objects [7]. It is an invaluable tool in
determining spatial information from multiple observations
of the same scene.

Object segmentation in image processing is a task that
has a large number of established approaches. These
methods range from thresholding mechanisms like Otsu’s
method [11], to clustering algorithms, to region-growing
methods. For the purposes of this research, a combination
of an edge detection mechanism and a heavy modification
of a watershed style algorithm is used to segment objects
when all objects are visible. A more explicit description of
this object segmentation method is included in Section 3.

2.2 Qualitative Spatial Reasoning (QSR)

Qualitative Spatial Reasoning (QSR) has varying appli-
cations in Geographic Information Systems (GIS), visual
programming language semantics, and digital image anal-
ysis [13, 6, 12, 15]. Systems for spatial reasoning over a
set of objects have evolved in both expressive power and
complexity. The design of each system focuses on certain
criteria, including efficiency of computation, ease of human
comprehension, and expressive power.

The spatial reasoning system chosen for this investiga-
tion is VRCC-3D+ [16], an expansion and implementation
of the RCC-3D [1] system designed by Albath et al. As op-
posed to other RCC systems (most of which have no imple-
mentation), the relations in VRCC-3D+ express both con-
nectivity (in 3D) and obscuration. Obscuration will change
from viewpoint to viewpoint, but connectivity is a global
property that can be used to discern new information at ev-
ery perspective in the system.

For this work, the authors focus on the obscuration el-
ement of the VRCC-3D+ relation. The connectivity por-
tion of the relation will become important as the system
is expanded to handle an arbitrary number of cameras and
vantage points. VRCC-3D+ identifies four basic kinds of

obscuration: no obscuration (nObs), partial obscuration
(pObs), complete obscuration (cObs), and equal obscura-
tion (eObs). The system further breaks each base obscura-
tion into four different classes: regular obscuration (object
A obscures object B), converse obscuration (object A is ob-
scured by object B), equal obscuration (object A and object
B obscure each other equally), and mutual obscuration (ob-
jects A and B obscure each other). At this point in the in-
vestigation, this further classification is unimportant; it only
matters if obscuration is present between two objects, not
which object is being obscured.

2.3 PhysQSR: QSR with Image Processing and
Physics

The system described in [9] has been enhanced to im-
prove the ease with which the system can be used and
extended. A thorough explanation of the enhancements
made can be found in [8]. Briefly, the implementation of
PhysQSR has moved to using a detector system on each set
of frame pairs. These detectors are hot-pluggable based on
what kind of information they require to run. Initially, only
a motion detector and a collision detector had been imple-
mented. This paper describes the construction of an object
detector that is used to more accurately track objects as they
move through the environment.

The basic process of analyzing the video footage remains
mostly unchanged; while becoming more modular through
the use of detectors, each frame pair goes through image
analysis (e.g. disparity calculations), obscuration analysis,
and object analysis (object position, either calculated or es-
timated). Previously, this process was very procedural; the
shift to detectors allows this to become a more modular pro-
cess. A pair of frames is grabbed (from each of the left and
right cameras), and passed through detectors. These detec-
tors perform tasks such as object detection, obscuration de-
tection, collision detection, and motion detection.

3 Object Segmentation in PhysQSR

The initial exploration of augmenting QSR with Physics
and Image Processing used a very simplistic object segmen-
tation mechanism. The initial testing video input (see Fig-
ure 1) were generated in Blender. Because the objects were
known to be spheres of two well defined colors, a naive
HSV (Hue Saturation Value) filtering/thresholding method
was used to generate object masks. This method was sat-
isfactory for one video pair, but when analyzing a more
complex scene in which the objects collided, changes in
lighting caused a large amount of noise in the calculated
and estimated positions of the objects (Figure 2). While
the general observed motion of the objects is correct, the
noise frequently creates problems where, in some cases, the



(a) Frame 33: nObs (b) Frame 50: nObs to pObs (c) Frame 91: pObs to cObs

(d) Frame 101: cObs to (e) Frame 145: pObs to
pObs nObs

Figure 1: Images from analyzed video: as seen from the left camera. The green sphere is further from the cameras than the
blue sphere, and as such appears smaller.
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Figure 2: Observed and estimated object positions when collision is present in input.



green ball (which, in the video, passes behind the blue ball)
is determined to be in front of the blue ball, a physical im-
possibility.

A significant portion of the noise in this data can be di-
rectly attributed to the effects of lighting in the scene. Fig-
ure 3 clearly demonstrates how lighting in the scene can
artificially introduce noise into the data when using HSV
segmentation. Note that the shape of the mask between the
two frames shown changes with the shape of the shadows
cast by the blue object. It is interesting to note that these
particular images were taken when the lower bound of the
saturation value for the mask was set to 20. When set to 100
(the lower bound used in experimentation), both the leading
and trailing edge of the masks were practically unrecogniz-
able, which in turn would lead to an unpredictable lateral
position in the image. As the position of the trailing edge
along the horizontal is used to calculate both the distance
from the left edge of the image and the disparity, the os-
cillating behavior in calculated positions that were initially
observed in [9] is understandable.

As such, a more powerful mechanism of object segmen-
tation was deemed necessary. Instead of using HSV masks
solely, a combination of edge detection and a watershed like
method was used to segment the objects. First, a Canny
edge detector [S] was applied to the frame. The thresholds
for the hysteresis procedure were set at 150 and 200, and all
other parameters were left as the default values provided by
the OpenCV [4] Python bindings. The edges resulting from
the detector were used to identify closed contours. These
contours were then used with a modified Watershed Trans-
form algorithm [14]. In this method the areas enclosed by
contours were flooded, designating individual objects. In
this way, the objects were segmented. All that remains is
to determine which object is which; in this case, the color
of the objects is the defining feature, so the HSV masks are
still used to identify objects uniquely.

The identified centers of these objects are then used as
the locations of the objects for the calculation of disparity
and distance from image edge. By using edge detection be-
fore the object is filtered based on color, the effects of light-
ing can be ameliorated. Figure 4 shows how this method
provides a much more precise view of where objects are
positioned in the image.

4 Results

First, consider the effect this has on the observed posi-
tion of the objects. Using the new object detection mech-
anism results in the positions observed in Figure 5. The
observed positions demonstrate significantly less noise than
the original, as shown in Figure 6. The lateral shift in the
position (distance from image edge) is easy to explain. In
the previous object tracking method, the trailing edge of the

object was used to determine where it existed. Using the
new watershed/edge tracking method, the center of mass of
the observed object is used. As such, the lateral shift is only
a change in the point of interest on the object; the fact that
the magnitude of the shift is roughly constant throughout
the calculated positions corroborates this.

Applying this new object segmentation algorithm to the
video originally analyzed in [9] yields some interesting re-
sults. Figure 7 shows the calculated positions of the objects
in the secene when applying the legacy HSV masking object
segmentation algorithm, modified only to take into account
the transition of the code to detectors instead of the origi-
nal procedural mechanism for video analysis, and identical
experimentation parameters to the video representing colli-
sion. Transitioning to the edge detection segmentation al-
gorithm yielded the positions seen in Figure 8.

It is fascinating that this transition exhibits both improve-
ment and regression. The most marked improvement can be
seen in the portion of the scene where the blue ball obscures
the green ball. There was significant noise in the data such
that the horizontal position of the green ball was calculated
to be inhabiting the blue ball’s space. Not only that, but at
times, the green ball was calculated to be in front of the blue
ball, a physical impossibility. However, the noise in the cal-
culated depth at the locations where the green ball was fully
visible exhibits less noise overall when using the HSV seg-
mentation than when using the Watershed method. In both
cases, however, the noise in the calculated depth cause the
fit polynomial to trend closer to the camera. This leads the
investigators to believe that perhaps using a polynomial fit
line that accounts for all previously known information for
the location of the object may not be an optimal way to ex-
trapolate the position of the object.

5 Conclusions

Earlier work showed the feasibility of using image pro-
cessing techniques on limited visual data (stereoscopic im-
ages of a scene) in conjunction with physical properties to
learn more about the environment. The identified weak-
ness in the system was primarily the overly simplistic ob-
ject segmentation mechanism, as it led to noise in the data
that caused inconsistencies in the computer system’s con-
clusions. Before expanding the system to work on real-life
video input (in real time), the effects of this limitation were
deemed critical to examine before continuing with the im-
plementation of this system.

As theorized, using a more robust image tracking system
immediately provides better data for the computer to reason
with. The system is more robust with respect to variations
in lighting and color shifts, and the result is immediately
cleaner data. Any regressions noted in the transition did
not lead to reasoning that was more incorrect. Indeed, the



(a) Frame 50 (b) Frame 75

Figure 3: The effect of lighting with HSV object segmentation. Only the segmentation of the green object is shown. The
white area in each bottom image represents the area marked by the segmentation as belonging to the green object.

Figure 4: Tracking objects with edge detection and modified Watershed. Each white area is a segmented object in the original
image, which are identified with a colored dot corresponding to the original object’s color.
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Figure 5: Observed and estimated object positions when collision present in input, new object segmentation.
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Figure 6: Comparison of noise with new and old object segmentation methods.
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Figure 7: Comparison of noise with new and old object segmentation methods.

No Collision Position Map: Watershed

Green Calculated
Blue Calculated  x

25
2
B
5
2 15
h=]
=
2
ES
=
2
5
[8]
05
0
100

200 300 400 500 600 700 800
Distance from Left Edge (px)

900

Figure 8: Comparison of noise with new and old object segmentation methods.



additional noise observed in the scenario with no collision
resulted in very little to no change in the estimated behav-
ior of the object when it could not be fully observed. This
suggests that the system is more sensitive to the magnitude
of the noise in the data instead of the amount of the noise.

6 Future Work

Immediate future work on this project will focus on two
areas: using the system to analyze real world video data,
and further suppression of noise in the input data. Analyz-
ing any real world video data will introduce more noise into
the system as imperfect synchronization, mismatched cam-
era sensors, and data transmission over data buses causes
degradation. As such, noise suppression will be important
to the future success of this project.

Furthermore, investigation of the mechanism used to ex-
trapolate the position of occluded objects will be required.
The presence of any noise in the data causes the estimated
positions to exhibit erroneous behavior. As it may be im-
possible to completely eliminate all noise from input data
(or even be able to identify noise), more robust object po-
sition estimation algorithms will provide a more powerful
system that produces reliable results.
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