
Fast prototyping of visual languages using local context-based specifications

Gennaro Costagliola, Mattia De Rosa, Vittorio Fuccella
Dipartimento di Informatica, University of Salerno
Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
{gencos, matderosa, vfuccella}@unisa.it

Abstract

In this paper we present a framework for the fast pro-
totyping of visual languages exploiting their local context
based specification.

In previous research, the local context specification has
been used as a weak form of syntactic specification to de-
fine when visual sentences are well formed. In this pa-
per we add new features to the local context specification
in order to fully specify complex visual languages such as
entity-relationships, use case and class diagrams. One of
the advantages of this technique is its simplicity of applica-
tion and, to show this, we present a tool implementing our
framework. Moreover, we describe a user study aimed at
evaluating the satisfaction and effectiveness of users when
prototyping a visual language.

Keywords: local context, visual languages, visual lan-
guage syntax specifications.

1 Introduction

Due to the ever growing evolution of graphical inter-
faces, visual languages are now a well established form of
digital communication in many work and research environ-
ments. They are being used extensively by engineers, ar-
chitects and others whenever there is the need to state and
communicate ideas in a standardized way. This is tradi-
tionally happening, for example, with software engineering
UML graphical notations but it is also catching on in other
research fields, such as, for example, synthetic and system
biology, [21, 16].

In the 1990s and the early 2000s, the formalization and
implementation of visual languages have excited many re-
searchers and many proposals have been defined. In particu-
lar, formalisms were defined mainly based on the extension
of textual grammar concepts, such as attributed grammars

DOI reference number: 10.18293/DMS2015-50

[13, 17, 9, 23] and graph grammars [3, 14], and on meta-
modeling [4].

Lately, a new proposal for the specification and inter-
pretation of diagrams from the only syntactic point of view
has been given in [7]. This research is motivated by the
need to reduce the complexity of the visual language syntax
specification and originated while working on the recogni-
tion of sketch languages and on the difficulty of recogniz-
ing the symbols of the language. In order to disambiguate
sketched symbols, the more knowledge is given on each
symbol and on its possible interactions with the others, the
better. The methodology, known as local context-based vi-
sual language specification requires the designer to define
the local context of each symbol of the language. The local
context is seen as the interface that a symbol exposes to the
rest of the sentence and consists of a set of attributes defin-
ing the local constraints that need to be considered for the
correct use of the symbol.

At first, this approach is, then, more lexical than syntac-
tic: the idea is to provide a very detailed specification of the
symbols of the language in order to reduce complexity when
specifying the language at the sentence level. On the other
hand, due to the easy-to-use and intuitiveness requirements,
many practical visual languages have a simple syntax that
can be completely captured by the local context specifica-
tion as defined in [7]. To show this, the syntax of the binary
trees and of a Turing complete subset of flowcharts have
been completely specified through local context in [7].

When considered as a syntax specification, however, the
simplicity of the approach is counterbalanced by its low ex-
pressiveness, especially with respect to the more powerful
grammars formalisms.

In this paper, we define new features to be added to the
original local context definition in order to push the ex-
pressiveness of the methodology and to allow the complete
syntactic specification of complex visual languages such
as entity-relationships, use case and class diagrams. We
present the tool LoCoMoTiVE (Local Context-based Mod-
eling of 2D Visual language Environments) implementing
our framework which basically consists of a simple inter-

DOI reference number: 10.18293/VLSS2015-050



face allowing a user, in one screen, to define the symbols of
the language and their local context. Moreover, we demon-
strate the usability of the tool in a user study, in which par-
ticipants are asked to define and test a visual language after
a short introduction to the tool. Besides the participants’
ability to define the visual language, we also administered a
System Usability Scale (SUS) [5] questionnaire to evaluate
their satisfaction with the tool.

The rest of the paper is organized as follows: the next
section refers to related work; Section 3 gives the back-
ground information on the “local context-based visual lan-
guage specification”, sketches the three new features and
presents a complete syntax specification for the use case di-
agrams; Section 4 is devoted to describe the tool; the exper-
iment is presented in Section 5; some final remarks and a
brief discussion on future work conclude the paper.

2 Related Work

In recent years many methods to model a diagram as a
sentence of a visual language have been devised. A diagram
has been represented either as a set of relations on symbols
(the relation-based approach) [22] or as a set of attributed
symbols with typed attributes representing the “position” of
the symbol in the sentence (the attribute-based approach)
[12]. Even though the two approaches appear to be differ-
ent, they both consider a diagram (or visual sentence) as a
set of symbols and relations among them or, in other words,
a spatial-relationship graph [3] in which each node corre-
sponds to a graphical symbol and each edge corresponds to
the spatial relationship between the symbols.

Unlike the relation-based approach, where the relations
are explicitly represented, in the attribute-based approach
the relations must be derived by associating attribute values.

Based on these representations, several formalisms have
been proposed to describe the visual language syntax, each
associated to ad-hoc scanning and parsing techniques: Rela-
tional Grammars [23], Constrained Set Grammars [17], and
(Extended) Positional Grammars [10]. (For a more exten-
sive overview, see Marriott and Meyer [18] or Costagliola
et al. [8].) In general, such visual grammars are specified
by providing an alphabet of graphical symbols with their
“physical” appearance, a set of spatial relationships gener-
ally defined on symbol position and attachment points/ar-
eas, and a set of grammar rules in context-free like format.

A large number of tools exist for prototyping visual lan-
guages. These are based on different types of visual gram-
mar formalisms and include, among others, VLDesk [9],
DiaGen [19], GenGed [2], Penguin [6], AToM3 [11], and
VL-Eli [15].

Despite the context-free like rule format, visual gram-
mars are not easy to define and read. This may explain
why there has not been much success in transferring these

techniques from research labs into real-world applications.
We observe that several visual languages in use today are
simple languages that focus on basic components and their
expressive power. These languages do not need to be de-
scribed with complex grammar rules. Our approach pro-
vides a simpler specification for many of them, making it
easier to define and quickly prototype visual languages.

3 Local Context Specification of Visual Lan-
guages

According the to the attribute-based representation, a vi-
sual sentence is given by a set of symbols defined by a set of
typed attaching points linked through connectors. In [7], the
local context specification of a visual language consists in
the definition of the sets of graphical elements (named sym-
bols) and spatial relations (named connectors) composing
the language and, for each of them, their attributes. These
are:
• Name of the graphical symbol;
• Graphical aspect (for example, specified through an

svg-like format);
• Maximum mumber of occurrences of the symbol in a

sentence of the language;
• Attachment areas: an attachment area is a set of points

(possibly one) through which symbols and connectors
can be connected. For each area the following at-
tributes have been identifed:

– Name of the attachment area;
– Position: the location of the attachment area on

the symbol or connector;
– Type: an attachment area of a symbol can be con-

nected to an an attachment area of a connector
only if they have the same type;

– Local constraints: such as the max number of
possible connections for an attachment area.

As a further and sentence level constraint, a local-context
based specification may assume that the underlying spatial-
relationship graph of any sentence of the specified language
is connected.

As an example, Table 1 shows the attributes of the
statement symbol STAT and the connector ARROW when
considered as alphabetical elements of a particular set of
flowcharts. The specification states that STAT has the
graphical aspect of a rectangle; it has two attaching areas
named IN and OUT corresponding to the upper and lower
sides of the rectangle, respectively; it may occur zero or
more times in a flowchart; the attachment area IN can only
be connected to an attachment area of a connector with type
enter, while the attachment area OUT can only be con-
nected to an attachment area of a connector with type exit.
Moreover, IN may participate in one or more connections,
while OUT may participate in only one connection. As re-

2



Symbol Attachment areas
Symbol name Graphics occurrences name type constraints

STAT ≥ 0
IN enter connectNum ≥ 1

OUT exit connectNum = 1

Attachment areas
Connector name Graphics name type constraints

ARROW
HEAD enter connectNum = 1

TAIL exit connectNum = 1

Table 1: Attribute specification for the symbol STAT and the connector ARROW.

gards the connector ARROW, its graphical appearance is
given by a line with a head and the attachment areas are
located to the head (HEAD) and tail (TAIL) of the arrow it-
self. An arrow can be connected to only one symbol through
its head and only one symbol through its tail. In [7], com-
plete local context specifications for a particular set of Tur-
ing complete flowcharts and for binary trees are given to
show how local context can be used to fully specify the syn-
tax of visual languages.

3.1 New Local Context Features

In order to capture as much as possible of the syntax of
complex languages other than flowcharts and binary trees
and to keep simplicity, new local features need to be added
to the original definition of local context. In particular, we
introduce the possibility of
• defining symbol level constraints involving more than

one attaching area of a symbol/connector as opposed
to constraints on individual attaching areas;
• assigning multiple types to attaching areas;
• defining constraints to limit connector self loops.
These features allow us to give complete local context

specifications of complex languages such as the entity rela-
tionship diagrams, class diagrams, and use case diagrams.
In the following, we show the practical usefulness of this
extension by referring to the local context specifications of
the use case diagrams and the entity-relationship diagrams.

Symbol level constraints. Table 2 shows the binary
version of the relation symbol of the well-known entity-
relationship (E-R) graphical notation. Each vertex of the
symbol has one attaching point (Up, Down, Left or Right)
of type enter. In order to force its use as an E-R binary
relation (as opposed to ternary) the constraints need to set
the sum of all their connections to two, apart from requiring
that the number of connections to each attaching point be
at most one. In this case, the feature simplifies the speci-
fication by avoiding that a designer define all the possible
ways a binary relation symbol can be attached to the other
symbols.

Multiple types and Connector self loop constraints. Ta-
ble 3 shows the complete specification of the use case
graphical notation, while Figure 1 shows some examples of
correct and incorrect sentences. In the table, the language
symbols and connectors are specified in the first and second
part while, for sake of completeness, the last row declares,
if present, any requirement at sentence level. It can be noted
that the attachment area Border of the symbol ACTOR (first
table row) has two types GenA and AssOut. By consider-
ing the Connector part of the table, this means that an AC-
TOR can be connected through its border to both the head
and tail of the GENERALIZATION A connector (through
GenA) and also to the attaching point P1:P2 of the connec-
tor ASSOCIATION (through AssOut). Moreover, because
of the constraint numLoop = 0 , a GENERALIZATION A
connector cannot be connected to the border of an ACTOR
with its head and tail, simultaneously.

In Figure 1, case (b) shows the correct use of connector
GENERALIZATION Uc, while case (d) shows the correct
use of connector GENERALIZATION A.

The use of these new features allow the language de-
signer more flexibility in the definition of the language.
However, multiple types must be carefully used when deal-
ing with connectors with the same graphical aspect since
they may introduce ambiguities in the language.

It is not difficult to see that Table 3 completely specifies
the syntax of the use case graphical notation as presented
in http://agilemodeling.com/artifacts/useCaseDiagram.htm
but without the optional “System boundary boxes”.

With respect to a grammar definition, the new specifi-
cation is basically distributed on the language elements in-
stead of being centralized.

As a final note, the selection of which language elements
are symbols and which are connectors is completely left to
the language designer. Moreover, connectors may not have
a graphical representation (such as the relationships “touch-
ing”, “to the left of”).

3



Symbol Symbol Attachment points
name Graphics occurrences name type constraints

BIN REL ≥ 0

Up ConA connectNum(X ) ≤ 1 for X =
Up,Down,Left ,Right ∧ (connectNum(Up) +
connectNum(Down) + connectNum(Left) +
connectNum(Right) = 2) ∧
(connectNum(Border) ≥ 0)

Left ConA
Right ConA
Down ConA
Border ConB

Table 2: ER binary relation specification.

Symbol Attachment points
Symbol name Graphics occurrences name type constraints

ACTOR ≥ 1 Border
GenA

connectNum ≥
0 ∧ numLoop = 0

AssOut connectNum ≥ 0

USE CASE ≥ 1 Border

GenUc
connectNum ≥

0 ∧ numLoop = 0

AssIn connectNum ≥ 0

Dep connectNum ≥
0 ∧ numLoop = 0

Attachment points
Connector Graphics name type constraints

ASSOCIATION P1 :P2 AssOut connectNum = 1
P2 :P1 AssIn connectNum = 1

GENERALIZATION A Head GenA connectNum = 1
Tail GenA connectNum = 1

GENERALIZATION UC Head GenUc connectNum = 1
Tail GenUc connectNum = 1

DEPENDENCY Head Dep connectNum = 1

Tail Dep connectNum = 1

Non local constraint
the spatial-relationship graph must be connected

Table 3: Use case diagrams language specifications.

4 The tool LoCoMoTiVE

The current implementation of the local context method-
ology includes the new set of constraints defined in the pre-
vious section and is composed of two different modules:
• LoCoModeler: the local context-based specification

editor, and
• TiVe: a web-based visual language environment for

editing and checking the correctness of the visual sen-
tences.

4.1 LoCoModeler

The LoCoModeler module allows designers to create
and edit visual language specifications based on local con-

text, quickly and easily. Its output is the formal definition
in XML format of the language that will be used during the
disambiguation and the recognition of diagrams. Once the
language designer has completed the specification, s/he can
compile it into a web-based environment (the TiVE module)
to allow users to draw sentences and verify their correct-
ness. During language definition, this feature also allows
the designer to check the correctness of the specification.

The main view of the LoCoModeller GUI is shown in
Figure 2. Its main components are:

• A textbox containing the name of the language and a
checkbox to enable/disable the option that diagrams
must necessarily be connected;
• A table reporting the main information of symbols and

connectors included in the language. It is possible to

4



(a) (incorrect) (b) (correct) (c) (incorrect)

(d) (correct) (e) (incorrect)

Figure 1: Simple instances of syntactically correct and in-
correct use case diagrams.

interact with the widgets in the selected row to edit
and/or delete it. The user can add new symbols or con-
nectors by using the buttons below the table.
• A panel (on the right) showing a graphical preview of

the symbol/connector selected in the table. It is possi-
ble to change the graphical representation of the sym-
bol by using the button Change.
• A table (in the center) showing the information related

to the selected symbol/connector. Each row specifies
the attachment points and their constraints. It is pos-
sible to add new rows by using the buttons above the
table;
• A textarea to specify the symbol/connector level con-

straints through C language-like expressions.

4.1.1 Wizard

A new language can be defined by using a wizard inter-
face. Through a sequence of three different views, the user
chooses the name of the language, its symbols and connec-
tors (see Figure 3). Symbols and connectors are chosen
from a hierarchical repository and their definition already
includes some attachment points having default types/con-
straints. The user can choose whether to keep the default
values or modify them.

(a) Language name selection

(b) Symbol selection

(c) Connector selection

Figure 3: Wizard.

4.2 TiVE: the visual language environment

Once the language is defined, the diagrams can be com-
posed by using the symbols and the connectors defined in its
specification. This can be done through the graphical editor
TiVE, which is a web application enabling diagram compo-
sition directly in the web browser and which is created by
and can also be launched from the LoCoModeler.

Figure 4 shows the environment. The central component
is the working area where the diagrams are composed. The
symbols and connectors used for diagram composition are
displayed in the sidebar, which contains only those elements
included in the definition of the language. An element can
be selected and dragged in the central working area.

The upper toolbar provides shortcuts to features such as
zoom manipulation, changing fonts, checking diagram cor-
rectness, etc.

The correctness of a diagram can be checked at any point
of the diagram composition. The diagram in Figure 5 rep-
resents an ER diagram with two entities interconnected by

5



Figure 2: The Local Context-based Modeler.

a binary relation. The diagram is correct and, by launching
the check, an alert reports the positive result of the verifi-
cation. The diagram in Figure 6, instead, represents an in-
correct ER diagram, as the relation (the diamond symbol) is
connected to a single entity (the rectangle). This violates the
local constraints defined for the relation symbol in the lan-
guage. In fact, in this language, relations must be connected
to two or three entities through the diamond’s vertices.

4.3 Implementation

The LoCoModeler allows the user to produce the lan-
guage specification in XML format. The specification is
used during the removal of ambiguities and the recognition
of symbols and connectors.

TiVE is based on Draw.io (https://www.jgraph.com),
which is a free web application that allows users to create
charts directly from the browser and integrates with Google
Drive and Dropbox to store data. Draw.io is in turn based on
the mxGraph library, which renders the diagram and stores
its structure in the form of a graph, where symbols and con-
nectors are its vertices. We modified the library to handle
attaching points of symbols and connectors.

In a typical thin-client environment, mxGraph is divided
into a client-side JavaScript library and a server side library
in one of the two supported languages: .NET and Java. The

Figure 4: The TiVE home page.

JavaScript library is a part of a larger web application. The
JavaScript code uses vector graphics to render the chart.
The languages used are SVG (Scalable Vector Graphics) for
standard browsers and VML (Vector Markup Language) for
Internet Explorer.

An implementation of the tool can be downloaded at the
address http://weblab.di.unisa.it/locomotive.

6



Figure 5: Successful diagram verification (no error found).

Figure 6: Failed diagram verification (one error found).

5 Evaluation

We ran a user study aimed at measuring users’ capac-
ity to define visual languages using our tool. Furthermore,
we recorded the perceived usability of the system through a
questionnaire.

5.1 Participants

Our participants were six male and four female Italian
university students in computer science (six master students
and four phd students), aged between 22 and 45 (M = 26.8,
SD = 6.9), with no previous experience with the system.

Participants were asked to evaluate, with a 5-point Lik-
ert scale, their prior knowledge in programming, diagrams,
compilers, formal languages, flowchart and other visual lan-
guages. The average and standard deviations of the re-
sponses are reported in Table 4.

Knowledge Avg. St. dev.
Programming 4.40 0.70

Diagrams 3.40 0.84
Compilers 2.90 1.10

Formal languages 3.40 1.07
Flowchart 3.40 0.97

Other visual languages 2.80 1.14

Table 4: Participants prior knowledge evaluation with a 5-
point Likert scale.

(a) BEGIN (b) END (c) STAT (d) IO (e) PRED

Figure 7: Flowchart symbols.

5.2 Apparatus

The experiment was executed on a Dell Precision T5400
workstation equipped with an Intel Xeon CPU at 2.50 GHz
running Microsoft Windows 8.1 operating system, the Java
Run-Time Environment 7, and the Firefox browser.

5.3 Procedure

Participants were asked, as a single task of the session,
to define a visual language. In particular, they were asked to
create a simplified version of flowcharts, as defined in [7],
with the following features:
• The language only includes a small set of blocks (start,

end, I/O, decision, processing - shown in Figure 7) and
an arrow as a connector;
• The handling of text within blocks or arrows is not re-

quired;
• An arrow is always directed at the top of a block and

comes out from its bottom;
Participants were asked to specify all the constraints neces-
sary to ensure that only well formed flowcharts would pass
the correctness check. Furthermore, they were required to
carefully check they had defined the language correctly be-
fore submitting the task. The time limit for task completion
was half an hour.

Before the experimental session, each participant had a
brief tutorial phase where an operator (one of the authors)
explained him/her the purpose and operation of the system
and instructed him/her about the experimental procedure
and the task. While showing the operation of the system,
the operator also showed participants how to use our tool
to define a simple visual language, in this case a simplified
version of ER diagrams.

7



A post-test questionnaire in the form of System Usabil-
ity Scale (SUS) [5] was administered to participants at the
end of the experiment. SUS is composed of 10 statements
to which participants assign a score indicating their strength
of agreement in a 5-point scale. The final SUS score ranges
from 0 to 100. Higher scores indicate better perceived us-
ability. We also gathered some participants’ freeform com-
ments.

5.4 Results

Two participants out of ten completed the experiment
defining the language perfectly, seven completed the exper-
iment with minor inaccuracies in the language definition,
while only one of them completed the experiment with ma-
jor inaccuracies. Here, for minor inaccuracies, we mean
small errors that allow user to compose at least one in-
valid diagram which however satisfied the user’s language
specification. Typical errors are inaccuracies in defining at-
tachment points cardinality. The participant who committed
major errors was unable to compose and correctly compile
any diagram. The average task completion time was 25.5
minutes.

The responses given by participants to the statements in
the SUS questionnaire are reported in Table 5. In particular
the responses to statements 1, 3, 5, 7 and 9 show that partic-
ipants appreciate the system, that they considered it simple
to use and easy to learn even for non-experts of visual lan-
guages. Moreover the responses to questions 2, 4, 6, 8 and
10 show that participants did not feel they need support to
use the system and did not found the system complex, intri-
cate or inconsistent.

The scores of the questionnaire calculated on the re-
sponses of the participants range from 37.5 to 95, with an
average value of 80.0, which value indicates a good level of
satisfaction [1]. As it can be seen from the data in the ta-
ble, only a single participant (the one who committed major
errors) expressed a negative judgment on the tool.

In addition, participants provided some freeform sugges-
tions for improving the system: most of the criticism was
expressed on the editor for diagram composition tool, which
was not felt to be very user-friendly. In particular, partici-
pants noticed that some basic operations for diagram com-
position, such as the insertion of connectors, are surpris-
ingly uncomfortable. Furthermore, one participant pointed
out that the editor is not well integrated with the VLDE.

6 Conclusions

In this paper we have presented a framework for the fast
prototyping of visual languages exploiting their local con-
text based specification. We have shown how to define a vi-
sual language by extending the local context with three new

features and have presented a simple interface for its im-
plementation LoCoMoTiVE. Moreover, we have described
a user study for evaluating the satisfaction and effective-
ness of users when prototyping a visual language. At the
moment, the user study has been limited to the simpler ver-
sion of the local context methodology in order to provide
us with a first feedback. Given the encouraging results, we
are now planning to test the usability of LoCoMoTive with
more complex applications.

The local context approach may then greatly help visual
language designers to prototype their languages very eas-
ily. However, more studies are needed to investigate the
computational borders of the approach. Our intention is not
too push local context features more than needed, keeping
simplicity as a priority. More complex language constructs
should then be left to the following phases of the recognition
process as it is the case for programming language compiler
construction.

As a final goal, we are working on the integration of the
local context approach in frameworks for the recognition of
hand drawn sketches, as shown in [7].

References

[1] A. Bangor, P. T. Kortum, and J. T. Miller. An Empirical
Evaluation of the System Usability Scale. International
Journal of Human-Computer Interaction, 24(6):574–594,
2008.

[2] R. Bardohl. Genged: a generic graphical editor for visual
languages based on algebraic graph grammars. In Visual
Languages, 1998. Proceedings. 1998 IEEE Symposium on,
pages 48–55, Sep 1998.

[3] R. Bardohl, M. Minas, G. Taentzer, and A. Schürr. Hand-
book of graph grammars and computing by graph transfor-
mation. chapter Application of Graph Transformation to Vi-
sual Languages, pages 105–180. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 1999.

[4] P. Bottoni and G. Costagliola. On the definition of visual
languages and their editors. In M. Hegarty, B. Meyer, and
N. Narayanan, editors, Diagrammatic Representation and
Inference, volume 2317 of Lecture Notes in Computer Sci-
ence, pages 305–319. Springer Berlin Heidelberg, 2002.

[5] J. Brooke. Sus: A quick and dirty usability scale. In P. W.
Jordan, B. Weerdmeester, A. Thomas, and I. L. Mclelland,
editors, Usability evaluation in industry. Taylor and Francis,
London, 1996.

[6] S. S. Chok and K. Marriott. Automatic construction of in-
telligent diagram editors. In Proceedings of the 11th Annual
ACM Symposium on User Interface Software and Technol-
ogy, UIST ’98, pages 185–194, New York, NY, USA, 1998.
ACM.

[7] G. Costagliola, M. De Rosa, and V. Fuccella. Local context-
based recognition of sketched diagrams. Journal of Visual
Languages & Computing, 25(6):955–962, 2014. Distributed
Multimedia Systems {DMS2014} Part I.

8



Question U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 Avg.
resp.

St.
dev.

S1 I think that if I needed to define a vi-
sual language I would use this system

4 5 4 4 4 3 5 3 5 5 4.2 0.79

S2 I found the system unnecessary com-
plex

1 1 1 2 4 2 2 4 1 2 2.0 1.15

S3 I found the system very easy to use 5 5 5 4 4 4 4 2 5 4 4.2 0.92
S4 I think I would need the support of a

person who is already able to use the
system

2 1 1 1 1 2 2 4 1 1 1.6 0.97

S5 I found the various system functions
well integrated

4 5 4 3 3 4 4 3 5 3 3.8 0.79

S6 I found inconsistencies between the
various system functions

2 1 1 2 1 1 1 2 1 2 1.4 0.52

S7 I think most people can easily learn to
use the system

5 4 5 4 5 4 5 3 5 4 4.4 0.70

S8 I found the system very intricate to use 2 1 1 1 2 2 2 4 1 2 1.8 0.92
S9 I have gained much confidence about

the system during use
4 4 4 5 5 4 3 2 4 5 4.0 0.94

S10 I needed to perform many tasks before
being able to make the best use of the
system

1 1 2 1 1 1 3 4 2 2 1.8 1.03

Score 85 95 90 82.5 80 77.5 77.5 37.5 95 80 80 16.33

Table 5: SUS questionnaire results (5-point Likert scale).

[8] G. Costagliola, V. Deufemia, and G. Polese. A framework
for modeling and implementing visual notations with appli-
cations to software engineering. ACM Trans. Softw. Eng.
Methodol., 13(4):431–487, Oct. 2004.

[9] G. Costagliola, V. Deufemia, and G. Polese. Visual lan-
guage implementation through standard compiler–compiler
techniques. Journal of Visual Languages & Computing,
18(2):165 – 226, 2007.

[10] G. Costagliola and G. Polese. Extended positional gram-
mars. In Proc. of VL ’00, pages 103–110, 2000.

[11] J. de Lara and H. Vangheluwe. Atom3: A tool for multi-
formalism and meta-modelling. In R.-D. Kutsche and
H. Weber, editors, Fundamental Approaches to Software En-
gineering, volume 2306 of Lecture Notes in Computer Sci-
ence, pages 174–188. Springer Berlin Heidelberg, 2002.

[12] E. J. Golin. Parsing visual languages with picture layout
grammars. J. Vis. Lang. Comput., 2(4):371–393, Dec. 1991.

[13] E. J. Golin and S. P. Reiss. The specification of visual lan-
guage syntax. J. Vis. Lang. Comput., 1(2):141–157, June
1990.

[14] R. J. and A. Schurr. Defining and parsing visual languages
with layered graph grammars. Journal of Visual Languages
& Computing, 8.1:27–55, 1997.

[15] U. Kastens and C. Schmidt. Vl-eli: A generator for vi-
sual languages - system demonstration. Electr. Notes Theor.
Comput. Sci., 65(3):139–143, 2002.

[16] N. Le Novere et al. The systems biology graphical notation.
Nature Biotechnology, 27:735–741, 2009.

[17] K. Marriott. Parsing visual languages with constraint multi-
set grammars. In M. Hermenegildo and S. Swierstra, ed-
itors, Programming Languages: Implementations, Logics
and Programs, volume 982 of Lecture Notes in Computer
Science, pages 24–25. Springer Berlin Heidelberg, 1995.

[18] K. Marriott and B. Meyer. On the classification of visual
languages by grammar hierarchies. Journal of Visual Lan-
guages & Computing, 8(4):375 – 402, 1997.

[19] M. Minas and G. Viehstaedt. Diagen: A generator for
diagram editors providing direct manipulation and execu-
tion of diagrams. In Proceedings of the 11th International
IEEE Symposium on Visual Languages, VL ’95, pages 203–,
Washington, DC, USA, 1995. IEEE Computer Society.

[20] I. Plauska and R. Damaševičius. Design of visual language
syntax for robot programming domain. Information and
Software Technologies Communications in Computer and
Information Science, 403:297–309, 2013.

[21] J. Quinn et al. Synthetic biology open lan-
guage visual (sbol visual), version 1.0.0, 2013.
http://sbolstandard.org/downloads/specification-sbol-visual/
[Online; accessed 4-June-2015].

[22] J. Rekers and A. Schurr. A graph based framework for
the implementation of visual environments. In Visual Lan-
guages, 1996. Proceedings., IEEE Symposium on, pages
148–155, Sep 1996.

[23] L. Weitzman and K. Wittenburg. Relational grammars for
interactive design. In Visual Languages, 1993., Proceedings
1993 IEEE Symposium on, pages 4–11, Aug 1993.

9


