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Abstract—With the growth of multimedia data, the prob-
lem of cross-media (or cross-modal) retrieval has attracted
considerable interest in the cross-media retrieval community.
One of the solutions is to learn a common representation
for multimedia data. In this paper, we propose a simple but
effective deep learning method to address the cross-media
retrieval problem between images and text documents for
samples either with single or multiple labels. Specifically, two
independent deep networks are learned to project the input
feature vectors of images and text into an common (isomorphic)
semantic space with high level abstraction (semantics). With
the same dimensional feature representation in the learned
common semantic space, the similarity between images and text
documents can be directly measured. The correlation between
two modalities is built according to their shared ground truth
probability vector. To better bridge the gap between the images
and the corresponding semantic concepts, an open-source CNN
implementation called Deep Convolutional Activation Feature
(DeCAF) is employed to extract input visual features for the
proposed deep network. Extensive experiments on two publicly
available multi-label datasets, NUS-WIDE and PASCAL VOC
2007, show that the proposed method achieves better results
in cross-media retrieval compared with other state of the art
methods.

Keywords-cross-media retrieval; cross-modal retrieval; deep
learning.

I. INTRODUCTION

Nowadays, with the development of Internet, an enormous
amount of multimedia data, e.g., image, text documents
and videos, have been generated. These data with various
modalities usually co-occur to describe the same objects
or events. For example, images are usually accompanied
with a textual description to represent the same meaning.
Learning the relationships among different modalities is
becoming an interesting research topic which can benefit
many important applications, such as multimedia retrieval
and content creation. In this work, we address the cross-
media retrieval problem between images and text documents,
i.e., using an image to retrieve text and using text to retrieve
images, as illustrated in Fig. 1. Although here we only focus
on two modalities, i.e., image and text, our method can be
easily adapted to other modalities.

During the past few years, many cross-media retrieval
methods have been proposed [1], [2], [3]. As two typical
methods, Canonical Correlation Analysis (CCA) [4] and
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Figure 1: The cross-media retrieval task considered in this
paper. (a) Using text as a query to retrieve relevant images.
(b) Using an image as a query to retrieve relevant text.

Partial Least Squares [5], [6] are usually adopted to learn a
couple of projections to maximize the correlations between
two variables. Some methods have been proposed based
on CCA. One of them is a Semantic Correlation Matching
method [1], which leverages multi-class logistic regression
to produce an isomorphic semantic space for cross-media
retrieval. In [2], a generic framework called Generalized
Multiview Analysis was presented to address multimedia
problems. More recently, [3] proposed a multi-view CCA
model by introducing a semantic view to achieve a better
separation for multimedia data of different classes in the
learned isomorphic space.

Although these methods have made contributions to the
solution of cross-media retrieval tasks, their performance is
still far from satisfactory. This is because the performance
of cross-media retrieval between images and text is highly
dependent on visual feature representation, but traditional
feature extraction techniques have been undergoing a bot-
tleneck period for image understanding in the past few
years. Recently, significant progress has been made in im-
age classification due to the development of convolutional
neural networks (CNN) [7], [8], [9]. Especially, [9] has
demonstrated promising results for image classification in
the 2012 ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [10]. More recently, [11] has released an
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open-source implementation of an eight-layer network called
DeCAF, which is trained on ImageNet with 1,000 classes,
and has demonstrated that CNN features are suitable as
general features for various tasks.

In this paper, we propose a deep learning method to
address the cross-media retrieval problem with multi-label.
As shown in Fig. 2, two independent fully-connected deep
networks are trained to project input feature vectors of
images and text into an isomorphic semantic space with
higher level abstraction. Specifically, we employ DeCAF to
extract the visual feature of each image as the input feature
vector of Image Net. For Text Net, the input feature vector
can be extracted by many traditional feature extraction tech-
niques, such as the bag-of-words. Since the proposed method
is supervised, the correlation between two modalities can
be built according to their shared ground truth probability
vector. Both two networks have two hidden layers and one
output layer, and the squared loss is employed as the loss
function. Experiments on NUS-WIDE and PASCAL VOC
2007 demonstrate a significant performance improvement
over other methods.

The remainder of this paper is organized as follows. We
briefly review the related work of cross-media retrieval in
Section II. In Section III, we present the proposed method
in details. After that, experimental results and analysis are
reported in Section IV. Finally, Section V presents the
conclusions.

II. RELATED WORK

Based on Canonical Correlation Analysis (CCA) [4],
some methods [1], [2], [3], [12] are proposed to lean a
common space for multimedia data of different modality, in
which the distance between two media objects with similar
semantics could be minimized while those with different
semantics could be maximized. Specifically, Gong et al. [3]
presented a multi-view CCA method via introducing a third
view, i.e., semantic view, to better separate the multimedia
data with different semantics in the learned latent common
space. The semantic view representation can be obtained
through supervised information as well as clustering analy-
sis. Similarly, a cluster CCA method, which also focuses on
learning discriminant common space to maximize the cor-
relation of different kinds of multimedia data, was proposed
by [12]. In this work, the separation for multimedia data with
of different semantics was achieved via an unsupervised way.

Besides, with the ever-growing large-scale multimedia
data on the Internet, much attention has been devoted to
nearest neighbor search. To address this time-consuming
problem, some hashing-based methods [13], [14], [15] have
attracted a lot of interest. In [13], a cross view hashing
(CVH) method was proposed to generate hash codes by
minimizing the distance of hash codes for similar data while
maximizing the distance for dissimilar data. Wu et al. [14]
presented a sparse hashing method to obtain sparse code sets

for the data of different modalities through joint multimedia
dictionary learning.

In addition, with the development of deep learning, some
deep models [16], [17], [18] have been proposed to address
multimedia problem. Specifically, Andrew et al. [17] adapt
the CCA into the deep model to learn complex nonlinear
transformations of different multimedia data. Based on Re-
stricted Boltzmann Machine, Ngiam et al [16] proposed to
learn a shared representation between different modalities of
multimedia data.

III. THE PROPOSED METHOD

In this section, we will detail the proposed deep learning
method for cross-media retrieval. We will first describe the
architectures of the two deep networks as well as the training
parameters, and then introduce the Euclidean loss function
used in the training process.

A. Network Architecture

As shown in Fig. 2, we build two independent networks,
i.e., Image Net and Text Net, to map images and text from
their input feature spaces into a common semantic space
respectively. Each network consists of two hidden layers
and one output layer. For Image Net, we employ DeCAF
for image feature extraction. Specifically, each image is
firstly resized to 256×256 and fed into DeCAF, which is
pre-trained on the ImageNet dataset with 1,000 classes.
Different from the previous work [11], which used CNN
features (DeCAF5, DeCAF6 or DeCAF7; refer to [11] for
more details) to represent a given image, we utilize the 1000
dimensional predictive scores of each image as the input
visual feature of the proposed deep network. The reason for
this choice is that the predictive scores provide a probability
distribution over 1,000 classes from the ImageNet dataset
and the relationship between this kind of visual features and
ground truth can be easily built. For Text Net, since textual
features usually have greater discriminative power than tradi-
tional visual features (e.g., SIFT and HOG), the relationship
between textual features and ground truth can be more easily
built. Therefore, many feature extraction techniques, such as
bag-of-words, can be employed to extract the input textual
features for Text Net.

Denote h(0) ∈ Rd0 as the input feature vector of
Image Net (or Text Net). dt is regarded as the output
dimension of the tth layer (the input can be considered as
the 0th layer for convenience). The outputs of the subsequent
three layers (two hidden layers and one output layer) can be
defined as

h(t) = σ
(
Wth

(t−1) + bt

)
, t = 1, 2, 3, (1)

where h(t) is the output vector, Wt ∈ Rdt×dt−1 is the matrix
of weights and bt ∈ Rdt is the vector of biases. σ(·) is the
activation function. In our work, we use the rectified linear
units (ReLU) as the nonlinear activation function.
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Figure 2: Two independent deep networks, Image Net and
Text Net, are trained to project images and text from their
original feature spaces into a common semantic space for
the cross-media retrieval. Both networks have three layers,
including two hidden layers and one output layer. Blue,
green and red nodes represent input features, hidden units
and output units, respectively.

The two networks are trained by stochastic gradient
descent with momentum of 0.9. Besides, each hidden layer
is followed by a dropout operation with a dropout ratio of
0.5 to combat overfitting. The global learning rate of these
two networks is set as 0.01 at the beginning and dynamically
changed according to the Euclidean loss(see below).

B. Euclidean Loss

To achieve the target that pairs of image and text can retain
similar feature representation in the common semantic space,
we utilize Euclidean loss as the cost function to optimize
both Image Net and Text Net. The output of the last layer
is fed into a c-way (c = d3) softmax, which generates
predictive scores over the c class labels. Suppose there are n
image-text pairs in the training set. The predicted probability
for the jth class of the ith input vector h(0)

i (image or text)
can be defined as

P (y = j|h(0)
i ) =

exp(fj(h
(0)
i ))∑c

k=1 exp(fk(h
(0)
i ))

, (2)

where f(·) can be considered as the mapping from the input
layer to the output layer and fj(h

(0)
i ) is the activation value

of h
(0)
i on class j. y indicates the class label. Since the

proposed method is targeted at multi-label problems, we can
form a label vector yi = [yi1, yi2, ...yic] for each image-text
pair. yij = 1 (j = 1...c) if the given sample is annotated

with class j, and otherwise yij = 0. We define the ground
truth probability vector of h

(0)
i as p̂i = yi/||yi||1 and the

predictive probability vector as pi = [pi1, pi2, ...pic], where
pij = P (y = j|h(0)

i ) (j = 1...c). Then, the cost function to
be minimized can be defined as

J =
1

n

n∑
i=1

c∑
k=1

(pik − p̂ik)2. (3)

IV. EXPERIMENTS

A. Dataset and Settings

We evaluate the performance of the proposed method
compared with other methods on two publicly available
datasets.
NUS-WIDE [19]: The dataset contains 269,648 images.
Each image is accompanied with 81 ground truth labels
(classes) and 1,000 text annotations. We select those pairs
belonging to one of the 20 most frequent classes and ignore
those pairs containing images without any ground truth label
or text annotation. Then, a subset of 52,829 pairs for training
and 35,216 pairs for testing can be obtained for evaluation.
PASCAL VOC 2007 [20]: There are 9,963 images of
20 classes in this dataset. A set of 399 words provided
by [21] is employed as the textual description for each
image. We conduct experiments on trainval and test splits,
which contain 5,011 and 4,952 pairs respectively.

We experimentally set d1 = 512, d2 = 256, d3 = 20 for
both Image Net and Text Net. Euclidean distance is used
to measure the similarity between features in the semantic
space. We compare the proposed method with three popular
methods, including two unsupervised methods, Canonical
Correlation Analysis (CCA) [4] and Partial Least Squares
(PLS) [5] which only utilize the pair-wise information, and
the linear version of one supervised method, Multi-view
CCA (Multi-CCA)1 [3]. We vary the embedding dimension-
ality for these methods, i.e., 20, 128 and 512, and report
the best performance. All the methods project images and
text from their input feature spaces into a 20 dimensional
common semantic space.

To get effective feature representation of visual repre-
sentations for both NUS-WIDE and PASCAL VOC 2007,
DeCAF 2 is employed in our method to extract the 1,000
dimensional predictive scores as the visual feature for each
image. We use the 1,000 dimensional bag-of-words features
provided by [19] as the textual features for NUS-WIDE and
use the 798 dimensional tag ranking features (relative and
absolute) provided by [21] as the textual features for PAS-
CAL VOC 2007. Besides, to validate the effectiveness of the
visual features used in this work, we do a comparison with
other visual features based on CCA, PLS and multi-view
CCA. For NUS-WIDE, we use the 500 dimensional Bag-
of-SIFT-Words (SIFT-BoW) [22] features provided by [19]

1http://www.unc.edu/ yunchao/crossmodal.htm
2https://github.com/UCB-ICSI-Vision-Group/decaf-release



Table I: Cross-media retrieval performance on the NUS-
WIDE dataset (mAP scores).

Method I2T T2I Average
CCA (SIFT-BoW) 0.226 0.205 0.216

CCA (DeCAF) 0.277 0.262 0.270
PLS (SIFT-BoW) 0.316 0.181 0.249

PLS (DeCAF) 0.203 0.314 0.259
Multi-CCA (SIFT-BoW) 0.353 0.280 0.317

Multi-CCA (DeCAF) 0.439 0.315 0.377
Proposed 0.486 0.409 0.448

Table II: Cross-media retrieval performance on the PASCAL
VOC 2007 dataset (mAP scores).

Method I2T T2I Average
CCA (GIST+HSV+SIFT-BoW) 0.368 0.345 0.357

CCA (DeCAF) 0.638 0.618 0.628
PLS (GIST+HSV+SIFT-BoW) 0.380 0.348 0.364

PLS (DeCAF) 0.351 0.574 0.463
Multi-CCA (GIST+HSV+SIFT-BoW) 0.475 0.436 0.456

Multi-CCA (DeCAF) 0.709 0.577 0.643
Proposed 0.781 0.689 0.735

as the visual representations. For PASCAL VOC 2007, the
776 dimensional visual features, each of which contains
a 512 dimensional GIST [23] feature, a 64 dimensional
color feature (i.e., HSV) and a 200 dimensional SIFT-
BoW feature, provided by [21] are employed as the visual
representations.

B. Evaluation Metrics

In this paper, we consider two retrieval tasks, i.e., us-
ing image to retrieve text documents (I2T) and using text
document to retrieve images (T2I). Retrieval performance is
evaluated by mean average precision (mAP), which is one
of the standard information retrieval metrics. In particular,
given a set of queries, the average precision (AP) of each
query is defined as:

AP =

∑R
k=1 P (k)rel(k)∑R

k=1 rel(k)
,

where R denotes the number of retrieved results. rel(k) = 1
if the item at rank k is relevant, rel(k) = 0 otherwise. P (k)
is the precision of retrieved results ranked at k. We can get
the mAP score by averaging AP for all queries. Since NUS-
WIDE and PASCAL VOC 2007 are two multi-label datasets,
it is regarded as a relevant result if the retrieved result shares
at least one class label with the query.

C. Results

Table I and Table II report our experimental results
on NUS-WIDE and PASCAL V0C 2007, respectively. We
can observe that the proposed method makes a significant
improvement over any compared method on NUS-WIDE
and PASCAL VOC 2007 (44.8% and 73.5%). This is
because the proposed two deep networks can effectively
build the relationship between the input feature vectors and

the shared ground truth probability vectors with Euclidean
loss function. In addition, the improvement of our method
may also depend on the effective visual features. It can be
observed that DeCAF works better than other image feature
extraction techniques. This observation is reasonable, since
DeCAF is pre-trained with about 100 million labeled images
(i.e., ImageNet), which can make the learned visual features
have sufficient representational power. Fig. 3 shows some
examples accompanied with their visual features and textual
features in the learned common semantic space on PASCAL
VOC 2007. From Fig. 3, it can be seen that each image-
text pair usually has a similar probability distribution in
the common semantic space, which can further validate the
effectiveness of our method.

V. CONCLUSIONS

In this paper, we proposed a deep learning method for
cross-media retrieval. We trained two independent deep
networks to map input feature vectors of images and text
documents into an isomorphic semantic space, respectively.
Especially, we took 1,000 dimensional predictive scores
produced by an open-source CNN implementation called
DeCAF, which is pre-trained on the ImageNet dataset with
1,000 classes, as the input visual features of Image Net.
Extensive experimental results on NUS-WIDE and PASCAL
VOC 2007 show that the proposed method can achieve a
better performance in cross-media retrieval task compared
with other methods.
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Figure 3: Some examples on PASCAL VOC 2007. The first and second rows plot the 20 dimensional semantic feature
vectors of image and text corresponding to examples given in the third row. Ground truth labels are highlighted with red
color.
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