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Abstract

We describe RankFrag: a technique which uses ma-
chine learning to detect corner points in hand-drawn digital
curves. RankFrag classifies the stroke points by iteratively
extracting them from a list of corner candidates. The points
extracted in the last iterations are said to have a higher
rank and are more likely to be corners. The technique has
been tested on three different datasets described in the lit-
erature. We observed that, considering both accuracy and
efficiency, RankFrag performs better than other state-of-art
techniques.

Keywords: corner finding, stroke segmentation, frag-
mentation, sketch recognition, machine learning, RankFrag

1 Introduction

The research on hand-drawn sketch recognition has had
a recent boost due to the diffusion of devices (smartphones
and tablets) equipped with touch screens. Sketched dia-
grams recognition raises a number of issues and challenges,
including both low-level stroke processing and high-level
diagram interpretation [11]. A low-level problem is the seg-
mentation (also known as fragmentation) of input strokes.
Its objective is the recognition of the graphical primitives
(such as lines and arcs) composing the strokes. Stroke seg-
mentation can be used for a variety of objectives, including
symbol [16, 4] and full diagram [3] recognition.

Most approaches for segmentation use algorithms for
finding corners, since these points represent the most no-
ticeable discontinuity in the graphical strokes. Some other
approaches [1] also find the so called tangent vertices
(smooth points separating a straight line from a curve or
parting two curves). Besides stroke segmentation, the iden-
tification of corners has other applications, including ges-
ture recognition [9] and gestural text entry [6, 5].

A high accuracy and the possibility of being performed
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in real time are crucial features for segmentation techniques.
Tumen and Sezgin [26] also emphasize the importance of
the adaptation to user preferences and drawing style and
to the particular domain of application. Adaptation can
be achieved by using machine learning-based techniques.
Machine learning has also proven to improve accuracy. In
fact, almost all of the most recent segmentation methods use
some machine learning-based technique.

The technique presented here, which we call RankFrag,
uses machine learning to decide if a candidate point is a
corner. Our technique is inspired by previous work. In par-
ticular, the work that mostly influenced our research is that
of Ouyang and Davis [20], which introduced a cost function
expressing the likelihood that a candidate point is a corner.
We adopt their cost function, but our corner finding pro-
cedure is different. The technique works by iteratively re-
moving points from a list of candidate corners. At each it-
eration, the point minimizing the cost function is classified
and, in the case it is not a corner, it is removed. As a point
is removed from the list, it is assigned a rank, which is a
progressively decreased integer value. Points with a higher
rank (a lower integer value) are more likely to be corners.
Another important characteristic of RankFrag is the use of
a variable “region of support” for the calculation of some
local features, which is the neighborhood of the point on
which the features are calculated. Most of the features used
for classification are taken from several previous works in
the literature [23, 15, 27, 21, 20]. Four novel features are
introduced.

We tested our technique on three different datasets pre-
viously introduced and already used in the literature to eval-
uate existing techniques. We compared the performance of
RankFrag to other state-of-art techniques [28, 26].

Summarizing, this paper introduces and evaluates:

1. a novel iterative procedure for finding corners in digital
curves;

2. the use of four previously untested features for corner
classification.

The rest of the paper is organized as follows: the next
section contains a brief survey on the main approaches forDOI reference number: 10.18293/VLSS2015-43
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sketch segmentation; in Section 3 we describe our tech-
nique; Section 4 presents the evaluation of the performance
of our technique in comparison to those of existing tech-
niques, while the results are reported in Section 5; lastly,
some final remarks and a brief discussion on future work
conclude the paper.

2 Related Work

According to a widely accepted classification [24], the
methods for corner detection in digital curves can be di-
vided in two categories: those that perform a classification
of the points and those that compute a piecewise approxi-
mation of the curves.

The former methods evaluate some features on the points
of the stroke, after they have possibly been resampled, e.g.
at a uniform distance. Curvature and speed are the features
that have been used first. In particular, the corners are iden-
tified by looking at maxima in the curvature function or at
minima in the speed function. Lately, methods based on
machine learning have begun to consider a broader range of
features.

One of the first methods proposed in the literature is [24],
which assesses the curvature through three different mea-
sures. The authors also propose an advanced method for
the determination of the region of support for local features.
One of the first methods based on the simple detection of
speed minima is [14]. Given the inaccuracy of curvature
and speed taken individually, it was decided to evaluate
them both in combination: [22] uses a hybrid fit by com-
bining the set of candidate vertices derived from curvature
data with the candidate set from speed data.

A method introducing a feature different from curvature
and speed is ShortStraw [27]. It uses the straw of a point,
which is the segment connecting the endpoints of a win-
dow of points centered on the considered point. The method
gave good results in detecting corners in polylines by select-
ing the points having a straw of length less than a certain
threshold. Subsequently, the method has been extended by
Xiong and LaViola [28] to work also on strokes containing
curves.

One of the first methods to use machine learning for cor-
ner finding is the one described in [20]. It is used to seg-
ment the shapes in diagrams of chemistry. A very recent
one is ClassySeg [13], which works with generic sets of
strokes. The method firstly detects candidate segment win-
dows containing curvature maxima and their neighboring
points. Then, it uses a classifier trained on 17 different fea-
tures computed for the points in each candidate window to
decide if it contains a corner point.

The approaches for computing a piecewise approxima-
tion of digital curves try to fit lines and curves sequentially
in a stroke; the dominant points then correspond to the in-

tersections of adjacent substrokes. The problem of finding
the optimal subset of the n points of the stroke has an expo-
nential complexity. Nevertheless, almost all the algorithms
that implement this approach use dynamic programming to
reduce the exponential runtime complexity to O(n2). The
first work [2] dates back to 1961. This algorithm fixes the
number of segments and finds the solution minimizing the
error. An algorithm proposed later [8] fixes the error and
minimizes the number of segments. The algorithms also
differ for the norm they use to measure the approximation
error. A recent method, called DPFrag [26] learns primitive-
level models from data, in order to adapt fragmentation to
specific datasets and to user preferences and sketching style.

Lastly, there are hybrid methods, which use both the ap-
proaches mentioned above. SpeedSeg [12] and TCVD [1]
are examples of such methods. TCVD is also able to find
both the corners and the points where there is a significant
change in curvature (referred to as “tangent vertices” in [1]).
In order to detect corners, the former method mainly relies
on pen speed while the latter uses a curvature measure. Tan-
gent vertices are found through piecewise approximation by
both methods.

3 The Technique

Our technique segments an input stroke in primitives by
breaking it in the points regarded as corners. As a prelim-
inary step, a Gaussian smoothing [10] is executed on the
raw points in order to reduce the resampled stroke noise.
Then, the stroke is processed by resampling its points to
obtain an equally spaced ordered sequence of points P =
(p1, p2, . . . , pn), where n varies depending on a fixed space
interval and on the length of the stroke.

In order to identify the corners, the following three steps
are then executed:

1. Initialization;

2. Pruning;

3. Point classification.

The initialization step creates a set D containing n pairs
(i, c), for i = 1 . . . n where c is the (initial) cost of pi and is
calculated through Eq. 1 derived, through some simplifica-
tion steps, from the cost function defined in [20].

Icost(pi) =

{
[dist(pi; pi−1, pi+1)]

2 if i ∈ {2, . . . , n− 1}
+∞ if i = 1 or i = n

(1)

In the above equation, the term dist(pi; pi−1, pi+1) indi-
cates the minimum distance between pi and the line seg-
ment formed by (pi−1, pi+1). Since p1 and pn do not
have a preceding and successive point, respectively, they
are treated as special cases and given the highest cost.
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The pruning step iteratively removes n−u elements from
D in order to make the technique more efficient. The value
u is the number of candidate corners not pruned in this step
and depends on the complexity of the strokes in the tar-
get dataset. Its value has no effect on the accuracy of the
method, provided that it is conservatively chosen so that no
corner is eliminated in the pruning step. However, too high
a value for this parameter may affect its efficiency.

At each iteration, the element m with the lowest cost
is removed from D and the costs of the closest preceding
points ppre in P and the closest successive point psuc in P
of pm, with pre and suc occurring in the set {i : (i, c) ∈
D}, are updated through Eq. 2 derived from the cost func-
tion defined in [20].

Cost(pi) =


√

mse(S; pipre , pisuc)× dist(pi; pipre , pisuc)

if i ∈ {2, . . . , n− 1}
+∞ if i = 1 or i = n

(2)

In the above equation,

• the points pipre and pisuc are, respectively, the closest
preceding and successive points of pi in P , with ipre
and isuc occurring in the set {i : (i, c) ∈ D};

• S = {pipre, . . . , pisuc} is the subset of points between
pipre and pisuc in the resampled stroke P ;

• mse(S; pipre, pisuc) is the mean squared error be-
tween the set S and the line segment formed by
(pipre, pisuc);

• the function dist is defined as for Eq. 1.

The point classification step returns the list of points rec-
ognized as corners by further removing from D all the pairs
with indices of the points that are not recognized as corners.
This is achieved by the following steps:

1. find the current element in D with minimum cost (if
D contains only pairs with indices 1 and n, return an
empty list);

2. calculate the features of the point corresponding to the
current element and invoke the binary classifier, previ-
ously trained with data.

• if the classifier returns false, delete the element
from D, make the necessary updates and go to 1.

• if the classifier returns true, proceed to consider
as current the next element in D in ascending cost
order. If the corresponding point is one of the
endpoints of the stroke, return the list of points
corresponding to the remaining elements in D
(except for 1 and |P |), otherwise go to 2.

In Fig. 1, the function DETECTCORNERS() shows the
pseudocode for the initialization, pruning and point classi-
fication steps. In the pseudocode, D is the above described
set with the following functions:

• INIT(L) initialize D with all the (i, c) pairs contained
in L;

• FINDMINC() returns the element of D with the lowest
cost;

• PREVIOUSI(i) returns j such that (j, c′) is the closest
preceding element of (i, c) in D, i.e., j = max{k |
(k, c) ∈ D and k < i};

• SUCCESSIVEI(i) returns j such that (j, c′) is the clos-
est successive element of (i, c) in D, i.e., j = min{k |
(k, c) ∈ D and k > i};

• SUCCESSIVEC(i) returns the successive element of
(i, c) in D with respect to the ascending cost order;

• REMOVE(i) removes (i, c) from D;

• UPDATECOST(i, c) updates the cost c′ to c for (i, c′)
in D.

DETECTCORNERS() calls a CLASSIFIER(i, P , D) function
that computes the features (described in Section 3.2) of the
point P [i], and then uses them to determine if P [i] is a cor-
ner by using a binary classifier previously trained with data
(described in Section 3.3).

3.1 Complexity

The complexity of the function DETECTCORNERS() in
the previous section depends on the implementation of the
data structure D. We will base our calculation by imple-
menting D with an array and a pointer: the ith element of
the array refers to the node that contains the pair (i, c) (or
nil if the node does not exist) while the pointer refers to
the node with the minimum c. Each node has 3 pointers:
one that points to the successive node in ascending c or-
der, one that points to the successive node in ascending i
order and one that points to the previous node in ascending
i order. Based on this implementation, the FINDMINC(),
PREVIOUSI(), SUCCESSIVEI(), SUCCESSIVEC() and RE-
MOVE() functions are all executed in constant time, while
the UPDATECOST() function is O(|D|) (where |D| is the
number of nodes referred in D) and the INIT(L) function
is O(|L| log |L|) (by using an efficient sorting algorithm).
In the following we will show that the DETECTCORNERS()
complexity is O(n2), where n = |P |.

It is trivial to see that: the complexity of the ICOST()
function is O(1); the complexity of COST() is O(n) in the
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Input: an array P of equally spaced points that approxi-
mate a stroke, a number u of not-to-be-pruned points,
and the CLASSIFIER() function.

Output: a list of detected corners.
1: function DETECTCORNERS(P , u , CLASSIFIER)
2: # initialization
3: for i = 1 to |P | do
4: c← ICOST(i, P ) # computes Eq. 1
5: add (i, c) to TempList
6: end for
7: D.INIT(TempList)

8: # pruning
9: while |D| > u do

10: (imin , c)← D.FINDMINC()
11: REMOVEANDUPDATE(imin , P , D)
12: end while

13: # point classification
14: while |D| > 2 do
15: (icur , c)← D.FINDMINC()
16: loop
17: isCorner ← CLASSIFIER(icur , P , D)
18: if isCorner then
19: (icur , c)← D.SUCCESSIVEC(icur )
20: if icur ∈ {1, |P |} then
21: for each (i, c) in D such that
22: (i 6= 1 ∧ i 6= |P |)
23: add P [i] to CornerList
24: return CornerList
25: end if
26: else
27: REMOVEANDUPDATE(icur , P , D)
28: break loop
29: end if
30: end loop
31: end while
32: return ∅
33: end function

34: procedure REMOVEANDUPDATE(i, P , D)
35: ipre ← D.PREVIOUSI(i)
36: isuc ← D.SUCCESSIVEI(i)
37: D.REMOVE(i)
38:
39: c← COST(ipre , P , D) # computes Eq. 2
40: D.UPDATECOST(ipre , c)
41:
42: c← COST(isuc , P , D)
43: D.UPDATECOST(isuc , c)
44: end procedure

Figure 1: The implementation of the initialization, pruning
and corner classification steps.

worst case and, consequently, the complexity of REMOVE-
ANDUPDATE() is O(n); and the complexity of CLASSI-
FIER() is O(n) since some features need O(n) time in the
worst case to be calculated.

The complexity of each of the three steps is then:

1. Initialization: ICOST() is called n times and D.INIT()
one time, consequently the complexity of the initial-
ization step is O(n log n).

2. Pruning: D.FINDMINC() and REMOVEANDUP-
DATE() are called n − u times each, consequently the
complexity of this step is O(n(n− u)).

3. Point classification: the while loop (in line 14) will be
executed at most k = |D| − 2 ≤ u − 2 times. In the
loop (in line 16), CLASSIFIER() will be called at most
k times, D.SUCCESSIVEC() at most k − 1 times, and
REMOVEANDUPDATE() at most once. Thus, in this
step, they will be called less than or equal to k2, k2

and k times, respectively.

The complexity of the CLASSIFIER() calls can be cal-
culated by considering that for each point, if none of
its features changes, the result of CLASSIFIER() can be
retrieved in O(1) by caching its previous output. Since
the execution of the REMOVEANDUPDATE() function
involves the changing of the features of two points,
CLASSIFIER() will be executed at most 3k times in
O(n) (for a total of O(k×n)) and the remaining times
in O(1) (for a total of O(k2)), giving a complexity of
O(k × n).

Furthermore, the complexity of the
D.SUCCESSIVEC() calls is O(k2), while the
complexity of the REMOVEANDUPDATE() calls
is O(k × n).

Thus, since k < n, the point classification step is in
the worst case O(k × n), or rather O(n× u).

It is worth noting that the final O(n2) complexity does not
improve even if a better implementation of D providing an
O(log |D|) UPDATECOST() function is used.

3.2 Features

Most of the features used in our classification are derived
from previous research in the field. In particular, we have
three different classes of features:

• Stroke features: features calculated on the whole
stroke;

• Point features: local features calculated on the point.
These features are calculated using a fixed region of
support and their values remain stable throughout the
procedure;
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• Rank-related features: dynamically calculated local
features. The region of support for the calculation of
these features is the set of points from the predecessor
ppre and the successor psuc of the current point in the
candidate list. Their value can vary during the execu-
tion of the Point classification step.

Some features are parametric. In particular, they can
adopt two different types of parameters:

• An integer parameter w, defining the width of the
(fixed) region of support used to calculate point fea-
tures;

• A boolean parameter norm, indicating whether a nor-
malization is applied in the calculation of the feature.

3.2.1 Stroke Features

The features calculated on the whole stroke can be useful
to the classifier, since a characteristic of the stroke can in-
teract in some way with a local feature. For instance, the
length of a stroke may be correlated to the number of cor-
ners in it: it is likely that a long stroke has more angles than
a short stroke. We derived two stroke features from [20]: the
length of the stroke and the diagonal length of its bounding
box. These features are called Length and Diagonal , re-
spectively. In Figure 2a the bounding box (light gray) and
the diagonal (dark gray) of a hand drawn diamond (black)
are shown. Furthermore, we added a feature telling how
much the stroke resembles an ellipse (or a circle), called
EllipseFit . The use of this feature prevents that corners
are accidentally inserted in strokes resembling circles or el-
lipses. It is calculated by measuring the average Euclidean
distance of the points of the stroke to an ideal ellipse, nor-
malized by the length of the stroke. Figure 2b shows the
EllipseFit calculation for a hand-drawn diamond. In partic-
ular, the figure shows the segments (dark gray) connecting
the diamond (black) and the ellipse (light gray), of which
we calculate the average measure.

3.2.2 Point Features

The point features are local characteristics of the points.
The speed of the pointer and the curvature of the stroke
at a point have been regarded as very important features
from the earliest research in corner finding. Here, the
speed at pi is calculated as suggested in [23], i.e., s(pi) =
‖pi+1, pi−1‖ /(ti+1 − ti−1), where ti represents the times-
tamp of the i-th point. We also have a version of the speed
feature where a min-max normalization is applied in or-
der to have as a result a real value between 0 and 1; the
Curvature feature used here is calculated as suggested in
[15].

A feature that has proven useful in previous research is
the straw, proposed in [27]. The straw at the point pi is the
length of the segment connecting the endpoints of a window
of points centered on pi. Thus we define Straw(pi, w) =
‖pi+w, pi−w‖, where w is the parameter defining the width
of the window. An example of straw is shown in dark gray
in Figure 2d.

A simple feature to evaluate if a point is a corner, is the
magnitude of the angle formed by the segments (pi−w, pi)
and (pi, pi+w), defined here as Angle(pi, w). An exam-
ple is shown in Figure 2e. A useful feature to distinguish
the curves from the corners is what we call AlphaBeta, de-
rived from [28]. Here we use as a feature the difference be-
tween alpha and beta , the magnitudes of two angles in pi
using different segment lengths, one three times the other:
AlphaBeta(pi, w) = Angle(pi, 3w) − Angle(pi, w). An
example of the two angles is shown in Figure 2f.

Lastly, in this research we introduce two point features
that, as far as we know, have never been tested so far for
corner detection. One feature is the position of the point
within the stroke. Its use tends to prevent that corners are
inserted in uncommon positions of the stroke. The position
is calculated as the ratio between the length of the stroke
from p0 to pi and the total length of the stroke. We call this
feature Position(pi). The other feature is the difference of
two areas: the former is the one of the polygon delimited
by the points (pi−w, . . . , pi, . . . , pi+w) and the latter is the
one of the triangle (pi−w, pi, pi+w). The rationale for this
feature is that its value will be positive for a curve, approx-
imately 0 for an angle and even negative for a cusp. We
call it DeltaAreas(pi, w). Figure 2g shows an example that
highlights the difference between the two areas.

3.2.3 Rank-Related Features

The rank-related features are local characteristics of the
points. The difference with the point features is that their
region of support varies according to the rank of the point:
the considered neighborhood is between the closest preced-
ing and successive points of pi, which we have called pipre
and pisuc , respectively. The Cost function defined in Equa-
tion (2) is an example of feature from this class. It tends
to assume higher values at the corners. A distinguishing
feature of our approach, strictly related to the Cost , is the
Rank . We define the Rank of a point p = P [i] with respect
to D, as the size of D resulting from the removal of (i, c)
from D. As already explained, this feature is a good indica-
tor of whether a point is a corner and it is useful to associate
it to the cost function, to improve classification.

A simple feature derived from [20] is MinDistance, rep-
resenting the minimum of the two distances ‖pipre , pi‖ and
‖pi, pisuc‖, respectively. We also used a normalized ver-
sion, obtained by dividing the minimum by ‖pipre , pisuc‖.
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Feature Class Parameters Ref.
Length(S) Stroke / [20]
Diagonal(S) Stroke / [20]
EllipseFit(S) Stroke /
Speed(p,norm) Point norm = T, F [23]
Curvature(p) Point / [15]
Straw(p, w) Point w = 4 [27]
Angle(p, w) Point w = 1, 2 [28]
AlphaBeta(p, w) Point w = 3, 4, 6, 15 [28]
Position(p) Point /
DeltaAreas(p, w) Point w = 11
Rank(p) Rank-Related /
Cost(p) Rank-Related / [20]
MinDistance(p,norm) Rank-Related norm = T, F [20]
PolyFit(p) Rank-Related / [21]
CurveFit(p) Rank-Related / [21]

Table 1: The features used in our classifier. Features with-
out a reference are defined for the first time in this paper.

As in previous research, we try to fit parts of the stroke
with beautified geometric primitives. The following two
features are similar to the ones defined in [21]: PolyFit(pi)
fits the substroke (pipre , . . . , pi, . . . , pisuc) through the
polyline (pipre , pi, pisuc), while CurveFit(pi) uses a bezier
curve to approximate the points. The return value is the av-
erage point-to-point euclidean distance normalized by the
length of the stroke. Examples of the two aforementioned
features are shown in Figures 2i and 2c, respectively.

Table 1 summarizes the set of features used by RankFrag
in the CLASSIFIER function. The table reports the name of
the feature, its class, the values of the parameters (if present)
with which it is instantiated and the reference paper from
which we derived it. The presence of more than one pa-
rameter value means that some features are used multiple
times, instantiated with different parameter values. The set
of features has been chosen by performing a two-step fea-
ture selection method. In the first step, bootstrapping along
with RF algorithm was used to measure the importance of
all the features and produce stable feature importance (or
rank) scores. Then, all the features were grouped into clus-
ters using correlation, and those with the highest ranking
score from each group were chosen to form the set of rele-
vant and non-redundant features.

3.3 Classification method

The binary classifier used by RankFrag in the CLASSI-
FIER function to classify corner points is based on Random
Forests (RF) [17]. Random Forests are an ensemble ma-
chine learning technique that builds forests of classification
trees. Each tree is grown on a bootstrap sample of the data,
and the feature at each tree node is selected from a random
subset of all features. The final classification is determined
by using a voting system that aggregates the classification
results from all the trees in the forest. There are many ad-

vantages of RF that make their use an ideal approach for
our classification problem: they run efficiently on large data
sets; they can handle many different input features without
feature deletion; they are quite robust to overfitting and have
a good predictive performance even when most predictive
features are noisy.

3.4 Implementation

RankFrag was implemented as a Java application. The
classifier was implemented in R language, using the ran-
domForest package [18]. The call to the classifier from the
main program is performed through the Java/R Interface
(JRI), which enables the execution of R commands inside
Java applications.

4 Evaluation

We evaluated RankFrag on three different datasets al-
ready used in the literature to evaluate previous techniques.
We repeated 30 times a 5-fold cross validation on all of the
datasets. For all datasets, the strokes were resampled at a
distance of three pixels, while a value of u = 30 was used
as a parameter for pruning. Since there is no single met-
ric that determines the quality of a corner finder, we cal-
culated the performance of our technique using the various
metrics already described in the literature. The results for
some metrics were averaged in the cross validation and were
summed for others.

The hosting system used for the evaluation was a lap-
top equipped with an IntelTMCoreTMi7-2630QM CPU at 2.0
GHz running Ubuntu 12.10 operating system and the Open-
JDK 7.

4.1 Model validation

Here we describe the process of assessing the prediction
ability of the RF-based classifiers. The accuracy metrics
were calculated by repeating 30 times the following proce-
dure individually for each dataset and taking the averages:

1. the data set DS is randomly partitioned into 5 parts
DS 1, . . . ,DS 5 with an equal number of strokes (or
nearly so, if the number of strokes is not divisible by
5);

2. for i = 1 . . . 5: DSt i = DS \DS i is used as a training
set, and DS i is used as a test set.

• RankFrag is executed on DSt i in order to pro-
duce the training data table. In DS , the correct
corners had been previously marked manually.
For each point extracted from the candidate list
the input feature vector is calculated, while the
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(a) Bounding box and diag-
onal for a hand-drawn dia-
mond.

(b) EllipseFit calculation for
a hand-drawn diamond.

pi

pipre pisucc

(c) CurveFit calculation for point pi.

pi

p
i+
w

pi-w

(d) Straw (in
gray) for point
pi (w = 4).

pi p
i+
w

pi-w

(e) Angle
for point pi
(w = 2).

pi p
i+
w

pi-w

pi-3w

p
i+
3
w

β

α

(f) AlphaBeta
calculation
for point pi
(w = 2).

pi

p
i+
w

pi-w

(g) DeltaAreas
(highlighted in
black) for point pi
(w = 6).

pi

pipre pisucc

(h) MinDistance for point pi (the minimum
between ‖pipre , pi‖ and ‖pi, pisuc‖).

pi

pipre pisucc

(i) PolyFit calculation for point pi.

Figure 2: Examples for the features used in our classifier.

output parameter is given by the boolean value
indicating whether the point is marked or not as
a corner. The training table contains both the in-
put and output parameters;

• a random forest is trained using the table;

• RankFrag is executed on DS i, using the trained
random forest as a binary classifier;

• In order to generate the accuracy metrics, the cor-
ners found by the last run of RankFrag are com-
pared with the manually marked ones. A corner
found by RankFrag is considered to be correct if
it is within a certain distance from a marked cor-
ner.

3. In order to get aggregate accuracy metrics, for each of
them the average/sum (depending on the type of the
metric) of the values obtained in the previous step is
calculated.

4.2 Accuracy Metrics

A corner finding technique is mainly evaluated from the
points of view of accuracy and efficiency. There are dif-
ferent metrics to evaluate the accuracy of a corner finding
technique. We use the following, already described in the
literature [27, 13]:

• False positives and false negatives. The number of
points incorrectly classified as corners and the number
of corner points not found, respectively;

• Precision. The number of correct cor-
ners found divided by the sum of the num-
ber of correct corners and false positives:
precision = correct corners

correct corners+false positives ;

• Recall. The number of correct corners found divided
by the sum of the number of correct corners and false
negatives: recall = correct corners

correct corners+false negatives .
This value is also called Correct corners accuracy;

• All-or-nothing accuracy. The number of correctly
segmented strokes divided by the total number of
strokes;

The presence of the angle is determined by human per-
ception. Obviously, different operators can perform differ-
ent annotations on a dataset. The task of judging whether
a corner is correctly found should also be done by a human
operator. In our case, the human judgment is unfeasible due
to the very high number of tests. Thus, we just checked
whether the found corner was at a reasonable distance from
the marked corner. In particular, we adopted as a tolerance
the fixed distance of 20 pixels already used in literature for
tests on the same datasets [13].

4.3 Datasets

Two of the three datasets used in our evaluation, the
Sezgin-Tumen COAD Database and NicIcon datasets, are
associated to a specific domain, while the IStraw dataset is
not associated to any domain, but was produced for bench-
marking purposes by Xiong and LaViola [28]. Some fea-
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Dataset No. of No. of No. of No. of Source
classes symbols strokes drawers

COAD 20 400 1507 8 [25]
NicIcon 14 400 1204 32 [19]
IStraw 10 400 400 10 [28]

Table 2: Features of the three data sets.

tures of the three datasets are summarized in Table 2. The
table reports, for each of them, the number of different
classes, the total number of symbols and strokes, the num-
ber of drawers and a reference to the source document in-
troducing it.

The symbols in the Sezgin-Tumen COAD Database
(called only COAD, for brevity, in the sequel) dataset are a
subset of those used in the domain of Military Course of Ac-
tion Diagrams [7], which are used to depict battle scenarios.
A set of 620 symbols was firstly introduced by Tirkaz et al.
[25] to measure the performance of a multi-stroke symbol
recognizer. Here we use a subset of 400 symbols annotated
by Tumen and Sezgin and used to evaluate a technique for
finding corners [26].

The NicIcon Database of Handwritten Icons [19] is a
set of symbols, drawn by 32 different subjects, gathered for
assessing pen input recognition technologies, representing
images for emergency management applications. Here we
use the subset of 400 multi-stroke symbols, annotated by
Tumen and Sezgin [26].

The IStraw dataset is referred to as an out-of-context
dataset, i.e., it is not linked to a domain. It was one of
the datasets used to test the homonymous technique [28]
and DPFrag [26]. It contains both line and arc primitives
belonging to 400 unistroke symbols, drawn by 10 different
subjects.

Figure 3 shows one random sample from each class of
the three symbol set.

5 Results

In this section we report the results of our evaluation. As
for the accuracy, we calculated all of the metrics described
in the previous section. Furthermore, RankFrag’s accuracy
is compared to that of other state-of-art methods by using
the All-or-nothing metric. It is worth noting that, due to
the unavailability of working prototypes, we did not directly
test the other methods: we only report the performance de-
clared by their respective authors.

The accuracy achieved by RankFrag on the three datasets
is reported in Table 3. The results are averaged over the 30
performed trials.

Table 4 shows a comparison of the accuracy of RankFrag
with other state-of-art methods. The methods considered

Metrics COAD NicIcon IStraw
Corners manually marked 2271 867 1795
Corners found 2260.67 774.03 1790.80
Correct corners 2254.20 730.90 1784.33
False positives 6.47 43.13 6.47
False negatives 16.80 136.10 10.67
Precision 0.9972 0.9441 0.9964
Recall / Correct corners ac-
curacy

0.9926 0.8428 0.9940

All-or-nothing accuracy 0.9870 0.8657 0.9572

Table 3: Average accuracy results of RankFrag on the three
datasets.

Dataset RankFrag DPFrag IStraw
COAD 0.99 0.97 0.82
NicIcon 0.87 0.84 0.24
IStraw 0.96 0.96 0.96

Table 4: Comparison of RankFrag with other methods on
the All-or-nothing accuracy metric.

here are DPFrag [26] and IStraw [28]. Due to the unavail-
ability of other data, we only report the results related to
the All-or-nothing metric. As we can see, RankFrag outper-
forms the other two methods on two out of three datasets.

As for efficiency, we report that the average time needed
to process a stroke is ∼390 ms. Our prototype is rather slow,
due to the inefficiency of the calls to R functions. We also
produced a non-JRI implementation by manually export-
ing the created random forest from R to Java (avoiding the
JRI calls). With this implementation, the average execution
time was lowered to ∼18 ms, enabling real-time runs.

6 Discussion and Conclusion

We have introduced RankFrag, a technique for segment-
ing hand-drawn sketches in the corner points. RankFrag
has a quadratic asymptotic time complexity with respect
to the number of sampled points in an input stroke. This
complexity is the same reported in the literature for many
other methods and, to the best of our knowledge, there is no
method with a lower complexity. The technique was eval-
uated on three different datasets. The datasets were specif-
ically produced for evaluating corner detection algorithms
or were already used previously for this purpose.

We compared the results obtained by RankFrag with
those already available in the literature for two different
techniques: DPFrag [26] and IStraw [28]. With respect to
the latter, our results show a clear advantage in accuracy
on two datasets for RankFrag. With respect to DPFrag, our
technique has a comparable accuracy, with a slight advan-
tage on two of the three datasets. Nevertheless, compared
to DPFrag, our technique has the additional advantage that
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(a) COAD

(b) NicIcon

(c) IStraw

Figure 3: One random sample from each class of the three symbol set. The manually annotated corners are highlighted with
a red circle.

Figure 4: Examples of misclassification by RankFrag. Detected corners are represented through a red dot, while classification
errors are represented through rings.

it can be performed in real time on all the tested data, re-
gardless of the complexity of the input strokes. The chart
reported in [26] (Figure 9) shows that this is not guaranteed
for DPFrag and that its running time grows with the number
of corners in the stroke.

RankFrag can be considered a significant improvement
to the segmentation technique presented in [20]. In that
technique, the classifier is used as a stop function: when
the classifier decides to stop, all the remaining points (those
with a higher cost) are classified as corners. We found that
such a technique is not appropriate for strokes containing
curves, since the cost function alone is not a reliable indi-
cator and gives many false positives. Thus, we decided to
invoke the classifier within a more complex, but still effi-
cient, procedure, which performs further checks to estab-
lish whether a point is an angle. We also more profitably
use a larger set of features, some of which have a variable
region of support. Lastly, in our analyses the random forest

seemed to have better performance with respect to the other
classifiers which we preliminarily tested, such as SVM and
Neural Networks.

It is worth noting that, although further accuracy im-
provements are possible, it is very difficult to get a score
close to 100% due to the procedure used in our tests: the de-
cision of the classifier was compared to an earlier annotation
made by a human operator. Some decisions are debatable
and the annotation process is not free from errors. Figure 4
shows some examples of corner misclassification by Rank-
Frag on the three datasets, including both false positives
(dots inside a ring) and false negatives (rings). Although
annotation errors are evident in some of the strokes reported
in the figure, we decided not to alter the original annotation
in order to obtain a more faithful comparison with the other
methods.

RankFrag has only been tested for finding corner points
and not tangent vertices, as done by other techniques
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[12, 1]. It can be directly used in various structural methods
for symbol recognition. However in some methods an addi-
tional step to classify the segments in lines or arcs may be
required.

The non-JRI version of our implementation is able to
produce the segmentation of a stroke in real time on a suf-
ficiently powerful device. Future work will aim to achieve
further implementation improvements, in order to further
reduce the execution time and make the technique appli-
cable in real time on more strokes at once (e.g., an en-
tire diagram) or on mobile devices with low computa-
tional power. For testing purposes, our implementation
can be downloaded at http://weblab.di.unisa.
it/rankfrag/.
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