
 

	  
	  

A Complete Classification of Occlusion  
Observer’s Point of View for 3D Qualitative Spatial Reasoning 

Chaman Lal Sabharwal 
 Missouri University of Science and Technology  

Rolla, MO- 63128, USA 
chaman@mst.edu 

 
Abstract 
 
Qualitative Spatial Reasoning (QSR) theories have 
applications in areas such as geographic information systems 
(GIS), robotics, biomedicine and spatial databases.  Several 
region connection calculi have been proposed for use in this 
capacity.   Primarily the existing QSR theories have been 
applied to 2D data. Yet the ability to perform qualitative 
reasoning over a collection of 3D spatial objects is desirable. 
Over the past two decades several theories have appeared for 
accurately representing and acquiring 3D spatial knowledge: 
LOS-14, its extension ROC-20, occlusion calculus OCC, 
fourteen occlusion states OCS-14, and a recent visual VRCC-
3D+ with 17 occlusion predicates.  Each has a positive 
impact. However there are still some issues and ambiguities 
that require unambiguous ontology and resolution. In this 
paper, we provide a new set of self-documenting predicates 
for 3D complete spatial relations including occlusion. In 
addition we provide new heuristics for eliminating the time 
consuming computations by employing efficient data 
structures. This improvement will greatly enhance the 
usefulness and usability of aforementioned systems.  
 
Keywords: geographical information systems, robotic 
navigation, spatial objects, graphics, occlusion 
 
1. Introduction 
 
Most of the theories about space and time study the 
quantitative aspects of a problem, whereas the qualitative 
calculi allow for rather inexpensive reasoning about entities 
located in space.  For example, some of spatial reasoning is 
implemented for handling geographical information systems 
(GIS) queries efficiently [1], and such reasoning is used for 
robotic sensors, biomedicine, spatial networking, and 
cognitive sciences.   

Although reasoning over two dimensions is sufficient for 
many applications [2], other spatial reasoning applications 
need to consider information in more than two dimensions. 
Thus the ability to perform qualitative spatial reasoning over 
a collection of 3D objects is necessary. The 3D spatial 
reasoning involves the visualizing and then manipulating 
spatial relations. A 2D QSR system cannot be utilized for 
such tasks. Robots see and interpret the world with data 
acquired through sensors. 

Further, in order to determine occlusion, the view 
reference point, the plane of projection, and the type of 

projection must be known. Over the past two decades several 
theories have appeared for accurately representing and 
acquiring 3D spatial knowledge: Galton developed Line of 
Sight method with 14 occlusion relations LOS-14, in 1994 
[3], its extension Region Occlusion Calculus with 20 
occlusion relations ROC-20 was designed by Randell et al.  in 
2001 [4], Kohler developed the occlusion calculus OCC in 
2002 [5], RCCD-3D by Albath et al. in 2010 [6], Guha et el. 
Designed OCS-14 (Occlusion States 14) in 2011 [7] and at 
the same time independently Sabharwal et al. developed 
VRCC-3D+ in 2011 [8].  Each has a positive impact. 
However there were some issues that required resolution. 
Recently, Eloe et al. attempted to resolve such issues and 
improve upon the computational aspects in 2014 [9]. In their 
attempt, they introduced two predicates for depth as discussed 
in Section 4, which turned out to be obscure and inefficient.  
In this paper, we provide a completely new set of self-
documenting predicates for occlusion relations superseding 
the aforementioned work. In addition we provide efficient 
heuristics for eliminating the time consuming ray tracing used 
in performing obscuration computations. These 
improvements will greatly enhance the usefulness and 
usability of the aforementioned systems. The same reasoning 
works for mobile objects when the observer is stationary.   

This paper is organized as: Section 2 describes 
mathematical concepts and region connection calculus 
background Section 3 clarifies the graphics concept of closer, 
occlude, obscure, infront, Section 4 describes recent 
implementation issues in handling occlusions problems, 
Section 5 describes complete, consistent and new set of 
occlusion relations using first order logic, Section 6 discusses 
efficient implementation techniques, Section 7 is on 
conclusions and future work. 
 
2. Background 
 
 A. Mathematical Concepts 
Basic mathematical concepts are the same as in the point set 
topology. The definition of connectedness in region 
connection calculus is slightly different. For any non-empty 
bounded set A, we use symbols Ac, Ai, Ab, and Ae to 
represent the universal complement, interior, boundary, and 
exterior of a set A, respectively. In mathematics, a set is 
connected if it cannot be the union of disjoint open sets. For 
example, the set (0,1)∪(1,2) is disconnected as (0,1) and (1,2) 
are open sets. In RCC, regions A and B are weakly connected 
if�A∩�B≠∅. Thus (0,1)∪(1,2) is connected in RCC because 
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[0,1] ∩ [1,2] ≠∅. This is equivalent to (1) C(A,A),  and (2) 
C(A,B) çèC(B,A) for any tow regions A and B. 
 
B. Region Connection Calculi 
Much of the foundational research on qualitative spatial 
reasoning is based on a region connection calculus (RCC) that 
describes 2D regions (i.e., topological space) by their possible 
relations to each other [10, 11].  Conceptually, for any two 
distinct objects, there are three possibilities on broad level: (a) 
one is outside the other, that results in the discrete spatial 
relation, DR(DiscRete), (b) one overlaps the other across 
boundaries. This means PO(proper overlap), (c) one is inside 
the other, that means EQ(equal) or PP(proper part). To make 
relations  jointly exhaustive and pairwise distinct (JEPD), we 
have converse relation denoted  PPc(proper part converse), 
PPc(A,B)≡PP(B,A). These five relations constitute RCC5 
relations.  For additional detail on discrete, specifically, DR is 
split into DC(disconnected) and EC(externally connected). 
For proper part, PP is split into TPP (tangential proper part) 
and NTPP (non-tangential Proper part). Similarly for proper 
part converse, PPc, we have converse relations TPPc and 
NTPPc.  These eight relations constitute RCC8 relations of 
region connection calculus. 

RCC8 was formalized by using first order logic [10] or  
9-Intersection model [11], see Fig.  1.  The intersections of 
interior (Int), boundary (Bnd), and exterior (Ext) of one object 
with the other object form 9-Intersections: IntInt, IntBnd, 
IntExt, BndInt, BndBnd, BndExt, ExtInt, ExtBnd, ExtExt. 
 

 
Fig. 1. RCC8 Relations in 2D. 

 
Whereas a 2D object is in a plane, a 3D object is in 

space. The simplest examples of 3D objects are a pyramid, a 
cuboid, a cylinder, and a sphere. A concave pyramid is a 
complex, simply connected 3D object. Since concave objects 
can be partitioned into convex objects, for the rest of this 
discussion, we will base our analysis on convex objects.  

RCC8 spatial relation for 3D objects is incomplete 
without occlusion consideration.  VRCC-3D+ is  a region 
connection calculus that qualitatively determines the spatial 
relations between 3D objects, both in terms of connectivity 
and obscuration [6, 8, 9]. The VRCC-3D+ connectivity 
relations are named the same as in RCC8; however, the 
VRCC-3D+ connectivity relations are calculated in 3D rather 
than 2D. The relative depth is denoted by tri-valent parameter 
InFront. Fifteen obscuration relations were defined in VRCC-
3D+ [8,9]. Considered from a 2D projection, each VRCC-

3D+ obscuration relation is a refinement of basic concepts of 
no obscuration, partial obscuration, and complete obscuration. 
A hybrid occlusion relation specifies both a connectivity 
relation and an obscuration relation.  

 
3. Occlusion Concepts 
 
Basically occlusion of one object by another object depends 
on the observer location relative to the objects. Our approach 
is to derive spatial obscuration relations and classification 
from projection of 3D objects on a 2D projection plane and 
relative distance of the objects from the observer. The 2D 
plane is used to determine the existence of occlusion. The 
depth parameter, InFront, coupled with projections determine 
the type of occlusion. Obscuration predicates are based on 
two parameters: projection in a plane and depth (distance of 
the object from viewpoint).  

In general, there are two types of projections: Parallel 
and Perspective. Parallel projection loses the depth concept in 
the projection, because the all projectors are parallel. We use 
perspective view for accurate depth representation. The terms 
“inFront”, “occlusion”, ”obscuration”, “closer” are closely 
related.   In natural language, the term inFront between two 
objects A and B is synonymously interpreted as  “A is in front 
of B” ,“A occludes B”, “A obscures B”, “A is closer than B”.  
However, there are subtle differences between these, see 
examples below. Here we describe these terms precisely with 
the help of examples.  
 
A. Examples of occlusion detection supporting 

qualitative spatial reasoning  
In computer graphics, there is a distinction between terms 
occlusion and obscuration. Occlusion means opaque (hidden, 
obstructed), whereas obscuration means unclear (hazy, 
vaguely transparent). For this reason, the graphics community 
prefers the term occlusion to obscuration.  We are using both 
terms interchangeably to mean opaque. 
 
A1. Point Occlusion  
If V (viewer), a, b are collinear points in that order and the 
distance of  a is smaller than the distance of b from viewer V, 
then the three terms are equivalent:  point a is  closer than 
point b or a occludes b or a is in front of b, see Fig. 2(a). 
However if both points a and b are equidistant from V, then 
none is in front of the other, see Fig. 2(b). Two points are 
equidistant, coincident,  none occludes the other. This is not 
mutual occlusion as explained in Section 3.A2 . If V, a, b are 
not collinear, then b can be closer than a without b occluding 
a, see Fig. 2(c). Thus a point can be closer without being in 
front of the other. 

 
      (a)  (b)  (c) 

Fig. 2 (a) View point V, points a and b; a occludes b, a is in 
front of b, a is closer than b to the viewpoint. (b) View point 



 

	  
	  

V, points a and b; a and b are equidistant, none is in front of 
the other. (c) View point, points a and b, b is closer than a, 
but b does not occlude a, b is not in front of a. 
 
A2. Object Occlusion  
In 2D, to determine whether an area A occludes an area B, 
there are several configurations of A and B. If a ray from V 
does not intersect any of the two regions, then it does not shed 
light on the occlusion. If for every ray from V, it intersects 
exclusively one object and not the other object, then no object 
occludes the other, see Fig. 3(a, b).  An object A can be closer 
than object B without obscuring the object B, see Fig. 3(a).   

 
(a)    (b) 

Fig. 3 Objects do not intersect (a) A is closer than B (b) B is 
closer than A. 
 

We cannot make any conclusion from a ray if the ray 
intersects only one object exclusively and not the other 
object, see Fig. 4(b). 

  
 (a)  (b) 

Fig. 4.  (a) ray from V intersects A, but not B, another ray 
from V intersects B , but not A,  still A occludes B (partially).  
(b) ray from V intersects both, the front point occludes the 
other  point, still A occludes B (completely). 
 

If for every ray from V that intersects the interiors of 
both objects A and B at points a and b, with a in front of b, 
then the object A occludes object B, or A is in front of B are 
synonymous, Fig. 5(a, b).  Also object A is closer to V than 
object B is to V, Fig. 5(a), A partially obscures B.  

 
(a)   (b) 

Fig. 5. (a) A is infront of B, A occludes B, A is closer than B 
is, (b) B is infront of A; B occludes A; B is closer than A is. 
 

If there are two rays that intersect objects A and B, such 
that for one ray, the intersection with A is closer than 
intersection with B, and for the second ray, the intersection 
with B is closer than intersection with A, then the object A 
partly occludes B and conversely.  They mutually occlude 
each other, see Fig. 6. None alone occludes the other 
completely or partially. 

We require that for every ray from V that intersects both 
the objects, the two intersections are used to make judgment 
about the relative depth of the objects. If the ray intersection 
occurs at multiple points, only the closest intersections are 

 
Fig. 6. Mutual Occlusion. 

 
significant for occlusion detection. For example, if the ray 
intersection is Vbaab, we need to process only first two 
intersections, in this case, Vba, so the point b occludes point a 
see Fig. 7 ; If the ray intersection is Vabab, we process the 
first two intersections, in this case, Vab. So the point a 
occludes the point b.  

 
(a)   (b) 

Fig. 7. (a) Ray intersection with A and B shown at two points 
each so that ray is Vbaab. However only Vba is sufficient for 
occlusion determination between A and B. (b)  Ray 
intersection with A and B shown at two points each so that 
ray is Vabab. However only Vab is sufficient for occlusion 
determination between A and B. 
 

Partial or full occlusion: If for every ray from view point 
V that intersects both A and B, and ray points a∈A are closer 
than corresponding points b∈B, then A occludes (partially or 
completely) B, see Fig 5(a) and Fig. 7(b).   

Mutual or Equal. Similarly it can be seen that if on every 
ray from view point V that intersects both A and B, and if 
sometimes a is closer and sometimes b is closer, then A and B  
mutually occlude each other else if  points a, b are equidistant 
from V, then it is termed as equal occlusion for spatial 
reasoning, this is a clear distinction between mutual and equal 
occlusion predicates.  This is a conscious decision made for 
spatial reasoning because it provides expressive power at no 
cost. 

 
4.   Problems  
 
In Section 1, we mentioned that there are issues in the 
implementation of occlusion in VRCC-3D+ [9]. Let us first 
describe the problems and then we will present new 
formulation and new crisp occlusion relations in Section 5. 
 
First Problem. Let A, B be 3D objects, (x, y) be a projection 
point in the projection plane, a line of sight from camera C 
(Center of Perspective Projection) through (x, y) intersects 
objects at points fA(x, y) and fB(x, y).  Eloe et al. [9] define 
occlusion by means of two predicates o and oc. The definition 
of predicate o is the following equation [9] 

o(A,B) = { F:otherwise
T :∃x,y∍|C− fA (x,y)|<|C− fB (x,y)|

 
and converse oc(A, B) = o(B, A). This definition of 
occlusion is trivially inaccurate.  By comparing points 



 

	  
	  

on only one ray, one cannot claim any thing about the 
whole object. For example, the occlusion detection is 
inconclusive by this definition as in Fig. 6, there are 
points on A and B, in one case point a is in front of point 
b and in the other case b is in front of a.  
 
Second Problem Each occlusion relation is determined 
with a 5 parameters (IntInt, IntBnd, BndInt, o, oc) 
instead of 4 parameters (IntInt, IntBnd, BndInt, InFront). 
This increases computational time complexity by 20%. 
Increased computation slows down the interaction time 
and is detrimental to usability of the system. Instead of 
two new predicates to replace a single predicate InFront, 
the tri-valent predicate InFront can be made quad-valent 
to accommodate mutual for accurate interpretation of  
InFront. 
 
Third Problem Eloe et al. [9] point out that with their 
approach, 15 occlusion relations have been reduced to 
12 relations. Their table 1 below is listing of 12 
relations. A closer look at the table indicates that some 
of their relations are disjunctions. In a table each row 
represents a unique relation rule, the number of rows in 
the table is 12+1+1+2+1=17. This contradicts the 
assertion that it is a smaller set of occlusions than 15 
unique relations. For efficiency consideration, larger set 
of predicates amounts to larger computation time. 
Baring, the disjunctions, we will show that same tasks 
can be accomplished with 7 crisp relations instead of 12.  
 
Fourth Problem There is no consistent ontology for naming 
the occlusion relations, see table 1. We devise a complete, 
systematic comprehensible list of occlusion relations see table 
2. Also there are repeated occlusion ray tracing 
computations that can be eliminated. As it is, the 
occlusion computation is quite inefficient in [9]. 
 

Table 1.  Full obscuration relation set with identified 
converse relations.  cited[9] 

 

We will present improved and enhanced set of crisp 
self-documenting predicates. Consequently these issues 
will disappear de facto in Section 5.  
 
5. Completeness of Spatial Object Occlusions  
 
In this section, we describe occlusion predicates gradually as 
follows: (1) redefine InFront accurately, (2) describe 
occlusion relation in natural language, (3) define occlusion 
predicates using first order logic, and (4) describe predicates 
via a table whose each row is rule for occlusion determination 
and classification.  

In general, occlusion analysis is performed in two steps.  
First, the RCC5 relation is computed between the projections 
in 2D. Second, the qualitative spatial distance between the 
viewer and 3D objects is determined. The projection alone is 
not sufficient to determine obscuration. In Sabharwal et al. 
[8], the predicate InFront is used with value Y if A is closer 
than B; N is used if B is closer than A, and E is used imply 
that A and B are equidistant.  As shown in the examples in 
Section 2, though three relations are accurate for single 
points, but they are not exhaustive for objects. There is a 
possibility that the objects cross, see Fig. 6.  This leads to 
inaccurate classification due to tri-valent interpretation of the 
InFront predicate.     

However, it is noted that the predicate InFront is sound in 
principle, but incomplete and inaccurate in implementation. 
We propose that predicate InFront accommodate mutual 
occlusion explicitly, when objects cross each other.  In our 
further discussion, we will have InFront represent four 
possibilities; “A is in front of B”, “B is in front of A”, “A and 
B are equidistant from V”, and “A and B mutually obscure 
each other to indicate that A obscures B partly and B 
obscures A partly exclusively”.  Using four values of InFront, 
we will update occlusion relations accordingly. The 
characterization of crisp occlusion relations is detailed in 
table 2.   
 
5.1  Description of Depth Parameter InFront  
Let V be the viewer, let AP and BP be the projections of A and 
B on the projection plane.  The observer captures the scene 
that is in field of view, FOV.  For occlusion purposes, the 
viewer sees objects through the window AP∪BP only in the 
projection plane. The ray from V, to intersect both objects, is 
through points in AP∩BP.  Any reference to objects, A and B 
for InFront predicate, is reference to the part of objects seen 
via only AP∩BP. Let P(x,y) be a point in AP∩BP, let the ray 
VP intersect A and B at points fA(x,y) and  fB(x,y) closest to 
the viewer.  For qualitative distance, the value of InFront is 
formally stated as follows. 
 
 



 

	  
	  

Algorithm for depth InFront determination 
If AP∩BP = ∅  
 then there is no obscuration: InFront =”na” 
elseif  ∀(x,y)∈AP∩BP,  

if fA(x,y)=fB(x,y), then A and B are equidistant:  
     InFront =”E” 
elseif fA(x,y)≤ fB(x,y), then A obscures B: InFront =”A 
elseif fA(x,y)≥ fB(x,y),then B obscures A: InFront =”B”  

elseif  ∃(x,y),(x’,y’)∈AP∩BP such that  
fA(x,y)<fB(x,y), and  fA(x’,y’)>fB(x’,y’) then A and B 
mutually obscure each other: InFront =”M” 

end 
 
Caution: For the sake of simplicity, we may loosely write 

InFront = A, B, E, M instead of InFront=”A”, “B”, “E”, ”M”. 
Now the quad-valent distance parameter InFront is 

accurate description depth relation parameter. To make the 
occlusion relations self-documenting, we denote the occlusion 
predicate as xObs_z(A,B). Since some relations have 
converse while others do not, to make it completely 
symmetric, we have (1) z=a for “A is in front of B”, (2) for 
converse, “B in front of A”, we use z=b;  (3) for equality, z=e 
if “A and B are equidistant”, and (4) z=m for mutual 
occlusion when “partly A is in front of B and partly B is in 
front of A”. This way it is easier to comprehend the 
predicates when z is used to describe depth.  Clearly there is 
distinction between mutual and equal occlusion for QSR. For 
natural language expressiveness in classification, we will use 
two distinct predicates, one for mutual and one for equal, 
instead of combining them into one as has been done in the 
past [8]. 
 
5.2 Occlusion Predicates in Natural Language. The 
system has to interpret data as viewed by the observer.	  Most 
difficult part is the representation of spatial occlusion 
predicate with complete expressive power. With 
xObs_z(A,B),  in essence x refers to the type of occlusion, n, 
p, m, e, c, exclusively and z refers to qualitative distance of 
the objects from the viewer. There are four types of distances 
for objects and five types of obscuration. Out of 20 relations, 
some combinations are impossible, only the possible 
combinations are described here. 

The discussion of obscuration predicate is incomplete 
without reference to projections per se. It is not possible to 
know the type of occlusion apriori.  As we define the term 
xObs_z(A,B) lucidly, we refine occlusion by integrating 
contribution of RCC5 relations, namely, DR(AP,BP), 
PO(AP,BP), EQ(AP,BP), PP(AP,BP), and PPc(AP,BP). As such, 
we upgrade the predicate xObs_z to xObsy_z where y refers 
to the RCC5 relation in projection plane, x refers to type of 
projection, and z refers to relative distance parameter InFront. 

The complete listing of the predicates is given in Section 5.3 
and for visual inspection a table 2 is given in Section5.4.	  This 
approach eliminates errors and leads to efficient reasoning. 

Now for x = n, y in nObsy_z(A,B) corresponds to the 
relation DR(AP,BP).  In this case nObs will be true 
independent of the value of z, so z is not applicable for this. 
Therefore four versions of nObsy_z can be simplified to a 
single version nObsDR and the value of the InFront  is “na”,   

Now for x = p, y in pObsy_z(A,B) corresponds to the 
relation PO(AP,BP), PP(AP,BP), and PPc(AP,BP). From 
PO(AP,BP) there are two relations for InFront value A, B. 
There are two other relations, one from PP(AP,BP) with 
InFront equal to A, one from PPc(AP,BP) with InFront equal 
to B. There are 4 partial obscurations in all. They are named 
descriptively where these come from.  

Now for x = e, y in eObsy_z(A,B) corresponds to the 
relation EQ(AP,BP), PO(AP,BP), PP(AP,BP), PPc(AP,BP). In 
each case, there is one predicate for equal obscuration with 
InFront value E. There are 4 equal obscuration predicates.  

Now for x = m, y in mObsy_z(A,B) corresponds to the 
relation EQ(AP,BP), PO(AP,BP), PP(AP,BP), PPc(AP,BP). In 
each case, there is one predicate for mutual obscuration with 
InFront value M. There are 4 mutual obscuration predicates.  

Now for x = c,  y in cObsy_z(A,B) corresponds to 
EQ(AP,BP) or PPc(AP,BP) or PP(A,B).   From EQ(AP,BP), 
there are two relations for InFront value A, B. There are two 
other relations, one from PP(AP,BP) with InFront equal to B, 
one from PPc(AP,BP) with InFront equal to A. There are 4 
complete obscurations in all. 
 
5.3 Occlusion Predicates using  first order logic 
Now that we have described the obscuration predicates in 
natural language, we will define them formally in first order 
logic as follows.  The complete and comprehensive occlusion 
relations nObs, pObs, eObs, mObs, cObs supported with y for 
RCC5 relation between projections and z for parameter 
InFront are coherently denoted by xObsy_z.  
 
There is one nObs occlusion relation: 

nObsDR (A,B) ≡ DR(AP,BP)∧(InFront(A,B) == “na”)   
 
There are 4 types of pObsy_z occlusion relations. There are 
two predicates from PO(AP,BP) with parameter InFront values 
A, B for partial obscuration. There is one predicate from 
PP(AP,BP), with InFront=A and there is one predicate from 
PPc(AP,BP), with InFront=B for partial obscuration, namely: 

pObsPO_a(A,B)≡ PO(AP,BP )∧( InFront (A,B) ==“A”)   
pObsPO_b(A,B) ≡ PO(AP,BP)∧( InFront (A,B) ==“B”) 
pObsPPc_b(A,B)≡PPc(AP,BP)∧ (InFront (A,B) ==“B”) 
pObscPP_a(A,B) ≡ PP(AP,BP)∧ (InFront (A,B) ==“A”) 

 
There are 4 types of eObsy_e occlusion relations. For y, there 
corresponds one predicate from each PO(AP,BP), EQ(AP,BP), 



 

	  
	  

PP(AP,BP), and PPc(AP,BP) with InFront=E when objects A 
and B are equidistant, namely :  

eObsEQ_e(A,B) ≡ EQ(AP,BP)∧ (InFront (A,B) ==“E”) 
eObsPO_e(A,B) ≡ PO(AP,BP)∧ (InFront (A,B) ==“E”) 
eObsPPc_e(A,B)≡ PPc(AP,BP)∧ (InFront (A,B) ==“E”) 
eObsPP_e(A,B) ≡ PP(AP,BP)∧ (InFront (A,B) ==“E”) 

 
There are 4 types of mObsy_m occlusion relations. For y, 
there is one predicate from each PO(AP,BP), EQ(AP,BP), 
PP(AP,BP), and PPc(AP,BP) with InFront=M when objects A 
and B are properly cross, namely :  

mObsEQ_m(A,B)≡EQ(AP,BP)∧(InFront (A,B) ==“M”) 
mObsPO_m(A,B)≡PO(AP,BP)∧(InFront(A,B) == “M”) 
mObsPPc_m(A,B)≡PPc(AP,BP)∧(InFront(A,B)==“M”) 
mObsPP_m(A,B)≡PP(AP,BP)∧(InFront (A,B) == “M”) 

 
There are 4 types of x=c occlusion relations. There are two 
from PP and PPc with values B and A and there are two from 
EQ with values of InFront as A, B, for complete obscuration. 

cObsPPc_a(A,B)≡PPc(AP,BP)∧ (InFront (A,B) ==“A”) 
cObsPP_b(A,B) ≡ PP(AP,BP)∧ (InFront (A,B) ==“B”) 
cObsEQ_a(A,B) ≡ EQ(AP,BP)∧ (InFront (A,B) ==“A”) 
cObsEQ_b(A,B) ≡ EQ(AP,BP)∧ (InFront (A,B) ==“B”) 

 
This is a complete classification of seventeen JEPD unique 
occlusion relations, see Table 2. 

         
Table 2 Let x be table entry, y=RCC5(AP,BP),   

z=InFront(A,B), then xObsy_z(A,B). The first row entry 
indicates, there is no occlusion irrespective of InFront value. 

 
5.4 Tabular form of Occlusion Predicates 

 We have completely described the occlusion predicate 
xObsy_z(A,B), see Table 2.  Now we have one predicate for 
nObs, four predicates each for pObs, eObs, mObs, and cObs.  
There are seventeen JEPD predicates in all, described in 
natural language and in first order logic.  We can reduce them 
to 7 by suppressing the y but adding the details of y in table 
entries: xObs_z, see Table 3.  This is essential for display, but 
not necessary for development.  
 
6. Implementation Consideration 
 
For any theoretical development, its practical usefulness 
depends on the implementation followed its use in client 
applications. Clearly we have improved the theoretical 

representation of the solution to computation of obscuration 
classification relations.  We presented crisp ontology for 
obscuration relations: xObsy_z. 
 

Table 3 Complete Set of Occlusion Predicates 

    
 

First viewpoint and viewplane are selected.  The objects 
are projected on the view plane. With the projections of the 
objects, RCC5 relations are determined using IntInt, IntBnd, 
and BndInt predicates with the 2D projections AP and BP of 
the 3D objects A and B, respectively.  

 
The 5-step algorithm for obscuration detection becomes: 

Algorithm for xObsy_z determination 
Input: objects A and B, view point V and projection plane P. 
Output: predicate xObsy_z 
1. Project Objects A and B, determine AP and BP 
2. Determine RCC5 relations between AP and BP  
3. Determine InFront parameter values  
4. Integrate steps 2 and 3 to classify the obscuration type 
 

There are standard algorithms for step 1, and 2. The step 
3 is most complex and computation intensive in practice.  In 
order to determine the obscuring object, as shown in Section 
5.4, a semi-infinite ray is drawn from viewer through points 
in AP∩BP and analyzed for intersection with the objects. This 
is a computation intensive step as it is repeated thousands of 
times depending on digitization of projection plane.   

Computations of ray intersections in step 3 can be 
eliminated altogether by judiciously performing the step 1. As 
soon as the projection is computed, we know the functional 
relation between objects and their projections: A to AP, and B 
to BP. We can record it in step 1 to use it in step 3 as a lookup 
table to avoid repeated ray intersections. This can be done 
with an appropriate intelligent grid data structure that keeps 



 

	  
	  

track of the closest intersection points on the objects.   Now 
for step 3, we can look up the computed value for each AP 
grid point. This eliminates tens of thousands of ray-object 
intersection computations. 

By using this heuristic the algorithm can be implemented 
very efficiently.  Test case was written in Python and 
implemented on Apple, using synthetic data of 500 objects of 
various shapes.  The simulation showed a remarkable 
improvement.  Computation efficiency will increase 
significantly if one object information is reused for 
obscuration with several other objects in the application.  
 
6.1 Hybrid Spatial and Occlusion Relations 

The same reasoning also works for mobile objects and 
stationary observer.  Topological relation is a static RCC8 
relation for 3D objects. Static relation is independent of the 
observer, it is the same for every observer. The occlusion 
relation (xObsy_z) is the spatial dynamic relation as seen by 
the viewer.  The dynamic occlusion relation varies from 
viewer to viewer location. By consolidating the two, we have 
complete hybrid spatial relations. If R is an RCC8 relation in 
3D, and xObsy_z is occlusion relation, then R and xObsy_z 
in tandem coalesce to represent coherent spatial relation, 
R-- xObsy_z. 

For the sake of simplicity and space availability, we 
suppress y, and display the relations in the form R_xObs_z.  
There are 8 RCC8 connectivity relations and 7 xObs_z 
occlusion relations. Not all obscuration relations are 
physically possible with each RCC8 relation. There are 23 
hybrid relations: 5 DC, 5 EC, 6 PO, 1 EQ, 2 TPP, 2 TPPC, 1 
NTPP, 1 NTPPc relations, see Fig. 8.  

 
Fig. 8. A hierarchy tree of composite spatial relations.  

 
7. Conclusion and Future Directions 
 
We have given a complete description and classification 
of qualitative spatial occlusion relations for 3D objects 
as seen by an observer.  The same reasoning works well 
with the objects that are mobile and	   the	   observer	   is	  
stationary.  The spatial relations are self-documenting 
and easy to understand. We optimized the set of 
occlusion relations from 12 to 7 and reduced the 
composite relations from 34 to 23.  These computations 
are performed repeatedly in any application. This 
development will be useful in GIS, robotic sensors for 

navigation, biomedicine, and related areas. Conceptual 
neighborhoods and composition tables are integral part 
of any qualitative spatial reasoning system, we plan to 
develop these ideas to produce conceptual neighborhood 
graphs and composition tables. This work also 
supersedes the existing 3D spatial reasoning systems. 
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