

	
	

A Complete Classification of Occlusion
Observer’s Point of View for 3D Qualitative Spatial Reasoning

Chaman Lal Sabharwal
 Missouri University of Science and Technology

Rolla, MO- 63128, USA
chaman@mst.edu

Abstract

Qualitative Spatial Reasoning (QSR) theories have
applications in areas such as geographic information systems
(GIS), robotics, biomedicine and spatial databases. Several
region connection calculi have been proposed for use in this
capacity. Primarily the existing QSR theories have been
applied to 2D data. Yet the ability to perform qualitative
reasoning over a collection of 3D spatial objects is desirable.
Over the past two decades several theories have appeared for
accurately representing and acquiring 3D spatial knowledge:
LOS-14, its extension ROC-20, occlusion calculus OCC,
fourteen occlusion states OCS-14, and a recent visual VRCC-
3D+ with 17 occlusion predicates. Each has a positive
impact. However there are still some issues and ambiguities
that require unambiguous ontology and resolution. In this
paper, we provide a new set of self-documenting predicates
for 3D complete spatial relations including occlusion. In
addition we provide new heuristics for eliminating the time
consuming computations by employing efficient data
structures. This improvement will greatly enhance the
usefulness and usability of aforementioned systems.

Keywords: geographical information systems, robotic
navigation, spatial objects, graphics, occlusion

1. Introduction

Most of the theories about space and time study the
quantitative aspects of a problem, whereas the qualitative
calculi allow for rather inexpensive reasoning about entities
located in space. For example, some of spatial reasoning is
implemented for handling geographical information systems
(GIS) queries efficiently [1], and such reasoning is used for
robotic sensors, biomedicine, spatial networking, and
cognitive sciences.

Although reasoning over two dimensions is sufficient for
many applications [2], other spatial reasoning applications
need to consider information in more than two dimensions.
Thus the ability to perform qualitative spatial reasoning over
a collection of 3D objects is necessary. The 3D spatial
reasoning involves the visualizing and then manipulating
spatial relations. A 2D QSR system cannot be utilized for
such tasks. Robots see and interpret the world with data
acquired through sensors.

Further, in order to determine occlusion, the view
reference point, the plane of projection, and the type of

projection must be known. Over the past two decades several
theories have appeared for accurately representing and
acquiring 3D spatial knowledge: Galton developed Line of
Sight method with 14 occlusion relations LOS-14, in 1994
[3], its extension Region Occlusion Calculus with 20
occlusion relations ROC-20 was designed by Randell et al. in
2001 [4], Kohler developed the occlusion calculus OCC in
2002 [5], RCCD-3D by Albath et al. in 2010 [6], Guha et el.
Designed OCS-14 (Occlusion States 14) in 2011 [7] and at
the same time independently Sabharwal et al. developed
VRCC-3D+ in 2011 [8]. Each has a positive impact.
However there were some issues that required resolution.
Recently, Eloe et al. attempted to resolve such issues and
improve upon the computational aspects in 2014 [9]. In their
attempt, they introduced two predicates for depth as discussed
in Section 4, which turned out to be obscure and inefficient.
In this paper, we provide a completely new set of self-
documenting predicates for occlusion relations superseding
the aforementioned work. In addition we provide efficient
heuristics for eliminating the time consuming ray tracing used
in performing obscuration computations. These
improvements will greatly enhance the usefulness and
usability of the aforementioned systems. The same reasoning
works for mobile objects when the observer is stationary.

This paper is organized as: Section 2 describes
mathematical concepts and region connection calculus
background Section 3 clarifies the graphics concept of closer,
occlude, obscure, infront, Section 4 describes recent
implementation issues in handling occlusions problems,
Section 5 describes complete, consistent and new set of
occlusion relations using first order logic, Section 6 discusses
efficient implementation techniques, Section 7 is on
conclusions and future work.

2. Background

 A. Mathematical Concepts
Basic mathematical concepts are the same as in the point set
topology. The definition of connectedness in region
connection calculus is slightly different. For any non-empty
bounded set A, we use symbols Ac, Ai, Ab, and Ae to
represent the universal complement, interior, boundary, and
exterior of a set A, respectively. In mathematics, a set is
connected if it cannot be the union of disjoint open sets. For
example, the set (0,1)∪(1,2) is disconnected as (0,1) and (1,2)
are open sets. In RCC, regions A and B are weakly connected
if�A∩�B≠∅. Thus (0,1)∪(1,2) is connected in RCC because

DOI reference number: 10.18293/DMS2015-042

	
	

[0,1] ∩ [1,2] ≠∅. This is equivalent to (1) C(A,A), and (2)
C(A,B) çèC(B,A) for any tow regions A and B.

B. Region Connection Calculi
Much of the foundational research on qualitative spatial
reasoning is based on a region connection calculus (RCC) that
describes 2D regions (i.e., topological space) by their possible
relations to each other [10, 11]. Conceptually, for any two
distinct objects, there are three possibilities on broad level: (a)
one is outside the other, that results in the discrete spatial
relation, DR(DiscRete), (b) one overlaps the other across
boundaries. This means PO(proper overlap), (c) one is inside
the other, that means EQ(equal) or PP(proper part). To make
relations jointly exhaustive and pairwise distinct (JEPD), we
have converse relation denoted PPc(proper part converse),
PPc(A,B)≡PP(B,A). These five relations constitute RCC5
relations. For additional detail on discrete, specifically, DR is
split into DC(disconnected) and EC(externally connected).
For proper part, PP is split into TPP (tangential proper part)
and NTPP (non-tangential Proper part). Similarly for proper
part converse, PPc, we have converse relations TPPc and
NTPPc. These eight relations constitute RCC8 relations of
region connection calculus.

RCC8 was formalized by using first order logic [10] or
9-Intersection model [11], see Fig. 1. The intersections of
interior (Int), boundary (Bnd), and exterior (Ext) of one object
with the other object form 9-Intersections: IntInt, IntBnd,
IntExt, BndInt, BndBnd, BndExt, ExtInt, ExtBnd, ExtExt.

Fig. 1. RCC8 Relations in 2D.

Whereas a 2D object is in a plane, a 3D object is in

space. The simplest examples of 3D objects are a pyramid, a
cuboid, a cylinder, and a sphere. A concave pyramid is a
complex, simply connected 3D object. Since concave objects
can be partitioned into convex objects, for the rest of this
discussion, we will base our analysis on convex objects.

RCC8 spatial relation for 3D objects is incomplete
without occlusion consideration. VRCC-3D+ is a region
connection calculus that qualitatively determines the spatial
relations between 3D objects, both in terms of connectivity
and obscuration [6, 8, 9]. The VRCC-3D+ connectivity
relations are named the same as in RCC8; however, the
VRCC-3D+ connectivity relations are calculated in 3D rather
than 2D. The relative depth is denoted by tri-valent parameter
InFront. Fifteen obscuration relations were defined in VRCC-
3D+ [8,9]. Considered from a 2D projection, each VRCC-

3D+ obscuration relation is a refinement of basic concepts of
no obscuration, partial obscuration, and complete obscuration.
A hybrid occlusion relation specifies both a connectivity
relation and an obscuration relation.

3. Occlusion Concepts

Basically occlusion of one object by another object depends
on the observer location relative to the objects. Our approach
is to derive spatial obscuration relations and classification
from projection of 3D objects on a 2D projection plane and
relative distance of the objects from the observer. The 2D
plane is used to determine the existence of occlusion. The
depth parameter, InFront, coupled with projections determine
the type of occlusion. Obscuration predicates are based on
two parameters: projection in a plane and depth (distance of
the object from viewpoint).

In general, there are two types of projections: Parallel
and Perspective. Parallel projection loses the depth concept in
the projection, because the all projectors are parallel. We use
perspective view for accurate depth representation. The terms
“inFront”, “occlusion”, ”obscuration”, “closer” are closely
related. In natural language, the term inFront between two
objects A and B is synonymously interpreted as “A is in front
of B” ,“A occludes B”, “A obscures B”, “A is closer than B”.
However, there are subtle differences between these, see
examples below. Here we describe these terms precisely with
the help of examples.

A. Examples of occlusion detection supporting

qualitative spatial reasoning
In computer graphics, there is a distinction between terms
occlusion and obscuration. Occlusion means opaque (hidden,
obstructed), whereas obscuration means unclear (hazy,
vaguely transparent). For this reason, the graphics community
prefers the term occlusion to obscuration. We are using both
terms interchangeably to mean opaque.

A1. Point Occlusion
If V (viewer), a, b are collinear points in that order and the
distance of a is smaller than the distance of b from viewer V,
then the three terms are equivalent: point a is closer than
point b or a occludes b or a is in front of b, see Fig. 2(a).
However if both points a and b are equidistant from V, then
none is in front of the other, see Fig. 2(b). Two points are
equidistant, coincident, none occludes the other. This is not
mutual occlusion as explained in Section 3.A2 . If V, a, b are
not collinear, then b can be closer than a without b occluding
a, see Fig. 2(c). Thus a point can be closer without being in
front of the other.

 (a) (b) (c)

Fig. 2 (a) View point V, points a and b; a occludes b, a is in
front of b, a is closer than b to the viewpoint. (b) View point

	
	

V, points a and b; a and b are equidistant, none is in front of
the other. (c) View point, points a and b, b is closer than a,
but b does not occlude a, b is not in front of a.

A2. Object Occlusion
In 2D, to determine whether an area A occludes an area B,
there are several configurations of A and B. If a ray from V
does not intersect any of the two regions, then it does not shed
light on the occlusion. If for every ray from V, it intersects
exclusively one object and not the other object, then no object
occludes the other, see Fig. 3(a, b). An object A can be closer
than object B without obscuring the object B, see Fig. 3(a).

(a) (b)

Fig. 3 Objects do not intersect (a) A is closer than B (b) B is
closer than A.

We cannot make any conclusion from a ray if the ray
intersects only one object exclusively and not the other
object, see Fig. 4(b).

 (a) (b)

Fig. 4. (a) ray from V intersects A, but not B, another ray
from V intersects B , but not A, still A occludes B (partially).
(b) ray from V intersects both, the front point occludes the
other point, still A occludes B (completely).

If for every ray from V that intersects the interiors of
both objects A and B at points a and b, with a in front of b,
then the object A occludes object B, or A is in front of B are
synonymous, Fig. 5(a, b). Also object A is closer to V than
object B is to V, Fig. 5(a), A partially obscures B.

(a) (b)

Fig. 5. (a) A is infront of B, A occludes B, A is closer than B
is, (b) B is infront of A; B occludes A; B is closer than A is.

If there are two rays that intersect objects A and B, such
that for one ray, the intersection with A is closer than
intersection with B, and for the second ray, the intersection
with B is closer than intersection with A, then the object A
partly occludes B and conversely. They mutually occlude
each other, see Fig. 6. None alone occludes the other
completely or partially.

We require that for every ray from V that intersects both
the objects, the two intersections are used to make judgment
about the relative depth of the objects. If the ray intersection
occurs at multiple points, only the closest intersections are

Fig. 6. Mutual Occlusion.

significant for occlusion detection. For example, if the ray
intersection is Vbaab, we need to process only first two
intersections, in this case, Vba, so the point b occludes point a
see Fig. 7 ; If the ray intersection is Vabab, we process the
first two intersections, in this case, Vab. So the point a
occludes the point b.

(a) (b)

Fig. 7. (a) Ray intersection with A and B shown at two points
each so that ray is Vbaab. However only Vba is sufficient for
occlusion determination between A and B. (b) Ray
intersection with A and B shown at two points each so that
ray is Vabab. However only Vab is sufficient for occlusion
determination between A and B.

Partial or full occlusion: If for every ray from view point
V that intersects both A and B, and ray points a∈A are closer
than corresponding points b∈B, then A occludes (partially or
completely) B, see Fig 5(a) and Fig. 7(b).

Mutual or Equal. Similarly it can be seen that if on every
ray from view point V that intersects both A and B, and if
sometimes a is closer and sometimes b is closer, then A and B
mutually occlude each other else if points a, b are equidistant
from V, then it is termed as equal occlusion for spatial
reasoning, this is a clear distinction between mutual and equal
occlusion predicates. This is a conscious decision made for
spatial reasoning because it provides expressive power at no
cost.

4. Problems

In Section 1, we mentioned that there are issues in the
implementation of occlusion in VRCC-3D+ [9]. Let us first
describe the problems and then we will present new
formulation and new crisp occlusion relations in Section 5.

First Problem. Let A, B be 3D objects, (x, y) be a projection
point in the projection plane, a line of sight from camera C
(Center of Perspective Projection) through (x, y) intersects
objects at points fA(x, y) and fB(x, y). Eloe et al. [9] define
occlusion by means of two predicates o and oc. The definition
of predicate o is the following equation [9]

o(A,B) = { F:otherwise
T :∃x,y∍|C− fA (x,y)|<|C− fB (x,y)|

and converse oc(A, B) = o(B, A). This definition of
occlusion is trivially inaccurate. By comparing points

	
	

on only one ray, one cannot claim any thing about the
whole object. For example, the occlusion detection is
inconclusive by this definition as in Fig. 6, there are
points on A and B, in one case point a is in front of point
b and in the other case b is in front of a.

Second Problem Each occlusion relation is determined
with a 5 parameters (IntInt, IntBnd, BndInt, o, oc)
instead of 4 parameters (IntInt, IntBnd, BndInt, InFront).
This increases computational time complexity by 20%.
Increased computation slows down the interaction time
and is detrimental to usability of the system. Instead of
two new predicates to replace a single predicate InFront,
the tri-valent predicate InFront can be made quad-valent
to accommodate mutual for accurate interpretation of
InFront.

Third Problem Eloe et al. [9] point out that with their
approach, 15 occlusion relations have been reduced to
12 relations. Their table 1 below is listing of 12
relations. A closer look at the table indicates that some
of their relations are disjunctions. In a table each row
represents a unique relation rule, the number of rows in
the table is 12+1+1+2+1=17. This contradicts the
assertion that it is a smaller set of occlusions than 15
unique relations. For efficiency consideration, larger set
of predicates amounts to larger computation time.
Baring, the disjunctions, we will show that same tasks
can be accomplished with 7 crisp relations instead of 12.

Fourth Problem There is no consistent ontology for naming
the occlusion relations, see table 1. We devise a complete,
systematic comprehensible list of occlusion relations see table
2. Also there are repeated occlusion ray tracing
computations that can be eliminated. As it is, the
occlusion computation is quite inefficient in [9].

Table 1. Full obscuration relation set with identified
converse relations. cited[9]

We will present improved and enhanced set of crisp
self-documenting predicates. Consequently these issues
will disappear de facto in Section 5.

5. Completeness of Spatial Object Occlusions

In this section, we describe occlusion predicates gradually as
follows: (1) redefine InFront accurately, (2) describe
occlusion relation in natural language, (3) define occlusion
predicates using first order logic, and (4) describe predicates
via a table whose each row is rule for occlusion determination
and classification.

In general, occlusion analysis is performed in two steps.
First, the RCC5 relation is computed between the projections
in 2D. Second, the qualitative spatial distance between the
viewer and 3D objects is determined. The projection alone is
not sufficient to determine obscuration. In Sabharwal et al.
[8], the predicate InFront is used with value Y if A is closer
than B; N is used if B is closer than A, and E is used imply
that A and B are equidistant. As shown in the examples in
Section 2, though three relations are accurate for single
points, but they are not exhaustive for objects. There is a
possibility that the objects cross, see Fig. 6. This leads to
inaccurate classification due to tri-valent interpretation of the
InFront predicate.

However, it is noted that the predicate InFront is sound in
principle, but incomplete and inaccurate in implementation.
We propose that predicate InFront accommodate mutual
occlusion explicitly, when objects cross each other. In our
further discussion, we will have InFront represent four
possibilities; “A is in front of B”, “B is in front of A”, “A and
B are equidistant from V”, and “A and B mutually obscure
each other to indicate that A obscures B partly and B
obscures A partly exclusively”. Using four values of InFront,
we will update occlusion relations accordingly. The
characterization of crisp occlusion relations is detailed in
table 2.

5.1 Description of Depth Parameter InFront
Let V be the viewer, let AP and BP be the projections of A and
B on the projection plane. The observer captures the scene
that is in field of view, FOV. For occlusion purposes, the
viewer sees objects through the window AP∪BP only in the
projection plane. The ray from V, to intersect both objects, is
through points in AP∩BP. Any reference to objects, A and B
for InFront predicate, is reference to the part of objects seen
via only AP∩BP. Let P(x,y) be a point in AP∩BP, let the ray
VP intersect A and B at points fA(x,y) and fB(x,y) closest to
the viewer. For qualitative distance, the value of InFront is
formally stated as follows.

	
	

Algorithm for depth InFront determination
If AP∩BP = ∅
 then there is no obscuration: InFront =”na”
elseif ∀(x,y)∈AP∩BP,

if fA(x,y)=fB(x,y), then A and B are equidistant:
 InFront =”E”
elseif fA(x,y)≤ fB(x,y), then A obscures B: InFront =”A
elseif fA(x,y)≥ fB(x,y),then B obscures A: InFront =”B”

elseif ∃(x,y),(x’,y’)∈AP∩BP such that
fA(x,y)<fB(x,y), and fA(x’,y’)>fB(x’,y’) then A and B
mutually obscure each other: InFront =”M”

end

Caution: For the sake of simplicity, we may loosely write

InFront = A, B, E, M instead of InFront=”A”, “B”, “E”, ”M”.
Now the quad-valent distance parameter InFront is

accurate description depth relation parameter. To make the
occlusion relations self-documenting, we denote the occlusion
predicate as xObs_z(A,B). Since some relations have
converse while others do not, to make it completely
symmetric, we have (1) z=a for “A is in front of B”, (2) for
converse, “B in front of A”, we use z=b; (3) for equality, z=e
if “A and B are equidistant”, and (4) z=m for mutual
occlusion when “partly A is in front of B and partly B is in
front of A”. This way it is easier to comprehend the
predicates when z is used to describe depth. Clearly there is
distinction between mutual and equal occlusion for QSR. For
natural language expressiveness in classification, we will use
two distinct predicates, one for mutual and one for equal,
instead of combining them into one as has been done in the
past [8].

5.2 Occlusion Predicates in Natural Language. The
system has to interpret data as viewed by the observer.	 Most
difficult part is the representation of spatial occlusion
predicate with complete expressive power. With
xObs_z(A,B), in essence x refers to the type of occlusion, n,
p, m, e, c, exclusively and z refers to qualitative distance of
the objects from the viewer. There are four types of distances
for objects and five types of obscuration. Out of 20 relations,
some combinations are impossible, only the possible
combinations are described here.

The discussion of obscuration predicate is incomplete
without reference to projections per se. It is not possible to
know the type of occlusion apriori. As we define the term
xObs_z(A,B) lucidly, we refine occlusion by integrating
contribution of RCC5 relations, namely, DR(AP,BP),
PO(AP,BP), EQ(AP,BP), PP(AP,BP), and PPc(AP,BP). As such,
we upgrade the predicate xObs_z to xObsy_z where y refers
to the RCC5 relation in projection plane, x refers to type of
projection, and z refers to relative distance parameter InFront.

The complete listing of the predicates is given in Section 5.3
and for visual inspection a table 2 is given in Section5.4.	 This
approach eliminates errors and leads to efficient reasoning.

Now for x = n, y in nObsy_z(A,B) corresponds to the
relation DR(AP,BP). In this case nObs will be true
independent of the value of z, so z is not applicable for this.
Therefore four versions of nObsy_z can be simplified to a
single version nObsDR and the value of the InFront is “na”,

Now for x = p, y in pObsy_z(A,B) corresponds to the
relation PO(AP,BP), PP(AP,BP), and PPc(AP,BP). From
PO(AP,BP) there are two relations for InFront value A, B.
There are two other relations, one from PP(AP,BP) with
InFront equal to A, one from PPc(AP,BP) with InFront equal
to B. There are 4 partial obscurations in all. They are named
descriptively where these come from.

Now for x = e, y in eObsy_z(A,B) corresponds to the
relation EQ(AP,BP), PO(AP,BP), PP(AP,BP), PPc(AP,BP). In
each case, there is one predicate for equal obscuration with
InFront value E. There are 4 equal obscuration predicates.

Now for x = m, y in mObsy_z(A,B) corresponds to the
relation EQ(AP,BP), PO(AP,BP), PP(AP,BP), PPc(AP,BP). In
each case, there is one predicate for mutual obscuration with
InFront value M. There are 4 mutual obscuration predicates.

Now for x = c, y in cObsy_z(A,B) corresponds to
EQ(AP,BP) or PPc(AP,BP) or PP(A,B). From EQ(AP,BP),
there are two relations for InFront value A, B. There are two
other relations, one from PP(AP,BP) with InFront equal to B,
one from PPc(AP,BP) with InFront equal to A. There are 4
complete obscurations in all.

5.3 Occlusion Predicates using first order logic
Now that we have described the obscuration predicates in
natural language, we will define them formally in first order
logic as follows. The complete and comprehensive occlusion
relations nObs, pObs, eObs, mObs, cObs supported with y for
RCC5 relation between projections and z for parameter
InFront are coherently denoted by xObsy_z.

There is one nObs occlusion relation:

nObsDR (A,B) ≡ DR(AP,BP)∧(InFront(A,B) == “na”)

There are 4 types of pObsy_z occlusion relations. There are
two predicates from PO(AP,BP) with parameter InFront values
A, B for partial obscuration. There is one predicate from
PP(AP,BP), with InFront=A and there is one predicate from
PPc(AP,BP), with InFront=B for partial obscuration, namely:

pObsPO_a(A,B)≡ PO(AP,BP)∧(InFront (A,B) ==“A”)
pObsPO_b(A,B) ≡ PO(AP,BP)∧(InFront (A,B) ==“B”)
pObsPPc_b(A,B)≡PPc(AP,BP)∧ (InFront (A,B) ==“B”)
pObscPP_a(A,B) ≡ PP(AP,BP)∧ (InFront (A,B) ==“A”)

There are 4 types of eObsy_e occlusion relations. For y, there
corresponds one predicate from each PO(AP,BP), EQ(AP,BP),

	
	

PP(AP,BP), and PPc(AP,BP) with InFront=E when objects A
and B are equidistant, namely :

eObsEQ_e(A,B) ≡ EQ(AP,BP)∧ (InFront (A,B) ==“E”)
eObsPO_e(A,B) ≡ PO(AP,BP)∧ (InFront (A,B) ==“E”)
eObsPPc_e(A,B)≡ PPc(AP,BP)∧ (InFront (A,B) ==“E”)
eObsPP_e(A,B) ≡ PP(AP,BP)∧ (InFront (A,B) ==“E”)

There are 4 types of mObsy_m occlusion relations. For y,
there is one predicate from each PO(AP,BP), EQ(AP,BP),
PP(AP,BP), and PPc(AP,BP) with InFront=M when objects A
and B are properly cross, namely :

mObsEQ_m(A,B)≡EQ(AP,BP)∧(InFront (A,B) ==“M”)
mObsPO_m(A,B)≡PO(AP,BP)∧(InFront(A,B) == “M”)
mObsPPc_m(A,B)≡PPc(AP,BP)∧(InFront(A,B)==“M”)
mObsPP_m(A,B)≡PP(AP,BP)∧(InFront (A,B) == “M”)

There are 4 types of x=c occlusion relations. There are two
from PP and PPc with values B and A and there are two from
EQ with values of InFront as A, B, for complete obscuration.

cObsPPc_a(A,B)≡PPc(AP,BP)∧ (InFront (A,B) ==“A”)
cObsPP_b(A,B) ≡ PP(AP,BP)∧ (InFront (A,B) ==“B”)
cObsEQ_a(A,B) ≡ EQ(AP,BP)∧ (InFront (A,B) ==“A”)
cObsEQ_b(A,B) ≡ EQ(AP,BP)∧ (InFront (A,B) ==“B”)

This is a complete classification of seventeen JEPD unique
occlusion relations, see Table 2.

Table 2 Let x be table entry, y=RCC5(AP,BP),

z=InFront(A,B), then xObsy_z(A,B). The first row entry
indicates, there is no occlusion irrespective of InFront value.

5.4 Tabular form of Occlusion Predicates

 We have completely described the occlusion predicate
xObsy_z(A,B), see Table 2. Now we have one predicate for
nObs, four predicates each for pObs, eObs, mObs, and cObs.
There are seventeen JEPD predicates in all, described in
natural language and in first order logic. We can reduce them
to 7 by suppressing the y but adding the details of y in table
entries: xObs_z, see Table 3. This is essential for display, but
not necessary for development.

6. Implementation Consideration

For any theoretical development, its practical usefulness
depends on the implementation followed its use in client
applications. Clearly we have improved the theoretical

representation of the solution to computation of obscuration
classification relations. We presented crisp ontology for
obscuration relations: xObsy_z.

Table 3 Complete Set of Occlusion Predicates

First viewpoint and viewplane are selected. The objects
are projected on the view plane. With the projections of the
objects, RCC5 relations are determined using IntInt, IntBnd,
and BndInt predicates with the 2D projections AP and BP of
the 3D objects A and B, respectively.

The 5-step algorithm for obscuration detection becomes:

Algorithm for xObsy_z determination
Input: objects A and B, view point V and projection plane P.
Output: predicate xObsy_z
1. Project Objects A and B, determine AP and BP
2. Determine RCC5 relations between AP and BP
3. Determine InFront parameter values
4. Integrate steps 2 and 3 to classify the obscuration type

There are standard algorithms for step 1, and 2. The step
3 is most complex and computation intensive in practice. In
order to determine the obscuring object, as shown in Section
5.4, a semi-infinite ray is drawn from viewer through points
in AP∩BP and analyzed for intersection with the objects. This
is a computation intensive step as it is repeated thousands of
times depending on digitization of projection plane.

Computations of ray intersections in step 3 can be
eliminated altogether by judiciously performing the step 1. As
soon as the projection is computed, we know the functional
relation between objects and their projections: A to AP, and B
to BP. We can record it in step 1 to use it in step 3 as a lookup
table to avoid repeated ray intersections. This can be done
with an appropriate intelligent grid data structure that keeps

	
	

track of the closest intersection points on the objects. Now
for step 3, we can look up the computed value for each AP
grid point. This eliminates tens of thousands of ray-object
intersection computations.

By using this heuristic the algorithm can be implemented
very efficiently. Test case was written in Python and
implemented on Apple, using synthetic data of 500 objects of
various shapes. The simulation showed a remarkable
improvement. Computation efficiency will increase
significantly if one object information is reused for
obscuration with several other objects in the application.

6.1 Hybrid Spatial and Occlusion Relations

The same reasoning also works for mobile objects and
stationary observer. Topological relation is a static RCC8
relation for 3D objects. Static relation is independent of the
observer, it is the same for every observer. The occlusion
relation (xObsy_z) is the spatial dynamic relation as seen by
the viewer. The dynamic occlusion relation varies from
viewer to viewer location. By consolidating the two, we have
complete hybrid spatial relations. If R is an RCC8 relation in
3D, and xObsy_z is occlusion relation, then R and xObsy_z
in tandem coalesce to represent coherent spatial relation,
R-- xObsy_z.

For the sake of simplicity and space availability, we
suppress y, and display the relations in the form R_xObs_z.
There are 8 RCC8 connectivity relations and 7 xObs_z
occlusion relations. Not all obscuration relations are
physically possible with each RCC8 relation. There are 23
hybrid relations: 5 DC, 5 EC, 6 PO, 1 EQ, 2 TPP, 2 TPPC, 1
NTPP, 1 NTPPc relations, see Fig. 8.

Fig. 8. A hierarchy tree of composite spatial relations.

7. Conclusion and Future Directions

We have given a complete description and classification
of qualitative spatial occlusion relations for 3D objects
as seen by an observer. The same reasoning works well
with the objects that are mobile and	 the	 observer	 is	
stationary. The spatial relations are self-documenting
and easy to understand. We optimized the set of
occlusion relations from 12 to 7 and reduced the
composite relations from 34 to 23. These computations
are performed repeatedly in any application. This
development will be useful in GIS, robotic sensors for

navigation, biomedicine, and related areas. Conceptual
neighborhoods and composition tables are integral part
of any qualitative spatial reasoning system, we plan to
develop these ideas to produce conceptual neighborhood
graphs and composition tables. This work also
supersedes the existing 3D spatial reasoning systems.

8. References

 [1] B. Bennett.: Spatial Reasoning With Propositional

Logics, Proceedings of the 4th International Conference
on Principles on Knowledge Representation and
Reasoning (KR-94), Bonn, Germany, pp. 165-176, 1994.

[2] Galata, A., Cohn, A., Magee, D., and Hogg, D.: Modeling
interaction using learnt qualitative spatio-temporal
relations and variable length markov models. In ECAI,
pp. 741–746, 2002.

[3] A.P. Galton, Lines of Sight, in AISB Workshop on Spatial
and Spatio-Temporal Reasoning, 1994.

[4] D.A. Randell, M. Witkowski, and M. Shanahan, From
Images to Bodies: Modelling and Exploiting Spatial
Occlusion and Motion Parallax, IJCAI-01, pp. 57-63,
2001.

[5] Kohler, C.: The Occlusion Calculus. In: Cognitive
Vision Workshop. ICVW ’02 , pp. 1-6, 2002.

[6] J. Albath, J. Leopold, and C. Sabharwal, Visualization of
Spatio-Temporal Reasoning Over 3D Images,
Proceedings of the 2010 International Workshop on
Visual Languages and Computing (in conjunction with
the 16th International Conference on Distributed
Multimedia Systems), pp. 277-282, 2010.

[7] Guha, P., Mukerjee, A., Venkatesh, K.S.: OCS-14
: You Can Get Occluded in Fourteen Ways. In:
Walsh, T. (ed.) Proceedings of the 22nd
International Joint Conference on Artificial
Intelligence. pp. 1665–1670, 2011.

[8] C. L. Sabharwal, J. L. Leopold, and N. Eloe: A
More Expressive 3D Region Connection Calculus In The
2011 International Workshop on Visual Languages and
Computing (in conjunction with the 17th International
Conference on Distributed Multimedia Systems
(DMS'11)), pp. 307-311, 2011.

[9] N. Eloe, C. Sabharwal and J. Leopold: A More Efficient
Representation of Obscuration for VRCC-3D+ Relations,
Polibits Journal of Computer Science, pp. 29-34, 2014.

[10] D.A. Randell, Z. Cui, A.G. Cohn, A Spatial Logic
Based on Regions and Connection KR92:165–176,
1992.

[11] M. J. Egenhofer, R. Franzosa, Point-Set topological
Relations, International Journal of
Geographical Information Systems 5(2), pp.161-174,
1991.	 	

