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Abstract

In this paper a novel moving shadows detecting algo-
rithm is proposed. The algorithm can be used in indoor
and outdoor environments. The algorithm we propose fuses
together color and stereo disparity information using the
Dempster-Shafer combination rule. Some considerations
on the nature of the shadow improves the algorithm’s abil-
ity to candidate the pixels as shadow or foreground. The
candidate of both color and disparity information are then
weighted by analyzing the effectiveness in the scene.

1. Introduction

Shadow detection plays an important role in many ma-
chine vision applications. Correct shadow detection may
lead to important performance improvements in scene un-
derstanding, object segmentation, tracking, recognition.

It is not difficult for human eyes to distinguish shadows
from objects. However, identifying shadows by computer is
still a challenging research problem. Shadows occur when
objects totally or partially occlude direct light from a light
source. Generally speaking, shadows are composed by two
parts: self-shadow and cast shadow. The former is the part
of the object which is not illuminated by the light source.
The last one is the area projected on the scene by the ob-
ject and is further classified in umbra and penumbra. The
umbra corresponds to the area where the direct light is to-
tally blocked by the object, whereas in the penumbra area
it is partially blocked. The cast shadow is more properly
called moving cast shadow if the object is moving. Moving

shadows cause the erroneous segmentation of objects in the
scene. To solve this problem, moving shadows have to be
detected explicitly to prevent them being misunderstood as
moving objects or their parts.

In order to systematically develop and evaluate various
shadow detector, the quality measures to minimize include
the following: (i) Detection rate, which is the error prob-
ability to detect correct shadow pixels; (ii) Discrimination
rate, which is the probability to identify wrong points as
shadow, i.e. the false alarms rate; (iii) Localization error,
i.e. the average distance between the pixels marked as shad-
ows and the real position of the shadow pixels.

Algorithms to solve the shadow detection problem can
be coarsely divided in two groups: property-based algo-
rithms and model-based algorithms. The most common
and flexible are the property-based approaches which use
features like geometry, brightness, or color to identify
shadowed regions. These techniques do not use any a-
priori knowledge as scene geometry, objects disposition and
types, or light condition. Instead model based approaches
are well suited to particular situations, as car tracking in
highway, but have shown less robustness than property-
based algorithms when used in a different scene and illu-
mination conditions.

Shadow detection algorithms may be also defined in
base of the main property analyzed: geometrical, lumi-
nance, color space and difference, texture analysis and
edges. These basic components can be combined together
to overcome the limitations offered by the methods sepa-
rately. Moreover the detection of shadow can be used to re-
construct the image, not only to fastener the process. Dark
shadows and soft shadows however do not change the phys-
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ical dimension of an object. In this paper we propose an
approach that takes in consideration the mentioned aspects,
together the depth for the shadow.

2. Related Work

Considering the different solutions the authors proposed,
we can group the works as described in the introduction.

A familiar direction is to conjecture that shadows reduce
the luminance of an image, meanwhile the chrominance
stays almost unchanged [20, 14]. However these approach
are not valid in outdoor scenes.

Shadow analysis based on color spaces is pretty popu-
lar. Cucchiara et al. [21] hypothesized that shadows re-
duce brightness and saturation maintaining hue properties
in HSV color space. More recently, Moghimi et al. [15], use
combination of orthogonal transformation and HSV color
space to detect shadow pixels. Yang et al. [19] use three
components in YUV color space to identify shadow pixels
from the candidate foreground. Dong et al. [25] analyze the
differences between the pixels of object/shadow and that of
background according to a RGB color model followed by
edge ratios analysis. In [22], the authors compare shadow
suppression using RGB and HSV color space and show that
HSV color space should be preferred over RGB color space.

Also geometrical information had space on the shadow
detection field. Many of the methods in literature normally
requires shadows to be on a flat plane. The use of a dispar-
ity model has been proposed by Ivanov, et al., [26]. The
method described is defined as invariant to an arbitrarily
rapid changes in illumination, for modeling background.
The negative aspect is that, to overcome rapid changes in
illumination, at least three cameras are required. Onoguchi
[18] proposed a method based on two cameras to eliminate
the shadows of pedestrian based on object height. In order
to detect shadow, both object and shadow must be visible on
the camera. Salvador, et al., [9] adopt the fact that a shadow
darkens the surface, to identify an initial set of shadowed
pixels. This particular set is reduced by using color invari-
ance and geometric properties of shadow.

The shadow is not only detected but it is also possible to
remove. Finlayson, et al., [12] utilizes shadow edges along
with illumination invariant images to recover full color im-
ages. Despite that, a part of the color information is lost in
removing the effect of the scene illumination. Weiss [24]
uses the reflectance edges of the scene to obtain an intrinsic
image without shadows. The approach proposed requires
significant changes, and as result the scene illumination is
contained in the reflectance image. Matsushita, et al., [27]
extend the previous concept. However their method does
not consider dynamic cast shadows but only static.

Huerta, et al., [13] apply a multi-stage approach com-
bining color, gradient and textural information with known

shadow properties. This method improve previous models
but partial loss of foreground borders due to edge and has
weakness to texture-less background and objects.

3. Algorithm Overview

The algorithm is outlined in Fig.1. First, a segmenta-
tion of moving objects is realized using background sub-
traction. On the moving object extracted, a pixel-wise anal-
ysis of color consistency is performed. Difference between
foreground and background distance is computed with the
stereo camera. Finally, a shadow measure is computed us-
ing the Dempster-Shafer combination rule.

4. Shadow Properties and Models

In this work both color and distance information ob-
tained by a stereo camera are considered. We consider
fundamental radiometric model of the radiance of points
in a scene illuminated by a combination of sunlight and, if
present, colored direct or diffuse light like sky light (com-
bination of multiple light sources). The model and the as-
sumptions that are made are described in this section. We
assume that the camera has a linear relationship between the
radiance of a surface and the pixel value assigned to the im-
age point of the surface. That type of camera is defined as
linear camera.

For this work it is assumed that the images represent a
well illuminated environment in both cases, indoor and out-
door. The material of the objects in the scene are essentially
diffuse, which exhibit Lambertian reflectance, constant over
time. Instead albedo’s (diffuse reflectance) of the surfaces is
not necessary to be constant over time. The images is sup-
posed to be properly exposed, i.e. the important area of the
image are neither over-exposed (color channel values near
255) not severely under-exposed (value near 0).

4.1. Color Model

It is supposed that the color information ρ at a given pixel
p obtained from a recording camera depends on four com-
ponents: the spectral power distribution (SPD) of the illu-
minant denoted E(λ), the surface reflectance R(λ), the sen-
sor spectral sensitivity Q(λ) evaluated at each pixel p and a
shading factor σ. This assumption is valid for Lambertian
surfaces.

ρp = σ

∫
R(λ)E(λ)Qp(λ)d(λ) (1)

The surface reflectance R(λ) depends on the material
which can have different albedo.



Figure 1. Flow diagram of the proposed method.

In a setting as described above it is possible to formulate
the value, ρ, of a pixel as follows, using subscript r to in-
dicate elements related to the red channel (green and blue
being similar):

ρr =
cr · ϕr · Er

π
(2)

where ϕr is the diffuse albedo of the surface point be-
ing imaged (ratio of outgoing radiosity to incoming radi-
ance), and Er is the incoming radiance in the red channel.
Thus, ϕr · Er is the reflected radiosity. Dividing this by
π [sr] yields the reflected radiance of the surface (since the
radiosity from a diffuse surface is π times the radiance of
the surface). Finally, cr is the (typically unknown) scaling
factor translating the measured radiance into pixel value (0
to 255 range for an 8 bit camera) for a linear camera. This
scaling value depends on the aperture of the lens, the shutter
speed, the gain, the white-balancing etc. of the camera.

In the kind of outdoor daylight setting we are addressing
in this paper the total incoming radiance at a point is a sum
of two contributions, Er = ESUN

r + ESKY
r , again using

subscript r for red color channel as example. The amount
of radiance received from the sun, ESUN

r , depends on sev-
eral factors: the radiance of the sun, how large a fraction
of the sun’s disk is visible from the point in interest (if the
sun’s disk is completely occluded the point is full shadow,
also called umbra), and on the angle between the surface
normal at the point and the direction vector to the sun from
the point. If the sun’s disk is only partially occluded the
point is in the penumbra (soft shadow).

Two kinds of shadows can appear in an image: the
penumbra and the umbra. The difference between them can
be modelled by the following equation

ρ(x, y) = E(x, y)ϕ(x, y) (3)

4.2. Reddish, Greenish and Bluish

Many works took in consideration the diffuse sources.
In particular in outdoor scenes, the diffuse source it is ob-
viously the sky. Diffuse source has different values of to-
tal incoming radiance at a point E(a). A no white diffuse
source can have effect to the cast shadow. If we consider an
outdoor environment, beside a reduction in the intensity, an
outdoor cast shadow will result in a change of chrominance.
Considering again the outdoor scene, the illumination of the
sky has higher power components in the lower wavelengths
λ (450-495nm) of the visible spectrum, and it is therefore
assumed bluish as argued in [17] . When the direct illumi-
nation of the sun is blocked and a region is only illuminated
by the diffuse ambient light of the sky, materials appears to
be more bluish. This ”bluish effect” and the chrominance
distortion can be exploited for shadow detection and group-
ing of potential shadow pixel. Colour balance, or in the
specific case, white balance can apply an adjustment of the
intensities of colours. Even with this compensation, the ef-
fect of coloured diffuse sources remain on the objects, and
it is possible to take an advantage on it, when possible. Be-
cause, in order to detect the shadow, the variation between a
background image and current image is estimated, coloured
effect can be detected. Bluish however is just one large but
particular condition. In fact it is possible that, due to the
particular scenario, the diffuse light has a different coloura-
tion. For instance, lights in coloured environment and also
coloured lights which cause a chrominance distortion. If it
exists, then it is possible to consider a general chrominance
distortion in one of the three channels. Thus, objects which
suffer more environment color will have an intensity varia-
tion bigger on the component which does not represent the
color. For example, in outdoor scenario, the shadow will
suffer more the effect of the sky and the intensity changes
will be bigger in red and green channels than in blue chan-



nel.

5. An Innovative Information Fusion Ap-
proach for Supporting Shadow Detection
in Complex Environments

As described in Section III we initially segment each
frame into background, foreground, and shadow. This is
performed by combining the results from background sub-
traction process and shadow detection. The methods are
described below. The advantage of these methods is that
they do not require a training phase. Nevertheless they give
generally good performances as it will be shown in the ex-
perimental Section.

5.1. Background Subtraction

In this work we use a subtraction stereo method de-
scribed in [11]. This method consist in a threshold sub-
traction .

For each pixel p, a background model is learned, from
which the foreground probability can be estimated. Poten-
tial moving objects can be extracted by simply thresholding
this density distribution, and within the segmentation the
cast shadows can be evaluate over both the color and stereo
domain.

Another drawback of using background subtraction is
that for long sequence (day s, week s, months), it can be dif-
ficult to maintain the background model due to high varying
illumination, precipitation, season changes, etc.

5.2. Color Shadow Detection

The method we are going to describe is a modification
of the works described in [16] and [10]. It offers interest-
ing performance in shadow detection without any training
phase.

Considering that the radiance influences the cast shadow
not linearly than the intensity ratios between neighboring
shadow pixels depends on the source direction. The varia-
tions in background and segmented image will be used to
calculate the error score within a small region, used for dis-
criminating a pixel as shadow. The error score is computed
as reported in eq.(4).

Ψ (x, y) =
∑

c∈R,G,B

∑
i,j∈ω(x,y)

∣∣∣dc (i, j)− d
′

c (i, j)
∣∣∣ (4)

Even if colors cannot be used singularly to extract shad-
ows, they represent an important source of information. The
color difference which is used to estimate if a pixel belongs

to a cone shadow is calculated comparing the color infor-
mation between the background and detected foreground
image. The color space is modelized as follows C1 (x, y) = arctan

(
Ir(x,y)
Ib(x,y)

)
C2 (x, y) = arctan

(
Ig(x,y)
Ib(x,y)

) (5)

The color score error due to the variation of color is com-
puted as

Λ (x, y) =
∣∣∣C1 (x, y)− C

′

1 (x, y) + C2 (x, y)− C
′

2 (x, y)
∣∣∣

(6)

5.3. Stereo Shadow Detection

As previously mentioned, in ideal condition, it would be
possible to separate an object from the shadow by the esti-
mated distance. Once obtained the distance value of each
point of the image from the background, a pixel is consid-
ered object if the difference is higher than zero (ideal con-
dition), or ε (real condition).

Because the calculation of distance generally is problem-
atic in saturation regions, only the points with an intensity
less than a threshold are used.

Stereo cameras have a range within the error measures
calculated which is lower than the measured distance. The
working range changes from camera to camera and it de-
pends on several factors, software (matching algorithms)
and hardware (sensors, camera displacement and numbers,
focal length).

The estimated errors in Fig. 2 shows a quadratic relation
between distance and error. According to our tests, accurate
values can be obtained within 5 meters.

We took in consideration the Bumblebee2 stereo camera
and estimated the errors due to the range measuring the real
distance and estimated distance. The error is shown in Fig.
2 as vertical segments.

If the measure is taken after the best distance, the error
shows a quadratic behaviour. Otherwise it has a quasi-linear
behaviour.

If the distance information has been calculated both for
background and foreground and it is within the best range,
then if dx,y 6= ∅ ∧ d

′

x,y 6= ∅ ∧ dx,y ≤ ε

Sx,y =

{
0 if

∣∣∣dx,y − d′

x,y

∣∣∣ ≤ m (dx,y − ε) + q

1 otherwise.
(7)

If the distance information has been calculated both for
background and foreground but it is over the best range,
then if dx,y 6= ∅ ∧ d

′

x,y 6= ∅ ∧ dx,y > ε



Figure 2. Error calculated for the stereo cam-
era used. The error increases with the dis-
tance.

Sx,y =

{
0 if

∣∣∣dx,y − d′

x,y

∣∣∣ ≤ 1
m (dx,y − ε)2

+ q

1 otherwise.
(8)

From the hypothesis that the camera is able to estimate
a correct distance within a certain range r, we propose a
method to automatically adjust m and q. Given the dis-
tance difference between background and current images,
it is reasonable to suppose that within a certain confidence
range r

′
, the pixels have to be labeled as shadow. Instead

out of r
′
, pixels are expected to belong to a moving object.

A set of points measured around r are collected and labeled
based on the previous consideration. If a pixel is recog-
nized as shadow and the distance difference is lower than
r
′

then the point is marked as success otherwise as failure.
If a pixel is recognized as no shadow and the distance dif-
ference is equal or greater than r

′
, then the point is marked

as success otherwise as failure. An example can be seen in
fig.3.

Once obtained the graph, we modify the parameters only
if the percentage of success inside and outside the range r

′

is lower then an accuracy value.
At each iteration, the parameters are adjusted using a

random function as follow:

m = m+ sign · rand (9)

q = q + sign · rand
100

(10)

where sign is positive if the percentage of failures inside the
range is higher or equal to the percentage of failures outside.
Negative in opposite case.

5.4. Dempster-Shafer Fusion

The Basic Belief Assignment can be viewed as a gener-
alization of a probability density function. More precisely,

Figure 3. Example of success and failure in
stereo shadow detection. In the left picture,
the pixels are depicted in red or green to put
in evidence if it is shadow (green) or fore-
ground (red). On the right, the graph shows
the estimation success. Each colored pixel
represent a case of success or failure. In red,
a pixel is labeled as estimated. In green, a
failure.

a Basic Belief Assignment m(.) is a function that assigns
a value in [0, 1] to every subset A of θ that satisfies the
following: ∑

A⊆Θ

m(A) = 1, m(∅) = 0

It is worth noting that m(A) is the belief that supports the
subset A of θ, not the elements of A. This reflects some ig-
norance because this means that we can assign belief only to
subsets of θ, not to the individual hypothesis as in classical
probability theory.

Consider two Basic Belief Assignmentsm1(.) andm2(.)
and the corresponding belief functions bel1(.) and bel2(.).
Let Aj and Bk be subsets of θ. Then m1(.) and m2(.) can
be combined to obtain the belief mass assigned to C ⊂ θ
according to the following formula [23]:

m(C) = m1

⊕
m2 =

∑
j,k,Aj∩Bk=Cm1(Aj)m2(Bk)

1−
∑

j,k,Aj∩Bk=∅m1(Aj)m2(Bk)

(11)
The denominator is a normalizing factor, which measures
how much m1(.) and m2(.) are conflicting.

5.5. Basic Belief Assignment for Shadow Estimation

The quantities above computed, i.e. Ψ(x, y), Λ(x, y)
and S(x, y) can be considered as the outputs of three ex-
perts that, from different knowledge, represent the possibil-
ity that the pixel (x, y) is a shadow. More precisely, the
more each of these parameters is close to zero, the more
likely the relative pixel represents a shadow. From such
quantities, three other quantities are computed as follows:
Ψ′(x, y) = max((1 − Ψ(x, y)), 0),Λ(x, y) = max((1 −



Λ(x, y)), 0), S′(x, y) = (1 − S(x, y)). These three quan-
tities are then normalized such that their sum is equal to
one. The next step we performed is to divide, with em-
pirical thresholds, each quantity in three sections, corre-
sponding to Umbra, Penumbra and Luminance respectively.
Since the S′(x, y) parameter given that the S′(x, y) param-
eter distinguishes only the shadow by the light, the prob-
ability that the pixel represents umbra or penumbra is the
same. Thus, we considered the following set of possi-
ble hypotheses, θ = {U,P, L} that is Umbra, Penum-
bra, Light. This give rise to the following power set:
{U}, {P}, {L}, {UP}, {UL}, {PL}, {UPL}. Each sub-
set is assigned a belief m on the basis of the three knowl-
edge sources. The final shadow index Θ is obtained by com-
bination:

Θ =

n⊕
i=1

mi = ((m1

⊕
m2)

⊕
m3)

6. Confidence Estimation

In order to estimate the diffuse chrominance of the scene,
we propose a method which analyzes the variation in a se-
quence of images. If Ic is the intensity of the current frame
and I

′

c is the intensity of a given background image, the dif-
fuse chrominance is considered the highest variation in a
sequence. c can assume red, green, or blue value, and gray
is equal to gray value. We consider that each channel has 8
bit resolution. Even if it is obvious that colored objects in-
fluence the estimation of the color, considering all the points
of the image in a sequence will reduce that effect.

Given the background image and the current image, the
histogram of the differences is computed as

∀p, Hc,|Ip−I′
p| = Hc,|Ip−I′

p| + 1 (12)

The color value is then

cvc =

∑256
i=0Hc,i · i

s
(13)

The difference in intensity between the gray scale image
in each channel is computed as reported in eq.(14).

DIc =
1− |cvc − cvgray|

256
(14)

and the proportional variation of each channel respect the
gray scale image is computed as

PV Ic =

 −
(

1−min
(

cvc
cvgray

,
cvgray

cvc

))
if cvc > cvgray

1−min
(

cvc
cvgray

,
cvgray

cvc

)
otherwise.

(15)

Differences and proportional variations are gathered for
the number of frames necessary to estimate the average and
variance of the sequence analyzed. Empirically we esti-
mated that 100 frames are sufficient for that analysis.

First the DI are normalize respect the maximum and
minimum value of all the color DI.

DIc =
DIc −min (DI)

(max (DI)−min (DI))
(16)

We compute the average and variance of the differences
and proportional variations. The sequence average differ-
ence and variation are estimated as shown in eq.(17) and
eq.(18).

SADc = ln

(
µDIc

1− δ2DIc

)
(17)

SAPVc =

∣∣∣∣ln( µPV Ic
1− δ2PV Ic

)∣∣∣∣ (18)

For each combination of colors the difference of se-
quence average difference and variation is computed in or-
der to estimate the prevailing color.

∆rg = SADr − SADg

∆rb = SADr − SADb

∆gb = SADg − SADb

(19)

and finally the color strenght is estimated as described in
eq.(20).

CSr = (∆rg >= 0) · |∆rg|+ (∆rb >= 0) · |∆rb|
CSg = (∆rg < 0) · |∆rg|+ (∆gb >= 0) · |∆gb|
CSb = (∆rb < 0) · |∆rb|+ (∆gb < 0) · |∆gb|

(20)
The suggested best chrominance will be the highest value.

Obviously, one color will prevails, unless the image is
not completely gray scale. Because we want to avoid errors
due to noisy or particular configurations, we consider col-
ored diffuse light only the best color value which satisfies
the following equation.

color =

{
white if CSbest < min (SAPV )
best otherwise.

(21)

We consider that a pixel segmented as foreground can-
not be a shadowed pixel if its intensity is higher than back-
ground. Thus, a pixel is candidate as shadow if

spa =
(
IRa < µR

)
∧
(
IGa < µG

)
∧
(
IBa < µG

)
(22)

Moreover, in the case of bluish effect (similar to greenish
and reddish) , the changes on the intensity component of the
red and blue channels are bigger than the blue channel. To



be more flexible, the increment will be proportional. This
fact can be used to reduce the shadow region as follows:

If bluish

csa =(k
(
IRa − µR

)
>
(
IBa − µB

)
∧

k
(
IGa − µG

)
>
(
IBa − µB

)
) ∧ spa

(23)

If reddish

csa =(k
(
IGa − µG

)
>
(
IRa − µR

)
∧

k
(
IBa − µB

)
>
(
IRa − µR

)
) ∧ spa

(24)

If greenish

csa =(k
(
IRa − µR

)
>
(
IGa − µG

)
∧

k
(
IBa − µB

)
>
(
IGa − µG

)
) ∧ spa

(25)

The mask so obtained is then used to mark the pixels that
should be analyzed.

If the color of the environment is not white the pixels
which are not candidate to be shadow are labeled as moving
objects.

6.1. Merge Methods

Once the shadow values are obtained with the previously
described methods, the difficult task is to find a relationship
between result obtained from color information and shadow
information. Because the measures are not directly relation-
able, we estimate the strength of each detection method.

The shadow detection method described in section V.A
return a value we called shadow parameter. It is possible to
combine the shadow parameter with the distance in order to
obtain a confidence value. Likewise, it is possible to obtain
a confidence value from the stereo shadow detection. The
confidence values are higher for the stereo information if
the distance of a point from the camera, is near the focal
point. On the opposite side, confidence value is higher for
the points which have a distance lower or higher than the
focal point.

The curve that define the probability to be shadow is not
centered around zero, but differs if a pixel is detected as
shadow or no shadow. The equations can be so resumed.
If the distance from the camera is less or equal to the focal
point:

Wcx,y =

{
pShadow ·

(
d
m + q

)
if shadow

Fp
pShadow ·

(
d
m + q

)
otherwise. (26)

Wsx,y =

{
1

∆d
· 1

d
m +q

if shadow

2d · 1
d
m +q

otherwise. (27)

However, if the distance from the camera increases:

Wcx,y =

 pShadow ·
(

1
m · (d− Fp)

2
+ q
)

if shadow
Fp

pShadow ·
(

1
m · (d− Fp)

2
+ q
)

otherwise.
(28)

Wsx,y =

{
1

∆d
· 1

1
m (d−Fp)2+q

if shadow
2∆d · 1

1
m (d−Fp)2+q

otherwise. (29)

Stereo information may be not always available in all the
points of the image. This is due to several factors: light con-
ditions, distance of the object from the camera, visibility of
an object from both the cameras. If the stereo information
is not available, we choose to use only the color informa-
tion. In the case a pixel is labeled as shadow (or no shadow)
with both the methods, the pixel will be labeled with the de-
tected value. If the detection value is different, the pixel will
be labeled with the value of the method which have higher
weight.

7. Qualitative Evaluation

The proposed algorithm has been implemented using a
Bumblebee2 stereo camera from Point Grey Research on
an Intel Quad CPU at 2.83 GHz and 4GB Ram. Unfortu-
nately we did not find a 3D data set suitable for us because
we need results obtained with that stereo camera. Thus we
acquired several video sequences in different conditions of
illumination and camera orientation. Both in-door and out-
door environments have been considered. The results pre-
sented hereafter are obtained from our captured sequences.
The results presented here are only qualitative; in fact we
did not performed actual comparisons with ground truths
yet but we want only to evaluate the results from a qualita-
tive point of view, for now. The results appear to us quite
good, as shown in Fig.4) and Fig.5).

Figure 4. In this figure an example of shadow
detection performed with the proposed algo-
rithm for an in-door environment is reported.
Shadow pixels are represented in green.



Figure 5. In this figure an example of shadow
detection performed with the proposed algo-
rithm for an out-door environment is reported.
Shadow pixels are represented in green.

8. Conclusions and Future Work

In this paper, a new moving cast shadow detection algo-
rithm that requires a stereo camera is proposed. The algo-
rithm exploits the color, texture, temporal and depth infor-
mation. Although many shadow detections have been per-
formed, in this paper only the theory and some examples are
reported. Accurate ground-truth based performances and
comparisons with state of the art algorithms will be pre-
sented in future papers. Also a GPU implementation of the
algorithm will be explored. Future work is mainly focused
in extending our proposed framework by means of several
characteristics, as to enhance it significantly. For instance,
some interesting properties to be investigated in future are:
fragmentation (e.g., [1, 3]), approximation (e.g., [4, 5]), pri-
vacy preservation (e.g., [6, 7]), big data (e.g., [8, 2]).
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