

A Distributed Framework for NLP-Based Keyword
and Keyphrase Extraction From Web Pages and

Documents

P. Nesi, G. Pantaleo and G. Sanesi
Distributed Systems and Internet Technology Lab, DISIT Lab, http://www.disit.dinfo.unifi.it

Department of Information Engineering (DINFO),
University of Florence – Firenze, Italy

paolo.nesi@unifi.it, gianni.pantaleo@unifi.it

Abstract—The recent growth of the World Wide Web at
increasing rate and speed and the number of online available
resources populating Internet represent a massive source of
knowledge for various research and business interests. Such
knowledge is, for the most part, embedded in the textual content
of web pages and documents, which is largely represented as
unstructured natural language formats. In order to automatically
ingest and process such huge amounts of data, single-machine,
non-distributed architectures are proving to be inefficient for
tasks like Big Data mining and intensive text processing and
analysis. Current Natural Language Processing (NLP) systems
are growing in complexity, and computational power needs have
been significantly increased, requiring solutions such as
distributed frameworks and parallel computing programming
paradigms. This paper presents a distributed framework for
executing NLP related tasks in a parallel environment. This has
been achieved by integrating the APIs of the widespread GATE
open source NLP platform in a multi-node cluster, built upon the
open source Apache Hadoop file system. The proposed
framework has been evaluated against a real corpus of web pages
and documents.

Keywords – Natural Language Processing, Part-of-Speech
Tagging, Parallel Computing, Distributed Systems.

I. INTRODUCTION

Nowadays we are living in a hyper-connected digital world,
dealing with computational solutions progressively more
oriented to data-driven approaches, due to the increasing
population of web resources and availability of extremely vast
amounts of data [1]. This fact has opened new attractive
opportunities in several application areas such as e-commerce,
business web services, Smart City platforms, e-Healthcare,
scientific research, ICT technologies and many others. Modern
information societies are characterized by handling vast data
repositories (both public and private), according to which
Petabyte datasets are rapidly becoming the norm. For instance,
in 2014 Google has been estimated to process over 100
Petabytes per day on 3 million servers1; in the first half of
2014, Facebook warehouse has been reported to store about

1 http://www.slideshare.net/kmstechnology/big-data-overview-2013-2014.

300 PB of Hive data (with an incoming daily rate of about 600
TB)2. These numbers reveal how the process of storing data is
rapidly overcoming our ability to process them in an automatic
and efficient way. Such a huge pool of available information
has attracted a lot of interest within several research and
commercial scenarios, ranging from automatic comprehension
of natural language text documents, supervised document
classification [2], content extraction and summarization [3],
design of expert systems, recommendation tools, Question-
Answer systems, query expansion [4], up to social media
mining and analysis, in order to collect and assess users’ trends
and habits for target-marketing, customized services.
Therefore, applications and services must be able to scale up to
items, domains and data subset of interest. Approaches based
on parallel and distributed architectures are spreading also in
search engines and indexing systems; for instance, the
ElasticSearch 3 engine, which is an open source distributed
search engine, designed to be scalable, near real-time capable
and providing full-text search capabilities [5].

NLP systems are commonly executed in a pipeline where
different plugins and tools are responsible for a specific task.
One of the most intensive tasks is annotation, defined as the
process of adding linguistic information to language data [6],
usually related to their grammatical, morphological and
syntactical role within the given context. Text annotation is at
the basis of higher level tasks such as extraction of keywords
and keyphrases (which deals with the identification of a set of
single words or small phrases representing key segments that
can describe the meaning of a document) [7], up to the design
of Semantic Computing frameworks (involving activities such
as supervised classification of entities, attributes and relations),
that lead to the production of structured data forms, typically in
the form of taxonomies, thesauri and ontologies. Current
sequentially integrated NLP architectures, where each pipeline
step uses intermediate results and outcomes produced by
previous processing stages, are prone to problems related with
information flow, from congestion to information losses [8]. It

2 https://code.facebook.com/posts/229861827208629/scaling-the-facebook-
data-warehouse-to-300-pb/.
3 https://www.elastic.co/products/elasticsearch

DOI reference number: 10.18293/DMS2015-024

http://www.disit.dinfo.unifi.it/
mailto:paolo.nesi@unifi.it
mailto:gianni.pantaleo@unifi.it
http://www.slideshare.net/kmstechnology/big-data-overview-2013-2014
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://www.elastic.co/products/elasticsearch

has been often addressed in literature how existing NLP tools
and frameworks or are not well suited to process very large
corpora, since their primary design focus was not oriented to
scalability [9]. The only reasonable approach to handle Big
Data problems seems to be the well-known computer science
concept of “Divide and Conquer” [10]. The basic idea is to
partition a large problem into smaller sub-problems; to the
extent that these sub-problems are independent, they can be
parallely processed by different threads. This aspect,
concurrently with the evolution of distributed systems multi-
processor computer architectures and network speeds, is
leading to the application of distributed architectures and
parallel-computing paradigms to Big Data mining and
processing activities.

Keywords and keyphrases annotation can be useful for
content extraction and summarization, in order to produce
machine-readable corpora, as well as building content-based
multi-faceted search queries. For instance, scientific articles are
often annotated with keywords, in a way similar as it happens
with metadata annotation of multimedia resources. Conversely,
expanding our view to the available online resources, currently
a large portion of web documents still does not have any
keywords or keyphrases assigned. Besides, since manual
annotations results to be an extremely time-consuming and
inefficient process, the necessity arises to design efficient and
scalable automated solutions to extract keywords and
keyphrases from massive amounts of unstructured text
documents.

The present work describes a novel framework which
allows the execution of general NLP tasks, through the use of
the open source GATE4 tool [11], on a multi-node cluster based
on the open source Apache Hadoop5 Distributed File system
(HDFS). The paper is organized as follows: Section II
illustrates related work, in terms of state of the art and open
issues for both commercial and research literatures; in Section
III, an architectural overview of the proposed system is
presented; in Section IV, a validation of the system, performed
against a real corpus of web resources, is reported; finally,
Section V is left for conclusions and future perspectives.

II. RELATED WORK

The task of Automatic keyword extraction has been
extensively studied in literature. Existing methods are typically
divided into four categories: simply statistic, linguistic,
machine learning and other mixed approaches [12]. Statistical
methods usually relies on term position, term frequency, co-
occurrence and related relevance metrics, such as TF-IDF [13].
The linguistic approach is based on NLP techniques, such as
Part-of-Speech (POS) tagging, lexical analysis, syntactic
analysis, possibly exploitation of semantic features [14].
Machine learning methods treat the keyword extraction task as
supervised learning problem using a training dataset, using
different techniques such as naive Bayes algorithms [15], least
square support vector machines (LS-SVM) [16], etc. Other
mixed approaches mainly use a combination of the previously

4 https://gate.ac.uk/
5 http://hadoop.apache.org/

described techniques, possibly adding some heuristic
knowledge, for instance the use of annotated lists, gazetteers,
blacklists to remove stop words [17], selecting only certain
part-of-speech tags as candidate keywords [18]. Moreover,
external resources (in addition to training corpora) can be used
as lexical knowledge bases, such as Wikipedia [19] or
DBpedia. Graph-based approaches typically extract a graph
from each input documents and use a graph-based ranking
function to determine the relevance of the nodes, which yields
the importance of key terms [20]. Topic-based clustering is
used in content extraction and text summarization methods; this
usually involves grouping the candidate keyphrases into topics
or domains [21], [22].

We find first attempts of employing parallel computing
frameworks for NLP tasks in the middle 90s: Chung and
Moldovan [23] proposed a parallel memory-based parser called
PARALLEL, implemented on a parallel computer, the
Semantic Network Array Processor (SNAP). Later, Van
Lohuizen [24] proposed a parallel parsing method relying on a
work stealing multi-thread strategy in a shared memory multi-
processor environment. Hamon et al. realized Ogmios [9], a
platform for annotation enrichment of specialized domain
documents within a distributed corpus. The system provide
NLP functionalities such as word and sentence segmentation,
named entity tagging, POS-tagging and syntactic parsing.
Jindal et al. [25] developed a parallel NLP system based on
LBJ [26], a platform for developing natural language
applications, and Charm++ [27] as a parallel programming
paradigm. Exner and Hugues recently presented Koshik [28], a
multi-language NLP processing framework for large scale-
processing and querying of unstructured natural language
documents distributed upon a Hadoop-based cluster. It supports
several types of algorithms, such as text tokenization,
dependency parsers, coreference solver. The advantage of
using the Hadoop distributed architecture and its programming
model (known as MapReduce), is the capability to efficiently
and easily scale by adding inexpensive commodity hardware to
the cluster.

We find also commercial tools aiming at solving the
addressed problem. Beemoth6, produced by Digital Pebble, is
an open source platform for large scale document processing
based on Apache Hadoop, employing third party NLP tools,
including GATE, Tika and UIMA. InfoTech RADAR 7 is a
software solution implementing NLP and Sentiment Analysis
on the Hortonworks Sandbox Hadoop environment. Some
existing NLP tools have proposed improvements to realize
large-scale processing solutions; this is the case of the
GATECloud project [29], which is an adaptation of the GATE
software suite to a cloud computing environment (using the
PaaS paradigm), although it is delivered under a fee payment,
unlike the original platform.

Recently, other parallel computing frameworks have been
proposed in addition to the Hadoop MapReduce. For instance,
Spark framework [30] has been originally developed at
Berkeley UC to support a wider class of applications,

6 https://github.com/DigitalPebble/behemoth/wiki/tutorial
7

 http://www.itcinfotech.com/software-product-
engineering/solutions/RADAR.aspx

https://gate.ac.uk/
http://hadoop.apache.org/
https://github.com/DigitalPebble/behemoth/wiki/tutorial
http://www.itcinfotech.com/software-product-engineering/solutions/RADAR.aspx
http://www.itcinfotech.com/software-product-engineering/solutions/RADAR.aspx

especially those implementing acyclic data flow models, such
as iterative algorithms and applications requiring low-latency
data sharing processes. Spark introduces programming
transformations on Resilient Distributed Datasets (RDD) [31],
which are read-only collections of objects distributed over a
cluster of machines providing fault tolerance by rebuilding lost
data by using lineage information (without requiring data
replication). RDD allows to store data on memory, as well as to
define the persistence strategy. Gopalani and Arora [32] have
compared Spark and Hadoop performances on clustering K-
means algorithms, showing that Spark outperforms Hadoop on
different cluster configurations.

III. SYSTEM ARCHITECTURE

As introduced earlier, the proposed system aims at
extracting keywords and keyphrases from web resources
(retrieved by crawling online web pages and documents of
business entities and research institutes) in a distributed
architecture. The necessity of realizing a more efficient and
scalable solution, in order to improve performances, as well as
data integrity and failures handling, led us to the choice of the
open source Apache Hadoop framework, which have been
installed on a multi-node cluster. The Hadoop ecosystem is
implemented in Java, and it is capable of supporting distributed

Figure 1. Overview of the proposed system architecture.

applications, large-scale data processing and storage, providing
high scalability. Data access and management relies on the
Hadoop Distributed File System (HDFS), modeled upon the
Google File System – GFS (Ghemawat et al., 2003). Typically,
a cluster is composed by a master Namenode, which assigns
tasks and tracks their execution to the different clients
(Datanodes). Datanodes are responsible also for data storage
through its MapReduce programming model.

In our context, MapReduce is used to parallelize the crawler
work, the execution of NLP tasks and final SQL database

storage. In our case, NLP tasks are performed by using the
GATE Embedded Java APIs, and they are related to the
extraction of keywords and keyphrases from online parsed
unstructured text, although our approach is general enough to
potentially execute any generic GATE-based application. At
the end of the distributed process (involving web crawling,
text parsing, annotation, keywords/keyphrase extraction and
pruning, based on their relevance), the produced outcome is
stored in the HDFS file system. Finally, a dedicated procedure
stores designed keywords and keyphrases in an external SQL

Hadoop HDFS

Web Pages
&

Documents

Web
Crawler

Crawler DB

Gate XGAPP
Application

3rd Party
Plugins &
Resources

Keyword DB

Namenode
(Master)

Datanode
(Slave) #1

Datanode
(Slave) #2

Datanode
(Slave) #3

Datanode
(Slave) #4

HDFS
Storage

Map

Reduce

Map
Reduce

Map
… …

Map
Reduce

Map
Reduce

Map
… …

Map
Reduce

Map
Reduce

Map
… …

Map
Reduce

Map
Reduce

Map
… …

Get Domain

Get Domain

Get Domain

Get Domain

Execute GATE,
TF-IDF

Execute GATE,
TF-IDF

Execute GATE,
TF-IDF

Execute GATE,
TF-IDF

Keywords &
Keyphrases
Extractor

Job Partitioner

DB Storage
(Sqoop)

database. The whole system architecture is implemented in
Java. In the next subsections, a description will follow of the
main modules constituting the proposed framework, which are
listed as following:

 The Web Crawler module.

 The Keywords/Keyphrases MapReduce Extractor
module, which is responsible of two main operations:

 The execution of the GATE application via
MapReduce and the subsequent storage of
extracted keywords/keyphrases in the HDFS.

 The keywords and keyphrases relevance
estimation, obtained by computing the TF-IDF
function for each extracted
keywords/keyphrases, performed to assess their
relevance with respect to their whole corpus (for
filtering purposes).

 The DB Storage module which finally stores
designed keywords and keyphrases into an external
SQL database.

An overview of the proposed architecture is depicted in
Figure 1. The next subsection are committed to describe in
further details the above listed modules.

A. Web Crawler

The crawling engine of the proposed system is based on the
open source Apache Nutch8 tool. It has been initialized with a
set of seed URLs of commercial companies, services and
research institutes. Actually, as later addressed as an open issue
for future work, a future goal will be to exploit the capabilities
of the proposed system in annotating text relevant features for
content extraction and summarization (in order to estimate, as
an example, the domain of interest of analyzed web domains,
as well as the main key topics).

The Nutch based crawler workflow is divided into the
following phases: The first is the Inject phase, in which some
seed URLs are injected for initial bootstrapping. Then, in the
Generate phase, a generating algorithm produces a set of URLs
that are going to be fetched. The Fetch phase deals with
fetching the previously generated set of URLs into segments.
Subsequently, the Parse phase is dedicated to the parsing of
fetched segments content; the Update phase populates an
external SQL Database with parsed segment contents. Finally,
the Apache Solr9 technology is used to index all the collected
documents, providing also a search interface. The Solr index is
ultimately present only onto the master Namenode.

B. Keywords/Keyphrases MapReduce Extractor

This module reads and takes as input the URLs (stored in
the SQL database). The content of the corresponding parsed

8 http://nutch.apache.org/
9 http://lucene.apache.org/solr/

web page is obtained through a query to the Solr index. In this
way, documents are created for each corpus represented by a
single web domain. The crawler and keywords extractor
modules work asynchronously, actually the crawling task and
the extraction process are scheduled and executed
independently. Moreover, the present module is in charge of
defining the MapReduce model. Typically, Map functions
divide the work into smaller jobs or file blocks, which are
subsequently mapped among the different Datanodes by the
Namenode. Specific Map functions are defined to generate
key/value pairs representing logical records from the input
data source. Subsequently, Reduce tasks merge all
intermediate values associated with the same key. The Hadoop
services in charge of managing and assigning tasks and data
blocks to the different nodes are the JobTracker and the
TaskTracker. The former communicates with the Namenode to
retrieve data locations and the directory tree of all files in the
file system, in order to find available nodes and set specific
tasks to assign. The latter represents a node in the cluster that
is able to receive MapReduce tasks from a JobTracker; each
Tasktracker is configured with a set of slots, indicating the
number of tasks that can be accepted). Here, Map and Reduce
functions are defined in a proper way for our goals: since we
are interested in annotating keywords and keyphrases at single
web-domain level, we designed a Map function that associates
key/value record pairs where the key is the URL of the single
web page, and the value is the corresponding web domain. The
Reduce function, in turn, fulfills the setup, launch and
execution of a multi-corpora GATE application (each corpus
containing text documents and pages belonging to a single
web domain), as well the subsequent estimation of extracted
keywords/keyphrases relevance at web domain level (as later
described).

C. GATE Application

This functional block of the Keywords/Keyphrases
MapReduce Extractor module integrates and executes the
GATE application in the MapReduce environment, according
to the input configuration parameters and the pipeline, defined
in an external configuration .xgapp file. This XML-based file
is defined, by extension, as the effective GATE application,
containing file paths and references to all the Processing
Resources and plugins used. In this specific case, the ANNIE
(A Nearly-New Information Extraction System) plugin, more
specifically the Tokenizer and the Sentence Splitter tools, have
been used to parse and segment the text content of crawled
documents, while the TreeTagger plugin has been used for
POS-tagging. Finally, the Java written JAPE (Java Annotation
Pattern Engine) plugin syntax has been employed to define
custom rules for filtering undesired, noisy parts of speech
(such as conjunctions, adverbs, prepositions etc.). These rules
are contained in a dedicated .jape file. Common nouns and
adjectives are then annotated as potential keywords
candidates. Candidate keyphrases are then identified as
contiguous phraseological combinations and patterns of
candidate keywords.

http://nutch.apache.org/
http://lucene.apache.org/solr/

Regarding the execution of the GATE application in the
Hadoop distributed environment, the following strategy has
been followed: the Namenode loads, at run time, a zip archive
containing all the needed GATE APIs, configuration and
application files, libraries and plugins, in the HDFS
Distributed Cache. This is one of the possible solutions
adopted for handling read and write operations on files in the
HDFS. This has been considered an efficient solution since, by
this way, our application will copy in memory and extract the
necessary files only once, and the allocated content will be
accessible by all the Datanodes, without the need of installing
required plugins and third party tools on each single cluster
node. An additional advantage of this approach stems by the
fact that any generic GATE application can be potentially
executed in our Hadoop-based architecture (taking benefits of
all the NLP features and capabilities offered), providing to
embed the .xgapp application file, the .jape file for annotation
rules and patterns, as well as all the required resources and
plugins in the input zip file.

D. TF-IDF Relevance Estimation

Relevance estimation for candidate keywords and
keyphrases is performed by computing the TF-IDF (Term
Frequency – Inverse Document Frequency) function. This
metric is widely adopted in Information Retrieval to assess
how significant is a given term not really within the single
document in which it has been retrieved, but rather with
respect to the whole documents collection (corpus). Actually,
a lot of common words like articles or conjunctions may
appear several times in a document but they are not relevant as
key-concepts to be indexed or retrieved. As a matter of fact,
TF-IDF is given by the combination of two functions: TF
(Term Frequency) which provides a measure about how
frequently a term occurs in a certain document, and IDF
(Inverse Document Frequency) which measures how
important is a certain term with respect to the whole corpus.
The final TF-IDF value for a candidate keyword k in a
document d within a corpus D is calculated as:

,

where:

being fk the number of occurrences of the candidate keyword k
in the document d, nd the total number of terms contained in
document d, ND the total number of documents in the corpus D
and NK the total number of documents within the corpus in
which the candidate key k appears.

After calculating TF-IDF for each potential keyword and
keyphrase, candidates with a TF-IDF value under a defined
threshold are pruned, while those with a value above the
threshold are designed as definitive keywords/keyphrases.

These ones are finally stored in the Hadoop HDFS file system,
annotated together with their corresponding TF-IDF values
and source web domain URL.

E. DB Storage

This module accomplishes the storage of the final system
output (temporarily stored in the HDFS by the Extractor
Module) in an external SQL database. This operation is carried
out by means of the Apache Sqoop 10 open source tool,
specifically designed for data transfer between Hadoop HDFS
and structured datastores. The Sqoop tool has been installed on
the master only and the export feature has been used to insert
data stored in the HDFS into the database. In order to
successfully accomplish the data export, full read/write
privileges on the database have been granted to all the
machines on the cluster. Each database record is populated
with an extracted keyword or keyphrase, its corresponding
POS-tag (or a different custom tag if it is a keyphrase), TF-
IDF value and the source web domain.

IV. EVALUATION

The performances of the proposed system have been
evaluated against a dataset composed of 10000 web page and
documents, which is a subset of the resources ingested by our
Distributed Crawler module (which has currently been
gathering more than 6 million web URLs). The Hadoop cluster
architecture used for tests has been assessed on different
configurations, ranging from 2 to 5 nodes. Each node is a
Linux 8-cores workstation whith Hadoop HDFS installed. The
master Namenode, besides, required also the Apache Sqoop
software installation to manage SQL write operations for final
output storage. In order to avoid data integrity errors and
failures due to decommission and recommission of cluster
nodes, Hadoop allows to perform a rebalance of stored blocks
among the active nodes of the cluster, if necessary.

For each cluster configuration, a fixed number of
keywords/keyphrase extraction tests has been performed, on
the same defined dataset. The MapReduce model supplies
speculative execution of tasks, and it is designed to provide
redundancy in order to handle fault tolerance. By this way, it
may happen that the Namenode JobTracker has to reschedule
failed or killed tasks, and this can affect the execution time of
the whole process. Therefore, for performance comparison, the
best processing times have been selected among all the tests
performed for each node configuration. By this way, the
number of attempts for re-executing failed or killed tasks is
supposed to be minimized. For the whole test dataset,
containing about 10000 documents, a total of nearly 3.5 million
keywords and keyphrases have been extracted. Time
processing results for the different tested node configurations
are shown in Table 1. The single-node configuration has been
actually implemented as a two-nodes cluster, with a master
Namenode and one slave node running only as a Datanode (in
order to avoid HDFS space and blocks balancing problems on

10 http://sqoop.apache.org/

http://sqoop.apache.org/

decommissioning too many nodes). That is, the TaskTracker
daemon stopped (so that it does not take part to the MapReduce
process). As a term of comparison, running the same GATE
application on the same corpora dataset on a single non-
Hadoop workstation took approximately 60 hours. A possible
explanation to this significant performance gap can be the fact
that the Java code of our standalone GATE application is not
optimized for multi-thread, while the MapReduce adaptation
executed in Hadoop can benefit of MapReduce configuration
parameters, which define the maximum number of map and
reduce task slots to run simultaneously (exploiting multi-core
technology even on a single-node cluster). The resulting speed-
up curve for our test data is shown in Figure 2.

As it can be noticed, the scaling capabilities of the proposed
system confirm the nearly linear growth trend of the Hadoop
architecture. However, the low curve slope suggests that
significant performance improvements can be achieved only
for larger number of nodes in the cluster.

TABLE I. EVALUATION RESULTS: TIME PERFORMANCES ASSESSED FOR
DIFFERENT CLUSTER CONFIGURATIONS.

Configuration Processing Time
(hh:mm:ss)

Speed - Up

HDFS - single node 07:17:01 -

HDFS - 2 nodes 05:21:53 1.36

HDFS - 3 nodes 04:08:00 1.76

HDFS - 4 nodes 03:39:42 1,99

HDFS - 5 nodes 03:20:09 2.18

Figure 2. Processing time performances depicted for distributed extraction of

Keywords and Keyphrases (solid curve), performed with different cluster
configurations, against the ideal linear trend (dotted curve).

V. CONCLUSIONS AND FUTURE WORK

In this paper, a distributed system for keywords and
keyphrases extraction from text content of web pages and
documents has been presented. The parallel architecture is
provided through the implementation of the open source
Apache Hadoop framework, while text annotation and key
features extraction rely on the NLP opens source GATE

platform. The main advantages and contributions brought by
the proposed system are two: the first is the integration of a
web crawler which allow to use our system as a standalone
application, avoiding interfacing issues with external tools for
documents ingestion and indexing (actually, the most part of
current NLP tools assumes that input documents are already
collected, properly cleaned and formatted). In addition, the
proposed system provides the capability of potentially
executing any generic GATE application (thus allowing to
perform a wide range of NLP activities) in a distributed design,
without the need for programmers to modify and update every
time the code, in order to follow the steps usually required for
parallel computing development (such as task decomposition,
mapping and synchronization issues). Open issues for future
work are, in addition to test a wider range of GATE based
applications, the evaluation of processing times on larger
cluster configurations and larger document corpora, with the
goal of better assessing the trend of performance
improvements. Moreover, it could be interesting to adapt the
Hadoop implementation of the keywords/keyphrases extraction
on other parallel computing, distributed architecture, such as
Spark. Regarding possible quality improvements to the
currently adopted NLP solutions used for key features
extraction, the annotation of proper nouns (for instance, VIP
person names and toponyms) could also be provided, by the
use of lists, gazetteers and other external knowledge resources.
This might be useful, as well as enhancing the relevance of
produced output, for content annotation, summarization and
domain characterization purposes in higher expressive
contexts, such as Semantic Computing frameworks.

REFERENCES
[1] J. Lin, and C. Dyer, “Data-Intensive Text Processing with MapReduce”,

Morgan & Claypool Publishers, 2010.

[2] F. Colace, M. De Santo, L. Greco and P. Napoletano, “Text
classification using a few labeled examples. Computers in Human
Behavior”, Vol. 30, pp. 689-697, 2014.

[3] R. Al-Hashemi, “Text Summarization Extraction System (TSES) Using
Extracted Keywords”, International Arab Journal of e-Technology, Vol.
1(4), pp. 164-168, 2010.

[4] F. Colace, M. De Santo, L. Greco and P. Napoletano: Weighted Word
Pairs for query expansion. Inf. Process. Manage. 51(1): 179-193 (2015).

[5] O. Kononenko, O. Baysal, R. Holmes and M. W. Godfrey, “Mining
Modern Repositories with Elasticsearch”, in Proc. of the 11th Working
Conference on Mining Software Repositories, pp. 328-331, 2014.

[6] N. Ide. and L. Romary, “International standard for a linguistic annotation
framework”, Natural Language Engineering, Vol. 10(3-4), pp. 211-225,
2004.

[7] A. Hulth, “Improved automatic keyword extraction given more linguistic
knowledge”, in Proc. of the 2003 Conference on Emprical Methods in
Natural Language Processing, Sapporo, Japan, 2003.

[8] T. Luis, “Parallelization of Natural Language Processing Algorithms on
Distributed Systems”, Master Thesis, Information Systems and
Computer Engineering, Instituto Superior Técnico, Univ. Técncica de
Lisboa, 2008.

[9] T. Hamon, J. Deriviere and Nazarenko, “Ogmios: a scalable NLP
platform for annotating large web document collections”, in Proc. of
Corpus Linguistics, Birmingham, United Kingdom, 2007.

[10] J. Lin and C. Dyer, “Data-Intensive Text Processing with MapReduce“,
Morgan & Claypool Publishers, 2010.

[11] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan, “GATE: A
Framework and Graphical Development Enviroment for Robust NLP

0

1

2

3

4

5

6

2 3 4 5

Sp
e

e
d

U
p

Nodes #

Tools and Applications,” in Proc. of the 40th Anniversary Meeting of the
Association for Computational Linguistics, ACL ‘02, Philadelphia,
2002.

[12] C. Zhang, H. Wang, Y. Liu, D. Wu, Yi Liao and Bo Wang, “Automatic
Keyword Extraction from Documents Using Conditional Random
Fields”, Journal of Computational Information Systems, 2008.

[13] Y. Matsuo and M. Ishizuka, “Keyword extraction from a single
document using word co-ocuurrence statistical information”,
International Journal on Artificial Intelligence Tools, 2004.

[14] J. Kaur, V. Gupta, “Effective Approaches For Extraction Of Keywords”,
IJCSI International Journal of Computer Science Issues, Vol. 7(6), pp.
144-148, November 2010.

[15] I. Witten, G. Paynte, E. Frank, C. Gutwin and C. Nevill-Manning,
“KEA: practical automatic keyphrase extraction”, in Proc. of the 4th
ACM Conference on Digital Library, 1999.

[16] C. Wu, M. Marches, J. Jiang, A. Ivanyukovich and Y. Liang, “Machine
Learning-Based Keywords Extraction for Scientific Literature”, Journal
of Universal Computer Science, Vol. 13(10), pp. 1471-1483, 2007.

[17] Z. Liu, P. Li, Y. Zheng and M. Sun, “Clustering to find exemplar terms
for keyphrase extraction”, in Proc. of the 2009 Conf. on Empirical
Methods in Natural LanguageProcessing, pp. 257–266, 2009.

[18] F. Liu, D. Pennell, F. Liu and Yang Liu, “Unsupervised approaches for
automatic keyword extraction using meeting transcripts”, in Proc. of
Human Language Technologies: The Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pp.
620-628. 2009.

[19] O. Medelyan, E. Frank and I. H. Witten, “Human-competitive tagging
using automatic keyphrase extraction” in Proc. of the 2009 Conf. on
Empirical Methods in Natural Language Processing, pp. 1318-1327,
2009.

[20] K. S. Hasan and V. Ng, “Automatic Keyphrase Extraction: A Survey of
the State of the Art”, in Proc. of the 52nd Annual Meeting of the
Association for Computational Linguistics, Vol. 1, pp. 1262-1273, 2014.

[21] M. Grineva, M. Grinev and D. Lizorkin, “Extracting key terms from
noisy and multitheme documents”, in Proc. of the 18th Int. Conf. on
World Wide Web, pp. 661-670,2009.

[22] Z. Liu, W. Huang, Y. Zheng and M. Sun, “Automatic keyphrase
extraction via topic decomposition”, in Proc. of the 2010 Conf. on
Empirical Methods in Natural Language Processing, pp. 366-376, 2010.

[23] M. Chung and D. I. Moldovan, “Parallel Natural Language Processing
on a Semantic Network Array Processor”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 7(3), pp. 391-404, 1995.

[24] M. P. van Lohuizen, “Parallel Processing of Natural Language Parsers”,
in Proc. of the 15th Conf. of Parallel Computing, pages 17-20, 2000.

[25] P. Jindal, D. Roth and L.V Kale, “Efficient Development of Parallel
NLP Applications”, Tech. Report of IDEALS (Illinois Digital
Environment for Access to Learning and Scholarship), 2013.

[26] N. Rizzolo and D. Roth, “Learning Based Java for Rapid Development
of NLP Systems”. In Proc. of the International Conference on Language
Resources and Evaluation (LREC), 2010.

[27] L. V. Kale and G. Zheng, “Charm++ and AMPI: Adaptive Runtime
Strategies via Migratable Objects”, in Advanced Computational
Infrastructures for Parallel and Distributed Applications, pp. 265-282,
Wiley Interscience, 2009.

[28] Exner, P. and Nugues, P., “KOSHIK - A Large-scale Distributed
Computing Framework for NLP“, in Proc. of the International
Conference on Pattern Recognition Applications and Methods
(ICPRAM 2014), pp. 463-470, 2014.

[29] V. Tablan, R. I. Cunningham and K. Bontcheva, “GATECloud.net: a
platform for large-scale, open-source text processing on the cloud”,
Philosophical Transactions of the Royal Society, 2013.

[30] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica,
“Spark: Cluster Computing withWorking Sets”, Technology report of
UC Berkeley, 2011.

[31] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma; M. McCauly; M. J.
Franklin, S. Shenker and I. Stoica, “Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing”, in Proc.
of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), pp. 15-28, 2012.

[32] S. Gopalani and R. Arora, “Comparing Apache Spark and Map Reduce
with Performance Analysis using K-Means”, International Journal of
Computer Applications ,Vol. 113(1), pp. 8-11, 2015.

