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Abstract—The recent growth of the World Wide Web at 
increasing rate and speed  and the number of online available 
resources populating Internet represent a massive source of 
knowledge for various research and business interests. Such 
knowledge is, for the most part, embedded in the textual content 
of web pages and documents, which is largely represented as 
unstructured natural language formats. In order to automatically 
ingest and process such huge amounts of data, single-machine, 
non-distributed architectures are proving to be inefficient for 
tasks like Big Data mining and intensive text processing and 
analysis. Current Natural Language Processing (NLP) systems 
are growing in complexity, and computational power needs have 
been significantly increased, requiring solutions such as 
distributed frameworks and parallel computing programming 
paradigms. This paper presents a distributed framework for 
executing NLP related tasks in a parallel environment. This has 
been achieved by integrating the APIs of the widespread GATE 
open source NLP platform in a multi-node cluster, built upon the 
open source Apache Hadoop file system. The proposed 
framework has been evaluated against a real corpus of web pages 
and documents. 

Keywords – Natural Language Processing, Part-of-Speech 
Tagging, Parallel Computing, Distributed Systems. 

 

I.  INTRODUCTION 

Nowadays we are living in a hyper-connected digital world, 
dealing with computational solutions progressively more 
oriented to data-driven approaches, due to the increasing 
population of web resources and availability of extremely vast 
amounts of data [1]. This fact has opened new attractive 
opportunities in several application areas such as e-commerce, 
business web services, Smart City platforms, e-Healthcare, 
scientific research, ICT technologies and many others. Modern 
information societies are characterized by handling vast data 
repositories (both public and private), according to which 
Petabyte datasets are rapidly becoming the norm. For instance, 
in 2014 Google has been estimated to process over 100 
Petabytes per day on 3 million servers1; in the first half of 
2014, Facebook warehouse has been reported to store about 

                                                           
1 http://www.slideshare.net/kmstechnology/big-data-overview-2013-2014. 

300 PB of Hive data (with an incoming daily rate of about 600 
TB)2. These numbers reveal how the process of storing data is 
rapidly overcoming our ability to process them in an automatic 
and efficient way. Such a huge pool of available information 
has attracted a lot of interest within several research and 
commercial scenarios, ranging from automatic comprehension 
of natural language text documents, supervised document 
classification [2], content extraction and summarization [3], 
design of expert systems, recommendation tools, Question-
Answer systems, query expansion [4], up to social media 
mining and analysis, in order to collect and assess users’ trends 
and habits for target-marketing, customized services. 
Therefore, applications and services must be able to scale up to 
items, domains and data subset of interest. Approaches based 
on parallel and distributed architectures are spreading also in 
search engines and indexing systems; for instance, the 
ElasticSearch 3  engine, which is an open source distributed 
search engine, designed to be scalable, near real-time capable 
and providing full-text search capabilities [5]. 

NLP systems are commonly executed in a pipeline where 
different plugins and tools are responsible for a specific task. 
One of the most intensive tasks is annotation, defined as the 
process of adding linguistic information to language data [6], 
usually related to their grammatical, morphological and 
syntactical role within the given context. Text annotation is at 
the basis of higher level tasks such as extraction of keywords 
and keyphrases (which deals with the identification of a set of 
single words or small phrases representing key segments that 
can describe the meaning of a document) [7], up to the design 
of Semantic Computing frameworks (involving activities such 
as supervised classification of entities, attributes and relations), 
that lead to the production of structured data forms, typically in 
the form of taxonomies, thesauri and ontologies. Current 
sequentially integrated NLP architectures, where each pipeline 
step uses intermediate results and outcomes produced by 
previous processing stages, are prone to problems related with 
information flow, from congestion to information losses [8]. It 

                                                           
2  https://code.facebook.com/posts/229861827208629/scaling-the-facebook-
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has been often addressed in literature how existing NLP tools 
and frameworks or are not well suited to process very large 
corpora, since their primary design focus was not oriented to 
scalability [9]. The only reasonable approach to handle Big 
Data problems seems to be the well-known computer science 
concept of “Divide and Conquer” [10]. The basic idea is to 
partition a large problem into smaller sub-problems; to the 
extent that these sub-problems are independent, they can be 
parallely processed by different threads. This aspect, 
concurrently with the evolution of distributed systems multi-
processor computer architectures and network speeds, is 
leading to the application of distributed architectures and 
parallel-computing paradigms to Big Data mining and 
processing activities. 

Keywords and keyphrases annotation can be useful for 
content extraction and summarization, in order to produce 
machine-readable corpora, as well as building content-based 
multi-faceted search queries. For instance, scientific articles are 
often annotated with keywords, in a way similar as it happens 
with metadata annotation of multimedia resources. Conversely, 
expanding our view to the available online resources, currently 
a large portion of web documents still does not have any 
keywords or keyphrases assigned. Besides, since manual 
annotations results to be an extremely time-consuming and 
inefficient process, the necessity arises to design efficient and 
scalable automated solutions to extract keywords and 
keyphrases from massive amounts of unstructured text 
documents. 

The present work describes a novel framework which 
allows the execution of general NLP tasks, through the use of 
the open source GATE4 tool [11], on a multi-node cluster based 
on the open source Apache Hadoop5 Distributed File system 
(HDFS). The paper is organized as follows: Section II 
illustrates related work, in terms of state of the art and open 
issues for both commercial and research literatures; in Section 
III, an architectural overview of the proposed system is 
presented; in Section IV, a validation of the system, performed 
against a real corpus of web resources, is reported; finally, 
Section V is left for conclusions and future perspectives. 

 

II. RELATED WORK 

The task of Automatic keyword extraction has been 
extensively studied in literature. Existing methods are typically 
divided into four categories: simply statistic, linguistic, 
machine learning and other mixed approaches [12]. Statistical 
methods usually relies on term position, term frequency, co-
occurrence and related relevance metrics, such as TF-IDF [13]. 
The linguistic approach is based on NLP techniques, such as 
Part-of-Speech  (POS) tagging, lexical analysis, syntactic 
analysis, possibly exploitation of semantic features [14]. 
Machine learning methods treat the keyword extraction task as 
supervised learning problem using a training dataset, using 
different techniques such as naive Bayes algorithms [15], least 
square support vector machines (LS-SVM) [16], etc. Other 
mixed approaches mainly use a combination of the previously 
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described techniques, possibly adding some heuristic 
knowledge, for instance the use of annotated lists, gazetteers, 
blacklists to remove stop words [17], selecting only certain 
part-of-speech tags as candidate keywords [18]. Moreover, 
external resources (in addition to training corpora) can be used 
as lexical knowledge bases, such as Wikipedia [19] or 
DBpedia. Graph-based approaches typically extract a graph 
from each input documents and use a graph-based ranking 
function to determine the relevance of the nodes, which yields 
the importance of key terms [20]. Topic-based clustering is 
used in content extraction and text summarization methods; this 
usually involves grouping the candidate keyphrases into topics 
or domains [21], [22]. 

We find first attempts of employing parallel computing  
frameworks for NLP tasks in the middle 90s: Chung and 
Moldovan [23] proposed a parallel memory-based parser called 
PARALLEL, implemented on a parallel computer, the 
Semantic Network Array Processor (SNAP). Later, Van 
Lohuizen [24] proposed a parallel parsing method relying on a 
work stealing multi-thread strategy in a shared memory multi-
processor environment. Hamon et al. realized Ogmios [9], a 
platform for annotation enrichment of specialized domain 
documents within a distributed corpus. The system provide 
NLP functionalities such as word and sentence segmentation, 
named entity tagging, POS-tagging and syntactic parsing. 
Jindal et al. [25] developed a parallel NLP system based on 
LBJ [26], a platform for developing natural language 
applications, and Charm++ [27] as a parallel programming 
paradigm. Exner and Hugues recently presented Koshik [28], a 
multi-language NLP processing framework for large scale-
processing and querying of unstructured natural language 
documents distributed upon a Hadoop-based cluster. It supports 
several types of algorithms, such as text tokenization, 
dependency parsers, coreference solver. The advantage of 
using the Hadoop distributed architecture and its programming 
model (known as MapReduce), is the capability to efficiently 
and easily scale by adding inexpensive commodity hardware to 
the cluster. 

We find also commercial tools aiming at solving the 
addressed problem. Beemoth6, produced by Digital Pebble, is 
an open source platform for large scale document processing 
based on Apache Hadoop, employing third party NLP tools, 
including GATE, Tika and UIMA. InfoTech RADAR 7  is a 
software solution implementing NLP and Sentiment Analysis 
on the Hortonworks Sandbox Hadoop environment. Some 
existing NLP tools have proposed improvements to realize 
large-scale processing solutions; this is the case of the 
GATECloud project [29], which is an adaptation of the GATE 
software suite to a cloud computing environment (using the 
PaaS paradigm), although it is delivered under a fee payment, 
unlike the original platform. 

Recently, other parallel computing frameworks have been 
proposed in addition to the Hadoop MapReduce. For instance, 
Spark framework [30] has been originally developed at 
Berkeley UC to support a wider class of applications, 
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especially those implementing acyclic data flow models, such 
as iterative algorithms and applications requiring low-latency 
data sharing processes. Spark introduces programming 
transformations on Resilient Distributed Datasets (RDD) [31], 
which are read-only collections of objects distributed over a 
cluster of machines providing fault tolerance by rebuilding lost 
data by using lineage information (without requiring data 
replication). RDD allows to store data on memory, as well as to 
define the persistence strategy. Gopalani and Arora [32] have 
compared Spark and Hadoop performances on clustering K-
means algorithms, showing that Spark outperforms Hadoop on 
different cluster configurations.  

 

III. SYSTEM ARCHITECTURE 

As introduced earlier, the proposed system aims at 
extracting keywords and keyphrases from web resources 
(retrieved by crawling online web pages and documents of 
business entities and research institutes) in a distributed 
architecture. The necessity of realizing a more efficient and 
scalable solution, in order to improve performances, as well as 
data integrity and failures handling, led us to the choice of the 
open source Apache Hadoop framework, which have been 
installed on a multi-node cluster. The Hadoop ecosystem is 
implemented in Java, and it is capable of supporting distributed

 

Figure 1.  Overview of the proposed system architecture.

applications, large-scale data processing and storage, providing 
high scalability. Data access and management relies on the 
Hadoop Distributed File System (HDFS), modeled upon the 
Google File System – GFS (Ghemawat et al., 2003). Typically, 
a cluster is composed by a master Namenode, which assigns 
tasks and tracks their execution to the different clients 
(Datanodes). Datanodes are responsible also for data storage 
through its MapReduce programming model. 

In our context, MapReduce is used to parallelize the crawler 
work, the execution of NLP tasks and final SQL database 

storage. In our case, NLP tasks are performed by using the 
GATE Embedded Java APIs, and they are related to the 
extraction of keywords and keyphrases from online parsed 
unstructured text, although our approach is general enough to 
potentially execute any generic GATE-based application. At 
the end of the distributed process (involving web crawling, 
text parsing, annotation, keywords/keyphrase extraction and 
pruning, based on their relevance), the produced outcome is 
stored in the HDFS file system. Finally, a dedicated procedure 
stores designed keywords and keyphrases in an external SQL 
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database. The whole system architecture is implemented in 
Java. In the next subsections, a description will follow of the 
main modules constituting the proposed framework, which are 
listed as following: 

 The Web Crawler module. 

 The Keywords/Keyphrases MapReduce Extractor 
module, which is responsible of two main operations: 

 The execution of the GATE application via 
MapReduce and the subsequent storage of 
extracted keywords/keyphrases in the HDFS. 

 The keywords and keyphrases relevance 
estimation, obtained by computing the TF-IDF 
function for each extracted 
keywords/keyphrases, performed to assess their 
relevance with respect to their whole corpus (for 
filtering purposes). 

 The DB Storage module which finally stores 
designed keywords and keyphrases into an external 
SQL database.  

An overview of the proposed architecture is depicted in 
Figure 1. The next subsection are committed to describe in 
further details the above listed modules. 
 

A. Web Crawler 

The crawling engine of the proposed system is based on the 
open source Apache Nutch8 tool. It has been initialized with a 
set of seed URLs of commercial companies, services and 
research institutes. Actually, as later addressed as an open issue 
for future work, a future goal will be to exploit the capabilities 
of the proposed system in annotating text relevant features for 
content extraction and summarization (in order to estimate, as 
an example, the domain of interest of analyzed web domains, 
as well as the main key topics). 

The Nutch based crawler workflow is divided into the 
following phases: The first is the Inject phase, in which some 
seed URLs are injected for initial bootstrapping. Then, in the 
Generate phase, a generating algorithm produces a set of URLs 
that are going to be fetched. The Fetch phase deals with 
fetching the previously generated set of URLs into segments. 
Subsequently, the Parse phase is dedicated to the parsing of 
fetched segments content; the Update phase populates an 
external SQL Database with parsed segment contents. Finally, 
the Apache Solr9 technology is used to index all the collected 
documents, providing also a search interface. The Solr index is 
ultimately present only onto the master Namenode. 

 

B. Keywords/Keyphrases MapReduce Extractor 

This module reads and takes as input the URLs (stored in 
the SQL database). The content of the corresponding parsed 

                                                           
8 http://nutch.apache.org/  
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web page is obtained through a query to the Solr index. In this 
way, documents are created for each corpus represented by a 
single web domain. The crawler and keywords extractor 
modules work asynchronously, actually the crawling task and 
the extraction process are scheduled and executed 
independently. Moreover, the present module is in charge of 
defining the MapReduce model. Typically, Map functions 
divide the work into smaller jobs or file blocks, which are 
subsequently mapped among the different Datanodes by the 
Namenode. Specific Map functions are defined to generate 
key/value pairs representing logical records from the input 
data source. Subsequently, Reduce tasks merge all 
intermediate values associated with the same key. The Hadoop 
services in charge of managing and assigning tasks and data 
blocks to the different nodes are the JobTracker and the 
TaskTracker. The former communicates with the Namenode to 
retrieve data locations and the directory tree of all files in the 
file system, in order to find available nodes and set specific 
tasks to assign. The latter represents a node in the cluster that 
is able to receive MapReduce tasks from a JobTracker; each 
Tasktracker is configured with a set of slots, indicating the 
number of tasks that can be accepted). Here, Map and Reduce 
functions are defined in a proper way for our goals: since we 
are interested in annotating keywords and keyphrases at single 
web-domain level, we designed a Map function that associates 
key/value record pairs where the key is the URL of the single 
web page, and the value is the corresponding web domain. The 
Reduce function, in turn, fulfills the setup, launch and 
execution of a multi-corpora GATE application (each corpus 
containing text documents and pages belonging to a single 
web domain), as well the subsequent estimation of extracted 
keywords/keyphrases relevance at web domain level (as later 
described). 

 

C. GATE Application 

This functional block of the Keywords/Keyphrases 
MapReduce Extractor module integrates and executes the 
GATE application in the MapReduce environment, according 
to the input configuration parameters and the pipeline, defined 
in an external configuration .xgapp file. This XML-based file 
is defined, by extension, as the effective GATE application, 
containing file paths and references to all the Processing 
Resources and plugins used. In this specific case, the ANNIE 
(A Nearly-New Information Extraction System) plugin, more 
specifically the Tokenizer and the Sentence Splitter tools, have 
been used to parse and segment the text content of crawled 
documents, while the TreeTagger plugin has been used for 
POS-tagging. Finally, the Java written JAPE (Java Annotation 
Pattern Engine) plugin syntax has been employed to define 
custom rules for filtering undesired, noisy parts of speech 
(such as conjunctions, adverbs, prepositions etc.). These rules 
are contained in a dedicated .jape file. Common nouns and 
adjectives are then annotated as potential keywords 
candidates. Candidate keyphrases are then identified as 
contiguous phraseological combinations and patterns of 
candidate keywords. 

http://nutch.apache.org/
http://lucene.apache.org/solr/


 

Regarding the execution of the GATE application in the 
Hadoop distributed environment, the following strategy has 
been followed: the Namenode loads, at run time, a zip archive 
containing all the needed GATE APIs, configuration and 
application files, libraries and plugins, in the HDFS 
Distributed Cache. This is one of the possible solutions 
adopted for handling read and write operations on files in the 
HDFS. This has been considered an efficient solution since, by 
this way,  our application will copy in memory and extract the 
necessary files only once, and the allocated content will be 
accessible by all the Datanodes, without the need of installing 
required plugins and third party tools on each single cluster 
node. An additional advantage of this approach stems by the 
fact that any generic GATE application can be potentially 
executed in our Hadoop-based architecture (taking benefits of 
all the NLP features and capabilities offered), providing to 
embed the .xgapp application file, the .jape file for annotation 
rules and patterns, as well as all the required resources and 
plugins in the input zip file. 
 

D. TF-IDF Relevance Estimation 

Relevance estimation for candidate keywords and 
keyphrases is performed by computing the TF-IDF (Term 
Frequency – Inverse Document Frequency) function. This 
metric is widely adopted in Information Retrieval to assess 
how significant is a given term not really within the single 
document in which it has been retrieved, but rather with 
respect to the whole documents collection (corpus). Actually, 
a lot of common words like articles or conjunctions may 
appear several times in a document but they are not relevant as 
key-concepts to be indexed or retrieved. As a matter of fact, 
TF-IDF is given by the combination of two functions: TF 
(Term Frequency) which provides a measure about how 
frequently a term occurs in a certain document, and IDF 
(Inverse Document Frequency) which measures how 
important is a certain term with respect to the whole corpus. 
The final TF-IDF value for a candidate keyword k in a 
document d within a corpus D is calculated as: 

 

, 

where: 

 

being fk the number of occurrences of the candidate keyword k 
in the document d, nd the total number of terms contained in 
document d, ND the total number of documents in the corpus D 
and NK the total number of documents within the corpus in 
which the candidate key k appears. 

After calculating TF-IDF for each potential keyword and 
keyphrase, candidates with a TF-IDF value under a defined 
threshold are pruned, while those with a value above the 
threshold are designed as definitive keywords/keyphrases. 

These ones are finally stored in the Hadoop HDFS file system, 
annotated together with their corresponding TF-IDF values 
and source web domain URL. 

 

E. DB Storage 

This module accomplishes the storage of the final system 
output (temporarily stored in the HDFS by the Extractor 
Module) in an external SQL database. This operation is carried 
out by means of the Apache Sqoop 10  open source tool, 
specifically designed for data transfer between Hadoop HDFS 
and structured datastores. The Sqoop tool has been installed on 
the master only and the export feature has been used to insert 
data stored in the HDFS into the database. In order to 
successfully accomplish the data export, full read/write 
privileges on the database have been granted to all the 
machines on the cluster. Each database record is populated 
with an extracted keyword or keyphrase, its corresponding 
POS-tag (or a different custom tag if it is a keyphrase), TF-
IDF value and the source web domain. 
 

IV. EVALUATION 

The performances of the proposed system have been 
evaluated against a dataset composed of 10000 web page and 
documents, which is a subset of the resources ingested by our 
Distributed Crawler module (which has currently been 
gathering more than 6 million web URLs). The Hadoop cluster 
architecture used for tests has been assessed on different 
configurations, ranging from 2 to 5 nodes. Each node is a 
Linux 8-cores workstation whith Hadoop HDFS installed. The 
master Namenode, besides, required also the Apache Sqoop 
software installation to manage SQL write operations for final 
output storage. In order to avoid data integrity errors and 
failures due to decommission and recommission of cluster 
nodes, Hadoop allows to perform a rebalance of stored blocks 
among the active nodes of the cluster, if necessary. 

For each cluster configuration, a fixed number of 
keywords/keyphrase extraction tests has been performed, on 
the same defined dataset. The MapReduce model supplies 
speculative execution of tasks, and it is designed to provide 
redundancy in order to handle fault tolerance. By this way, it 
may happen that the Namenode JobTracker has to reschedule 
failed or killed tasks, and this can affect the execution time of 
the whole process. Therefore, for performance comparison, the 
best processing times have been selected among all the tests 
performed for each node configuration. By this way, the 
number of attempts for re-executing failed or killed tasks is 
supposed to be minimized. For the whole test dataset, 
containing about 10000 documents, a total of nearly 3.5 million 
keywords and keyphrases have been extracted. Time 
processing results for the different tested node configurations 
are shown in Table 1. The single-node configuration has been 
actually implemented as a two-nodes cluster, with a master 
Namenode and one slave node running only as a Datanode (in 
order to avoid HDFS space and blocks balancing problems on 
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decommissioning too many nodes). That is, the TaskTracker 
daemon stopped (so that it does not take part to the MapReduce 
process). As a term of comparison, running the same GATE 
application on the same corpora dataset on a single non-
Hadoop workstation took approximately 60 hours. A possible 
explanation to this significant performance gap can be the fact 
that the Java code of our standalone GATE application is not 
optimized for multi-thread, while the MapReduce adaptation 
executed in Hadoop can benefit of MapReduce configuration 
parameters, which define the maximum number of map and 
reduce task slots to run simultaneously (exploiting multi-core 
technology even on a single-node cluster). The resulting speed-
up curve for our test data is shown in Figure 2. 

As it can be noticed, the scaling capabilities of the proposed 
system confirm the nearly linear growth trend of the Hadoop 
architecture. However, the low curve slope suggests that 
significant performance improvements can be achieved only 
for larger number of nodes in the cluster. 

TABLE I.  EVALUATION RESULTS: TIME PERFORMANCES ASSESSED FOR 
DIFFERENT CLUSTER CONFIGURATIONS. 

Configuration Processing Time 
(hh:mm:ss) 

Speed - Up 

HDFS - single node 07:17:01 - 

HDFS - 2 nodes 05:21:53 1.36 

HDFS - 3 nodes 04:08:00 1.76 

HDFS - 4 nodes 03:39:42 1,99 

HDFS - 5 nodes 03:20:09 2.18 

 
 

 
Figure 2.  Processing time performances depicted for distributed extraction of 

Keywords and Keyphrases (solid curve), performed with different cluster 
configurations, against the ideal linear trend (dotted curve). 

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, a distributed system for keywords and 
keyphrases extraction from text content of web pages and 
documents has been presented. The parallel architecture is 
provided through the implementation of the open source 
Apache Hadoop framework, while text annotation and key 
features extraction rely on the NLP opens source GATE 

platform. The main advantages and contributions brought by 
the proposed system are two: the first is the integration of a 
web crawler which allow to use our system as a standalone 
application, avoiding interfacing issues with external tools for 
documents ingestion and indexing (actually, the most part of 
current NLP tools assumes that input documents are already 
collected, properly cleaned and formatted). In addition, the 
proposed system provides the capability of potentially 
executing any generic GATE application (thus allowing to 
perform a wide range of NLP activities) in a distributed design, 
without the need for programmers to modify and update every 
time the code, in order to follow the steps usually required for 
parallel computing development (such as task decomposition, 
mapping and synchronization issues). Open issues for future 
work are, in addition to test a wider range of GATE based 
applications, the evaluation of processing times on larger 
cluster configurations and larger document corpora, with the 
goal of better assessing the trend of performance 
improvements. Moreover, it could be interesting to adapt the 
Hadoop implementation of the keywords/keyphrases extraction 
on other parallel computing, distributed architecture, such as 
Spark. Regarding possible quality improvements to the 
currently adopted NLP solutions used for key features 
extraction, the annotation of proper nouns (for instance, VIP 
person names and toponyms) could also be provided, by the 
use of lists, gazetteers and other external knowledge resources. 
This might be useful, as well as enhancing the relevance of 
produced output, for content annotation, summarization and 
domain characterization purposes in higher expressive 
contexts, such as Semantic Computing frameworks.  

 

REFERENCES 
[1] J. Lin, and C. Dyer, “Data-Intensive Text Processing with MapReduce”, 

Morgan & Claypool Publishers, 2010. 

[2] F. Colace, M. De Santo, L. Greco and P. Napoletano, “Text 
classification using a few labeled examples. Computers in Human 
Behavior”, Vol. 30, pp. 689-697, 2014. 

[3] R. Al-Hashemi, “Text Summarization Extraction System (TSES) Using 
Extracted Keywords”, International Arab Journal of e-Technology, Vol. 
1(4), pp. 164-168, 2010. 

[4] F. Colace, M. De Santo, L. Greco and P. Napoletano: Weighted Word 
Pairs for query expansion. Inf. Process. Manage. 51(1): 179-193 (2015). 

[5] O. Kononenko, O. Baysal, R. Holmes and M. W. Godfrey, “Mining 
Modern Repositories with Elasticsearch”, in Proc. of the 11th Working 
Conference on Mining Software Repositories, pp. 328-331, 2014. 

[6] N. Ide. and L. Romary, “International standard for a linguistic annotation 
framework”, Natural Language Engineering, Vol. 10(3-4), pp. 211-225, 
2004. 

[7] A. Hulth, “Improved automatic keyword extraction given more linguistic 
knowledge”, in Proc. of the 2003 Conference on Emprical Methods in 
Natural Language Processing, Sapporo, Japan, 2003. 

[8] T. Luis, “Parallelization of Natural Language Processing Algorithms on 
Distributed Systems”, Master Thesis, Information Systems and 
Computer Engineering, Instituto Superior Técnico, Univ. Técncica de 
Lisboa, 2008. 

[9] T. Hamon, J. Deriviere and Nazarenko, “Ogmios: a scalable NLP 
platform for annotating large web document collections”, in Proc. of 
Corpus Linguistics, Birmingham, United Kingdom, 2007. 

[10] J. Lin and C. Dyer, “Data-Intensive Text Processing with MapReduce“, 
Morgan & Claypool Publishers, 2010. 

[11] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan, “GATE: A 
Framework and Graphical Development Enviroment for Robust NLP 

0

1

2

3

4

5

6

2 3 4 5

Sp
e

e
d

U
p

 

Nodes # 



 

Tools and Applications,” in Proc. of the 40th Anniversary Meeting of the 
Association for Computational Linguistics, ACL ‘02, Philadelphia, 
2002. 

[12] C. Zhang, H. Wang, Y. Liu, D. Wu, Yi Liao and Bo Wang, “Automatic 
Keyword Extraction from Documents Using Conditional Random 
Fields”, Journal of Computational Information Systems, 2008. 

[13] Y. Matsuo and M. Ishizuka, “Keyword extraction from a single 
document using word co-ocuurrence statistical information”, 
International Journal on Artificial Intelligence Tools, 2004. 

[14] J. Kaur, V. Gupta, “Effective Approaches For Extraction Of Keywords”, 
IJCSI International Journal of Computer Science Issues, Vol. 7(6), pp. 
144-148, November 2010. 

[15] I. Witten, G. Paynte, E. Frank, C. Gutwin and C. Nevill-Manning, 
“KEA: practical automatic keyphrase extraction”, in Proc. of the 4th 
ACM Conference on Digital Library, 1999. 

[16] C. Wu, M. Marches, J. Jiang, A. Ivanyukovich and Y. Liang, “Machine 
Learning-Based Keywords Extraction for Scientific Literature”, Journal 
of Universal Computer Science, Vol. 13(10), pp. 1471-1483, 2007. 

[17] Z. Liu, P. Li, Y. Zheng and M. Sun, “Clustering to find exemplar terms 
for keyphrase extraction”, in Proc. of the 2009 Conf. on Empirical 
Methods in Natural LanguageProcessing, pp.  257–266, 2009. 

[18] F. Liu, D. Pennell, F. Liu and Yang Liu, “Unsupervised approaches for 
automatic keyword extraction using meeting transcripts”,  in Proc. of 
Human Language Technologies: The Annual Conference of the North 
American Chapter of the Association for Computational Linguistics, pp. 
620-628. 2009. 

[19] O. Medelyan, E. Frank and I. H. Witten, “Human-competitive tagging 
using automatic keyphrase extraction” in Proc. of the 2009 Conf. on 
Empirical Methods in Natural Language Processing, pp. 1318-1327, 
2009. 

[20] K. S. Hasan and V. Ng, “Automatic Keyphrase Extraction: A Survey of 
the State of the Art”, in Proc. of the 52nd Annual Meeting of the 
Association for Computational Linguistics, Vol. 1, pp. 1262-1273, 2014. 

[21] M. Grineva, M. Grinev and D. Lizorkin, “Extracting key terms from 
noisy and multitheme documents”, in Proc. of the 18th Int. Conf. on 
World Wide Web, pp. 661-670,2009. 

[22] Z. Liu, W. Huang, Y. Zheng and M. Sun, “Automatic keyphrase 
extraction via topic decomposition”, in Proc. of the 2010 Conf. on 
Empirical Methods in Natural Language Processing, pp. 366-376, 2010. 

[23] M. Chung and D. I. Moldovan, “Parallel Natural Language Processing 
on a Semantic Network Array Processor”, IEEE Transactions on 
Knowledge and Data Engineering, Vol. 7(3), pp. 391-404, 1995. 

[24] M. P. van Lohuizen, “Parallel Processing of Natural Language Parsers”, 
in Proc. of the 15th Conf. of Parallel Computing, pages 17-20, 2000. 

[25] P. Jindal, D. Roth and L.V Kale, “Efficient Development of Parallel 
NLP Applications”, Tech. Report of IDEALS (Illinois Digital 
Environment for Access to Learning and Scholarship), 2013. 

[26] N. Rizzolo and D. Roth, “Learning Based Java for Rapid Development 
of NLP Systems”. In Proc. of the International Conference on Language 
Resources and Evaluation (LREC), 2010. 

[27] L. V. Kale and G. Zheng, “Charm++ and AMPI: Adaptive Runtime 
Strategies via Migratable Objects”, in Advanced Computational 
Infrastructures for Parallel and Distributed Applications, pp. 265-282, 
Wiley Interscience, 2009. 

[28] Exner, P. and Nugues, P., “KOSHIK - A Large-scale Distributed 
Computing Framework for NLP“, in Proc. of the International 
Conference on Pattern Recognition Applications and Methods 
(ICPRAM 2014), pp. 463-470, 2014. 

[29] V. Tablan, R. I. Cunningham and K. Bontcheva, “GATECloud.net: a 
platform for large-scale, open-source text processing on the cloud”, 
Philosophical Transactions of the Royal Society, 2013. 

[30] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica, 
“Spark: Cluster Computing withWorking Sets”, Technology report of 
UC Berkeley, 2011. 

[31] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma; M. McCauly; M. J. 
Franklin, S. Shenker and I. Stoica, “Resilient Distributed Datasets: A 
Fault-Tolerant Abstraction for In-Memory Cluster Computing”, in Proc. 
of the 9th USENIX Symposium on Networked Systems Design and 
Implementation (NSDI 12), pp. 15-28, 2012. 

[32] S. Gopalani and R. Arora, “Comparing Apache Spark and Map Reduce 
with Performance Analysis using K-Means”, International Journal of 
Computer Applications ,Vol. 113(1), pp. 8-11, 2015. 

 

 

 


