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Abstract— As multimedia becomes the dominant form of 
entertainment through an ever increasing range of digital formats, 
there has been a growing interest in obtaining information from 
entertainment media. Speech is one of the core resources in 
multimedia, providing a foundation for the extraction of semantic 
information. Thus, detecting speech is a critical first step for 
speech-based information retrieval systems. This work focuses on 
speech detection in one of the dominant forms of entertainment 
media: feature films. A novel approach for voice activity detection 
(VAD) in film audio is proposed. The approach uses correlation to 
analyze associations of Mel Frequency Cepstral Coefficient 
(MFCC) pairs in speech and non-speech data. This information 
then drives feature selection for the creation of MFCC cross-
covariance feature vectors (MFCC-CCs) which are used to train a 
random forest classifier to solve a binary speech/non-speech 
classification problem on audio data from entertainment media.  
The classifier performance is evaluated on a number of test sets 
and achieves a classification accuracy of up to 94%. The approach 
is also compared with state of the art and contemporary VAD 
algorithms, and demonstrates competitive results. 

Keywords- voice activity detection; speech detection; binary 
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I.  INTRODUCTION 

 Consumption of multimedia has become ubiquitous, with 
TV, films, games, and digital music now providing the majority 
of our entertainment in a range of easily accessible formats. With 
this rise in multimedia, there is a continually increasing interest 
in obtaining information from media - using it to understand 
human interaction and behavior [1], and to extract semantic 
information that can be used in the creation of metadata [2]. 
Speech classification plays a key role in data extraction through 
detecting speech regions in audio or video data. These regions 
can then be used for further feature extraction, e.g. speech 
recognition. While many speech detection techniques exist, few 
have been developed specifically for use with one of our most 
challenging and popular forms of media: film. Unlike radio and 
news broadcasts, films contain an extremely diverse range of 
speech and other audio content. Film introduces challenges that 

are not present in most natural scenarios, such as speech in the 
presence of highly dynamic background noise and sound effects, 
or heavily manipulated speech, where sound design has been 
used to create unnatural voice characteristics through the 
addition of harmonics and distortion.  

We present a novel approach for speech detection developed 
specifically for classification of speech within film audio. This 
approach aims to account for unusual voice characteristics by 
analyzing the relationships between pairs of spectral features 
within speech and non-speech data. We use the process to 
identify Mel Frequency Cepstral Coefficient (MFCC) pairs 
which are then processed to create cross-covariance-based 
feature vectors (MFCC-CCs). MFCC covariance statistics have 
been used previously for audio classification tasks, such as in [3] 
and [4], where covariance is used alongside other statistical 
representations of MFCC data, resulting in as many as 60 
dimensions per frame (as described in [4]). In this work, cross-
correlation is used to select specific MFCC pairs which 
demonstrate the greatest difference in correlation between 
speech and non-speech data. Cross-covariance vectors for the 
five highest scoring MFCC pairs are then created, providing a 
single vector which represents the covariance relationship for 
each pair. The resulting feature vector is comprised of five 
speech-sensitive MFCC-CC features per frame, thus reducing 
dimensionality from 13 MFCCs to five MFCC-CC features. 
Through using this feature vector with a random forest classifier, 
we have achieved a classification accuracy of 94% on 
challenging audio data. 

II. BACKGROUND 

Recent developments in mixed-audio speech detection have 
demonstrated high accuracy [5], however, while using mixed 
audio signals, the datasets used in much of the work to date is 
still fairly constrained. These include radio broadcasts [6], news 
broadcasts [7], and speech detection in the presence of 
background noise [8]. Speech detection in these scenarios is 
likely to be a simpler task than speech detection within film 
audio. This is due to the dynamic nature of film audio: not only 
does it contain various types of background noise, but the 
acoustic environments change frequently (simulated or 
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otherwise, e.g. via reverb effects [9]) and the format makes use 
of many synthetic sound effects [10], which can obscure speech 
information in the audio. As well as this, voice synthesis or 
distortion is now also common in feature films [10], all of which 
make speech detection more challenging when using typical 
spectral features. To address this, we have developed an 
approach for speech detection that uses cross-covariance to 
represent the relationship between pairs of MFCCs [11]. This 
reduces feature dimensionality, resulting in a feature set 
designed to improve speech/non-speech discrimination. The 
resulting feature vector is used to train a learning machine to 
perform binary classification (speech/non-speech) on an 
annotated ground-truth dataset. Results demonstrate an accuracy 
of between 86.15% and 87.26%, which are promising 
performance statistics when considering the challenging nature 
of the dataset. 

An approach discussed in [6], for classifying speech/non-
speech in radio broadcasts, exploits spectro-temporal variations 
of speech signals via short time Fourier transforms (STFTs) to 
discriminate between speech and non-speech signals. This has 
demonstrated good performance on their data set, however, this 
approach applies a median filter or approximately 10 seconds 
duration to the classifier output. Thus, it is primarily useful for 
broadly classifying sections of audio, rather than for higher 
resolution speech activity detection. Furthermore, the data used 
is sourced exclusively from radio broadcasts, and is thus not 
reflective of film audio content, likely being less dynamic and 
thus simplifying the classification problem.  

Another recent approach described in [5] uses a voice 
activity detector based on Long Short-Term Memory Recurrent 
Neural Networks (LSTM-RNN). This demonstrates good 
performance on a synthetic test validation set, with an average 
equal error rate (EER) of 10.4%, outperforming the state-of-the-
art SOHN algorithm. However, it is less effective on film audio, 
with an average EER of 33.2%. 

One film-centered approach [12] utilizes bilingual audio 
streams for speech detection. This identifies speech segments 
through correlating spectral coefficients between two different 
language tracks, and demonstrates an accuracy of between 84% 
and 87% in classifying clean and noisy speech in film audio. 
While this approach demonstrates good performance on film 
data, it requires bilingual audio tracks to perform classification, 
and thus would not work with single language audio data. 

Another approach discussed in [13] uses a dataset comprised 
entirely of television material (thus similar to film) and looks to 
differentiate between speech and music data. This uses discrete 
wavelet transforms (DWT) as the audio feature and performs 
classification via a support vector machine. While this performs 
with an accuracy of up to 94.5%, the approach is focused on 
discriminating between speech or music data, and thus does not 
consider environmental noise, silence, sound effects and other 
sonic components common to film audio.  

Several other reviewed approaches have demonstrated an 
accuracy of >90%, however, these either have limited data, such 
as [14], which has only 9 main speakers in its dataset, or make 
use of non-film audio, such as [7], whose data includes radio and 
news broadcasts (which typically do not have the same sonic 
variance as film data). 

III. PROPOSED APPROACH 

A. Process Overview 

The speech classification process consists of three core 
stages. The first of these is feature selection, which analyzes the 
audio data using cross-correlation to determine which features 
yield the most useful information to discriminate between 
speech and non-speech data. The second stage consists of 
processing this information to create the MFCC-CC feature 
vectors, and in the third stage a classifier is fit to a training set of 
ground-truth labelled data. 

B. Feature Selection 

Numerous approaches for spectral feature parameterization 
exist [15], however MFCCs are one of the most frequently used 
spectral features in both automatic speech recognition (ASR) 
[16] and voice activity detection (VAD) [17]. Given their wide 
adoption in speech processing, MFCCs have been chosen as the 
method of representing spectral features in this work. Within this 
application we replace the zeroth MFCC with the log of the total 
frame energy, as this has proven to be useful in speech 
processing applications [18] [19]. 

Feature selection is achieved using cross-correlation to 
analyze the difference in cross-MFCC similarities in speech and 
non-speech data from the training set. A correlation coefficient 
is obtained for each MFCC with respect to each of the other 
MFCCs. This is done separately for speech and non-speech data. 
The speech/non-speech difference in the resulting correlation 
coefficients for each MFCC feature pair is obtained. This is used 
to determine which feature pairs demonstrate the greatest change 
in correlation between speech and non-speech data. The Pearson 
product-moment correlation coefficient, ρ, is obtained from the 
covariance matrix (C) of a pair of MFCC feature vectors via the 
coefficient matrix Pij: 

 𝑃𝑖𝑗 =  
𝐶𝑖𝑗

√𝐶𝑖𝑖∗𝐶𝑗𝑗
 

The correlation coefficient has a value between -1 and 1, 
where 1 denotes total positive correlation, and -1 denotes total 
negative correlation. 

The MFCC pairs are chosen based on the difference between 
their speech and non-speech correlation coefficients. Figure 1 
shows the resulting correlation coefficient differences. Higher 
values indicate a greater variance in the MFCC pair relationships 
between speech and non-speech data. This in turn indicates that 
the pairs are more likely to provide information relating to the 
presence/absence of speech spectral data, thus facilitating more 
effective speech/non-speech discrimination. 



 
Figure 1.  Matrix of MFCC pair correlation coefficient differences between 

speech and non-speech data. Darker squares indicate greater values. 

C. Feature Vector Processing 

The final MFCC-cross-covariance feature vectors are 
attained by computing the cross-covariance of the MFCC pairs 
corresponding to the top n correlation coefficient differences. 
For each pair of MFCCs, the cross-covariance vector is obtained 
through computing the cross-covariance of segments of the two 
signals along their length via a rectangular sliding window: 

 (𝑓 ∗ 𝑔)𝑖 ≝ ∑ 𝑓𝑗𝑗 ∗ 𝑔𝑖+𝑗   

𝑓 = 𝑣1𝑘:𝑘+𝑤𝑔 = 𝑣2𝑘:𝑘+𝑤 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑖𝑛 𝑣1, 𝑣2

where v1 is the first MFCC vector, v2 is the second MFCC 
vector, k is the index and w is the size of the sliding window. 

As temporal information has proven to be useful in speech 
classification problems [5, 6], a window size of 450ms has been 
used for w. This was determined based on average phoneme 
duration being around 176ms [20]. As such, a frame size of 
450ms is therefore long enough to account for multiple 
phonemes, thus avoiding false classification of brief speech-like 
phenomena, but still allowing for the detection of finer 
resolution (sub-1s duration) speech features. 

D. Classification and Tuning 

Classification is achieved through the use of a learning 
machine trained on the MFCC-cross-covariance (MFCC-CC) 
features from the annotated training data set. In this case, random 
forests were chosen as the classifier based on their strong 
performance in speech classification applications [6, 21]. The 
random forest classifier was investigated using varying numbers 
of MFCC-CC features and a range of estimators (trees per forest) 
in order to determine optimal parameters for classification. 

 

 
Figure 2.  Random forest classification results using a range of estimators. 

While testing numbers of estimators, it was found that the 
performance metrics stabilize after approximately 150 
estimators (Figure 2), with little-to-no performance advantage 
achieved after this. Furthermore, previous work on random 
forest-based speech classifiers has demonstrated that optimal 
performance is achieved with the use of 200 estimators [6]. As 
such, the number of estimators for the random forest classifier 
was set at 200. 

To test the impact of the number of MFCC-CC vectors used, 
vectors were added in order of significance, with the most 
significant relating to the MFCC pair with the greatest 
correlation coefficient difference across speech and non-speech 
data. Results from this (Figure 3) demonstrate that classification 
performance improves dramatically up to three features, and 
stabilizes at around five features. Therefore, five features were 
chosen as the optimal setting, as there was negligible gain in 
performance after this point. 

 
Figure 3.  Random forest classification results with escalating numbers of 

MFCC-CC vectors. 
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IV. CASE STUDY DESIGN 

Unlike other forms of data used within voice activity 
detection tasks, such as speech recordings in various acoustic 
environments [8] or synthesized acoustic environments, film is 
unique in that it is intentionally mixed [9]. While it may be 
intuitive to assume that this would make speech detection a 
simpler task (as the speech is mixed to be intelligible), this has 
proven not to be the case when testing a number of state-of-the-
art voice activity detection algorithms on data from feature films 
[5]. This suggests that the intentional mixing of film audio 
separates it from audio data used in other typical VAD scenarios. 
As such, we have focused solely on the use of audio data from 
film – ensuring that both the training and test sets use 
intentionally mixed audio. 

Two test scenarios have been used. The first uses a data set 
consisting of 120 minutes of data taken from four 30 minute 
segments of four feature films. To maximize usefulness, a cross-
validation approach is used, whereby the data is reconfigured 
four times for each test. Each iteration uses 90 minutes of data 
for the training set (from three films), and 30 minutes of data for 
the test set (from the remaining film). This ensures that the 
classifier is naïve to the test data and maximizes testing cycles 
for the validation test set. The second test scenario uses all 120 
minutes of data from the cross-validation set for training, and 
uses the films detailed in [5] as test data. This has been done to 
provide a direct comparison between the MFCC-CC approach, 
the approach from [6] and the results described in [5] (which 
includes results from testing the VAD described in [22] on 
feature film data). 

The data has been manually annotated to provide a human-
defined ground-truth, whereby sections are labeled as either 
speech or non-speech. The non-speech content consists of 
various audio mixtures including: silence, traffic noise, crowd 
noise, gunfire, engine noise, music (with and without singing), 
and other synthetic sound effects and sound design components. 
The speech content contains a number of speech varieties, 
including: speaking (various volumes), whispering, and 
shouting. Speech content is also mixed with the range of 
background audio (similar to that described for the non-speech 
content). The degree of variation in both speech and non-speech 
samples is pseudo-random according to individual film content. 

V. RESULTS 

A. Initial Testing Results 

Initial testing indicated strong performance of the MFCC-
CC classifier, with an average accuracy of 89.2% (see Table I). 
Strong performance was also observed when testing on an 
animated feature film using training data from non-animated 
content. This indicates that the approach is capable of handling 
a-typical speech characteristics, as the animated content contains 
a significant amount of extreme/accentuated voice 
characteristics, for example the voice of the Gingerbread Man 
character in Shrek 3. 

 

 

 

TABLE I.  CLASSIFICATION RESULTS FROM RANDOM FOREST CLASSIFIER 
TRAINED ON MFCC-CC FEATURES 

Test set |  
Genre 

Accuracy Precision Recall Fscore 

Constantine | 
action/horror 

0.903 0.902 0.794 0.844 

Shrek 3 | 
animated/fantasy 

0.861 0.792 0.789 0.790 

Knocked Up | 
romantic comedy 

0.881 0.783 0.889 0.833 

Blood Diamond | 
drama/thriller 

0.924 0.920 0.845 0.881 

Mean 0.892 0.849 0.829 0.837 

 

The MFCC-CC classifier was also evaluated using receiver 
operatic characteristics (ROC), a common method of assessing 
binary classifier performance. The ROC curves in Figure 4 
indicate strong performance, with an average area under curve 
(AUC) of 0.955 (see Table II), indicating that the classifier 
exhibits strong discrimination between the two classes. The 
equal error rate (EER) observed here further indicates strong 
system accuracy, with an average EER of 11.1% achieved across 
the four test scenarios. This suggests better performance than the 
VAD in [5], which achieved an average EER of 33.2% on film 
audio data. 

To assess performance with respect to [6], an 
implementation of the classifier used by Sonnleitner et al. was 
trained and tested using the cross-validation approach described 
in section IV. In [6] a median filter is used on the classification 
output. To assess equivalent performance, the median filter is 
not applied here, as a median filter has not been used on the 
MFCC-CC classifier output. Thus, only the raw classifier output 
is considered. 

TABLE II.  AUC AND EER  FROM RECEIVER OPERATING CHARACTERISTIC 
PLOT 

 Const. Shrek 3 Kno. Up Bl. D. Mean 

AUC 0.969 0.925 0.954 0.973 0.955 

EER [%] 9.5 15.0 11.6 8.1 11.1 

 

 
Figure 4.  Receiver operatic characteristic curves for MFCC-CC 

classification results from initial testing. 



TABLE III.  CLASSIFICATION RESULTS FROM RANDOM FOREST CLASSIFIER 
TRAINED ON FEATURES DESCRIBED IN [6] 

Test set |  
genre 

Accuracy Precision Recall Fscore 

Constantine | 
action/horror 

0.714 0.642 0.315 0.423 

Shrek 3 | 
animated/fantasy 

0.701 0.642 0.228 0.337 

Knocked Up | 
romantic comedy 

0.678 0.539 0.224 0.317 

Blood Diamond | 
drama/thriller 

0.701 0.637 0.236 0.344 

Mean 0.699 0.615 0.251 0.355 

 

As demonstrated when comparing Table I and Table III, the 
MFCC-CC approach achieves greater results across all 
performance statistics used for evaluation, thus early 
investigations indicated that the proposed MFCC-CC features 
are more effective for speech classification when compared to 
the feature proposed in [6]. 

B. Further Testing Results 

Further investigations applied the MFCC-CC approach to 
whole feature films in order to provide a more comprehensive 
evaluation of its performance with respect to existing methods. 
The methods used for comparison were a long-standing state of 
the art VAD approach used to provide baseline performance 
statistics [22], as well as approaches that have demonstrated 
strong performance on entertainment media [5][6].  

Results in Table IV indicate that the approach from [6] 
demonstrated competitive performance against both [5] and 
[22], however the MFCC-CC approach exceeds the performance 
of all methods investigated, with greater AUC values for all test 
sets and lower EER. 

TABLE IV.  COMPARISON OF VAD APPROACHES 

 AUC 

Test set [5] [22] [6] MFCC-CC 

I Am Legend 0.704 0.567 0.718 0.921 

Kill Bill Vol. 1 0.627 0.554 0.800 0.893 

Saving Private 
Ryan 

0.743 0.577 0.717 0.946 

The Bourne 
Identity 

0.685 0.603 0.730 0.977 

Mean 0.690 0.575 0.741 0.934 

[%] EER 

ALL 33.18 45.73 31.41 13.49 

 

 

 

 

 

TABLE V.  PERFORMANCE STATISTICS OF MFCC-CC APPROACH AND 
CLASSIFIER FROM [6] WHEN APPLIED TO WHOLE-FEATURE-FILM DATA SET 

Test 
set 

Accuracy Precision Recall Fscore 

IAL 0.88 0.81 0.62 0.47 0.81 0.17 0.70 0.25 

KB.1 0.84 0.79 0.64 0.62 0.72 0.26 0.68 0.37 

SPR 0.87 0.77 0.91 0.45 0.66 0.29 0.77 0.35 

TBI 0.94 0.76 0.88 0.45 0.88 0.25 0.87 0.32 

Mean 0.88 0.78 0.76 0.50 0.77 0.24 0.75 0.32 

Left columns (bold): MFCC-CC results. Right columns: results from approach described in [6] 

 

Table V provides a more detailed performance comparison 
of the MFCC-CC approach and [6] (as this demonstrated the 
most competitive results in Table IV). The MFCC-CC approach 
demonstrates some reduced performance when compared to the 
initial testing results in Table I, however, this was anticipated 
given the limited training set and larger test set. Despite this, the 
approach continues to exhibit competitive results, outperforming 
[6] across all performance metrics. In particular, it can be seen 
that while the approach from [6] demonstrates relatively strong 
accuracy scores, significantly greater F-score values for our 
approach can be observed, indicating more robust performance. 

VI. CONCLUSIONS AND FUTURE DIRECTION  

The results presented here demonstrate strong performance 
of the proposed MFCC-CC speech detection approach, yielding 
performance metrics which exceed those of state of the art and 
other contemporary VAD approaches applied to feature film 
audio data. While these results are encouraging, more 
comprehensive testing is underway in order to gain further 
insight into the performance of the proposed approach on a 
larger data set. Given the small size of the training set used here 
(120 minutes), it will be particularly interesting to investigate the 
effects of more training data on classification performance, and 
to explore VAD performance on a greater variety of film genres 
and across multiple languages.  

Further investigations will also explore the use of MFCC-CC 
features with other classifiers, such as support vector machines, 
and will examine the possibility of expanding the feature 
selection method to explore whether genre-specific MFCC 
feature pairs can be utilized to enhance classifier performance. 
The long-term goal of this work is to apply audio speech 
detection in combination with visual features to gain a better 
understanding of their associations and to develop automated 
solutions for film post-production workflows.  
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