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Abstract—It is a common problem, radial distortion of off-the-
shelf camer as, especially those low-cost ones and wide-angle ones.
And the most direct method to judge whether radial distortion
occursin an image is the straightness of those lines in the image,
for the straight line in the image should be straight in the ideal
image under the pin-hole camera model. I n this paper, we present
anew line-based approach to eliminatetheradial distortion which
makes the line distorted in the image. It is based on the fact the
straight linesin the real world project to circular arcs under the
single parameter division model. Compared with those former
line-based methods, the method in this paper work well and be
easy to find the good circular arcs, which isvalid to eliminate the
interference of other curves. Experiments are provided for both
synthetic and real images and the results show that our method
can removetheradial distortion from imagesvalidly and robustly.

Keywords-radial distortion; division model; circle fitting; good
circular arcs;

l. INTRODUCTION

An ideal pin-hole camera model is used by most computer
vision agorithms, for example, 3D reconstruction, quantitative
measurement, recognition and tracking of objects, etc. Its basic
assumption is that the 3D straight lines mapping into the image
plane are till straight lines. However, in reality small or large
amounts of distortion are introduced by most lenses, which bend
straight lines in the real world into curves. This may introduce
severe problems in the preceding vision agorithms, which
making distortion correction isamust.

The imperfection of the lens and the misalignment of the
optical system lead to the distortion. And radial distortion isone
of kinds of distortion, but it isconsidered as the predominate one
among all possible lens distortion [1 2]. The lens introduces
barrel distortion at short focal lengths while it introduces
pincushion distortion at longer focal lengths. The polynomial
model presented by D.C. Brown [3] has been widely applied for
an excellent trade of between complexity and accuracy. Another
model widely used lately is the divison model presented by

Thisresearch is partially supported by National Natural Science Foundation of
China (No. 61370127, N0.61100143, N0.61473031, No0.61472030), Program
for New Century Excelent Talents in University (NCET-13-0659),
Fundamental Research Funds for the Central Universities(2014JBZ004),
Beijing Higher Education Young Elite Teacher Project (YETP0583). The
opinions expressed are solely those of the authors and not the sponsors.

{ Corresponding author: Weibin Liu, wbliu@bjtu.edu.cn }

DOl reference number: 10.18293/DMS2015-021

Weiwei Xing
School of Software Engineering
Beijing Jiaotong University
Beijing 100044, China

Fitzgibbon [4]. And the single-parameter radia distortion model
is enough for most lenses and any more elaborated modeling
would not help, but also would cause numerical instability [1].

In general, methods for correcting radial distortion can be
divided into three categories [5 6]. The first method is multiple
view auto-calibration [4 7 8]. No knowledge of the scene and no
specia pattern is required, but it is not suitable for the distorted
image from an unknown source. The second one is point
correspondence [1 9]. They identify image points using aknown
pattern and estimate the distortion parameters as part of the
internal parameters of the camera. Hence the results are highly
reliable and accurate, but it needs to get multiple images from
different views. The last one is plumb-line based method [5 10
11], which assumes straight linesin the real world should be till
straight on the image plane. The biggest advantage is that it can
correct the distortion only using one image, while the
disadvantage isthat it needs sufficient linesin the image scene.

What we most expect to the correcting method is easy to
remove the distortion automatic and robust from one unknown
source image, which is simple and does not need special pattern.
Therefore, plumb-based method is the only choice, which can
satisfy all the demands. And Wang et a. [10] providesasmple
method using the single-parameter division model under the
principle that a straight line in the distorted image is a circular
arc. The biggest advantage of Wang’s method is that it can
estimate the distortion center and the parameter of the single-
parameter divide model simultaneously. And another advantage
of Wang’s method is that it can estimate the distortion center and
the distortion parameter of the division model only using few
straight lines. In principle, three straight lines are enough for
computing the distortion center and distortion parameter, and if
the distortion center is the image center, it just needs one or two
straight lines. Hence, Wang’s method can avoid other plumb-
line based disadvantage which needs sufficient linesin theimage
scene. However, Wang’s method is not an automatic one that it
requires to extract the straight lines manually and the correction
resultsare not robust which vary with the different straight lines.

Then, Bukhari and Dailey proposes an automatic method
based on Wang’s method which can extract the straight lines
automatically and it uses as more straight lines as possible.
However, the correcting results are still not robust. And the
reason is that they do not solve the problem, selecting out good
circular arcs from the curves detected from the distorted image.
These line-based methods depend on extraction of long,



smoothly curved edges and get thrown easily if aportion of such
curves originate from non-linear scene structures[12].

Therefore, in this paper, we analyze all the curves which
appear in the distortion images and classify the curve into two
kinds, good curves and bad curves. Good curves are the curves
projected by the long straight line of the real world, which is
crucial to correct the distorted images in the line based methods,
especialy those automatic ones. Good curves are the edges of
the artificial objects, e.g., buildings, signboards, roads, and so on,
which are consisted of straight lines. Contrasting to the good
curves, bad curves are mainly consisted of three kinds of curves
identifying from the edge image. One kind isthe curves are both
curves either in the distorted image or in the ideal image which
means that the curves are still curves, not straight lines, in the
ideal images. And one kind is the short curves which might be
the curves generating from the lines due to the distortion but is
too short to be estimated accurately. Those curves have a
common feature that they are too short to be used to estimate the
distortion center and the distortion parameter. The last kind the
straight lines passing through the distortion center isstill straight
lines in the distorted images. The reason is that the distortion is
mainly radial distortion which makes the pixels move along the
radial direction. Therefore, the lines passing through the
distortion center are till straight lines either in the distortion
image or in the ideal image.

We proposed a non-iterative method to solve this problem
selecting out the good curves from all the curves that we extract
from the distortion image. And then, we use the good curves to
correct the distortion thus avoiding the impact of the bad curves.
Our contribution is to make the process fully automatic and
robust and it can eliminate the interference of those bad curves
very well. The results from the experiments on the synthetic and
real image show that the proposed method is simple and valid.

The organization of the remainder of this paper isasfollows:
Section 2 reviews how to estimate the distortion parameters of
the divison model and drives an invariant for those points of
those lines in the distorted image. Section 3 presents the details
of our method. We firstly describe the procedure to select the
possible circular arcs from the edge image and estimate their
three parameters. Secondly, we find good circular arc using the
invariant. Experiments on synthetic and real image are presented
in section 4. Section 5 we perform a direct comparison of our
method with that of Bukhari-Dailey method [11]. Finally, some
conclusions are drawn.

Il. ESTIMATE THE PARAMETER OF DIVISION MODEL AND
THE INVARIANT

In this section, we review the division model used in this
paper and show how to estimate the parameters of this model.
Then, we derive an invariant for the points on the curvesin the
distorted image.

A. Division model

The so-called division model, introduced by Fitzgibbon [4],
is

ry, = ——t—— (1)
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Where (x,, v,,) and (x4, y4) are the corresponding points of
the undistorted image and the distorted image respectively. r;,
and r,; are the Euclidean distances of the undistorted point the
distorted point to the distortion center (x,,v,) . A; is the
parameter of the model which present the radia distortion.

The advantage of the division model isthat it requires fewer
distortion parameters than the polynomial model [13 14] for the
case of severe distortion [10] and it can estimate the distortion
center at the sametime. For most cameras, many works [10 11]
showed that only the first order radial distortion parameter is
sufficient. It can be formulated as:

r, = —4 )
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And we can write it in the following form
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Where, 7 = x2 + y?

Another advantage of the division model is that we can easy
get the inverse of the single parameter division model. Hence,
the pixel coordinates of the distortion image pixels can be
presented by the pixel coordinates of the undistortion image
pixels. Thus, we can get all the pixel values of the undistortion
image using the inverseto find the pixel values of corresponding
coordinatesin the distortion image. Due to the computing results
of the pixel coordinate of the distortion image pixels are not
integers, we use simple bilinear interpolation in al of the
experiments reported on in this paper.

In order to invert the single-parameter division model [11],
we first square the (3) to obtain

2
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Where, ru2 = (xy — xo)z + O — yo)z
Simplifying the (4), we can get
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For the positive 14, , when the distortion is pincushion
distortion, given 0 < ;2 < ﬁ (5) has two positive real roots.

1

We use the smaller one. For negative 1,, when the distortion is
barrel distortion, given any 2 > 0, there are two real solution.
We use the positive one. Thus, r,; can be presented by 7. Then,

the image coordinates (x4, y;) can be obtained as the following
formula

.
Xqg = Xp t (T_Z)(xu — Xo)

Ya = Yo + (:—j)(yu ~Yo)



B. Estimating distortion parameters using the line points from
distorted image

Wang et a. [10] has demonstrated that the straight linesin
thereal world project to circular arcs under the single parameter
divison model. And Wang et a. use the slope-y-intercept
equation from of a line. Similarly, Bukhari and Dailey [11]
obtain the same conclusion using the general equation form of
aline. For its advantage, we use the general equation form of a
line. And it can be written as:

ax, + by, +c=0 @)

Using (3) and (7), we are easy to obtain the circle equation

x3+y2+Dxy+Ey, +F=0 (8)
Where
a
D—a'{'sz
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According to the relation of D, E, and F, we obtain the
following equation from (9)
x8 + 3 +Dxg + Eyy +F—2=10 (10)
Under (8), we can estimate a group of parameter (D, E, F)
by circle fitting method using points belonging to a “straight
line” which extracted from the distorted image. Consequently,
we can use three groups of parameter (D, E;, F;)i=123 tO
compute the coordinates (x,, y,) of the distorted center, that
is

(Dy = Dy)xg + (Ey — Ex)yo + (FL — F,) =0

(D; — D3)xo + (E; — E3)yo + (F, —F3) =0 (11)
(D3 = Dy)xo + (Es — Ey)yo + (F3 — F1) =0
Then we can obtain the radial distortion parameter
> = xd + y% + Dxo + Ey, +F (12)

C. Theinvariant for circular arcsin the distorted image

Let (x.,y.) and R, arethe center coordinates and radius of a
circle by fitting points which belong to a “straight line” extracted
from the distorted image. Using (8), we have
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Algorithm 1: Choosing good circle arcs and estimate parameters.

Input:
Arcsparametersset {(x.,y.);} andRLi =1,2,3, -, NumberOfArcs
[min, max] are the range of C,; and T is the interval for counting the
number of (""idth/2 , height/ 2) is theimage center
Output:
A, x,,y, arethedistortion parameters
Begin:
Compute the constant using Eq. (14) for all candidate circular arcs
|f NumberOfArcs > 3

Divide the [min, max] into equal intervals, each adjacent
interval overlaps half interval, and for each interval, count the
number of constant thosefall into theinterval. Find theinterval with
maximal constant values support. Then, compute the mean value or
mid-value of those constant astheideal valuedenoted as Cm. Chose
the circular arcs which constant values fall into the areg{Cm-
T/2,Cm+T/2] as good circular arcs

End
Estimate A, x,, y, using good circular arcs
End

After reformulating the equation (12), we obtain

1

1 (%0 — xc)z + (Yo — yc)z - Rg

(14)

From the equation (14), we can know that the difference of
square of Euclidian- distance of the center of the distorted image
and the center of the fitting circular arcs with square of radius of
the fitting circular arcs is an invariant to all the “straight lines”
in the distorted image. And we can use this invariant to find the
good circular arcs, which isvalid to eiminate the interference of
other curves.

IIl.  ROBUST ESTIMATION METHOD

In this section, we describe the details of our automatic and
robust method to correct the radial distortion using the single
parameter division model.

A. The main procedure of our method
To sum up, the whole process to remove the radial distortion
includes four steps and is presented as follows:

1. Extract image edges in the distorted image for detecting
circular arcs.

2. ldentify circular arcs from the image edges and estimate
their parameters for each arc, the coordinates of the circular arc
center and the circular arcs radius are included.

3. Find good circular arcs for computing the parameter of
radial distortion.

4. Compute the distortion parameter and correct the distorted
image using the single parameter division model.

For the first step, we employ the Canny Detector [15] to
extract the image edges and link adjacent edge pixels remaining
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Figure 1. Undistorted processes on the synthetic image. (a) The ideal
synthetic image with no distortion. (b) The synthetic image with distortion
parameter 4, = —1.0 x 107°. (c) The result of canny edge detection. (d)
The synthetic image with detected circular arcs. (€) The synthetic image
with detected good circular arcs. (f) Undistorted image of the synthetic
image. The size of theinterval is0.6.

contours [11]. And we discard those short contours and remain
the long ones for more reliable information they provide and
when fitting the short and therefore straight edgesin circles, the
estimated parameters are known to be unstable [16]. Hence, a
threshold is set. If the contours whose number of pixelsis less
than the threshold are discarded for they aretoo short to be used.
For the second step, a modified RANSAC method is used to
detect circular arcs not overlapping with other arcs in the same
contour that have more support [11]. The termination criterion
of the modified algorithm isthat to stop once the probability that
an arc of minimal length has not yet been found issmall. In order
to refine the estimated circle parameters, we use the Levenberg-
Marquardt (LM) iterative nonlinear |east squares method [17] to
estimate them. In the next step, we introduce a voting process to
filter the good circular arcs, which is presented in detail in the
flowing subsection. We can select out the good circle arcs from
the circular arcs that extracted from the distortion image in the
previous step. In the last step, (11) and (12) are used to compute
the distortion parameter and distortion center by using the circle
parameters which are found in the preceding step. And then, (6)
is used to get the undistortion image. Thus, we implement a
process of correcting distorted images automatically. Inorder to
get robust results, the third step is very important.

B. Choosing the good circular arcs

According to the (14), we can know that good circular arcs
have the same constant. Inversely, we can screen out the good
circular arcs by a voting process for the constant with maximal
support inspired by Hough transformation [18]. And the details
are presented in Algorithm 1. Due to the distortion center is
unknown, we use the image center to replace it in the algorithm
1 for that the distortion center is nearby of the image center in
most of distorted images [17]. Therefore, compute results have
deviation with the ideal value but till fall into a small range
nearby the ideal value, showed in Fig. 1. And we also conclude
from (14) that the ideal constant is reciprocal of the distortion
parameter. In redlity, the distortion parameter is very small,
generaly less than 0.00001, hence the constant is very large. So
we transform the constant into a special logarithm domain. The
transformation relation is presented as follows:

lg(c) if,c>0

Cy =10 if,c=0 (15)
—lg(—c) if,c<0

c =% (16)

Where c is the compute results of (14), and C;, isvaueinthe
speciad logarithm domain. And theregion —15 < (;, < 15 is
enough, that is[A| = 10715,

Figure 2. Undistorted processes on the real image. (8) The real distorted
image. (b)The result of canny edge detection of the real image. (c) The
result of liked contours. (d) The real image with detected circular arcs. (€)
The real image with detected good circular arcs. (f) Undistorted image of
thereal image. The size of the interval is 0.6.
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Figure 3. The distribution of the constant valuesin special logarithm space.
(a) Digribution of the constant values of the synthetic image. (b)
Distribution of the constant values of the real image.

IV. EXPERIMENTSAND RESULT

In this section, we present a detailed study of our method on
synthetic and real image data. We distort the same origina
image (see Fig. 1(a)) for al the synthetic images by using
particular ground truth values of the distortion parameters and
the division model. And the size of all the synthetic images is
640x480. The minimum length of the detected lines is 100
pixels.

A. Experiments on synthetic and real images

In order to test and verify our method, we performed
experiments on synthetic and real images. The synthetic image
with known distortion parameter A,,,, = —1.0 x 107% and
distortion center (320, 240) is shown in the Fig. 1(b). And Fig.
2(a) is a real image of 800x531 obtained from a publicly
available database [19].

The Fig. 1(c) is the canny detection result of the synthetic
image and in the Fig. 1(d), the detected curves are represented
by using adifferent color to identify them. The synthetic image
has sufficient “straight lines” which are the basis for correcting
the distortion. The Fig. 1(€) shows the results of the good arcs
which are selected out from the detected curves presented in the
Fig. 1(d). The correcting result of the synthetic image is
presented in the Fig. 1(f). It is obvioudy that the proposed
method can undistort the synthetic image very well.

Fig. 2 are the undistortion process of the rea image.
Similarly, the total process have five parts which are described
in detail in the previous chapter. The results of canny detection,
contours linking, identifying circular arcs and finding good
circular arcsare presented in the Fig. 2(b)-Fig. 2(e) respectively.
Fig. 2(f) that the proposed method also has a good correcting
result on the real image.

As observed in Fig. 3(a) the constant values are gathered
into asmall range, about two or threeintervals, whileinthe Fig.
3(b), most of the constant values are into asmall range but some
of them fall into other intervals. It ismainly because the circular
arcs detected from the synthetic image are al good ones, while
the circular arcs detected from the real image include the bad
ones, asexplained in Section 3. The constant val ues of good and
bad circular arcs are distributed into different intervals, hence
we are easy to separate them in the special logarithm space.

B. Theinfluence of the size of interval

As described in the proposed method, the special logarithm
is divided into equal size intervals and the number of constant
values are counted which fall into the sameinterval. Therefore,
the size of the interval has a significant impact on the good
circular arcs we selected. In this subsection, we discuss the
influence of the size of the interval on the synthetic and real
image. The size of the intervalsis set to 0.2, 0.4, 0.6, 0.8 and
1.0 respectively in the experiments. The synthetic image we use
is the distorted image of A, = —1.0 X 1076, showed in the
Fig.1(b). Andthereal imagewe useistheFig. 2(a). Theresults
of the experiments are presented in the Fig. 4.

Inthe Fig. 4, first row are distributions of the constant values
of the synthetic image under the different size of intervals and
the second row are the corresponding synthetic undistorted
images. From the third, we can know that the distribution of
congtant values are nearly the same concentrated into only a
small range, two or three intervals, which illustrates that the
assumption of the proposed method isright. The reason why the
size of the intervals has little influence on the synthetic image
isthat the circular arcs detecting from the image are very good.
Hence, correcting results in the second row are all good. Third
row: distribution of the constant values of the real image under
the different size of intervals. And the fourth row:
corresponding undistorted real images. From correcting results
in the fourth row, we can know that the results turn alittle bad
when the size of intervalsistoo big or too small. We can know
the reasons from the third row that the constants values fall into
more intervals when the size of the interval istoo small. So the
interval we use to select the good circular cannot include all the
good circular arcs we want. While the interval would contain
the bad ones when the size istoo big. From the results, the size



of the interval should not too big or too small and should be set
between 0.4 and 0.8. In additional experiments, we set the size
is0.6.

C. Experiments on iamge with varying distortion centers

In Algorithm 1 we compute the constant values using the
image center instead of the distortion center, hence we test our
method on synthetic images with different distortion center. In
the following experiment, to find the influence of the distortion
center, the centers of the synthetic images are: (320, 240), (290,
210), (260, 180) and (230, 150). And the distortion parameter is
Airye = —1.0 x 1076,

Theresultsare presented in Fig. 5. In the first row, from left
to right, distorted images with different centers are shown. The
second row illustrates the distribution of constant values of the
distorted images with different distortion center. As observed,
when the distance of distortion center with the image center is
greater, the distribution of the constant valuesis more scattered,
that is, the constant values are distributed in more intervals, but
the maximum is still in the same interval. Hence, the proposed
method is still suitable for the case that the distortion center is
not in the center of theimage. And the undistorted resultsin the
third also demonstrate that the distortion is good to eliminate.
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D. Experiments on image with different distortion parameter

In order to verify the performance of the proposed method,
we take a series experiments with varied distortion parameter
lambda. The distortion centers of the synthetic images fix at
(%0, ¥o) = (320, 240). And the distortion parameters A; are
respectively: —1.0x 107>, —1.0x107°, —1.0 x 1077 and
—-1.0 x 1078,

Fig. 6 shows some results of the experiments, first row are
the distorted images at different levels of lambda, second row
are the distributions of the constant values of the synthetic
images with different distortion parameter, and the third row are
corresponding undistorted images. From the row of the Fig. 6,
the absolute value of the distortion parameter is bigger. The
distortion is more serious. And in genera, the value of the
distortion parameter is till very small, even though the
distortion is very serious. When A =—-1.0x 1078 , the
distortion is very small which cannot be watched out with
human eyes. Hence, range of the specia logarithm, we set the
previous chapter, isenough. From the second row of Fig. 6, with
the varying of the distortion parameter, the distribution of the
constant values is different which are concentrated into
different intervals.
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Figure 4. Undistortion of synthetic image and real image in different size of interval. Each column presents the image with the same interval size, and the size
of intervalsare 0.2, 0.4, 0.6, 0.8 and 1.0. The first row and the second row are the results of the synthetic images, and the third row and the forth row are the
results of the real images. First row: distribution of the constant values of synthetic image under the different size of intervals. Second row: corresponding
undistorted synthetic images. Third row: distribution of the constant values of real image under the different size of intervals. And fourth row: corresponding

undistorted real images.
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Figure 5. Correcting synthetic images with different distortion center. Theimage size is 640x480 and the columns from Ieft to right the corresponding centers are:
(320,240), (290,210), (260,180) and (230,150). First row: distorted images with different distortion centers. Second row: the distribution of the constant values of
the corresponding distorted images. Third row: corresponding undistorted images.
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Figure 6. Undistortion of synthetic images with different distortion parameters. Image size is 640x480 and distortion center is (320,240). First row: distorted
images at different levels of lambda Second row: distribution of the constant values of the synthetic images with different distortion parameter. Third row:

corresponding undistorted images
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Figure 7. Lens distortion correction for areal image:(a) Original image, (b) detected candidate arcs, (c) choose the good arcs using the Bukhari-Dailey method,
(d) choose the good arcs using the proposed method, (€) undistorted image using the Bukhari-Dailey method, and (f) undistorted image using the proposed method.

When the distortion parameter is small, there are severa
constant values faling into other intervals which are far away
from the intervals most constant values concentrated. The
reason is that there is some bad circular arcs in the curves we
extracting from the edge image and the source of the bad

circular arcs are almost straight curves which parameter cannot
be estimated accurately. From correcting resultsin the third row,
we can know that the results of the small distortion images are
not aswell asthat of the serous ones. It mainly the reason isthat



the circular parameter cannot be estimated accurately for the
length of the curveisrelatively small with the full circle.

V. COMPARISON WITH BUKHERI-DAILEY METHOD

Fig. 7 presentstheresults of areal image with 422x311, from
apublicly available database, shown in Fig. 7(a). And Fig. 7(b)
shows the arcs detected results which are identified with
different colors. Fig. 7(c) presents the results of the good arcs
selected by the Bukhari-Dailey method, whereas Fig. 7(d)
presents the results of good arcs selected by the proposed the
bad circular arcs, while the proposed method can. For instance,
the curves of the window and door in the image are bad arcs
witch should be removed and the short curvesis also should be
eliminated. Fig. 7(e) and Fig. 7(f) are corresponding correcting

results. It is obvious that the proposed method gets a better
result when there are bad circular arcsin the distorted image.

Fig. 8 presentsthe results for another real image of 720x515,
from a publicly available database [20], which has many short
straight line in the distorted image, see Fig. 8(a) and Fig. 8(b).
The estimation results of distortion parameter in Fig. 8(c)
indicate that the varying of distortion parameter of the proposed
method is smaller. And the estimation location of distortion
centers of the proposed method is more concentrated than that
of the Bukhari-Dailey method. Hence, the proposed method is
more robust.

Table 1 shows some quantitative results which illustrate the
time costs for different number of arcs. Minimum pixel number
of arcs, average number of arcs and average CPU time for Fig.
8(a) are computed using the Bukhari-Dailey method and the

x10° compare varying lambda
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Figure 8. Compare the variation of distortion parameter in 10 runs:(a) Original image, (b) detected candidate arcs, (c)magnitude of lambda (the green line are
results of the proposed method while the red line are that of the Bukhari-Dailey method ). (d) location of distortion center(the green symbol “o” presented the
distortion center using the proposed method and the red symbol “+” are the distortion center using the Bukhari-Dailey method)



TABLEI.

Fig. 8(a) Minimum length of arcs 180 160 140 120 100 80

Average number of arcs 12.2 17.7 239 373 59 110.6
The Bukheri-Dailey

Average CPU time(MS) 1357.3 1835.5 34955 4480.3 4504.5 4691.9

Average number of arcs 11.2 184 232 37.9 61.8 109.4
The Proposed method

Average CPU time (MS) 7.3 7.6 7.8 10.9 15.2 19.8

proposed method respectively. Each test runs 10 times, and the [4 A. W. Fitzgibbon, “Simultaneous linear estimation of multiple view
CPU time includes selecting good circular arc and estimati ng geometry and lens distortion,” IEEE Computer Society Conference on

the distorti ot A b ed. it i bviously th Computer Vision and Pattern Recognition, VVol. 1, 2001, pp. I-25-1-32.
€ dislortion parameter. AS ObServed, 1t 1S obviousy the [5] R.Strand and E. Hayman, “Correcting Radial Distortion by Circle Fitting,”
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