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Abstract—It is a common problem, radial distortion of off-the-
shelf cameras, especially those low-cost ones and wide-angle ones. 
And the most direct method to judge whether radial distortion 
occurs in an image is the straightness of those lines in the image, 
for the straight line in the image should be straight in the ideal 
image under the pin-hole camera model. In this paper, we present 
a new line-based approach to eliminate the radial distortion which 
makes the line distorted in the image. It is based on the fact the 
straight lines in the real world project to circular arcs under the 
single parameter division model. Compared with those former 
line-based methods, the method in this paper work well and be 
easy to find the good circular arcs, which is valid to eliminate the 
interference of other curves. Experiments are provided for both 
synthetic and real images and the results show that our method 
can remove the radial distortion from images validly and robustly. 

Keywords-radial distortion; division model; circle fitting; good 
circular arcs; 

I. INTRODUCTION 

An ideal pin-hole camera model is used by most computer 
vision algorithms, for example, 3D reconstruction, quantitative 
measurement, recognition and tracking of objects, etc. Its basic 
assumption is that the 3D straight lines mapping into the image 
plane are still straight lines. However, in reality small or large 
amounts of distortion are introduced by most lenses, which bend 
straight lines in the real world into curves. This may introduce 
severe problems in the preceding vision algorithms, which 
making distortion correction is a must. 

The imperfection of the lens and the misalignment of the 
optical system lead to the distortion. And radial distortion is one 
of kinds of distortion, but it is considered as the predominate one 
among all possible lens distortion [1 2]. The lens introduces 
barrel distortion at short focal lengths while it introduces 
pincushion distortion at longer focal lengths. The polynomial 
model presented by D.C. Brown [3] has been widely applied for 
an excellent trade of between complexity and accuracy.  Another 
model widely used lately is the division model presented by 

Fitzgibbon [4]. And the single-parameter radial distortion model 
is enough for most lenses and any more elaborated modeling 
would not help, but also would cause numerical instability [1]. 

In general, methods for correcting radial distortion can be 
divided into three categories [5 6]. The first method is multiple 
view auto-calibration [4 7 8]. No knowledge of the scene and no 
special pattern is required, but it is not suitable for the distorted 
image from an unknown source. The second one is point 
correspondence [1 9]. They identify image points using a known 
pattern and estimate the distortion parameters as part of the 
internal parameters of the camera. Hence the results are highly 
reliable and accurate, but it needs to get multiple images from 
different views. The last one is plumb-line based method [5 10 
11], which assumes straight lines in the real world should be still 
straight on the image plane. The biggest advantage is that it can 
correct the distortion only using one image, while the 
disadvantage is that it needs sufficient lines in the image scene. 

What we most expect to the correcting method is easy to 
remove the distortion automatic and robust from one unknown 
source image, which is simple and does not need special pattern. 
Therefore, plumb-based method is the only choice, which can 
satisfy all the demands. And Wang et al. [10] provides a simple 
method using the single-parameter division model under the 
principle that a straight line in the distorted image is a circular 
arc. The biggest advantage of Wang’s method is that it can 
estimate the distortion center and the parameter of the single-
parameter divide model simultaneously. And another advantage 
of Wang’s method is that it can estimate the distortion center and 
the distortion parameter of the division model only using few 
straight lines. In principle, three straight lines are enough for 
computing the distortion center and distortion parameter, and if 
the distortion center is the image center, it just needs one or two 
straight lines. Hence, Wang’s method can avoid other plumb-
line based disadvantage which needs sufficient lines in the image 
scene. However, Wang’s method is not an automatic one that it 
requires to extract the straight lines manually and the correction 
results are not robust which vary with the different straight lines.  

Then, Bukhari and Dailey proposes an automatic method 
based on Wang’s method which can extract the straight lines 
automatically and it uses as more straight lines as possible. 
However, the correcting results are still not robust. And the 
reason is that they do not solve the problem, selecting out good 
circular arcs from the curves detected from the distorted image. 
These line-based methods depend on extraction of long, 
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smoothly curved edges and get thrown easily if a portion of such 
curves originate from non-linear scene structures [12]. 

Therefore, in this paper, we analyze all the curves which 
appear in the distortion images and classify the curve into two 
kinds, good curves and bad curves. Good curves are the curves 
projected by the long straight line of the real world, which is 
crucial to correct the distorted images in the line based methods, 
especially those automatic ones. Good curves are the edges of 
the artificial objects, e.g., buildings, signboards, roads, and so on, 
which are consisted of straight lines. Contrasting to the good 
curves, bad curves are mainly consisted of three kinds of curves 
identifying from the edge image. One kind is the curves are both 
curves either in the distorted image or in the ideal image which 
means that the curves are still curves, not straight lines, in the 
ideal images. And one kind is the short curves which might be 
the curves generating from the lines due to the distortion but is 
too short to be estimated accurately. Those curves have a 
common feature that they are too short to be used to estimate the 
distortion center and the distortion parameter. The last kind the 
straight lines passing through the distortion center is still straight 
lines in the distorted images. The reason is that the distortion is 
mainly radial distortion which makes the pixels move along the 
radial direction. Therefore, the lines passing through the 
distortion center are still straight lines either in the distortion 
image or in the ideal image.  

We proposed a non-iterative method to solve this problem 
selecting out the good curves from all the curves that we extract 
from the distortion image. And then, we use the good curves to 
correct the distortion thus avoiding the impact of the bad curves. 
Our contribution is to make the process fully automatic and 
robust and it can eliminate the interference of those bad curves 
very well. The results from the experiments on the synthetic and 
real image show that the proposed method is simple and valid.  

The organization of the remainder of this paper is as follows: 
Section 2 reviews how to estimate the distortion parameters of 
the division model and drives an invariant for those points of 
those lines in the distorted image. Section 3 presents the details 
of our method. We firstly describe the procedure to select the 
possible circular arcs from the edge image and estimate their 
three parameters. Secondly, we find good circular arc using the 
invariant. Experiments on synthetic and real image are presented 
in section 4. Section 5 we perform a direct comparison of our 
method with that of Bukhari-Dailey method [11]. Finally, some 
conclusions are drawn. 

II. ESTIMATE THE PARAMETER OF DIVISION MODEL AND 

THE INVARIANT 

In this section, we review the division model used in this 
paper and show how to estimate the parameters of this model. 
Then, we derive an invariant for the points on the curves in the 
distorted image. 

A. Division model 

The so-called division model, introduced by Fitzgibbon [4], 
is 

 r𝑢 =
𝑟𝑑

1+𝜆1𝑟𝑑
2+𝜆2𝑟𝑑

4+⋯
 

Where (𝑥𝑢 , 𝑦𝑢) and (𝑥𝑑 , 𝑦𝑑) are the corresponding points of 
the undistorted image and the distorted image respectively. 𝑟𝑢 
and 𝑟𝑑 are the Euclidean distances of the undistorted point the 
distorted point to the distortion center (𝑥0, 𝑦0) . 𝜆𝑖  is the 
parameter of the model which present the radial distortion. 

The advantage of the division model is that it requires fewer 
distortion parameters than the polynomial model [13 14] for the 
case of severe distortion [10] and it can estimate the distortion 
center at the same time.  For most cameras, many works [10 11] 
showed that only the first order radial distortion parameter is 
sufficient. It can be formulated as: 

 r𝑢 =
𝑟𝑑

1+𝜆1𝑟𝑑
2 

And we can write it in the following form 



𝑥𝑢 = 𝑥0 +
𝑥𝑑−𝑥0

1+𝜆1𝑟𝑑
2

𝑦𝑢 = 𝑦0 +
𝑦𝑑−𝑦0

1+𝜆1𝑟𝑑
2

 

Where, 𝑟𝑑
2 = 𝑥𝑑

2 + 𝑦𝑑
2 

      Another advantage of the division model is that we can easy 
get the inverse of the single parameter division model. Hence, 
the pixel coordinates of the distortion image pixels can be 
presented by the pixel coordinates of the undistortion image 
pixels. Thus, we can get all the pixel values of the undistortion 
image using the inverse to find the pixel values of corresponding 
coordinates in the distortion image. Due to the computing results 
of the pixel coordinate of the distortion image pixels are not 
integers, we use simple bilinear interpolation in all of the 
experiments reported on in this paper.  

In order to invert the single-parameter division model [11], 
we first square the (3) to obtain  

 𝑟𝑢
2 =

𝑟𝑑
2

(1+𝜆1𝑟𝑑
2)2 

       Where, 𝑟𝑢
2 = (𝑥𝑢 − 𝑥0)2 + (𝑦𝑢 − 𝑦0)2 

        Simplifying the (4), we can get  

 𝑟𝑑
2 −

1

𝜆1𝑟𝑢
𝑟𝑑 +

1

𝜆1
= 0 

       For the positive 𝜆1 , when the distortion is pincushion 

distortion, given 0 < 𝑟𝑢
2 <

1

4𝜆1
, (5) has two positive real roots. 

We use the smaller one. For negative 𝜆1, when the distortion is 
barrel distortion, given any  𝑟𝑢

2 > 0, there are two real solution. 
We use the positive one. Thus, 𝑟𝑑 can be presented by 𝑟𝑢. Then, 
the image coordinates (𝑥𝑑 , 𝑦𝑑) can be obtained as the following 
formula 


𝑥𝑑 = 𝑥0 + (

𝑟𝑑

𝑟𝑢
)(𝑥𝑢 − 𝑥0)

𝑦𝑑 = 𝑦0 + (
𝑟𝑑

𝑟𝑢
)(𝑦𝑢 − 𝑦0)

 



B. Estimating distortion parameters using the line points from 
distorted image 

Wang et al. [10] has demonstrated that the straight lines in 
the real world project to circular arcs under the single parameter 
division model. And Wang et al. use the slope-y-intercept 
equation from of a line. Similarly, Bukhari and Dailey [11] 
obtain the same conclusion using the general equation form of 
a line. For its advantage, we use the general equation form of a 
line. And it can be written as: 

 𝑎𝑥𝑢 + 𝑏𝑦𝑢 + c = 0 

Using (3) and (7), we are easy to obtain the circle equation 

 𝑥𝑑
2 + 𝑦𝑑

2 + 𝐷𝑥𝑑 + 𝐸𝑦𝑑 + F = 0 

Where 



D =
𝑎

𝑐𝜆
+ 2𝑥0

𝐸 =
𝑏

𝑐𝜆
+ 2𝑦0

F = 𝑥𝑑
2 + 𝑦𝑑

2 −
𝑎

𝑐𝜆
𝑥0 −

𝑏

𝑐𝜆
𝑦0 +

1

𝜆

 

 
According to the relation of D, E, and F, we obtain the 

following equation from (9) 

 𝑥0
2 + 𝑦0

2 + 𝐷𝑥0 + 𝐸𝑦0 + F −
1

𝜆
= 0 

Under (8), we can estimate a group of parameter (𝐷, 𝐸, 𝐹) 
by circle fitting method using points belonging to a “straight 

line” which extracted from the distorted image. Consequently, 

we can use three groups of parameter (𝐷𝑖 , 𝐸𝑖 , 𝐹𝑖)𝑖=1,2,3  to 
compute the coordinates (𝑥0, 𝑦0) of the distorted center, that 
is 



(𝐷1 − 𝐷2)𝑥0 + (𝐸1 − 𝐸2)𝑦0 + (𝐹1 − 𝐹2) = 0

(𝐷2 − 𝐷3)𝑥0 + (𝐸2 − 𝐸3)𝑦0 + (𝐹2 − 𝐹3) = 0
(𝐷3 − 𝐷1)𝑥0 + (𝐸3 − 𝐸1)𝑦0 + (𝐹3 − 𝐹1) = 0

 

Then we can obtain the radial distortion parameter 


1

𝜆
= 𝑥0

2 + 𝑦0
2 + 𝐷𝑥0 + 𝐸𝑦0 + F 

C. The invariant for circular arcs in the distorted image 

Let (𝑥𝑐 , 𝑦𝑐) and 𝑅𝑐 are the center coordinates and radius of a 
circle by fitting points which belong to a “straight line” extracted 
from the distorted image. Using (8), we have 



𝑥𝑐 = −
𝐷

2

𝑦𝑐 = −
𝐸

2

𝑅𝑐 = √
𝐷2+𝐸2+4𝐹

4

 

After reformulating the equation (12), we obtain 


1

𝜆
= (𝑥0 − 𝑥𝑐)2 + (𝑦0 − 𝑦𝑐)2 − 𝑅𝑐

2 

From the equation (14), we can know that the difference of 
square of Euclidian- distance of the center of the distorted image 
and the center of the fitting circular arcs with square of radius of 
the fitting circular arcs is an invariant to all the “straight lines” 
in the distorted image. And we can use this invariant to find the 
good circular arcs, which is valid to eliminate the interference of 
other curves.  

III. ROBUST ESTIMATION METHOD 

In this section, we describe the details of our automatic and 
robust method to correct the radial distortion using the single 
parameter division model. 

A. The main procedure of our method 

To sum up, the whole process to remove the radial distortion 
includes four steps and is presented as follows: 

1. Extract image edges in the distorted image for detecting 
circular arcs. 

2. Identify circular arcs from the image edges and estimate 
their parameters for each arc, the coordinates of the circular arc 
center and the circular arcs radius are included. 

3. Find good circular arcs for computing the parameter of 
radial distortion. 

4. Compute the distortion parameter and correct the distorted 
image using the single parameter division model. 

For the first step, we employ the Canny Detector [15] to 
extract the image edges and link adjacent edge pixels remaining 

Algorithm 1: Choosing good circle arcs and estimate parameters. 

Input:  

Arcs parameters set {(𝐱𝐜, 𝐲𝐜)𝒊} and 𝐑𝐜
𝐢  𝐢 = 𝟏, 𝟐, 𝟑, ⋯ , 𝐍𝐮𝐦𝐛𝐞𝐫𝐎𝐟𝐀𝐫𝐜𝐬 

[min, max] are the range of 𝐂𝐥𝐠 and T is the interval for counting the 

number of (𝐰𝐢𝐝𝐭𝐡
𝟐⁄ ,

𝐡𝐞𝐢𝐠𝐡𝐭
𝟐⁄ ) is the image center 

Output:    

𝛌, 𝒙𝟎, 𝐲𝟎 are the distortion parameters 

Begin: 

Compute the constant using Eq. (14) for all candidate circular arcs 

If 𝐍𝐮𝐦𝐛𝐞𝐫𝐎𝐟𝐀𝐫𝐜𝐬 ≥ 𝟑 

Divide the [min, max] into equal intervals, each adjacent 
interval overlaps half interval, and for each interval, count the 
number of constant those fall into the interval. Find the interval with 
maximal constant values support. Then, compute the mean value or 
mid-value of those constant as the ideal value denoted as Cm. Chose 
the circular arcs which constant values fall into the area[Cm-
T/2,Cm+T/2] as good circular arcs 

End 

Estimate 𝛌, 𝒙𝟎, 𝐲𝟎 using good circular arcs 

End 

 

 



contours [11]. And we discard those short contours and remain 
the long ones for more reliable information they provide and 
when fitting the short and therefore straight edges in circles, the 
estimated parameters are known to be unstable [16]. Hence, a 
threshold is set. If the contours whose number of pixels is less 
than the threshold are discarded for they are too short to be used. 
For the second step, a modified RANSAC method is used to 
detect circular arcs not overlapping with other arcs in the same 
contour that have more support [11]. The termination criterion 
of the modified algorithm is that to stop once the probability that 
an arc of minimal length has not yet been found is small. In order 
to refine the estimated circle parameters, we use the Levenberg-
Marquardt (LM) iterative nonlinear least squares method [17] to 
estimate them. In the next step, we introduce a voting process to 
filter the good circular arcs, which is presented in detail in the 
flowing subsection. We can select out the good circle arcs from 
the circular arcs that extracted from the distortion image in the 
previous step. In the last step, (11) and (12) are used to compute 
the distortion parameter and distortion center by using the circle 
parameters which are found in the preceding step. And then, (6) 
is used to get the undistortion image. Thus, we implement a 
process of correcting distorted images automatically.  In order to 
get robust results, the third step is very important. 

B. Choosing the good circular arcs 

According to the (14), we can know that good circular arcs 
have the same constant. Inversely, we can screen out the good 
circular arcs by a voting process for the constant with maximal 
support inspired by Hough transformation [18]. And the details 
are presented in Algorithm 1. Due to the distortion center is 
unknown, we use the image center to replace it in the algorithm 
1 for that the distortion center is nearby of the image center in 
most of distorted images [17]. Therefore, compute results have 
deviation with the ideal value but still fall into a small range 
nearby the ideal value, showed in Fig. 1. And we also conclude 
from (14) that the ideal constant is reciprocal of the distortion 
parameter. In reality, the distortion parameter is very small, 
generally less than 0.00001, hence the constant is very large. So 
we transform the constant into a special logarithm domain. The 
transformation relation is presented as follows: 

 𝐶𝑙𝑔 = {

lg(𝑐)               𝑖𝑓, 𝑐 > 0
0                     𝑖𝑓, 𝑐 = 0

− lg(−𝑐)      𝑖𝑓, 𝑐 < 0
 

 c =
1

𝜆
 

Where c is the compute results of (14), and  𝐶𝑙𝑔  is value in the 
special logarithm domain. And the region −15 ≤ 𝐶𝑙𝑔 ≤ 15      is 
enough, that is |λ| ≥ 10−15. 

 
(a)                                        (b) 

 
(c)                                       (d) 

 
(e)                                       (f) 

Figure 1. Undistorted processes on the synthetic image. (a) The ideal 
synthetic image with no distortion. (b) The synthetic image with distortion 
parameter 𝜆𝑡𝑟𝑢𝑒 = −1.0 × 10−6. (c) The result of canny edge detection. (d) 
The synthetic image with detected circular arcs. (e) The synthetic image 
with detected good circular arcs. (f) Undistorted image of the synthetic 
image. The size of the interval is 0.6.  

(a)                                        (b) 

 
(c)                                        (d) 

 
(e)                                        (f) 

Figure 2. Undistorted processes on the real image. (a) The real distorted 
image. (b)The result of canny edge detection of the real image. (c) The 
result of liked contours. (d) The real image with detected circular arcs. (e) 
The real image with detected good circular arcs. (f) Undistorted image of 
the real image. The size of the interval is 0.6. 



IV. EXPERIMENTS AND RESULT 

In this section, we present a detailed study of our method on 
synthetic and real image data. We distort the same original 
image (see Fig. 1(a)) for all the synthetic images by using 
particular ground truth values of the distortion parameters and 
the division model. And the size of all the synthetic images is 
640x480. The minimum length of the detected lines is 100 
pixels.  

A. Experiments on synthetic and real images 

In order to test and verify our method, we performed 
experiments on synthetic and real images. The synthetic image 
with known distortion parameter 𝜆𝑡𝑟𝑢𝑒 = −1.0 × 10−6  and 
distortion center (320, 240) is shown in the Fig. 1(b). And Fig. 
2(a) is a real image of 800x531 obtained from a publicly 
available database [19]. 

The Fig. 1(c) is the canny detection result of the synthetic 
image and in the Fig. 1(d), the detected curves are represented 
by using a different color to identify them. The synthetic image 
has sufficient “straight lines” which are the basis for correcting 

the distortion. The Fig. 1(e) shows the results of the good arcs 
which are selected out from the detected curves presented in the 
Fig. 1(d). The correcting result of the synthetic image is 
presented in the Fig. 1(f). It is obviously that the proposed 
method can undistort the synthetic image very well. 

Fig. 2 are the undistortion process of the real image. 
Similarly, the total process have five parts which are described 
in detail in the previous chapter. The results of canny detection, 
contours linking, identifying circular arcs and finding good 
circular arcs are presented in the Fig. 2(b)-Fig. 2(e) respectively. 
Fig. 2(f) that the proposed method also has a good correcting 
result on the real image.  

As observed in Fig. 3(a) the constant values are gathered 
into a small range, about two or three intervals, while in the Fig. 
3(b), most of the constant values are into a small range but some 
of them fall into other intervals. It is mainly because the circular 
arcs detected from the synthetic image are all good ones, while 
the circular arcs detected from the real image include the bad 
ones, as explained in Section 3. The constant values of good and 
bad circular arcs are distributed into different intervals, hence 
we are easy to separate them in the special logarithm space.  

B. The influence of the size of interval 

As described in the proposed method, the special logarithm 
is divided into equal size intervals and the number of constant 
values are counted which fall into the same interval. Therefore, 
the size of the interval has a significant impact on the good 
circular arcs we selected. In this subsection, we discuss the 
influence of the size of the interval on the synthetic and real 
image. The size of the intervals is set to 0.2, 0.4, 0.6, 0.8 and 
1.0 respectively in the experiments. The synthetic image we use 
is the distorted image of 𝜆𝑡𝑟𝑢𝑒 = −1.0 × 10−6, showed in the 
Fig.1 (b). And the real image we use is the Fig. 2(a). The results 
of the experiments are presented in the Fig. 4.  

In the Fig. 4, first row are distributions of the constant values 
of the synthetic image under the different size of intervals and 
the second row are the corresponding synthetic undistorted 
images. From the third, we can know that the distribution of 
constant values are nearly the same concentrated into only a 
small range, two or three intervals, which illustrates that the 
assumption of the proposed method is right. The reason why the 
size of the intervals has little influence on the synthetic image 
is that the circular arcs detecting from the image are very good. 
Hence, correcting results in the second row are all good. Third 
row: distribution of the constant values of the real image under 
the different size of intervals. And the fourth row: 
corresponding undistorted real images. From correcting results 
in the fourth row, we can know that the results turn a little bad 
when the size of intervals is too big or too small. We can know 
the reasons from the third row that the constants values fall into 
more intervals when the size of the interval is too small. So the 
interval we use to select the good circular cannot include all the 
good circular arcs we want. While the interval would contain 
the bad ones when the size is too big. From the results, the size 

 

                                                                (a) 

 

(b) 

Figure 3. The distribution of the constant values in special logarithm space. 
(a) Distribution of the constant values of the synthetic image. (b) 
Distribution of the constant values of the real image.  
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of the interval should not too big or too small and should be set 
between 0.4 and 0.8. In additional experiments, we set the size 
is 0.6. 

C. Experiments on iamge with varying distortion centers 

In Algorithm 1 we compute the constant values using the 
image center instead of the distortion center, hence we test our 
method on synthetic images with different distortion center. In 
the following experiment, to find the influence of the distortion 
center, the centers of the synthetic images are: (320, 240), (290, 
210), (260, 180) and (230, 150). And the distortion parameter is        
𝜆𝑡𝑟𝑢𝑒 = −1.0 × 10−6. 
      The results are presented in Fig. 5. In the first row, from left 
to right, distorted images with different centers are shown. The 
second row illustrates the distribution of constant values of the 
distorted images with different distortion center. As observed, 
when the distance of distortion center with the image center is 
greater, the distribution of the constant values is more scattered, 
that is, the constant values are distributed in more intervals, but 
the maximum is still in the same interval. Hence, the proposed 
method is still suitable for the case that the distortion center is 
not in the center of the image. And the undistorted results in the 
third also demonstrate that the distortion is good to eliminate. 

D. Experiments on image with different distortion parameter 

In order to verify the performance of the proposed method, 
we take a series experiments with varied distortion parameter 
lambda. The distortion centers of the synthetic images fix at 
(𝑥0, 𝑦0) = (320, 240) . And the distortion parameters 𝜆𝑖  are 
respectively: −1.0 × 10−5 , −1.0 × 10−6 , −1.0 × 10−7  and 
−1.0 × 10−8.  

Fig. 6 shows some results of the experiments, first row are 
the distorted images at different levels of lambda, second row 
are the distributions of the constant values of the synthetic 
images with different distortion parameter, and the third row are 
corresponding undistorted images. From the row of the Fig. 6, 
the absolute value of the distortion parameter is bigger. The 
distortion is more serious. And in general, the value of the 
distortion parameter is still very small, even though the 
distortion is very serious. When λ = −1.0 × 10−8 , the 
distortion is very small which cannot be watched out with 
human eyes. Hence, range of the special logarithm, we set the 
previous chapter, is enough. From the second row of Fig. 6, with 
the varying of the distortion parameter, the distribution of the 
constant values is different which are concentrated into 
different intervals.  

 

 

 

 

 

Figure 4. Undistortion of synthetic image and real image in different size of interval. Each column presents the image with the same interval size, and the size 
of intervals are 0.2, 0.4, 0.6, 0.8 and 1.0. The first row and the second row are the results of the synthetic images,  and the third row and the forth row are the 
results of the real images. First row: distribution of the constant values of synthetic image under the different size of intervals. Second row: corresponding 
undistorted synthetic images. Third row: distribution of the constant values of real image under the different size of intervals. And fourth row: corresponding 
undistorted real images. 

 



 

 

 

 
Figure 5. Correcting synthetic images with different distortion center. The image size is 640x480 and the columns from left to right the corresponding centers are: 
(320,240), (290,210), (260,180) and (230,150). First row: distorted images with different distortion centers. Second row: the distribution of the constant values of 
the corresponding distorted images. Third row: corresponding undistorted images. 

 

 

 

 

 
Figure 6. Undistortion of synthetic images with different distortion parameters. Image size is 640x480 and distortion center is (320,240). First row: distorted 
images at different levels of lambda. Second row: distribution of the constant values of the synthetic images with different distortion parameter. Third row: 
corresponding undistorted images 
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When the distortion parameter is small, there are several 
constant values falling into other intervals which are far away 
from the intervals most constant values concentrated.  The 
reason is that there is some bad circular arcs in the curves we 
extracting from the edge image and the source of the bad 

circular arcs are almost straight curves which parameter cannot 
be estimated accurately. From correcting results in the third row, 
we can know that the results of the small distortion images are 
not as well as that of the serous ones. It mainly the reason is that 

 

(a)                                                                                   (b) 

 

(c)                                                                                  (d) 

 

(e)                                                                              (f) 

Figure 7. Lens distortion correction for a real image:(a) Original image, (b) detected candidate arcs, (c) choose the good arcs using the Bukhari-Dailey method, 
(d) choose the good arcs using the proposed method, (e) undistorted image using the Bukhari-Dailey method, and (f) undistorted image using the proposed method. 



the circular parameter cannot be estimated accurately for the 
length of the curve is relatively small with the full circle.  

V. COMPARISON WITH BUKHERI-DAILEY METHOD 

     Fig. 7 presents the results of a real image with 422x311, from 
a publicly available database, shown in Fig. 7(a). And Fig. 7(b) 
shows the arcs detected results which are identified with 
different colors. Fig. 7(c) presents the results of the good arcs 
selected by the Bukhari-Dailey method, whereas Fig. 7(d) 
presents the results of good arcs selected by the proposed the 
bad circular arcs, while the proposed method can. For instance, 
the curves of the window and door in the image are bad arcs 
witch should be removed and the short curves is also should be 
eliminated. Fig. 7(e) and Fig. 7(f) are corresponding correcting 

results. It is obvious that the proposed method gets a better 
result when there are bad circular arcs in the distorted image.  
     Fig. 8 presents the results for another real image of 720x515, 
from a publicly available database [20], which has many short 
straight line in the distorted image, see Fig. 8(a) and Fig. 8(b). 
The estimation results of distortion parameter in Fig. 8(c) 
indicate that the varying of distortion parameter of the proposed 
method is smaller. And the estimation location of distortion 
centers of the proposed method is more concentrated than that 
of the Bukhari-Dailey method. Hence, the proposed method is 
more robust.  

Table 1 shows some quantitative results which illustrate the 
time costs for different number of arcs. Minimum pixel number 
of arcs, average number of arcs and average CPU time for Fig. 
8(a) are computed using the Bukhari-Dailey method and the 
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Figure 8. Compare the variation of distortion parameter in 10 runs:(a) Original image, (b) detected candidate arcs, (c)magnitude of lambda (the green line are 
results of the proposed method while the red line are that of the Bukhari-Dailey method ). (d) location of distortion center(the green symbol “o” presented the 
distortion center using the proposed method and the red symbol “+” are the distortion center using the Bukhari-Dailey method) 
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proposed method respectively. Each test runs 10 times, and the 
CPU time includes selecting good circular arc and estimating 
the distortion parameter. As observed, it is obviously the 
proposed method just takes a little time which is far less than 
that of the Bukhari-Dailey method. It is primarily because the 
proposed method is simple and non-iterative, while the 
Bukhari-Dailey method requires an iterative process. With 
increasing number of the circular arcs, the time costs of the pro 
posed method increases but are still very small, while that of   
Bukhari-Dailey method increases fast. The proposed method of 
choosing good circular arcs is faster than that of the Bukhari-
Dailey.  

VI. CONCLUSION 

In this paper, a method to identify good circular arcs from 
the detected distorted curves which are vital to line-based 
method of estimation of distortion parameters, especially the 
fully automatic ones. It is based on that the constant values are 
the same for all the good circular arcs. The algorithm is simple, 
robust and non-iterative. Once good circular arcs are 
determined, the parameters of distortion can be estimated 
accurately. Therefore, the proposed method recognizing the 
good circular arcs and only using the good circular arcs to 
correct the radial distortion can eliminate the interference of the 
bad curves. We have presented a variety of experiments on 
synthetic and real images which show that the proposed method 
allows removing the radial distortion automatically and 
robustly.  
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TABLE I.   
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The Proposed method 

                                                   
Average number of arcs 
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