
Visually Mapping Requirements Models to Cloud Services

Shaun Shei, Aidan Delaney, Stelios Kapetanakis and Haralambos Mouratidis

Abstract

We extend an existing visual language for require-
ments modelling to model the requirements of cloud ser-
vices. To achieve this we demonstrate how candidate
cloud services can be identified from existing visual re-
quirements models. We further extend the meta-model
of the visual language to include cloud requirements
in order to migrate our candidate service to a cloud
provider.

1 Introduction

Cloud computing allows the provision of a wide
range of services through the abstraction of physical
and virtual resources. This offers seemingly unlimited
scalability, availability, flexibility and dynamic provi-
sioning through a pay-per-use model. However, some
organisations are still hesitant to fully commit to this
technology due to negative publicity regarding data-
breaches [1, 2], security leaks [3] as well as interop-
erability and compatibility issues when migrating to-
wards cloud environments [4, 5, 6]. Cloud comput-
ing is built upon and extends several established con-
cepts and technologies such as Service-Oriented Archi-
tecture (SOA), distributed computing and virtualiza-
tion. Moreover, through extension of existing tech-
nologies we also inherit the security issues and vulner-
abilities of each [7]. This creates a complicated sce-
nario where we need to consider security from multi-
ple perspectives. One method for tackling this prob-
lem is to adopt an agent oriented software engineering
approach [8], where the focus is placed on analysing
components and properties to elicit requirements for a
software system. There is currently a lack of standard-
ised modelling languages and approaches to holistically
capture cloud computing environments in the context
of software security. The existing notations capture as-
pects of different service models such as Software-as-a-
Service [6], Platform-as-a-Service [9] or Infrastructure-
as-a-Service [10]. There is a lack of a holistic modelling
language that captures both the customer requirements

and cloud services corresponds to the need for secure
software systems in the industry [11]. Security is a
concept that is often tacked on after the design and
deployment of software systems, where security mech-
anisms are introduced in response to vulnerabilities as
they appear. Security-by-design is a branch within re-
cent research efforts [12], where the goal is to obtain a
clear understanding of security issues early in the soft-
ware development process. The Secure Tropos method-
ology provides a modelling language that represents
security requirements through security constraints, al-
lowing developers to model software systems and its
organizational environment using actors, goals and re-
lational links such as dependencies. The contributions
presented in this paper are as follows:

• We define a pattern for service identification based
on grouping a goal, plans and resources in software
systems.

• We then model an initial description of properties
required by services when migrated to cloud envi-
ronments.

The rest of this paper is organized as follows. In sec-
tion 2 we present an overview of the the Secure Tropos
visual language. In section 3 we provide a standard def-
inition of a software service and demonstrate how such
services can be identified from a Secure Tropos require-
ments model. Section 4 extends the meta-model for
Secure Tropos to incorporate cloud computing require-
ments as identified from the literature and describes
how to adapt the identification of services towards a
cloud environment. Finally, in section 5 we present
our conclusion and future work.

2 Secure Tropos Notation

Secure Tropos is a requirements engineering
methodology aimed at fully capturing the properties of
software systems and the organizational environment,
focusing on modelling security [13]. The language ex-
tends the concepts of (social) actor, goal, task, resource
and social dependency from the i* modelling language

DOI reference number: 10.18293/DMS2015-015



and redefining existing concepts introduced in the Tro-
pos language and development process [14]. The Se-
cure Tropos methodology closely follows the software
development life-cycle with emphasis on security and
privacy requirements, allowing the developer to incre-
mentally create and refine models of the system-to-be
during the analysis and design stage.

The Secure Tropos notation is fully defined in [13].
Here we present an outline of the subset of the notation
used in this paper. The concrete notation is presented
within views, where each view denotes a specific phase
of activity in the modelling process. We now discuss
Secure Tropos Views.

2.1 Organisational View

The diagram in Figure 1 illustrates the main nodes
of an organisational view of Secure Tropos. It depicts
a node-link diagram enclosed in a bounding rectangle.
The nodes in the node-link diagram vary in shape ac-
cording to the type of Secure Tropos element that they
depict. The links similarly vary.

The circular node depicts an actor. An actor can
be a physical or abstract manifestation, with strategic
goals and intentions. An example actor labelled “Lec-
turer” can be seen in Figure 1.

The semi-oval node depicts a goal. Goals repre-
sent an actors strategic interests, which can be decom-
posed into sub-goals and combined using Boolean op-
erations. An example goal labelled “Get student aca-
demic achievements” can be seen in Figure 1. Goals
are linked through a Dependency link, depicted by one
semi-circles on each side of the goal element.

A Dependency link indicates that an actor depends
on another actor in order to achieve some goal/plan or
to obtain a resource, where the direction the semi-circle
is pointing towards denotes the dependee. An example
dependency link can be found linking the goal “Get
student academic achievements” with the actor “Uni-
versity of Brighton” who depends on the actor “Lec-
turer” to achieve the goal.

Security Constraints are depicted by the octagon
node. Security constraints define security requirements
through a set of restrictions that limit the way goals
can be carried out. An example of a security constraint
“Keep account access secure” can be found from the
actor “Lecturer” to the goal “Access student records”.

2.2 Security Requirements View

The diagram in Figure 2 illustrates the security re-
quirements view, which provides a detailed analysis of
the organisational view. This view depicts a node-link

diagram enclosed in a bounding circle, defined by an
actor that is delegated as the solution “system”. Sev-
eral new elements are introduced in this view.

The elongated hexagon node depicts a Plan. A plan
specifies the details and conditions under which a goal
or measure is operationalised. “Lecturer fill in form”
is an example of a plan.

The rectangle node depicts a Resource. Resources
represent a physical or virtual entity. Resources can
be linked to goals using a Requires link. An example
of a resource is “Lecturer Notes” which is linked to
the goal “Get academic achievements” via a requires
link. The requires link indicates that the goal requires
certain resources in order to be satisfied.

The pentagon node depicts a Threat. A threat in-
dicates the potential loss or problems that can put the
system at risk. The “Man-in-the-middle” is an exam-
ple of a threat, which is linked via the Impacts link to
the goal “Get student details”.

The Impacts link indicates the presence of a threat
targeting a goal.

The hexagon node depicts a Security Objective. An
example of a security objective is “Ensure data is kept
private”, which is linked to the security constraint
“Keep personal details private” and “Keep student
records private” via Satisfies links and the Security
Mechanism “Secure connection” via the Implements
link.

The Satisfies link indicates that the security objec-
tive satisfies the given security constraint.

The hexagon node with two parallel horizontal lines
depicts a Security Mechanism. A security mechanism
is a method or procedure that enforces security objec-
tives. “Secure connection” is an example of a security
mechanism, which is linked via the implements link to
the security objective “Ensure data is kept private”.

The example organisational and security views
demonstrate the syntactic richness of Secure Tropos.
Of which, we have provided outline explanations of a
subset. We will now use this subset to identify services
in Secure Tropos models.

3 Service

Before we can begin the process of determining
what properties and aspects to capture when modelling
cloud services, there is a need to obtain a concrete def-
inition on what a service is. The common definition
of a service can be given as “The performance of work
(a function) by one for another”. However, service,
as the term is generally understood, also combines the
following related ideas [15]:

• The capability to perform work for another



Figure 1. An example of an organisational view in Secure Tropos

• The specification of the work offered for another

• The offer to perform work for another

Our interpretation for a computing service is based on
definitions provided by IT standards bodies, specifi-
cally from the “Organization for the Advancement of
Structured Information Standards” (OASIS). OASIS
defines a service as “A mechanism to enable access to
one or more capabilities, where the access is provided
using a prescribed interface and is exercised consistent
with constraints and policies as specified by the service
description” [15].

Capability The capability of a service represents the
ability to do something. Capabilities are a way to meet
the needs of an agent by fulfilling their requirements. A
capability has no function on its own, therefore service
functionalities in the service description link together
with the capabilities in order to fulfill a purpose.

Interface The OASIS definition states that inter-
faces provide access to the capabilities of a service.
The interface describes the means of interacting with a
service and the actions involved in using a capability.
These actions are initiated through specific protocols,
commands, and information exchange specified by ser-
vice functionalities in the service description. This is
essentially the information that needs to be provided
to the service in order to access it’s capabilities and
receive a result.

Service Description In order to ensure that ser-
vices are published and visually available for access,
the interaction with services are described in the ser-
vice description in terms of inputs, outputs and asso-
ciated semantics.

3.1 Service Identification

Based on the OASIS definition, we propose that
in the context of our work a service can be identi-
fied and modelled through a combination of a goal,
plans and resources. Goals provide a description of
the main underlying capability of the service, which re-
lies on the functionality provided by the plan and the
attributes defined in the resource to give the service
description. Each plan describes a functionality of the
service, which is required to give purpose to the ser-
vice capability through the interface. The resources
provide a specification of the information required by
the interface in order to access the capabilities of the
service.

This pattern can be identified in Secure Tropos by
indicating a goal, searching for dependants of the goal
and including any plans and resources linked to the
goal. The most basic form of the pattern includes a
goal, plan and resource. As goals increase in complex-
ity, additional plans and resources may be added in
order to specify additional functionalities. A simple
example denoting the identification of a service based
on the goal “Get student details”, plan “Student fills in
form” and resource “Student Data” is shown in Figure



Figure 2. An example of a security requirements view in Secure Tropos.

2. We explain the key characteristics required to iden-
tify a service in the following sub-sections, justifying
the goal, plan, resource pattern.

3.1.1 Capability and Functionality

Goals represent an actors strategic interest, which can
be defined as the user requirements. In terms of the
service definition, goals provides a description of the
main underlying capability of the service. In the exam-
ple shown in Figure 2, the goal “Get student details”
describes the need to get student details. However on
its own, this underlying capacity does not describe how
this is fulfilled, nor does it specify the inputs or out-
puts when accessing the interface. The functionality is
described by the plan, which is a description of what
something does and how to achieve that goal. The plan
provides parameters for a particular function in terms
of behaviour and purpose. In essence, the capability
of the service is described by the goal and the func-
tionality is described by the plan. Thus by linking a
function to a capability to describe how and what to
do, we come closer to the definition of a service.

3.1.2 Interface

The plan describes the actions required for interacting
with the service while the resource describes the infor-
mation required for the interface to access the service
capabilities. For example in Figure 2, the plan “Stu-
dent fills in form” indicates that the interface has to
have a functionality that captures the action of stu-
dents filling in forms. The resource “Student Data”
is also required in order to specify and store the data
that was captured by the functionality of the service
defined through the plan.

3.1.3 Service Description

Goals provide a conceptual part of the service de-
scription by describing what the service is supposed
to accomplish and the conditions for using the service
through capabilities. The service description also relies
on the plan to define the semantics of interaction with
the service, in addition to the resource in order to spec-
ify the attributes of the input and outputs. For exam-
ple in Figure 2, the goal “Get student details” indicates
that the service description will publish the fact that
this service will get student details. The plan “Student
fills in form” tells us the semantics of the interaction



and the resource “Student data” describes the inputs
and outputs of the service in the service description.

Having established a visual Goal-Plan-Resource pat-
tern in the Secure Tropos diagram, we now proceed to
incorporate cloud requirements into Secure Tropos.

4 Incorporating in Secure Tropos

We validate our proposed work through constructed
examples based on existing systems. In our case study,
we create a scenario based on migrating an university
records management system to the cloud.

4.1 Extensions to the Meta-Model

We extend the Secure Tropos meta-model to in-
clude additional attributes to model cloud require-
ments. Figure 3 shows a portion of the meta-model
illustrating our extensions.

Resource The resource object is extended to include
fields specifying the category of the resource, type,
specifications, region, owner and classification. These
notions are based on requirement-level properties de-
fined in both CloudML [16], a domain-specific mod-
elling language that specifies the provisioning, deploy-
ment, and adaptation concerns of cloud systems at
design-time [5] and Cloud Computing Ontology (Co-
CoOn) [17], an ontology-based system for describing
cloud infrastructure. As an example consider the re-
gion property from CloudML and CoCoOn, which de-
scribes the geographical location of the hardware com-
ponent and is used to determine security/privacy juris-
diction and legislation. An example of a property from
CloudML that is not requirement-level is PrivateIP, as
this is implementation-specific. The extended resource
will be deployed in the physical layer when modelling
cloud services, providing a fine-grained view of the in-
frastructure required to enact services defined in the
software system layer. This also provides the founda-
tion for performing security analysis on cloud-specific
threats and vulnerabilities and the modelling of data-
flow. Service Definition Goal, plan and resource are
existing concepts in the Secure Tropos meta-model.
We propose the identification of a service based on
the Goal-Plan-Resource pattern and extend the meta-
model as shown in Figure 3, where we indicate that a
service is an aggregation of a single goal, one or many
plans and one or many resources.

The migration link is indicated by the shaded box in
Figure 3, which links one service to one or many cloud
actors.

4.2 Organisational View

An example demonstrating the organisational view
is illustrated in Figure 1, which shows the dependency
relational link between different actors and the security
constraints imposed based on goals. The security con-
straints are identified from the perspective of the de-
pendent and dependee with regards to the goal. In this
example, the Lecturer actor depends on the University
of Brighton actor to satisfy the Access student records
goal. The Lecturer has a security constraint that they
should keep their account access secure while the Uni-
versity of Brighton actor has the security constraints
of both keeping student records private AND secure.

4.3 Security Requirements View

The security requirements view in Figure 2 shows
a wide range of elements that can be modelled in or-
der to analyse the security requirements of a software
system. The primary goal “Manage Student Records”
has three sub-goals, in this example the “Get Student
Details” sub-goal is examined in more detail. This sub-
goal requires the resource “Student Data” and the plan
“Student Fills in Form” in order to satisfy its require-
ments. It also has the security constraints of keep-
ing personal details private and secure and is impacted
by two threats; “Man-in-the-Middle” and “Eavesdrop-
ping”. Each of the sub-goals also define a service with
its corresponding plan and resource links, as indicated
by the bounding box and service labelling.

4.4 Defining and Migrating Services to the Cloud

Our proposed process allows the developer to iden-
tify and indicate a set of components that conceptually
contribute towards a service. The constructed group is
then linked via the migration relationship to a cloud
service defined in another view, the cloud service view.
In Figure 2, we have indicated that the goal “Get Stu-
dent Details”, the plan “Student Fills in Form” and
the resource “Student Data” contribute towards the
definition of a service. Based on the goal description,
the functionality of the service is to obtain details from
students. The plan indicates that the service will in-
clude the capacity to obtain student data from forms
that are filled in by the student, possibly through an
form defined by the interface. The required input will
be student data which the resource describes in full de-
tail, including properties such the owner of the data,
how the data is stored and the specifications of the
data.



Figure 3. Extensions to the meta-model to identify services from goal, plans and resources, define
the migration link from service to a cloud actor and add attributes to resource.

In order to model and analyse software systems for
cloud environments, we need to create a model for de-
scribing cloud services and the components involved in
the definition of these services. This would include the
software applications deployed to address the problem
or tasks that the service is trying to solve or achieve,
specifications of the resources required to execute the
software and identifying the data that will be processed
to determine the flow of data. The resources can then
be categorised further into network, compute and stor-
age requirements, depending on the capabilities the ser-
vice requires.

There are several possible scenarios where migrat-
ing to the cloud is applicable. In order to model cloud
services, we propose a two-layer model; the software
system and the physical layer. The software sys-
tem describes the programmatic implementations of
the functions offered by the services. The software sys-
tem contains applications and services which provide
solutions to the client requirements. Descriptions in
each of the components within the software layer de-
fine a dependency link with required resources, which
are provided in the physical layer. The physical layer
contains resource elements that describe the storage,
compute and network components required to satisfy
the service requirements(Goal) based on the require-
ments of the stakeholder. Each one of the components
in the physical layer describes an aspect of the infras-

tructure required to define a cloud computing system.

Each cloud service will include deployment models,
service models and specifications for resources, based
upon the user requirements and restrictions identified
in the early stages of the requirements modelling. This
process allows us to define the exact requirements when
planning for resource provision, utilisation and optimi-
sation.

5 Conclusion

We have discussed the current progress and chal-
lenges for modelling secure software system in this pa-
per, emphasising the need for a modelling language
that is able to holistically capture properties that de-
fine a cloud computing system based on client require-
ments. To address this gap, we define the properties
and attributes required to model software services and
cloud services. We define a pattern to group inter-
dependent properties for the migration towards cloud
services in a cloud computing environment, based on
the strategic interests of stakeholders. These proper-
ties consist of the primary goal which defines what the
main functionality of the service should be, plans that
tells us what the capabilities of the service should be in
order to fulfil the functionalities defined in the goal and
the resources that are required by the service in order



to perform its functions. We validate our proposed re-
search through extensions to the security requirements
modelling language Secure Tropos and provide a case
study based on modelling the migration of an univer-
sity records management system to a cloud computing
environment.

In order to obtain a holistic view of security vulner-
abilities and threats, we will build on the cloud service
view to examine each component within the cloud ser-
vice based on different cloud models. We can further
extend the security attacks view to include cloud spe-
cific security vulnerabilities, threats and mechanisms
to mitigate these attacks. The nature and approach of
attacks changes dynamically according to a wide vari-
ety of parameters, such as the service model, deploy-
ment model and in scenarios involving deployment of
services to multiple clouds or service providers.

References

[1] T. H. Depot, “The home depot reports findings in
payment data breach investigation,” 2014.

[2] A. Pavel, “Amazon.com server said to have been
used in sony attack,” May 2011.

[3] Cloud Security Alliance, “Security research al-
liance to promote network security,” Network Se-
curity, vol. 1999, no. 2, pp. 3–4, 1999.

[4] A. Bergmayr, H. Brunelière, J. L. C. Izquierdo,
J. Gorroñogoitia, G. Kousiouris, D. Kyriazis,
P. Langer, A. Menychtas, L. Orue-Echevarria,
C. Pezuela, and M. Wimmer, “Migrating legacy
software to the cloud with ARTIST,” Proc. Eu-
ropean Conference on Software Maintenance and
Reengineering, CSMR, pp. 465–468, 2013.

[5] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and
A. Solberg, “Towards model-driven provisioning,
deployment, monitoring, and adaptation of multi-
cloud systems,” Proc. IEEE Sixth International
Conference on Cloud Computing, pp. 887–894,
2013.

[6] S. Frey and W. Hasselbring, “The cloudmig ap-
proach: Model-based migration of software sys-
tems to cloud-optimized applications,” Interna-
tional Journal on Advances in Software, vol. 4,
no. 3 and 4, pp. 342–353, 2011.

[7] M. Armbrust, O. Fox, R. Griffith, A. D. Joseph,
Y. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, et al., “Above the clouds:
A Berkeley view of cloud computing,” University

of California, Berkeley, Tech. Rep. UCB, pp. 07–
013, 2009.

[8] N. R. Jennings, “Agent-oriented software engi-
neering,” in Multiple Approaches to Intelligent
Systems, pp. 4–10, Springer, 1999.

[9] E. Kamateri, N. Loutas, D. Zeginis, J. Ahtes,
F. D’Andria, S. Bocconi, P. Gouvas, G. Ledakis,
F. Ravagli, O. Lobunets, and K. a. Tarabanis,
“Cloud4SOA: A semantic-interoperability paas so-
lution for multi-cloud platform management and
portability,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics),
vol. 8135 LNCS, pp. 64–78, 2013.

[10] R. G. Cascella, C. Morin, P. Harsh, and Y. Je-
gou, “Contrail: A reliable and trustworthy cloud
platform,” in Proc. 1st European Workshop on De-
pendable Cloud Computing, p. 6, ACM, 2012.

[11] W. Madsen, Trust in Cyberspace, vol. 1999. 1999.

[12] P. Devanbu, S. Stubblebine, and S. S. Premkumar
T. Devanbu, “Software engineering for security -
a roadmap,” Icse, pp. 227–239, 2000.

[13] H. Mouratidis and P. Giorgini, “Secure Tro-
pos: A Security-Oriented Extension of the Tropos
methodology,” International Journal of Software
Engineering and Knowledge Engineering, vol. 17,
pp. 285–309, Apr. 2007.

[14] A. Bandara, H. Shinpei, J. Jurjens, H. Kaiya,
A. Kubo, R. Laney, H. Mouratidis, A. Nhlabatsi,
B. Nuseibeh, Y. Tahara, T. Tun, H. Washizaki,
N. Yoshioka, and Y. Yu, “Security patterns: com-
paring modeling approaches,” 2010.

[15] C. M. MacKenzie, K. Laskey, F. McCabe,
P. Brown, and R. Metz, “Reference Model for Ser-
vice Oriented Architecture,” Oasis, 2006.

[16] E. Brandtzæg, S. Mosser, and P. Mohagheghi,
“Towards cloudml, a model-based approach to
provision resources in the clouds,” in 8th European
Conference on Modelling Foundations and Appli-
cations (ECMFA), pp. 18–27, 2012.

[17] M. Zhang, R. Ranjan, A. Haller, D. Georgakopou-
los, M. Menzel, and S. Nepal, “An ontology-based
system for cloud infrastructure services’ discov-
ery,” in Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom),
2012 8th International Conference on, pp. 524–
530, IEEE, 2012.


