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Abstract

Object indexing is a challenging task that enables the
retrieval of relevant images in pictorial databases. In this
paper, we present an incremental indexing approach of pic-
ture objects based on clustering of object shapes. A semi-
supervised fuzzy clustering algorithm is used to group sim-
ilar objects into a number of clusters by exploiting a-priori
knowledge expressed as a set of pre-labeled objects. Each
cluster is represented by a prototype that is manually la-
beled and used to annotate objects. To capture eventual
updates that may occur in the pictorial database, the pre-
viously discovered prototypes are added as pre-labeled ob-
jects to the current shape set before clustering. The pro-
posed incremental approach is evaluated on a benchmark
image dataset, which is divided into chunks to simulate the
progressive availability of picture objects during time.

1. Introduction

The extensive use of image digital capturing systems in
several fields has generated massive amount of digital im-
ages that are typically collected in pictorial databases [1].
Most of the past projects on pictorial databases focus on
content-based approaches searching images that are visu-
ally similar to the query image [2]. Such approaches do
not have the capability of assigning textual descriptions au-
tomatically to pictures, i.e. they do not perform linguistic
indexing.

Linguistic indexing is a difficult task due to the semantic
gap problem, i.e. the lack of coincidence among the visual
content of images represented by automatically extracted
features and the human visual interpretation of the pic-
ture content typically expressed by high-level concepts [3].
Learning concepts from images and automatically translat-
ing the content of images to linguistic terms can bridge the
semantic gap thus resulting in one of the most influential
factors in successful image retrieval [4], [5] consequently
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broadening the possible usages of pictorial databases.

Different machine-learning methods have been applied
to learn associations between the low-level features and the
linguistic concepts in a pictorial database [15]. In particular,
learning techniques can be used to annotate objects clearly
identifiable by linguistic cues. A common approach is to
perform classification on the collection of picture objects
[6], [14], so that visually similar objects are grouped into
the same class and a textual label is associated to each class.
Thus, each object is indexed by classifying it into one of the
identified classes.

Classification of picture objects can be performed by
means of supervised or unsupervised learning methods. Su-
pervised techniques require a lot of training data, and pro-
viding these data is a very tedious and error-prone task, es-
pecially for large image database. Unsupervised learning
techniques overcome these limitations but often they gener-
ate inconsistent classes including objects that, although hav-
ing a similar shape, actually represent different linguistic
cues. The presence of objects with ambiguous shapes moti-
vates the use of semi-supervised clustering algorithms that
can improve classification by using a combination of both
labeled and unlabeled data. In [11] we proposed the use of a
semi-supervised clustering algorithm called SSFCM (Semi-
Supervised Fuzzy C-Means) to create object classes and
prototypes useful for indexing images in a database. How-
ever, when new images are added to the database, this static
indexing scheme requires rebuilding the prototypes starting
from scratch by reprocessing the whole set of objects, i.e.
it does not take advantage of the previously created proto-
types.

To overcome this limitation, in this paper we propose
the use of an incremental version of the SSFCM clustering
algorithm, that we call Incremental SSFCM (ISSFCM). The
ISSFCM applies SSFCM to chunks of picture objects that
are periodically added to the database, thus providing an
incremental scheme for picture object indexing.

The paper is organized as follows. Section 2 describes
the proposed indexing scheme for pictorial object annota-



tion. In section 3 we provide some preliminary simulation
results on a benchmark data set containing picture objects
of different shapes. Finally, section 4 concludes the paper.

2. Incremental scheme for object indexing

We assume that a collection of pictorial objects is avail-
able. Each object is described by the contour of its shape.
Different shape descriptors could be used to represent ob-
ject shapes. In this work, each object shape is represented
by means of Fourier descriptors that are well-recognized
to provide robustness and invariance, obtaining good ef-
fectiveness in shape-based indexing and retrieval [8]. The
shape of each pictorial object is described by means of
M Fourier descriptors and denoted by a numerical vector
X = (21,2, ..., T ).

The proposed scheme for incremental indexing of ob-
jects is based on the assumption that sets of object shapes
belonging to different semantic classes are available during
time and processed as chunks, that is, a chunk of N object
shapes is available at time ¢1, a chunk of N, shapes is avail-
able at £ and so on. We denote by X; the chunk of picture
objects available at time ¢. For a correct application of the
proposed incremental scheme, all semantic classes should
be represented in the early chunks. The chunks of objects
are processed as they are added to the database, by apply-
ing incrementally the Semi-Supervised FCM (SSFCM) al-
gorithm [11] described in section 2.1. The resulting scheme,
called ISSFCM (Incremental SSFCM), is shown in fig. 1.
It enables the update of previously derived prototypes when
new shapes are continuously available over time. Each time
a new chunk of shapes is available, previously created clus-
ter prototypes are used as pre-labeled shapes for the new
run of SSFCM. At the end of each SSFCM run, the derived
labeled prototypes are used to index all available shapes ac-
cumulated in the pictorial database.

The overall scheme of the proposed incremental index-
ing approach is summarized in algorithm 1. Each time a
chunk is available, it is clustered by SSFCM and the result-
ing clusters are represented by K prototypes that are man-
ually annotated by textual labels (step 4-7). Then each ob-
ject is added to the cluster corresponding to the best match-
ing prototype and labeled with the related label (step 8-9).
Matching is based on computing Euclidean distance be-
tween the Fourier descriptors of the object and the descrip-
tors of prototypes. We chose the Euclidean distance since it
is one of the most popular distances in literature that permits
to obtain accurate results when matching shapes represented
by Fourier descriptors with a low-cost and simple computa-
tion [16]. To take into account the evolution of the database,
the prototypes discovered from one chunk are added as pre-
labeled objects to the next chunk (step 10, step 4).

Precisely, when the first chunk of pictorial objects is
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Figure 1. The scheme of the incremental in-
dexing approach

available, the algorithm will cluster the chunk into K clus-
ters and it will derive a set of K object prototypes that are
manually labeled. When a second or later chunk of objects
is available, it will be clustered with the labeled prototypes
derived from the previous clustered chunks'.

Summarizing, our incremental indexing scheme gener-
ates a structure of clusters on the basis of chunks which
capture the availability of new picture objects during time
and reflect physical evolution of the database. The index-
ing mechanism is incremental in the sense that the cluster
prototypes derived from one chunk are used not only for
current indexing but also as a starting point for the clus-
tering of successive chunks. The derived prototypes offer
an intermediate indexing mechanism that enables automatic
linguistic indexing of pictorial objects by requiring manual
annotation of a very limited number of objects (namely the
prototypes).

2.1. Clustering by SSFCM

The SSFCM algorithm works in the same manner as
FCM (Fuzzy C-Means) [9], i.e. it iteratively derives K
clusters by minimizing an objective function. Unlike FCM,
that performs a completely unsupervised clustering, SS-
FCM performs a semi-supervised clustering, i.e. it uses

"How many chunks of history to use for clustering with a new chunk is
predefined by the user.



Algorithm 1 Incremental SSFCM (ISSFCM)

Require: Chunks of unlabeled objects X, Xo, ...

Ensure: P: set of labeled prototypes; X: set of annotated
objects

H + 0 /* Initialization of history */

t <— 1 /* Initialization of time step */

while 3 non empty chunk X; do

X; < X; U H /* Add history to current chunk */
Cluster X using SSFCM

Derive the set P of prototypes

Annotate manually each prototype in P

Annotate each object in UtT:l X, using the best-
matching prototype in P

9: Update X with annotated objects

10: Update H with P

1: t:=t+1

12: end while

13: return P, X

A o e

a set of pre-labeled data to improve clustering results. To
embed partial supervision in the clustering process, the ob-
jective function of SSFCM includes a supervised learning
component, as follows:

K N K N
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where

b — 1 if object x; is pre-labeled @)
771 0 otherwise

fjr denotes the true membership value of the pre-labeled
object x; to the cluster k, d;i represents the Euclidean dis-
tance between the object shape x; and the center of the k-th
cluster, m is the fuzzification coefficient (m > 2) and «
is a parameter that serves as a weight to balance the super-
vised and unsupervised components of the objective func-
tion. The higher the value of «, the higher the impact com-
ing from the supervised component is. The second term of
J captures the difference between the true membership f;,
and the membership u;; computed by the algorithm. The
aim to be reached is that, for the pre-labeled objects, these
values should coincide.

As described in [12], the problem of optimizing the ob-
jective function J is converted into the form of uncon-
strained minimization using the standard technique of La-
grange multipliers. By setting the fuzzification coefficient
m equal to 2, the objective function is minimized by updat-
ing membership values u;, according to:

_ 1 [14e( -0, fu)
l+a Sy d3/d3,

Ujk + Otbjfjk (3)

and the centers of clusters according to:

Ne m
o = ZJ]:V1 U X )
> =1 Ujk

The clustering process ends when the difference between
the values of J in two consecutive iterations drops below a
prefixed threshold or when the established maximum num-
ber of iterations is achieved.

Once the clustering process is completed, a prototype is
identified for each cluster by selecting the object shape be-
longing with the highest membership to that cluster. Then,
each prototype is manually associated to a label correspond-
ing to a specific linguistic cue or semantic class.

Summarizing, the result of SSFCM applied to each
chunk is a set of K labeled prototypes P = {p1,p2, ..., Pk }
that are used to index objects in the database. Namely, all
objects belonging to cluster & are associated with the text
label assigned to prototype py.

3. Experimental results

To assess the suitability of the proposed incremental in-
dexing approach, we considered the MPEG-7 Core Exper-
iment CE-Shape-1 data set [8] containing 1400 binary im-
ages of object shapes grouped into 70 different classes with
each class including 20 samples. Fig. 2 shows a sample
image for each class of the considered data set. In order to
apply ISSFCM, all images were processed to extract bound-
aries of shapes and compute Fourier descriptors. Each ob-
ject shape was represented by a vector of 32 Fourier coeffi-
cients (this number was set in our previous experiments on
the same dataset).

To evaluate the clustering results we used the average
purity error, as in [10], defined as follows:

K
1 (¢4
ur =1— — X =
P K ,;w

where K denotes the number of clusters, |C¢| denotes the
number of objects with the dominant class label in cluster
k and |C}| denotes the total number of objects in cluster
k. Intuitively, the purity error measures the purity of the
clusters with respect to the true cluster (class) labels that
are known for the MPEG-7 dataset.

We performed a suite of experiments in order to analyze
the behavior of ISSFCM when varying the percentage p of
pre-labeled shapes (p = 20% and p = 30%) and following
two different pre-labeling schema:

e scheme A: we assume that each chunk contains a per-
centage p of pre-labeled shapes;
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Figure 2. Sample images from the MPEG-7
Core Experiment CE-Shape-1 data set

e scheme B: we assume that only the first chunk con-
tains a a percentage p of pre-labeled shapes; in the next
chunks the previously derived prototypes represent the
pre-labeled shapes.

In all the experiments, the parameters of the ISSFCM al-
gorithm were set as follows: the number of cluster K was
set to the number of classes in the dataset (i.e. K = 70),
the size of a chunk was set to 280 shapes (hence 5 chunks
were built from the whole dataset), the history was set to
1, meaning that only the prototypes extracted from the pre-
vious chunk were considered as pre-labeled shapes in the
current chunk. Since SSFCM is not deterministic (due to
the random initialization of the cluster centers) 10 different
runs were performed and the average results are presented.

At the first time step, the SSFCM was applied to the
union of the first two chunks in order to obtain more sta-
ble and significant initial prototypes to be exploited in the
next steps of the incremental clustering process. In this
way 4 different time steps were simulated. After cluster-
ing a chunk, 70 prototypes were derived and each prototype
was manually annotated by a label descriptive of a semantic
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Figure 3. Prototypes derived in each time step
for three semantic classes
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Table 1. Average purity error values
percentage of pre-labeled shapes

scheme 20% 30%
A 0.29 0.18
B 0.28 0.17

class. These prototypes were used to annotate all shapes in-
cluded in the previous chunks on the basis of a top-matching
score. To perform matching we computed the Euclidean
distance between descriptors of each shape and descriptors
of each prototype. Each shape was annotated with the label
of the best-matching prototype. As an example, in fig. 3,
we show the prototypes derived for three semantic classes
at the end of each time step by applying ISSFCM with the
30% of pre-labeled shapes following scheme B.

The annotation results were evaluated by computing the
average purity error. Table 1 reports the average values of
the purity error obtained by varying the percentage of pre-
labeled shapes and the pre-labeling scheme. It can be seen
that, as expected, when the percentage of pre-labeled shapes
increases, the quality of the obtained clusters improves. Re-
gardless the pre-labeling percentage, the two pre-labeling
schema provide comparable values of the purity error.

The effectiveness of the proposed incremental approach
was evaluated by comparing the average purity error ob-
tained in the last step of ISSFCM and the average purity
error obtained by applying the SSFCM algorithm in a one-
shot way (following the experimental setting described in
[11]). To apply the SSFCM in one-shot way the data set
was divided into a training set (composed of the shapes in-
cluded in the first 4 chunks) and a test set (including the
280 remaining shapes). The training set was used to derive
the shape prototypes whilst the test set was used to perform
annotation by exploiting the derived prototypes. Figure 4a
compares the average purity error obtained by applying ISS-



FCM (varying the pre-labeling scheme and the percentage
of pre-labeled shapes) and the one-shot SSFCM. We ob-
serve that ISSFCM obtains results that are comparable to
those obtained by the static one-shot SSFCM with the ad-
ditional advantage to exploit and update the knowledge dis-
covered in the previous time steps. Finally, we evaluated

the annotation accuracy in terms of Precision and Recall 35
and we compared the results obtained by applying the in- E 03
cremental SSFCM the static SSFCM. Figures 4b and 4c 2.025
show the comparative values of precision and recall, respec- ;5, 0.2 S A
tively. It can be seen that the incremental indexing approach ; 0,15 a ISSFCMiB
achieves better annotation accuracy with respect the static £ o1 o -
one-shot approach thus confirming the benefit of exploiting Z 0,05
previously acquired knowledge whenever new picture ob- 0
jects have to be added to the pictorial database. 20% 30%
Labeling percentage
4. Conclusions
(a)
In this paper an incremental scheme for pictorial ob-
ject indexing has been proposed. The approach exploits a 0.7
semi-supervised fuzzy clustering algorithm to derive a set 0.6
of prototypes representative of a number of semantic cate- e 05
gories. The derived prototypes are manually annotated by 204
attaching labels related to semantic categories. The use of 5 03 el
shape prototypes, which represent an intermediate level of * 02 mssrcu.B
visual signatures, facilitates the annotation process, since 0.1 e
only a reduced number of objects need to be manually anno- 0
tated. Moreover, the use of prototypes simplifies the search 20% 30%
process in a pictorial database by reducing time needed to Labeling percentage
retrieve similar shapes. Indeed, a query is matched only
with shape prototypes, thus avoiding unnecessary compar- (b)
isons with all objects in the database. Annotation results on
the MPEG-7 benchmark dataset show that our incremen- 0,64
tal scheme obtains results which are very similar to those 0,62
obtained by the one-shot approach with the additional ad- 005’:
vantage to exploit the previously discovered prototypes thus = o: &7
avoiding the reprocessing of the whole database. These pre- 8 054 HISSFCM_A
liminary results encourage the application of the proposed 0,52 WISSFCM.B
approach to real-world contexts requiring the indexing of 0.3 SSECM
evolving collections of pictorial objects. g'ji
‘ 20% 30%
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