
SEKE2022

Proceedings of the 34th
International Conference on

Software Engineering and

Knowledge Engineering

July 1 to 10, 2022
KSIR Virtual Conference Center
Pittsburgh, USA

Copyright ⓒ 2022 by KSI Research Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the publisher.

DOI: 10.18293/SEKE2022

Proceedings preparation, editing and printing are sponsored by KSI Research Inc.

 i

PROCEEDINGS

SEKE 2022

The 34th International Conference on
Software Engineering &
Knowledge Engineering

Sponsored by
KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

Technical Program
July 1 – 10, 2022

KSIR Virtual Conference Center, Pittsburgh, USA

Organized by
KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

 ii

Copyright ⓒ 2022 by KSI Research Inc. and Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of the publisher.

ISBN: 1-891706-54-3
ISSN: 2325-9000 (print)

2325-9086 (online)
DOI reference number: 10.18293/SEKE2022

Publisher Information:
KSI Research Inc. and Knowledge Systems Institute Graduate School
156 Park Square
Pittsburgh, PA 15238 USA
Tel: +1-412-606-5022
Fax: +1-847-679-3166
Email: seke@ksiresearch.org
Web: http://ksiresearchorg.ipage.com/seke/seke22.html

Proceedings preparation, editing and printing are sponsored by KSI Research Inc. and Knowledge Systems Institute
Graduate School, USA.

Printed by KSI Research Inc. and Knowledge Systems Institute Graduate School

mailto:seke@ksiresearch.org

 iii

SEKE 2024
The 34th International Conference on

Software Engineering &
Knowledge Engineering

July 1 – 10, 2022

KSIR Virtual Conference Center, Pittsburgh, USA

Conference Organization

CONFERENCE CHAIR
Kazuhiro Ogata, JAIST, Japan; Conference Chair

Lan Lin, Ball State University, USA; Conference Co-Chair

PROGRAM COMMITTEE CHAIR AND CO-CHAIR
Rong Peng, Wuhan University, China; PC Chair

Carlos Eduardo Pantoja, Federal Center for Technological Education, Brazil; PC Co-Chair
Pankaj Kamthan, Concordia University, Canada; PC Co-Chair

STEERING COMMITTEE CHAIR

Shi-Kuo Chang, University of Pittsburgh, USA

STEERING COMMITTEE
Vic Basili, University of Maryland, USA

Bruce Buchanan, University of Pittsburgh, USA
C. V. Ramamoorthy, University of California, Berkeley, USA

ADVISORY COMMITTEE
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

Jerry Gao, San Jose State University, USA
Swapna Gokhale, University of Connecticut, USA
Xudong He, Florida International University, USA

Natalia Juristo, Universidad Politecnica de Madrid, Spain
Taghi Khoshgoftaar, Florida Atlantic University, USA

Guenther Ruhe, University of Calgary, Canada

 iv

Masoud Sadjadi, Florida International University, USA
Du Zhang, California State University, USA

PROGRAM COMMITTEE
Silvia Acuna, Universidad Autonoma de Madrid, Spain

Shadi Alawneh, Oakland University, USA
Hyggo Almeida, Federal University of Campina Grande, Brazil

Dionysios Athanasopoulos, Queen's University of Belfast, United Kingdom
Doo-Hwan Bae, Korea Advanced Institute of Science and Technology, Korea

Kyungmin Bae, Pohang University of Science and Technology, Korea
Kuhaneswaran Banujan, Sabaragamuwa University of Sri Lanka, Sri Lanka

Vita Barletta, University of Bari, Italy
Fevzi Belli, University of Paderborn, Germany

Ateet Bhalla, Consultant, India
Swapan Bhattacharya, Jadavpur University, India

Tanmay Bhowmik, Mississippi State University, USA
Michael Bosu, Centre for Information Technology, New Zealand

Ivo Bukovsky, Czech Technical University in Prague, Czech Republic
Guoray Cai, Penn State University, USA

Juan Cano-DeBenito, Universidad PolitÃ©cnica de Madrid, Spain
Rafael Cardoso, University of Liverpool, United Kingdom

John Castro, Universidad de Atacama, Chile
Lingwei Chen, Pennsylvania State University, USA

Wen-Hui Chen, National Taipei University of Technology, Taiwan
Xiang Chen, Nantong University, China

Xiaohong Chen, East China Normal University, China
Meiru Che, University of Texas at Austin, USA

Nacha Chondamrongkul, Mae Fah Luang University, Thailand
Lawrence Chung, University of Texas at Dallas, USA

Andrea Cimmino, Universidad Politecnic de Madrid, Spain
Patrick Cook, Texas Tech Universityy, USA
Andrea DeLucia, University of Salerno, Italy

Lin Deng, Towson University, USA
Wei Dong, National University of Defense Technology, China

Bowen Du, University of Warwick, United Kingdom
Hector Duran-Limon, Universidad de Guadalajara, Mexico

Abdelrahman Elfaki, University of Tabuk, Saudi Arabia
Iaakov Exman, Jerusalem College of Engineering, Israel

Onyeka Ezenwoye, Augusta University, USA
Yuan Fei, Shanghai Normal University, China

Maria Francesca Costabile, University of Bari, Italy
Asadullah Galib, Michigan State University, USA

Jianbo Gao, Peking University, China
Honghao Gao, ShangHai University, China

RaÃºl Garcia-Castro, Universidad PolitÃ©cnica de Madrid, Spain
Ignacio Garcia Rodriguez DeGuzman, University of Castilla-La Mancha, Spain

Swapna Gokhale, Univ. of Connecticut, USA
Wolfgang Golubski, Zwickau University of Applied Sciences, Germany

Jorge Marx Gomez, University of Oldenburg, Germany
Desmond Greer, Queen's University Belfast, United Kingdom

Xudong He, Florida International University, USA
Kiyoshi Honda, Osaka Institute of Technology, Japan

Dou Hu, National Computer System Engineering Research Institute, China
Sayem Imtiaz, Iowa State University, USA

Bassey Isong, North-West University, South Africa
Clinton Jeffery, New Mexicon Tech, USA

Shuyuan Jin, Sun Yat-sen University, China

 v

Peiquan Jin, University of Science and Technology, China
Jason Jung, Chung-Ang University, South Korea
Pankaj Kamthan, Concordia University, Canada

Wiem Khlif, Miracl Laboratory, Tunisia
Taghi Khoshgoftaar, Florida Atlantic University, USA

Jun Kong, North Dakota State University, USA
Vinay Kulkarni, Tata Consultancy Services, India

Olivier LeGoaer, University of Pau, France
Paulo LeitÃ£o, Instituto PolitÃ©cnico de BraganÃ§a (IPB), Portugal

Meira Levy, Shenkar College of Engineering and Design, Israel
Peng Liang, Wuhan University, China

Tong Li, Beijing University of Technology, China
Xin Li, Google Inc., USA

Yanhui Li, Nanjing University, China
Yingling Li, Chengdu University of Information Technology, China

Zengyang Li, Central China Normal University, China
Zhi Li, Guangxi Normal University, China

Lan Lin, Ball State University, USA
Bixin Li, Southeast University, China

Xiaodong Liu, Edinburgh Napier University, United Kingdom
Weidong Liu, Inner Mongolia University, China

Wanwei Liu, National University of Defense Technology, China
Yi Liu, University of Massachusetts Dartmouth, USA

Luanna LopesLobato, Federal University of Goias, Brazil
Jiawei Lu, Zhejiang University of Technology, China

Xinjun Mao, National University of Defense Technology, China
Beatriz Marin, Universidad Politecnica de Valencia, Spain, Chile

Riccardo Martoglia, University of Modena and Reggio Emilia, Italy
Baojun Ma, Shanghai International Studies University, China

Kristof Meixner, TU Wien, Austria
Andre Menolli, Universidade Estadual do Norte do Parana (UENP), Brazil

Hind Milhem, University of Ottawa, Canada
Ran Mo, Central China Normal University, China

Jose Manuel Mora, Universidad Autonoma de Aquascalientes, Mexico
Hiroyuki Nakagawa, Osaka University, Japan

Masaki Nakamura, Toyama Prefectural University, Japan
Sumana Nath, University of Saskatchewan, Canada

Alex Norta, Tallinn University of Technology, Estonia
Kazuhiro Ogata, JAIST, Japan

Carlos Pantoja, Federal Center for Technological Education (CEFET-RJ), Brazil
George Papadopoulos, University of Cyprus, Cyprus
Hyungbae Park, University of Central Missouri, USA
David Parsons, The Mind Lab, New Zealand (SEKEE)

Rong Peng, Wuhan University, China
Angelo Perkusich, Federal University of Campina Grande, Brazil

Chen Qian, Donghua Universit in Shanghai, China
Rick Rabiser, Johannes Kepler University, Austria

Claudia Raibulet, University of Milan, Italy
Damith Rajapakse, National University of Singapore, Singapore

Rajeev Raje, IUPUI, USA
Marek Reformat, University of Alberta, Canada
Daniel Rodriguez, Universidad de Alcala, Spain

Azouzi Sameh, Laboratory RIADI-GDL, ENSI, Tunisia
Claudio Sant'Anna, Universidade Federal da Bahia, Brazil

Kamran Sartipi, East Carolina University, USA
Kaize Shi, Beijing Institute of Technology, China

Michael Shin, Texas Tech University, USA
Saeed Siddik, University of Dhaka, Bangladesh

 vi

Kazi Sultana, Montclair State University, USA
Xin Sun, Ball State University, USA
Meng Sun, Peking University, China

Yanchun Sun, Peking University, China
Yutian Tang, ShanghaiTech University, China

Chuanqi Tao, Nanjing University of Science and Technology, China
Jeff Tian, Southern Methodist University, USA

Zhenzhou Tian, Xi'an University of Posts and Telecommunications, China
Fadel TourÃ©, UQTR, Canada

Christelle Urtado, LGI2P Ecole des Mines d'Ales, France
Dalton Valadares, IFPE Caruaru, Brazil

Sylvain Vauttier, Ecole des mines d'Ales, France
Gleifer VazAlves, Federal University of Technology - Parana (UTFPR), Brazil

Gennaro Vessio, University of Bari, Italy
JosÃ© Viterbo, Fluminense Federal University (UFF), Brazil

Jiaojiao Wang, China Communication University of Zhejiang, China
Zhongjie Wang, Harbin Institute of Technology, China

Jiacun Wang, Monmouth University, USA
Jian Wang, Wuhan University, China

Ye Wang, Zhejiang Gongshang University, China
Hironori Washizaki, Waseda University, Japan

Lingwei Wei, Chinese Academy of Sciences, China
Michael Weiss, Carleton University, Canada

Franz Wotawa, TU Graz, Austria
Ji Wu, Beihang Universityy, China

Peng Wu, Institute of Software, Chinese Academy of Sciences, China
Xi Wu, The University of Sydney, Australia

Lai Xu, Bournemouth University, UK
Haiping Xu, University of Massachusetts Dartmouth, USA

Frank Xu, University of Baltimore, USA
Koji Yamamoto, Fujitsu Laboratories Ltd., Japan

Guowei Yang, Texas State University, USA
Huiqun Yu, East China University of Science and Technology, China

Jiang Yue, Fujian Normal University, China
Dongjin Yu, Hangzhou Dianzi University, China

Fiorella Zampetti, University of Sannio, Italy
Pengcheng Zhang, Hohai University, China

Du Zhang, Macau University of Science and Technology, China
Yong Zhang, Tsinghua University, China

Yongxin Zhao, East China Normal University, China
Yongjie Zheng, California State University at San Marcos, USA

Nianjun Zhou, IBM, USA
Huibiao Zhu, East China Normal University, China

Hongming Zhu, Tongji University, China
Eugenio Zimeo, University of Sannio, Italy

BEST DEMO AWARD COMMITTEE
Kuhaneswaran Banujan, Sabaragamuwa University of Sri Lanka; Chair, Best Demo Award, Sri Lanka

PUBLICITY CO-CHAIRS
Patrick Cook, Texas Tech University, USA; Publicity Co-Chair

Michael Bosu, New Zealand; Publicity Co-Chair

 vii

ASIA LIAISON

Hironori Washizaki, Waseda University, Japan

EUROPE LIAISON
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

INDIA LIAISON
Swapan Bhattacharya, National Institute of Technology Karnataka, Surathakl, India

 viii

Foreword

Welcome to the 34th International Conference on Software Engineering and Knowledge Engineering
(SEKE), in KSIR Virtual Conference Center, Pittsburgh, PA, USA. In the last 30 years, SEKE has
established itself as a major international forum to foster, among academia, industry, and government
agencies, discussion and exchange of ideas, research results and experience in software engineering and
knowledge engineering. The SEKE community has grown to become a very important and influential source
of ideas and innovations on the interplays between software engineering and knowledge engineering, and its
impact on the knowledge economy has been felt worldwide. On behalf of the Program Committee, it is our
great pleasure to invite you to participate in the technical program of SEKE.

This year, we received 170 submissions. Through a rigorous review process where a majority of the
submitted papers received three reviews, and the rest with two reviews, we were able to select 67 full papers
for the general conference (39 percent),50 short papers (30 percent), 5 demos (3 percent) and 48 rejects (28
percent). SEKE 2022 Technical Program consists of one keynote session, 11 paper presentation sessions, 2
panel sessions and one demo session. We greatly appreciate the committee members and authors of accepted
papers in professional roles to serve as the chairs of the technical sessions.

The high quality of the SEKE 2022 technical program would not have been possible without the tireless
effort and hard work of many individuals. First of all, we would like to express our sincere appreciation to
all the authors whose technical contributions have made the final technical program possible. We are very
grateful to all the Program Committee members whose expertise and dedication made our responsibility that
much easier. Our gratitude also goes to the keynote speaker who graciously agreed to share his insight on
important research issues, to the conference organizing committee members for their superb work, and to the
external reviewers for their contribution.

Last but certainly not the least, we must acknowledge the important contributions that the KSI staff members
have made. Their timely and dependable support and assistance throughout the entire process have been
truly remarkable. Finally, we wish you have productive discussion, great networking and effective virtual
presentation to participate in SEKE 2022.

Rong Peng, Wuhan University, China; PC Chair
Carlos Eduardo Pantoja, Federal Center for Technological Education, Brazil; PC Co-Chair
Pankaj Kamthan, Concordia University, Canada; PC Co-Chair

 ix

Keynote

The Essential Structure of Software

Daniel Jackson, PhD
Massachusetts Institute of Technology

USA

Abstract

Structure is at the heart of everything we do in software. And yet we don’t have a compelling answer to the
most obvious question: what is the structure of an app? We have user interface structure (e.g. pages and
components), and we have internal structure (modules and subsystems). But we don’t have a way to describe
the essential structure, which would reveal what an app does, how it compares to other apps, and how a user
should make sense of it.

In this talk, I’ll present a radical new way to think about software structure in terms of concepts: independent
and reusable units of dynamic functionality that can be combined in flexible ways. I’ll show how this
perspective helps ground familiar intuitions but also exposes new insights.

 About the Speaker

Daniel Jackson is professor of computer science at MIT, and associate director of CSAIL. For his research in
software, he won the ACM SIGSOFT Impact Award, the ACM SIGSOFT Outstanding Research Award and
was made an ACM Fellow. He is the lead designer of the Alloy modeling language, and author of the book
Software Abstractions. He chaired a National Academies study on software dependability, and has
collaborated on software projects with NASA on air-traffic control, with Massachusetts General Hospital on
proton therapy, and with Toyota on autonomous cars. His new book, The Essence of Software, was recently
published.

 x

 Panel Session ESEKE: Education and SEKE

Co-Organizers and Co-Chairs: Pankaj Kamthan and Hironori Washizaki

Theme: Educational and Professional Implications of SWEBOK

Description: Software continues to play an indispensable role in society, not least due to the increased
reliance on digitization during the COVID-19 pandemic. Software Engineering has evolved in several
different directions since it was established as a discipline over 50 years ago. Much has changed in the
ensuing decades, especially how Software Engineering is viewed and pursued, and SWEBOK Version 4
aims to reflect this evolution.

In particular, this panel session will address pressing issues around the following selection of topics:

(1) The Need for Evolving SWEBOK from Version 3 to Version 4
(2) The Prospects and Challenges of Integrating SWEBOK in Software Engineering Curriculum
(3) Usefulness of SWEBOK for Software Practitioners in the Industry

The session comprises an esteemed group of panelists from academia and industry, specializing in multiple
different areas of Software Engineering, thereby bringing much desired multidisciplinary perspective and
diverse experience to the aforementioned topics. The panelists are:

(1) David Parsons <david@themindlab.ac.nz> (The Mind Lab, New Zealand), Specialties: Agile

Education, Agile Practices, Software Engineering Education
(2) Nazlie Shahmir <nazlie_shahmir@cpr.ca> (Canadian Pacific Railway Limited, Calgary, Canada),

Specialties: DevOps, Software Project Management, Software Quality, Software Requirements, Software
Testing

(3) Steve Schwarm <schwarm@ieee.org> (Retired/Part-Time Synopsys - Black Duck Software, USA),
Specialties: Specialties: Software Construction, Standards, Quality, and Programming Languages

(4) Yatheendranath TJ <y.tarikere@ieee.org> (DhiiHii Laboratories Private Limited, Bengaluru, India),
Specialties: Computing Foundations, Software Engineering Management and Training

(5) Steve Tockey <steve.tockey@construx.com> (Construx Software, USA), Specialties: Software
Engineering Economics, Software Quality, Software Requirements

(6) Hironori Washizaki <washizaki@waseda.jp> (Waseda University, Tokyo, Japan), Specialties: Machine
Learning Software Engineering, Software Design, Software Engineering Education, Software
Maintenance and Evolution, Software Quality Assurance, Software Reuse

Moderator: Pankaj Kamthan <kamthan@cse.concordia.ca> (Concordia University, Montreal, Canada),
Specialties: Agile Methodologies, Conceptual Modeling, Software Engineering Education, Software
Patterns, Software Quality, Software Requirements

Each topic will be allotted 20 minutes. At the end of the panel discussion, the floor will be opened to the
audience, welcoming any questions that they might have.

mailto:david@themindlab.ac.nz
mailto:nazlie_shahmir@cpr.ca
mailto:schwarm@ieee.org
mailto:y.tarikere@ieee.org
mailto:steve.tockey@construx.com
mailto:washizaki@waseda.jp
mailto:kamthan@cse.concordia.ca

 xi

Panel Session CSQS: Conceptual Software and Quantum Software

Chair and Moderator: Prof. Iaakov Exman, Jerusalem College of Engineering, Israel

Panelists: Prof. Daniel Jackson, MIT, USA
Prof. Jonathan Aldrich, CMU, USA
Prof. Harold Thimbleby, Swansea University, UK

Description: A high-quality panel should be thought provoking: to trigger questions, without any sort of definitive answers. The
role of participants and of the Panel audience is to ask even more questions providing at most half-baked answers, leaving second
thoughts for home. Thus, this Panel is restricted to a very short time duration. It all started with a research proposal from MIT’s
Daniel Jackson, dated 2013 [1], from which we learned Fred Brooks’ idea [2] that “Conceptual Integrity is the most important
consideration for software system design”. It culminated with the recent thought provoking and excellent book by Daniel Jackson
on “The Essence of Software – Why Concepts matter for Great Design” [3]. Yes, books should also be thought provoking. We
wrote culminated very hesitantly, since it gives the false impression that this is the end of the story. As an antidote here are some
trigger questions

Questions (Q) and Half-Baked Thoughts (HBT): As an antidote here are some trigger questions and half-
baked thoughts.

Q1 – Concepts matter for great design or Concepts are the very essence of Software?
HBT1- Focusing on apps’ design implies that concepts are not the very essence of Software; Software is
something else besides concepts. Our remark: “yes and no”. More about this, later on.
Q2 – Is programming essential to Software? What is the programming language of Software?
HBT2- Emphatically NO. The natural language of software is the natural language of humans. Therefore,
the Software vocabulary is constantly changing, together with novel technologies.
Q3 – Is Software concepts’ integrity enough to avoid the dire consequences of aviation or healthcare
accidents? Particularly in cases where software has been proven to be faulty?
HBT3- Probably NOT. Any additional ideas?
Q4 – Software Modularity should assure Conceptual Integrity? Algebraic representation of software, and its
newborn child “Quantum Software Models”, manipulate vectors to be modular, without touching concepts at
all. How is it possible?
HBT4- The Panel audience may decide to concisely discuss it, or may prefer to read papers [4],[5].

References:
[1] Daniel Jackson, “Conceptual Design of Software: A Research Agenda”, MIT-CSAIL-TR-2013-020

August 2013.
[2] Fred Brooks, The Design of Design, Addison-Wesley, Boston, MA, 2010.
[3] Daniel Jackson, The Essence of Software, Princeton University Press, Princeton, NJ, 2021.
[4] Iaakov Exman and Alon T. Shmilovich, “Quantum Software Models: The Density Matrix for Classical

and Quantum Software Systems Design”, 2021 IEEE/ACM 2nd Int. Workshop on Quantum Software
Engineering (Q-SE), within ICSE’2021, http://arxiv.org/abs/2103.13755, 2021.

[5] Iaakov Exman and Alexey Nechaev, “Quantum Software Models: Software Density Matrix is a Perfect
Direct Sum of Module Matrices”, in Proc. SEKE’2022, pages 434-439, this Conference, 2022.

 xii

Table of Contents

Session REDE: Requirements Engineering and Domain Engineering

A Systematic Mapping Study of Information Retrieval Approaches Applied to
Requirements Trace Recovery
Bangchao Wang, Heng Wang, Ruiqi Luo, Sen Zhang and Qiang Zhu 1

A framework for Requirements specification of machine-learning systems
Xi Wang 7

Requirements debt: causes, consequences, and mitigating practices
Viviane Bonfim and Fabiane Benitti 13

On the Implications of Human-Paper Interaction for Software Requirements Engineering
Education
Pankaj Kamthan 19

Identifying Risks for Collaborative Systems during Requirements Engineering: An
Ontology-Based Approach (S)
Kirthy Kolluri, Robert Ahn, Tom Hill, Julie Rauer and Lawrence Chung 25

A Novel Approach to Maintain Traceability between Safety Requirements and Model
Design (S)
Qian Wang, Jing Liu, John Zhang, Hui Dou, Haiying Sun, Xiaohong Chen and Jifeng He 31

Development of a Domain Specific Modeling Language for Educational Data Mining (S)
Eronita Maria Luizines Van Leijden, Andrêza Leite de Alencar and Alexandre Magno Andrade
Maciel 35

Panel Session ESEKE: Education and SEKE

Agile and Lean Software Engineering and the SWEBOK - Position Paper for Panel:
Educational and Professional Implications of SWEBOK
David Parsons 40

Session CQA: Code Quality and Analysis

Multi-Label Code Smell Detection with Hybrid Model based on Deep Learning
Yichen Li and Xiaofang Zhang 42

 xiii

An Enhanced Data Augmentation Approach to Support Multi-Class Code Readability
Classification
Qing Mi, Yiqun Hao, Maran Wu and Liwei Ou 48

Contrastive Learning for Multi-Modal Automatic Code Review
Bingting Wu and Xiaofang Zhang 54

Utilizing Edge Attention in Graph-Based Code Search
Wei Zhao and Yan Liu 60

Mapping Modern JVM Language Code to Analysis-friendly Graphs: A Pilot Study with
Kotlin
Lu Li and Yan Liu 67

Refactoring of Object-oriented Package Structure Based on Complex Network
Youfei Huang, Yuhang Chen, Zhengting Tang, Ningkang Jiang and Liangyu Chen 73

Reducing Mismatches in Syntax Coupled Hunks
Chunhua Yang and Xiufang Li 79

Adaptive Prior-Knowledge-Assisted Function Naming Based on Multi-level Information
Explorer
Lancong Liu, Shizhan Chen, Sen Chen, Guodong Fan, Zhiyong Feng and Hongyue Wu 85

Towards Accurate Knowledge Transfer between Transformer-based Models for Code
Summarization (S)
Chaochen Shi, Yong Xiang, Jiangshan Yu and Longxiang Gao 91

Towards Lightweight Detection of Design Patterns in Source Code (S)
Jeffy Jahfar Poozhithara, Hazeline Asuncion and Brent Lagesse 95

Session DSML: Distributed Systems and Machine Learning

A Distributed Graph Inference Computation Framework Based on Graph Neural Network
Model
Zeting Pan, Yue Yu and Junsheng Chang 100

PEM: A Parallel Ensemble Matching Framework for Content-based Publish/Subscribe
Systems
Weidong Zhu, Yufeng Deng, Shiyou Qian, Jian Cao and Guangtao Xue 106

 xiv

MFGAN: A Novel CycleGAN-Based Network for Masked Face Generation
Weiming Xiong, Mingyang Zhong, Cong Guo, Huamin Wang and Libo Zhang 112

Analysing Product Lines of Concurrent Systems with Coloured Petri Nets
Elena Gomez-Martinez, Esther Guerra and Juan De Lara 118

Inter- and Intra-Series Embeddings Fusion Network for Epidemiological Forecasting
Feng Xie, Zhong Zhang, Xuechen Zhao, Bin Zhou and Yusong Tan 124

Unsupervised Structure Confidence Sampling for Image Inpainting
Xinrong Hu, Tao Wang, Jinxing Liang, Junjie Jin, Junping Liu, Tao Peng and Yuanjun Xia 130

Verifying BDI Agents in Dynamic Environments
Blair Archibald, Muffy Calder, Michele Sevegnani and Mengwei Xu 136

Zero-Shot Object Detection with Multi-label Context (S)
Yongxian Wei and Yong Ma 142

Modified Communication Parallel Compact Firefly Algorithm and Its Application (S)
Jianpo Li, Geng-Chen Li, Jeng-Shyang Pan and Min Gao 147

Self-Adaptive Task Allocation for Decentralized Deep Learning in Heterogeneous
Environments (S)
Yongyue Chao, Mingxue Liao, Jiaxin Gao and Guangyao Li 154

A Federated Model Personalisation Method Based on Sparsity Representation and
Clustering (S)
Hailin Yang, Yanhong Huang, Jianqi Shi and Fangda Cai 160

Session STDP: Software Testing and Defect Prediction

Improving Mutation-Based Fault Localization via Mutant Categorization
Xia Li and Durga Nagarjuna Tadikonda 166

WBS: Weighted Backtracking Strategy for Symbolic Testing of Embedded Software
Varsha P Suresh, Sujit Kumar Chakrabarti, Athul Suresh and Raoul Jetley 172

An Exploratory Study of Bug Prioritization and Severity Prediction based on Source Code
Features
Chun Ying Zhou, Cheng Zeng and Peng He 178

 xv

Taint Trace Analysis For Java Web Applications
Yaju Li, Chenyi Zhang and Qin Li 184

Impact of Combining Syntactic and Semantic Similarities on Patch Prioritization while
using the Insertion Mutation Operators
Mohammed Raihan Ullah, Nazia Sultana Chowdhury and Fazle Mohammed Tawsif 190

Two-Stage AST Encoding for Software Defect Prediction (S)
Yanwu Zhou, Lu Lu, Quanyi Zou and Cuixu Li 196

An efficient discrimination discovery method for fairness testing (S)
Shinya Sano, Takashi Kitamura and Shingo Takada 200

Data Driven Testing for Context Aware Apps (S)
Ryan Michaels, Shraddha Piparia, David Adamo and Renee Bryce 206

A Preliminary Study on the Explicitness of Bug Associations (S)
Zengyang Li, Jieling Xu, Guangzong Cai, Peng Liang and Ran Mo 212

Data Selection for Cross-Project Defect Prediction with Local and Global Features of
Source Code
Xuan Deng, Peng He and Chun Ying Zhou 216

RIRCNN: A Fault Diagnosis Method for Aviation Turboprop Engine (S)
Lei Li, Zhe Quan, Zixu Wang, Tong Xiao, Xiaofei Jiang, Xinjian Hu and Peibing Du 220

Automated Unit Testing of Hydrologic Modeling Software with CI/CD and Jenkins (S)
Levi Connelly, Melody Hammel, Benjamin Eger and Lan Lin 225

Ensemble approaches for Test Case Prioritization in UI testing (S)
Tri Cao, Tuan Vu, Huyen Le and Vu Nguyen 231

Investigating Cognitive Workload during Comprehension and Application Tasks in
Software Testing (S)
Daryl Camilleri, Mark Micallef and Chris Porter 237

Visualization of automated program repair focusing on suspiciousness values (S)
Naoki Tane, Yusaku Ito, Hrionori Washizaki and Yoshiaki Fukazawa 243

xvi

Session ADPBD: Agile Development Practices for Big Data

Beyond Numerical – MIXATON for outlier explanation on mixed-type data (S)
Jakob Nonnenmacher and Jorge Marx Gomez 249

Log Sinks and Big Data Analytics along with User Experience Monitoring to Tell a Fuller
Story (S)

 253

 257

 263

 269

 275

 281

 287

Vidroha Debroy, Senecca Miller, Mark Blake, Alex Hibbard and Cody Beavers

A Node-Merging based Approach for Generating iStar Models from User Stories
Chao Wu, Chunhui Wang, Tong Li and Ye Zhai

Session KE: Knowledge Engineering

KEMA: Knowledge-Graph Embedding Using Modular Arithmetic
Hussein Baalbaki, Hussein Hazimeh, Hassan Harb and Rafael Angarita

Embedding Knowledge Graphs with Semantic-Guided Walk
Hao Tang, Donghong Liu, Xinhai Xu and Feng Zhang

Dual Contrastive Learning for Unsupervised Knowledge Selection
Xiang Cao and Yujiu Yang

Dynamic Heterogeneous Information Network Embedding in Hyperbolic Space
Dingyang Duan, Daren Zha, Xiao Yang and Xiaobo Guo***

Using Multi-feature Embedding towards Accurate Knowledge Tracing
Yang Yu, Liangyu Chen, Caidie Huang and Mingsong Chen

A Zero-Shot Relation Extraction Approach Based on Contrast Learning
Hongyu Zhu, Jun Zeng, Yang Yu and Yingbo Wu 293

Similarity matching of time series based on key point alignment dynamic time warping
Yangzheng Li, Zhigang Chen and Xiaoheng Deng 300

Auto-Encoding GAN for Reducing Mode Collapse and Enhancing Feature Representation
(S)
Xiaoxiang Lu, Yang Zou, Xiaoqin Zeng, Xiangchen Wu and Pengfei Qiu 306

An Explainable Knowledge-based AI Framework for Mobility as a Service (S)
Enayat Rajabi, Slawomir Nowaczyk, Sepideh Pashami and Magnus Bergquist 312

 xvii

Session NLP: Natural Language Processing

Enhancing Pre-Trained Language Representations Based on Contrastive Learning for
Unsupervised Keyphrase Extraction
Zhaohui Wang, Xinghua Zhang, Yanzeng Li, Yubin Wang, Jiawei Sheng, Tingwen Liu and
Hongbo Xu 317

Exploring Relevance and Coherence for Automated Text Scoring using Multi-task
Learning
Yupin Yang, Jiang Zhong, Chen Wang and Qing Li 323

Exp-SoftLexicon Lattice Model Integrating Radical-Level Features for Chinese NER
Lijie Li, Shuangyang Hu, Junhao Chen, Ye Wang and Zuobin Xiong 329

AESPrompt: Self-supervised Constraints for Automated Essay Scoring with Prompt
Tuning
Qiuyu Tao, Jiang Zhong and Rongzhen Li 335

Increasing Representative Ability for Topic Representation
Rong Yan, Ailing Tang and Ziyi Zhang 341

Exploring MMSE Score Prediction Model Based on Spontaneous Speech (S)
Li Sun, Jieyuan Zheng, Jiyun Li and Chen Qian 347

Session FSVM: Formal Specification, Verification and Model Checking

NKind: a model checker for liveness property verification on Lustre programs
Junjie Wei and Qin Li 351

Efficient LTL Model Checking of Deep Reinforcement Learning Systems using Policy
Extraction
Peng Jin, Yang Wang and Min Zhang 357

Formal Verification of COCO Database Framework Using CSP
Peimu Li, Jiaqi Yin and Huibiao Zhu 363

Formal Verification and Analysis of Time-Sensitive Software-Defined Network
Architecture
Weiyu Xu, Xi Wu, Yongxin Zhao and Yongjian Li 369

 xviii

Metaheuristic Algorithms for Proof Searching in HOL4
Saqib Nawaz, Muhammad Zohaib Nawaz, Osman Hasan and Philippe Fournier-Viger 376

Formal specification and model checking of Saber lattice-based key encapsulation
mechanism in Maude (S)
Duong Dinh Tran, Kazuhiro Ogata, Santiago Escobar, Sedat Akleylek and Ayoub Otmani 382

A divide \& conquer approach to until and until stable model checking (S)
Canh Minh Do, Yati Phyo and Kazuhiro Ogata 388

Session SDMP: Software Development and Maintenance Processes

Managing Risks in Agile Methods: a Systematic Literature Mapping
Fernando Garcia, Jean Hauck and Fernanda Hahn 394

LSTMcon: A Novel System of Portfolio Management Based on Feedback LSTM with
Confidence
Xinjia Xie, Shun Gai, Yunxiao Guo, Boyang Wang and Han Long 400

Research on Identification and Refactoring Approach of Event-driven Architecture Based
on Ontology
Li Wang, Xiang-Long Kong, Xiao-Fei Wang and Bi-Xin Li 406

Designing Microservice-Oriented Application Frameworks
Yunhyeok Lee and Yi Liu 412

Collaborative Web Service Quality Prediction via Network Biased Matrix Factorization
Wenhao Zhong, Yugen Du, Shan Chuang, Hanting Wang and Fan Chen 418

A Model Based Approach for Generating Modular Manufacturing Control Systems (S)
Mahmoud El Hamlaoui, Yassine Qamsane, Youness Laghouaouta and Anant Mishra 424

Revealing Agile Mindset Using LEGO SERIOUS PLAY: Experience from an Online Agile
Training Project (S)
Ilenia Fronza and Xiaofeng Wang 428

Quantum Software Models: Software Density Matrix is a Perfect Direct Sum of Module
Matrices (S)
Iaakov Exman and Alexey Nechaev 434

 xix

SCMA: A Lightweight Tool to Analyze Swift Projects (S)
Fazle Rabbi, Syeda Sumbul Hossain and Mir Mohammad Samsul Arefin 440

Anomaly Detection in Spot Welding Machines in the Automotive Industry for
Maintenance Prioritization (S)
Laislla Brandão, Aldonso Martins-Jr, Gabriel Kopte, Edson Filho and Alexandre Magno
Andrade Maciel 444

The Maintenance of Top Frameworks and Libraries Hosted on GitHub: An Empirical
Study (S)
Yi Huang, Xinjun Mao and Zhang Zhang 449

Evaluating the Sustainability of Computational Science and Engineering Software:
Empirical Observations (S)
James Willenbring and Gursimran Walia 453

Decisions in Continuous Integration and Delivery: An Exploratory Study (S)
Yajing Luo, Peng Liang, Mojtaba Shahin, Zengyang Li and Chen Yang 457

A THG Performance Case Study in the world of E-Commerce (S)
Rehman Arshad, James Creedy, Philip Wilson, Adam Dad, Eloise Slate
and Hannah Cusworth 463

Session: DEMO Technical Demos

EARS2TF: A Tool for Automated Planning Test from Semi-formalized Requirements (D)
Hui Liu, Yunfang Li and Zhi Li 469

A Simplified Method for Automatic Verification of Java Programs (D)
Zhi Li, Ling Xie and Yilong Yang 471

Trace4PF: A tool for Automated Decomposition of Problem Diagrams with Traceability
(D)
Yajun Deng, Zhi Li and Hongbin Xiao 473

 xx

Session DMMA: Data Modeling, Mining and Analysis

Access-Pattern-Aware Personalized Buffer Management for Database Systems
Yigui Yuan, Zhaole Chu, Peiquan Jin and Shouhong Wan 475

DDMin versus QuickXplain - An Experimental Comparison of two Algorithms for
Minimizing Collections
Oliver Tazl, Christopher Tafeit, Franz Wotawa and Alexander Felfernig 481

Supporting Data Selection for Decision Support Systems: Towards a Decision-Making
Data Value Taxonomy (S)
Mathieu Lega, Christian Colot, Corentin Burnay and Isabelle Linden 487

Data Modeling and Data Analysis in Simulation Credibility Evaluation of Autonomous
Underwater Vehicles (S)
Xiaojun Guo and Shaojing Su 493

Improving Database Learning with an Automatic Judge (S)
Enrique Martin-Martin, Manuel Montenegro, Adrian Riesco and Rubén Rubio 499

Data Regulation Ontology (S)
Guillaume Delorme, Guilaine Talens and Eric Disson 503

Session IOTS: IoT and Security

Smifier: A Smart Contract Verifier for Composite Transactions
Yu Dong, Yue Li, Dongqi Cui, Jianbo Gao, Zhi Guan and Zhong Chen 507

Ethereum Smart Contract Representation Learning for Robust Bytecode-Level Similarity
Detection
Zhenzhou Tian, Yaqian Huang, Jie Tian, Zhongmin Wang, Yanping Chen and Lingwei Chen 513

An Information Flow Security Logic for Permission-Based Declassification Strategy
Zhenheng Dong, Yongxin Zhao and Qiang Wang 519

Unlearnable Examples: Protecting Open-Source Software from Unauthorized Neural Code
Learning
Zhenlan Ji, Pingchuan Ma and Shuai Wang 525

 xxi

DeepController: Feedback-Directed Fuzzing for Deep Learning Systems
Hepeng Dai, Chang-ai Sun and Huai Liu 531

WasmFuzzer: A Fuzzer for WebAssembly Virtual Machines
Bo Jiang, Zichao Li, Yuhe Huang, Zhenyu Zhang and W. K. Chan 537

Multi-Frames Temporal Abnormal Clues Learning Method for Face Anti-Spoofing
Heng Cong, Rongyu Zhang, Jiarong He and Jin Gao 543

Paying Attention to the Insider Threat (S)
Eduardo Lopez and Kamran Sartipi 549

A Novel Network Alert Classification Model based on Behavior Semantic (S)
Zhanshi Li, Tong Li, Runzi Zhang, Di Wu and Zhen Yang 553

Analyzing Cyber-Physical Systems with Learning Enabled Components using Hybrid
Predicate Transition Nets (S)
Xudong He 559

Problem-specific knowledge based artificial bee colony algorithm for the rectangle layout
optimization problem in satellite design (S)
Yichun Xu, Shuzhen Wan and Fanmin Dong 564

Modeling and Verifying AUPS Using CSP (S)
Hongqin Zhang, Huibiao Zhu, Jiaqi Yin and Ningning Chen 568

Formal Verification of the Lim-Jeong-Park-Lee Autonomous Vehicle Control Protocol
using the OTS/CafeOBJ Method (S)
Tatsuya Igarashi, Masaki Nakamura and Kazutoshi Sakakibara 574

Session SNRS: Social Network and Recommendation Systems

Improving the Early Rumor Detection Performance of the Deep Learning Models By
CGAN
Fangmin Dong, Yumin Zhu, Shuzhen Wan and Yichun Xu 580

Recurrent Graph Convolutional Network for Rumor Detection
Song Wu, Hailin Xiong, Ye Yang, Jinming Zhang and Chenwei Lin 586

Chinese Spam Detection based on Prompt Tuning
Yan Zhang and Chunyan An 593

xxii

Identifying Gambling Websites with Co-training
Chenyang Wang, Pengfei Xue, Min Zhang and Miao Hu 598

Social Information Popularity Prediction based on Heterogeneous Diffusion Attention
Network
Xueqi Jia, Jiaxing Shang, Linjiang Zheng, Dajiang Liu, Weiwei Cao and Hong Sun 604

Context-Aware Model for Mining User Intentions from App Reviews
Jinwei Lu, Yimin Wu, Jiayan Pei, Zishan Qin, Shizhao Huang and Chao Deng 610

COAT: A Music Recommendation Model based on Chord Progression and Attention
Mechanisms
Weite Feng, Tong Li and Zhen Yang 616

Deep Correlation based Concept Recommendation for MOOCs
Shengyu Mao, Pengyi Hao and Cong Bai 622

Postoperative MPA-AUC0-12h Prediction for Kidney Transplant Recipients based on
Few-shot Learning
Qiao Pan, Xinyu Yu, Xinyu Li and Kun Shao 628

Correlation Feature Mining Model Based on Dual Attention for Feature Envy Detection
Shuxin Zhao, Chongyang Shi, Shaojun Ren and Hufsa Mohsin 634

 640

 646

Graph Embedding Models for Community Detection
Yinan Chen, Zhuanming Gao and Dong Li

An Emotion Cause Detection Method Based on XLNet and Contrastive Learning
(S) Hai Feng Zhang, Cheng Zeng and Peng He

Notes: (S) denotes a short paper. (D) denotes demo description.

*** This paper was withdrawn by the authors due to errors in the paper.

* Corresponding author: Ruiqi Luo (Email: rqluo@wtu.edu.cn).

DOI reference number: 10.18293/SEKE2022-098

A Systematic Mapping Study of Information Retrieval

Approaches Applied to Requirements Trace Recovery

Bangchao Wang1,2, Heng Wang2, Ruiqi Luo1,2*, Sen Zhang2, Qiang Zhu1,2,
1 Engineering Research Center of Hubei Province for Clothing Information, Wuhan Textile University, Wuhan, China

2 School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China

Abstract— Context: Requirements trace recovery (RTR) is

always time-consuming, tedious, and fallible. There has been a

growing interest in applying information retrieval (IR) to

automate the process of recover trace links between

requirements artifacts and other software artifacts. Objective:

In this review, our objective is to identify the state-of-the-art of

how IR has been explored to automate RTR and provide an

overview of the research at the intersection of these two fields.

Method: A systematic mapping study has been conducted,

searching the main scientific databases. The search retrieved

1587 citations and 34 articles are retained as primary studies.

Results: The results show the most active authors and

publication distribution. It presents four kinds of IR models and

21 enhancement strategies applied to perform RTR. Besides,

the lists of 37 experimental datasets and 9 measures, commonly

used together to evaluate IR-based RTR approaches, are

provided. Conclusions: Vector Space Model (VSM) and Latent

Semantic Index (LSI) are the most two studied IR models used

in RTR. CoEST becomes the most popular, convenient and

stable source of datasets. Precision and Recall are the most

common measures used to evaluate the performance of IR

methods. Overall, IR-based RTR is becoming an increasingly

mature cross research field.

Keywords— requirements trace recovery, information

retrieval, systematic mapping study

I. INTRODUCTION

Requirements Traceability (RT) is defined as ‘the ability

to describe and follow the life of a requirement in both a

forward and backward direction (i.e., from its origins,

through its development and specification, to its subsequent

deployment and use, and through periods of ongoing

refinement and iteration in any of these phases)’ [1].

Requirements trace recovery (RTR), as an important activity

in RT, can help software engineers discover dependencies

that exist between requirements artifacts and other software

artifacts, evaluate the requirements coverage rate and

calculate the influence of requirements change etc. [2].

In recent years, most extensive efforts have been devoted

to studying information retrieval (IR) based RTR approaches

in RT research community [2]. By introducing IR, it greatly

alleviates the problems of heavy manual workload, difficult

maintenance, and error-prone problems faced by traditional

approaches [2].

This systematic mapping study (SMS) provides

evidence-based insights that can help researchers gain a good

understanding of IR-based RTR approaches. We believe that

readers interested in RT can use this paper as a map for

finding studies relevant to their situation.

The remainder of this paper is organized as follows.

Section II analyzes the related works, Section III reports the

details of our research methodology and logistics, Section

IV provides the main findings from our SMS, and Section V

discusses the validity threats. Finally, Section VI concludes

this study.

II. RELATED WORKS

We found only two systematic reviews related to IR-

based RTR [3][4]. The one by Saleem M et al. [3] focus on

surveying whether term mismatch is a real barrier for IR-

based RT approaches. Besides, this review summarizes the

approaches that attempt to solve the term mismatch problem.

Since these summarized approaches are only a part of the

whole IR-based traceability approaches. Therefore, this

review cannot provide an overview of the research at the

intersection of IR and RTR.

The other one by Borg M et al. [4] surveys the state-of-

the-art of IR-based software traceability (ST). Since ST has a

wider research scope than RT, some IR-based RTR

approaches are presented in this review. However, the time

interval of the primary studies in [4] is before 2012, which

indicates that more recent progress in IR-based RTR

approaches has not yet been summarised.

Overall, these works do not provide the recent overview

of the research at IR-based RTR. Therefore, to the best of

our knowledge, there is no SMS on the status of the IR-based

RTR. Our work covers this gap.

In this review, our objective is to identify the state-of-the-

art of how IR has been explored to automate RTR and

provide an overview of the research at the intersection of

these two fields.

III. RESEARCH METHOD

We have conducted an SMS (which is a well-defined and

rigorous method) to identify and interpret relevant studies

regarding a particular research question, topic area, or

phenomenon of interest [5]. The goal of an SMS is to

provide a fair, credible, and unbiased evaluation of a research

topic using a trustworthy, rigorous, and auditable method.

Hence, SMS is an appropriate method for our research,

which is aimed at identifying the overall status of IR-based

RTR approaches.

A. Research questions

Many relevant studies on IR-based RTR approaches

appeared during 2012–2021, and recent progress has not

been summarised. To identify the overall status of IR-based

RTR, we defined the following research questions (RQs):

RQ1. What are the authors/venues of the primary studies?

RQ2. Which IR models and enhancement strategies have

been applied to perform RTR?

RQ3. Which datasets have been applied to verify IR-

based RTR approaches?

RQ4. Which measures have been applied to evaluate the

performance of IR-based RTR approaches?

B. Search process

We design an SMS protocol to guide the search process

based on the SMS guidelines [5]. Relevant papers are

1

retrieved automatically from the databases.

1) Inclusion and exclusion criteria.

Once the potentially relevant studies have been obtained,

their actual relevance needs to be assessed. We defined the

following inclusion and exclusion criteria to select studies

from the search results based on the SMS guidelines [5].

Inclusion criteria:

I1: The time span of the study is 2012.1—2021.12.

I2: The research topic of study must be IR-based RTR.

I3: The study is not a review paper.

I4: The papers are written in English.

I5: When two papers with the same technology and topic

are provided by the same author, we select the one that is

described in greater detail.

Exclusion criteria:

E1: The time span of the study is not during 2012.1—

2021.12.

E2: The research topic of study is not IR-based RTR.

E3: The study is a review paper.

E4: The paper is not written in English.

E5: When two papers with the same technology and topic

are provided by the same author, we exclude the one that is

described less thoroughly.

2) Search scope.

Time period. We specify the time period of the

published studies for this SMS from January 2012 to

December 2021, which is when we started this SMS.

Electronic databases. Based on the suggestion in [5] and

the access authority of our institution, the following

databases are selected as the primary study sources: IEEE,

Google Scholar, Elsevier, EI Compendex, and Springer.

3) Search terms.

We use population, intervention, comparison, and

outcome (PICO) criteria to define the search terms for

database search based on the SMS guidelines [5]. Table I

shows the search terms in population and intervention.

TABLE I. LIST OF SEARCH TERMS IN POPULATION, INTERVENTION

PI Search terms

Population(P) requirement traceability, requirement trace,
requirement tracing, requirement traceability recovery

Intervention
(I) information retrieval, IR, semantic

Population: The population in this SMS is

‘Requirements Traceability’. We use words that are

synonymous to RT as the population (e.g., ‘Requirements

Tracing’, ‘Requirements Trace’, and ‘Requirements Trace

Recovery’).

Intervention: The intervention is ‘information retrieval’.

We use the word ‘information retrieval’, ‘IR’ and ‘semantic’

as the intervention.

Comparison: Because there is no comparative approach

for this review according to the SMS guidelines [5], the part

of the comparison specified in PICO is not considered in the

construction of search terms.

Outcome: Because there is no outcome for this review

according to the SMS guidelines [5], the part of the outcome

specified in PICO is not considered in the construction of

search terms.

4) Study search and selection.

Fig. 1 summarizes the study search and selection results.

The overall process consists of the following phases.

 Notes:

 Exclude studies based on titles and abstracts

 Exclude studies based on full-text

 Snowballing process

 EI: 1156 papers

Google scholar: 1066 papers

IEEE: 485 papers

Springer: 266 papers

Elsevier: 87 papers

107

relevant papers

33

relevant papers

517 papers

814 papers

116 papers

266 papers

40 papers

1587 papers

Search Phase Delete Duplicates Selection Phase

S
n
o
w

b
a
ll
in

g
:
1
 p

a
p
er

s

Final selection

34 papers

a

b c

a

b

c

Fig. 1. Study search and selection results.

Phase 1: Keyword-based literature retrieval

The search terms (defined in Table I) are applied only to

the title, keyword, and abstract because a full text search

would yield a large number of irrelevant results.

Phase 2: 1st round of literature filtering

The titles, abstracts, and keywords of all potential

primary studies are checked by the second and fourth authors

against inclusion and exclusion criteria. If it is difficult to

determine whether a paper should be included or not, it is

reserved for the next phase.

Phase 3: 2nd round of literature filtering

In this round, the first and third authors read the full text

to determine whether the paper should be included or not

based on the inclusion and exclusion criteria. When an

agreement cannot be reached, they are asked to state the

reasons for inclusion/exclusion to an arbitration panel.

Phase 4: Snowballing

After the filtering, ‘snowballing’ is conducted to find

omitted papers. We adopt the snowballing process proposed

by Claes Wohlin [6] to iteratively search the reference list

and papers cited in a study until no new papers are found.

Then, the new papers are checked against the inclusion and

exclusion criteria.

C. Data extraction and synthesis

When conducting data extraction, the authors carefully

read the primary studies and have conducted a strict peer-

review process. Before official extraction, a pilot of the data

extraction has been performed. During official extraction,

data are extracted based on a detailed set of questions. We

kept a record of the extracted information in a spreadsheet

for later analysis.

For synthesizing data, qualitative and quantitative data is

involved. When synthesizing the data, this process was

supported by the extracted data spreadsheet mentioned above.

After performing a separate analysis of the qualitative

and quantitative results, we investigate the combination of

both sources of evidence. Additionally, we also explore the

combination of results from different research questions to

build an evidence map that identifies research trends and

gaps according to multiple perspectives (questions-answers).

IV. RESULTS

This section presents the results of the SMS and is

arranged in the order of the research questions presented in

Section III-A.

2

A. RQ1. What are the authors/venues of the primary studies?

Fig. 2. Authors of the primary studies.

Fig. 2 shows the author distribution. More than 100

authors have appeared in the 34 primary studies. Nasir Ali,

Nan Niu, Anas Mahmoud are the top 3 most active authors.

It should be noted that some authors that appear only once

are not presented in Fig. 2 because of the space limit.

Fig. 3. Conferences and Journals in which the studies are published.

Thirty-four primary studies have been published in 30

types of conferences and journal, as shown in Fig. 3. The RE

conference (REC), and ICPC are the top 2 places where the

most papers are published.

B. RQ2. Which IR models and enhancement strategies have

been applied to perform RTR?

The general process of IR-based trace recovery is shown
in Fig. 4, which usually includes three stages: 1)
Preprocessing Stage: both the source (Requirements
Artifact) and target artifacts (Software Artifact) are regarded
as text, and noise information is removed through certain
document preprocessing methods to generate document
representation that is convenient for subsequent processing; 2)
Trace Links Generation (Recovery) stage: Calculating the
similarity between the two artifacts using various document
similarity calculation methods, sorting according to the
similarity scores, and selecting the candidate trace links
according to the set threshold. 3) Trace Link Refinement
Stage: The candidate trace links are refined by manual or
semi-automatic methods, and the trace links are finally
confirmed by the analyst.

Usually, after preprocessing, trace links can be
automatically established using various types of IR-based
models. As shown in Table II, Vector Space Model (VSM)
and Latent Semantic Index (LSI) are the most two commonly
used IR-based models in trace link generation. It should be

noted that some studies make the IR model as an integral part
of the whole approaches, such as [26][31][33]. Another
notable conclusion is that more than half primary studies
have presented, used or verified more than one IR models.

P
re

p
ro

ce
ss

in
g

 S
ta

g
e

L
in

k
s

G
e
n
e
ra

ti
o
n

 S
ta

g
e

L
in

k
 R

ef
in

em
e
n

t
S

ta
g

e

Document Preprocessing

Calculating Document

Similarity

Artificial Refinement

Links

Requirement

Artifacts

Software

Artifacts

Document

Vector

Candidate Trace

Links

Trace links

Graph Clustering.

Correlation among Classes

ConPOS Approach

Analyzing Closeness of

Code Dependencies

Frugal User Feedback

with Closeness Analysis

on Code

+

+

+

Context- based

Syntax Tree

Term Weighting Scheme
Refactoring

Verb-object Phrases

Term Classification

Code Calling Relationships

Historical Co-change Information

Note： represents manual intervention ; represents

 introducing enhancement strategies .

+

Fig. 4. The general process of IR-based trace recovery

To improve the performance, various types of
enhancement strategies are proposed. For example, as shown
in Fig. 4, Syntax Tree [27] and Refactoring [15][32][36] are
used to reduce the adverse effects caused by inconsistent
terminology or missing, misplaced signs in textual artifacts.
The details of enhancement strategies for IR-based RTR are
listed in Table III. From this table, most strategies focus on
how to improve the performance of the VSM and LSI.

TABLE II. IR MODELS USED IN REQUIREMENTS TRACE RECOVERY

IR
Models

Algebraic
Models

VSM

 [7] [8] [10] [11] [13] [14] [15] [18]
[19] [20] [21] [22] [23] [24] [25] [27]
[28] [29] [32] [34] [35] [36] [37] [38]
[39] [40]

LSI
[9] [11] [12] [14] [15] [16] [17] [23]
[30] [32] [35] [36] [38] [40]

Probabilistic
Models

JS [11] [22] [24] [39] [40]

TM [21] [29]

Other [26] [31] [33]

Note: VSM: Vector Space Model, LSI: Latent Semantic Index, JS: Jensen-
Shannon Model, TM: Topic Model.

C. RQ3. Which datasets have been applied to verify IR-

based RTR approaches?

The answer for this RQ can be used as a guideline for the
researchers to select datasets based on their research needs
and the characteristics of the datasets. For instance, for each
of these datasets, Table IV provides a link to the open-source
datasets, along with other meta-data details associated with it,
such as primary studies that used it, trace space (the
maximum counts of trace links), and other characteristics of
the dataset.

3

TABLE III. LIST OF ENHANCEMENT STRATEGIES FOR IR-BASED REQUIREMENTS TRACE RECOVERY APPROACHES

Strategy
IR model Applying

Phrase
Strategy Characteristics

VSM LSI JS TM

Context- based [8][10][37] ● P Separating intent from context in requirements

Improved Term Weighting Scheme

[12][16]
 ● P

Proposing an improved term weighting scheme, namely, Developers Preferred Term

Frequency/Inverse Document Frequency (DPTF/IDF)

Refactoring [15][32][36] ● ● P Solving the problem of missing symbols, misplaced symbols and repeated symbols

Syntax Tree [27] ● P
Primary identifier keywords are converted to comment keywords by their similarity

in appearance in the syntax tree location

Verb-object Phrases [7] ● P Extracting verb-object phrases as main information and essential meaning

Analyzing Close Relations [13] ● G Calculating the close relations (semantic similarity) between target artifacts

Term Classification [17][30] ● G Categorizing class names, comments, and all other terms in code

Model-Driven Engineering (MDE)

[19]
● G

Combining use of both MDE and IR, analyzing the textual information (organization

and hierarchy) contained in the model to retrieve implicit links between documents

Hybrid Method [21][29] ● ● G Combing VSM and BTM which can help relieve data sparsity caused by short text

Genetic Algorithm [29] ● G Configuring initial parameters of BTM by introducing Genetic Algorithm

Code Calling Relationships [20] ● G Identifying errors between requirements and code traces by code-calling relationships

Historical Co-change Information

[23]
● ● G

Taking the processed corpora and co-change information of classes as input to

reorder and filter baseline links

Dynamic Integration of Structural

and Co-change Coupling [28]
● G

Retrieving indirect links based on weighted integration of structural coupling and

class coupling based on change history

Configuration Management Log

[35][38]
● ● G

Restoring links by finding revisions in the configuration management log that contain

words related to requirements

Frugal User Feedback with

Closeness Analysis on Code [40]
● ● ● R

Introducing only a small amount of user feedback into the closeness analysis on call

and data dependencies in code

User Feedback [35] ● R Introducing user validation for candidate links to improve accuracy

Analyzing Closeness of Code

Dependencies [11]
● ● ● R

Quantifying the interaction degree of call dependency and data dependency between

two code classes

Class Clustering [17] ● R The products in the clustering have similar trace relationships

Correlation among Classes [25] ● R
Using structural or co-changing dependencies or both to find correlations between

classes and use these dependencies to verify traceability links

Graph Clustering [34] ● R
Information about the cohesion of artifacts within a level of refinement helps

improve the trace retrieval process between levels of refinement

ConPOS approach [39] ● ● R
Pruning trace links using the primary POS classification and apply constraints to

recovery as a filtering process

Note: “ ● ” represents support; “P” represents Preprocessing Stage, “G” represents Links Generation Stage, “R” represents Links Refinement Stage.

TABLE IV. DATASETS’ INFORMATION AND THE STUDIED PAPERS WHICH USED THE DATASETS

Dataset Name
Source Artifacts

(Number)

Target Artifacts

(Number)
Space

True

Links
Scale Freq. Resource links Reference

iTrust
Use cases (34) Code (243) 8262 603

Large 16 http://www.coest.org/
[8][11][12][13][14][15][16][23][

25][26][28][30][32][36][39][40] Requirements (50) Code (299) 14950 314

eTour
Use Cases (58) Code (116) 6728 308

Large 11 http://www.coest.org/
[7][8][14][15][18][24][29][30][3

1][32][36] Requirements (58) Code (116) 6728 366

EasyClinic
Requirements (30) Code (47) 1410 93

Small 6 http://www.coest.org/ [7][9][13][21][29][34]
Use Cases (30) Test Cases (63) 1890 63

CM-1

High-level

Requirements (235)

Low-level Requirements

(220)
51700 4050

Large
5 http://www.coest.org/ [9][13][14][30][34]

High-level

Requirements (235)
Design (220) 51700 361

Requirements (235) Design (220) 51700 361

Requirements (235) Use Case (Unclear） Unclear Unclear Unclear

Pooka Requirement (298) Code (90) 26820 546 Large 5 http://www.suberic.net/pooka/ [12][16][22][23][39]

EBT
Requirements (41) Test Cases (25) 1025 51

Small 4 http://www.coest.org/ [18][21][24][29]
requirements (40) Code (50) 2000 98

GanttProject Requirements (16) Code (124) 1173 315 Small 4 http://www.ganttproject.biz [11][13][20][40]

Albergate requirements (17) Code (55) 935 54 Small 3 http://www.coest.org/ [18][24][31]

SIP

Communicator
Requirements (82) Code (1771) 145222 871 Large 3 http://www.jitsi.org [22][23][39]

WARC

Non-functional

Requirements (21)

Software Requirements

Specification (89)
1869 58 Small

2 http://www.coest.org/ [21][29]
Functional

Requirements (43)

Software Requirements

Specification (89)
3827 78 Large

GANNT
High-level

Requirements (17)

Low-level Requirements

(69)
1173 68 Small 1 http://www.coest.org/ [13]

jEdit v4.3 Requirements (34) Code (483) 16422 Unclear Large 1 http://www.jedit.org. [22]

Infinispan Requirements (237) Code (388) 91956 1515 Large 1 http://infinispan.org/ [40]

Lucene Requirements (116) Code (413) 47908 744 Large 1 http://lucene.apache.org [12]

Rhino v1.6 Requirements (268) Code (138) 36984 Unclear Large 1 http://www.mozilla.org/rhino/ [22]

Lynx Requirements (90) Code (298) 26820 507 Large 1 http://lynx.isc.org/ [39]

Maven Requirements (36) Code (94) 3384 155 Large 1 http://maven.apache.org/ [40]

Pig Requirements (68) Code (236) 16048 356 Large 1 https://pig.apache.org/ [40]

Mylyn
Requirements

(Unclear)
Code (Unclear) Unclear Unclear Unclear 1

http://www.eclipse.org/mylyn/

developers
[26]

Note: There are 18 datasets that cannot be obtained, i.e., Chess [20], CUnit [38], iBooks [7], iRobot [10], iTruck [10], iSudoku [10], jHotDraw (JHD) [11][20], SMS [7], MODIS [9], MR0 [9], MR1

[9], MR2 [9], Pine [13], VideoOnDemand (VoD) [20], WDS [30][36], Waterloo [34], LEDA [31], network control system [38].

4

Thirty-seven datasets used for experimental validation
were extracted from thirty-four primary studies, as shown in
Table IV. The iTrust, eTour and EasyClinic are the top 3
most popular datasets, which all are provided by the Center
of Excellence for Software & Systems Traceability (CoEST).
Besides, In the nineteen open-source datasets, eight datasets
are provided by CoEST, and the resource can be found at
http://www.coest.org/. These nineteen open-source datasets
have been used sixty-eight times. More than 70% (48/68,
70.6%) of cases, the used datasets are from CoEST.
Obviously, it becomes the most popular, convenient and
stable source of datasets.

On the other side, twelve primary studies (12/34, 35.3%)
use the eighteen non-open-source datasets, as shown at the
bottom of Table IV. It prevents researchers from reproducing
experiments and using datasets.

TABLE V. NUMBER OF USED DATASETS DISTRIBUTION FOR PRIMARY

STUDIES

Number of datasets used

in primary studies

Number of

primary studies
Proportion

0 2 5.88%

1 6 17.65%

2 5 14.71%

3 12 35.29%

4 5 14.71%

5 3 8.82%

>5 1 2.94%

Total 34 100%

As shown in Table V, the fact that nearly a quarter (8/34,
23.5%) of primary studies validated their methods by
applying to less than two datasets is a threat to the external
validity [6]. The more datasets used, the more general the
method becomes. To mitigate external threats, researchers
are encouraged to use various types of datasets as many as
possible.

RQ4. Which measures have been applied to evaluate the

performance of IR-based RTR approaches?

After trace links are generated, the evaluation of them is
an indispensable task. In most cases, precision and recall are
the most common measures used to evaluate the performance
of IR-based RTR approaches, as shown in Table VI. Once
further evaluation is needed, the secondary measures, such as
MAP, AP, DiffAR, Lag, Selectivity and Cliff's Delta, are
good candidates. Due to the space limit, no specific details to
the performance measures, which are used to evaluated IR-
based RTR approaches, are given here.

TABLE VI. PERFORMANCE MEASURES USED IN PRIMARY STUDIES

Categories Measures Primary Studies

Primary

Measure

Recall [7][10][11][12][13][16][17][18][20][21]

[22][23][24][25][26][27][28][29][30][31]

[32][34] [35][36][37][38][39][40]
Precision

F-Measure [7][12][22][25][27][28][29][35][38]

Secondary

Measure

MAP
[8][9][10][11][13][14][32][33][34][36]

[39][40]

AP [11][13][33][34][39][40]

DiffAR [14][32][36]

Lag [14]

Selectivity [29]

Cliff's Delta [40]

V. VALIDITY THREATS DISCUSSION

In this section, we aim to discuss these potential threats
that influence the data extraction and the findings of this
SMS. According to the guidelines for analyzing the validity

threats to SE methods and processes [6], conclusion validity,
construct validity, internal validity, external validity will be
discussed in the following.

Conclusion validity: It is possible that some papers
excluded by this review should have been included. To
mitigate this type of threat, the selection process and the
inclusion and exclusion criteria described in Section III-B are
carefully designed and discussed by authors to minimize the
risk of exclusion of relevant studies.

Construct validity: The main constructs in this SMS are
‘requirements traceability’ and ‘information retrieval’. We
respectively use these two terms and their synonyms to
ensure that all selected primary studies are relevant to the
intersection of these two fields. Meanwhile, snowballing
from literature sources is performed complementary to
database search to ensure that relevant studies are covered as
much as possible.

Internal validity: In this SMS, a different participant
may end up with different data extraction and analysis results.
This may be a threat to the internal validity. To mitigate the
threat, the data extraction is performed collaboratively by
two authors. Moreover, any conflicts are discussed and
resolved by all the authors in this process.

External validity: It is concerned with establishing the
generalizability of the SMS results, which is related to the
degree to which the primary studies are representative of the
review topics. To mitigate external threats, the search
process described in Section III-B is defined after several
trial searches. Moreover, we have tested the coverage and
representativeness of retrieved papers.

VI. CONCLUSIONS

RTR is always heavy manual workload, time-consuming,
tedious, and fallible [2]. To alleviate these problems, there
has been a growing interest in applying IR to automate the
process of recover trace links between requirements artifacts
and other software artifacts [2]. In this SMS, we survey the
state-of-the-art of how IR has been explored to automate
RTR and provide an overview of the research at the
intersection of these two fields. By analyzing the 34 primary
studies, the following conclusions have been obtained:

Firstly, VSM, LSI, JS and TM are the main kinds of IR
models applied to perform RTR during the decade. Besides,
21 enhancement strategies are developed to improve the
performance of these models. Researchers are encouraged to
use multiple strategies to construct a combination approach.

Secondly, CoEST is proved to be the most popular,
convenient and stable source of datasets. Researchers are
encouraged to use various types of open-source datasets as
many as possible. It helps other researchers to reproduce
experiments and validate the proposed approaches.

Thirdly, Precision and Recall are the most common
measures used to evaluate the performance of IR methods.
Also, MAP is the most popular secondary measures.
Researchers are encouraged to evaluate IR methods from
different dimensions by applying different measures.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant No. 62102291.

REFERENCES

[1] O. Gotel and C. W. Finkelstein, "An analysis of the requirements
traceability problem," Proceedings of IEEE International Conference
on Requirements Engineering,1994, pp. 94-101.

5

http://www.coest.org/

[2] B. Wang, R. Peng, Y. Li, et al.,"Requirements traceability
technologies and technology transfer decision support: A systematic
review," Journal of Systems and Software, 2018, 146: 59-79.

[3] M. Saleem,and N. M. Minhas ,"Information retrieval based
requirement traceability recovery approaches-a systematic literature
review," University of Sindh Journal of Information and
Communication Technology, 2018, 2(4): 180-188.

[4] M. Borg, P. Runeson and A. Ardoe, "Recovering from a decade: a
systematic mapping of information retrieval approaches to software
traceability,"Empirical Software Engineering, 2014.

[5] P. Kai, S. Vakkalanka and L. Kuzniarz, "Guidelines for conducting
systematic mapping studies in software engineering: An update, "
Information and Software Technology, 2015, 64:1-18.

[6] C. Wohlin, P. Runeson, M. Host, et al.,"Experimentation in Software
Engineering," Springer-Verlag, Berlin, Heidelberg, 2012.

[7] Y. Zhang, C. Wan and B. Jin, "An empirical study on recovering
requirement-to-code links," 2016 17th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD),pp.121-126.

[8] J. Zhou, Y. Lu and K. Lundqvist, "An Improved VSM-based Post-
Requirements Traceability Recovery Approach Using Context
Analysis," 2013

[9] S. Eder, H. Femmer, B. Hauptmann and M. Junker, "Configuring
Latent Semantic Indexing for Requirements Tracing," 2015
IEEE/ACM 2nd International Workshop on Requirements
Engineering and Testing, 2015, pp. 27-33.

[10] J. Zhou, Y. Lu and K. Lundqvist, "A Context-based Information
Retrieval Technique for Recovering Use-Case-to-Source-Code Trace
Links in Embedded Software Systems," 2013 39th Euromicro
Conference on Software Engineering and Advanced Applications,
2013, pp. 252-259.

[11] H. Kuang, J. Nie, H. Hu, et al., "Analyzing closeness of code
dependencies for improving IR-based Traceability Recovery". 2017
IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2017, pp. 68-78.

[12] N. Ali, Z. Sharafi, Y. G. Gueheneuc, et al., "An empirical study on
the importance of source code entities for requirements traceability,"
Empirical Software Engineering, 2015 ,20(2):442-478.

[13] H. Wang, G. Shen, Z. Huang, et al.,"Analyzing close relations
between target artifacts for improving IR-based requirement
traceability recovery," Frontiers of Information Technology &
Electronic Engineering, 2021,22(7):957-968.

[14] A. Mahmoud, N. Niu and S. Xu, "A semantic relatedness approach
for traceability link recovery," 2012 20th IEEE International
Conference on Program Comprehension (ICPC), 2012, pp. 183-192.

[15] F. Faiz, R. Easmin and A. U. Gias, "Achieving Better Requirements
to Code Traceability: Which Refactoring Should Be Done First?,"
2016 10th International Conference on the Quality of Information and
Communications Technology (QUATIC), 2016, pp. 9-14.

[16] N. Ali, Z. Sharafl, Y. -G. Guéhéneuc and G. Antoniol, "An empirical
study on requirements traceability using eye-tracking," 2012 28th
IEEE International Conference on Software Maintenance (ICSM),
2012, pp. 191-200.

[17] J. Shao, W. Wu and P. Geng, "An Improved Approach to the
Recovery of Traceability Links between Requirement Documents and
Source Codes Based on Latent Semantic Indexing," 13th International
Conference on Computational Science & Its Applications, Springer
Berlin Heidelberg, 2013.

[18] D. V. Rodriguez and D. L. Carver, "An IR-Based Artificial Bee
Colony Approach for Traceability Link Recovery," 2020 IEEE 32nd
International Conference on Tools with Artificial Intelligence
(ICTAI), 2020, pp. 1145-1153.

[19] N. Sannier and B. Baudry, "Toward multilevel textual requirements
traceability using model-driven engineering and information
retrieval," 2012 Second IEEE International Workshop on Model-
Driven Requirements Engineering (MoDRE), 2012, pp. 29-38.

[20] A. Ghabi and A. Egyed, "Code patterns for automatically validating
requirements-to-code traces," 2012 Proceedings of the 27th
IEEE/ACM International Conference on Automated Software
Engineering, 2012, pp. 200-209.

[21] B. Wang, R. Peng, Z. Wang, et al., "An Automated Hybrid Approach
for Generating Requirements Trace Links," 31st International
Conference on Software Engineering and Knowledge Engineering,
SEKE 2019.

[22] N. Ali, Guéhéneuc, Yann-Gal, and G. Antoniol, "Trustrace: Mining
Software Repositories to Improve the Accuracy of Requirement
Traceability Links," IEEE Transactions on Software Engineering,
2013, 39(5):725-741.

[23] N. Ali, F. Jaafar and A. E. Hassan, "Leveraging historical co-change
information for requirements traceability," 2013 20th Working
Conference on Reverse Engineering (WCRE), 2013, pp. 361-370.

[24] D. V. Rodriguez and D. L. Carver, "Multi-Objective Information
Retrieval-Based NSGA-II Optimization for Requirements
Traceability Recovery," 2020 IEEE International Conference on
Electro Information Technology (EIT), 2020, pp. 271-280.

[25] Jyoti and J. K. Chhabra, "Filtering of false positives from IR-based
traceability links among software artifacts," 2017 2nd International
Conference for Convergence in Technology (I2CT), 2017, pp. 1111-
1115.

[26] P Hu B̈ner. "Quality Improvements for Trace Links between Source
Code and Requirements," REFSQ-2016 Workshops, co-located with
the 22nd International Conference on Requirements Engineering:
Foundation for Software Quality, REFSQ 2016.

[27] S. Nagano, Y. Ichikawa and T. Kobayashi, "Recovering Traceability
Links between Code and Documentation for Enterprise Project
Artifacts," 2012 IEEE 36th Annual Computer Software and
Applications Conference, 2012, pp. 11-18.

[28] Jyoti and J. K. Chhabra, "Requirements Traceability Through
Information Retrieval Using Dynamic Integration of Structural and
Co-change Coupling," International Conference on Advanced
Informatics for Computing Research. Springer, Singapore, 2017.

[29] B. Wang, R. Peng, Z. Wang, et al., “An Automated Hybrid Approach
for Generating Requirements Trace Links,” International Journal of
Software Engineering and Knowledge Engineering, 2020.

[30] N. Niu and A. Mahmoud, "Enhancing candidate link generation for
requirements tracing: The cluster hypothesis revisited," 2012 20th
IEEE International Requirements Engineering Conference (RE), 2012,
pp. 81-90.

[31] A. Ghannem, M. S. Hamdi, M. Kessentini and H. H. Ammar,
"Search-based requirements traceability recovery: A multi-objective
approach," 2017 IEEE Congress on Evolutionary Computation (CEC),
2017, pp. 1183-1190.

[32] A. Mahmoud and N. Niu, "Supporting requirements traceability
through refactoring," 2013 21st IEEE International Requirements
Engineering Conference (RE), 2013, pp. 32-41.

[33] R. Jain, S. Ghaisas and A. Sureka, “SANAYOJAN: a framework for
traceability link recovery between use-cases in software requirement
specification and regulatory documents,” 3rd International Workshop
on Realizing Artificial Intelligence Synergies in Software
Engineering, RAISE 2014.

[34] P. Rempel, P. Mäder and T. Kuschke, "Towards feature-aware
retrieval of refinement traces," 2013 7th International Workshop on
Traceability in Emerging Forms of Software Engineering (TEFSE),
2013, pp. 100-104.

[35] R. Tsuchiya, H. Washizaki, Y. Fukazawa, et al., "Interactive
Recovery of Requirements Traceability Links Using User Feedback
and Configuration Management Logs," 27th International Conference
on Advanced Information Systems Engineering, CAISE 2015,
Springer International Publishing, 2015.

[36] A. Mahmoud and N. Niu, "Supporting requirements traceability
through refactoring," 2013 21st IEEE International Requirements
Engineering Conference (RE), 2013, pp.32-41.

[37] J. Zhou, "Requirements development and management of embedded
real-time systems," 2014 IEEE 22nd International Requirements
Engineering Conference(RE), 2014, PP. 479-484.

[38] R. Tsuchiya, H. Washizaki, Y. Fukazawa, et al., "Recovering
Traceability Links between Requirements and Source Code Using the
Configuration Management Log," IEICETransactions on Information
and Systems, 2015, 98-D(4).

[39] N. Ali, H. Cai , A. Hamou-Lhadj , et al., "Exploiting Parts-of-Speech
for effective automated requirements traceability," Information and
software technology, 2019, pp.126-141.

[40] H. Kuang, H. Gao, H. Hu, et al., "Using Frugal User Feedback with
Closeness Analysis on Code to Improve IR-Based Traceability
Recovery," 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC), 2019, pp. 369-379.

6

A framework for Requirements specification of
machine-learning systems

Xi Wang∗† and Weikai Miao‡�
∗School of Computer Engineering and Science, Shanghai University, China

†Shanghai Key Laboratory of Computer Software Testing and Evaluating, Shanghai 201114, China
‡Software Engineering Institute, East China Normal University, China

Abstract—The rapid development of machine learning (ML)
systems has raised many concerns over their quality. Due to
the inherent complexity and uncertainty, most of the traditional
quality assurance techniques have been challenged, including
requirements specification. Current strategies mainly focus on
model extraction from existing neural networks to improve in-
terpretability and facilitate system analysis, but failing to include
user expectations on the system. To handle the problem, this
paper proposes a specification framework for ML requirements
where each ML system is regarded as a set of snapshot systems
along the evolvement process. There are 3 layers in the frame-
work and the hierarchy indicates that higher-level models need
to be built based on lower-level ones. The bottom layer consists
of meta snapshot model and meta data model serving as the meta
models for snapshot systems and data requirements respectively.
The middle layer is for snapshot models each describing a
snapshot system through relations between its outputs produced
with different inputs. The top layer is a learning model capturing
the evolvement process by transitions among snapshot models.
These transitions are activated by data models instantiated from
meta data model. We adopt the specification of a self-driving
system to illustrate the framework.

I. INTRODUCTION

Machine-learning (ML) system has gained much attention
recent years not only for its thrilling achievement on training
intelligent machines but also for the challenging difficulties on
quality assurance [1]. These difficulties mainly come from the
complexity and uncertainty of ML systems since these systems
would adjust their functions themselves through mechanisms
difficult to be understood by human. Challenges are proposed
to all kinds of traditional software quality assurance methods
including requirements modeling [2].

As the key activity in the early stage of software develop-
ment, requirements modeling intends to clarify and describe
expected behaviors in a requirements specification which
serves as guidance for implementation and basis for verifica-
tion. Traditional methods are suitable for deterministic func-
tionalities but can hardly tackle ML systems that constantly
evolve and produce unpredictable results [3]. Some solutions
have been proposed and most of them focus on extraction
algorithms for constructing system model from ML models
[4]. Since their major goal is to facilitate human understanding
and semantic analysis of existing ML systems by interpreting
their learning behaviors with easy-to-digest notations, user
expectation on the ML systems is not involved in the derived
model and the system requirements remains unclear.

Several attempts were made to deal with user requirements
for ML systems. Their most concerned issue is the perfor-
mance of the trained ML models and how it can be defined
and measured [5]. Once these non-functional requirements are
specified, adversarial examples can be accordingly designed
and used as training data to re-train the ML models and
improve their performance. Data set has also gained much
attention as it serves as the key element for distinguishing
ML systems from traditional ones. Researchers are pursuing
standards for evaluating data set quality and guidelines for
deriving high-qualified data set. Besides, there are a few works
on supporting decision making during the requirement stage,
such as the selection of ML models and activation functions.
Necessary requirement information is captured through do-
main analysis and suggested decisions will be accordingly
provided. All these attempts made significant progress in
requirements modeling for ML systems from different aspects,
but there is still lack of systematic method for specifying
system behaviors and their relation with data sets.

To this end, this paper proposes a systematic framework for
requirements specification of ML systems. It adopts feature-
oriented analysis method to specify the included models based
on features and explains the evolvement process of the ML
system as a set of snapshot systems each representing a state
of the ML system during the process. Requirements on data
sets are also included as triggers for snapshot system behaviors
and the transitions among them.

Specifically, the framework is composed of 3 layers and
lower-level models are the basis for higher-level models. The
bottom layer includes 2 meta models. One is meta snapshot
model with environment and system elements for describing
the environment and internal states of the ML system respec-
tively. The other is meta data model with built-in and learning-
relative elements for describing data attributes independent
from and dependent on the ML system respectively. These
elements are organized in feature models that illustrate their
hierarchical relations.

The middle layer consists of the snapshot systems necessary
to be specified. Due to the difficulty in obtaining expected
outputs from a snapshot system, we turn to the output relation
strategy inspired by metamorphic testing [6]. Instead of mod-
eling system behaviors through relations between input and
output, this strategy pays attention to the change of outputs
caused by the change of inputs. It describes a snapshot system

DOI reference number: 10.18293/SEKE2022-0143

7

as a set of relations based on meta models where each relation
connects two outputs produced with a input data model and
its variant respectively.

The top layer is a learning model describing the learning
behavior by transitions among the snapshot systems. Each
transition is labeled with a data model instantiated from its
meta model, indicating that the original system will be evolved
into the destination system by learning from the data model.
Each snapshot system can either be modeled using output
relation strategy or via its relation with the original system
it evolves from.

Our framework covers the important aspects of ML re-
quirements and deals with their complicated relations with
hierarchy. An example self-driving system is introduced to
illustrate the technical details within each layer.

The remainder of this article is organized as follows. Section
II summarizes the related work. Section III explicitly describes
the requirements modeling framework for ML systems with an
example self-driving system. Section IV concludes the paper
and discusses some future works.

II. RELATED WORK

There are mainly 2 kinds of modeling strategies for ML
systems. The first kind extracts simpler models from ML
models to enable human understanding and the application
of existing analysis methods, since ML models are usually
complex and difficult to be understood and analyzed. In [7],
guidance from RNN’s step-wise predictive decisions and con-
text information is provided for extracting weighted automata
from neural network. In [8], a method for learning an FSA
from a trained RNN model is given where the RNN is first
trained and an FSA is learned based on the clustering result
of all hidden states. In [4], probabilistic automata is extracted
from RNN in a request-specific way and the experiment shows
the accuracy and scalability of the method. In [9], the knowl-
edge hidden in pre-trained CNN is interpreted by explanatory
graph where different part patterns are disentangled from each
filter of CNN in an unsupervised manner. Since the above
works are conducted on already implemented ML systems
for revealing their behaviors from black-box, they paid little
attention to user requirements on the system and lack effective
mechanisms for requirements specification. By contrast, our
approach focuses on requirements modeling for ML systems
and provides description framework from various aspects.

The other kind aims at modeling ML requirements from
certain perspectives. In [10], goal-oriented requirements anal-
ysis method is extended as evidence-driven method where
many aspects of decision making remain as hypotheses until
being validated or invalidated by experiments, field tests and
operation. It is conducted at goal level without touching
concrete functions of ML systems. In [11], a logical approach
is given for specifying statistical properties of ML systems
based on a Kripke model. It includes formal notations for
robustness and fairness of classifiers, as well as relations
among properties of classifiers. In [12], definition of fairness
is provided for an effective and scalable automatic testing

method of ML systems in the domain of text classification.
In [13], conventional quality characteristics is extended for
ML systems with its measuring method and a method for
requirements identification is proposed to derive quality char-
acteristics and measurement method. In [14], a data-driven
engineering process is proposed to link the operational design
domain with the requirements on data sets at different levels.
These researches mainly concentrate on non-functional and
data requirements of ML systems, but are still incapable of
specifying their overall expected behaviors. Our framework
intends to bridge the gap by specifying ML systems at 3
different layers in a systematic way to cover both snapshot
and learning behaviors.

III. FRAMEWORK FOR MODELING ML SYSTEMS

Comparing to traditional software which determines its
behavior with programs, ML systems learn from training
data set and evolve themselves towards the target goals.
This fact makes it impossible to adopt traditional modeling
method in specifying ML systems as it is only suitable for
predictable behaviors. Customized modeling method can only
be established when differences between two kinds of software
systems are fully identified. If we take snapshots for a ML
system along its evolving process, a set of simpler systems
can be captured each representing one state of the ML system
reached by learning. The transitions among these states are
triggered by training data, indicating the learning path of the
ML system. According to the above analysis, there are 3
aspects to be included in the requirements of ML systems:
snapshot systems for solving the target problem at different
time points, learning behaviors for transiting among different
snapshot systems and training data for activating the learning
behaviors. To enable the specification of all these 3 aspects
for ML systems, a requirements modeling framework with 3
layers is given as shown in Fig. 1.

Fig. 1. The requirements modeling framework for ML systems

The hierarchy indicates that upper-level models need to be
built based on lower-level ones. The bottom level consists of
two meta models: meta snapshot model as meta model for

DOI reference number: 10.18293/SEKE2022-0143 8

describing snapshot systems and meta data model as meta
model for describing training or testing data set. They provide
general patterns to build various concrete snapshot and data
models for the higher layers.

The middle level adopts the idea of metamorphic relation to
describe concrete snapshot systems since the expected output
is almost impossible to determine. In stead of modeling the
relation between input and output data as in tradition method,
we turn to the relation R(o, o′) between expected output o and
o′ produced by the snapshot system with input data D and D′

respectively. For each pair of different input data D and D′,
either corresponding concrete data models or their relations
need to be established based on meta data model. With the
common elements from meta snapshot model, relation R(o, o′)
can be described as properties of relevant elements.

The top level deals with learning behaviors by describing the
evolvement of the ML system based on training data sets. Al-
though learning process is continuous, expected requirements
can be reflected by important transitions each representing a
measurable change of the ML system made by learning from
certain kind of data set. A transition connects two snapshot
models m and m′ before and after the corresponding change
and is labeled with a data model D instantiated from its meta
model. It indicates the learning process where the ML system
will be transited from snapshot system m to m′ if being trained
with data set D. The change made by D can also be described
as a relation R(m,m′) between m and m′ if necessary.

We will present the details of each layer with an example
of self-driving system which fully controls the movement of
vehicles and evolves by learning from animation on labeled
route and driving scenarios.

Meta model

The bottom-level meta snapshot model and meta data model
aim at capturing the basic elements for composing concrete
snapshot model and data model. We adopt Feature-oriented
Analysis Method to specify these elements with feature model
illustrated as tree structure [15]. Each node of the tree repre-
sents an element and its children nodes decompose the element
into lower-level elements. There are 4 kinds of children nodes:
mandatory element, optional element, alternative elements
where only one element can be included and or elements
where at least one element must be included. There are 2 kinds
of dependency relations among elements: requires indicating
the inclusion of certain element requires for the inclusion of
another one and excludes indicating that only one of the two
elements can be included.

Meta snapshot model consists of environment and system
elements. The former indicates the factors that would affect
system behaviors from outside of the system and the latter
indicates system variables determining the state of the system.
Fig.2 gives the partial feature model of the environment
elements for the example self-driving system. It shows 4
of the mandatory environment elements with some of their
children elements: the weather condition, the local policy such
as driving on left side and other governmental policies, the

brightness, the road scenes such as the traffic signs erected
above roads to give instructions, jam or intersection scenarios
and various obstacles.

Fig. 2. The feature model for environment elements of the self-driving system

Fig.3 shows the partial feature model of the system elements
for the self-driving system. To specify the system behavior, its
steering angle, velocity and route are 3 of the elements that
must be clarified. Two of the optional elements performance
and windshield-wiper will be specified as various metrics and
wiping intervals respectively. Two example metrics are given:
latency of the behavior and the accuracy of object detection
and trajectory prediction. The element detect is defined as a
mapping obj → a denoting the accuracy a of detecting object
obj.

Fig. 3. The feature model for system elements of the self-driving system

Dependency relations can also be established among the
above elements. For example, elements rainy requires for
wiper since the windshield-wiper needs to be turned on for
rainy days.

Meta data model includes built-in and learning-relative
elements which represent data attributes independent from
or depending on the specific learning system respectively. A
concrete data model can be obtained by specifying the values
of or properties on these elements. For built-in elements, one
unified feature model is sufficient since they are shared by
concrete data models fed to different ML systems. But for
learning-relative elements, different feature models need to be
built for different learning systems since their definitions are
given based on the specific ML systems.

The partial feature model of built-in elements is given in
Fig.4 with one of the optional elements and three of the
mandatory elements. For each data set, we can decide whether
to specify its collection and expire date but must at least
clarify the representation of the involved data, the source of

DOI reference number: 10.18293/SEKE2022-0143 9

the data and its labeling method. Four example representations
are given and each representation is attached with its own at-
tributes, such as the size and resolution of image data. With the
rapid development of Multi Modal Machine Learning, more
and more data sets are provided in multiple representations.
Our feature model allows for multiple representations through
or children elements of representation where relation denotes
the correspondence between data in different representations.
For example, multi-modal data set nuScenes includes images
from camera, pointclouds from Lidar, the returns from Radar
sensors and human annotated semantic map for the same
obstacles to train self-driving systems with complementary
data [16].

Fig. 4. The feature model of meta data model built-in elements

Learning-relative elements are created for each specific
ML system since learning-relative requirements on data sets
depends on what to be learned from them. Involving essential
environment and system elements of functions to be learned
for solving the target problem, meta snapshot model serves
as the basis for achieving learning-relative elements. Fig. 5
provides a feature model template for learning-relative ele-
ments of specific ML systems. The semantic of a data set
must be specified by a set of pairs es− pair1, ..., es− pairn
each es − pairi = (Propenv, P ropsystem) representing an
environment-system pair where Propenv indicates an instan-
tiated environment model and Propsystem indicates a concrete
system model. With well-defined environment and system
state, each pair corresponds to a kind of scenarios and the
universal set of pairs is able to capture all the behaviors to be
learned from the data set by the ML system. Optional element
metrics represents measurements on the data set including one
or more of its attributes.

Fig. 5. A template for the feature model of meta data model learning-relative
elements

For the example self-driving system, the semantic of its
data sets is interpreted through property pairs on its own envi-
ronment and system elements. Domain-specific attributes are

attached to element metrics: diversity measuring dissimilarity
among closest and furthest samples, distribution measuring the
distribution of data samples in the context of certain features,
complexity measuring the complexity of objects within the
traffic scenes.

It should be noted that the presented example meta models
are only partially given and new domain-dependent elements
may need to be introduced as the relevant domain develops.
These meta models should be maintained by analyst and
domain experts to provide advanced information for concrete
model construction.

Snapshot model

A snapshot system can be regarded as one of the states
of the ML system. It takes a data set as input and transfers
itself to a new system state. Since the input data provides
specific settings on environment and system initialization, its
data model contains only one environment-system pair.

Theoretically, the behavior of a snapshot system is determin-
istic because of the pause of the evolvement at that time point.
However, instead of executing under man-made instructions,
the snapshot system leads its own complicated implementation
process with the given training data, making itself a black-box
difficult to be understood and analyzed. Even at requirements
stage, expected functions remain unclear because they are
hidden in the training data. In most cases, we found ourselves
trapped in a dilemma where solutions achieved by ML systems
cannot be interpreted but need to be modeled and verified.
Although we could simply define the relation between inputs
and outputs in some cases, such as correctly recognizing or
never crashing on a pedestrian, but such requirement contains
little effective information and can hardly contribute to system
verification.

Inspired by metamorphic testing, we revealed users’ expec-
tation on system behaviors when making certain change to
input data and thus define snapshot model as follows.

Definition 1. Given a snapshot system S with its input domain
DMS consisting of data models, the snapshot model of S
is a set RT1

1 , ..., RTn
n and each RTi

i represents a relation
formulation ∀D∈DMS

· S(DTi) = [S(D)]T
′
i where Ti denotes

a kind of transformational relation between data models, DT

denotes the data model obtained by performing transformation
T to data model D, S(D) denotes the system state of S after
receiving data model D, and [s]T denotes the state achieved
by conducting transformation T on the original state s.

According to the definition, each snapshot system is mod-
eled as a set of behavior relations between different system
states caused by transformations on the original input data
models. For each behavior relation, the change of any input
data model by the given transformation should result in
system state reached from its original state with the same
transformation. Transformation on data model is described
based on the built-in and learning-relative elements from meta
data model while transformation on system state is described
based on system elements from meta snapshot model.

DOI reference number: 10.18293/SEKE2022-0143 10

We will take the self-driving system as an example to
illustrate the definition. Assume the system has evolved to
certain snapshot version S, the following are some example
relations established for the corresponding snapshot model.
Note that we use τ(m,< e >) to denote the value of element e
within model m and σ(m,< e >) to denote a model different
from m in the way they specify element e.

Exchange of start and end point: As one of the key
functions in self-driving system, navigation component guides
the vehicle from start to the end point with the generated
route. It is difficult to specify our requirement on the resultant
route, but we expect the fact that exchanging the start and end
point should result in a new route similar to the original one
under the same traffic condition. The corresponding relation
formulation is given as follows.
∀D,DT∈DMS

· τ(D,< start >) = τ(DT , < end >)
∧τ(D,< start >) = τ(DT , < end >)

⇒ dist(τ(S(D), < map >), τ(S(DT), < map >)) < ε
The difference between route map and map′ is measured

by function dist(map,map′) and the threshold ε needs to be
given by domain expert.

Change of weather : This relation can be established for
driving scenarios under different weather conditions. Although
some system elements maybe specified in different ways under
different weather conditions such as wiper, but there should
not exist long distance between steering angles since steering
angle largely depends on road scenes rather than weather
conditions. The relation formulation is given as follows.
∀D∈DMS

·| τ(S(D), < steer >)−
τ(S(σ(D,< weather >), < steer >) |< ε

The threshold ε measures the distance between steering
angles in the systems states led by different data models and
needs to be given by domain expert.

Perturbations to traffic signs: Correct recognition of traffic
signs is crucial to the safety of self-driving vehicles and
perturbations to them should not affect the recognition result.
This is also an important and verifiable property for the
detection of pedestrians and other obstacles, we will take
traffic signs as an example for illustration. The corresponding
formulation is given as follows.
∀D,DT∈DMS

·dist(τ(D,< sign >), τ(DT , < sign >)) < ε
⇒ S(D) = S(DT)

If the distance between the original sign and the perturbed
one is less than the given threshold ε, the behavior of the
snapshot system should be consistent.

Learning model

Based on the definition of snapshot models, the top-level
learning model can be regarded as a state transition diagram
where each state represents a snapshot system and each tran-
sition represents the evolvement of the ML system activated
by training data. The formal definition is given as follows.

Definition 2. The learning model of a ML system is a 4-
tuple (M, s0, DM, δ) where M is a non-empty set of snapshot
models, s0 ∈ M is the model of the initialized ML system,

DM is the universal set of involved data models and δ :M ×
DM → M is the transition function relating two snapshot
models by a data model.

Connecting the identified snapshot models by transitions
labeled with data models, the learning model traces the ex-
pected learning process of the corresponding ML system. Each
snapshot model can either be defined as a set of relations
between outputs produced by different inputs or a relation to
its original model. Each data model is specified as a set of
properties on its meta data model.

Fig. 6 gives a partial learning model for the self-driving
system. It includes 4 snapshot models as critical learning
points and 3 data models as learning materials contributing to
the evolvement. The self-driving system is initially a snapshot
system m0 with all parameters of the neural network set as
random values. After we train m0 with data sets as described
in D1 or D2, the ML system will be evolved into snapshot
system m1 or m2. These two different transitions come from
user expectation on customizing the self-driving system for
specific customers and markets. Snapshot system m1 and m2

intend to serve the countries or areas driving on left and right
respectively and their corresponding training data D1 and D2

should provide videos and images under different policies.

Fig. 6. An example learning model for the self-driving system

Specifically, data models D1 and D2 are described as a set
of properties based on the pre-defined meta data model. Table
I lists some example properties where parent.child denotes
the value of the children element child of element parent.

TABLE I
THE PROPERTIES FOR DATA MODEL D1 AND D2

D1

∀es−pairi∈τ(D1,<semantic>)·
es− pairi.env.policy.side = L

τ(D1, < representation >) = {video}∧
τ(D1, < video.size >) > 10000h

τ(D1, < distribution >) =

P (τ(D1, < scenario >) = jam) > 0.7

D2

∀es−pairi∈τ(D2,<semantic>)·
es− pairi.env.policy.side = R

τ(D2, < representation >) = {image}∧
τ(D2, < image.resolution >) > 600ppi

τ(D2, < distribution >) =

P (τ(D2, < light >) = dark) > 0.9

Training data in D1 satisfies at least 3 properties: all traffic
scenarios are under the policy of driving on the left, video is
the only format and the size should be more than 10000 hours,
more than 70% of environment settings involve traffic jam.

DOI reference number: 10.18293/SEKE2022-0143 11

Large portion of the videos are required to capture scenarios
of traffic jam and the resultant system m1 is supposed to
be applied for metropolitan areas. There are also 3 example
properties for D2: all traffic scenarios are under the policy
of driving on the right, image is the only format and the
resolution should be more than 600 ppi, more than 90% of
environment settings are in dark. Most of the training images
are in dark environment and system m2 is expected to support
truck drivers.

The more properties we specify, the more effective training
data we can collect for achieving expected snapshot systems.
As the basis for property description, element structures in
meta models need to be enriched through the cooperation of
software and domain experts.

Snapshot model m1 and m2 can be built by establishing
relations between output from different input, as we have men-
tioned in the middle layer. They are not explicitly described
due to the sake of space.

Learning from data model D3, m1 will be further evolved
into m3. Training data in D3 should be collected with signs
satisfying the following property.
∀es−pairi∈τ(D3,<semantic>) ·∀sign∈es−pairi.env.traffic.sign·
∃obj→a∈τ(m1,<detect>) · a > 0.9 ∧ dis(sign, obj) < ε

According to the property, all the driving scenarios in
D3 involve adversarial samples for sign recognition. After
conducting the transition from m1 to m3, the robustness of the
system will be improved in terms of the following accuracy
relation between m1 to m3.
∀obj→a∈τ(m3,<detect>) · a > [τ(m1, < detect >)](obj)
It formally states that the accuracy in object detection will

be increased after the evolvement from snapshot system m1

to m3.
At requirement stage, learning model serves as a study plan

for guiding the implementation of learning strategy. Mean-
while, it’s detailed description on transitions among snapshot
systems facilitates system traceability and maintenance.

IV. CONCLUSIONS

This paper intends to take our first step towards systematic
requirements modeling method for ML systems. A framework
with 3 layers is proposed where lower-level models serve as
basis for high-level models. The bottom-level provides meta
models for describing environment, system state and data. The
middle level consists of snapshot models for describing the be-
haviors of the ML system at certain learning point and the top
level is a learning model that describes learning behavior by
transitions among snapshot models. This framework enables us
to understand and analyze ML systems at requirements stage
and bridges the gap between system modeling and validation.

Our case study demonstrates the framework with a partial
model for simplicity. Its performance on large-scale systems
needs to be evaluated by applying it in real settings. As the
number of elements in meta models increases, the establish-
ment of relevant properties will be much more difficult. How
to facilitate model construction for each layer is one of our
future works. Furthermore, a supporting tool also needs to

be developed in the future to alleviate the burden of model
construction, analysis and management.

ACKNOWLEDGMENT

This work is supported by the NSFCs of China (No.
61872144, No. 61902234 and No. 61872146) and National
Social Science Foundation (No. 17AZX003).

REFERENCES

[1] M. Chechik, “Uncertain requirements, assurance and machine learning,”
Proceedings of the IEEE International Conference on Requirements
Engineering, vol. 2019-Septe, pp. 2–3, 2019.

[2] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine
learning change software development practices?” IEEE Transactions
on Software Engineering, vol. 47, no. 9, pp. 1857–1871, 2021.

[3] K. Ahmad, M. Bano, M. Abdelrazek, C. Arora, and J. Grundy, “What’s
up with Requirements Engineering for Artificial Intelligence Systems?”
Proceedings of the IEEE International Conference on Requirements
Engineering, pp. 1–12, 2021.

[4] G. Dong, J. Wang, J. Sun, Y. Zhang, X. Wang, T. Dai, J. S. Dong, and
X. Wang, “Towards Interpreting Recurrent Neural Networks through
Probabilistic Abstraction,” Proceedings - 2020 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2020,
pp. 499–510, 2020.

[5] K. M. Habibullah and J. Horkoff, “Non-functional Requirements for
Machine Learning: Understanding Current Use and Challenges in Indus-
try,” Proceedings of the IEEE International Conference on Requirements
Engineering, pp. 13–23, 2021.

[6] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations
for enhancing system understanding and use,” IEEE Transactions on
Software Engineering, vol. 46, no. 10, pp. 1120–1154, 2020.

[7] X. Zhang, X. Du, X. Xie, L. Ma, Y. Liu, and M. Sun,
“Decision-Guided Weighted Automata Extraction from Recurrent
Neural Networks,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 13, pp. 11 699–11 707, 2021. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/17391

[8] B. J. Hou and Z. H. Zhou, “Learning with Interpretable Structure from
Gated RNN,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 7, pp. 2267–2279, 2020.

[9] Q. Zhang, R. Cao, F. Shi, Y. N. Wu, and S. C. Zhu, “Interpreting
CNN knowledge via an explanatory graph,” 32nd AAAI Conference on
Artificial Intelligence, AAAI 2018, pp. 4454–4463, 2018.

[10] F. Ishikawa and Y. Matsuno, “Evidence-driven Requirements Engineer-
ing for Uncertainty of Machine Learning-based Systems,” Proceedings
of the IEEE International Conference on Requirements Engineering, vol.
2020-Augus, pp. 346–351, 2020.

[11] Y. Kawamoto, Towards Logical Specification of Statistical Machine
Learning. Springer International Publishing, 2019, vol. 11724 LNCS.
[Online]. Available: http://dx.doi.org/10.1007/978-3-030-30446-1_16

[12] P. Zhang, J. Wang, J. Sun, X. Wang, G. Dong, X. Wang, T. Dai, and
J. S. Dong, “Automatic Fairness Testing of Neural Classifiers through
Adversarial Sampling,” IEEE Transactions on Software Engineering,
vol. 5589, no. c, pp. 1–20, 2021.

[13] K. Nakamichi, K. Ohashi, I. Namba, R. Yamamoto, M. Aoyama,
L. Joeckel, J. Siebert, and J. Heidrich, “Requirements-driven method to
determine quality characteristics and measurements for machine learning
software and its evaluation,” Proceedings of the IEEE International
Conference on Requirements Engineering, vol. 2020-Augus, pp. 260–
270, 2020.

[14] R. Zhang, A. Albrecht, J. Kausch, H. J. Putzer, T. Geipel, and P. Hal-
ady, “DDE process: A requirements engineering approach for machine
learning in automated driving,” Proceedings of the IEEE International
Conference on Requirements Engineering, pp. 269–279, 2021.

[15] P. Höfner, R. Khedri, and B. Möller, “An algebra of product families,”
Software and Systems Modeling, vol. 10, no. 2, pp. 161–182, 2011.

[16] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “Nuscenes: A multimodal
dataset for autonomous driving,” Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, no.
March, pp. 11 618–11 628, 2020.

DOI reference number: 10.18293/SEKE2022-0143 12

https://ojs.aaai.org/index.php/AAAI/article/view/17391
http://dx.doi.org/10.1007/978-3-030-30446-1_16

Requirements debt: causes, consequences, and
mitigating practices

Viviane Duarte Bonfim
Community University of Region from Chapecó

Chapecó, Brazil
Federal University of Santa Catarina

Florianópolis, Brazil

Fabiane Barreto Vavassori Benitti
Federal University of Santa Catarina

Florianópolis, Brazil
fabiane.benitti@ufsc.br

viviane.duarte@posgrad.ufsc.br

Abstract—Background: Agile development was an
important initiative that changed the traditional way of
developing software into an agile development process.
Action is more important than the process in the agile
world, and requirements and documentation do more harm
than good. However, when developing requirement
engineering activities inadequately, they motivate the
emergence of problems that directly affect the development,
which can incur requirements debt. Aim: This study
investigates the causes of requirements debt that incur
requirements debt and actions that can minimize and or
avoid them inside the context of agile software development.
Method: To fulfill the objective, we performed qualitative
research, supported by data analysis suggested by
Grounded Theory, with 19 subjects in 13 agile organizations
at a national and international level in different segments.
Results: At the end of this study, we proposed a theoretical
model containing the requirements debt causes and their
effects and practices that might mitigate them, and the
relation between these three factors.

Keywords - Agile Requirements Engineering; Agile
Software development; Requirements Debt.

I. INTRODUCTION
The current software development scenario is characterized

by the broad adoption of agile methodologies [1] because the
Agile Development Software (ADS) is, more and more, gaining
space due to its crescent popularity and the possibility of quick
and continuous deliveries [2]. It speeds up the development and
adapting to the changes along the developing process. These
changes suggest a flexible approach to software development,
including Requirements Engineering (RE) [3].

Traditionally, the RE activities are developed separately
from the development and design process and are documented
in specific artifacts, promoting a formalization during this
process [4]. In agile Requirements Engineering, the
requirements are defined gradually along with the interaction

DOI: 10.18293/SEKE2022-114

between stakeholders and the developing team, without meeting
the same formalization and, therefore, are not always adequately
documented [4] in contrast to what the RE recommends [5],
promoting a lack of standardization in the activities that
comprise it [6].

The absence of a good requirements process may cause the
RE conduction steps to fail, generating consequences such as
misunderstood, omitted, ill-defined, and poorly specified
requirements, including technical debts. Cunningham originally
proposed in 1992 the approach as a metaphor for the term
Technical Debt (TD), referring to the coding practices intending
to help developers monitor the immature software code. This
metaphor is related to software failure, generally motivated by
development shortcuts or to the commitments made by
developers to meet an urgent demand, convenient in the short
term. With time, this concept evolved to other development
stages, manifesting itself at the Requirements Engineering stage,
also known as Requirements Debt1 [8]. The requirements debt
corresponds to failures in the requirements specification,
characterizing the distance between the desired specification of
requirements and the actual implementation of these
requirements in the system [9]. A study performed by Ernest
[10] initially revealed the requirements debt concept frequently
adopted by researchers that address technical debt. These debts
are still poorly understood by organizations, thus hindering the
perception of their causes and their consequences. Hence, it
becomes complex to prevent and treat them [11].

This research investigates the causes of the generated
requirements debt, their consequences, and their mitigation
actions. This study aims to allow agile organizations to
understand better the scenario involving requirements debt and,
in this way, mitigate them, improving their practices, aiming to
prevent these debts and reduce the cost of their payment [12].

This article presents in section II the related works and, in
section III, the research method adopted. Section IV presents the
proposed theoretical model. Section V describes the results that
supported the research. Section VI presents the threats to the
validity of the research. Section VII addresses the conclusions,
limitations of the study, and suggestions for future work.

1 The term initially proposed by [10] is characterized by technical debt in
requirements, but recent studies address it as requirements debt [13], which this
article adopts.

13

II. RELATED WORK
In the literature, several works involve research to

investigate the conceptualization of technical debts in general,
such as the work prepared by Freire et al. [12]. The researchers
used data from the InsighTD project, which includes a set of
surveys aimed at studying technical debts in Software
Engineering, to investigate preventive actions that, if adopted,
can curb the occurrence of technical debts and the difficulties in
adopting these actions. The study proposed by Ramač et al. [14]
demonstrates the understanding of the TD concept, together with
data characterizing the causes and effects of TD in the
information technology (IT) industry located in Serbia, obtained
from 93 professionals.

However, few studies have investigated the requirements
debt, such as the work developed by Lenarduzzi and Fucci [13].
The research carried out by Lenarduzzi and Fucci [13] presented
a definition of requirements debt (ReD) that includes the debt
incurred during the identification, formalization, and
implementation of requirements. Lenarduzzi and Fucci [13]
proposed three types of requirements debt: Type 0: Incomplete
user needs; ReD Type 1: Requirement smells; ReD Type 2:
Incompatible implementation. The authors suggested concepts
and strategies for detecting, quantifying, and reimbursing each
type.

The research developed by [13] is the only literature found
that explores requirements debt and was peer-reviewed.
However, they do not examine the evidence that causes the
requirements debt, their effects, and strategies to prevent them.
In this sense, no studies aim to investigate and identify the causes
of requirements debt and their consequences and the practices
that can mitigate these debts, specifically in the context of agile
development, evidencing the need to carry out studies in this
area.

III. RESEARCH METHOD

For the development of this research, an empirical study was
carried out, following a qualitative approach guided by the
Grounded Theory (GT) data analysis techniques supported by
Charmaz's perspective [15]. Fig. 1 displays the flow of
development of the research.

Figure 1. The process carried out during the research

2 Free and Clarified Consent https://forms.gle/uYFaoptYoAopKeuX6.

The choice for GT is justified by its acceptance in the area of
Software Engineering [16], as it facilitates the investigation of
social and human aspects [17], and even being used to support
data analysis, it results in consistent and valuable explanations
about the phenomenon found [18], motivating the choice for this
approach.

A. Research Question

This research aims to identify the causes that generate
requirements debt and their effects, aiming at the activities of
Requirements Engineering in agile organizations and actions
that can mitigate the causes of these debts.

In this way, after the conclusion of the GT, it is possible to
answer the following research questions:

RQ 1. What are the causes of requirements debt found in
agile organizations?

RQ 1.1 What are the consequences of requirements debt?

RQ 2. What practices do agile organizations employ that can
minimize requirements debt?

B. Data Collection

The analyzed data comes from the reports of 19
professionals in 13 agile organizations from 5 different
countries (Brazil, France, Portugal, United Arab Emirates, and
Belgium).

The research participants were selected from the
researchers' contact networks or by indications from the
companies' employees. The participants were contacted via e-
mail, considering different profiles of employees, such as area
of activity and the segment of companies, demonstrating
through this diversity that theoretical sampling was achieved in
the study, as shown in Table I. After the company and
employees agreed to participate in the research, both filled out
the consent form2, and data collection took place.

It is relevant to mention that the participants did not need to
be familiar with the term technical debt because if this aspect
occurred during the interview, the researcher had the means to
contextualize it to the participants.

The two instruments used for data collection were online
interviews and a questionnaire. The chosen interview is semi-
structured [19], as it has a previously defined script to help the
interviewer in its conduction, yet, it is also supported by open
questions [20]. The questionnaire3 preparation considered the
questions adopted in the interview. It was available through a
form, and a single participant answered it. The participant
belonged to a company located in Portugal. Such was the
chosen process due to its availability and preference.

The interviews and questionnaire addressed aspects related
to Requirements Engineering and Technical Debt in agile
organizations and were recorded, with the participants'
permission, followed by their transcripts, totaling 171 pages and

3 Questionnaire: https://forms.gle/nRoMnSGBn1ijszQ8A.

14

approximately ninety thousand words between interviews and
questionnaire.

It is noteworthy that the data collection and analysis ended
only when the research reached theoretical saturation (when no
new data emerged to add to the study [15]).

TABLE I. PROFESSIONALS PARTICIPATING IN THE RESEARCH

C. Data Analysis

In the data analysis, coding techniques were used based on
the Grounded Theory (GT) approach, supported by Charmaz
[16], consisting of two steps for data coding: initial and focused.
The GT assisted in the coding and data interpretation, and the
MaxQda tool (https://www.maxqda.com/) supported
performing the data analysis.

1) Initial Coding
Initial coding is the first step of data analysis following the

constructivist approach [21], in which data are carefully
examined, with line-by-line or segmental analysis of all
transcribed material resulting from data collection [15]. With
each interview or questionnaire, the transcription of the new
data was coded and constantly compared with existing data.
Table II presents segments giving rise to the different codes
created, as reported by the research participants. We presented
just a few examples of coded segments to support and represent
the initial coding process.

TABLE II. EXAMPLES OF PARTICIPANT REPORTS

When a particular segment was selected, some related
concept was verified. The new segment was associated with the
existing code according to its similarity, proximity, and
relationship to the created code. If it did not relate to an existing
one, the analyzed segment resulted in a new code—all codes
aimed at the software development process and related to
Requirements Engineering and Technical Debt.

After several sessions of iteration and comparison between
the data, at the end of the initial coding, 2599 coded segments
were obtained, extracted from the interviews and questionnaire,
and grouped into 27 codes, shown in Table III. Next to each
code is its incidence (number of coded segments related to a
given code).

TABLE III. CODES LIST

2) Focused Coding

According to the GT approach used, focused coding is the
second stage of the coding process. In this step, the researchers
analyzed the most relevant initial codes and organized them into
subcategories and provisional categories that originated the
final categories after refinement sessions. The grouping into
categories and subcategories occurred according to identified
similarities and differences [15], mapped and refined during
comparative cycles in the data analysis, establishing
connections between the categories and subcategories
distributed in the following contexts: Technical Debt,
Requirements Engineering, Agile Methodologies of
development [22].

As a result, the researchers identified the main category of
the research, represented by “Factors that impact Requirements
Engineering” and its three final categories: “Causes that
Generate Requirements Debt”; “Consequences that
Characterize Requirements Debt”; and “Practices that can

15

reduce and/or address requirements debt.” The categories have
a set of subcategories that reflect the evidence of each of them.
Tables IV, V, and VI show the subcategories. We chose this
color model to match the theoretical model’s subtitles in section
IV. This evidence summarizes the reports verbalized by the
participants during the data collection sessions and the
interpretations made by the researchers and demonstrates
perceptions conditioned to causes, consequences, and practices.

TABLE IV. “CAUSES THAT GENERATE REQUIREMENTS DEBTS”
- CATEGORY, SUBCATEGORIES AND EVIDENCES

TABLE V. “CONSEQUENCES THAT CHARACTERIZE
REQUIREMENTS DEBTS” - CATEGORY, SUBCATEGORIES AND

EVIDENCES

TABLE VI. “PRACTICES THAT CAN REDUCE AND/OR ADDRESS
REQUIREMENTS DEBTS” - CATEGORY, SUBCATEGORIES AND

EVIDENCES

The focused coding, when completed, made it possible to

build the theoretical model that underlies the entire study
through the inductive/deductive process.

IV. THEORETICAL MODEL

The GT's coding theory supports the theoretical model
presented in Fig. 2 and portrays the result of data analysis.
During the elaboration of the theoretical model, it considered
some findings that emerged from the data, supported by the
analytical resources of the MaxQda tool.

Figure 2. Proposed Theoretical Model

Three factors (categories) that impact Requirements
Engineering characterize the model. The categories appear in
three columns: Consequences highlighting the requirements
debt themselves in the first column. In the central column are
the causes for requirements debt, and in the third column, the
practices that can minimize the causes and, consequently, the
requirements debts.

The arrows employed define the relationship between these
factors, indicating the causes that incur requirements debt and
which practices can minimize or avoid them and consequently
the debts. The option for the different styles and colors of the
arrows intends to facilitate the understanding and legibility of
the theoretical model.

16

A. Data Validation

The research data validation occurred with the participants
by completing a form4 after elaborating the theoretical model.
The issues involved in the form are associated with the three
factors that impact Requirements Engineering: Causes of
requirements debt, their consequences, and the practices that
can mitigate these debts. Of the 19 research participants, 10
participated in data validation5, as some had left the companies
they worked for at the time of data collection, and the other
participants did not complete the validation form.

V. RESULTS

According to the model proposed in section IV, we
identified eight leading causes that generate requirements debt,
seven consequences that characterize the emergence of debts,
and 16 possibilities of practices that can prevent and or treat
these causes and consequently curb requirements debt.

After concluding the research, we believe that the
theoretical model answered the research questions, establishing
a connection between the categories, subcategories, and
evidence resulting from the data analysis, unifying them,
allowing a better understanding and identification of the causes
that incur requirements debt and alternatives to minimize them.

The results obtained can help companies understand the
causes of debt requirements, their effects, and what actions they
can take to mitigate such debts. In the following sections, the
participants' reports exemplify at least one cause, one
consequence, and one practice due to space restrictions.

A. RQ 1. What are the causes of requirements debts found
in agile organizations?

Among the observed causes for requirement technical debt,
the most reported cause was “Absence of requirements”,
evidenced by 13 participants. According to the mentions, the
"absence of requirements" is a cause of requirements debt,
perceived after delivery. Such debts point out that during the
requirements analysis stage, the teams should refine a particular
request to prevent identifying the absences only after delivery,
as reported by PC1. According to the interviewees, the lack of
understanding or initial alignment may reflex this cause.

 “The absence of requirements causes a lack of adherence
to the developed software. When this occurs, it is necessary to
return to the requirements process to correct them, update
them, and the following phases of the development process. This
absence generates rework and additional cost, making the
software development process more complex”6. – PC1, Scrum
Master.

4Example of data validation:
https://www.survio.com/survey/d/P7H8V2F7G2T4F7A4E

5 Data Validation Results:
https://drive.google.com/file/d/14m_cvUfuto8hrWJ1AD5_o0bFs_Xj7kd8/vie
w?usp=sharing

B. RQ 1.1. What are the consequences of Requirements
Debt?

We considered the consequence most frequently mentioned
by the participants. The main one identified: “They do not
develop everything – Accumulation or excess of the backlog
over time,” with 10 citations. The consequence mentioned
makes management difficult, compromising the requested
requirements, and often, no practice is adopted to facilitate
monitoring. According to research participants, this
accumulation occurs due to changes in priorities, as highlighted
by PJ, since, with the backlog growing disproportionately, some
requirements may be disregarded and never developed.

“We did not respond to everything that was requested. Many
things that stay in the backlog are due to other requests, and
they are priorities related to those in the Backlog”. - PJ,
Software Engineer.

C. RQ 2. What practices do agile organizations employ that
can minimize requirements debt?

Among the practices that can mitigate the requirements
debt, we present the most expressive for the study, as reported
by the participants: “Managing the Requirements, deliveries,
delays, backlog, and progress,” revealed by 15 participants. As
highlighted in the interviews, the practice of “Managing the
Requirements, deliveries, delays, backlog, and progress” allows
controlling and monitoring the progress of requirements
through their status, such as if they are already met, if they need
development, and if they are late. It is also possible to track
what is in the backlog, how long a particular demand or
requirement remains there, and the requirements awaiting
development. Some companies mentioned that to manage their
requirements, they use specific tools because it allows them to
explore the visualization of the status of each
functionality/requirement through representative graphics, as
mentioned by PJ.

“An Agile Board monitors all the steps: What is in the
backlog, what is under analysis, awaiting development, in
development, awaiting review, in review, awaiting test, in test,
ready. Each of the requirements is in one of these blocks. In
addition, we have the Burndown where we verify and follow up
the deliveries concerning the sprint time”. Agile Board
integrates with Redmine. - PJ, Software Engineer.

VI. THREATS TO VALIDITY

There were mechanisms adopted in this study to mitigate
some threats, highlighting some points described below.
Focusing on construction validity, during the development of
the study, we sought to explore the data collection instruments
(interview and questionnaire) with participants from different

6 It is noteworthy that in the GT, transcripts must occur in full according to the
participant´s speech. However, to provide better compression, there were some
adaptations without changing context due to the article´s language.

17

countries and segments to absorb a significant set of data until
data saturation occurred. When a participant did not understand
a term or question in the interviews, the researcher was
available to clarify. The same happened for questions related to
filling the questionnaire out.

Considering the internal validity, the researcher's
interpretation during the data coding was possibly not as
faithful to the portrayed data from the interviews and
questionnaire as it should be. This interpretation could reflect
on the study´s results, even when the researchers reanalyzed the
data when any doubts would arise. To minimize possible
limitations, the research participants validated the results of the
data analysis. However, of the nineteen research participants,
ten participated in the validation, which can also characterize a
threat to validity. A systematic study is underway to mitigate
the threat regarding data validation. Said study will support
validation and potentialize the obtained in this research.

VII. CONCLUSIONS AND FUTURE WORK

This article presented a study on the state of practice
regarding the Requirements Debt involving 19 participants
from agile organizations in different segments located in 5
countries. The research contemplated a qualitative approach
supported by Grounded Theory data analysis techniques.

This study made it possible to observe that organizations do
not have mechanisms to identify and recognize their
requirements debts, and as a consequence, they do not manage
such debts, making their mitigation difficult. To help
organizations minimize these weaknesses, the theoretical model
we propose synthesizes the results of this research. The
theoretical model demonstrates the relationship between the
identified categories and evidence, allowing agile organizations
to recognize which causes generate requirements debts and their
incurred debts for a better understanding and ways to minimize
them by adopting the recommended practices.

In future work, we intend to provide a library of practices
through a platform, suggesting a set of practices that help agile
organizations minimize or mitigate requirements debt,
regardless of the adopted process. We also mean to provide
ways for companies to recognize the causes of requirements
debt and their already existing debts to facilitate the
implementation of practices.

REFERENCES
[1] N. Rios, M. Mendonça and C. Seaman. “Causes and effects of the

presence of technical debt in agile software projects”. Twenty-fifth
Americas Conference on Information Systems, AMCIS, 2019.

[2] K. Elghariani and N. Kama. “Review on agile requirements
engineering challenges”. 3rd International Conference on
Computer and Information Sciences (ICCOINS), August. 2016.
DOI: 10.1109/ICCOINS.2016.7783267.

[3] E. Schön, D. Winter, M. J. Escalona and J. Thomaschewski. “Key
challenges in agile requirements engineering”. International
Conference on Agile Software Development: Agile Processes in
Software Engineering and Extreme Programming, pp. 37-51, April
2017.

[4] E. Bjarnason, K. Wnuk and B. Regnell. “A case study on benefits
and side-effects of agile practices in large-scale requirements
engineering.” AREW '11: Proceedings of the 1st Workshop on
Agile Requirements Engineering, pp. 1-5, July 2011. DOI:
https://doi.org/1.1145/2068783.2068786

[6] H. F. Soares, N. S. R. Alves, T. S. Mendes, M. Mendonça and R.
O. Spinola. “Investigating the link between user stories and
documentation debt on software projects”. International
Conference on Information Technology - New Generations, April
2015. DOI: 10.1109/ITNG.2015.68.

[7] W. Cunningham. “The WyCash portfolio management system”.
Proc. OOPSLA, October 1992.
DOI: https://dl.acm.org/doi/pdf/10.1145/157710.157715

[8] P. Avgeriou, P. Kruchten, I. Ozkaya and C. Seaman. “Managing
Technical Debt in Software Engineering”. Dagstuhl Seminar
16162, January 2016. DOI: 10.4230 / DagRep.6.4.110.

[9] Y. Guo, R. O. Spínola and C. Seaman. “Exploring the costs of
technical debt management – a case study”. Empirical Software
Engineering, vol. 21. ed. 1. pp. 159-182, 2016. DOI:
10.1007/s10664-014-9351-7.

[10] N. A Ernst. “On the role of requirements in understanding and
managing technical debt”. Third International Workshop on
Managing Technical Debt (MTD), June 2012. DOI:
10.1109/MTD.2012.6226002.

[11] W. N. Behutiye, P. Rodríguez, M. Oivo and A. Tosun. “Analyzing
the concept of technical debt in the context of agile software
development: A systematic literature review”. Information and
Software Technology, vol. 82, pp. 139-158, February 2017. DOI:
https://doi.org/10.1016/j.infsof.2016.10.004.

[12] S. Freire, N. Rios, M. Mendonça, D. Falessi, C. Seaman, C. Izurieta
and R. O. Spínola. “Actions and impediments for technical debt
prevention: results from a global family of industrial surveys”. SAC
'20: The 35th ACM/SIGAPP Symposium on Applied Computing,
pp. 1548–1555, March 2020. DOI:
https://doi.org/10.1145/3341105.3373912.

[13] V. Lenarduzzi and D. Fucci. “Towards a holistic definition of
requirements debt”. ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), vol 1,
pp. 1-5, September 2019. DOI: 10.1109/ESEM.2019.8870159.

[14] R. Ramač, V. Mandić, N. Taušan, N. Rios, M. G. Mendonça, C.
Seaman and R. Oliveira Spinola. “Common causes and effects of
technical debt in Serbian IT: InsighTD survey replication”. 46th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), August 2020. DOI:
10.1109/SEAA51224.2020.00065.

[15] K. Charmaz. “Constructing Grounded Theory: A Practical Guide
through Qualitative Analysis”. Sage Publications, 2006.

[16] K. Madampe, R. Hoda, J. Grundy and P. Singh. “Towards
understanding technical responses to requirements changes in agile
teams”. IEEE/ACM 42nd International Conference on Software
Engineering Workshops (ICSEW), pp 153-156, June 2020. DOI:
https://doi.org/10.1145/3387940.3392229.

[17] R. Hoda and J. Noble. “Becoming agile: A grounded theory of agile
transitions in practice”. IEEE/ACM 39th International Conference
on Software Engineering (ICSE), May, 2017.
DOI: 10.1109/ICSE.2017.21.

[18] R Hoda. “Decoding Grounded Theory for Software Engineering”.
IEEE/ACM 43rd International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), May
2021. DOI: 10.1109/ICSE-Companion52605.2021.00139.

[19] W. C. Adams. “Handbook of practical program evaluation:
Conducting Semi-structured interviews”. 3. Ed, Chapter Sixteen,
pp. 365-376, 2010. ISBN: 978-0-47052247-9.

[20] J. Melegati, A. Goldman, F. Kon and X. Wang. “A model of
requirements engineering in software startups”. Information and
Software Technology, vol. 109, pp. 92-107, 2019. DOI:
https://doi.org/10.1016/j.infsof.2019.02.001.

[21] K. Charmaz. “Constructing Grounded Theory. 2nd., 2014.
[22] P. Bourque, R. E Fairley. “Swebook. Guide to the Software

Engineering”. Version 3.0. IEEE Computer Society, 2014.

18

On the Implications of Human-Paper Interaction for
Software Requirements Engineering Education

Pankaj Kamthan
Department of Computer Science and Software Engineering

Concordia University
Montreal, Canada

pankaj.kamthan@concordia.ca

Abstract—It is broadly accepted that requirements engineering is
one of the most important phases of a software project, and
requires tools to be effective. For a variety of reasons, paper as a
tool has lasted for millennia and remains ubiquitous. This paper
makes a case for a contextual, conscientious, and evidence-based
use of paper in a competency-oriented approach to software
requirements engineering education (REE). It argues that the
prophecies for the obsolescence of paper are premature, there are
unique benefits in the use of paper, and the decision to use paper
should be based on [0, 1] rather than {0, 1}. In this regard, a
need-centered conceptual model for human-paper interaction is
proposed. The characteristics of paper that make it historically
unique are reported and the affordances of paper relevant to
REE are discussed. The REE-related activities that benefit from
viewing paper as a boundary object and using different types of
paper are highlighted and illustrated by means of examples. In
advocating polyliteracy, the potential for a convergence of paper
and digital media towards a harmonic coexistence is underscored.

Keywords-active learning; affordance; conceptual modeling; design
thinking; human-centered agile methodology; software psychology

I. INTRODUCTION

The significance of software requirements engineering
(RE) [1, 2] is underscored by the fact that it is a phase in which
the stakeholders exercise considerable control over the success
of the software project, and the decisions made during this
phase usually have a major, often irreversible, impact on the
subsequent phases. In the past 50 years or so, RE has evolved
from an almost exclusively technically-oriented endeavor
addressing mathematical problems to a contextually-,
anthropologically-, and socially-sensitive discipline tackling ill-
structured problems, such as “wicked problems”. This change
invariably impacts how software requirements engineering
education (REE) should be perceived, planned, and pursued [3,
4], what the expected role of a software requirements engineer
needs to be [2], and what the desirable competencies of a
software requirements engineer are to be [5, 6].

As with many other software processes, a proper enactment
of a RE process usually and inevitably involves using tools.
The selection, adoption, and use of RE tools should be based
on evidence rather than exuberance, understanding that
professional tools do not automatically or necessarily meet the
criteria of educational tools, determination that return on
investment (ROI) >> 0, and consideration of the long-term
consequences of a selection. One such candidate tool is paper.
In that regard, the purpose of this paper is to investigate the

extent to which paper can be useful as a tool for certain
common activities in REE [7], the properties of paper that
enable them, and the underlying reasons for this phenomenon.

The rest of the paper is organized as follows. In Section II,
necessary background is provided and related work is
discussed. A theoretical and practical understanding of the use
of paper in REE from the perspective of human interaction is
explored at some depth in Section III. In Section IV, potential
directions for future research are outlined. Finally, in Section
V, concluding remarks and recommendations are given.

II. BACKGROUND AND RELATED WORK

A. Characteristics of Paper relevant to REE

There are several distinctive, organic, and anthropomorphic
characteristics of paper, such as the following:

 Breathability. It can retain (pencil) lead or absorb (pen)
ink for a long period [8].

 Emotivity. It can give rise to different emotions among its
users [9]. For example, a paper book can be perceived as a
“beautiful object” (https://beautifulbooks.info/), and can
add to the décor of a domicile. Indeed, people can create
an emotional attachment with the paper books they have
owned or read. The emotion can manifest in one or more
different ways as, for example, identified by the Plutchik’s
Wheel of Emotions. For example, looking forward to and
acquiring a paper book can make people happy, and losing
it can make them sad.

 Identity. It can have a unique persona depending on the
properties attributed to it during production (such as
caliper, grammage, permeability, size, texture, and so on),
making it recognizable even to those with visual
impairment. For example, a paper book could be spotted
from a distance, say, when it is on a shelf or table.

 Resiliency. It can be used even if it somewhat loses its
original shape, say, is slightly crumpled, smudged, or torn.
In other words, its utility and usability vary on a
continuous set rather than on a discrete (binary) set.

 Tangibility. It can be touched and felt, and has friction.
This, apart from physiological and psychological
implications, creates a sense of ownership, and with
ownership come responsibility and repercussions. For

DOI reference number: 10.18293/SEKE2022-007

19

example, ruining or losing a sheet of paper has meaning
(as, at the very least, there is no automatic backup copy).
In other words, “you broke it, you own it”.

 Temporality. It can give a sense of passage of time (say,
through signs of aging, decay, and smell), similar to a
living being. This can bring about affinity and nostalgia
among its owners.

 Versatility. It is a boundary object, and as such can be cut,
flipped, folded, orientated, spindled, or torn in a variety of
ways and shapes to suit users’ preferences. For example,
multiple, small sheets of paper can be produced “on-the-
fly” from a single, large sheet of paper, and, conversely, a
single, large sheet of paper can be created by gluing or
taping together multiple, small sheets of paper.

These characteristics are not only among the reasons for the
persistence of paper over millennia, but also have implications
towards REE (and beyond), as discussed later.

B. Paper and the History of Computing

The history of large-scale programming in the 1950s, and
subsequently of software engineering in the 1960s and 1970s,
is an indicator of how the paper types and the degree of paper
uses in these disciplines evolved, namely from more in the
product I/O and less during the process to more during the
process and less in the product I/O, as illustrated in Fig. 1 using
color for emphasis. This transition could be attributed to the
advancement of technologies for and the reduction in the cost
of necessary hardware and software for I/O, and the increased
attention on the principles and practices involved in processing.

Figure 1. The uses over time of paper in computing.

The panorama of paper uses and paper types changed with
the changes in the nature of computing, as some entered and
the others exited. For example, the punched card, used for
program input, is essentially obsolete because everything useful
that was possible using it can be done otherwise, more
effectively and efficiently. An almost similar argument could
be made for continuous paper (such as the line printer paper),
used for program output, as far as the consumption by public-
at-large is concerned.

There have been calls since 2000s advocating the use of
paper, albeit more so in human-computer interaction than in
software engineering [10]. This situation, however, is changing
as the two disciplines converge by necessity, such as seen by
increasing human-centeredness of software development
methodologies, in general, and agile methodologies, in
particular [11]. For example, one of the values stated in the
Agile Manifesto, namely “individuals and interactions over
processes and tools”, can be realized in practice if there is

explicit attention on the stakeholders needs and there is
inclusion of lightweight tools, such as paper. Indeed, this can
be accomplished by integrating design thinking and human
factors design in an agile methodology, such as Scrum [12].
For another example, the Kanban Pizza Game is played using
pieces of paper representing the ingredients of a typical pizza
[13]. However, there is much to be desired for making a case
for paper in RE, in general, and REE, in particular, and that is
one of the motivations of this paper.

C. Paper in Context from a Human Interaction Perspective

There have been a number of empirical studies over the
years deliberating, evaluating, and reporting on relative merits
of using paper and digital media for certain activities [8, 14].
(For the sake of this paper, digital media is some data presented
using an application software, on a hardware device capable of
digital computing, for the purpose of consumption by humans
[8].) In that regard, it could be noted that paper and digital
media appeal to different human senses [8, 15], reading on
physical medium is different from that on digital medium [8,
16, 17, 18], and handwriting is different from typing [19].

An affordance is a property, or multiple properties, of an
object that provides some indication to a user of how to interact
with that object or with a feature of that object [15, 20]. Fig. 2
presents a Venn Diagram of two sets, one for the affordances of
paper and the other for the affordances of digital media. In
literature, the comparisons between paper and digital media are
often restricted to comparison between C and B (= (B – A)
C), that is, anything that can be achieved with paper can also be
achieved by digital media and digital media can achieve more,
and do not consider A – B. C reflects early days of digital
media when it tried to mimic and duplicate some of the
affordances of paper [8].

Figure 2. A comparison of affordances of paper and digital media.

It could be noted that, as far as affordances are concerned,
there can be (1) perceived limitations of paper overcome by
digital media, (2) perceived limitations of digital media
overcome by paper, and (3) perceived limitations of paper not
overcome by digital media and perceived limitations of digital
media not overcome by paper, which is a proper subset of U –
(A B). There are several examples of (1), such as automatic
archivability, linkability, multimodality, retrievability,
searchability, shareability, traceability, updatability, and so on,
a discussion of which is beyond the scope of this paper. In
addition, quality-in-use requirements are difficult to simulate
properly on paper. For an example of (2), paper has a single
level of abstraction, as implied by Fig. 3, while digital media

20

has multiple levels of abstraction (and, therefore, explicit
dependencies), which has consequences for the usage of each.
For an example of (3), requirements (such as those about
credibility, maintainability, and reliability) that are a function
of duration (that is, interval of, rather than point, in time) are
difficult to simulate properly.

Figure 3. A comparison of levels of abstraction of paper and digital media.

III. A HUMAN INTERACTION PERSPECTIVE FOR

UNDERSTANDING THE USE OF PAPER IN REE

A. A Conceptual Model for Human-Paper Interaction and its
Implications for REE

Fig. 4 shows a conceptual model in UML Class Diagram
for human-paper interaction. The humans have needs, such as
those highlighted by the higher levels of the Maslow’s
Hierarchy of Needs, some of which can be educational, as
shown in Fig. 5. To satisfy those needs requires humans to
draw upon (declarative and/or imperative) knowledge, which in
case of REE is summarized in Fig. 6. This is then used to
engage in one or more individual and/or social activities as, for
example, explained by the Activity Theory [21, 22], in general,
and the Bloom’s Taxonomy [23], in particular. To make the
communication or knowledge inherent to these activities
explicit, they may need to be expressed in one or more
artifacts, which could be made of some material, such as paper.

Figure 4. A conceptual model for human-paper interaction.

Figure 5. A hierarchy of educational needs.

Figure 6. A hierarchy of REE by paper knowledge.

B. Paper Types Suitable for REE

There are many types of paper (https://papersizes.io/), of
which some have been empirically proven to be useful in RE.
The types of paper useful for REE can be either generic or
specific, instances of which are shown in Fig. 7 and Fig. 8,
respectively. The generic types of paper are broad in their
applicability, and the mapping between the set of REE
activities and the set of paper is many-to-many. The specific
types of paper are narrow in their applicability, are available as
device-specific templates, and the mapping between the set of
REE activities and the set of paper is, essentially, one-to-one.

Figure 7. A collection of generic paper types relevant to REE.

Figure 8. A collection of specific paper types relevant to REE.

Fig. 9 highlights those properties of humans and paper that
are relevant in human-paper interaction. For a given activity,
selecting an appropriate type of paper is therefore important.

Figure 9. The human and paper properties in human-paper interaction.

21

C. A User Story Process Model for the Use of Paper

In general, a RE process is independent of the use of any
particular tool, including paper. However, certain RE
processes, especially those that are agile, human-centered, and
informal, may be better suited to the use of paper than the
others.

The user stories are one of the most common ways of
expressing software requirements in human-centered agile
methodologies [24]. Fig. 10 illustrates a user story process
model that has been used for REE [25], the elements of which,
namely Express, Experiment, and Evaluate, are extended, as
appropriate, using the stages of design thinking, namely
Empathize, Define, Ideate, Prototype, and Test [12], so that it
becomes conducive to the use of paper. The symbol ► denotes
the need for convergent thinking, while ◄ denotes the need for
divergent thinking. The resulting model is aligned with the
REE concepts given in the rest of Section III.

Figure 10. A user story process model conducive to the use of paper.

D. Implications of Paper for REE

The use of paper opens new vistas for REE, such as the
following:

 Silver Lining. The perceived limitations of paper for REE
(and beyond) can also happen to be its benefits. For
example, the constraints of size (dimensions) of an index
card compel a writer to be concise, which is recommended
for user story and its acceptance criteria. The need to
handwrite or draw for the others to be able to read and
understand in a timely manner also obliges the writer to do
so (or, if necessary, improve his or her handwriting and
drawing skills accordingly), which are desirable lifelong
skills for students.

 RE Without Borders. It is important for the students to
understand that stakeholders of a software project usually
include non-technical stakeholders who cannot be
reasonably expected to be familiar with (or should be
trained in the use of) digital technologies or tools used for
software development. For example, non-technical
stakeholders can include subject matter experts, business
people, and potential end-users. The use of paper presents
a low barrier of entry and fosters “democratic”,
“inclusive”, and participatory design through face-to-face

collaboration between technical and non-technical
stakeholders.

 Thinking and Doing in Tranquility. The use of paper
allows a person to dedicate time to think and concentrate
on the matter at hand. (This is a consequence of Fig. 3.)
There are no extra actions (no clicking, no loading-and-
waiting, no panning, and no zooming) and no distractions
(no advertisements, no clearing cache, no connectivity, no
electrical power loss, no emission of heat or light, no error
messages, no glare, no multitasking, no noise, no pop-up
windows, no spellcheckers, no updates, and no viruses).

 Creative Freedom. The use of paper permits a person to
draw freely, limited only by imagination. For example,
there are no limits to the shapes and symbols such as those
that could be used in a “boxes-and-lines” diagram, or, if
necessary, invented “on-the-fly” such as while
brainstorming or sketchnoting. There are also no a priori
restrictions on where any text labels could be placed or
how they may be spaced.

 Preserving Memory of Mistakes. In the use of paper,
there is no “undo”. The use of paper leaves physical
reminders of any mistakes made by its user, however
minor they may be, even if an eraser is used. These
reminders can serve as evocative aides-mémoires of the
quote “to err is human”, RE smells or anti-patterns
introduced and removed after ‘iterative improvement’
[26], and/or acknowledgement of ‘lesson learned’, hoping
to not repeat the same or similar types of mistakes again.
This—embracing and learning to live with one’s
mistakes—is crucial to lifelong learning of students.

 Sustainability Lessons. In software development, there
can be different kinds of waste [27], including that of time
and effort, such as due to rework. The provision of paper-
based prototyping and feedback can help detect and correct
certain types of errors early, thereby reducing rework later.
The cost of paper and its impact towards environmental
sustainability [28] can be a reminder to the students not to
waste space and to use it conservatively, such as by using
both of its sides. The waste of any kind should be
discouraged and prevented, not least because it is one of
the principles of lean software development. The
movements such as the World Paper Free Day—an annual
campaign that aims to reduce the amount of paper
generated by people in their everyday work and personal
life—should be encouraged and supported. The same
applies to the International E-Waste Day. Indeed, these
can be part of lifelong learning for students.

 Preventative Approach to Development. The use of
paper enables getting the right design (validation) before
getting the design right (verification). It is relatively easy
and inexpensive to produce multiple design alternatives.
(The need for delving into design in RE arises when
undertaking a “wicked problem” where the act of finding a
solution to the problem improves the understanding of the
problem itself.) If a low-fidelity prototype is not accepted
during user testing, chances are high that the end-product
will not be accepted either.

22

 Social Context. The use of paper cultivates a natural
environment for necessary socialization among
stakeholders (including students) of a software project. For
example, it can be used for meeting, discussing, and/or
decorating in front of a Kanban board for showing the
different states of work-in-progress in a hallway or in a
classroom; planning poker using special-purpose playing
cards for estimating user stories by stakeholders sitting
around a table; and so on.

Incidentally, these observations contribute to REE by Paper
Knowledge, as shown in Fig. 6.

E. REE Concepts in Practice on Paper

The REE concepts (interspersed and interrelated activities
in a RE process and, possibly, artifacts resulting from those
activities) are motivated by educational needs (as per Fig. 5).
They could be divided into primary concepts (part of a RE
process directly, and abstract) and secondary concepts (part of
a RE process indirectly to support one or more primary
concepts, and concrete).

The primary REE concepts include: active learning,
collaborating, creating, discussing, empathizing, enjoyable
learning, ensuring semiotic quality of software requirements
(such as resolving ambiguities, inconsistencies, and
indeterminacies), group learning, team building (norming stage
to performing stage in the Tuckman Model of Group
Dynamics), incrementing, iterating, negotiating, planning,
problem solving, reading, thinking aloud, user testing, and
writing.

Table 1 shows secondary REE concept(s), corresponding
paper type(s), and supporting reference(s), wherever available.
The symbol ‘S’ denotes the use by students in a course project.

TABLE I. SECONDARY REE CONCEPTS ON PAPER

REE Concept Paper Type Reference
Brainstorming, Computational
Thinking, Doodling, Ideating,
Mind Mapping, Sketchnoting

A, A1, Napkin [7, 29, 30],
S

Conceptual Modeling, Domain
Understanding (Deciding
Terms and Definitions for
Software Project Glossary)

Sticky Note, A1 [7], S

Context Diagramming A1 [31], S
Affinity Diagramming (Post-
Requirements Elicitation
Interview Analysis)

Sticky Note [7, 32, 33],
S

User Modeling (Eliciting
Positive and Negative User
Roles)

Sticky Note [7], S

Empathy Mapping A S
Documenting User Stories and
Acceptance Criteria

Index Card (Two Sides) [7, 24], S

Estimating User Stories
(Planning Poker)

Playing Card [24, 34], S

Prioritizing User Stories Index Card, Sticky Note [24, 34], S
Customer Journey Mapping,
User Story Mapping

A1 S

Information Architecting, Low-
Fidelity Rapid Prototyping

Device Template, Grid,
Kami, Ruled

[21, 33,
35, 36], S

Kanban Boarding A1, Index Card, Sticky
Note

[13]

IV. DIRECTIONS FOR FUTURE RESEARCH

There currently is no ‘standard’ RE pedagogical strategy,
although there have been a number of notable initiatives over
the years [2, 4]. There are also several possible paths through
RE, which is why there are multiple possible courses on RE.
For example, while one course may be oriented towards formal
specifications for mission-critical systems, another may be
oriented towards user stories for socio-technical systems. It
would be useful to explore the variability in the use of paper
with respect to different pedagogical strategies and different
syllabuses in REE, and is therefore of research interest.

In Winter 2018 and Fall 2019, a survey on the use of paper
in RE was conducted, the results of which were used in [7].
The respondees were graduate students in the course titled
SOEN 6481 (Software Systems Requirements Specification).
The responses regarding preference for paper or digital media
for RE was mixed. The comments from the students included:
“I have learned different uses of colored paper”, “I have
become better at reading others’ handwritings”, and “I was
occupied enough with paper to not miss my smartphone!”. It
would be useful to extend and repeat the survey, both during
and after the COVID-19 pandemic, with both teachers and
students of RE, and is therefore also of research interest.

V. CONCLUSION

The rich history and salient properties of paper make it
uniquely suitable for a variety of REE-related activities, as this
paper has shown. The circumstances presented by the COVID-
19 pandemic have led to a notable decrease in face-to-face
social interaction. These circumstances, invariably, have also
necessitated, even accelerated, the use of digital media for
some, a trend that may only continue, to which REE is not
immune. This movement, however, should not come at a cost
of use of paper. Indeed, the two can coexist [37, 38].

In conclusion, for teachers of RE there are following
recommendations:

 Recommendation 1: Careful Substitution. There are no
‘perfect’ tools, tools are not substitutes for people and
processes, and tools can aid, but are not a substitute for,
thoughtfulness. Therefore, the students could be warned
against the misconceptions and myths surrounding tools
[8, 14], as well as drawbacks of shallow comparisons and
impetuously-drawn sweeping conclusions regarding tools.
The availability of digital LEGO® bricks (such as by
using LEGO® Digital Designer) has not stopped the sale
and use of physical LEGO® bricks. Similarly, the
availability of interactive whiteboards has not made
conventional blackboards useless or the students any
smarter [39]. In accordance with building a pedagogical
foundation for RE, it is only in students’ interest to avoid
being enamored by any particular tool and become
polyliterate: learn to select multiple different tools, each
based on its own merit, and learn to use them properly.

 Recommendation 2: Spirited Cooperation. The
problems being addressed by software systems today have
become so large and complex that they are not in the
purview of any single individual if they are to be solved

23

within the given time and other constraints. Therefore, the
students could be presented with opportunities not only to
work collectively, but also to candidly review each other’s
work so that they can learn from their own mistakes as
well as that of the others.

 Recommendation 3: Rigorous Experimentation. There
are many possible views of software engineering, one of
which is that it is a risky endeavor. Taking reasonable risks
not only requires curiosity, but also courage to make
mistakes early, and to learn and recover from them.
Therefore, the students could be encouraged not only to
seek the known iteratively and incrementally, but also the
unknown and even the unknowable [40], all the while
understanding the differences between them.

ACKNOWLEDGMENT

The author is grateful to CUPFA for a Professional
Development Grant.

REFERENCES
[1] R. Siadati, P. Wernick, and V. Veneziano, Learning from History: The

Case of Software Requirements Engineering. Requirements Engineering
Magazine, September 25, 2019.

[2] M. Glinz, H. van Loenhoud, S. Staal, and S. Bühne, Handbook for the
CPRE Foundation Level according to the IREB Standard: Education and
Training for Certified Professional for Requirements Engineering
(CPRE) Foundation Level, Version 1.0.0. International Requirements
Engineering Board (IREB), November 2020.

[3] S. Ouhbi, A. Idri, J. L. Fernández-Alemán, and A. Toval, Requirements
Engineering Education: A Systematic Mapping Study. Requirements
Engineering, 20: 119-138, 2015.

[4] M. Daun, A. M. Grubb, and B. Tenbergen, A Survey of Instructional
Approaches in the Requirements Engineering Education Literature. The
Twenty Ninth IEEE International Requirements Engineering Conference
(RE 2021), Notre Dame, USA, September 20-24, 2021.

[5] R. Klendauer, M. Berkovich, R. Gelvin, J. M. Leimeister, and H.
Krcmar, Towards a Competency Model for Requirements Analysts.
Information Systems Journal, 22: 475-503, 2012.

[6] S. Jantunen, R. Dumdum, and D. C. Gause, Towards New Requirements
Engineering Competencies. The Twelfth International Workshop on
Cooperative and Human Aspects of Software Engineering
(CHASE@ICSE 2019), Montreal, Canada, May 27, 2019.

[7] P. Kamthan and S. Hilal, On the Role of Paper in Agile and Active
Requirements Engineering Education. The Forty Ninth ACM Technical
Symposium on Computer Science Education (SIGCSE 2018),
Baltimore, USA, February 21-24, 2018.

[8] H. Shibata and K. Omura, Why Digital Displays Cannot Replace Paper:
The Cognitive Science of Media for Reading and Writing. Springer
Nature, 2020.

[9] S. Fukuda, Emotional Engineering: Service Development. Springer-
Verlag, 2011.

[10] D. Spinellis, On Paper. IEEE Software, 24(6): 24-25, 2007.

[11] T. S. da Silva, A. Martin, F. Maurer, and M. Silveira, User-Centered
Design and Agile Methods: A Systematic Review. The 2011 Agile
Conference (AGILE 2011), Salt Lake City, USA, August 7-13, 2011.

[12] A. R. Hoffmann, Sketching as Design Thinking. Routledge, 2020.

[13] M. Hammarberg and J. Sundén, Kanban in Action. Manning
Publications, 2014.

[14] A. J. Sellen and R. H. R. Harper, The Myth of the Paperless Office. The
MIT Press, 2002.

[15] D. A. Norman, The Psychology of Everyday Things. Basic Books, 1988.

[16] N. S. Baron, How We Read Now: Strategic Choices for Print, Screen,
and Audio. Oxford University Press, 2021.

[17] Y. J. Jeong and G. Gweon, Advantages of Print Reading over Screen
Reading: A Comparison of Visual Patterns, Reading Performance, and
Reading Attitudes across Paper, Computers, and Tablets. International
Journal of Human–Computer Interaction, 37(17): 1674-1684, 2021.

[18] M. Çınar, D. Doğan, and S. S. Seferoğlu, The Effects of Reading on
Pixel vs. Paper: A Comparative Study. Behaviour and Information
Technology, 40(3): 251-259, 2021.

[19] P. A. Mueller and D. M. Oppenheimer, The Pen Is Mightier Than the
Keyboard: Advantages of Longhand Over Laptop Note Taking.
Psychological Science, 25(6): 1159-1168, 2014.

[20] R. Hartson, Cognitive, Physical, Sensory and Functional Affordances in
Interaction Design. Behaviour and Information Technology, 22(5): 315-
338, 2003.

[21] C. Sibona, S. Pourreza, and S. Hill, Origami: An Active Learning
Exercise for Scrum Project Management. Journal of Information
Systems Education, 29(2): 105-116, 2018.

[22] O. Hazzan, T. Lapidot, and N. Ragonis, Guide to Teaching Computer
Science: An Activity-Based Approach, Third Edition. Springer-Verlag,
2020.

[23] D. R. Krathwohl, A Revision of Bloom’s Taxonomy: An Overview.
Theory Into Practice, 41(4): 212-218, 2002.

[24] M. Cohn, User Stories Applied: For Agile Software Development.
Addison-Wesley, 2004.

[25] P. Kamthan and N. Shahmir, A Framework for the Semiotic Quality of
User Stories. The Twenty Seventh International Conference on Systems
Engineering (ICSEng 2020), Virtual Event, USA, December 14-16,
2020.

[26] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder, Rapid Quality
Assurance with Requirements Smells. The Journal of Systems and
Software, 123: 190-213, 2017.

[27] O. Shmueli and B. Ronen, Excessive Software Development: Practices
and Penalties. International Journal of Project Management, 35: 13-27,
2017.

[28] Q. Kang, J. Lu, and J. Xu, Is E-Reading Environmentally More
Sustainable than Conventional Reading? Evidence from a Systematic
Literature Review. Library and Information Science Research, 43:1-11,
2021.

[29] D. Roam, The Back of the Napkin: Solving Problems and Selling Ideas
with Pictures, Expanded Edition. Penguin, 2009.

[30] C. Wilson, Brainstorming and Beyond: A User-Centered Design
Method. Morgan Kaufmann, 2013.

[31] K. Holtzblatt and H. Beyer, Contextual Design: Evolved. Morgan and
Claypool, 2015.

[32] L. Ratcliffe and M. McNeill, Agile Experience Design: A Digital
Designer’s Guide to Agile, Lean, and Continuous. New Riders, 2012.

[33] B. T. Christensen, K. Halskov, and C. N. Klokmose, Sticky Creativity:
Post-it® Note Cognition, Computers, and Design. Academic Press,
2020.

[34] M. Cohn, Agile Estimating and Planning. Prentice-Hall, 2005.

[35] C. Snyder, Paper Prototyping: The Fast and Easy Way to Define and
Refine User Interfaces. Morgan Kaufmann, 2003.

[36] S. Greenberg, S. Carpendale, N. Marquardt, and B. Buxton, Sketching
User Experiences: The Workbook. Morgan Kaufmann, 2012.

[37] J. Steimle, Pen-and-Paper User Interfaces: Integrating Printed and
Digital Documents. Springer-Verlag, 2012.

[38] F. Han, Y. Cheng, M. Strachan, and X. Ma, Hybrid Paper-Digital
Interfaces: A Systematic Literature Review. The 2021 Designing
Interactive Systems Conference (DIS 2021), Virtual Event, USA, June
28-July 2, 2021.

[39] F. Gursula and G. B. Tozmaza, Which One Is Smarter? Teacher or
Board. The Second World Conference on Educational Sciences (WCES
2010), Istanbul, Turkey, February 4-8, 2010.

[40] R. J. Barnes, D. C. Gause, and E. C. Way, Teaching the Unknown and
the Unknowable in Requirements Engineering Education. The Third
International Workshop on Requirements Engineering Education and
Training (REET 2008), Barcelona, Spain, September 8, 2008.

24

Identifying Risks for Collaborative Systems during
Requirements Engineering: An Ontology-Based Approach

Kirthy Kolluri, Robert Ahn, Julie Rauer, Lawrence Chung
Department of Computer Science
The University of Texas at Dallas

Richardson, TX, USA
{kirthy.kolluri, robert.sungsoo.ahn, julie.rauer,

chung}@utdallas.edu

Tom Hill
Fellows Consulting Group

Dallas, TX, USA
{tom}@fellowsconsultinggroup.com

Abstract- A risk is an undesirable event that can result in mis-
haps if not identified early on during requirements engineering
adequately. However, identifying risks can be challenging, and
requirements engineers may not always be aware if risks are
ignored. In this paper, we present Murphy – a framework for
performing risk analysis. Murphy adopts the Reference Model,
in which requirements are supposed to be met not by the pro-
jected software system behavior alone but through collabora-
tion between the system and events occurring in its environ-
ment, hence the term Collaborative System. Murphy provides
risk analysis facilities that include an activity-oriented ontolo-
gy for carrying out risk analysis by systematically identifying
risky activities in the system and in the environment, thereby
obtaining a Risk Analysis Graph (RAG) and towards devising
risk mitigation strategies later. In order to see both the
strengths and weaknesses of Murphy, we experimented on de-
veloping a smartphone app involving a group of Ph.D. and
senior-level graduate students – one group using Murphy and
the other not using Murphy. Our observation, we feel, shows
that the risks identified by the group using Murphy were able
to identify more critical risks and those risks were comprehen-
sive and relevant as. well. The results also showed that incor-
porating risk mitigation strategies for the risks identified can
indeed help avoid them to some extent.

Keywords- Risk, Risk Identification, Ontology, Collaborative
systems, Requirements Engineering, Reference Model (WRSPM
Model)

I. INTRODUCTION
Risk is a situation or event where humans themselves can

be put at stake [13], is a phenomenon faced or caused by erro-
neous functionality/behavior of software, hardware, or hu-
man(s). Collaborative systems emphasize that requirements
are satisfied by the collaboration between the user and the
events in its environment. For example, in building our
smartphone app, Theia

1
, for helping blind people navigate in-

doors, it may not be too evident for the requirements engineer

DOI reference number: 10.18293/SEKE2022-169
1 Theia is the Greek goddess of sight

to identify that the “blind person may not be able to walk in a
straight line.” It can be challenging to determine the possibility
of the smartphone app giving wrong instruction to the blind
person, the camera not turning on even when the smartphone
application is turned on, etc. Based on these examples, it is ev-
ident that risks may arise due to certain environmental events
(domain) or erroneous system behavior.

When considering collaborative systems such as Theia, an
agent (e.g., person, software, or hardware) must perform a set
of activities to fulfill the requirement. Every action performed
by the agent, or the software system is associated with one or
more risks. What-if the smartphone app indicates the blind
person to turn earlier or later after walking ten steps? Or what
if the user ignores the instructions and fails to turn at the right
spot? The requirements engineers and software developers
should address these kinds of risks before developing the actu-
al application. This practice would help plan risk minimization
and mitigation strategies.

Some attempts have been made to perform risk analysis and
mitigation during requirements analysis [1]. The idea here is to
identify risks systematically, devise risk mitigation strategies
and implement those strategies to help avoid some risks. But
how do we systematically identify these risks without omis-
sions and commissions and develop risk mitigation strategies?

This paper proposes Murphy, a framework for performing
risk identification and analysis using an activity-oriented and
ontology-based approach for collaborative systems. Our pre-
vious work [19], which extends the Reference Model [6, 7]
with risks to obtain the Augmented Reference Model, is ex-
tended by adding more rules for systematic risk identification.
We also introduce a highly activity-oriented ontology, a do-
main-specific ontology, and constraints on agent’s actions
which can be used to come up with risks when violated.

We carried out experimentation in two phases – Phase 1 in-
volved using the Theia app developed without using Murphy
before its development. Phase 2 involved using Theia app de-
veloped using Murphy framework. Through this experimenta-
tion, we have observed that significant risks, such as walking
in a straight line, the user’s finger being slippery to tap the
screen, background noise, etc., can be overlooked. We also
observed that the devising and developing risk mitigation
strategies can indeed help avoid the occurrence of the risk to
some extent.

25

The main contributions of this paper are: proposing a risk
analysis framework for capturing risks for various activit-
-ies performed by the Agent (Person, Software and Hardware)
using multiple levels of ontologies during the requirement en-
gineering phase. The framework suggests that risk mitigation
strategies that must be implemented during the development of
the application.

A scenario using the indoor navigation application, Theia,
for helping blind people navigate indoors is used as the run-
ning example all through this paper, to evaluate the strengths
and weaknesses of Murphy. Stevie is a blind student who
wants to attend a class in room 3.415. He uses the smartphone
application, Theia, to navigate from his current location to his
class. He uses voice instruction to provide his destination to
Theia.

Section II describes the related work. Section III describes
Murphy framework using an ontology-based approach for risk
identification. Section IV describes the experimentation and
the observations, the discussion, and threats to validity. In the
end, a summary of the paper is described, along with some fu-
ture work in Section V.

II. RELATED WORK
The distinctives of this paper include performing risk analy-

sis for Collaborative systems in terms of the Augmented Ref-
erence Model, Risk Analysis Graph, and an Ontology-based
approach, during requirements engineering.

Concerning risk analysis for collaborative systems, the
CORAS framework [8], goal-risk framework [1, 10] and the
Obstacle analysis technique [4, 5, 9, 11] are considered. All
these frameworks consider non-functional requirements
(goals) as their starting point and risks are eventually identi-
fied using different approaches, but we consider functional-
requirements, specification, and domain assumptions as the
starting point to perform risk identification and analysis.

In CORAS [8], risks are modeled and analyzed by asking
questions, which are evaluated and treatments to those risks
are identified. In the goal-risk framework [1, 10] goals, events
and treatments are modeled in three layers, and they provide
multi-object optimization; hence more queries related to risk
are obtained qualitatively. Using the technique of obstacle

analysis [4, 5, 9, 11], goals are decomposed into sub-goals,
providing a set of rules including negation to identify the
probability of risk occurrence quantitatively. Though our work
has some similarities with [8, 1, 10, 4, 5, 9, 11] with regards to
the approach of decomposing/refinements, and performing
qualitative risk analysis, we complement the approaches used
in [8, 4, 5, 9, 11] by performing systematic risk identification
using an activity- oriented ontology. We also perform qualita-
tive risk as discussed in [1] but we complement the analysis
performed by using the Risk Analysis Graph, which provides a
set of rules, using which the user can obtain and identify risks,
prioritize them, and devise the corresponding risk mitigation
strategies.
 The Reference Model [6] emphasizes that the user re-
quirements are satisfied not by the system alone but also by
the system’s collaboration with the events in its environment.
Hence, we use the term Collaborative system for all the sys-
tems to which the Reference model is applicable. We adopt
work involving the Reference Model [6, 7] and transform it in-
to Augmented Reference Model [19].

In Requirements Engineering, a Fishbone diagram has been
used to identify possible causes for a problem/risk [16]. This
technique helps list out all the potential causes for a prob-
lem/risk. Fault Tree Analysis (FTA) is a top-down, deductive
analysis that visually shows a failure path from top to bottom
[17]. A Problem Inter-Dependency Graph (PIG) uses a
(soft)problem technique to represent user’s problem against
the user’s goals [18]. We build on the idea of finding the prob-
lems from Fishbone diagram [16], to use a top-down approach
from FTA [17] and making refinements to identify risks from
[18], but we also complement these techniques by proposing
the use of a Risk Analysis Graph (RAG), that refines require-
ments, specification and domain using AND/OR refinements,
and systematically generate risks using rules and using an ac-
tivity-oriented ontology to identify the essential/critical risks.

The ontology of risk discussed in [12] explains its relation-
ship with value. The ontology discussed in Requirements
Modelling Language (RML) [14] address Requirements,
Agent, action, etc. as the most important concepts. We adopt
those basic building blocks from RML [14] and build the most
essential part of our work - Risk, on top of it and tie the con-

Figure 1: High-Level domain independent ontology of Murphy for risk identification and analysis

å

26

cept of Risk to Action and Agent. We also complement the
approach discussed in [9, 12] by linking the ontology to ac-
tions and the risks that the user may face or cause.

III. MURPHY: AN ONTOLOGY-BASED FRAMEWORK FOR RISK
IDENTIFICATION

The aim of our framework is to use an ontology-based ap-
proach to generate a Risk Analysis Graph using rules to identi-
fy risks, prioritize them and to find the appropriate risk mitiga-
tion techniques.
 Ontology is the categories of essential individual concepts,
relationship between the individual concepts and constraints
on individual concepts and on the relationships between indi-
vidual concepts. In this work, we present both high-level do-
main independent ontology and the domain specific class-level
ontology with its diagrammatic convention as shown in Fig. 1,
Fig. 2. We adopted several models and tightly integrated them
into the ontology. Concepts for requirements engineering such
as Requirement, Specification and Domain are adopted from
Reference Model [6, 7] and the concepts such as Action (ac-
tivities), Agent (entities) and Associations (assertions) from
RML [14]. We further extend it by adding risk as shown in
Fig. 1, which is one of the most essential concepts for this
work alongside activities. Each concept is assigned a color and
the same color is used for those concepts through the paper for
traceability.
 In detail, different types of Agents related to the domain
such as Person, Software and Hardware are captured, the Ac-

tions pertaining to the agents such as Person action, Software
action and Hardware action and the different types of Risks
such as risks caused and faced by the person, risks caused by
the software and risks caused by the hardware are captured.
Capturing agents, their actions and the risks is vital because
each agent performs a set of activities, and each activity is as-
sociated with a group of risks. In collaborative systems, agents
interact and collaborate among themselves to fulfill the re-
quirements. In addition, since the focus is on collaboration and
collaborative approach, we capture all the critical concepts of
the Reference Model [5] namely Requirement, Specification,

Domain, Program and Machine in the ontology. Mechanism is
captured to provide risk mitigation techniques for the risks
discovered during risk identification and analysis process. In-
stances of the ontological concepts are represented in fig. 2
which is specific to Theia domain.

A. Omissions and Commissions: Using an ontology is one of
the best ways to help ensure the completeness and comprehen-
siveness of the risk identification and analysis process. Identi-
fying the most relevant and critical risks related to a domain
help guarantee completeness, while identifying different kinds
of risks is about comprehensiveness. Ontology helps avoid
omissions and commissions of the most important/critical
risks while performing risk analysis. Omissions are ignoring
the most essential risks while commissions are identifying ir-
relevant or inconsistent risks. For e.g.,
R: When the person indicates a room number as the destina-

tion, the smartphone app shall ask the user to perform
an action

By instantiating R using the class-level ontology shown in Fig.
2, it will be

!!: When Stevie indicates his destination as room 3.415, Theia
shall instruct Stevie to fly

The actions related to the agent (Person) as shown in Fig. 2 are
walk, turn, stop, sit, speak out but we do not see fly as one of
the actions related to Theia domain. Hence, this is an example
of commission. Similarly, another instance for R can be:

!": When Stevie indicates room 3.415 as his destination, Theia

shall instruct Stevie to walk 10 steps forward.

Stevie walking 10 steps forward can have so many risks asso-
ciated with it. He may not walk forward at all but backwards,
or he may not walk in a straight line but in a zig-zag pattern,
or does not hold the camera facing forward but downwards,

etc. All these are omission of substantial risks in relation to
Theia domain. Stevie not hitting the brakes, Stevie not chang-

Figure 2: Domain specific activity-oriented ontology for smartphone application (Theia) domain

27

ing lanes, etc. are also risks but are not omissions related to
Theia domain.

B. Identifying risks using Constraints: Constraints are some
restrictions that are placed on the ontological concepts and the
relationships between them. Since, the ontology is highly ac-
tivity-oriented, we place constraints and violation of these
constraints is nothing but a risk. The constraints are specific to
the domain and are related to the actions that the agent per-
form in the domain. For e.g., if we consider a constraint that
the blind person must walk in a straight line when using Theia.
The blind person walking in a zig-zag pattern can violate this
constraint, which results in a risk.

C. Generation of Risk Analysis Graph: In this paper, we gen-
erate Risk Analysis Graph, shown in Fig. 3, by the systematic
generation of risks. For this, we use the Augmented Reference
Model from our previous work [19] and extend it by adding
multiple rules for extensive risk generation and devising risk
mitigation strategies for the risks identified. As a part of the
risk analysis process, we follow these steps to generate the
RAG:
1) acquiring the requirement, specification, and domain,

2) decomposing the requirement, specification, and domain

3) applying rules to the decomposed requirement, specifica-

tion, and domain to systematically obtain risks

4) prioritize the most important risks using ontology

5) devise risk mitigation strategies to the risks prioritized

Step 1 and 2: For this work, we assume that the requirement,
specification, and domain are of the form i → t. We use the
antecedent (i) part and the consequent (t) part to identify risks
by applying rules for systematic risk generation. We use a part
of the initial process (Steps 1 and 2) discussed in our previous
work [19] for generation of RAG.

Step 3: We have discussed some rules in our previous work
[19], and we extend them by adding more rules for systematic
risk generation. Rules are applied to the decomposed require-

ment, specification and domain that are obtained using the
augmentation process explained in our previous work [19].

a) Rule 1: ¬(i →	t) which is i ∧ ¬t

b) Rule 2: ¬i ∧ t: We consider the antecedent and the

negation of the consequent joined by a logical AND

c) Rule 3: Negation of Contrapositive: Contrapositive is

the reversal and negation of both i and t in i → t. It is read as

if not t then not i. We consider negation of the

contrapositive [15], represented as ¬(¬t → ¬i)

In fig. 3, the first two red boxes show rule 2 in action and the
last red box (towards right) shows rule 1 in action. We will
discuss only rule 1 here (the last red box in fig 3) due to space
limitation. Let us consider the specification S,

S: When the hardware receives a signal, the software notifies

using the hardware to perform an action

To generate RAG, we perform step 1, i.e., acquiring s. We in-
stantiate this S, using the ontology. By instantiating this speci-
fication S, we acquire:

s: When the microphone receives a voice input signal, Theia

notifies using the speaker to walk 10 steps forward

We then perform step 2, i.e., decomposing s since we have an
implies relation between i and t. After decomposing s, we ob-
tain &#	'()	&$.
&#: the microphone receives a voice input signal

&$: Theia notifies using the speaker to walk 10 steps forward

Now, we apply rule 1, i ∧ ¬ t, to &# and &$. When rule 1 is ap-
plied to s, the consequent, &$, is negated since the consequent
in i ∧ ¬ t has the negation.
The antecedent remains the same, and the relation between
them is AND. By negating &$, we obtain:
 (&$): ¬ (Theia notifies using the speaker to walk 10 steps for-

ward)

Figure 3: An example showing Risk Analysis Graph for smartphone application domain (Theia)

28

There can be multiple risk cases associated with this negation.
(Theia does not notify to walk forward) OR

(Theia notifies to walk > 10 steps forward) OR

(Theia notifies to walk < 10 steps forward) OR

(Theia notifies to walk 10 steps forward and turn left) OR

(Theia notifies to walk < 10 steps forward and turn left)

 When Theia must deliver a notification using the speaker, af-
ter calculating the route, there may be a set of risks that can be
associated with a simple statement. To calculate the route and
give an instruction, there is an action that the agents Theia
(software) and speaker (hardware) must perform. As discussed
earlier, each action that an agent performs, can be associated
with one or more risks. Hence, the resulting risks could be
Theia does not calculate the route and no instruction is given,
or Theia calculates wrong route, etc. Alternatively, the route
calculation by Theia may be perfect but the speaker may not
give out the instruction. We identify templates using rules,
implement these templates in our tool, to generate risks when
a requirement, specification or domain statement is provided.

Step 4: Risks obtained from step 3 are prioritized using the on-
tology. All the risks are compared against the set of risks listed
in the domain specific, class-level ontology. The risks listed in
the ontology are prioritized and the risks that are irrelevant
(commissions) are ignored.

Step 5: Risk-mitigation techniques are devised based on the
risks prioritized in step 4 which are shown in purple in fig 3.
The break/hurt arrow represents that a risk mitigation tech-
nique hurts the risk, and it prevents that risk from happening.
For e.g., if we prioritize the risk – the speaker may not give
out the instruction since the speaker does not work, the risk
mitigation technique that may help avoid that risk is to include
a test voice/music clip which can be played by the user to
make sure that the speaker is working before indicating the
destination, etc.

D. Murphy Assistant tool: Murphy Assistant is a semi-
automated Risk Analysis tool, where the user of the applica-
tion has to setup the ontology before performing risk identifi-
cation and analysis. For this process, we developed a windows
application using the .NET framework. For storing all ontolog-
ical concepts entered by the user, a Microsoft SQL Server Lo-
cal Database is used. Murphy Assistant is a prototype tool
which supports the concepts of Murphy framework. The re-
finement rules are provided as templates to this tool, and these
templates are semantically bound. The underlying code can
and the snapshots of the tool in action can be found at
https://github.com/indoornavigation0/Murphy.git

IV. EXPERIMENTATION
To validate our risk analysis and to identify the strengths

and weaknesses of Murphy, we design an experiment to de-
velop a smartphone app from the results obtained by perform-
ing risk analysis using Murphy.

A. Experimental Setup: Murphy is intended to be used by

requirements engineers and developers to perform risk analy-
sis during the software development life cycle before the de-
velopment of the application. We have conducted experi-
ments, to validate Murphy with the help of a group of 25 PhD
and 25 senior-level graduate students. All the students majored
in computer science. Every student was provided with a ver-
sion of Murphy installed on their computer. The students were
given the requirement that we used as the running example,
and tested many different requirements of their choice, chose
the branches for which risk analysis should be performed,
chose the rules to be applied to requirement, specification, or
domain and when to stop the risk analysis (depth). After using
Murphy, the students provided us with the list of risks and
their feedback regarding the ease of use, accuracy of the au-
tomation and its usability, along with a list of risks identified.
 A version of Theia has been developed using the list of risks
and risk mitigation strategies provided by the students. One
such mechanism has been implemented in Theia. We have
conducted experimentation using Theia with 25 students.

Figure 4: Different categories of risks identified using Murphy

B. Analysis of the result: Performing risk analysis is a vital
step before the development. Exclusion of RAG, as per our
observation, we feel, shows that some risks are omitted. All
the students were able to find common risks related to agents
malfunctioning. We have observed various kinds of risks
where the system did not behave the way it was supposed to.
We also identified some risks where the system’s functionality
was aberrant. There were some risks which were not very rel-
evant to the domain.
 Students identified risks such as missing route, walking in
the wrong direction, etc., critical risks such as falling, bump-
ing into people, colliding against walls, etc., uncommon risks
such as oil on the floor, banana peel on the way, water puddle
on the floor, etc., unimportant risks such as warnings which
ask the user to increase the volume, increase screen brightness,
etc. The students have ignored some critical risks such as low
battery indication, faulty voice input due to background noise,
walking in a zig-zag fashion in a straight corridor, the blind
person walking into a busy intersection, the user walking
wrong number of steps, etc. These results are discussed in fig.
4, a bar graph which shows the number of risks in different
categories identified by both the Ph.D. and Graduate-level stu-
dents. Fig. 5 shows a bar graph, which compares the results of
the risks faced/ignored while using the version of Theia devel-
oped without Murphy versus the version of Theia developed
with Murphy.

0

5

10

15

20

25

Total risks
identified

Common risks
identified

Uncommon
risks identified

Important risks
identified

Unimportant
risks identified

Critical risks
ignored

Ph.D. Stdents Senior-level graduate students

29

 In the version of Theia developed using results from
Murphy, the system counts the step as the user walks, to help
ensure safety of the user and to keep track of the steps walked
by the user. This is the biggest difference between the app
developed by using results from the Murphy versus not using
the results from Murphy. Based on our observation, we feel
that the students who used Theia (developed using Murphy’s
results) were able to walk very confidently since Theia was
counting steps for them while navigating. Most of the students
were able to make an accurate turn at the right spot, were able
to keep track of their steps and were able to enjoy the process
of navigation with ease. Overall, we feel that the results
observed from these experiments show us that performing
risk analysis during requirements engineering can help the
end user avoid risks to some extent.

Figure 5: Results observed while using Theia developed without using

Murphy vs using Murphy framework

C. Threats to Validity: We feel that our experiments have
shown that there is a need to improve existing smartphone
apps and devices for blind people, especially with features that
ensure that the blind person is comfortable while navigating
using the smartphone app, by building a tool for identifying
risks systematically, devising anti-risk mechanisms and incor-
porating those results into the system before development. The
Murphy Assistant tool needs improvements with more rules
and templates to identify more complicated and uncommon
risks. Since both Murphy Assistant and Theia are tested by
students, and since the knowledge of the students is limited,
the results may vary greatly compared to the app being tested
by requirements engineers. The risks identified also varied
greatly from what we anticipated since the use of the tool is
based on individual knowledge and the way of performing
analysis varies from person to person, therefore our results
suffered. We are yet to test our Theia app with real blind peo-
ple as we are yet to receive our IRB approval. We feel that
testing with real blind people may give us an edge over blind-
folded people, especially with identifying a variety of risks
they face.

V. CONCLUSION
In this paper, we presented Murphy - a framework for per-

forming risk identification and analysis using Augmented Ref-
erence Model - The Reference Model augmented with risks
that was extended drawing to our previous work [19]. In this
paper, we presented: 1. An activity-oriented ontology to per-
form risk analysis, 2. Risk Analysis Graph - for identifying
and prioritizing and to devising risk mitigation techniques, 4.
A tool, Murphy Assistant developed as a proof of concept, to

generate RAGs for different requirements, specifications, and
domains. 5. A reference application Theia is used to evaluate
the strengths and weaknesses of Murphy. Based on the feed-
back from the students who used Murphy, we feel that its use
during requirements engineering can indeed help increase the
confidence of the engineers and developers in identifying
some critical risks.

As future work, we plan to apply our approach to a wide
variety of domains (e.g., autonomous vehicles domain) for
performing risk analysis and providing risk mitigation strate-
gies. We are developing a set of rules which aid in risk identi-
fication and analysis which goes beyond logic (simple nega-
tion). Experimentation of Theia with real blind subjects will be
performed once we obtain the IRB approval. A step-by-step
approach for engineers to develop and design their own graph-
ically oriented Risk Analysis Graph’s (RAGs) and identifying
risks is underway as well. Finally, we plan to include safety
and timeliness as a softgoal and extend our work using a goal-
oriented approach.

REFERENCES
[1] Asnar, Y., Giorgini, P. Mylopoulos, J. Goal-driven risk assessment in requirement

engineering. Requirements Eng 16, 101–116 (2011).
https://doi.org/10.1007/s00766-010-0112-x

[2] Murphy’s Law, https://en.wikipedia.org/wiki/Murphy’s_law ,
 Last accessed 2 February 2022
[3] Sharma, K., Kumar, P.V.. (2014). A method to risk analysis in requirement eng
 neering through optimized goal selection tropos goal layer. Journal of Theoretical
 and Applied Information Technology. 61. 270- 280.
[4] Cailliau, A. Lamsweerde, A. V.. "A probabilistic framework for goal-oriented risk
 analysis,"(2012). 20th IEEE International Requirements Engineering Conference
 (RE). Chicago, IL, 2012, pp. 201-210. doi: 10.1109/RE.2012.6345805.
[5] Lamsweerde, A. V.. “Risk-driven Engineering of Requirements for Dependable
[6] Gunter, C. A., Gunter, E. L., Jackson, M. Zave, P."A reference model Systems.” En
 gineering Dependable Software Systems for requirements and specifications," in
 IEEE Software, vol. 17, no. 3, pp. 37-43, May-June 2000, doi: 10.1109/52.896248.
[7] Zave, P., Jackson, M.. (1997). Four dark corners of requirements engineering.
 ACM Trans. Softw. Eng. Methodol. 6, 1 (Jan. 1997), 1–30.
 DOI:https://doi.org/10.1145/237432.237434
[8] Vraalsen F., den Braber F., Lund M.S., Stølen K. (2005) The CORAS Tool for
 Security Risk Analysis. In: Herrmann P., Issarny V., Shiu S (eds) Trust Manage
 ment. iTrust 2005. Lecture Notes in Computer Science, vol 3477. Springer,
 Berlin, Heidelberg. https://doi.org/10.1007/11429760_30
[9] Lamsweerde, A.V.. (2013). Risk-driven engineering of requirements for
 dependable systems. 10.3233/978-1-61499-207-3-207.
[10] Mylopoulos, J. Castro, J..“Tropos: A Framework for Requirements- Driven
 Software Development,” (2000).INFORMATION SYSTEMS
 ENGINEERING: STATE OF THE ART AND RESEARCH THEMES,
 pp. 261-273.
[11] Cailliau, A., van Lamsweerde, A. Assessing requirements-related risks
 through probabilistic goals and obstacles. Requirements Eng 18, 129–
 146 (2013). https://doi.org/10.1007/s00766-013-0168-5
[12] Sales T.P., Baião F., Guizzardi G., Almeida J.P.A., Guarino N., Mylopoulos
 (2018) The Common Ontology of Value and Risk. In: Trujil.lo J. et al. (eds)
 Conceptual Modeling. ER 2018. Lecture Notes in Computer Science, vol 11157.
 Springer, Cham. https://doi.org/10.1007/978-030-00847-5_11
[13] Rosa, E.. “Metatheoretical foundations for post-normal risk.” Journal of Risk
 Research 1 (1998): 15-44.
[14] Greenspan, S., Mylopoulos, J. Borgida, A.. 1994. On formal
 Requirements modeling languages: RML revisited. In Proceedings of
 the 16th international conference on Software engineering (ICSE ’94). IEEE Com.
 puter SocietyPress, Washington, DC, USA, 135–147.
[15] Contrapositive, https://en.wikipedia.org/wiki/Contraposition".
 Last accessed 29 September 2021
[16] Ishikawa, K.: Introduction to quality control. Productivity Press (1990)
[17] Vesely, B.: Fault tree analysis (fta): Concepts and applications. NASA HQ(2002)
[18] Supakkul, S., Chung, L.: Extending problem frames to deal with stake Holder
 problems: An agent-and goal-oriented approach. In: Proceedings of the 2009 ACM
 symposium on Applied Computing. (2009) 389-394
[19] K. Kolluri, R. Ahn, T. Hill, L. Chung, “ Risk Analysis for Collaborative
 Systems during Requirements Engineering”, “ Proc., International
 Conference on Software Engineering & Knowledge Engineering
 (SEKE 2021). 2021, pp. 297-302.]

0
1
2
3
4
5
6
7
8
9

Risks faced
while selecting
features to be

used

Critical risks
identified

Common risks
identified

Uncommon
risks Identified

Important risks
identified

Unimportant
risks identified

Critical risks
ignored

Theia developed without using Murphy framework and risk mitigation technique

Theia developed using Murphy framework and risk mitigation techniques are included

30

A Novel Approach to Maintain Traceability
between Safety Requirements and Model Design

Qian Wang†, Jing Liu†∗, John Zhang‡∗, Hui Dou‡, Haiying Sun†, HongTao Chen‡, Xiaohong Chen†, Jifeng He†
†Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

‡Huawei Technology, Shanghai, China
∗Corresponding authors: Jing Liu (Email: jliu@sei.ecnu.edu.cn), John Zhang (Email: john.zhangyh@huawei.com)

Abstract—One of the major challenges confronting System
Modeling Language(SysML) is that it cannot always provide
verifiable guarantees of formalization and rigorousness. To verify
model designs, the research of transformation from SysML to
ontology emerges because of ontology’s formal standards and
verifiability obtained by ontology reasoners. However, existing
transformation approaches are mostly limited to a single view
without traceability or lack a clear process so that it can’t
be automated. In this paper, we propose a novel approach to
maintain precious traceability between requirements and model
multi-views design based on ontology. In addition, our approach
contains a normative process of ontology building in support of
an automated implementation. We use this approach to obtain
the ontology of a safety-critical system and carry out the ontology
evaluation experiment, whose results demonstrate the feasibility
and efficiency of our approach.

Index Terms—Knowledge Engineering, Traceability, SysML,
Description Logic, Ontology, Model Transformation

I. INTRODUCTION

As a knowledge representation tool, System Modeling Lan-
guage (SysML) has been used in many safety-critical systems.
In the most common SysML usage mode, i.e., SysML-as-
Pretty-Pictures, it uses various diagrams to express the require-
ments, structure, and behavior of the system. Unfortunately,
this mode lacks complete formalization and rigorousness, and
users pay relatively little attention to the well-formedness
of SysML and its underlying simulatable and executable
semantics [1]. Hence, the generated models are difficult to
drive dynamic behavior simulations to confirm that the system
behavior satisfies the safety requirements. The challenge will
bring in more time and labor costs [2].

To address the aforementioned challenge, the research of
transformation from SysML to ontology and verification based
on ontology emerged. Ontology is extended based on descrip-
tion logic which has formal standards; therefore, ontology
reasoners can find errors in ontology rules and facts while
drawing inferences [4]. If a SysML model is transformed
into an ontology with the same semantics, we can conduct
inferences to verify the design of models.

In this paper, to address the problem, we propose a novel
approach to maintain precious traceability between require-
ment and model design based on ontology. The establishment

DOI reference number: 10.18293/SEKE2022-140

of maintaining traceability from risk to overall safety require-
ments, to safety-critical system component design, is of great
significance for behavior simulations [7]. Specifically, we first
construct the high-level ontology to formally represent con-
cept elements and semantics of SysML using Web Ontology
Language 2(OWL 2) [8]. Then, models’ instances are added
into the high-level ontology to generate low-level ontology,
which can be applied to verify and query using well-developed
OWL reasoners. Finally, we conduct experiments on a real-
world safety-critical system. The experimental results show
that the ontology generated by the proposed approach is of
good overall quality, and there are no pitfalls that affect the
consistency, reasoning, and applicability of ontology.

The contributions of this paper are threefold: (1)an inno-
vative approach to maintaining traceability using a phased
transformation, (2)a normative process of ontology building in
support of an automated implementation, (3)an experimental
evaluation of a real-world safety-critical system with 23 re-
quirements showing feasibility and efficiency of our approach.

II. TRANSFORMATION APPROACH

A. Ontology Generation
Transformation in this paper concentrates on SysML’s

four semantic dimensions: (1) requirements, (2) structure, (3)
behavior, and (4) state. After the reference to [9] where
shows a normative ontology building process to guarantee
efficiency, the transformation consists of six steps. The first
four steps create the upper-level ontology(written Ō for ease
of understanding), and the last two steps derive the lower-
level ontology(written o) of a specific model m from Ō. The
following are the detailed steps.

Step 1. Determine the domain and scope of the ontology.
The way of starting the development of an ontology is to
answer several questions:

• What is the domain? SysML’s four semantic dimensions.
• For what we are going to use? Complete and correct

expression of the domain’s semantics, and then the users
can query and infer about m from o.

• What types of information can the ontology provides?
Models’ basic and traceability information.

• Who are the ontology’s users? Software engineers.
Step 2. Enumerate important terms. This step focuses on

writing down important terms. The semantics of a dimension

31

Mapping OWL:Thing
SysMLNode

SysMLDiagram

SysMLOther
Item

SysMLEdge

Requirement
Diagram

Act ivityDiagram
ActPart it ion

BlockDefineDiagram

StateMachineDiagram

Block
Funct ion

Block
Para

Do

Guard

Act ion

SpecialNode

Block

Event

Region

Requirement

Int raDiagram
Edge

Transit ion

ObjectFlow

Genaralizat ion

CommonRelat ion

owl:subClassOf

Fig. 1. Main parts of class hierarchy

RequirementD
iagram

Requirement

BlockSubReqt

DeriveRequirement

StakeholderMission

hasRequirement

St ring St ring St ring

hasReqt ID
hasReqtValue

hasReqtName

deriveReqt

dempose

owl:subClassOf

ObjectProperty

DataProperty

Fig. 2. Semantic representation of req

are usually visualized as a kind of diagram. Each diagram
contains nodes and edges which represent various components
of SysML and relationships between components. In addition
to the vertical semantics of each diagram, there are the
horizontal semantics between diagrams expressed through the
cross-cutting mechanism. [7] extends cross-cutting mechanism
with a data structure called Mapping for a more detailed
traceability information model(TIM). To sum up, important
terms include SysML diagram, node in diagram, edge in
diagram, mapping, and other item of SysML component.

Step 3. Define the classes and their hierarchy This step
first defines the most common concepts in the domain, and
then specializes those concepts, i.e., a top-down development
process [9]. As shown in Fig. 1, upper-level ontology Ō
contains five main classes: SysMLDiagram, SysMLEdge,
SysMLNode, SysMLOtherItem, and Mapping that im-
plements traceability.

Step 4. Define the properties of classes. The classes
alone can’t provide enough information to answer the
competency questions in Step 1. ObjectProperty and
DataProperty are required to describe the internal struc-

SysMLDiagram

BlockDefineDiagram

SysMLEdge Int raDiagram
Edge

Genaralizat ion

CommonR
elat ion

BlockFunct ion BlockPara

SysMLNode
Block

hasBlock hasGenaralizat ion

nest

hasCommonRelat ion

hasFunct ion
hasPara

isPartOf

hasTarget

hasSource

owl:subClassOf

ObjectProperty

hasNode

hasEdge

Tuple

hasCardinality

Fig. 3. Semantic representation of bdd

SysMLNode

SysMLEdge

Act ivityDiagram

Guard

Act ion

Begin

Special
Node

Int raDiagram
Edge ObjectFlow

Event

InEvent

OutEvent

ActPart it ion

haveActPart it ion

hasAct ion
hasEvent

hasGuard

hasObjectFlowEnd

MergeNode

SplitNode

hasTarget hasSource

owl:subClassOf

ObjectProperty

Fig. 4. Semantic representation of act

ture of concepts. Fig. 2, 3, 4, 5 show the classes and properties
that enable the semantics of requirement diagram(req), block
definition diagram(bdd), activity diagram(act), and state ma-
chine diagram(stm), respectively.

We use ObjectProperty to represent edges with simple
semantics e.g., isPartOf indicates edges in bdd that repre-
sent combination or aggregation. If using such a restriction on
edges with complex semantics, such as transitions, we would
need OWL Full. To keep the ontology as an OWL 2 DL
ontology, transition is defined as a subclass of SysMLEdge,
as shown in Fig. 1. Then transitions’ extra semantics are
represented by subclasses of SysMLOtherItem, then use
the corresponding properties to connect them as shown in Fig.
5.

We need the second phase to complete the transformation
from m to o.

Step 5. Enrich the class and class hierarchy. In a system,
each block will have several particular instances; consequently,
all blocks are modeled as children of Block.

Step 6. Create individuals. The final step is to create

32

StateMachineDiagram

Do

Guard

RegionState

Transit ion

BlockPara

Block

hasDoPara

Act ion

hasState hasRegion

hasState

hasCondPara

hasCondBlockhasDoBlock
hasGurad

hasCondValue

St ring

hasCondValue

St ring

hasDo

hasAct ion

hasTransit ion

hasTransit ionhasExitDo

hasEnt ryDo

hasEnt ryAct ion

hasExitAct ion hasExitAt ion

hasEnt ryAct ion

ObjectProperty

DataProperty

Join

Fig. 5. Semantic representation of stm

individuals for the remaining instances in m. Creating an
individual of a class requires (1) selecting a class, (2) creating
an individual of that class, and (3) adding property values to
that individual.

B. Traceability Information Model

The model in Fig. 6 specifies the well-formedness criteria
for the potential traceability links between requirements and
components. In practice, the ontology-based implementation
of TIM provides at least two benefits [10]:

1) As tracing is a complex task, but the approach provides
a guideline that simplifies its building and allows for
flexible changes.

2) As traceability is implemented in a way that is friendly
to people who did not create it and who only need to
know some of the semantics of ObjectProperty.

The class hierarchy in Requirement Concepts demonstrates
a process of modeling the analysis of requirements for safety-
critical systems. trace establishes the traceability link be-
tween Mapping and Block, which is also the link point
between Requirement Concepts and Design Concepts. If there
exists a block b that satisfies the following axioms, then b is
said to be a system component that satisfies the functional
requirement q.

Block(?b) ∧ Mapping(?map) ∧DeriveRequirement(?q)

∧ hasMapping(?q, ?map) ∧ trace(?map, ?b)

Of course, it is possible that several b meet q. map have
mapTo series of object properties to concretize the satisfac-
tion. The details include that: (1)a block satisfies a requirement
by a block function concretized by mapToBF; (2)a block
satisfies a requirement by modifying its parameter concretized
by mapToBP; (3)a block satisfies a requirement before or after
an activity is performed in its activity partition concretized by
mapToAE. allocate links a block to its activity partition,
while mapToBF links a block function and an activity. These

Design Concepts

Requirement Concepts

mapToAE

Stakeholder
Mission

Derive
Requirement

Block
SubReqt

deriveReqt dempose

Block
allocate

ActPart it ion

hasMapping

Mapping

mapToBF

mapToBF

mapToBP

hasCondPara

Guard Transit ion

hasAct ion

Block
Para Act ion

Object
Flow

BlockFunct ion

t race

StateMachineDiagram

Do

hasDoPara

Fig. 6. Ontology based TIM

mean that the function of a block can be performed as an
activity in its activity partition. Conversely, functions that the
block does not have cannot be performed. The final has series
of object properties pass the link to the design of state machine
diagrams.

III. EVALUATION

A. Experiment Design

We first select a safety-critical system, Production Cell
System (PCS) [11], and use the approach described above to
obtain its lower-level ontology oPCS as the experimental ob-
ject. Production Cell System (PCS) is a well-known paradigm
for embedded systems and was previously used as a baseline
to evaluate the capabilities of various specification methods
for safety analysis and verification. From the complete SysML
requirements and design specification given in [11], it is known
that PCS consists of 23 safety-related requirements and 6 main
blocks, each with corresponding activity partitions and state
machine diagrams.

We chose a comprehensive quantitative ontology evaluation
method in [12], which has a study of metrics implemented in
the popular quality frameworks. There are 8 sub-characteristics
RROnto, ANOnto, LCOMOnto, INROnto, CROnto,
NOMOnto, and CBOnto which count the proportion of
classes, properties, and individuals from different perspectives
to measure the rationality of ontology design. Each sub-
characteristic has a calculated value and a score out of five,
based on each value. Based on the eight sub-characteristics,
four more metrics are summarized to measure overall quality:

33

TABLE I
QUANTITATIVE EVALUATION RESULTS

Sub-characteristics
Name Value Score

RROnto 0.64 4
ANOnto 1.00 5
LCOMOnto 2.44 4
INROnto 1.80 5
CROnto 14.80 5
NOMOnto 0.31 5
CBOnto 1.13 5

Metrics
Name Avg(scores)

SEv 4.33
FAEv 4.67
MEv 4.67
Glov 4.50

TABLE II
QUALITATIVE EVALUATION RESULTS

Dimension Desription Importance

Completeness
Missing domain or range in properties Important

Creating unconnected ontology elements Minor
Inverse relationships not explicitly

declared Minor

Compliance No license declared Important
Accuracy Using a Miscellaneous Class Minor

structural metric SEv , functional adequacy metric FAEv ,
maintainability metric MEv , and global metric Glov . For
details, see the framework presented in [12]. The qualitative
evaluation tool we chose in [13] extends previous work on
modeling errors and 41 pitfalls are identified with importance
levels(critical, important, or minor). Experimental documents
can be found at https://github.com/ch-wq81404/Experimental-
documents.

B. Evaluation Results

Results of quantitative and qualitative evaluation are shown
in Tab. I and Tab. II respectively. Tab. II shows the pitfalls and
their importance in oPCS . This will allow the user to correct
the ontology and transform it into a better ontology.

From the results, almost all sub-characteristics get the
highest score of 5, except for RROnto and LCOMOnto.
Anyway, the high scores of other metrics indicate the follow-
ing:

• Rationalization of class richness portrayed by CROnto.
• Vertical and horizontal coordination of the class hierarchy

portrayed by LCOMOnto and CBOOnto.
• Quantitatively sufficient properties portrayed by

NOMOnto, INROnto, and ANOnto.
It can be seen from Tab. II that oPCS does not have problems
of critical importance, which will affect the usage of ontology.
All of these demonstrate the feasibility and efficiency of our
approach.

IV. RELATED WORK

Existing transformation approaches are mostly limited to
a single view [2], [5], [6] without traceability. [2] proposed

the idea of using ontology to verify the dynamic behavior for
complex systems. The work of [3] is closest to ours, and its
ontology is used to analyze system change propagation. But
they does not share the file so that our approach cannot be
compared to theirs. All of them lack an automated tool.

V. CONCLUSION

We have presented a novel approach to maintain precious
traceability between requirements and model multi-views de-
sign based on ontology. And the experimental results can be
used by other relevant researchers to compare different trans-
formation approaches or for other purposes. In future work,
we will implement an automated tool to derive ontology model
from SysML model, and select a different type of system as a
case to explore the universality of our transformation method.
In addition, we can use semantic inference tools of ontology
to perform verification.

ACKNOWLEDGMENT

This work was supported in part by the National Key
Research and Development under Project 2019YFA0706404,
the NSFC under Project 61972150, and the Fundamental
Research Funds for Central Universities.

REFERENCES

[1] O. M. Group, “How should SysML be applied to a MBSE project?
How is SysML commonly abused?,” https://sysml.org/sysml-faq/sysml-
applied-mbse.html.

[2] C. Ruirui, Y. Liu, and X. Ye, “Ontology based behavior verification for
complex systems.” International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference, vol.
51739, 2018.

[3] H. Wang, V. Thomson, and C. Tang, “Change propagation analysis for
system modeling using semantic web technology,” Advanced Engineer-
ing Informatics(AEI), vol. 35, pp. 17–29, 2018.

[4] S. Jenkins and N. Rouquette, “Progress on integrating owl and sysml,”,
NASA, 2012.

[5] H. Wardhana, A. Ashari, and A. Sari, “Transformation of sysml require-
ment diagram into owl ontologies,” Int J Adv Comp Sci Appl, pp. 11,
2020.

[6] H. Graves, “Integrating sysml and owl,” Proceedings of OWL: Experi-
ences and Directions, 2009.

[7] B. Lionel, F. Davide, N. Shiva, S. Mehrdad and Y. Tao, “Traceability and
sysML design slices to support safety inspections: a controlled experi-
ment,” in ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 23, no. 1, pp. 1–43, 2014.

[8] W. W. W. Consortium(W3C), “Owl 2 web ontology language: Direct
semantics (second edition),” https://www.w3.org/TR/2012/REC-owl2-
direct-semantics-20121211/, 2012.

[9] N. F. Noy, D. L. McGuinness, “Ontology development 101: A guide to
creating your first ontology,”, 2001.

[10] P. Mader, O. Gotel, and I. Philippow, “Getting back to basics: Promoting
the use of a traceability information model in practice,” In Workshop on
Traceability in Emerging Forms of Software Engineering(ICSE), pp. 21–
25, 2013.

[11] T. E. Klykken, “A case study using sysml for safety-critical systems,”
Master’s thesis, 2009.

[12] G. R. Rold an-Molina, D. Ruano-Ord as, V. Basto-Fernandes, and
J. R. M endez, “An ontology knowledge inspection methodology for
quality assessment and continuous improvement,” Data Knowledge
Engineering(DKE), vol. 133, pp. 101889, 2021.

[13] P. Marı́a, A. Gómez-Pérez, and M. C. Suárez-Figueroa, ”Oops!(ontology
pitfall scanner!): An online tool for ontology evaluation.” International
Journal on Semantic Web and Information Systems(IJSWIS), vol. 10, no.
2, pp. 7–34, 2014.

34

https://github.com/ch-wq81404/Experimental-documents
https://github.com/ch-wq81404/Experimental-documents

2 BACKGROUND
Development of a Domain Specific Modeling Language

for Educational Data Mining

Andrêza Leite de Alencar
Federal Rural University of Pernambuco

Recife, Brazil
andreza.leite@ufrpe.br

demic analysts, who are not experts in data processing and
analysis, conduct an analytical process [2].

Model-Driven Development (MDD) is a development
paradigm that uses models as the primary artifact of the de-
velopment process. In MDD the implementation is (semi)
automatically generated from the models [4]. In construct-
ing an MDD tool for a specific domain, it is needed to define
its modeling language initially. Domain-Specific Modeling
Language (DSML) makes it possible to create rules with
high-level graphic and/or textual definitions. When applied
in an MDD tool, it acts as a spelling and grammar checker,
with validation to avoid syntax errors or typos [5].

This work aims to develop of a Domain-Specific Mod-
eling Language for Educational Data Mining, in which the
solution considers the technical and managerial challenges
of this domain. For this, it was modeled a language and de-
veloped a prototype of an experimental case tool. For vali-
date these artefacts a case study was realized using different
versions of Moodle databases to validate this work.

2 Background
This section presents essential concepts necessary for

proposed solution understanding.

2.1 Domain Specific Modeling Languages (DSML)

As one of the elements used on the MDD, Domain-
Specific Modeling Languages enables the creation of rules
with a high-level graphic and/or textual definition to be con-
verted into a low-level language [4]. The definition of a
DSML involves at least three aspects: the domain concepts
and rules (abstract syntax); the notation used to represent
these concepts—let it be textual or graphical (concrete syn-
tax); and the semantics of the language [4].

The abstract syntax of a DSML is particularized by a
metamodel, which is itself a model and describes the con-
cepts of the language, the relationships among them, and the
structuring rules that constrain the model elements and their
combinations in order to respect the domain rules. The con-
crete syntax provides a realization of its abstract syntax as a
mapping between the metamodel concepts and their textual
or graphical representation. The semantics of a DSML is
normally given with natural language. However, although

Eronita M. L. Van Leijden and
Alexandre M. A. Maciel

University of Pernambuco - UPE
Recife, Brazil

emlvl, amam@ecomp.poli.br

Abstract

In data mining solutions, the data selection phase plays
an essential role in the success of decision-making. The
tools that operate at this phase need to cater to each do-
main’s technical and management challenges. Using a
Domain-Specific M odeling L anguage (DSML), w e found
an alternative to abstract data and simplify the selection
for Educational Data Mining (EDM) process. This work
presents a graphic DSML to represent the problem. We used
a case study methodology and implemented a CASE tool for
the language evaluation. We acquired evidence that the pro-
posed language simplifies the data selection phase for EDM
because it solves the technical and management challenges
addressed to this domain.

1 Introduction
Nowadays, there has been a growth in the Educational

Data Mining (EDM) field of r esearch. This area leads with
the development of methods that help examine to collect
data from educational platforms. This area’s main objec-
tives are to understand how students interact in their learn-
ing environments and what they learn. So it turns possible
to propose decision-making actions for better educational
results [1].

Among the phases of the EDM process, there is the data
selection phase. In this phase, the information is identified
among existing data sets and considered during the mod-
eling process. This phase includes choosing which data to
collect and ensuring that the data is coherent with the phe-
nomenon to be analyzed [2].

The tools that operate in this phase generally need to
meet the challenges of the technical aspects of data process-
ing. These challenges are associated with a large amount
of data processing from different sources and the signif-
icant data heterogeneity with structured, semi-structured,
and unstructured data [3]. In addition, it is necessary to
confront two management challenges: First, these solutions
should enable the reuse of the models to understand already
known educational phenomena, such as performance pre-
diction; detection of behavioral patterns; evasion indicators;
etc.; secondly, it is necessary to provide conditions for aca-

DOI reference number:10-18293/SEKE2022-137

35

users can normally deduce the meaning of most terms of a
DSML, a computer cannot act on such assumptions [6].

2.2 Design Theories for Visual Notation

Design theories for visual notation provide the scientific
basis for evaluating and designing visual notations. Ac-
cording to Moody [7], two approaches stand out: descrip-
tive theory and prescriptive theory. The descriptive theory
is used only to understand how and why the visual nota-
tions communicate (visual grammar). The prescriptive the-
ory consists of a definition of explicit principles that deal
with the design of visual notation, which handles the trans-
formation of an unconscious process into a self-conscious
process (visual vocabulary) [7].

The anatomy of a good visual notation consists of adding
the definition of graphic symbols (visual vocabulary) to the
rules of composition (visual grammar). To this end, Moody
[7] suggests that some principles for designing and evalu-
ating graphic symbols. The main ones are Semantic Trans-
parency, Visual Expressiveness, Semiotic Clarity, Percep-
tual Discrimination and Graphic Economy [8].

2.3 Related Works

Two works were selected for this article because they
deal with approaches related to structuring the input data of
the EDM process.

The work of Magalhães Júnior [9] is a proposition of
a data model that brings together indicators applicable in
various educational phenomena. The solution lists the at-
tributes used in the different EDM works. Under the focus
of the phenomenon ”student dropout,” a catalog was devel-
oped based on an Entity and Relationship Diagram(DER)
that served as a data integration point. After this step, the
author performed new queries in this intermediate base to
generate the file, which is input in the EDM process. Its
objective was to reduce the efforts to select attributes and
subsequent preparation of the data for the EDM.

Manhães [10] developed an architecture based on three
layers according to EDM concepts: data layer, application
layer, and presentation layer. Although cited, work does
not explain how data collection was performed. The pro-
posed solution describes an architecture layer destined for
the ”selected data”, called Knowledge Repository. It stores
the different student data models used as input on the EDM
process, i.e., a cataloging of data sets able to be mined.

3 Proposed Language
The proposed modeling language represents the flow de-

sign to carry out the first phase of an EDM process - the data
selection. It means the match between a field in a source
database and a field of a target database passed through a
visual notation. Next sections describe this language.

3.1 Language Rules

The DSML requirements necessary for the development
of this research are presented below:

RQ1: To enable the use of data from different data
sources of the educational platforms.

RQ2: To allow different composing and storing data:
relational database, spreadsheets, data warehouse, log file,
data stream, and web data, among others.

RQ3: To allow the cataloging of data structures by edu-
cational phenomenon (knowledge record).

RQ4: To allow the standardization of the ”selected data”
for the EDM process entry independent of the educational
platform. It should also enable the data to continue as a file,
a relational, or a multidimensional model.

3.2 Abstract syntax

The abstract syntax proposed in this work was inspired
by Alencar [11]. It has similarities with the requirements
RQ1, RQ2, and RQ4 listed in Section 3.1 and because of
this, it was aggregated to the metamodel. The proposed
metamodel is detailed in dissertation by Leijden [12] where
the adjustments made are presented and the origin of new
objects is explained.

3.3 Concrete syntax

The visual notation to represent the educational data se-
lection process was developed following the main prescrip-
tive principles proposed by Moody [7]. Here are the details
of each of these principles and how they were considered in
this work:

• Semantic Transparency – defines the visual represen-
tations used in a way that their looks suggest meaning.
Area 2 of Figure 1 shows the list of defined graphic
symbols and the labels for each proposed symbol.

1. ”Base Tool”: represents the input data sources. It is
a classic symbol for databases representation.

2. ”Base Version Tool”: represents the input data
sources. The “V” mark suggests it is a version of the
database.

3. ”Entity Tool”: is a regular blue pentagon with the
letter “E” to represent the variants of the input infor-
mation set. The letter ”E” in the image represents an
allusion to the entity in the ER model.

4. ”Mining Phenomenon”: the mining cart with pre-
cious stones refers to an EDM process. The image
depicts the data sources selected to perform the data
mining process, polished to generate information.

5. ”Educational Phenomenon”: the blue owl on a book
represents the variants of the data sets selected to be
mined. As the owl is a classic symbol representing

36

education (area of this research), the image represents
the educational phenomenon as an entity.

6. ”Attribute Tool”: a red diamond with the letter “A”
represents the characteristics of each entity. The letter
A refers to the term attribute usually used in the ER
model.

7. ”Sub Attribute Tool”: it is similar to Attribute
Tool but uses different color (yellow). In addition, the
”greater than” sign was inserted to represent depen-
dence with a specific Attribute Tool.

8. ”Association”: the blue double arrow represents re-
lations between entities. The symbol was inspired by
Bachman’s notation [13] which became known as ar-
row notation.

9. ”Flow”: arrows dashed in black. It represents
the equivalence between the attributes of a source and
those of a target entity. It is the component that shows
the data flow.

• Visual Expressiveness-defines how should uses vari-
ables and visual capabilities and how to group strongly
related elements. Area 2 of Figure 1 shows the ele-
ments distributed in 4 groups: ”Source Area”, ”Target
Area”, ”Data Composition” and ”Event Composition”.

”Source Area”: group the elements that represent the
”entry area” concept.

”Target Area”: group the elements that represent the
”data to be mined area” concept.

”Data Composition”: group the elements related
to characteristics and the relation of each entity of
databases (entry and to be mined).

”Event Composition”: : the event symbols. The
dashed arrow represents the flow that the mapped data
goes between origin and educational phenomenon.

• Semiotic clarity - defines that there must be a 1:1
(one-to-one) correspondence between the semantic
constructors (metamodel) and the graphic symbols of
the language. Five metaclasses of the metamodel go
mapping between the semantic constructors and the vi-
sual syntax: ”Base”, ”BaseVersion”, ”Attribute”, ”As-
sociation” and ”Mining Phenomenon”.

• Perceptual Discriminability - defines that different
symbols must be clearly distinguished from each other.
This principle is applied to the graphic symbols and
the model diagramming when the graphical elements
are inserted in the drawing area. It uses the container-
based visual technique to demonstrate the hierarchy
among the elements.

• Graphic Economy - defines that the number of differ-
ent graphic symbols must be cognitively manageable.
In this work, the ”Value” element does not have a sym-
bol associated with its visual representation to limit the
graphic and diagrammatic complexity of the model.

3.4 CASE Tool

Developed using Sirius , the CASE tool is organized into
three regions (Figure 3). Region 1 consists of a drag-and-
drop area for the compositions of a data selection case, Re-
gion 2 shows the components (symbols of the metamodel
elements) placed in a palette tab, and Region 3 offers a prop-
erties tab for the selected objects in the drawing.

Performing data selection in a CASE tool based on meta-
model and modeling language makes the tool automatically
verify possible flaws in creating its routines regarding the
use of symbols (visual vocabulary) and the composition
rules (grammar). The CASE modeling tool can validate the
diagrams, verifying that they follow the established syntax
and semantics. This feature prevents users from misusing
the model’s graphic symbols.
4 Analysis and Discussion

The analysis was conducted by following the method-
ological procedures for the study case presented by Yin
[14]. It aimed to evaluate the modeling language, through
a prototyped CASE tool, regarding the adequacy of its use
in the circumstances of EDM projects, particularly in the
first phase, which is the data selection. Table 1 shows the
synthesis of the way the case study was conducted.

Table 1: Synthesis of the case study

4.1 Context and Measured Variables

The observed variables are connected to the functional
quality of the software. Following the model recommended
by ISO/IEC 9126 (NBR13596) [15], evidence was observed
regarding the variables of adequacy, accuracy, and interop-
erability.

The evidence about the adequacy and interoperability
measures was obtained through observation when simulat-
ing the data selection process adopting the developed proto-

37

Figure 1: CASE Tool print screen

type and comparing the aspects observed with the require-
ments set out in Section 3.1. Figure 1, area 1, illustrates the
diagrams created in this phase.

As for accuracy assessment, evidence was captured us-
ing the tool while executing modeling simulations that
would violate the rules and restrictions created in the gram-
mar developed in the modeling language.

4.2 Discussion

The planning and execution of the study case were car-
ried out based on the objective of the work following re-
search questions below:

Q1: Does the functional behavior conforms to proposed
by the rule, the meta-modeling, and the language notation
when using the CASE tool?

Q2: The requirements listed in section 3.1 met?
Q3: Can educational analysts, even not being data pro-

cessing experts, increase the autonomy to carry out a data
selection in the EDM process?

The results of these analyzes are depicted below.
Accuracy: During the modeling simulations, it was ob-

served that the rules and restrictions placed on the visual
modeling syntax (metamodel + language) were all taken
into account. For instance, the tool, when correctly used,
did not allow to create a flow from the input base to another
input base; nor did it allow to create a data flow from the
”Mining Phenomenon” to the input base. Especially, the
tool automatically made checks for flaws in the construc-
tion of the modeling that prevented the use of wrong model
components in astray compositions in the process.

Adequacy: By applying the developed prototype, the re-
sult of the diagramming was evaluated, shown in Figure 3,
with the requirements listed in Section 3.1. This analysis
explicitly answers the research question Q2.

Requirement 1 and 2: It could be seen that the tool had
achieved its goal since it was able to represent the modeling
of both data from the xAPI standard, which is in JSON for-
mat, and of the Moodle database, which is a SQL structured
query.

Requirement 3: For the two situations presented in the
case study, the researcher chose to use a known data set
structure, thus seeking to use the concept of knowledge
reuse. Albeit it was possible to represent the modeling of
the known data structure for analysis in EDM, this proposal
does not guarantee such situation since the defined grammar
only makes feasible a future development of an executable
code that accesses some knowledge repository.

Requirement 4: Part of requirement 4, which deals with
the issue of data representation in a semi-structured format,
has not been directly validated.

Nonetheless, we can infer that this condition is valid
by considering that the structure of the meta-modeling pre-
sented for the data referring to the source (which has been
validated) is the same that will represent the selected data
set, target base.

Interoperability: The tool can perform technical interop-
erability, as the solution covers two fundamental problems
in information integration: data exchange and entity reso-
lution [16]. In the tool, data exchange is promoted when
the solution’s ability to represent different arrangements is
demonstrated. As for entity resolution, the tool can identify
and associate the information between data sources in a sin-
gle destination, as depicted by the ”unification of structured
databases” situation.

Given these analyzes, the specific research questions
posed in Section 4.2 were considered and answered.

Regarding Q1, it was found to be true. Evidence was ac-

38

quired in the analysis of ”accuracy” and, comprehensively,
also obtained in the analysis of ”adequacy”. For the tool to
perform the syntax’s automatic validations, the metamodel
must be defined according to the needs pointed out as re-
quirements of section 3.1.

As for Q2, the answer is explicitly found in the ”ade-
quacy” analysis. The answer to Q3 is obtained while ana-
lyzing the creating process of each diagram. In neither of
the two diagrams created was required the use of program-
ming languages. Everything was done using clicks, moving
graphic elements, and filling properties. This characteristic
is inherent to the MDD technique. It demonstrates that non-
expert users in data processing and analysis can conduct an
analytical process (at least when it comes to the first phase
of the EDM process).

5 Conclusions and Future Work
Throughout this work, it could be perceived, by empiri-

cal analysis, that the language created allows the diagram-
ming of the phase of data selection to be used in EDM
process, without the need for technological knowledge. In
addition, the functional quality of the software was vali-
dated, as displayed in the observation on functional qual-
ity; adequacy, accuracy, and interoperability. Given what
was brought and discussed, the work presented the follow-
ing contributions:

Expressive metamodel - verification made when answer-
ing the Q1 of section 4.2, the functional behavior in the pro-
totype was adherent to what was identified in the rules of
language and what was proposed in meta-modeling and the
language notation.

Cognitively effective notation - the work attends to the
principles proposed by Moody [7].

Functionally adherent to the needs of the domain -
demonstrated in detail in section 4.2, which deals with the
analysis and discussion of the execution of the case study.

Simplification of the phase - verification made when an-
swering Q3 in section 4.2.

As for future works, it is intended: i) to implement ele-
ments of transformation of the MDD. The T2M and M2T
transformations in the following transformation functional-
ities: in the automatic data diagramming, where the data
structure will be obtained from the source and automatically
transformed into the model, and in the automatic generation
of the source codes, so that the built model can be executed
automatically at regular intervals by some task management
tool like crontab, for example; ii) to expand the proposal to
also carry out the pre-processing phase of EDM, promoting
the solution to the ETL environment; iii) to complement
the research validation, which may be an experiment, a par-
ticipant observation and/or a questionnaire based on expert
opinion; and iv) to develop studies of this proposal in the
context of Big Data and Data Lake.

6 Acknowledgment
This study was financed in part by the Coordenação

de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

References
[1] S. A. Salloum, M. Alshurideh, A. Elnagar, and K. Shaalan, “Min-

ing in educational data: Review and future directions,” in Joint
European-US Workshop on Applications of Invariance in Computer
Vision. Springer, 2020, pp. 92–102.

[2] C. Romero and S. Ventura, “Data mining in education,” Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 3, no. 1, pp. 12–27, 2013.

[3] E. J. Dommett, “Understanding student use of twitter and online fo-
rums in higher education,” Education and Information Technologies,
vol. 24, no. 1, pp. 325–343, 2019.

[4] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software
engineering in practice,” Synthesis lectures on software engineering,
vol. 3, no. 1, pp. 1–207, 2017.

[5] J. White, J. H. Hill, J. Gray, S. Tambe, A. S. Gokhale, and D. C.
Schmidt, “Improving domain-specific language reuse with software
product line techniques,” IEEE software, vol. 26, no. 4, pp. 47–53,
2009.

[6] H. Krahn, B. Rumpe, and S. Völkel, “Integrated definition of ab-
stract and concrete syntax for textual languages,” in International
Conference on Model Driven Engineering Languages and Systems,
vol. 4735, Springer. Berlin: Springer, 2007, pp. 286–300.

[7] D. L. Moody, “The” physics” of notations: a scientific approach
to designing visual notations in software engineering,” in 2010
ACM/IEEE 32nd International Conference on Software Engineering,
vol. 2, IEEE. Cape Town: IEEE, 2010, pp. 485–486.

[8] H. B. M. Diniz, “Linguagem especı́fica de domı́nio para abstração de
solução de processamento de eventos complexos,” Master’s thesis,
Universidade Federal de Pernambuco, 2016.

[9] P. N. Magalhães Júnior, “Um modelo de dados para apoiar a
mineração de dados educacionais na investigação de evasão de es-
tudantes,” tede.unifacs.br, 2013.

[10] L. M. B. Manhães, “Predição do desempenho acadêmico de grad-
uandos utilizando mineração de dados educacionais,” Doutorado em
Engenharia de Sistemas e Computação Instituição de Ensino: Uni-
versidade Federal do Rio de Janeiro, Rio de Janeiro. Biblioteca De-
positária: BIBLIOTECA DO CT, vol. 1, no. 1, pp. 1–157, 2015.

[11] A. L. d. Alencar, “Um meta-modelo para representação
de dados biológicos moleculares e suporte ao processo
de anotação de variantes genéticas,” repositorio.ufpe.br,
vol. 1, no. 1, pp. 1–152, 2018. [Online]. Available:
https://repositorio.ufpe.br/handle/123456789/32659

[12] E. M. L. V. Leijden, “Desenvolvimento de uma linguagem especı́fica
de domı́nio para consumo de dados educacionais,” 2020.

[13] C. W. Bachman, “The structuring capabilities of the molecular data
model.” in ER, 1983, pp. 55–68.

[14] R. K. Yin, Estudo de Caso-: Planejamento e métodos. Bookman
editora, 2015.

[15] I. ISO, “Iso standard 9126: Software engineering product quality,
parts 1, 2 and 3,” 2001.

[16] K. Qian, “Discovering information integration specifications from
data examples,” Ph.D. dissertation, UC Santa Cruz, 2017.

39

Agile and Lean Software Engineering and the
SWEBOK

Position Paper for Panel: Educational and Professional Implications of SWEBOK

David Parsons
The Mind Lab

Auckland, New Zealand
david.parsons@themindlab.ac.nz

Abstract This position paper addresses the usefulness (or
otherwise) of the Software Engineering Body of knowledge
(SWEBOK) version 3 for software practitioners in industry, and
the consequent need for the SWEBOK to evolve to better address
current industry practice. The position taken in this paper is that
agile and lean methods are now the predominant approach to
software engineering, and that the limited and anachronistic
coverage of agile methods in the SWEBOK, coupled with the
absence of any acknowledgement of lean approaches, is
undermining software engineering education, the career
prospects of graduates, and the software industry as a whole. It is
therefore proposed that the agile methods section of the
SWEBOK is revised and expanded such that it provides a valid
body of knowledge for contemporary software engineering

Keywords-Agile; Lean; Kanban; Scrum; DevOps; SWEBOK;
SEEK

I. INTRODUCTION SWEBOK, AGILE, AND LEAN

While the Software Engineering Body of Knowledge
(SWEBOK) [1] has been guiding software engineering
education for decades, it has continuously struggled to provide
software engineering students with appropriate skills to excel in
their jobs [2], and many graduates face difficulties when
beginning their professional careers due to a skills mismatch
between what is taught and what is needed [3]. One reason for
this may be the failure of the SWEBOK to meaningfully
provide a useful body of knowledge in contemporary practices
in agile and lean software development. Of course, the
SWEBOK is not the curriculum, but directly underpins it
through the IEEE software engineering curricula guidelines [4].
Links between the Software Engineering Education Knowledge
(SEEK) and the SWEBOK also strongly emphasize software
engineering tools and methods [5], so both should reflect the
dominant nature of agile methods in contemporary software
engineering. This position paper first outlines the growth of
agile methods over the last 20 years or so, along with the
associated increase in the use of lean methods and practices
such as Kanban, often integrated with agile processes. It then
provides some commentary on the limitations of SWEBOK 3
in addressing these major trends and concludes by suggesting

 DOI reference number: 10.18293/SEKE2022-060

some ways in which the next version of the SEWBOK can
improve its coverage in these areas.

A. The growth of agile methods

Agile methods, which emerged from lightweight methods
in the 2000s, have continued to increase their influence over
how software is engineered. Exactly how this increase has
unfolded is to some extent unclear. One set of data suggests
that uptake has been increasing markedly since about 2010 and

[6]. Snapshots using different data across
different years provide varying perspectives. An internal
Microsoft study in 2007 suggested that about a third of the
teams were using agile methods [7]. Ten years later, a broader
study of 153 practitioners gave a similar number, suggesting
that about a third of organizations were using agile methods
[8].

More recently, the 15th State of Agile Report [9] noted a
significant growth in agile adoption, from 37% in 2020 to 86%
in 2021. This seems in no small part to have been driven by
DevOps initiatives, a complementary set of agile practices for
iterative delivery in short cycles [10], which require the core
agile practices of collaboration, automation, and tooling [11].
Of course, definitions and measures of agile adoption can be
variable. A 2015 study by HP noted that only 15% of
respondents claimed , while 51% were

[6]. A 2018 article in the Harvard
Business Review noted that although about 40% of
organizations had applied agile methods in parts of their
operations, adoption was neither broad nor deep [12]. As Hoda
et al. note, after more than two decades of agile practice, many
organizations still consider themselves still maturing in this
space [13].

These figures may suggest that, at the time of publication of
SWEBOK 3 in 2014, agile methods had not yet reached the
level of dominance in software engineering that they now
appear to hold. In addition, the inconsistent application of agile
methods suggests that better coverage in the SWEBOK might,
through the improved knowledge of graduates and early career
software engineers, lead to more mature usage in industry. In
addition, software engineering education has already broadly
embraced agile methods. A 2021 study found that 79.4% of
software engineering education studies were associated with

40

Agile Software Development [2]. A revised SWEBOK would
help to address this de facto move towards agile methods as a
predominant software engineering approach.

B. Lean development

The application of lean thinking to software engineering is
by no means as widespread or embedded as agile methods in
industry. However, its links with agile methods, particularly in
the sharing of practices such as Kanban boards in agile teams,
and more explicitly in the Scrumban method, mean that we
cannot fully address agile software engineering without at least
acknowledging the influence of lean thinking. Its use is also
growing significantly, for example the most recent tate of
Agile report shows that 22% of respondents were using some
kind of lean approach. [9]. However, like agile methods, we
must question to what extent this usage is broad and deep, with
only a small number of organizations implementing Kanban

 stage [14]. Perhaps the SWEBOK
can provide more support for this evolving area of software
engineering?

C. Agile, Lean and SWEBOK 3

So, what of SWEBOK 3? There are a few references to
agile scattered through the document, some of which raise
questions about how it is categorized,

-17) suggests a somewhat dismissive tone. The
main agile methods section (one page out of 335) certainly
shows its age, as we might expect from a document that is
around ten years old. It refers to the most popular methods as
being Rapid Application Development (RAD), eXtreme
Programming (XP), Scrum, and Feature-Driven Development
(FDD). It is doubtful that this was true even in 2014, and
certainly is not the case now. The most recent state of agile
report shows that 66% of respondents were using Scrum. Only
1% used XP, with no sign of RAD or FDD [9]. The agile
development section of the SWEBOK continues with a
discussion around combinations of agile and more plan-based
methods, but this is neither referenced nor illustrated with any
examples. Essentially the problem is that the SWEBOK does
not provide any kind of body of knowledge for agile software
development. Neither does it provide any support at all for an
understanding of any aspects of lean development or DevOps.

II. A PROPOSAL FOR SWEBOK 4 AGILE AND LEAN

BODIES OF KNOWLEDGE

The practice of software engineering is evolving all the
time. A systematic literature review by Garousi et al. (2019)
revealed that professional practice and project management are
becoming increasingly important and emphasize the soft skills
that are essential to modern agile software development [3]. It
is clear that both agile and lean software engineering are
becoming increasingly popular, but also that usage is immature.
The SWEBOK can contribute to addressing this problem by
providing an improved body of knowledge that can help to
ensure that the core principles of contemporary agile and lean
development are properly understood by those entering the
profession.

Of course there will always be calls to expand the
SWEBOK, such as providing better coverage of testing,
maintenance and configuration [15]. To some extent, new
coverage can be introduced simply by recontextualizing what is
already there, for example by creating a DevOps curriculum
from various existing components of the SWEBOK [16].
However, the current single page entry for agile development is

environment and must be revised and expanded.

REFERENCES
[1] P. Bourque, R. E. Fairley, and IEEE Computer Society, SWEBOK v.3.0:

Guide to the software engineering body of knowledge. IEEE, 2014.
[2] O. Cico, L. Jaccheri, A. Nguyen-

intersection between software industry and Software Engineering
education - A s
Journal of Systems and Software, vol. 172, p. 110736, Feb. 2021, doi:
10.1016/j.jss.2020.110736.

[3]
Gap Between Software Engineering
IEEE Software, vol. 37, no. 2, pp. 68 77, Mar. 2020, doi:
10.1109/MS.2018.2880823.

[4] P. Bourque, R. E. Fairley, and IEEE Computer Society, Guide to the
software engineering body of knowledge. 2014.

[5] S. Frezza, M. Tang
IEEE Software, vol. 23, no.

6, pp. 27 35, Nov. 2006, doi: 10.1109/MS.2006.156.
[6]

TechBeacon. https://techbeacon.com/app-dev-testing/survey-agile-new-
norm (accessed Feb. 20, 2022).

[7]
First

International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), Sep. 2007, pp. 255 264. doi:
10.1109/ESEM.2007.12.

[8]
Development Methodologies: Do Organizational, Project, and Team
Characteristics Mat IEEE Software, vol. 33, no. 5, pp. 86 94, Sep.
2016, doi: 10.1109/MS.2015.26.

[9]
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
(accessed Feb. 20, 2022).

[10]
ACM Comput. Surv., vol. 52, no. 6,

pp. 1 35, Nov. 2020, doi: 10.1145/3359981.
[11] al

Journal of Systems and
Software, vol. 157, 2019, doi: 10.1016/j.jss.2019.07.083.

[12]
Harvard Business Review, Mar. 22, 2018. Accessed: Feb.

20, 2022. [Online]. Available:
https://hbr.org/sponsored/2018/03/survey-data-shows-that-many-
companies-are-still-not-truly-agile

[13]
IEEE Software, vol. 35, no. 5, pp. 58 63,

2018, doi: 10.1109/MS.2018.290111318.
[14] -

Kanbanize Blog, May 20, 2021. https://kanbanize.com/blog/state-of-
kanban-report/ (accessed Feb. 20, 2022).

[15] V. Garousi, G. Gi
Gaps of Software Engineers: An Empirical Analysis Based on

ACM Trans. Comput. Educ., vol. 20, no. 1, p. 3:1-3:33,
Nov. 2019, doi: 10.1145/3360497.

[16] f a (yet another?)
Software Engineering Aspects of Continuous

Development and New Paradigms of Software Production and
Deployment, Mar. 2018, pp. 1 18.

41

Multi-Label Code Smell Detection with Hybrid
Model based on Deep Learning

Yichen Li
School of Computer Science and Technology

Soochow University
Suzhou, China

Email: ycli1024@stu.suda.edu.cn

Xiaofang Zhang
School of Computer Science and Technology

Soochow University
Suzhou, China

Email: xfzhang@suda.edu.cn

Abstract—Code smell is an indicator of potential problems in
a software design that have a negative impact on readability
and maintainability. Hence, it is essential for developers to make
out the code smell to get tips on code maintenance in time.
Fortunately, many approaches like metric-based, heuristic-based,
machine-learning based and deep-learning based have been
proposed to detect code smells. However, existing methods, using
the simple code representation to describe different code smells
unilaterally, cannot efficiently extract enough rich information
from source code. What is more, one code snippet often has
several code smells at the same time and there is a lack of multi-
label code smell detection based on deep learning. In this paper,
we propose a hybrid model with multi-level code representation
to further optimize the code smell detection. First, we parse the
code into the abstract syntax tree(AST) with control and data
flow edges and the graph convolution network is applied to get
the prediction at the syntactic and semantic level. Then we use
the bidirectional long-short term memory network with attention
mechanism to analyze the code tokens at the token-level in the
meanwhile. Finally we get the fusion prediction result of the
models. Experimental results show that our model can perform
outstanding not only in single code smell detection but also in
multi-label code smell detection.

Index Terms—Code smell, multi-label, code representation,
hybrid model, deep learning

I. INTRODUCTION

Code Smells indicate problems related to aspects of code
quality such as understandability and modifiability, and imply
the possibility of refactoring [1]. So Code smell analysis,
which allows people to integrate both assessment and im-
provement into the software evolution process, is of great
importance. Software engineering researchers have studied the
concept in detail and explored various aspects associated with
code smells, including causes, impacts, and detection methods
[2].

Many approaches have been proposed to detect code smells.
Traditionally, metric-based [3] and heuristic-based methods [4]
use the manually designed regulations to extract the features
inside the code. However, it’s difficult for developers to reach
an agreement on the appropriate rules and corresponding met-
rics. Machine-learning based methods [5], which apply Sup-
port Vector Machine, Naive Bayes and Logistic Regression,
still have a long way to go to conquer problems of manually

DOI reference number: 10.18293/SEKE2022-077

selected features and extra computation tools [6]. In recent
years, a universally well-performing deep learning model [7]
has been applied to code smell detection. In addition, the
abstract syntax tree(AST) has been used to extract the syntactic
features from the source code to detect the code smell [8].

Furthermore, multi-label code smell detection has attracted
attention. Since the code snippet tends to have many code
smells that may lead to potential problems, multi-label code
smell detection means to find out all code smells inside the
code snippet instead of one at a time. Guhhulothu et al. carried
the experiment on a multi-label dataset of combining labels
of two code smell datasets and Random-Forest was applied
to detect two code smells at the same time [9]. All of the
methods above solve the problem to some extent, but they all
have the limitations below:

• The models just use code tokens or ASTs simply. Such
methods will lose part of the information that helps
recognize each code smell more efficiently.

• No one has proposed a model which can make the multi-
label classification based on deep learning. Since the code
snippet may has several code smells at the same time, it’s
necessary to propose an efficient and convenient model
to find out code smells.

To address these limitations, in this paper we propose a
hybrid model with multi-level code representation(HMML).
We first parse the AST from the source code and add the
control and data flow edges [10] to get the code property graph.
Then we apply the graph convolution network(GCN) [11] to
learn information from the high dimensions at the syntactic
and semantic level. Meanwhile, we use the bidirectional long-
short term memory(LSTM) network with attention to analyze
the code tokens at the token-level. Finally, we use the outputs
of two models by weight to get the predication result. What
is more, all of the models mentioned in this paper have been
optimized to fit for the multi-label classification task. We apply
our HMML method to 100 high-quality Java projects from
Github. Better results have been achieved not only on multi-
label code smell detection but on some single code smell
detections.

The main contributions of this article are as follows:

• We propose a hybrid model that extracts the multi-level

42

Fig. 1. Overview of the HMML

code representation information and separately applies
the appropriate deep learning neural network.

• We are the first to carry out the multi-label code smell
detection based on the deep learning method and achieve
a good result.

• We modify many other approaches to fit into multi-label
classification tasks and conduct extensive experiments to
find the maximum capacity and best configuration.

The rest of this paper is organized as follows. Section II
introduces the background; Our HMML method is introduced
in Section III; Section IV describes the experimental setup and
results are in Section V; The conclusion of this paper and the
future work are presented in Section VI.

II. BACKGROUND

A. Code smell

Code smells were first introduced by Fowler [1] as ”struc-
tures with technical debt which affect maintainability neg-
atively”. Code smells imply the possibility of refactoring
and have an impact on software development and evaluation.
Fowler categorized code smells as implementation, design [12]
and architecture [13] smells based on the scope and granularity
[14].

B. Abstract syntax tree

Abstract Syntax Tree (AST) is a tree representation of the
abstract syntactic structure of source code written in a pro-
gramming language [15]. Developers can get the declaration
statements, assignment statements, operation statements and
realize operations by analyzing the tree structures [16].Nowa-
days, Some studies use AST-based approaches for source code
clone detection [15], program translation [17], and code smell
detection [8].

C. Motivation

Existing methods take a one-sided approach to the code
smell detection problem. On the one hand, no one has applied
the state-of-art deep learning to the multi-label code smell
detection. On the other hand, many researchers focus on the
token-based method [7] or AST-based method [8]. Although
code fragments have some similarities with natural language

texts and AST extracts some syntactic information, the in-
formation is still far from enough. Some code smells are
caused by several aspects and the simple code representation
fails to distinguish them. For example, Long Method is a
general code smell and it is caused by the length of the code,
long comment, complex conditional statement and messy loop.
Existing methods cannot catch the cause of the code smell
accurately because token-based methods ignore the syntax
information by treating each code seperately and AST-based
methods lose the words meaning and information about the
comment, code length when compiling the code.

In the meanwhile, recent work has demonstrated the su-
periority of a graph-based approach to code representation
over other approach [10]. Intuitively, the rich semantic and
structural information in the graph will help us in smell
detection. In terms of the Missing default, AST-based methods
simply treat the statement as branch of the tree and ignore
the possible logical errors linked to the data flow due to
the missing default. By contrast, the graph-based methods
with control and flow data can vividly show the change by
adding extra edges among statements. To ensure the model’s
ability to catch different code smells, we fuse the token-
based approach and graph-based approach to entirely get
the structural, syntactic, semantic information to detect code
smells.

III. APPROACH
This section introduces the method we use to detect code

smells. Figure 1 gives an overview of our method.
To extract tokens and AST from Java programs, we use a

python package javalang1. We use the method proposed in
[10] to add the control and data flow edges. We focus on the
following essential control flow types: Sequential execution,
Case statements, While and For loops, which are linked to
code smells mentioned in our motivation. In this paper, we
use two different neural networks: a traditional LSTM for
word tokens and a GCN that catches the information inside
the graph.

1) LSTM Model: We use bidirectional long-short term
memory network with attention mechanism to capture the

1https://github.com/c2snet/javalang

43

Fig. 2. Details of the Model

information in front and behind of the current position. Figure
2(a) shows details of the LSTM Model.

The attention is designed to selectively focus on parts of the
source sentence during translation. We use global attention in
this model to extract source context vector.

cj =

|x|∑
i=1

aijhi (1)

where aij is the attention weights of hidden state hi. The
attention mechanism will give more weight to the hidden state
vectors of important tokens.

rij = hi ∗ cj (2)
y = Sigmoid(Wsrij + bs) (3)

where Ws, bs are parameters for Sigmoid layer. Here we
use the Sigmoid layer as output layer to reveal the multi-label
classification task.

2) GCN Model: Figure 2(b) shows details of the GCN
Model. We use the python package PyG2 to easily build a
graph convolution network with the following propagation
rule:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (4)

Here, Ã = A+IN is the adjacency matrix of the undirected
graph G with added self-connections. IN is the identity matrix,
D̃ii =

∑
j Ãij and W l is a layer-specific trainable weight

matrix. σ(.) denotes an activation function. H(l) ∈ RN×D

is the matrix of activations in the lth layer; H(0) = X . Our
forward model then takes the form below:

Z = Ã ReLU(ÃXW (0))W (1) (5)
y = Sigmoid(WsZ + bs) (6)

where Ws, bs are parameters for Sigmoid layer,W (0) ∈ RC

is an input-to-hidden weight matrix for a hidden layer with H
feature maps. W (1) ∈ RR is a hidden-to-output weight matrix.

2https://github.com/pyg-team

3) Fusion of Model: Assume the outputs of the model are o1
and o2 and the hyper parameter k , then the final probability
distribution is computed as follows:

output = k
⊗

o1 + (1− k)
⊗

o2 (7)

For the both models, we all use binary cross-entropy loss
to optimize.

Loss(xi, yi) = −wi[xilogyi + (1− xi)log(1− yi)] (8)
where wi is the parameter for loss, xi is the ith prediction

of the label and yi is the ith ground truth.

IV. EXPERIMENTAL SETTINGS
A. Projects and dataset

We first use the CodeSplit3 to split 100 high-quality Java
projects on Github covering a variety of functions into method-
level code fragments. Then we use Designite [18] to find out
the smells contained in the source code and generate smell
reports. Finally we choose nine code smells [18] at the method
level for our experiment and combine their labels into a multi-
label dataset. We divide all samples into three parts, 70% as
the training set, 20% as the validation set, and 10% as the
test set. Table I shows the number of samples used in our
experiment and baselines.

B. Baseline
As mentioned before, we are the first to apply the deep

learning methods to the multi-label code smell detection, and
we select the following two improved methods as our baseline
here, which are adapted into multi-label classification task:

1) Random–Forest Model: The model is used by [9] to
reveal the multi-label classification and performs well when
detecting Long Method and Feature Envy.

2) ASTNN Model: The ASTNN model is first introduced by
Zhang [19] and was adapted by [8] to the single code smell
detection. We refactor the model to do the multi-label code
smell detection here.

3https://github.com/tushartushar/CodeSplitJava

44

Fig. 3. Box plot of F-measure exhibit by HMML

TABLE I
SAMPLES DISTRIBUTIONS

Training set Validating set Testing set

Code smells P N P N P N

Magic Number 9643 76807 2748 21952 1387 10957

Long Identifier 926 85524 294 24406 132 12212

Long Statement 6816 69634 1955 22745 998 11346

Missing default 993 85457 308 24392 160 12184

Complex Method 2383 84067 713 23987 312 12032

Long Parameter List 1629 84821 33 24267 207 12137

Complex Conditional 1320 85130 346 24354 185 12159

Long Method 342 86108 92 24608 45 12299

Empty catch clause 558 85892 179 24521 75 12269

Multi smells 4972 81487 1475 23225 714 11630

C. Evaluation

Due to the extremely unbalanced distribution of positive
and negative samples in real projects, we avoid comparing
the accuracy of each model because if a model predicts all
samples as negative, it will still have high accuracy. We choose
precision, recall and F-measure as the evaluation metrics. For
multi-label code smell detection, we use the Macro weighted
F1 [20], which considers the imbalance in the category of
samples. Precisionweighted and Recallweighted are weighted
according to the number of categories. Assuming L is the
number of categories, they are defined as follows:

Precisioni =
True Positivei

True Positivei + False Positivei
(9)

Precisionweighted =

∑L
i=1 Precisioni × wi

|L|
(10)

Recalli =
True Positivei

True Positivei + False Negativei
(11)

Recallweighted =

∑L
i=1 Recalli × wi

|L|
(12)

F1i =
2 ∗ Precisioni ∗Recalli
Precisioni +Recalli

(13)

Macro weighted F1 =
2 ∗ Precisionw ∗Recallw
Precisionw +Recallw

(14)

D. Training details

In our HMML method, the hidden states of LSTM have
300 dimensions and layer is set to be 2. We apply the graph
convolution three times. In the two sub-models, the training
batch size is set to be 32 and dropout is applied to avoid
overfitting with dropout rate being 0.4. We use the Adam
optimizer algorithm with 0.001 initial learning rate. In the
ASTNN, we set two layers and 250 dimensions in the hidden
states [19] Then we choose 80 features and 50 trees in the
random forest [9]. Finally, we make our code public4.

TABLE II
VALUES OF HYPER-PARAMETERS FOR HMML

Hyper-parameter Values

Training batch size {16,32,64,128}
Embedding dimensions(E) {100,200,300}
Dimensions of hidden states in LSTM(H) {150,250,300}
Number of layer in LSTM {1,2,3}
Number of graph convolution in GCN {1,2,3}

V. EXPERIMENTAL RESULTS

In this section, we mainly focus on answering the following
research questions:

RQ1: How does our HMML method perform compared to
other baselines?

RQ2: How does multi-label code smell detection perform
compared with single code smell detection?

RQ3: What impact does each of our main components
have in our HMML method?

A. RQ1:How does our HMML method perform compared to
other baselines?

Table III shows the performance of our model and baselines
on multi-label code smell detection and Figure 3 shows the box
plot of performance of our HMML method under different
configurations in Table II. From the table and figure, we can
easily see that our model does not perform equally on all
of the smells and it performs quite well on the smell like

4https://github.com/liyichen1234/HMML

45

TABLE III
PERFORMANCE OF HMML AND BASELINES ON MULTI-LABEL

CODE SMELL DETECTION

HMML Random-Forest ASTNN

Code smells P R F1 P R F1 P R F1

Magic Number 0.97 0.93 0.95 0.89 0.35 0.50 0.67 0.57 0.62

Long Identifier 0.44 0.55 0.49 0.52 0.36 0.43 0.85 0.30 0.44

Long Statement 0.73 0.60 0.66 0.90 0.35 0.50 0.84 0.68 0.75

Missing default 0.98 0.99 0.99 0.96 0.29 0.44 0.71 0.23 0.34

Complex Method 0.82 0.66 0.73 0.92 0.15 0.26 0.71 0.23 0.34

Long Parameter List 0.81 0.60 0.69 1.00 0.29 0.46 0.86 0.60 0.71

Complex Conditional 0.68 0.58 0.63 0.96 0.14 0.24 0.94 0.21 0.34

Long Method 0.67 0.41 0.51 1.00 0.09 0.16 0.83 0.69 0.76

Empty catch clause 0.51 0.30 0.38 0.86 0.08 0.15 0.61 0.11 0.18

Multi smells 0.83 0.74 0.78 0.90 0.30 0.45 0.76 0.52 0.62

Magic Number and Missing default and performs not bad on
the other smells separately. In the meanwhile, the machine-
learning method Random-forest has the poor Recall-values
on each smell, which means the poor ability to find out the
real code smell and the ASTNN performs unequally on the
different smells.

In order to analyze the results, we apply the Win/Tie/Loss
indicator to compare the performance of different models
further, which has been used in prior works for performance
comparison between different methods [8]. Then we conduct
Wilcoxon signed-rank test and Cliff’s delta test to analyze the
performance of our model and other methods. Table IV shows
Cliff’s delta values(|δ|) and the corresponding effective levels.

To be specific, we make the following comparisons to
determine the result of Win/Tie/Loss indicator: For a baseline
method M, if our model outperforms M with the p-value of
Wilcoxon signed-rank test less than 0.05 and the Cliff’s delta
value greater than or equal to 0.147, the difference between
these two models is statistical significant and can not be
ignored. At this time, we mark our model as a “Win.” In
contrast, if the model M outperforms out model with a p-value
<0.05 and a Cliff’s delta≥0.147, our model will be marked
as a “Loss.” Otherwise, we mark the case as a “Tie”.

TABLE IV
MAPPINGS BETWEEN CLIFF’S DELTA VALUES AND THEIR

EFFECTIVE LEVELS

Cliff’s delta Effective levels

|δ| < 0.147 Negligible

0.147 ≤ |δ| < 0.33 Small

0.33 ≤ |δ| < 0.474 Medium

0.474 < |δ| Large

As shown in the Table V, our method performs better almost
in each smells and has an absolute advantage in multi code
smells detection. Although weighted F1 can not accurately
represent that the model can find all code smells at the same
time, it reflects the ability of the model in multi-label code
smell detection. Our HMML method has the highest weighted
F1 and performs equally on the precision value and recall
value. Therefore, we can regard that our HMML method does
a good job in the multi-label code smell detection.

TABLE V
WIN/TIE/LOSS INDICATORS ON FMEASURE VALUES OF

RANDOM FOREST, ASTNN, AND HMML

Code smell Random Forest vs HMML ASTNN vs HMML

Magic Number <0.05(+Large) <0.05(+Large)

Long Identifier <0.05(+Medium) <0.05(+Medium)

Long Statement <0.05(+Large) 0.264(-Small)

Missing default <0.05(+Large) <0.05(+Large)

Complex Method <0.05(+Large) <0.05(+Large)

Long Parameter List <0.05(+Large) 0.06(-Small)

Complex Conditional <0.05(+Large) <0.05(+Large)

Long Method <0.05(+Large) 0.735(-Large)

Empty catch clause <0.05(+Large) <0.05(+Large)

Multi smells <0.05(+Large) <0.05(+Large)

Win/Tie/Loss 10/0/0 7/3/0

B. RQ2: How does multi-label code smell detection perform
compared with single code smell detection?

TABLE VI
PERFORMANCE OF HMML AND BASELINES ON SINGLE CODE

SMELL DETECTION

HMML Random-Forest ASTNN

Code smells P R F1 P R F1 P R F1

Magic Number 0.98 0.94 0.96 0.88 0.36 0.51 0.85 0.85 0.85

Long Identifier 0.65 0.25 0.36 0.54 0.39 0.46 0.64 9.71 0.68

Long Statement 0.79 0.64 0.71 0.89 0.36 0.51 0.92 0.85 0.88

Missing default 0.88 0.84 0.86 0.93 0.34 0.50 0.83 0.72 0.77

Complex Method 0.84 0.83 0.84 0.84 0.15 0.26 0.85 0.25 0.39

Long Parameter List 0.86 0.72 0.79 1.00 0.50 0.66 0.86 0.58 0.70

Complex Conditional 0.79 0.50 0.61 0.93 0.14 0.24 0.83 0.75 0.79

Long Method 0.65 0.24 0.35 0.80 0.09 0.16 0.86 0.85 0.85

Empty catch clause 0.89 0.63 0.73 0.86 0.08 0.15 0.22 0.09 0.13

As shown in the Table VI, models show different abilities
of detecting code smells. For each code smell, we apply the
model used in multi-label code smell detection to train seper-
ately and compare it with multi-label code smell detection
model when detecting the designated code smell. Random-
Forest performs equally in single code smell detection and
multi-label code smell detection while ASTNN performs much
better in single code smell detection. We believe this is
somewhat related to capacity of ASTNN model, which cannot
capture features of different code smells in the multi-label code
smell detection. HMML performs slightly worse in multi-label
code smell detection but still achieves a robust result.

What is more, single code smell detection needs to train
corresponding model for each smell, which can be quite
time consuming with the increase in the number of code
smell. However, our multi-label code smell detection not only
performs well in each code smell detection but can find out
all code smells by one model at the same time.

C. RQ3: What impact does each of our main components have
in our model?

We analyze the performance gain achieved due to various
components of our approach by performing an ablation study.

46

Table VII shows these results. Control and data flow edges play
a major role in the code smell detection. The reason is that
code smells like Empty catch clause and Missing default which
have the complex data flow information can be found out
effectively in the GCN model. We can also find that the LSTM
model and GCN model all perform bad on Long Method. This
is because Long Method needs not only structural information
but syntactic and semantic information.

TABLE VII
EFFECTIVENESS OF EACH MODULE IN HMML

HMML−GCN HMML−LSTM HMML−control and data flow edges

Code smells P R F1 P R F1 P R F1
Magic Number 0.98 0.89 0.93 0.87 0.85 0.86 0.83 0.81 0.82
Long Identifier 0.62 0.14 0.22 0.12 0.75 0.21 0.11 0.76 0.19
Long Statement 0.75 0.51 0.61 0.61 0.79 0.69 0.59 0.72 0.65
Missing default 0.89 0.79 0.84 0.99 0.96 0.97 0.77 0.74 0.73

Complex Method 0.90 0.59 0.71 0.75 0.66 0.70 0.70 0.63 0.66
Long Parameter List 0.80 0.41 0.54 0.85 0.71 0.77 0.86 0.73 0.79
Complex Conditional 0.77 0.58 0.66 0.77 0.58 0.66 0.75 0.42 0.54

Long Method 0.56 0.11 0.19 0.57 0.18 0.27 0.48 0.22 0.30
Empty catch clause 0.50 0.04 0.08 0.85 0.70 0.77 0.74 0.62 0.67

Multi smells 0.86 0.65 0.74 0.75 0.78 0.75 0.71 0.72 0.71

Fortunately, HMML notices the advantage and disadvantage
of each model, which means the ability to catch appropriate
features in multi-label code smell detection. HMML balances
the results with the fusion of models and achieves a more
robust result.

VI. THREATS TO VALIDITY

A. Internal validity

We use the Designite tool to detect smells, which is used
to generate labels for the training data and view its results
as ground truth. The tool uses three quotes to get more than
20 labels. Although the tool has been applied to many related
works, it still needs much time to ensure the reliability of data.

B. External validity

We just did our detection on the 100 Java projects on Github.
More jobs should be carried out on other projects, even transfer
the model to the other languages since different languages may
have its own distribution of code smells.

VII. CONCLUSION AND FEATURE WORK

In this paper, we propose a hybrid model, which extracts
the multi-level code representation information to reveal multi-
label code smell detection. Then we carry out the experiment
based on the deep learning method and achieve a good result
in terms of the evaluation.

As future work, a unified framework to deal with code
smells at different granularities should be considered and we
want to figure out whether existed approaches have the ability
to find the unknown code smell. Moreover, it is of great value
to make the model feasible to other programming languages.

VIII. ACKNOWLEDGEMENT

This work is partially supported by the National Natural
Science Foundation of China (61772263, 61872177), Col-
laborative Innovation Center of Novel Software Technology
and Industrialization, and the Priority Academic Program
Development of Jiangsu Higher Education Institutions.

REFERENCES

[1] M. Fowler, Refactoring - Improving the Design of Existing Code,
ser. Addison Wesley object technology series. Addison-Wesley, 1999.
[Online]. Available: http://martinfowler.com/books/refactoring.html

[2] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158–173, 2018.

[3] M. Salehie, S. Li, and L. Tahvildari, “A metric-based heuristic frame-
work to detect object-oriented design flaws,” in 14th IEEE International
Conference on Program Comprehension (ICPC’06). IEEE, 2006, pp.
159–168.

[4] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2009.

[5] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing
and experimenting machine learning techniques for code smell detec-
tion,” Empirical Software Engineering, vol. 21, no. 3, pp. 1143–1191,
2016.

[6] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lu-
cia, “Detecting code smells using machine learning techniques: are we
there yet?” in 2018 ieee 25th international conference on software
analysis, evolution and reengineering (saner). IEEE, 2018, pp. 612–
621.

[7] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep learning based
code smell detection,” IEEE transactions on Software Engineering,
2019.

[8] W. Xu and X. Zhang, “Multi-granularity code smell detection using deep
learning method based on abstract syntax tree,” in Proceedings of the
33rd International Conference on Software Engineering and Knowledge
Engineering (SEKE), 07 2021, pp. 503–509.

[9] T. Guggulothu and S. A. Moiz, “Code smell detection using multi-label
classification approach,” Software Quality Journal, vol. 28, no. 3, pp.
1063–1086, 2020.

[10] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with
graph neural network and flow-augmented abstract syntax tree,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2020, pp. 261–271.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[12] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

[13] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying ar-
chitectural bad smells,” in 2009 13th European Conference on Software
Maintenance and Reengineering. IEEE, 2009, pp. 255–258.

[14] T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “Code smell
detection by deep direct-learning and transfer-learning,” Journal of
Systems and Software, vol. 176, p. 110936, 2021.

[15] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020, pp. 516–527.

[16] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[17] X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for program
translation,” arXiv preprint arXiv:1802.03691, 2018.

[18] T. Sharma, P. Mishra, and R. Tiwari, “Designite: A software design
quality assessment tool,” in Proceedings of the 1st International Work-
shop on Bringing Architectural Design Thinking into Developers’ Daily
Activities, 2016, pp. 1–4.

[19] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[20] M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class classifi-
cation: an overview,” arXiv preprint arXiv:2008.05756, 2020.

47

An Enhanced Data Augmentation Approach to
Support Multi-Class Code Readability Classification

Qing Mi∗, Yiqun Hao, Maran Wu, Liwei Ou
Faculty of Information Technology, Beijing University of Technology, Beijing, China

Email: miqing@bjut.edu.cn, yiqun.hao@ucdconnect.ie, 3085179961@qq.com, liwei.ou@ucdconnect.ie

Abstract—Context: Code readability plays a critical role in soft-
ware maintenance and evolvement, where a metric for classifying
code readability levels is both applicable and desired. However,
most prior research has treated code readability classification
as a binary classification task due to the lack of labeled data.
Objective: To support the training of multi-class code readability
classification models, we propose an enhanced data augmentation
approach. Method: The approach includes the use of domain-
specific data transformation and GAN-based data augmentation.
By virtue of this augmentation approach, we could generate
sufficient readability data and well train a multi-class code
readability model. Result: A series of experiments are conducted
to evaluate our augmentation approach. The experimental re-
sults show that a state-of-the-art multi-class code readability
classification accuracy of 68.0% is reached with a significant
improvement of 6.3% compared to only using the original data.
Conclusion: As an innovative work of proposing multi-class code
readability classification and an enhanced code readability data
augmentation approach, our method is proved to be effective.

Index Terms—code readability classification; data augmenta-
tion; generative adversarial networks; program comprehension;
software analysis

I. INTRODUCTION

Being a critical factor affecting the maintainability and
reusability of the software, source code readability, defined
as the ease of understanding the source code [5], is growing
crucial in modern software development with a higher demand
for rapid deliveries. Specifically, recent research reveals that
software developers spend nearly 59% of their development
time on reading and understanding the source code before they
start coding [23]. Thus, it is worthwhile to provide a tool that
constantly monitors the readability of source code and urges
developers to write code with high readability to shorten the
time wasted [21].

Buse and Weimer opened up the code readability classifica-
tion research in early 2008 using machine learning algorithms
with critical factors mainly affecting code readability [5].
Later, many effective classification models are built including
the use of deep learning techniques [13][14]. However, code
readability classification is still far from practical use. Because
most prior researches treat code readability classification as bi-
nary classification [6][13][14][19], that is identifying a piece of
code as either readable or unreadable. It is not precise enough
and too extreme to be applied for practical use. Therefore, this
paper is a pioneering work to propose a deep learning-based
multi-class code readability classification model.

*Corresponding author.
DOI reference number: 10.18293/SEKE2022-130

However, the problem is that the size of the labeled read-
ability dataset is merely acceptable for training a binary code
readability classification model and far from being adequate
for supporting a multi-class one. On top of that, using conven-
tional methods to manually label data, such as conducting a
large-scale survey to invite a number of programmers for data
annotation, has always been too costly and inefficient [15].
Thus, we propose a data augmentation approach including a
domain-specific data transformation method and a GAN-based
(i.e. Generative Adversarial Network-based) data augmenta-
tion method to support the training of our deep learning-based
multi-class code readability classification model.

The contributions of this paper are:

• To the best of our knowledge, we are the first to attempt
multi-class code readability classification which classifies
a code snippet as readable, neutral, and unreadable. This
multi-class model is more suitable for practical use than
existing ones.

• We propose a code readability data augmentation ap-
proach including domain-specific data transformation and
GAN-based data augmentation. By utilizing the approach,
labeled data could be generated from existing datasets
along with a higher data diversity which could ultimately
improve the performance of code readability classification
models.

• We conduct a series of experiments to verify our proposed
approach and gained a state-of-the-art multi-class code
readability classification accuracy of 68.0%, f-measure
of 67.3%.

• We publish all our data and source code online to benefit
future researchers.1

This research is an extension of a short communication
[15] which first proposed the use of data augmentation in
code readability classification. There are several improvements
made over the prior work:

• For the sake of enlarging the usable dataset to support
multi-class classification, we refine the domain-specific
data transformation method in a more systematic man-
ner. Besides, WGAN rather than ACGAN is adopted in
the GAN-based data augmentation method to get better
stability.

• Apart from separately using two data augmentation meth-
ods, we propose a parallel augmentation method and a
sequential augmentation method to combine the merits

1https://github.com/swy0601/Code-Augmentation

48

of them and further explore the best data augmentation
method in the field of code readability classification.

• A series of experiments are conducted with more evalua-
tion metrics and classification models to comprehensively
evaluate our data augmentation approach and make the
results more cogent.

II. RELATED WORK

In general, past code readability classification researches fall
into two categories: machine learning-based and deep learning-
based. Although they both produce a classifier, deep learning-
based models could automatically extract readability features
whereas machine learning-based models rely on handcrafted
features pre-specified by researchers.

A. Machine Learning-Based Code Readability Classification

Buse and Weimer collected 100 code snippets and invited
120 online human annotators to label them based on a five-
point Likert scale ranging from one (i.e., very unreadable) to
five (i.e., very readable). By analyzing the dataset collected,
a set of handcrafted code features that correlates with code
readability (e.g., average number of identifiers) was produced.
Then, those features are fed into machine learning algorithms
to make code readability predictions. This preliminary code
readability model successfully outperformed human judgments
on average [5].

Subsequently, Posnett et al. [18] proposed a readability
classification model based on two factors: code size and
entropy, which outperforms Buse’s model on the same dataset.
However, Dorn argues that both of those models have a bad
generalization ability because they only take surface features
into consideration [6]. Therefore, Dorn incorporated geomet-
ric, pattern-based, and linguistic features and built another
machine learning-based readability model.

Scalabrino et al. [19] enrich Dorn’s model metrics by com-
plementing textual aspects and achieved a better performance
than all prior models. Apart from a better model, Scalabrino
also manually labeled and added 200 pieces of readability
data which constitute our ground-truth code readability dataset
along with data from Buse and Dorn.

B. Deep Learning-Based Code Readability Classification

While machine learning-based models have gained rela-
tively high accuracy, they remain using handcrafted metrics
which require a large amount of manual work. More critically,
models with handcrafted features have a poor generalization
ability to cope with more complex and realistic data. Con-
cerning this issue, Mi et al. [14] put forward deep learning
techniques which enable neural networks to directly learn fea-
tures correlated to code readability from the source code and
achieved a state-of-the-art classification accuracy of 82.8%.

Though binary classification reaches a high performance,
the practicability is still not strong. Because it is too rough
to judge a code snippet as either readable or unreadable in
practice especially for some snippets that are just neutral
in readability. Thus, we propose to explore multi-class code

readability classification which has better practicability in
realistic scenarios. On top of that, considering the effectiveness
of deep learning techniques and the limited dataset, our re-
search extends the use of data augmentation and deep learning
techniques onto multi-class classification.

III. PROPOSED APPROACH

We treat code readability classification as a multi-class
classification task with three categories: readable, unreadable,
and neutral. As shown in Figure 1, our proposed approach
consists of three main steps.

A. Dataset Construction and Code Representation

1) Dataset Construction: Collected by conducting a large-
scale survey to invite annotators for labeling code snippets,
open-source datasets from Buse [5], Dorn [6] and Scalabrino
[19] are usually used as ground-truth data by most code
readability studies. The final readability score is the average of
every annotator’s rank. Different from the previous binary clas-
sification [5][6][13][14][15][19], we partition dataset into three
readability categories based on the readability score assigned
(five-point Likert scale) to support multi-class classification.
In addition, we remove code snippets in other languages and
use only code snippets in JAVA which is consistent with
prior researches [14][15]. In total, there are 420 labeled JAVA
code snippets that make up our dataset. The top 25% code
snippets with the highest readable score are considered as
readable whereas the bottom 25% is considered as unreadable
[15]. Therefore, the middle 50% is treated as the neutral
readability data. We belive this partition conforms to reality
because highly readable or unreadable code is less common
than neutral ones. We finally split the gathered dataset into a
training dataset and a test dataset in the ratio of 8:2.

2) Code Representation: A proper code representation
method is important for deep learning-based code readability
classification. Mi et al. proposed and deeply discussed three
representation methods that could effectively capture code
readability-related information [13]. A series of experiments
were conducted to evaluate which code representation method
is the most effective. Whereas results reveal that character-
level representation has an outstanding capability surpass-
ing the other two methods (with classification accuracy of
88.0%, 81.0%, and 75.5% respectively). Therefore, we adopt
character-level representation in this paper. Specifically, code
snippets are treated as two-dimension character matrices in
which every letter, number, mark, and whitespace is converted
into its corresponding ASCII value.

B. Code Augmentation

Considering conducting a large-scale survey to label new
code snippets is too costly, we decide to apply advanced data
augmentation techniques to enlarge our dataset.

1) Domain-Specific Data Transformation Method : The
feasibility of using domain-specific data transformation in bi-
nary code readability classification was preliminarily disclosed
in a previous research [15]. Thus, we propose to transform and

49

Fig. 1. Approach Overview

use it in multi-class classification. To adopt it in multi-class
classification, we formulate three sets of operations as shown
in Figure 1 that could generate new code snippets from the
original ones without changing their label (which is the most
secure way of augmentation because we cannot guarantee a
correct output label after intentionally changing the original
label). Specifically, we could perform increasing readability
operations on readable data, decreasing readability operations
on unreadable data, and remaining readability operations on
neutral data to generate artificial data with the correct label.

2) GAN-Based Data Augmentation Method: Being able
to generate artificial data out of a given dataset, GANs (i.e.,
Generative Adversarial Networks) have been proven to be a
potent and efficient data augmentation method to compensate
for the lack of data [3][7]. Specifically, we propose the use of
the Wasserstein Generative Adversarial Network (i.e., WGAN)
[2] for our task, because it could generate artificial data with
a high diversity without the mode collapse and vanishing
gradient problems [1].

Following the typical WGAN architecture, we construct our
network as shown in Figure 1. The network is comprised of
a generator and a discriminator. The generator could gener-
ate a character matrix from a given random noise, whereas
the discriminator will determine if a given character matrix
represents a real code snippet or a fake one generated by the
generator. After adequate training, the generator should be able
to generate verisimilar character matrices that could fool the
discriminator and be treated as reliable artificially labeled data.
To adopt it in our task, we put data with each readability label
into training and generate new data with that label respectively.
The detailed structures of the generator and the discriminator
are introduced as follows.

• The generator starts with a fully-connected layer fol-

lowed by two pairs of convolutional layers and batch-
normalization layers. A convolutional layer is placed
at the end. ReLU is set to be the activation function
for all but not the last layer which uses Tanh as the
activation. Furthermore, all convolutional layers use the
same padding with the kernel size of 4 and all batch-
normalization layers use the momentum of 0.8.

• The discriminator starts with a convolutional layer fol-
lowed by three groups of dropout layers, convolutional
layers, and batch-normalization layers. A dropout layer,
a flatten layer, and a fully-connected layer are placed
at the end of the discriminator. All convolutional layers
use the same padding and the kernel size of 3 and all
batch-normalization layers use the momentum of 0.8. The
dropout ratio is set as 0.25. LeakyReLU with 0.2 as the
alpha is used to be the activation function in this network.

During training the network, the loss function is Wasserstein
Distance and the optimizer is RMSProp with the learning rate
of 0.00005. We use the loss value to decide when to stop
training. The output is scaled to integers in the range of -1 to
128 to get the same format as character matrices (see Section
3.1.2).

3) Parallel Augmentation Method: In this method, we
use the two aforementioned methods, domain-specific data
transformation and GAN-based data augmentation, to generate
synthetic data separately, and then mix them to improve data
diversity for training the classifier.

4) Sequential Augmentation Method: In this method, we
first use domain-specific data transformation to generate syn-
thetic data which is then used in the process of GAN-based
data augmentation. After that, another batch of synthetic
data is generated by GAN. Then, augmented data from both
methods is mixed and used to train the classifier.

50

C. Multi-Class Classification Network

Considering the limited sample size, we propose a simple
convolutional neural network [10]. The network starts with
three pairs of convolutional layers and max-pooling layers.
Then, there is a flatten layer followed by three fully-connected
layers and a dropout layer as shown in Figure 1. RMS is used
as the optimizer with a learning rate of 0.0015. Categorical
cross-entropy is proposed to be the loss function [8].

IV. EXPERIMENT SETUP

In this section, we present evaluation metrics and three
research questions.

A. Evaluation Metrics

Considering that the number of code snippets varies in
three readability levels, we propose to use the macro-accuracy
and macro-f-measure, which are the most commonly used
evaluation metrics in multi-class classification researches,
to verify our experiment results. The evaluation metrics
(Accuracy/Precision/Recall/F-measure) of different readability
levels are directly added up for average, and all readability
levels are given the same weight.

In addition, Brunner-Munzel test [4] is adopted as another
evaluation metric to examine if there is a statistically signifi-
cant difference between the results obtained with and without
data augmentation. Furthermore, Cliff’s δ effect size is used
to quantify the magnitude of the measured difference.

B. Research Questions

Aiming to validate the effectiveness of our proposed ap-
proach, we formulate three research questions that will be
answered through corresponding experiments. To improve
generality, all experiments will be carried out in ten rounds.

RQ1: Which code augmentation method is the most
effective for multi-class code readability classification?

Approach: We set the augmentation level2 as N and 2N
in this RQ because they are verified to be the most effective
levels by the previous research [15]. Thus, we will compare
the following four data augmentation methods with the aug-
mentation levels of N and 2N:

• Domain-specific data transformation method
• GAN-based data augmentation method
• Parallel data augmentation method
• Sequential data augmentation method

RQ2: Which augmentation level is the best for multi-class
code readability classification?

Approach: According to the result of RQ1, we would use
the best data augmentation method to further probe the effect
of different augmentation levels. Specifically, augmentation
levels including 0N (no synthetic data), 1N, 2N, 3N, 4N, and
5N will be adopted and compared.

2Augmentation level stands for the ratio of augmented data to the original
data, where N is defined as the total number of the original data

Fig. 2. Results of RQ2

RQ3: To what extent does data augmentation improve
multi-class code readability classification?

Approach: Both the optimal augmentation method and
level are used in this research question according to the results
of RQ1 and RQ2. Instead of merely using the simple CNN
(see Section 3.3) as the classification network, three other
deep learning-based classifiers and two machine learning-
based classifiers are chosen in order to explore the amount of
improvement augmented data brought on different networks.
In addition to accuracy and f-measure, the Brunner-Munzel
test and Cliff’s δ effect size [9] are also used in this RQ to
provide a more intuitive and quantified evaluation revealing
the improvement brought after the use of data augmentation.

V. RESULTS

In this section, we present experimental results with respect
to each RQ we proposed.

RQ1: Which code augmentation method is the most
effective for multi-class code readability classification?

Based on the approach of RQ1, we repeat our experiments
for ten rounds. The results are visualized in Table 1. It
can be seen that the GAN-based data augmentation method
outperforms the other three on both accuracy and f-measure.
In contrast, the domain-specific data transformation method is
comparatively inferior. We conjecture that snippets generated
by the domain-specific data transformation method could not
generalize beyond the original snippets which severely limits
its performance. Whereas GAN could capture the readabil-
ity features more accurately, thus improving the classifier
performance. Besides, the two combined methods do not
perform well. It might be due to data augmented by domain-
specific transformation distracting the training of GAN which
misinterprets the repeated parts as important and finally lower
the quality of data generated by GAN. Considering that the
GAN-based data augmentation method achieves a relatively
better result in both evaluation metrics, we propose it to be
the augmentation method used in RQ2 and RQ3.

RQ2: Which augmentation level is the best for multi-class
code readability classification?

In this RQ, we evaluate the effect of different augmentation
levels from 0N (i.e., only original data) to 5N. We conduct
ten rounds of control experiments for each augmentation level.

51

TABLE I
RESULTS OF RQ1

Evaluation Without Domain-Specific GAN-Based Parallel Sequential
Metric Augmentation Data Transformation Data Augmentation Data Augmentation Data Augmentation

Accuracy 0.617 0.636 (1N) / 0.638 (2N) 0.675 (1N) / 0.680 (2N) 0.632 (1N) / 0.616 (2N) 0.623 (1N) / 0.658 (2N)
F-Measure 0.634 0.644 (1N) / 0.643 (2N) 0.653 (1N) / 0.673 (2N) 0.639 (1N) / 0.638 (2N) 0.625 (1N) / 0.659 (2N)

(a) Accuracy (b) F-Measure
Fig. 3. Results of RQ3

TABLE II
BRUNNER-MUNZEL TEST AND CLIFF’S δ EFFECT SIZE OBTAINED IN RQ3

Evaluation Metric Simple CNN KNN Random Forest DenseNet121 MobileNetV2 ResNet50
Brunner-Munzel test 0.00 (<0.05) 0.02 (<0.05) 0.00 (<0.05) 0.01 (<0.05) 0.15 0.00 (<0.05)
Cliff’s δ effect size 0.68 (Large) 0.56 (Large) 0.84 (Large) 0.62 (Large) 0.38 (Medium) 0.83 (Large)

The results for accuracy and f-measure are shown in Figure 2.
It can be observed that the optimal augmentation level is 2N
in which the accuracy is 68.0% and the f-measure is 67.3%.
Compared to the results where no augmented data is used, the
improvements on accuracy and f-measure are significant with
6.3% and 3.9% respectively. However, a performance degra-
dation appears when we increase the proportion of synthetic
data over 2N. Thus, overusing artificially generated data is
unhelpful and gives no further improvement. This conclusion
falls in line with the prior paper [15], in which 1N and 2N
are the best augmentation levels and there is also a decline in
performance with too more synthetic data.

RQ3: To what extent does data augmentation improve
multi-class code readability classification?

To comprehensively measure the improvement data aug-
mentation brings, we select three other widely used deep
learning-based classifiers, namely, RestNet50, DenseNet121,
and MobileNetV2, and two machine learning-based classifiers,
namely, random forest classifier and k-neighbors classifier.
In terms of evaluation metrics, the Brunner-Munzel test and
Cliff’s δ effect size are also deployed to quantify the improve-
ment along with accuracy and f-measure. Based on RQ1 and
RQ2, we adopt the GAN-based data augmentation method
with the augmentation level of 2N. Therefore, there are 1008
code snippets in the final training set and 84 code snippests in
the final test set whereas the ratio of three readability labels
remains 1:2:1 in both sets. The results are shown in Figure 3.

It is noticeable that data augmentation helps improve the
performance of all classifiers. Because we did not fine-tune
off-the-shelf deep learning-based models, they do not perform
well than the simple CNN. The results of the p-value and
the Brunner-Munzel test are shown in Table 2. It can be
seen that all classifiers but MobileNetV2 have a p-value lower
than 0.05 for the Brunner-Munzel test and a large d-value for
Cliff’s δ effect size. Both of them imply statistically significant
improvements in classification accuracy.

VI. DISCUSSION

In this section, we discuss three worth noting aspects of our
experiments.

Augmentation Effort. By adopting the data augmentation
approach, the cost is largely reduced. The process of generat-
ing 5N (2100) artificial snippets by using the domain-specific
data transformation was completed in two man-months. The
process of generating data using GAN even saved more time
and effort where it only took a day. Therefore, the data
augmentation approach we proposed is both effective and
efficient compared to the traditional way of conducting a large-
scale survey to collect new data. However, such a survey is
still necessary because all augmentation methods rely on the
availability of ground-truth data.

Readability and Understandability. It is noticeable that
the domain-specific data transformation does not perform
well. We conjecture that it is due to the subjectivity code
readability owns [5]. Because the entire transformation process
is done by merely two people who might have a different

52

perspective on readability from the general people. Thus,
data generated might have an inferior generality and limit
the classifier’s performance. Besides, manual manipulations
might affect code understandability as well. Understandability
is defined as to what extent the code allows developers to
understand its purpose [11][20][22]. Readable code is not
meant to be understood more easily. Thus, the domain-specific
data transformation is only suitable for augmenting code
readability data at the present stage.

Readability Data. The original dataset sourced from dif-
ferent prior researches [5][6][19] might be prone to errors
and weaken our conclusions to a certain extent because three
datasets are labeled by different groups of human annotators
and differ remarkably in terms of code length, code com-
pleteness. For instance, the dataset collected by Scalabrino
et al. is comprised of complete code snippets, whereas the
other two datasets contain only partial snippets. Furthermore,
the sample size might not be sufficient to train deep learning
networks such as WGAN we used. As a result, GAN-based
data augmentation could not be fully utilized and therefore
produce ordinary performance. We believe that if the original
dataset could be larger, the effectiveness of GAN-based data
augmentation will be further improved. The shortage of data
is also reflected in RQ3 where the simple CNN outperforms
other complex networks due to over-fitting.

VII. CONCLUSIONS AND FUTURE WORK

To enable multi-class code readability classification, we
propose a data augmentation approach that could be used
to effectively enlarge the dataset and well train a multi-class
classifier. A series of experiments are conducted to evaluate
the effectiveness of our proposed method. The results reveal
that adopting the data augmentation approach could improve
the classification performance to a considerable extent with the
accuracy improved by 1.8% to 10.7%. The classifier produced
by our proposed method could reach a state-of-the-art multi-
class code readability classification accuracy of 68.0%, as well
as 67.3% f-measure.

Our future work is mainly about improving the performance
of the code readability classifier. We will try to utilize other
code representation methods to capture more readability-
related features such as code semantics. We will also improve
the practicability of the code readability model. In fact, most
text readability classification researches include more than
three readability levels [12][16][17]. Therefore, we plan to
increase the number of readability levels to be more realistic.
Lastly, although considering data augmentation, the final size
of the dataset is still too small for practical application
because data augmentation highly relies on the original dataset.
Therefore, labeling more data is still unavoidable to produce
a high-performance code readability classifier.

ACKNOWLEDGMENTS

This work was supported by the GHfund B (20220202,
ghfund202202028015) and the Spark Project of Beijing Uni-
versity of Technology (Project No. XH-2021-02-24).

REFERENCES
[1] M. Arjovsky and L. Bottou. Towards principled methods for training

generative adversarial networks. arXiv preprint arXiv:1701.04862, 2017.
[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative

adversarial networks. In International conference on machine learning,
pages 214–223. PMLR, 2017.

[3] C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, A. Hammers,
D. A. Dickie, M. V. Hernández, J. Wardlaw, and D. Rueckert. Gan
augmentation: Augmenting training data using generative adversarial
networks. arXiv preprint arXiv:1810.10863, 2018.

[4] E. Brunner and U. Munzel. The nonparametric behrens-fisher problem:
Asymptotic theory and a small-sample approximation. Biometrical
Journal: Journal of Mathematical Methods in Biosciences, 42(1):17–
25, 2000.

[5] R. P. Buse and W. R. Weimer. Learning a metric for code readability.
IEEE Transactions on Software Engineering, 36(4):546–558, 2009.

[6] J. Dorn. A general software readability model. MCS Thesis available
from (http://www. cs. virginia. edu/weimer/students/dorn-mcs-paper.
pdf), 5:11–14, 2012.

[7] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and
H. Greenspan. Gan-based synthetic medical image augmentation for
increased cnn performance in liver lesion classification. Neurocomput-
ing, 321:321–331, 2018.

[8] Y. Ho and S. Wookey. The real-world-weight cross-entropy loss
function: Modeling the costs of mislabeling. IEEE Access, 8:4806–4813,
2019.

[9] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton, S. Char-
ters, S. Gibbs, and A. Pohthong. Robust statistical methods for empirical
software engineering. Empirical Software Engineering, 22(2):579–630,
2017.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[11] J.-C. Lin and K.-C. Wu. A model for measuring software understand-
ability. In The Sixth IEEE International Conference on Computer and
Information Technology (CIT’06), pages 192–192. IEEE, 2006.

[12] M. Martinc, S. Pollak, and M. Robnik-Šikonja. Supervised and unsuper-
vised neural approaches to text readability. Computational Linguistics,
47(1):141–179, 2021.

[13] Q. Mi, J. Keung, Y. Xiao, S. Mensah, and Y. Gao. Improving code read-
ability classification using convolutional neural networks. Information
and Software Technology, 104:60–71, 2018.

[14] Q. Mi, J. Keung, Y. Xiao, S. Mensah, and X. Mei. An inception
architecture-based model for improving code readability classification.
In Proceedings of the 22nd International Conference on Evaluation and
Assessment in Software Engineering 2018, pages 139–144, 2018.

[15] Q. Mi, Y. Xiao, Z. Cai, and X. Jia. The effectiveness of data aug-
mentation in code readability classification. Information and Software
Technology, 129:106378, 2021.

[16] E. Miltsakaki and A. Troutt. Real time web text classification and
analysis of reading difficulty. In Proceedings of the third workshop
on innovative use of NLP for building educational applications, pages
89–97, 2008.

[17] M. K. Paasche-Orlow, H. A. Taylor, and F. L. Brancati. Readability stan-
dards for informed-consent forms as compared with actual readability.
New England journal of medicine, 348(8):721–726, 2003.

[18] D. Posnett, A. Hindle, and P. Devanbu. A simpler model of software
readability. pages 73–82, 2011.

[19] S. Scalabrino, M. Linares-Vasquez, D. Poshyvanyk, and R. Oliveto.
Improving code readability models with textual features. pages 1–10,
2016.

[20] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez, D. Poshy-
vanyk, and R. Oliveto. Automatically assessing code understandability:
How far are we? In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 417–427. IEEE, 2017.

[21] T. Sedano. Code readability testing, an empirical study. In 2016 IEEE
29th International Conference on Software Engineering Education and
Training (CSEET), pages 111–117. IEEE, 2016.

[22] M.-A. Storey, K. Wong, and H. A. Müller. How do program under-
standing tools affect how programmers understand programs? Science
of Computer Programming, 36(2-3):183–207, 2000.

[23] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li. Measuring
program comprehension: A large-scale field study with professionals.
IEEE Transactions on Software Engineering, 44(10):951–976, 2017.

53

Contrastive Learning for Multi-Modal Automatic
Code Review

Bingting Wu
School of Computer Science and Technology

Soochow University
Suzhou, China

20204227028@stu.suda.edu.cn

Xiaofang Zhang
School of Computer Science and Technology

Soochow University
Suzhou, China

xfzhang@suda.edu.cn

Abstract—Automatic code review (ACR), aiming to relieve
manual inspection costs, is an indispensable and essential task
in software engineering. The existing works only use the source
code fragments to predict the results, missing the exploitation of
developer’s comments. Thus, we present a Multi-Modal Apache
Automatic Code Review dataset (MACR) for the Multi-Modal
ACR task. The release of this dataset would push forward the
research in this field. Based on it, we propose a Contrastive
Learning based Multi-Modal Network (CLMN) to deal with the
Multi-Modal ACR task. Concretely, our model consists of a code
encoding module and a text encoding module. For each module,
we use the dropout operation as minimal data augmentation.
Then, the contrastive learning method is adopted to pre-train
the module parameters. Finally, we combine the two encoders to
fine-tune the CLMN to decide the results of Multi-Modal ACR.
Experimental results on the MACR dataset illustrate that our
proposed model outperforms the state-of-the-art methods.

Index Terms—automatic code review, dataset, contrastive
learning, multi modal, abstract syntax tree

I. INTRODUCTION

Code review is a critical part of software maintenance and
evaluation. A general process of code review is shown in Fig.
1. Whenever the developer has submitted the revision code
and the comments, the system will schedule an appropriate
reviewer who will need to compare the differences between
the original file, the modified file and combine the content of
the developer’s comments to verify whether the code meets
the requirements. However, it also has a great demand for
human resources [1], which makes it impossible to expand
code review on a large scale.

Therefore, many researchers are committed to Automatic
Code Review (ACR) to solve the problem [2]–[4]. For ACR,
they provide the model with the original code and the revised
code, and the model returns the suggestions on whether this
modification is acceptable.

In this paper, we present a new perspective that the ACR
should not only contain code fragments. The developer’s
comments, explaining why and how to change code, are also
an essential source of information in the code review process.
The model should fully consider the developer’s comments
when giving suggestions for code review. Therefore, we focus
on the Multi-Modal ACR task. However, there are three main

DOI reference number: 10.18293/SEKE2022-022

Original
file

Revised
file

Developer

Reviewer

Submit Accept

Code base

Reject

Comments

Fig. 1: Traditional code review process.

challenges: 1) there is no corresponding dataset, 2) most of
the existing models ignore the problem of few-shot, and 3)
there is no multi-modal model in the Multi-Modal ACR task.

Since there is still a lack of relevant public datasets, we
propose and open-source a Multi-Modal Apache Automatic
Code Review dataset (MACR1), with 11 projects and over
500 thousand samples.

Recent works [2]–[5] have shown that deep learning meth-
ods perform better in capturing the syntactical and semantic
information of the source code, enabling suitable code review
suggestions. Among them, Shi et al. [2] proposes a method
called DACE, which uses long short-term memory (LSTM)
and convolutional neural network (CNN) to capture the se-
mantic and syntactical information, respectively. Zhang et al.
[5] proposes a method called ASTNN. The main idea is to
obtain better feature extraction ability by dividing the abstract
syntax tree (AST) into sentence-level blocks. Although these
approaches are excellent in modeling code fragments, they do
not consider the problem of few-shot. Misclassification may
occur when the model encounters code fragments that have not
been seen before. Therefore, in this paper, we adopt contrastive
learning to obtain a uniform distributed vector representation
to improve the robustness of the model.

In addition, we explore a new method CLMN, to represent
code snippets and textual content. We first model the code
snippets and textual content separately using two indepen-
dent encoding modules SimAST-GCN [4] and RoBERTa [6],
respectively. Since RoBERTa already has ideal pre-training

1https://github.com/SimAST-GCN/CLMN

54

parameters, we need to pre-train SimAST-GCN. We adopt the
method of contrastive learning to train the parameters of the
SimAST-GCN module. After finishing the pre-training of the
two encoders, we concatenate the vector representations of two
encoders to obtain a joint representation of code and text to
predict the final code review result.

Experiments results show that the proposed methods achieve
significantly better results than the state-of-the-art baseline
methods on MACR datasets. Our main contributions are
summarized as follows:

• We provide a large-scale Multi-Modal Apache Automatic
Code Review dataset (MACR) for the Multi-Modal ACR
task.

• We propose a novel neural network CLMN to learn the
combined relationship of the code fragments and textual
content to improve the accuracy of Multi-Modal ACR.

• We conduct a series of large-scale comprehensive exper-
iments to confirm the effectiveness of our approach.

The rest of this paper is organized as follows. Section II
introduces the background. Section III describes our approach.
Section IV provides our experimental settings. Section V
presents the experimental results and answers the research
questions. Finally, Section VI concludes our work.

II. BACKGROUND

A. Code Review

The general process of traditional code review is shown
in Fig. 1. In traditional approaches, researchers cannot solve
the main challenge in code review: understanding the code
[7]. Therefore, researchers can only improve efficiency from
other aspects of code review, such as recommending suitable
reviewers [8], [9] and using static analysis tools [10], [11].

With the development of deep learning, we can understand
the code by modeling the source code [2]–[4]. However, these
methods only use code fragments to predict the results, lacking
the exploitation of developer’s comments in code review.

To solve the Multi-Modal ACR task, the model first extracts
features from the original file, the revised file, and the com-
ments. Then, the model needs to encode these features into
vector representations and combine the code representation
and the comment representation into a uniform representation.
Finally, the neural network can make the final suggestion about
the code review according to the uniform representation.

B. Abstract Syntax Tree

An abstract syntax tree (AST) is a kind of tree aimed at
representing the abstract syntactic structure of source code.
AST has been widely used as a vital feature in deep learning
[2], [4], [12]. For example, it has a wide range of applications
in source code representation [5], defect prediction [13], and
other fields. Each node of an AST corresponds to constructs or
symbols of the source code. On the one hand, compared with
plain source code, ASTs are abstract and do not include all
details such as punctuation and delimiters. On the other hand,
ASTs can be used to describe the lexical information and the

syntactic structure of the source code. In this paper, we use the
Simplified AST [4] as the input for the code encoder module.

C. SimAST-GCN

In our previous study, we proposed a method SimAST-
GCN [4]. SimAST-GCN first parses the code fragment into the
AST and uses a specially designed algorithm to simplify the
AST into a Simplified-AST. Then, we use preorder traversal
algorithm to get the node sequence x = [x1,x2, ...,xn] and
the relation graph A ∈ Rn×n, where n is the number of nodes.
Next, the representations for nodes are obtained by:

H = {h1,h2, ...,hn} = Bi-GRU(x) (1)

Then, we use GCN to aggregate the information from their
neighborhoods.

hl = GCN(A,hl−1) (2)

where hl is the graph hidden status, h0 is the H. Finally, we
adopt a retrieval-based attention mechanism [14] to combine
H and hl to get the final representation of the code fragment.

D. Contrastive learning

Contrastive learning aims to learn effective representation
by pulling semantically close neighbors together and pushing
apart non-neighbors. It assumes a set of paired samples D =
{(xi, x

+
i)}mi=1, where xi and x+

i are semantically related. We
follow the contrastive framework in Chen et al. [15] and take
a cross-entropy objective with in-batch negatives [16] : let hi

and h+
i denote the representation of xi and x+

i , the training
objective for (xi, x

+
i) with a mini-batch of N pairs is:

ℓ = − log
esim(hi,h

+
i)/τ∑N

j=1 e
sim(hi,h

+
j)/τ

(3)

where τ is a temperature hyperparameter and sim(h1,h2) is
the cosine similarity h⊤

1 h2

∥h1∥·∥h2∥ . In this work, we encode code
fragments using a graph-based model SimAST-GCN and then
train all the parameters using the contrastive learning objective
(Eq. 3). For the text encoder, we use the pre-trained model
RoBERTa and the parameters are trained by SimCSE [17].

III. PROPOSED APPROACH

We introduce our approach CLMN in this section. As shown
in Fig. 2, the framework of the proposed CLMN contains
two main components: the Code Encoder (SimAST-GCN)
and the Text Encoder (RoBERTa). For each encoder, we use
contrastive learning to learn an adequate representation of
code fragments and the developer’s comments. For the Code
Encoder, we use an unsupervised contrastive learning method
to train its parameters. During the training process, we use
dropout as noise to obtain positive samples. The process is
shown in Fig. 3. For the Text Encoder, we use the parameters
trained by SimCSE directly. After the unsupervised training
for the two encoders, we use the pre-trained Encoders to fine-
tune the finally model CLMN to predict the results.

55

Original

Revised

C Diff

Comments

T

MLPConcat

C Code Encoder

T Text Encoder

Fig. 2: General framework of CLMN.

public static int add(String[] args){……}

Cpublic static float sub(String[] args){……}

public static Node normalize(Node root){……}

Different hidden dropout
masks in two forward passes

C

C Negative instanceCode Encoder Positive instanceC

Fig. 3: Unsupervised Code Encoder predicts the input code
fragment itself from in-batch negatives, with different hidden
dropout masks applied.

A. Contrastive Learning for Code Encoder

The main challenge for contrastive learning is how to get
positive samples. As shown in Fig. 3, in the Code Encoder,
we pass the same code fragment to the model SimAST-GCN
twice: by applying the standard dropout twice, we can obtain
two different embeddings as “positive pairs”. Then we take
other code fragments in the same mini-batch as “negative”
samples, and the model predicts the positive one among
negative samples. Although it may appear strikingly simple,
this approach is widely used in natural language models [17].

In this work, we take a collection of code fragments {xi}mi=1

and use x+
i = xi. We use the independent dropout for xi

and x+
i to make it work. In SimAST-GCN, there are dropout

placed on each GCN layers(default p = 0.1). We denote hz
i =

fθ(xi, z) where z is a random mask for dropout. We feed
the same input to the encoder twice and get two embeddings
with different dropout masks z, z′, and the training objective
of Code Encoder becomes:

L = − log
esim(h

zi
i ,h

z′i
i)/τ∑N

j=1 e
sim(h

zi
i ,h

z′
i

j)/τ
(4)

for a mini-batch of N code fragments. Note that z is just the
standard dropout mask in SimAST-GCN and we do not add
any additional dropout.

B. CLMN

1) Encoder Module: In our CLMN model, we have two
pre-trained encoder modules, code encoder (SimAST-GCN)
and text encoder (RoBERTa). For the code encoder, we
denote C = f(c) where c is a code fragment and C is the
representation for this code fragment. For the text encoder, we
denote T = f(t) where t is developer’s comments and T is the
corresponding representation. In the Multi-Modal ACR task,
each data example contains three parts: original code fragment,
revised code fragment, and developer’s comments. Thus, for
each data, we can get three representations CO,CR,TD,
corresponding to the original code fragment, revised code
fragment, and the developer’s comments.

2) Combined Representation: As shown in Fig. 2, after
getting three representations, we first calculate the difference
between the original code fragment and the revised code
fragment:

C = CO −CR (5)

where C denotes the difference between the two code frag-
ments. Then, we need to combine the difference representation
with the comments representation, because the developer’s
comments describe the difference between the two code frag-
ments.

r = [C,TD] (6)

Thus, we get the combined representation for this data sample.
3) Prediction: In this part, we make the prediction accord-

ing to the combined representation r.

y = softmax(Wr+ b) (7)

where softmax(·) is the softmax function to obtain the output
distribution of the classifier, W and b are weights and biases,
respectively.

The objective to train the classifiers is defined as minimizing
the weighted cross entropy loss between the predicted and
ground-truth distributions:

L = −
S∑

i=1

(wOyilogp̂i+wR(1−yi)log(1−p̂i))+λ ∥Θ∥2 (8)

where S is the number of training samples, wO denotes
the weight of incorrectly predicting a rejected change as
approved, and wR denotes the weight of incorrectly predicting
an approved change as rejected. These two terms provide the
opportunity to handle an imbalanced label distribution. λ is the
weight of the L2 regularization term. Θ denotes all trainable
parameters.

IV. EXPERIMENTAL DESIGN

This section introduces the process of the experiment,
including the repository selection and the data construction,
baseline setting, evaluation metrics, and experimental setting.

56

TABLE I: Statistics of the MACR dataset.

Repository #samples #rejected reject rate
accumulo 20,903 9,042 43.3%

ambari 41,424 14,262 34.4%
beam 82,438 22,141 26.9%

cloudstack 37,599 18,703 49.7%
commons-lang 9,958 8,959 90.0%

flink 133,614 112,733 84.4%
hadoop 39,958 33,861 84.7%

incubator-pinot 13,903 2,118 15.2%
kafka 64,872 37,077 57.2%

lucene-solr 58,823 50,042 85.1%
shardingsphere 19,993 1,216 6.1%

A. Dataset Construction

We selected 11 projects from Github belonging to the
Apache Foundation, which is a widely used code review source
[2], [4]. Three of them (accumulo, ambari, cloudstack) were
selected by Shi et al. [2]. The remaining projects (beam,
commons-lang, flink, hadoop, incubator-point, kafka, lucene-
solr, shardingsphere) were chosen because they have over
2000 stars. The language of all the projects is Java.

For data processing, we extracted all issues belonging to
these projects from 2015 to 2020. Among these issues, many
do not involve code submission, but only provide feedback,
so we chose the types PullRequestEvent and PullRequestRe-
viewCommentEvent.

In many practical cases, we can easily extract the original
code, the revised code and the developer’s comments from the
issue, but because these codes are usually contained in many
files, it is difficult for us to use them directly as the input
of the network. Therefore, we assume that all of the changes
are independent and identically distributed [2], so there is no
connection between these changes, and if a file contains many
changed methods, we can split these methods independently
as inputs.

Further, if we add a new method or delete a whole method,
half of the input data is empty. So we discard these data
because they cannot be fed into the network. That is, we
only consider the case where the code has been changed. In
addition, considering that the submitted data may be too large,
we subdivide the code submitted each time into the method
level for subsequent experiments.

After processing the data, each piece of data comprises four
parts: the original code fragment, the revised code fragment,
the developer’s comments and the label. The original code
fragment and the revised code fragment are both method-level
Java programs. The developer’s comments are in English. The
label uses 0 and 1 to represent rejection and acceptance. The
basic statistics of the MACR are summarized in Table I.

In this paper, the rate of the rejection between 6% and 90%
means that there is class imbalance during model training and
it will lead to poor performance, so we use a weight-based
class imbalance approach, setting the ‘class weight’ parameter
to ‘balance’ in our model.

B. Comparison Models

In this paper, we compared our proposed model CLMN with
three other models in the Multi-Modal ACR task. These mod-
els use different methods (including delimiter-based method,
token-based method, tree-based method) to obtain the code
features. The baseline models are as follows:

• DACE [2] divides the code according to the delimiter and
designs a pairwise autoencoder to compare the code.

• TBRNN serializes the AST into tokens and uses an RNN
to capture the syntactic and semantic information.

• ASTNN [5] splits large ASTs into a sequence of small
statement trees and calculates the representation distance
to compare the code.

Please note that for all the methods above, we add the same
text encoder RoBERTa to make all the methods can get the
developer’s comments as the input.

In order to ensure the fairness of the experiment and the
stability of the results, we ran all the methods on the new
MACR dataset, and each experiment was repeated 30 times.

C. Evaluation

Since the Multi-Modal ACR can be formulated as a binary
classification problem (accept or reject) [2], we choose the
F1-measure (F1) because it is widely used and the Matthews
correlation coefficient (MCC) because it can better evaluate
the performance of a model on imbalanced datasets.

The calculation formula of F1 is as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(11)

where TP, FP, FN, and TN represent True Positives, False
Positives, False Negatives, and True Negatives, respectively.
The F1 score is the harmonic mean of the precision and recall.
The value range of F1 is [0,1].

The calculation formula of MCC is:

MCC =
TP × TN − TP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(12)

The value range of MCC is [-1,1]. For all metrics, higher
values are better.

D. Experimental Setting

In our experiments, we used the javalang tools2 to obtain
ASTs for Java code, and we trained embeddings of symbols
using word2vec with the Skip-gram algorithm. For the code
encoder, the embedding size was set to 512. The hidden size of
Bi-GRU was 512. The number of GCN layers was 4. For the
text encoder, we used the default parameters. The coefficients
wO and wR were related to the dataset, and the coefficient λ of
L2 regularization item was set to 10−5. Adam was utilized as

2https://github.com/c2nes/javalang

57

TABLE II: Performance comparison in terms of F1.

Repository DACE TBRNN ASTNN CLMN
accumulo 0.995 0.99 0.995 0.996

ambari 0.977 0.979 0.979 0.98
beam 0.995 0.994 0.995 0.996

cloudstack 0.979 0.979 0.98 0.981
commons-lang 0.957 0.963 0.965 0.964

flink 0.421 0.959 0.972 0.979
hadoop 0.947 0.934 0.949 0.952

incubator-pinot 0.859 0.795 0.954 0.994
kafka 0.985 0.691 0.985 0.986

lucene-solr 0.978 0.979 0.978 0.975
shardingsphere 0.992 0.991 0.927 0.994

Average 0.917 0.932 0.971 0.981

TABLE III: Performance comparison in terms of MCC.

Repository DACE TBRNN ASTNN CLMN
accumulo 0.989 0.978 0.99 0.991

ambari 0.936 0.941 0.943 0.946
beam 0.982 0.977 0.983 0.985

cloudstack 0.957 0.957 0.96 0.961
commons-lang 0.954 0.96 0.962 0.961

flink 0.306 0.952 0.967 0.975
hadoop 0.939 0.923 0.94 0.944

incubator-pinot 0.466 0.146 0.894 0.961
kafka 0.974 0.457 0.974 0.975

lucene-solr 0.975 0.976 0.975 0.971
shardingsphere 0.876 0.863 0.295 0.899

Average 0.85 0.83 0.898 0.961

the optimizer with a learning rate of 10−5 to train the model,
and the mini-batch was 64. We random initialized all the W
and b with a uniform distribution.

All the experiments were conducted on a server with 24
cores of 3.8GHz CPU and a GeForce RTX 3090 GPU.

V. EXPERIMENTAL RESULTS

This section shows the performance of our proposed method
CLMN with other baseline methods. Therefore, we put for-
ward the following research questions:

• RQ1: Does our proposed model CLMN outperform other
models for Multi-Modal ACR?

• RQ2: Does the addition of developer’s comments improve
the performance of ACR?

• RQ3: How about the impact of contrastive learning on
model robustness?

A. Does our proposed model CLMN outperform other models
for Multi-Modal ACR?

Tables II, III show the comparison results on the MACR
dataset. The results show that the proposed CLMN consis-
tently outperforms all comparison models. This verifies the
effectiveness of our proposed method at Multi-Modal ACR.

Compared with DACE, our model CLMN achieves the best
performance in both the F1 and MCC metrics, with 6.4% and
11.1% improvement, respectively. Compared with TBRNN

TABLE IV: Impact of the addition of developer comments.

Repository CLMN w/o Text CLMN
F1 MCC F1 MCC

accumulo 0.761 0.448 0.996 0.991
ambari 0.704 0.013 0.98 0.946
beam 0.824 0.321 0.996 0.985

cloudstack 0.532 0.215 0.981 0.961
commons-lang 0.469 0.474 0.964 0.961

flink 0.367 0.237 0.979 0.975
hadoop 0.393 0.298 0.952 0.944

incubator-pinot 0.673 0.181 0.994 0.961
kafka 0.604 0.298 0.986 0.975

lucene-solr 0.392 0.297 0.975 0.971
shardingsphere 0.839 0.191 0.994 0.899

Average 0.596 0.27 0.981 0.961
* CLMN w/o Text means the CLMN without the Text Encoder.

TABLE V: Impact of contrastive learning on model robustness.

Repository beam based CLMN self based CLMN
F1 MCC F1 MCC

accumulo 0.996 0.99 0.996 0.991
ambari 0.98 0.946 0.98 0.946

cloudstack 0.98 0.961 0.981 0.961
commons-lang 0.948 0.944 0.964 0.961

flink 0.973 0.968 0.979 0.975
hadoop 0.951 0.943 0.952 0.944

incubator-pinot 0.989 0.934 0.994 0.961
kafka 0.984 0.973 0.986 0.975

lucene-solr 0.973 0.968 0.975 0.971
shardingsphere 0.993 0.887 0.994 0.899

Average 0.977 0.951 0.98 0.958
* beam based CLMN: using the Code Encoder pre-trained by beam.
* self based CLMN: using the Code Encoder pre-trained by themselves.

and ASTNN, CLMN improved by 4.9% and 1% respectively
in F1. In the MCC metric, CLMN also gained 13.1% and 6.3%
improvement.

One aspect of our improvement comes from using a better
code encoder. Our code encoder uses the Simplified AST as
input, which is better than the source code fragment and the
original AST. Simplified AST has fewer tokens and tighter
node connections. Besides, our code encoder uses the GCN
layers to get more syntactic and semantic information than
the Bi-GRU layers in other methods.

Another aspect of our improvement comes from the appli-
cation of contrastive learning. We utilize contrastive learning
to obtain a more evenly distributed representation of the
source code, which allows our model to perform better when
encountering few-shot and 0-shot samples. In addition, the
pre-training parameters obtained by contrastive learning can
be flexibly applied to other tasks (discussed in RQ3), thereby
reducing the consumption of resources.

In summary, this is the first study to apply contrastive learn-
ing to improve the performance in the multi-modal automatic
code review task. Our experiments show the effectiveness of

58

exploiting the Simplified AST and the contrastive learning.

B. Does the addition of developer’s comments improve the
performance of ACR?

Table IV shows the comparison results between the CLMN
with and without the developer’s comments. The results show
that CLMN without the developer’s comments tends to drop
sharply.

We can observe that the CLMN without the developer’s
comments has the worst result on ambari, with a 93% drop
in MCC compared to the original result. On the flink project,
the F1 value of CLMN without Text has dropped 61%. On
average, CLMN without Text has an overall decrease of 69%
in MCC and 38% in F1. This establishes that Multi-Modal
ACR can make better decisions with the developer’s comments
rather than only using the code fragments.

C. How about the impact of contrastive learning on model
robustness?

To investigate the robustness of parameters obtained by
contrastive learning, we use beam as the original pre-training
project. After getting the pre-trained parameters of the code
encoder of beam, we apply it to the remaining projects with
fine-tuning to obtain the performance in other projects. Table V
shows the impact of contrastive learning on model robustness.

We can find that after using beam’s pre-trained parameters,
the performance of our model in the other ten repositories does
not drop significantly compared to the performance pre-trained
by themselves. There is even no drop in some repositories. On
average, there is only a drop of 0.3% in F1 and 0.7% in MCC.
In other words, the hyperparameters obtained using contrastive
learning can be easily extended to different projects and obtain
similar results. When the model encounters an unseen code
fragment (few-shot or 0-shot), it can also generate its vector
representation accurately.

The results are soundproof that contrastive learning can
effectively increase the robustness of the model. It also demon-
strates that the parameters obtained by contrastive learning can
help the code get a more uniform distribution in the vector
space, resulting in better performance across different projects.

VI. CONCLUSION

In this paper, we first present MACR, which is the first open-
sourced Multi-Modal dataset for Multi-Modal ACR. Then,
we propose a novel model called CLMN. CLMN has two
encoders, SimAST-GCN as the code encoder and RoBERTa as
the text encoder. The two encoders are separately pre-trained
using contrastive learning to obtain a uniformly distributed
representation, which improves the robustness of the model
and solves the few-shot and 0-shot issues. Finally, we combine
the two encoders to obtain a vector representation of the code
review and predict the results. Experimental results on the
MACR dataset show that our proposed model CLMN out-
performs state-of-the-art methods. Our code and experimen-
tal data are publicly available at https://github.com/SimAST-
GCN/CLMN.

ACKNOWLEDGMENT

This work was partially supported by the National Nat-
ural Science Foundation of China (61772263, 61872177,
61972289, 61832009), the Collaborative Innovation Center
of Novel Software Technology and Industrialization, and the
Priority Academic Program Development of Jiangsu Higher
Education Institutions.

REFERENCES

[1] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: a case study at google,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, 2018, pp. 181–190.

[2] S.-T. Shi, M. Li, D. Lo, F. Thung, and X. Huo, “Automatic code review
by learning the revision of source code,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33(01), 2019, pp. 4910–4917.

[3] J. K. Siow, C. Gao, L. Fan, S. Chen, and Y. Liu, “Core: Automating
review recommendation for code changes,” in 2020 IEEE 27th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2020, pp. 284–295.

[4] B. Wu, B. Liang, and X. Zhang, “Turn tree into graph: Automatic code
review via simplified ast driven graph convolutional network,” arXiv
preprint arXiv:2104.08821, 2022.

[5] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” pp.
783–794, 2019.

[6] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[7] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 712–721.

[8] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K.-i. Matsumoto, “Who should review my code? a file location-
based code-reviewer recommendation approach for modern code re-
view,” in 2015 IEEE 22nd International Conference on Software Analy-
sis, Evolution, and Reengineering (SANER). IEEE, 2015, pp. 141–150.

[9] Z. Xia, H. Sun, J. Jiang, X. Wang, and X. Liu, “A hybrid approach to
code reviewer recommendation with collaborative filtering,” in 2017 6th
International Workshop on Software Mining (SoftwareMining). IEEE,
2017, pp. 24–31.

[10] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in 2013 35th International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 931–940.

[11] G. Dı́az and J. R. Bermejo, “Static analysis of source code security:
Assessment of tools against samate tests,” Information and software
technology, vol. 55, no. 8, pp. 1462–1476, 2013.

[12] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang, “Tbcnn: A tree-based
convolutional neural network for programming language processing,”
arXiv preprint arXiv:1409.5718, 2014.

[13] T. Shippey, D. Bowes, and T. Hall, “Automatically identifying code
features for software defect prediction: Using ast n-grams,” Information
and Software Technology, vol. 106, pp. 142–160, 2019.

[14] C. Zhang, Q. Li, and D. Song, “Aspect-based sentiment classifica-
tion with aspect-specific graph convolutional networks,” arXiv preprint
arXiv:1909.03477, 2019.

[15] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[16] T. Chen, Y. Sun, Y. Shi, and L. Hong, “On sampling strategies for
neural network-based collaborative filtering,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 767–776. [Online]. Available:
https://doi.org/10.1145/3097983.3098202

[17] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning of
sentence embeddings,” arXiv preprint arXiv:2104.08821, 2021.

59

https://github.com/SimAST-GCN/CLMN
https://github.com/SimAST-GCN/CLMN
https://doi.org/10.1145/3097983.3098202

Utilizing Edge Attention in Graph-Based Code Search
Wei Zhao

School of Software Engineering
Tongji University
Shanghai, China

2031569@tongji.edu.cn

Yan Liu*
School of Software Engineering

Tongji University
Shanghai, China

yanliu.sse@tongji.edu.cn

Abstract—Code search refers to searching code snippets with
specific functions in a large codebase according to natural
language description. Classic code search approaches, using
information retrieval technologies, fail to utilize code semantics
and bring noisy and irrelevant keywords. During the last recent
years, there has been an ample increase in the number of deep
learning-based approaches, which embeds lexical semantics into
unified vectors to achieve higher-level mapping between natural
language queries and source code. However, these approaches are
struggling with how to mine and utilize deep code semantics. In
this work, we study how to leverage deeper source code semantics
in graph-based source code search, given graph-based
representation is a promising way of capturing program
knowledge and has rich explainability. We propose a novel code
search approach called EAGCS (Edge Attention-based Graph
Code Search), which is composed of a novel code graph
representation method called APDG (Advanced Program
Dependence Graph) and a graph neural network called EAGGNN
(Edge Attention-based GGNN) which can learn the latent code
semantics of APDG. Experiment results demonstrate that our
model outperforms the GGNN-based search model and DeepCS.
Moreover, our comparison study shows that different edge
enhancement strategies have different contributions to learning
the code semantics.

Keywords—semantic code search; graph neural network; graph
representation learning

I. INTRODUCTION
Code search is one of the most common activities in software

development, some studies [1][2] have shown that 19% of
developers’ time will be spent searching desirable code snippets.
Especially in recent years, with the rise of agile development [3],
the developer needs to iterate the projects rapidly. Accurate
search results can be reused with only slight reconstruction and
help quickly realize specific project functions to boost
developers’ productivity. However, the existing code search
engines, such as those on GitHub [4] and Stack Overflow [5],
treat the source code as plain text and search the code snippets
mainly based on keyword matching, lacking the semantic
understanding of natural language and source code. Therefore, it
is difficult to use such IR (Information Retrieve) techniques to
optimize code search.

More recently, deep learning-based code search can reduce
the interference of noisy keywords and learn code features by
vectoring the code, which can recognize semantically related
words. For example, DeepCS [6] obtained the API sequence,
method name and token information according to defined rules

and embedded them into unified vectors to represent the code.
Therefore, the basic code representation method has a far-
reaching impact on the expression of code semantics, which will
further affect search performance. As code is structural and has
unique language-specific semantics, the graph is a natural and
effective representation of code. Taking Java as an example,
there are a series of implicit relationships between code elements
[7], such as the order of method calls, class inheritance, etc., and
these relationships can reveal the potential code semantics.
Inspired by this, many researchers utilized variants of abstract
syntax tree (AST) [8] and other code graphs to represent latent
code semantics. For instance, DeepCS extracted API sequence
from AST, and Xiang et al. [9] generated a code graph based on
AST with different nodes (terminal/non-terminal nodes) and
edges. However, code with different syntax structures may
express the same functionality [10], as shown in Figure 1 and
Figure 2, which indicates that simply using AST to represent
code is not enough to accurately express the deep code semantics.
So we need to break through the current limitations of sequential
data and enhance code semantics via utilizing the rich structural
information behind programs.

Figure 1. Two code snippets with the same functionality

Figure 2. The two ASTs correspond to the code snippets in Figure 1, where
the nodes and edges marked in red indicate the structural differences.

To deal with the aforementioned challenges and utilize
structural information, we propose a novel code search approach
called EAGCS, which can significantly enhance the expression
of structural and semantic information of source code. More
specifically, we first construct a statement-level advanced

* Corresponding Author

DOI reference number: 10.18293/SEKE2022-078
 60

program dependence graph (APDG) which transforms three
common control statements and adds control and data edges to
improve the awareness of neighbors. Program dependence graph
(PDG) [11] is the graphical representation of a program where
nodes represent program statements and edges represent latent
dependence information, but it fails to reflect the order in which
statements are executed and the implicit control logic [12]. In
APDG, we enrich code semantics based on our defined data and
control dependence rules, introducing the statement execution
information and control logic missed in PDG. Besides, the
APDG is constructed based on AST, which can keep the syntax
information of source code, and statement-level graph nodes can
preserve local semantics compared with excessive fine
granularity nodes in AST (i.e., NameExpr and ExpressionStmt
nodes in Figure 2). Concentrating on multiple edge types, we
apply EAGGNN to learn the semantic features of ADPG.
Furthermore, we calculate the cosine similarity of the code and
description vector embedded by our model and search the top-k
relevant code snippets according to the given user queries.
Experiments have been conducted and the results demonstrate
that our model outperforms the other start-of-the-art models.

The main contributions of this paper are as follows:

• We introduce a novel statement-level code representation
method called APDG, which optimizes the traditional
PDG and strengthens both data and control dependence
information to enrich the edge semantics.

• We propose EAGCS, a graph-based code search approach
that enhances the GGNN [13] via an edge attention
mechanism to improve the expression of code semantics
in APDG.

• We conduct experiments on our model and other start-of-
the-art models and the results have shown that our model
outperforms the others. Besides, we also explore the
impact of different edges on the model performance.

II. RELATED WORK
With the in-depth study of code search in recent years, a

variety of research methods have been proposed. Traditional
code search methods treated source code as plain text and
obtained the most relevant code snippets through the
information retrieve (IR) technology. For example, Lv et al. [14]
designed CodeHow, which expanded the user query with the
APIs and applied an extended boolean model to perform code
search. While Portfolio [15] combined keyword matching and
PageRank to retrieve a series of functions according to user input.

 To solve the problem that code snippets without keywords
related to the description cannot be searched in the above-
mentioned models, Gu et al. [6] proposed the first deep learning-
based code search tool named DeepCS. DeepCS embedded code
snippets and natural language descriptions into high-
dimensional vector space separately, which can recognize
semantically related words. On this foundation, some other
previous works used an attention mechanism or reconstructed
the model structure to boost the search performance. Shuai et al.
[16] utilized CARLCS-CNN based on Convolutional Neural
Network (CNN) instead of LSTM used in DeepCS and built a
semantical correlation between the code and description vectors

via a co-attention mechanism. The work in [17] applied a self-
attention network to learn the contextual representation and
global semantic relations for code snippets and their
corresponding queries.

Some other researchers are mainly dedicated to enhancing
the representative ability of code semantics. Wan et al. [18]
constructed the code features with the sequential tokens, ASTs
(abstract syntax trees), and CFGs (control-flow graphs) to
represent syntactic and semantic information of source code.
Similarly, Zeng et al. [10] encoded source code into variable-
based flow graphs and utilized an improved gated graph neural
network (GGNN) to model more precise code semantics. Liu et
al. [19] transformed code snippets and descriptions into ASTs
and dependence parsing graphs separately to capture their joint
semantic relationship.

In addition to semantic enhancement of source code, some
work focused on query expansion and reinforcement. For
instance, Sirres et al. [20] augmented user query with program
elements, such as method and class names, from the extracted
snippets. Xuan et al. [21] proposed DERECS to reinforce the
code based on the method call and the structural characteristics
of the code fragment, which reduced the difference between
source code and query.

III. EAGCS

A. Overview
Figure 3 shows the overall structure of EAGCS, including 4

components: preprocessing, code graph generation, description
embedding, and code graph embedding. Despite AST can
reflect the syntax information of the source code, it is complex
so we need to prune it to remove redundant nodes. The APDG
we proposed not only retains the syntax information of AST in
statement level which reduces the scale of code graph, but also
adds data and control edges to enhance the code semantics.
When the model searches code snippets, code semantics are
explicitly expressed through multiple graph edges in APDG.
Moreover, the edge attention-based GGNN (EAGGNN) can
help to obtain a deeper understanding of APDG, it learns the
node embeddings from multiple edges to focus on both data and
control dependence. After embedding both descriptions and
code snippets into unified vectors, the model can recommend
code snippets with higher cosine similarity according to the
given user query.

B. Preprocessing
1) Data Collection: To guarantee the performance of our

model, we need a large-scale dataset that contains query
descriptions and their corresponding code snippets. The dataset
provided by DeepCS contains more than 18 million data items,
which is used in most existing studies and is our ideal dataset.
Unfortunately, the code graph generation approach we designed
needs to be applied through the source code (raw data)， but
the dataset provided by DeepCS has been already preprocessed
and embedded, which fails to provide in-depth semantic
information. Therefore we choose the dataset published by
CodeSearchNet1, which is a little less than that of DeepCS but

1https://github.com/github/CodeSearchNet

61

contains raw code snippets.
2) Data Processing: The CodeSearchNet dataset includes

code snippets extracted from real projects. However, due to the
complexity of the actual development process, participants, and
project types, the raw data contains noisy and dirty data items.
So we need to go through several processes to improve the
quality of data fed to the model.

Query Processing: We take the comments corresponding to
the code snippets as the user query and handle them according
to the following flow.
• Segment the comment according to the “.” character, and

select the first sentence as a user query. (User comment
may include multiple sentences, but the first sentence is
usually complete enough to describe the code, and the
following statements are only for supplementary
explanation)

• Remove non-English symbols and stop words1.

Code processing: we apply the javaparser2 library to
transform the code snippets and generate APDG based on our
code graph generation approach.
• Convert the code snippets into class. (The original code

fragment is at the function level)

• Transform the code snippet into APDG.

• Delete non-English characters and generate words
according to lower CamelCase for each statement-level
node.

Tokenization: We first count the frequency of words in query
and node statements separately and build two dictionaries based
on their top 10000 words. Furthermore, we represent each word
with a unique numeric ID and transform the query statements
and node statements into sequences of numerical tokens.

Embedding: Embedding is a technology that maps an object
(i.e., a word) into a real vector, which can make objects with

similar meanings have vectors with similar distances. The
commonly used word embedding approaches are CBOW [22]
and Skip-Gram [23]. In our work, we use the nn.Embedding3
function of pytorch4 to initialize the word embeddings and then
retrieve them using indices.

C. Code Graph Generation Approach
Program dependence graph (PDG) is one of the most widely

used directed code graphs [11], where the nodes represent
program statements and the edges represent the
interdependence between program statements, but it fails to
reflect the order in which statements are executed [12]. In our
work, we propose advanced PDG (APDG) which adds
NextStatement edges in PDG and we also provide clear
guidelines for the optimization of common control statements
to explore more program semantics. More specifically, we
consider 12 types of nodes: Method Declaration, Parameter,
Unary Expression, Variable Declaration Expression, Method
Call Expression, Assign Expression, Construction Declaration,
Try Statement, Class or Interface Declaration, Condition,
Return Statement and Assert Statement based on the AST and
the Soot’s [24] internal representation. Moreover, we have also
defined the extraction rules of control dependence (Child,
NextStatement, Judge Edges) and data dependence, which will
be formally described in detail:

1) Control Dependence: control dependence defines the
constraint relationship of statement execution, which can reflect
the syntax, execution order, and control information.

Child: Child edges connect parent and child nodes in AST
and point from parent node to child node which can reflect the
control dependence of statements at the syntactic level.

NextStatement: NextStatement edges concatenate
statements inside a block according to the context, indicating
the order of statement execution. The dashed box represents the
virtual structure for better illustration, which will not appear in
real APDG.

1https://www.textfixer.com/tutorials/common-english-words.txt
2https://github.com/javaparser/javaparser
3https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
4https://pytorch.org/

Figure 3. Overview of EAGCS

62

Judge: We transform three common control statements in
AST: IfStatement, ForStatement, WhileStatement and add
Judge edges to uncover the control logic.

2) Data Dependence: data dependence defines the
constraint relationship of variables between statements. To
mine the data dependence relationship, we have to keep a record
of all accesses of all variables. The data dependence rule of
variable v from statements s1 to s2 can be described as：
• v is defined or assigned in statement s1.

• v is used in statement s2.

• The scope of s2 is inside the scope of s1.

• If s1 and s2 have the same scope level, a NextStatement
path exists from s1 to s2.

Figure 4. Illustration of Child and NextStatement edges.

Figure 5. Illustration of control statements optimization and Judge edges.

Figure 6. APDG corresponds to the code snippets in Figure 1.

As shown in Figure 6, we constructed APDG for the code
snippets in Figure 1 based on the designed control dependence

and data dependence rules. And latent code semantics can be
expressed through node contents and multiple edges.

D. Description Embedding
By word embedding, we view a description D as a sequence

of token vectors: w1, ..., wN, D = {w1, ..., wN}. We use a bi-
LSTM to extract semantic information from the input in both
forward and reverse directions, and embed the description into
a vector d.

𝒉𝒕""""⃗ = 𝐿𝑆𝑇𝑀"""""""""""⃗)𝒘𝒕, 𝒉𝒕"𝟏""""""""⃗ ,)1,
𝒉𝒕"⃐""" = 𝐿𝑆𝑇𝑀"⃐"""""""""")𝒘𝒕, 𝒉𝒕$𝟏"⃐""""""",)2,

𝒉𝒕 = 𝒉𝒕""""⃗ ⨁𝒉𝒕"⃐"""		∀𝑡 = 1, . . . , 𝑁)3,
𝒅 = 𝒎𝒂𝒙𝒑𝒐𝒐𝒍𝒊𝒏𝒈(𝒉𝟏, … , 𝒉𝑵))4,

where 𝒘𝒕 ∈ ℝ&, ht is the hidden states at step t, t = 1, ..., N, N is
the length of the sequence, ⨁ is the concatenation operation.

E. Code Graph Embedding
1) Node Embedding: We view a graph node V as several

token vectors: t1, ...,tM. V = { t1, ...,tM }. For there is no strict
order between these tokens, we use a multilayer perceptron
(MLP) to embed the node into a vector n.

𝒉𝒊 = tanh(𝑊(𝒕𝒊)	 ∀𝑖 = 1, . . . , 𝑀)5,
𝒏 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔([𝒉𝟏, … , 𝒉𝑴]))6,

where 𝒕𝒊 ∈ ℝ&, i= 1, ..., M, M is the number of the tokens, WT
is the learnable matrix in the MLP.

2) Edge Attention Based GGNN
Gated Graph neural network (GGNN) is a kind of graph

neural network (GNN) that directly uses graph data as the
structured input. For most GNNs, much information sharing
might reduce the weight of the original information of the node
itself, which can lead to overfitting. To overcome this issue,
GGNN can selectively remember the hidden information of
neighbor nodes and the hidden information in the process of
node iteration by adding a GRU [13] component. As we have
already enriched edge semantics in APDG, we propose
EAGGNN which enhances the GGNN via an edge attention
mechanism to deal with different types of edges to focus on both
data and control dependence information for each iteration.
Considering the program graph 𝒢 = (𝒱, ℰ) , 𝒱 is the node
collection and ℰ is the adjacency matrix. For each node v ∈ 𝒱 ,
𝒉𝒗
(𝟎) is the initial hidden state of node v through node

embedding, and 𝒉𝒗
(𝒌) is the hidden state of node v in hop k.

𝒂𝒗|𝑫
(𝒌) = 𝐴1|23 ^𝒉𝟏

(𝒌"𝟏)𝝉…	𝒉|𝓥|
(𝒌"𝟏)𝝉_ + 𝒃)7,

𝒂𝒗|𝑪
(𝒌) = 𝐴1|73 ^𝒉𝟏

(𝒌"𝟏)𝝉…	𝒉|𝓥|
(𝒌"𝟏)𝝉_ + 𝒃)8,

𝒂𝒗
(𝒌) = 𝒂𝒗|𝑫

(𝒌) ⊕𝒂𝒗|𝑪
(𝒌))9,

𝒛𝒗
(𝒌) = 𝜎)𝑊8𝒂𝒗

(𝒌) +𝑈8𝒉𝒗
(𝒌"𝟏),)10,

𝒓𝒗
(𝒌) = 	𝜎)𝑊9𝒂𝒗

(𝒌) +𝑈9𝒉𝒗
(𝒌"𝟏),)11,

𝒉𝒗
(𝒌)k = tanh l𝑊𝒂𝒗

(𝒌) +𝑈)𝒓𝒗
(𝒌)⊙𝒉𝒗

(𝒌"𝟏),n)12,

𝒉𝒗
(𝒌) = l1 − 𝒛𝒗

(𝒌)⊙𝒉𝒗
(𝒌"𝟏) + 𝒛𝒗

(𝒌)⊙𝒉𝒗
(𝒌)k n)13,

𝒄 = 	𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔)𝒉𝟏𝑲…𝒉|𝓥|𝑲 ,)14,
where 𝐴1|2 and 	𝐴1|7 are the columns corresponding to node v
in data adjacency matrix and control adjacency matrix

63

separately, 	𝑧1
(;) is the update gate, 𝑟1

(;) is the reset gate, K is the
number of hops in EAGGNN and c is the final code
representation.

F. Model Training
Considering a code-description pair 𝑃(𝑐, 𝑑$), where 𝑐 ∈ 𝐶,

𝑑$ ∈ 	𝐷, C denotes the set of code snippets, D denotes the set
of descriptions, 𝑐 denotes the single code snippet, 𝑑$ denotes
the corresponding query description of 𝑐 and 𝑑" denotes
another randomly selected query description from 𝐷, 𝑑" ∈ 𝐷,
𝑑" ≠ 𝑑$. Then we rebuild the pair P as 𝑃< = (𝑐, 𝑑$, 𝑑") and
train the model by minimizing the loss function L(θ) that is
formulated as:
𝐿(𝜃) = z max(0, 𝛽 − cos(𝑐, 𝑑$) + cos(𝑐, 𝑑"))

(=,&!,&")∈@#
)15,

where θ denotes the model parameters, 𝑑$denotes the positive
description, 𝑑"denotes the negative description, cos is cosine
similarity function and β denotes the constant margin.

IV. EXPERIMENTS

A. Dataset
We choose the dataset of CodeSearchNet as the training set

which contains 454,451 samples, and then filter these samples
according to the following rules:
• Remove duplicate queries. (The dataset contains override

or overload functions that have the same comments, and
we only choose the sample that appears first)

• Remove code snippets that cannot be compiled properly

• P with description d that contains less than 3 words or
more than 20 words will be filtered out. (The excessively
long query length does not meet the actual user
requirements)

• P with code c that is less than 3 lines and more than 20
lines will be filtered out. (Too short code snippets are
meaningless, while too long code is difficult to understand)

As result, we obtained 126,363 pieces of data and converted
all the processed code snippets into ASTs and APDGs. In
addition, statistics on the maximal/average/minimal number of
nodes and edges of these ASTs and APDGs were conducted and
the results were shown in Figure 7, which indicated that APDG
effectively reduced the complexity of code graph and was
conducive to model training.

For the test set, we selected the 10,000 code-query pairs
provided by Gu et al. [6]. Through the same filtering flow, we
gained 4,548 pieces of data for evaluation and utilized an
automatic evaluation approach which used the 4,548 queries as
model inputs while the corresponding code snippets were
treated as ground truth. In the automatic evaluation, we
randomly selected 99 other code snippets and combined them
with the ground truth as the search base for a query input. This
automatic evaluation approach can avoid the bias caused by
manual ranking. Besides, selecting training and test sets from
different projects can examine the generalization ability of the
model.

Figure 7. Statistical results of APDGs and ASTs on CodeSearchNet.

B. Evaluation Metrics
SuccessRate@k: The SuccessRate@k measures the

percentage of queries for which the corresponding ground-truth
code snippet could exist in the top k ranked results and it can be
formulated as:

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@𝑘 =
1
|𝑄|z𝛿)𝐹𝑅𝑎𝑛𝑘A ≤ 𝑘,

|B|

ACD

)16,

where Q denotes the set of queries, 𝛿(∙) denotes the function
that returns 1 if the input is true and 0 otherwise, Frank denotes
the rank position of the ground truth in the result list.

MRR: MRR is the average of the reciprocal ranks of results
of a query set Q, which can be defined as follows:

𝑀𝑅𝑅 =
1
|𝑄|z

1
𝐹𝑟𝑎𝑛𝑘A

|B|

ACD

)17,

where the reciprocal ranks is the inverse of Frank. As we expect
to find the ground truth in the top 10 results, we set 1/𝐹𝑟𝑎𝑛𝑘A
to 0 if 𝐹𝑅𝑎𝑛𝑘A	is larger than 10.

C. Baseline Models
DeepCS is the state-of-the-art neural network to retrieve

relevant code snippets given a query description. It extracted
the method name, API sequence, and tokens of a method to
represent the code semantics, and then embedded code and
description to get the unified vectors to calculate the similarity
between them.

GGNN represents the gated neural network without edge
attention based on our APDG. It utilized the GGNN on data and
control dependence separately and then combined the two
hidden states via an avgpooling function to represent the code.

D. Implementation Details
We embedded the top 10000 tokens for the code statements

and descriptions separately with a 128-dimensional size and
used Adam [25] as the optimizer. The model was trained for
250 epochs while the batch size was set as 100. The iteration
times of EAGGNN were set as 4 and the dropout was set as 0.6
in the word embedding layer for the learning process.

64

E. Results
Table I summarizes the experiment results of our model and

the baseline models on the test set. The R@1, R@5, and R@10
denote the results of SuccessRate@k, where k is 1, 5, 10. The
results have shown that our model outperforms the state-of-the-
art models. The R@1, R@5, R@10, and MRR of EAGCS are
respectively 0.15, 0.16, 0.18, and 0.15 higher than GGNN,
which indicates the edge attention mechanism can effectively
aggregate the edge information.

TABLE I. COMPARISON OF THE MODEL PERFORMANCE BETWEEN OUR
MODEL AND THE BASELINE MODEL

Model R@1 R@5 R@10 MRR
DeepCS 0.2199 0.3628 0.4574 0.2846
GGNN 0.4268 0.5500 0.5910 0.4826
EAGCS 0.5785 0.7071 0.7682 0.6357

TABLE II. EFFECT OF EACH EDGE TYPE

Model D C R@1 R@5 R@10 MRR

EAGCS
✓ 0.3173 0.4807 0.5706 0.3894
 ✓ 0.2718 0.4576 0.5521 0.3507
✓ ✓ 0.5785 0.7071 0.7682 0.6357

Table II presents the influence of different types of edge on

search performance. The header D and C indicate whether data
edge and control edge exist in APDG, where the checkmark
represents that the corresponding edge is added. Incorporating
both data and control dependence can express the code
semantics to the greatest extent and can get the best model
performance. Results also show that data dependence has a
slightly greater weight than control dependence for that all
metrics are higher. Data dependence reflect the flow of
variables between basic blocks under the control structure,
which is a further and deeper analysis of program features.

F. Threats to Validity
Our work may suffer from four validity. The first one is the

model re-implementation. Replicating the baseline models may
introduce some errors. To mitigate this threat, we used the
authors’ open-source projects on GitHub and processed our
dataset into the same format required by the projects. The
second one is the selected dataset. Because the dataset provided
by DeepCS is vectorized, we can’t obtain the original code
snippets for our model to generate code graphs, so we utilized
the CodeSearchNet dataset for model training, which was
smaller than that of DeepCS but contained raw code snippets.
Furthermore, the training and test set shared the same
preprocessing flow. The third one is the model evaluation. We
took the automatic evaluation approach to avoid manual risks.
Given an input query, we set the same search base for all
baseline models. The experiment results may be influenced by
the scale or the origin of the search base, which is our future
research content. The last one is the model comparision. In our
experiment, We applied the same dataset, ran all the models in
the same hardware environment, and adopted the same data

preprocessing process to reduce this threat. While DeepCS does
not perform on the graph structure, more related baselines may
be needed to justify the advantages introduced by our proposed
model in the future.

V. CONCLUSION
How to accurately understand and express code semantics

has become a key challenge in the process of code search. In this
paper, we propose a novel graph-based code search method
called EAGCS, which mines latent code semantics by enhancing
edge information in APDG and embeds the APDG into graph-
level vector via edge attention-based GGNN to boost the
semantic expression. In the future, we will strive to optimize the
code graph structure and model architecture to improve search
performance. We also plan to investigate the influence of the
number of nodes in APDG and the length of query statements on
the search results. Furthermore, how to excavate potential user
search intention and reinforce user query is another rich field
worthy to be penetratingly explored.

REFERENCES
[1] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,

“Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2009, pp. 1589-1598.

[2] K. Kevic and T. Fritz, “Automatic search term identification for change
tasks,” in Companion Proceedings of the 36th International Conference
on Software Engineering. ACM, 2014, pp. 468-471.

[3] S. Nerur and V. G. Balijepally. “Theoretical reflections on agile
development methodologies”. Communications of the ACM, 2007, pp.
79-83.

[4] 2022. Github. Retrieved February 14, 2022 from https://github.com.
[5] 2022. Stack Overflow. Retrieved February 14, 2022 from

https://stackoverflow.com.
[6] X. Gu, H. Zhang, and S. Kim, "Deep Code Search," 2018 IEEE/ACM 40th

International Conference on Software Engineering (ICSE), 2018, pp. 933-
944, doi: 10.1145/3180155.3180167.

[7] T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural code
comprehension: A learnable representation of code semantics,” in
Advances in Neural Information Processing Systems, 2018, pp. 31.

[8] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code
evolution using abstract syntax tree matching,” in Proceedings of the 2005
international workshop on Mining software repositories, 2005, pp. 1-5.

[9] X. Ling, L. Wu, S. Wang, G. Pan, T. Ma, F. Xu, A. X. Liu, C. Wu, and S.
Ji, “Deep graph matching and searching for semantic code retrieval,” in
ACM Transactions on Knowledge Discovery from Data (TKDD), 2021,
pp. 1-21.

[10] C. Zeng, Y. Yu, S. Li, X. Xia, Z. Wang, M. Geng, B. Xiao, W. Dong, and
X. Liao, “deGraphCS: Embedding Variable-based Flow Graph for Neural
Code Search,”arXiv preprint arXiv:2103.13020, 2021.

[11] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” in ACM Transactions on Programming
Languages and Systems (TOPLAS). ACM, 1987, pp. 319-349.

[12] S. S. Patil, “Automated Vulnerability Detection in Java Source Code using
J-CPG and Graph Neural Network,” University of Twente, 2021.

[13] Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated Graph
Sequence Neural Networks,” in Proceedings of ICLR'16, 2016.

[14] F. Lv, H. Zhang, J. -g. Lou, S. Wang, D. Zhang, and J. Zhao, "CodeHow:
Effective Code Search Based on API Understanding and Extended
Boolean Model (E)," in 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2015, pp. 260-270, doi:
10.1109/ASE.2015.42.

[15] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu, “Portfolio:
finding relevant functions and their usage,” in Proceedings of the 33rd

65

International Conference on Software Engineering. ACM, 2011, pp. 111-
120.

[16] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving code
search with co-attentive representation learning,” in Proceedings of the
28th International Conference on Program Comprehension. ACM, 2020,
pp. 196-207.

[17] S. Fang, Y. S. Tan, T. Zhang, and Y. Liu, “Self-Attention Networks for
Code Search,” in Information and Software Technology, 2021, 134:
106542.

[18] Y. Wan, J. Shu, Y. Sui, G. Xu, Z. Zhao, J. Wu, and P. Yu, “Multi-modal
attention network learning for semantic source code retrieval,” in 2019
34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 13-25.

[19] S. Liu, X. Xie, J. Siow, L. Ma, G. Meng, and Y. Liu, “GraphSearchNet:
Enhancing GNNs via Capturing Global Dependency for Semantic Code
Search,” arXiv preprint arXiv:2111.02671, 2021.

[20] R. Sirres, T. F. Bissyandé, D. Kim, D. Lo, J. Klein, K. Kim, and Y. L.
Traon, “Augmenting and structuring user queries to support efficient free-
form code search,” in Empirical Software Engineering, 2018, 23(5), pp.
2622-2654.

[21] L. Xuan , Q. Wang, and Z. Jin, “Description Reinforcement Based Code
Search,” in Journal of Software, 2017.

[22] T. Kenter, A. Borisov, and M. De Rijke. “Siamese cbow: Optimizing word
embeddings for sentence representations,” arXiv preprint
arXiv:1606.04640, 2016.

[23] A. Lazaridou, N. T. Pham, and M. Baroni, “Combining language and
vision with a multimodal skip-gram model,” arXiv preprint
arXiv:1501.02598, 2015.

[24] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The Soot framework for
Java program analysis: a retrospective” in Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), 2011, 15(35).

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

66

Mapping Modern JVM Language Code to Analysis-
friendly Graphs: A Pilot Study with Kotlin

Lu Li
School of Software Engineering

Tongji University
Shanghai, China

2033816@tongji.edu.cn

Yan Liu*
School of Software Engineering

Tongji University
Shanghai, China

yanliu.sse@tongji.edu.cn

Abstract—Kotlin is a modern JVM language, gaining adoption
rapidly and becoming Android official programming language.
With its widely usage, the need for code analysis of Kotlin is
increasing. Exposing code semantics explicitly with a properly
structured format is the first step in code analysis and the
construction of such representation is the foundation for
downstream tasks. Recently, graph-based approaches become a
promising way for encoding source code semantics. However,
current works mainly focus on representation learning with
limited interpretability and shallow domain knowledge. The
known evolvements of code semantics in new-generation
programming languages have been overlooked. How to establish
an effective mapping between naturally concise Kotlin source
code with graph-based representation needs to be studied by
analyzing known language features. In this paper, we propose a
first-sight, rule-based mapping method, using composite
representation with AST, CFG, DFG, and language features. We
evaluate mapping strategies with ablation experiments by
simulating a code search solution as a downstream task. Our
graph-based method with built-in language features outperforms
the text-based way without introducing greater complexity. By
addressing the practical barriers to extracting and exposing the
hidden semantics from Kotlin source code, our study also helps
enlighten source code representations for other modern
languages.

Keywords- Kotlin; graph representation of code; code analysis;
language feature;

I. INTRODUCTION
In*2017, Google announced Kotlin as an Android official

programming language. It combines object-oriented and
functional features. Being a more modern, expressive, and safer
programming language, Kotlin has achieved a significant
diffusion among developers, the adoption of the Kotlin was
rapid. It was the fastest-growing language on GitHub 2018[1]
and ranked 7th among mobile development languages in Top
Programming Languages 2021 published by IEEE Spectrum[2].

As more and larger codebases written in Kotlin appear, the
need for code analysis is increasing. Code analysis is learning
from source code through relevant means to solve downstream
tasks such as code defect detection, code search, etc., bringing

* Corresponding author
DOI reference number: 10.18293/SEKE2022-079

lots of amazing tools and great convenience. The first step of
machine learning-based approaches of code analysis is to map
source code into intermediate code representation. Generated
methods can be categorized as sequence-, tree-, and graph-
based[3][4][5], among which graph-based representation has
better performance in code analysis these years, becoming a
more promising approach for intermediate representation.

However, there is a lack of code analysis related research
based on Kotlin for now, and also no related research on the
Kotlin graph representation method. Even the graph
representation of code itself is still an issue under study, that
there is no widely accepted method to convert code into graph
representation[6]. Furthermore, Kotlin is a concise language,
with less information presented in source code. The usage of
language features of Kotlin is also under study. So, no one
knows what is a more suitable way to map Kotlin source code
to graph representation.

Therefore, in this paper, we conduct a pilot study on how to
map Kotlin source code to analytics-friendly graphs. The
contribution of this work is as follows:

• This is the first study focused on graph representation
of Kotlin code to our knowledge. We proposed a first-
sight rule-based feature-enhanced graph mapping
method. It can provide other Kotlin downstream task
researchers with a basis for constructing graph
representation for programs.

• We verify the necessity of studying graph
representation of Kotlin separately by comparing the
difference between Kotlin and Java in graph
representation through the method of induction and
summary.

• Through a downstream source-code query task, we
proved our graph-based method is more effective than
text-based methods. We also proved that language
features are useful to enhance graph representation
with no greater cost.

II. BACKGROUND
To our best knowledge, there has not been any study on

the graph representation method of Kotlin Language. Yet,
some Kotlin related studies and graph representation of

67

program do exist. In this section, we will review the relevant
literature.

A. Kotlin
Since Kotlin has 100% interoperability with Java, quite a

few Kotlin related studies did a comparative study between
Java and Kotlin language[7][8][9]. They concluded that Kotlin
is concise and safe, can improve the productivity of the
programmer, and also improve the quality of applications.

Besides, there are several empirical studies conducted on its
adoption by the developers. Mateus.B.G et al.[10] explored the
source code of 387 Android applications, describes the
evolution of usage of Kotlin language features on these
applications. Martinez.M et al.[11] and Coppola.R et al.[12]
did research on the evolution of Java to Kotlin and believed
that Kotlin can ensure the seamless migration of Android
developers from Java to Kotlin.

The current research on Kotlin mostly stays at analyzing the
differences between Kotlin and Java in terms of syntax,
performance, language features, as well as the research on the
quality and performance of programs written in Kotlin, the
study of graph representation of Kotlin is still empty.

B. Graph Representation of source code
There is currently no widely accepted method for mapping

programs into graph representation, different studies have
different graph representation methods. Allamanis et al.[3]
mapped program to graphs consisting of ASTs together with
control-flow edges, data-flow edges, and a hand-crafted set of
additional typed edges. Lu M et al.[4] proposed a program
graph method named FDA, which integrates the AST, function
call graph, and data-flow graph to characterize syntax and
semantic information. T. T. Nguyen et al.[5] proposed a
program graph method named Groum, where nodes represent
actions and control points, and edges represent control and data
flow dependencies between nodes.

Almost all graph representation methods are coupled to
language, like Allamanis et al.’s work[3] is for C#, Lu M et
al.’s work[4] is for C++ and Nguyen et al.’s work[5] is for Java.
But Kotlin has no related graph representation methods. This is
mainly due to the fact that Kotlin is a relatively new language
and there is a lack of tools and tagged datasets for further study.

III. ON THE NECESSITY OF STUDYING KOTLIN SEPARATELY
As Java is a mature programming language and Kotlin is so

connected with Java, can we directly convert Kotlin to Java,
and then map the converted code to graph representation? To
verify the necessity of studying Kotlin separately, we compare
Kotlin and Java in terms of 3 dimension in this section and
found some profound differences that prevent directly using
graph representation methods of Java to map Kotlin code.

A. Decompile Kotlin Code to Java Code
Kotlin is 100% interoperable with Java. Kotlin and Java

source code can even be converted to each other. Tools in
IntelliJ IDEA and Android Studio can help us do such
conversion. But there are some problems:

1) Kotlin program must be compiled before decompiled.
But it's difficult to successfully compile each projects, for
there are always many environment and configuration
requirements.

2) There is currently no tool for batch decompilation. We
need to decompile Kotlin code file by file if we want to
decompile the whole project.

3) The conversion effect is unsatisfactory. The Java file
decompiled from Kotlin always has many redundant
meaningless encoding and some even have bugs. This also
implies that the conciseness of Kotlin makes it lose some
information, and it may be harder to analyze kotlin

To sum up, decompiling Kotlin code into Java code is time-
consuming and troublesome.

B. Kotlin’s Language Features
Kotlin provides programmers with various language

features that make it concise, safe and expressive. We collected
30 Kotlin language features as Table I summarized. These
features are further summarized on the basis of Mateus B G's
work[10]. They extracted 24 Kotlin features from a document
that compares Kotlin and Java[13], Kotlin's releases notes, and
Kotlin Reference[14]. We inspect these documents and
websites, update 6 new features (marked in the table) in our list.

TABLE I. LANGUAGE FEATURES IN KOTLIN

id feature id feature
1 Type inferences 16 singletons
2 Lambda expressions 17 Companion object
3 Inline function 18 Destructing declaration
4 Null-safety 19 Infix function
5 When expressions 20 Tail-recursive function

6 Function w/arguments with a
default value 21 Sealed class and sealed

interfaces
7 Function w/named arguments 22 Type aliases
8 Smart casts 23 coroutines
9 Data classes 24 contract
10 Range expressions 25 Inline classes
11 Extension functions 26 properties
12 String template 27 Primary constructors
13 First-class delegation 28 Operator overloading

14 Declaration-site variance &
Type projections 29 Separate interfaces for read-

only and mutable collections

15 Suspending functions 30 Instantiation of annotation
classes

We can see that there are plenty of language features that
exist in Kotlin but not present in Java. If we convert Kotlin to
Java to construct graph representation, we will lose these
Kotlin language features in the graph, which contain lots of
information and represent Kotlin's characteristics.

C. Verbosity vs Concise
Java is a verbose language, yet Kotlin’s syntax focuses on

removing verbosity. Rough estimates indicate approximately a
40% cut in the number of LOC compared to Java[8]. Fig. 1 is a
Kotlin code snippet and its decompiled Java code. Java code is
nearly 3 times longer than Kotlin to implement the same
function. Therefore, converting Kotlin to Java to construct
graph representation would take away such concise

68

characteristics in Kotlin, which is one of the most significant
features of Kotlin.

Figure 1. Kotlin code and its decompiled Java code

In conclusion, constructing graph by converting Kotlin to
Java is not only troublesome; but also will lose Kotlin's crucial
features. Therefore, it is necessary to study the graph
representation of Kotlin separately.

IV. GRAPH MAPPING STRATEGY

A. Graph Representation of Code
We use composite code representation and denote Kotlin

code by a joint graph with three types of sub-graphs (AST,
CFG, and DFG) and enhanced by language features nodes,
edge, and attributes. All edges in the graph are directed edges.

Figure 2. Graph representation example

AST (Abstract Syntax Tree) is the fundamental structure
of program and it contains almost all syntax information of
program, we use AST as the backbone of the graph
representation of Kotlin. The major AST nodes are shown in
Fig. 2. All boxes are AST nodes, with specific codes in the first
line and node type annotated. The dark blue arrows represent
the child-parent AST relations, which are called syntax edges
in our methods.

CFG (Control Flow Graph) describes all paths that might
be traversed through a program during its execution. The path
alternatives are determined by conditional statements, e.g., if,
for, and switch statements. In CFGs, nodes are connected by
directed edges to indicate the transfer of control. The CFG
edges are highlighted with green arrows in Fig. 2. Two
different paths derive from the if statement.

DFG (Data Flow Graph) tracks the usage of variables
throughout the CFG. Data flow is variable oriented and any
data flow involves the access or modification of certain
variables. A DFG edge represents the subsequent access or
modification onto the same variables. It is shown by yellow
arrows in Fig. 2 with the involved variables annotated over the

edge. For example, the identifier a is used both in the
assignment statement and the return statement.

Language Features extract common patterns in source
code, containing much information. We explicitly represent
Kotlin language features in the graph, some by adding edges,
some by adding nodes, and some by adding attributes to nodes,
according to each features' characteristics. In Fig. 2, inline
function feature is represented by a node with function type
inline that is illustrated by the light blue box.

B. Construction Process
The construction process is shown in Fig. 3, we first use

kotlinx.ast, a generic AST parsing library, to extract functional
external AST. This library only can parse ASTs outside
functions, so we need to manually extract ASTs inside
functions by traversing code, which is carried out to the
statement level. Nodes in ASTs represent statements, and they
are classified into 19 types according to their grammatical
structure information, such as IdentifierDeclaration,
IfStatement, etc. And we connected these nodes by syntax
edges according to their syntactic relationship.

Then, We extract control flow by analyzing ASTs we have
already gotten, including syntax information of ASTs and
control statements. Then we record the scope of variables and
statements that use the variable to get data flow.

Figure 3. Graph construction process

To extract Kotlin language features, we built a feature
detection tool operating on Kotlin source code and ASTs. For
each language features presented in Table I, we first manually
investigated how a feature is represented in source code. Then
we encoded different analyzers for detecting feature instances
on source code files. For features that cannot be detected in
source code, we extracted them by analyzing raw ASTs. Then,
we add these features information into the joint graph.

C. Points to Note
Some points need to note in the graph construction

process, including problems, limitations, and some hints.

Lack of tools Kotlin is a relatively new programming
language and there is a lack of tools, which creates
difficulties for Kotlin code analysis. For example, there are
only two AST parsing libraries for AST, kotlinx.ast2 and
kastree3. But both of them are with limited function and

2 “kotlinx/ast”, https://github.com/kotlinx/ast, 2022-03-11.
3 “kastree”, https://github.com/cretz/kastree, 2022-03-11.

69

cannot satisfy our requirements. Therefore, if one needs to
generate Kotlin graph representation in large batches, you
should develop a robust Kotlin AST parser first.

Maintain a Kotlin language feature diagram Kotlin is
an actively released language, new language features will be
introduced in future releases. In order to ensure the integrity
of the language features that can be represented in the graph,
one should maintain a Kotlin language feature form. Every
time there is a new release, one should check the release
note and keep the diagram up to date.

Feature Representation Method Different language
features have different representation methods including
adding edge, adding nodes, and adding attributes to nodes,
according to their characteristics. Each features need to be
investigated separately to decide how to represent it in the
graph is more reasonable and analysis-friendly.

V. EXPERIMENT
In this section, we describe our experiment and discuss the

result. Our experiment is guided by the following research
questions:

• RQ1: How our graph-based method performs
comparing to text-based methods?

• RQ2: Whether is it effective to add language features
to graph representation?

A. Experiment Framework for Down-stream Task
Software developers and tools often query source code to

explore a system, or to search for code for maintenance tasks
such as bug fixing, refactoring, and optimization. Considering
the objectivity of the downstream task, we choose Wiggle[15],
a representative source code query system based on the graph
data model as a reference for our downstream tasks. We
transform it to support Kotlin query, forming a code query
framework for our experiment as shown in Fig. 4.

We develop a graph representation constructor as we
describe in Section IV, mapping Kotlin source code to graph
representation. Then we store graph representation into a Neo4j
graph database. For a given query, the framework would return
the code excerpts found (labeled with their location).

Figure 4. Source code query framework

B. Experiment Setup
1) Basic Setup

We executed various queries for different scenarios on a
corpus of three Kotlin Projects on GitHub (shown in Table II).
The dataset is relatively small because of the lack of tools as
we noted in Section IV, limiting us generate graph
representation in a large batch. But the data volume of this size
is sufficient for our study. After converting all source code into
graph representation and storing them into Neo4j, there are
2462 nodes and 2556 edges (relationships) in the database.

TABLE II. DATASET

Dataset Description LoC

Kotlin101 A collection of runnable console applications that
highlights the features of Kotlin. 747

KAndroid Kotlin library for Android to eliminate boilerplate
code in Android SDK and focus on productivity. 886

Android-
SearchView

A demonstration application for android's
SeachView. 415

All the tests commence on a MacBook Pro with 8-core
CPU, 16GB unified memory, and 512GB SSD. The graph
database Neo4j Browser version is 4.4.2 and Server version is
4.3.10 (community).

2) Query Selection
We select 11 queries in three query scenarios, which consist

of language research, complex search, and program check.
Language research and complex search refer to Wiggle's query
examples[15] and program check refer to the evaluation part in
Rodriguez-Prieto O et al.’s work[16]. We modified queries in
their work, forming 11 queries shown in Table III.

TABLE III. SAMPLE QUERIES

C. Result and Discussion
• RQ1: How the graph-based method performs

compare to text-based methods?

We provide a comparative study of text-based methods and
our graph-based method to answer this question. We choose
keyword match and regular expressions as text-based source
code search approach in our comparative study, which is the
most common and widely used text-based approaches for
searching code for now.

id Purpose Query
Q1

Language
Research

lambda expression
Q2 companion object
Q3 for statement
Q4 Inline function
Q5

Complex
Search

function with Int return type
Q6 search for classes containing recursive methods
Q7 find instances of classes that inherited from People
Q8

Program
Check

Binary conditions prefer if over when

Q9 Public functions/methods that return platform type
expressions must explicitly declare their Kotlin type

Q10 Return an empty array or collection instead of a null
value for methods that return an array or collection

Q11 Convert integers to floating point for floating-point
operations

70

First, we evaluate the coverage of these three approaches.
The result is shown in Table IV. Obviously, graph-based
method can cover more queries than the other two text-based
approaches, especially more complex search including more
dependency and requirements. This is mainly because that code
is texts with structures and semantics, such information is
implicit that these text-based search approaches are unable to
capture. In contrast, graph representation of code contains
plentiful syntax and semantic information, provided by nodes
and their relations, which can be leveraged for effective search.

TABLE IV. COVERAGE OF DIFFERENT APPROACHES

Query_id keyword Regular
expression

Graph
representation

Q1 √ √
Q2 √ √ √
Q3 √ √ √
Q4 √ √ √
Q5 √ √ √
Q6 √
Q7 √
Q8 √ √
Q9 √
Q10 √ √ √
Q11 √

Then, for queries that text-based methods and graph-based
method all can cover, we conduct further evaluation by
introducing two performance indicators. HitRate is the
percentage of correct search results out of all correct results,
evaluating the exhaustion of search approaches. P@all evaluate
the precision of search results. It calculates by the percentage
of correct search results out of all search results. The result is
shown in Table V.

TABLE V. TEST RESULT

id
HitRate P@all

Key
word

Regular
expression

Graph-
based

Key
word

Regular
expression

Graph-
based

Kotlin101
Q1 N/A 20% 100% N/A 60% 100%
Q2 100% 100% 100% 70% 50% 100%
Q3 100% 100% 100% 67% 100% 100%
Q4 100% 100% 100% 70% 50% 100%
Q5 100% 100% 100% 17% 100% 100%
Q8 N/A 100% 100% N/A 100% 100%
Q10 100% 100% 100% 25% 67% 100%

KAndroid
Q1 N/A 26% 100% N/A 100% 100%
Q2 - - - - - -
Q3 100% 100% 100% 4% 100% 100%
Q4 100% 100% 100% 93% 100% 100%
Q5 100% 100% 100% 10% 80% 100%
Q8 N/A 100% 100% N/A 100% 100%
Q10 0% 100% 100% 0% 20% 100%

Android-SearchView-Demo
Q1 N/A 0% 100% N/A 0% 100%
Q2 100% 100% 100% 100% 100% 100%
Q3 100% 100% 100% 40% 67% 100%
Q4 - - - - - -
Q5 100% 100% 100% 91% 100% 100%
Q8 N/A 100% 100% N/A 100% 100%
Q10 100% 100% 100% 33% 50% 100%

For both HitRate and P@all, Graph-based approach has
significantly better performance, especially for P@all. Text-
based approaches has low P@all, because they often return
some code that matches the query but is not related, like
description in comment or unrelated code contains keyword or
match the regular expression. Fig. 5 shows some unrelated
results examples with their corresponding queries in text-based
methods for Q5. Better performance of graph-based methods
shows that preferentially extracting language features and add
them to graph representation is more promising than extracting
them directly from text.

Figure 5. Unrelated results examples in text-based methods

• RQ2: Whether is it effective to add language
features to graph representation?

To assess the coverage of our approach, we analyze which
code representations are necessary to describe different kinds
of queries. The results of this analysis are presented in Table VI.

Obviously, the AST alone provides only a little information
for querying source code. By combining AST with CFG or
DFG, we obtain a better view of the code and can describe
almost every query except language feature-related query. But
language features contain much information and represent
characteristics of Kotlin, so language features related queries
should not be excluded. After adding language features, we are
finally able to model all the query samples, making use of
information available from AST, CFG, DFG, and language
features representation.

TABLE VI. COVERAGE OF DIFFERENT GRAPH REPRESENTATION

id AST AST+
CFG

AST+
DFG

AST+language
features

AST+CFG+
DFG+language

features
Q1 √ √
Q2 √ √
Q3 √ √ √ √ √
Q4 √ √
Q5 √ √ √ √ √
Q6 √ √
Q7 √ √
Q8 √ √ √ √ √
Q9 √ √ √ √ √
Q10 √ √ √ √ √
Q11 √ √

We also calculated the graph complexity of different graph
representations as shown in Table VII. The graph complexity
measurement method uses the graph measures proposed by
Dehmer M et al[17] using a polynomial-based approach.
Through the comparison, we can see that adding language

71

features in the graph representation will not increase the
complexity greatly, but it really can represent more information.

TABLE VII. COMPLEXITY OF DIFFERENT REPRESENTATION

Dataset AST AST+CFG+DFG AST+CFG+DFG+
language features

Kotlin101 0.28351 0.35987 0.37066
KAndroid 0.16175 0.20886 0.21384

SearchView 0.36623 0.41296 0.42089
Average 0.27049 0.32723 0.33513

VI. THREAT TO VALIDITY
ASTs inside functions. Because of the lack of tools, we

need to manually extract ASTs insides functions by using types
of nodes and edges defined by ourselves. So ASTs inside
functions may lack of unity. When nodes and edges are defined
differently, the results are different.

Feature representation method. Different language
features have different representation methods including adding
edges, adding nodes, and adding attributes to nodes, according
to their characteristics. Feature representation in this paper is
all reasonable, but anyway, there will be better ways of
representation, which also will affect the results.

Queries of text-based methods. Though key-word method
and regular expression method is standardized, queries is not.
Different queries will lead to different results.

VII. CONCLUSION
In this paper, we conduct a pilot study on graph

representation method of Kotlin source code. We first verify
the necessity of studying graph representation of Kotlin
separately by comparing the difference between Kotlin and
Java in graph representation through the method of induction
and summary. Then we proposed a first-sight, rule-based graph
mapping method. It takes AST as the skeleton, enriching with
control flow edge and data flow edge, together with some
edges and attributes representing Kotlin's language features
ostensive. We present our graph construction process and
summarized points to note in the process, aiming to provide
other Kotlin downstream task researchers with a basis for
constructing graph representation for programs.

We evaluate our method through a source-code query
down-stream task, came to the following conclusions: 1) Graph
representation methods outperform text-based methods both on
query coverage and search result. This is because graph
representation contains more syntax and semantic information
which can be well leveraged in source-code search and even
other source-code analysis tasks. 2) Language features are
useful to enhance graph representation. First, graph
representation with language features can cover more queries.
In addition, preferentially extracting language features and
adding them to graph representation is more promising than
extracting them directly from text. 3) Adding language features
to graph representation will not add much complexity.

In the future, we plan to study next steps of code analysis
for Kotlin, including graph embedding, neural network, and so
on, aiming to conduct a full-link study on code analysis for
Kotlin and promote its application in the field of “big code”.
Furthermore, our study with Kotlin is instructive for the
analysis of similar concise modern languages, that adding
language features to graph representation is an exploration
direction.

REFERENCES
[1] “The State of the Octoverse 2018,” https://octoverse.github.com/2018/

projects#languages, last access: 2022-03-11.
[2] “Top Programming Languages 2021,” https://spectrum.ieee.org/top-

programming-languages/, last access: 2022-03-11.
[3] Allamanis M, Brockschmidt M, Khademi M. Learning to represent

programs with graphs[J]. arXiv preprint arXiv:1711.00740, 2017.
[4] Lu M , Tan D , N Xiong, et al. Program Classification Using Gated

Graph Attention Neural Network for Online Programming Service[J].
2019.

[5] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. AI-Kofahi and T. N.
Nguyen, "Graph-based mining of multiple object usage patterns",
Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering ser. ESEC/FSE '09, pp. 383-392,
2009.

[6] Allamanis M. Graph Neural Networks in Program Analysis[M]//Graph
Neural Networks: Foundations, Frontiers, and Applications. Springer,
Singapore, 2022: 483-49

[7] Gotseva D, Tomov Y, Danov P. Comparative study Java vs
Kotlin[C]//2021 27th National Conference with International
Participation (TELECOM). IEEE, 2021: 86-89.

[8] Flauzino M, Veríssimo J, Terra R, et al.. Are you still smelling it? A
comparative study between Java and Kotlin language[C]//Proceedings of
the VII Brazilian symposium on software components, architectures, and
reuse. 2018: 23-32.

[9] Mateus B G, Martinez M. An empirical study on quality of Android
applications written in Kotlin language[J]. Empirical Software
Engineering, 2019, 24(6): 3356-3393.

[10] Mateus B G, Martinez M. On the adoption, usage and evolution of
Kotlin features in Android development[C]//Proceedings of the 14th
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 2020: 1-12.

[11] Martinez M, Mateus B G. How and Why did developers migrate
Android Applications from Java to Kotlin? A study based on code
analysis and interviews with developers[J]. arXiv preprint
arXiv:2003.12730, 2021.

[12] Coppola R, Ardito L, Torchiano M. Characterizing the transition to
Kotlin of Android apps: a study on F-Droid, Play Store, and
GitHub[C]//Proceedings of the 3rd ACM SIGSOFT International
Workshop on App Market Analytics. 2021: 8-14.

[13] 2016. Comparison to Java Programming Language.
https://Kotlinlang.org/docs/ reference/comparison-to-Java.html Online;
accessed 01-July-2019.

[14] JetBrains. 2019. Kotlin Language Documentation.
https://Kotlinlang.org/docs/Kotlin-docs.pdf.

[15] Urma R G, Mycroft A. Source-code queries with graph databases—with
application to programming language usage and evolution[J]. Science of
Computer Programming, 2015, 97: 127-134.

[16] Rodriguez-Prieto O, Mycroft A, Ortin F. An efficient and scalable
platform for Java source code analysis using overlaid graph
representations[J]. IEEE Access, 2020, 8: 72239-72260.

[17] Dehmer M, Chen Z, Emmert-Streib F, et al. Measuring the complexity
of directed graphs: A polynomial-based approach[J]. Plos one, 2019,
14(11): e0223

72

Refactoring of Object-oriented Package Structure
Based on Complex Network

Youfei Huang, Yuhang Chen, Zhengting Tang, Liangyu Chen, Ningkang Jiang∗,
Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University,
Shanghai, China,

nkjiang@sei.ecnu.edu.cn

Abstract—A software system is usually developed with multiple
modules. However, its structure is continuously modified during
software evolution, resulting in poor maintainability and under-
standability. Therefore, software evolution must accompany sys-
tem refactoring. This paper describes an optimization approach
for package structure according to complex network theory. First,
we analyze the relations between classes and build the class
dependency graph. Second, we propose a community detection
algorithm to recombine the classes and optimize system cohesion
and coupling without changing the external functionality. Third,
by comparing the original and optimized package structure,
the two dimensions of splitting the package and moving classes
between packages identify package refactoring opportunities. In
addition, we evaluate the impact of the above approach on
package quality in terms of package reusability and instability.
We design experiments on 10 open-source Java software projects
to verify the effectiveness of our approach.

Index Terms—Refactoring;complex network;community detec-
tion;cohesion;coupling

I. INTRODUCTION

During the software life cycle, new requirements will
emerge inevitably, and software modifications to implement
new requirements may not conform to object-oriented pro-
gramming specifications [1]. In addition, the tight development
cycle may lead to poor design decisions [2]. The differences
between the system and the original design increase in the
long run, and the quality of the system becomes increasingly
poor. It becomes more and more challenging to maintain the
existing software. In order to avoid the fate of software system
corruption, fragmentation and even disintegration, choosing a
proper refactoring operation is a feasible method. Refactoring
can adjust the software architecture without changing the
code’s external behavior, optimize the existing code, and
extend the software system’s life [3].

In the process of software development and maintenance,
the problem of Too Large Packages (TLP) or Too Small
Packages (TSP) may occur in the system. When a package
contains more than 30 classes or exceeds 27, 000 code lines
[4], it can be considered as TLP. The number of classes or
lines of code in a package that the TSP should contain is not
explicitly given in [4]. According to previous research, when
the number of classes in a package is 4 or less [5, 6], it is
usually not worth the effort to maintain them.

DOI reference number: 10.18293/SEKE2022-164

Complex network theory has been applied to many fields,
such as social networks [7, 8], computer networks [9], and
biological networks [10]. One of the notable features of com-
plex networks is their community structure [11, 12]. Software
network built with classes as nodes and dependencies between
classes as edges is the product of characterizing software
systems as complex networks, so it has community structure
property [13]. Based on complex network theory, we propose
a system-level automatic package refactoring approach that
abandons the original package structure of the system and
re-modularizes the system. First, we represent the software
system as a class dependency graph. Second, based on the
definition of TLP and TSP, we propose a community detection
algorithm to detect the community structure corresponding
to the optimized package structure. Third, by comparing
the optimized package structure with the original package
structure, we give refactoring suggestions. Through tests on 10
open source software systems, it is verified that our refactoring
approach is meaningful and positively impacts the cohesion
of the system while reduces the coupling of the system. The
primary contributions of this study are summarized as follows.

• From the perspective of optimizing system structure, a
controllable community detection algorithm that divides
the size of sub-communities is proposed, which can
obtain the best class distribution from the system-level,
and eliminate too large and small packages in the system.

• Several open-source software systems are used to evaluate
our approach. The evaluation metrics based on cohesion
and coupling metrics are compared with previous studies,
and we also assess the changes in system reusability and
stability after refactoring.

The remainder of the paper is organized as follows. Section
II summarizes the related work. Section III presents the
package refactoring algorithm. In Section IV, we design ex-
periments to verify the effectiveness of our approach. Section
V is the conclusion.

II. RELATED WORK

A. Package-level Refactoring

Over the last three decades, software engineers have pro-
posed several semi-automatic and full-automatic refactoring
methods to improve software quality. Depending on the kind

73

of entities selected in refactoring, there are three main types of
refactoring at different granularities: package level, class level,
method and property level. In this paper, we focus on package
level refactoring. Pan et al. [14] represented the package,
class and their dependencies with weighted bipartite software
networks and proposed a guidance community detection algo-
rithm to optimize the package structure of the software system.
Mi et al. [15] divided the dependency relationships between
classes into five types to build a class dependency graph,
and then proposed a cohesion metric at the package level,
according to this metric to move class between packages. Zhou
et al. [16] applied Mi’s approach to build software networks,
proposed a coupling metric of packages and improved the
structure of packages considering changes in cohesion and
coupling values. Bavota et al. [5] combined semantic and
structural metrics to generate a class-by-class matrix, where
the values in the matrix indicate the likelihood of two classes
being in the same package, after which the strongly related
class chains in the matrix are extracted, and the classes in one
class chain are placed in the same package. However, their
approach only focuses on refactoring one package at a time,
and incrementally re-modularizing a software system. Abdeen
et al. [17] and Chhabra et al. [18] used the multi-objective
Non-Dominated Sorting Genetic Algorithm to optimize system
structure by moving classes between packages, while respect-
ing the original package organization as much as possible, to
increase cohesion and reduce coupling and cyclic connectivity.

B. Evaluation Metrics of Package Quality

Since the software is frequently changing, software design-
ers should assess software quality periodically. The evaluation
standard is the authoritative software metrics proposed by
research and engineering. It plays an important role in many
fields in the life-cycle of the software, including predicting
software defects and maintenance costs [19], and if they
are appropriately selected and applied, improvements can be
identified and quantified. Wang et al. [2] used the Quality
Model for Object-Oriented Design (QMOOD) metric pro-
posed by Harrison et al. [20] to evaluate the improvement
in reusability, flexibility, and understandability of the system
after their refactoring. QMOOD is a quality metric at the class
level in object-oriented design, and Singh et al. [21] proposed
the Quality Metric of Package Level in Object-Oriented De-
sign (QMPOOD) with quality attributes including reusability,
flexibility, functionality, understandability, extendibility, and
effectiveness, and later they gave a specific method to calculate
the reusability of software system packages in [22]. Chong
et al. [23] presented a weighted complex network to repre-
sent the structural characteristics of object-oriented software
systems and used 40 object-oriented software systems for
experiments to evaluate the maintainability and reliability of
software systems. Martin et al. [24] proposed software package
metrics based on object-oriented design principles, including
eight metrics: efferent coupling (Ce), afferent coupling (Ca),
instability (I), number of abstract classes (Na), number of
classes (Nc), abstractness (A), the distance from the main

sequence (D) and the normalized distance from the main
sequence (Dn).

III. METHODOLOGY

A. Problem Formulation

We use the code snippet shown in Fig.1 as a motivation
example to formulate our problem. In Fig.1, there are 11
classes, which are divided into 4 packages. Classes do not
exist independently, but some classes are more dependent on
classes in other packages. Therefore, there are “bad smells”
in the code.

Fig. 1. Code snippet used as an example to understand the proposed algorithm.

Based on five class dependencies outlined in [15], which
are inheritance and implementation, aggregation, parameter,
signature, and invocation. We extract the associations between
classes in Fig.1 and then build the Class Dependency Graph
(CDG), shown in Fig.2.

Fig. 2. Class dependency graph

74

Fig. 3. Optimized package structure.

After refactoring, we get three new packages, shown in
Fig.3. The optimized package structure gains a better mod-
ularity Q, increased from 0.2699 to 0.5450.

For our refactoring approach, this paper mainly studies the
following research questions:

• RQ1: Can our approach alleviate the design problems
and get meaningful refactoring?

• RQ2: Does our approach have more advantages com-
pared with other refactoring approaches?

• RQ3: Besides cohesion and coupling, does our approach
improve other package design metrics?

B. Method Overview

Our refactoring approach is shown in Fig.4. First, we model
the package topology of an object-oriented software system
as a weighted software network, with classes as vertices and
dependencies between classes as the edges of the network.
Second, based on complex network theory, this paper uses a
community detection algorithm to recombine the classes and
find the communities corresponding to the optimized packages.
Third, by comparing the optimized package structure with the
original package structure, we obtain the package refactoring
opportunities.

C. Package Refactoring Algorithm

With Java software systems as research objects, we analyze
the bytecode files of the software system and regard classes
and their dependencies as entities. In order to improve the
package structure, the refactoring approach in this paper
regards each class in the system as an independent community,
and the classes in the software system are gradually reag-
gregated to form several packages by using the community
detection algorithm. The number of sub-communities of the
community detection algorithm, that is, the total number of
packages after system optimization, is not specified in advance,
so the number of packages may be different from the original
system.

Community detection, also known as community discovery,
is a technique used to reveal network aggregation behavior.
The nodes in the same community are densely connected,
and the connections between nodes in different communities

are sparse. Newman et al. [25] proposed to calculate the
modularity of unweighted undirected networks. Modularity is
a property of a network and a measure of the quality of a
particular division of a network. However, this paper builds
a weighted software network. Therefore, we appropriately
modify the calculation method of modularity and propose a
weighted modularity Q, which is defined as

Q =
1

2W

∑
ij

(
wij −

hihj

2W

)
δ (ci, cj)

=
n∑

p=1

[
Wp

W
−
(

Hp

2W

)2
]
,

(1)

where W is the sum of all the edge weights, wij is the weight
of the edge between node i and node j, hi is the sum of the
weights of all edges connected to node i, ci and cj are the
communities to which nodes i and j belong, respectively. If i
and j are in the same community, then δ (ci, cj) = 1, otherwise
δ (ci, cj) = 0. And n is the number of communities in the
network, Wp is the sum of the weights of the edges within
community cp, Hp is the sum of the weights of all edges
connected to community cp. Based on (1), when merging
communities, the modularity change of the system can be
calculated by (2), Hin(ci, cj) represents the sum of all the
edge weights in the sub-community formed by the merging of
community ci and cj .

∆Qij =

{
Hin(ci,cj)−HiHj

2W if ci connects with cj
0 otherwise,

(2)

We propose a community detection algorithm, which takes
into account the goal of this package refactoring and avoids
too large or small packages. In order to prevent excessive
software refactoring, when a community and multiple target
communities have the same modularity change after merging,
we prioritize merging the community pair with entities that
are all defined in the same original package to maintain the
original design as much as possible. The refactoring algorithm
is shown in Algorithm 1:
Algorithm 1 Package refactoring algorithm

Input: The adjacency matrix Mn×n of CDG.
Output: Community set C; Weighted modularity Q.

1. Let the weighted modularity Q = 0. The number of initial
communities is the number of classes in the system.
2. We calculate the change of the Q of the system after the
sub-community is merged according to (2), and calculate
the modularity increment matrix ∆Q.
3. we find the maximum element ∆Qij in ∆Q, and merge
the two communities Ci and Cj . And then, we recalcu-
late the modularity increment matrix according to Step 2.
Communities are gradually aggregated until the maximum
element ∆Qij ≤ 0. Then Q reaches the optimum. We obtain
the community set C1, and the weighted modularity value
Q = Q1.
4. According to the definition of TLP, we split the large
communities existing in the C1 as follows: for the large

75

Fig. 4. The workflow of the refactoring approach.

community, we delete the edges with smaller weight in turn.
In a splitting round, the edge with the smallest weight is
chosen, and the community is split into several connected
components, where each component has no more than 30
nodes. If not, split recursively. Finally, we obtain the com-
munity set C2, and the weighted modularity value Q = Q2.
5. For TSP in C2, we relocate them to other commu-
nities with the following merging method: according to
the reduction value of modularity value Q, we merge the
small sub-community with the target community with the
smallest reduction of Q, at the same time, the number of
nodes in the newly generated community cannot exceed 30,
otherwise we merge with the target community with the
second smallest reduction of Q.

IV. EXPERIMENTS

A. Data Sets

The experiments are conducted on a computer with i5-
3230M CPU, 8G DDR3 Memory, Windows 10. We select 10
open-source Java software systems to verify the effectiveness
of the refactoring approach. Our choice of software systems
is not random, as they are projects in different application
fields. In the future, we will use more systems to verify
the effectiveness of our approach. To remove the unrelated
files, we filter the experimental data from the following three
aspects:

• Only the classes in top-level packages are considered for
experiments.

• Utility modules do not participate in the refactoring
process.

TABLE I
DETAILED INFORMATION ABOUT 10 JAVA SOFTWARE SYSTEMS

System System PN CN EN
S0 Cglib-nodep 3.2.6 9 198 961
S1 Codec 1.15 7 139 278
S2 Emma 2.0.5312 10 140 506
S3 Empire-db 2.5.0 21 178 1097
S4 GistoolkitSource 2.8.1 64 504 2228
S5 ITtracker 3.1.5 38 422 1803
S6 Rng 1.3 19 346 729
S7 Roller 5.1.1 61 541 2707
S8 Tomcat 9.0.1 42 619 1589
S9 XMLgraphics-commons-2.6 35 363 801

• Third-party libraries are excluded since they are not parts
of software systems.

Table I summarizes the information of 10 systems after pre-
processing, including name and version number, number of
package(PN), number of class(CN), number of edges in the
software network (EN).

B. Changes of the package structure

We follow the steps in Fig.4 to perform the refactoring
operation. Table II shows the change of package structure
before and after refactoring. Note that PN represents the
number of packages, TLP and TSP represent the threshold of
too large and small package, respectively, It is observed that
our approach can solve the problem of too small packages and
too large packages in the software system.

C. Evaluations of Cohesion and Coupling Metrics

In our experiments, we use COHM metric [15] to measure
the cohesion of packages and COUM metric [16] to evaluate

76

TABLE II
DETAILED INFORMATION ABOUT PACKAGE STRUCTURE

System Before refactoring After refactoring
PN TLP TSP PN TLP TSP

S0 9 1 2 8 0 0
S1 7 1 1 7 0 0
S2 10 1 4 5 0 0
S3 21 1 9 13 0 0
S4 64 2 27 36 0 0
S5 38 2 10 25 0 0
S6 19 5 5 19 0 0
S7 61 3 20 32 0 0
S8 42 6 9 35 0 0
S9 35 1 8 28 0 0

the coupling between packages. A higher value of COHM
indicates a better cohesion of the package. And the lower value
of COUM indicates the better coupling of the package. We
apply these two metrics to the software systems to measure
the improvement by refactoring. Table III records the detailed
change of COHM and COUM. We can see the cohesion are
increased and the couping are decreased on all systems, which
means the structures of all systems are optimized and the
refactorings are useful. Thus, we answer the question RQ1.

TABLE III
CHANGES IN COHESION AND COUPLING METRIC VALUES

System COHM COUM
Before/After/Diff. Before/After/Diff.

S0 0.273/0.365/+0.092 0.163/0.109/-0.054
S1 0.409/0.636/+0.227 0.192/0.072/-0.120
S2 0.360/0.516/+0.156 0.236/0.161/-0.075
S3 0.130/0.226/+0.096 0.404/0.370/-0.034
S4 0.148/0.449/+0.301 0.516/0.222/-0.294
S5 0.099/0.284/+0.185 0.685/0.445/-0.240
S6 0.328/0.504/+0.176 0.412/0.203/-0.209
S7 0.174/0.301/+0.127 0.495/0.227/-0.268
S8 0.415/0.579/+0.164 0.273/0.191/-0.082
S9 0.372/0.634/+0.262 0.294/0.114/-0.180

D. Comparison with Previous Research

We have re-implemented Zhou’s [16] work and Abdeen’s
[17] work on package refactoring. Zhou’s approach opti-
mizes the package structure by considering both cohesion
and coupling measures, moving the class between packages,
and finally selecting the package with better cohesion and
coupling as the target package for refactoring the current
class. Abdeen’s approach is a more conservative optimization
of the package structure, using the Non-Dominated Sorting
Genetic Algorithm to refactor the package. We compare our
refactoring approach with theirs, and Table IV presents the
specific changes of cohesion and coupling after refactoring
with using three different approaches. The optimal values are
presented in bold. It is clear that the cohesion and coupling
obtained by our method outperform consistently the other two
methods. Therefore, we answer the question RQ2.

TABLE IV
COMPARISON OF THREE REFACTORING APPROACHES

System COHMaf COUMaf
Our/Zhou/Abdeen Our/Zhou/Abdeen

S0 0.365/0.331/0.333 0.109/0.159/0.135
S1 0.636/0.562/0.543 0.072/0.080/0.089
S2 0.516/0.406/0.439 0.161/0.174/0.176
S3 0.226/0.181/0.204 0.370/0.371/0.370
S4 0.449/0.249/0.289 0.222/0.276/0.337
S5 0.284/0.140/0.196 0.445/0.492/0.523
S6 0.504/0.372/0.364 0.203/0.301/0.305
S7 0.301/0.223/0.245 0.227/0.344/0.366
S8 0.579/0.449/0.493 0.191/0.222/0.229
S9 0.634/0.437/0.417 0.114/0.216/0.199

E. Evaluations of Reusability and Instability Metrics

In this section, we investigate whether our refactoring
approach optimizes the design quality of the package, besides
cohesion and coupling metric. We focus on reusability and
instability. Reusability [22] reflects the ability of a design to
be reused in multiple contexts. The higher its value, the higher
the reusability of the package. Martin proposed instability in
[24] to describe the system stability, the lower its value, the
more stable of the package.

Table V records the changes in reusability and instability
after refactoring. One can observe that the reusability val-
ues are increased while the instability values are decreased.
This means the design of all software systems is improved
after refactoring. We also visualize the change of reusability
and instability in Fig.5 and Fig.6, respectively, for a better
understanding the change. Therefore, our approach not only
improves the cohesion and coupling metrics, but also improves
the design quality of system packages in terms of reusability
and instability. So we answer the question RQ3.

TABLE V
CHANGES IN REUSABILITY AND INSTABILITY METRIC VALUES

System Reusability Instability

Before/After/Diff Before/After/Diff

S0 16.071/18.115/+2.044 0.710/0.549/-0.161
S1 17.182/17.290/+0.108 0.671/0.557/-0.114
S2 9.490/12.189/+2.699 0.519/0.489/-0.030
S3 7.312/14.230/+6.918 0.625/0.576/-0.049
S4 6.952/17.468/+10.516 0.515/0.510/-0.005
S5 9.920/15.941/+6.021 0.693/0.497/-0.196
S6 13.604/13.733/+0.129 0.676/0.594/-0.082
S7 8.072/15.601/+7.529 0.599/0.533/-0.066
S8 11.444/13.826/+2.382 0.530/0.484/-0.046
S9 8.927/11.269/+2.342 0.515/0.386/-0.129

F. Threats to Validity

The internal validity threat to our study is that the weights
of five dependencies between classes are equal in building
class dependency network, whereas the priorities of the five
dependencies should be different according to other classical
theories of software. But to the best of our knowledge,
no research has given the specific weight assignments that
these five dependencies apply to various systems or even a

77

Fig. 5. Reusability change on 10 systems after refactoring.

Fig. 6. Instability change on 10 systems after refactoring.

rough range. Considering the importance of five dependencies
between classes as the same to build a software weighted
network, the effectiveness has been proved in [14], so this
part of the threat can be mitigated to a certain extent.

The external validity threat to our study is the limitation of
software systems chosen in the experiments. In this paper, we
mainly use Java software systems, but there are object-oriented
software systems developed in other programming languages
such as C++, Python, etc. Therefore, applying our research to
projects developed in other programming languages may lack
the ability to give accurate refactoring recommendations.

V. CONCLUSION

In this study, we propose a refactoring approach for package
structure based on complex network theory. It uses a com-
munity detection algorithm to find opportunities for package
refactoring, which achieves the optimal class distribution and
get no too large or small packages. The paper analyzes
five kinds of dependencies between object-oriented software
system classes, which are used to build class dependency
network, and then perform refactoring operations according
to the software design principle of “high cohesion and low
coupling”. Experimental results demonstrate that our approach
can solve the problem of system cohesion and coupling while
maintain the external functionality, and improve software
stability and reusability.

REFERENCES
[1] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE

Transactions on software engineering, vol. 30, no. 2, pp. 126–139, 2004.
[2] Y. Wang, H. Yu, Z. Zhu, W. Zhang, and Y. Zhao, “Automatic software

refactoring via weighted clustering in method-level networks,” IEEE
Transactions on Software Engineering, vol. 44, no. 3, pp. 202–236, 2017.

[3] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[4] M. Lippert and S. Roock, Refactoring in large software projects:
performing complex restructurings successfully. John Wiley & Sons,
2006.

[5] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Using structural
and semantic measures to improve software modularization,” Empirical
Software Engineering, vol. 18, no. 5, pp. 901–932, 2013.

[6] R. A. Bittencourt and D. D. S. Guerrero, “Comparison of graph clus-
tering algorithms for recovering software architecture module views,”
in 2009 13th European Conference on Software Maintenance and
Reengineering. IEEE, 2009, pp. 251–254.

[7] J. M. Hofman, A. Sharma, and D. J. Watts, “Prediction and explanation
in social systems,” Science, vol. 355, no. 6324, pp. 486–488, 2017.

[8] H. Ebel, L.-I. Mielsch, and S. Bornholdt, “Scale-free topology of e-mail
networks,” Physical review E, vol. 66, no. 3, p. 035103, 2002.

[9] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[10] S. N. Dorogovtsev, S. N. Dorogovtsev, and J. F. Mendes, Evolution of
networks: From biological nets to the Internet and WWW. Oxford
university press, 2003.

[11] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proceedings of the national academy of sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[12] M. E. Newman, “Modularity and community structure in networks,”
Proceedings of the national academy of sciences, vol. 103, no. 23, pp.
8577–8582, 2006.

[13] L. M. Hakik and R. El Harti, “Measuring coupling and cohesion to
evaluate the quality of a remodularized software architecture result of
an approach based on formal concept analysis,” International Journal
of Computer Science and Network Security, vol. 14, no. 1, pp. 11–16,
2014.

[14] W. Pan, B. Li, B. Jiang, and K. Liu, “Recode: software package
refactoring via community detection in bipartite software networks,”
Advances in Complex Systems, vol. 17, no. 07n08, p. 1450006, 2014.

[15] Y. Mi, Y. Zhou, and L. Chen, “A new metric for package cohesion
measurement based on complex network,” in 2019 8th International
Conference on Complex Networks and Their Applications. Springer,
2019, pp. 238–249.

[16] Y. Zhou, Y. Mi, Y. Zhu, and L. Chen, “Measurement and refactoring for
package structure based on complex network,” Applied Network Science,
vol. 5, no. 1, pp. 1–20, 2020.

[17] H. Abdeen, H. Sahraoui, O. Shata, N. Anquetil, and S. Ducasse,
“Towards automatically improving package structure while respecting
original design decisions,” in 2013 20th Working Conference on Reverse
Engineering. IEEE, 2013, pp. 212–221.

[18] Amarjeet and J. K. Chhabra, “Improving package structure of object-
oriented software using multi-objective optimization and weighted class
connections,” Journal of King Saud University-Computer and Informa-
tion Sciences, vol. 29, no. 3, pp. 349–364, 2017.

[19] M. A. A. Mamun, C. Berger, and J. Hansson, “Effects of measurements
on correlations of software code metrics,” Empirical Software Engineer-
ing, vol. 24, no. 4, pp. 2764–2818, 2019.

[20] R. Harrison, S. J. Counsell, and R. V. Nithi, “An evaluation of the mood
set of object-oriented software metrics,” IEEE Transactions on Software
Engineering, vol. 24, no. 6, pp. 491–496, 1998.

[21] V. Singh and V. Bhattacherjee, “Evaluation and application of package
level metrics in assessing software quality,” International Journal of
Computer Applications, vol. 58, no. 21, pp. 38–46, 2012.

[22] V. Singh and V. Bhattacherjee, “Assessing package reusability in object-
oriented design,” International Journal of Software Engineering and Its
Applications, vol. 8, no. 4, pp. 75–84, 2014.

[23] C. Y. Chong and S. P. Lee, “Analyzing maintainability and reliability of
object-oriented software using weighted complex network,” Journal of
Systems and Software, vol. 110, no. 1, pp. 28–53, 2015.

[24] R. C. Martin, J. Newkirk, and R. S. Koss, Agile software development:
principles, patterns, and practices. Upper Saddle River, NJ: Prentice
Hall, 2003.

[25] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

78

Reducing Mismatches in Syntax Coupled Hunks
Chunhua Yang1,2, Xiufang Li1

1School of Computer Science and Technology
QILU University of Technology(Shandong Academy of Sciences)

2 Shandong Wiztek Science and Technology Co., Ltd.
Jinan, China

jnych@126.com, lixf@qlu.edu.cn

Abstract—Hunks generated by textual-differencing tools are
often used for understanding code changes. However, in the
side-by-side view, the match between the deleted and added
lines of a hunk is sometimes inconsistent with actual changes to
the corresponding syntax entities. This mismatch usually occurs
in syntax coupled hunks, i.e. hunks that contain changes to
multiple syntax entities. It makes the hunks incomprehensible
and misleading.

A hybrid differencing algorithm is proposed to alleviate this
problem. It applies tree-differencing to syntax coupled hunks to
generate edits. It then maps edits back to the source code to
generate adjusted hunks. Based on the current implementation,
we conducted a case study on 10 open source projects. The results
showed that 15% of commits contain syntax coupled hunks. And,
we evaluated the results of the algorithm on 1,500 randomly
drawn samples, and the correct matching rate was as high as
97%, demonstrating the effectiveness of the algorithm in reducing
mismatches.

Index Terms—code differencing, hunks, mismatching, change
understanding, software evolution

I. INTRODUCTION

Understanding how software changes has become a reg-
ular part of modern software development. Many version
management systems and IDEs provide differencing tools to
present changes to the source code. The prevalent differencing
tools are textual because they are efficient and not limited to
programming languages. They return deltas by comparing the
text values of the original and modified versions of the source
code.

The common form of deltas is line-based hunks that are
displayed in a unified view. For example, Fig.1 depicts two
hunks returned by the well-known GnuDiff [1]. Each hunk
consists of deleted lines(red), inserted lines(green), and sur-
rounding contextual lines(white). Tools such as GitHub Diff
[2], KDiff3 [3] and Mergely [4] also provide a side-by-side
view, which can show the relationship between deleted lines
and inserted lines more clearly. For example, Fig.2 is a split
view provided by GitHub Diff to present the hunks in Fig.1.

However, the hunks generated by textual differencing tools
are sometimes syntax coupled, that is, they contain
changes to multiple syntax entities. For example, as shown
in Fig.1, changes to methods raiseTimeoutFailure and per-
formOnPrimary scattered and entangled in two hunks. This
is a two-to-one method coupling, where two methods in the

DOI reference number: 10.18293/SEKE2022-049

original version are coupled with one method in the modified
version.

In syntax coupled hunks, mismatch is a common phe-
nomenon, usually in the following two forms:

1) Mismatches between nodes in the original and modified
versions of the source code. For instance, according
to the hunks shown in Fig.2, the raiseTimeoutFailure
method in the original version matches performOnPri-
mary method in the modified version. But obviously,
the performOnPrimary method of the same name in the
original and modified versions should match.

2) Mismatches between non-code lines (such as delimiters
and comments), or certain elements of a signature or
statement (such as arguments and annotations). For
example, in Fig.2, the brace on line 543 of the original
version matches the brace on line 509 of the modified
version incorrectly. In fact, the two curly braces are
a necessary part of the deleted If-statement and the
inserted If-statement respectively, so they should not be
recognized as context.

Mismatches in syntax coupled hunks hinders change under-
standing in the following ways:

• Mismatches between nodes can mislead users with incor-
rect edit operations, thereby obscuring the actual changes.
For example, according to Fig.1, the edit operation be-
tween raiseTimeoutFailure and performOnPrimary is an
update. But, the update should be actually between per-
formOnPrimary(int, ShardRouting, ClusterState) of the
original version and performOnPrimary(int, ShardRout-
ing) of the modified version.

• Mismatches cause changes to the entire entity to be
spread out over multiple hunks, making these hunks
incomprehensible. In order to find out the actual changes,
the user must go through all deleted and inserted lines.

In order to alleviate the mismatch problem in syntax coupled
hunks, an algorithm is porposed in the paper. It makes the
following contributions.

• It is a novel hybrid differencing algorithm for alleviating
the mismatch problem. It applies tree-differencing to
syntax coupled hunks to generate edit operations. It then
maps edit operations back to the source code to generate
adjusted hunks.

79

Fig. 1. An Example of Syntax Coupled Hunks.

• In addition to hunks, the algorithm outputs edit opera-
tions that facilitate analysis. For example, the hunk-level
change dependency analysis becomes feasible. So far,
change dependency analysis has been mainly performed
at the method or line level [5] [6].

We have implemented the algorithm and conducted a case
study to examine the distribution of syntax coupled hunks and
evaluate the effectiveness of the algorithm.

The remainder of the paper is organized as follows. In
Section 2, we present the algorithm. In Section 3, we present
the implementation and case study. We review the related work
in Section 4 and summarize the paper in Section 5.

II. THE ALGORITHM

Syntactically, changes to the source code are edit operations
on the nodes of the abstract syntax tree (AST). Typical edit
operations include insert, delete, update, and move. If one
or more hunks contain multiple edit operations on nodes on
the same level of the AST, they are syntax coupled. For
example, the two syntax coupled hunks in Fig.1 contain a
deletion of method raiseTimeoutFailure and an update on
method performOnPrimary.

We define a tuple (H,N1, N2) to represent syntax coupled
hunks, where H is a set of hunks, N1 and N2 are the sets
of nodes in the original and modified versions of AST whose
changes occur in the hunks of H .

Inputting syntax coupled hunks, the algorithm generates
the adjusted hunks through a differencing phase and a layout
phase. During the differencing phase, tree-differencing is ap-
plied to the nodes in both versions to generate edit operations.
Then, in the layout phase, the lines of code belonging to these
edit operations are sorted, and the remaining lines are filled
in the appropriate positions to produce adjusted hunks.

A. The Tree-Differencing Phase

The process is described in Algorithm 1. The algorithm
inputs a hunk set H and two node sets N1 and N2 that belong
to the original and modified versions of AST, and outputs edit
operations. The main steps are as follows:

• Firstly, through the Matching function, the nodes in N1

and N2 are compared with each other to find similar
nodes. (Line 1)

Algorithm 1: HASTDiff(H , N1, N2)
Input: a set H of hunks, two sets of nodes N1 and N2

Output: The set of edit operations O
1 P ←Matching(N1, N2);
2 Chr1 ← ∅; Chr2 ← ∅; O ← ∅;
3 for each pair (n1, n2) ∈ P do
4 O ← O ∪ genOp(n1, n2);
5 C1 ← childrenInHunks(n1, H);
6 C2 ← childrenInHunks(n2, H);
7 Hc ← hunksCrossingNodes(C1) ∪

hunksCrossingNodes(C2);
8 U ← hunkgroupExtract(Hc, C1, C2);
9 for each pair (HU , NU1, NU2) ∈ U do

10 O ← O ∪HASTDiff(HU , NU1, NU2);

11 Chr1 ← Chr1 ∪ unmatchedNodes(C1, U);
12 Chr2 ← Chr2 ∪ unmatchedNodes(C2, U);

13 Nunmatched1 ← unmatchedNodes(N1, P);
14 for each node n1 ∈ Nunmatched1 do
15 O ← O ∪ genOp(n1, null);
16 Chr1 ← Chr1 ∪ childrenInHunks(n1, H);

17 Nunmatched2 ← unmatchedNodes(N2, P);
18 for each node n2 ∈ Nunmatched2 do
19 O ← O ∪ genOp(null, n2);
20 Chr2 ← Chr2 ∪ childrenInHunks(n2, H);

21 U ← hunkgroupExtract(H,Chr1, Chr2);
22 for each pair (HU , NU1, NU2) ∈ U do
23 O ← O ∪HASTDiff(HU , NU1, NU2);

24 for each node n1 ∈ unmatchedNodes(Chr1, U) do
25 O ← O ∪ genOp(n1, null);

26 for each node n2 ∈ unmatchedNodes(Chr2, U) do
27 O ← O ∪ genOp(null, n2);

• Then, for each matched node pair, an update operation
is generated. And, their children in common hunks are
recursively differentiated. Their remaining children are
added to the sets Chr1 and Chr2, respectively. (Line
3∼12)

• For each unmatched node in the set N1 or N2, a delete or

80

Fig. 2. The Hunks Generated by GitHub Diff for the Hunks in Fig.1.

Algorithm 2: Layout(O, H)
Input: a set O of edit operations, and a set H of hunks
Output: The set of adjusted hunks L

1 Osorted ← ∅;
2 L1 ← sortOps(O, true);
3 L2 ← sortOps(O, false);
4 insertContextRanges(L1, H);
5 insertContextRanges(L2, H);
6 while hasNext(L1) ∧ hasNext(L2) do
7 (S1, u1)← findNextUpdateOrContext(L1);
8 (S2, u2)← findNextUpdateOrContext(L2);
9 Osorted ← Osorted ∪ S1;

10 Osorted ← Osorted ∪ S2;
11 addUpdateOrContext(Osorted, u1, u2);

12 addIsolatedLines(Osorted, H);
13 matchingIsolatedBraces(Osorted);
14 L← genAdjustedHunks(Osorted, H)

insert operation will be generated, and then its children
will be added to Chr1 and Chr2 respectively. (Line
13∼20)

• A recursive differencing is applied to the children in sets
Chr1 and Chr2. Then, a delete or an insert operation is
generated for each unmatched child in Chr1 or Chr2,
respectively. (Line 21∼27)

For syntax coupled nodes, the function Matching is used to
determine which node in the original version is most similar to
which node in the modified version. We use a strategy similar
to that used in ChangeDistiller [12] to check the similarity
between nodes. The function hunkgroupExtract is used in the
algorithm to extract the syntax coupled hunk groups. And,
after all edit operations are generated, we generate an ADD
operation for consecutive insert operations that belong to an
entire entity, and a DEL operation for consecutive delete

operations that belong to an entire entity.

B. The lay out phase
In this phase, the edit operations generated in the previous

phase will be laid out to generate adjusted hunks. The resulting
hunks are presented in a split view.

All operations are sorted in ascending order by the starting
line number of the operation. Lines of code in the original
and modified versions belonging to the update operation are
displayed horizontally. And the update operations and context
lines are set as boundaries to arrange other operations and the
remaining hunk lines.

Algorithm 2 depicts the process. The main steps are as
follows:

1) The operations in the set O are first sorted by the line
number of the nodes in the original version(line 2) and
the modified version(line 3), respectively. The sorted
operations are stored in lists L1 and L2, respectively.

2) Then the context lines between the hunks in H are
inserted into appropriate places in the lists L1 and L2,
respectively. (Line 4∼5)

3) Next, for the lists L1 and L2, repeat the following steps
until both lists are empty:

a) Find the next update operation or context from each
list. (Line 7∼8). The function findNextUpdateOr-
Context implements it. For a list L, the function
returns the update operation or context u, and a
list S of operations before u.

b) Insert the operations of S1 into the list Osorted.
Then insert the operations of S2. (Line 9∼10).

c) Finally, insert u1 and u2 into Osorted, respectively.
(Line 11)

4) Insert the remaining deleted or inserted lines properly
into Osorted. (Line 12)
In this step, if there are isolated braces in the original
and modified versions, they will be matched properly.
The matching braces become the context.

81

5) Finally, the adjusted hunks are generated according to
the lines arranged in the Osorted list.

C. Illustration

Take Fig.1 as an example. Through the tree-differencing, the
signature performOnPrimary(int, ShardRouting, ClusterState)
in the original version matches the signature performOnPri-
mary(int, ShardRouting) in the modified version. And, the two
children of the method performOnPrimary in the modified
version, namely the local declaration and the If-statement, are
identified as insert. Since the If-statement and its children are
identified as insert operations, the changes to the If-statement
are identified as an ADD.

Unmatched signature raiseTimeoutFailure(TimeValue,
Throwable) and its children are identified as delete operations.
Since its signature and its children are identified as delete
operations, the method is identified as DEL.

Therefore, through the differencing phase, the following
operations will be generated.

• DEL raiseTimeoutFailure(Line 535∼544)
• update performOnPrimary (Line 546 of the original ver-

sion and Line 504 of the modified version)
• ADD Local declaration (Line 505)
• ADD if statement (Line 506∼508)

In the layout phase, these four operations are sorted. And
the remaining isolated lines (the deleted line 545) are inserted
before the update operation. The output of the algorithm is
shown in Fig.3.

III. THE IMPLEMENTATION AND CASE STUDY

We have implemented the algorithm. We use our previous
work [7] to extract the syntax coupled hunk groups and use
the proposed algorithm to generate the adjusted hunks in each
group.

Based on the current implementation, we conducted a case
study. The aim of the case study is to examine the distribution
of syntax coupled hunks and evaluate the effectiveness of the
algorithm.

To achieve these aims, the following research questions are
to be answered:

• RQ1: What is the proportion of syntax coupled hunks in
daily revisions?

• RQ2: Does the proposed algorithm generate the
correctly-matched results for syntax coupled hunks?

A. The Data Set

We selected 10 open java projects from GitHub. They have
different periods, stars, and scales.

The information of these projects is listed in Table I. For
example, since 2010, the most popular project elasticsearch
has 36,918 commits. Note that, we only list the number of
commits containing code change hunks. Commits with only
non-code changes were ignored.

TABLE I
STUDY PROJECTS AND THEIR TOTAL NUMBER OF REVISIONS(Commits)

THAT CONTAIN CODE CHANGE HUNKS.

No. Project Stars Peroid Commits
1 activemq 1.6k 2005-12-12∼2019-11-5 5,916
2 eclipse.jdt.core 166 2001-6-5 ∼2019-11-6 15,150
3 elasticsearch 45.3k 2010-2-8 ∼2019-10-4 36,918
4 glide 27.6k 2012-12-20 ∼2019-11-6 1,625
5 guice 8.7k 2006-8-22 ∼2019-10-4 877
6 hibernate-orm 4.1k 2004-6-3 ∼2019-10-8 7,413
7 jEdit 17 2001-9-2 ∼2019-10-15 4,998
8 maven 1.9k 2003-9-1 ∼2019-11-5 5,388
9 redisson 11.1k 2013-12-22 ∼2019-11-6 2,461
10 spring-framework 33.4k 2008-7-10 ∼2019-11-5 12,930
Total 93,676

B. The Distribution of Syntax Coupled Hunks(RQ1)
For convenience, we use hunk groups to represent the syntax

coupled hunk groups. Using the current implementation, we
extracted hunk groups in each project and calculated the
number of hunk groups at each granularity.

Table II lists the number of commits that contain hunk
groups, the total number of hunk groups, and the number of
hunk groups at each granularity for each project. We can see
that 14,357 commits in the dataset contain hunk groups, which
account for 15% of the total commits(as shown in Table I).
In addition, the number of hunk groups with method level
coupling ranks first in each project. The number of hunk
groups with statement level coupling ranks second, except for
Guice and Hibernate-orm. In Guice and Hibernate-orm, the
class level coupling ranks second.

TABLE II
THE NUMBER OF COMMITS WITH HUNK GROUPS PER PROJECT, AND THE
NUMBER OF HUNK GROUPS AT EACH GRANULARITY. Hclass , Hmethod ,

Hfield , AND Hstmt REPRESENT THE NUMBER OF HUNK GROUPS AT
CLASS, METHOD, FIELD, AND STATEMENT GRANULARITY,

RESPECTIVELY.

Prj. Commits Number of Syntax Coupled Hunk Groups
Total Hclass Hmthod Hfield Hstmt

1 653(11%) 955 16 608 24 323
2 2,055(14%) 4,892 43 3,349 275 1,336
3 5,731(16%) 11,155 744 8,703 355 1,788
4 269(17%) 507 88 433 25 48
5 143(16%) 221 45 175 10 26
6 1,327(18%) 3,211 131 2,778 83 369
7 758(15%) 1,314 62 844 51 410
8 806(15%) 1,227 19 825 98 322
9 375(15%) 730 3 663 5 64
10 2,240(17%) 4,708 289 3,747 55 711
Total 14,357(15%) 28,920 1,440 22,125 981 5,397

(77%) (19%)

RQ1: In summary, 15% of code change commits contain
syntax coupled hunks.

C. Effectiveness of The Proposed Algorithm(RQ2)
In order to answer the second research question, based

on a set of samples randomly selected from the dataset, we

82

Fig. 3. The Adjusted Hunk Generated by the Proposed Algorithm for the Hunks in Fig.1.

manually evaluated the results generated by the proposed
algorithm. Meanwhile, we compared the results with those
generated by GitHub Diff and Mergely. We adopt these two
tools due to the following reasons:

• GitHub is a platform that contains lots of open source
projects. As a result, its diff is widely used for change
understanding.

• Mergely provides a special side-by-side diff view style.
And it provides a JS library. So, based on a hunk group
set, it is easy to run Mergely on it and display the results
in an html page.

For each sample hunk group, we checked the hunks gener-
ated by the algorithm, GitHub Diff and Mergely, to see if they
matched correctly. We created a web page to view samples and
evaluate results. The authors and three master students did
the manual assessment. They have rich experience in software
development. The three students first evaluated the samples
of different projects independently. Then, the author reviewed
their work.

We considered the coupling structure and the number of
hunks contained when selecting samples. In the end, a total of
1,437 samples were selected. The left half of Table III lists the
numbers of samples selected from each project. The evaluation
results of the sample set are shown in the right half of table III.
According to the table, the algorithm correctly matched 1,395
hunk groups, accounting for 97%. In the case of GitHub Diff
and Mergely, the figures are 1,213 and 1,106, accounting for
84% and 77%, respectively.

RQ2:To sum up, in 97% of the samples, the adjusted hunks
generated by the proposed algorithm are correctly matched.

The correct matching rate is higher than GitHub Diff and
Mergely.

D. Threats to Validity

As the current implementation is based on Java, all selected
projects are written in Java. In addition, since manual evalua-
tion is time-consuming, the number of samples selected is not
large. As a result, the validity of the case study is threatened
by the programming language and sample size of the selected

TABLE III
THE NUMBER OF SAMPLE HUNK GROUPS SELECTED AND THE

EVALUATION RESULTS. HAST REPRESENTS THE PROPOSED ALGORITHM,
GH REPRESENTS GITHUBDIFF, AND MG REPRESENTS MERGELY.

Prj.
Number of Sample Hunk Groups Correct Matching

Hclass Hmethod Hstmt Total HAST GH MG

1 2 119 48 169 161 149 136
2 5 65 64 134 131 123 120
3 69 169 67 305 295 263 239
4 14 73 8 95 91 77 69
5 20 33 4 57 54 51 53
6 22 89 34 145 142 117 107
7 11 51 35 97 96 75 74
8 7 94 38 139 135 98 90
9 2 102 16 120 118 107 82
10 33 104 39 176 172 153 136

185 899 353 1,437 1,395 1,213 1,106
97% 84% 77%

projects. In addition, the results of manual evaluation are
influenced by inspectors. In some cases, whether one entity
should be considered a match with another entity may vary
from person to person.

IV. RELATED WORK

Textual Differencing. Textual-differencing tools detect text
changes based on the longest common subsequence algorithm
[8]. They usually generate line-based hunks(i.e., deltas). The
well-known GNU diff can return added or deleted lines, which
has been widely integrated into IDEs and version-control
systems to calculate and present source code changes. Tools
such as LDiff [9] and LHdiff [10] improve the GNU diff
by detecting moved lines. To make diff easier to read, tools
like GitHub Diff, Mergely and KDiff3 provide a side-by-
side view and the within-line differencing to refine changes
in the hunk. In [11], it is shown that Git diff with different
algorithm options can give different results and revealed that
the Histogram option is better for describing code changes that
the default Myers option. However, for the example shown in

83

Fig.2, the results of the two algorithm options are the same.
The mismatch problem is not improved.

Tree Differencing. Tree-differencing approaches return
structural changes by comparing two ASTs representing two
versions of the source code. They generate edit operations that
represent changes to syntax entities.

The most famous tree-differencing algorithm is ChangeDis-
tiller [12]. It detects changes in classes, methods, and fields.

Diff/TS [13] detected changes in various syntax granulari-
ties including classes, statements and expressions. It can detect
the move actions. GumTree [14] improved ChangeDistiller by
producing a shorter edit script. JSync [15] and srcDiff [16]
used the longest common subsequence algorithm to compare
AST nodes. MTDIFF [17] improved the move actions and
generated shorter edit scripts than Gumtree, RTED, JSync,
and ChangeDistiller with a higher accuracy. Higo et al. [18]
considered copy-and-paste as an editing action. IJM [19] can
generate more accurate move and update operations than
GumTree and ChangeDistiller. CLDiff [20] aimed at gener-
ating concise linked differences. Tree-differencing approaches
generate syntax edits. However, they are less efficient than
textual-differencing. In [21], a hybrid method was proposed
to improve GumTree matching to generate shorter edit scripts.
The matching algorithm in GumTree was enhanced by using
line-based textual differencing. The method is a hybrid, sim-
ilar to ours. However, they focused on the optimization of
GumTree, not the mismatching problem in hunks.

Tangled changes. Tao and Kim [5] proposed to partition
composite code changes by grouping static related changes
and methods with similar names. Herzig and Zeller [6]
proposed CONFVOTERS that combine various dependencies
to detect the related changes. Barnett et al. [22] proposed
CLUSTERCHANGES that can relate separate regions of change
by using static analysis. However, these researches focused
on the tangled changes that accomplish the same task. The
algorithm proposed in the paper focuses on the tangled entities
in hunks.

V. CONCLUSIONS

We present an algorithm that applies tree-differencing to
syntax coupled hunks to alleviate the mismatch problem.
Based on current implementation, we conducted a case study
to examine the distribution of syntax coupled hunks and eval-
uate the effectiveness of the algorithm. We found that 15% of
commits contained syntax coupled hunks. And, the proposed
algorithm greatly improves the mismatching in syntax coupled
hunks.

Since the algorithm is based on the textual-differencing
and tree-differencing is only used to compare the nodes that
cross hunks, it is efficient than tree-differencing. Therefore, it
can be used to extend the textual-differencing tools to reduce
mismatches without worrying about efficiency. As a future
work, we will provide implementations in other programming
languages.

ACKNOWLEDGMENT

This work is supported by Shandong Provincial Natural
Science Foundation (Grant No. ZR2020MF031).

REFERENCES

[1] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest
common subsequences,” Communications of the ACM, 1977, vol.20,
no.5, pp.350-353.

[2] “GitHub Diff,” https://github.com
[3] “KDiff3,” http://kdiff3.sourceforge.net/
[4] “Mergely,” http://www.mergely.com/
[5] Y. Tao and S. Kim, “Partitioning composite code changes to facilitate

code review,” In Proceedings of the 12th Working Conference on Mining
Software Repositories, 2015, pp. 180-190.

[6] K. Herzig and A. Zeller. “The impact of tangled code changes,” In
Proceedings of the10th Working Conference on Mining Software Repos-
itories (MSR), San Francisco, CA, 2013, pp.121-130.

[7] C. Yang, J. Whitehead, “Pruning the AST with Hunks to Speed up Tree
Differencing,” In Proceedings of 26th IEEE International Conference
on Software Analysis, Evolution and Reengeneering (SANER), 2019,
Hangzhou, China, pp. 15-25.

[8] E. W. Myers, “AnO (ND) difference algorithm and its variations,”
Algorithmica, 1986, Vol.1, No.1, pp.251-266.

[9] G. Canfora, L. Cerulo and M. Di Penta, “Ldiff: An enhanced line
differencing tool,” In Proceedings of the 31st International Conference
on Software Engineering, 2009, pp. 595-598.

[10] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and M. Di Penta, “ LHD-
iff: A language-independent hybrid approach for tracking source code
lines,” In 29th IEEE International Conference on Software Maintenance
(ICSM 2013), 2013, pp. 230-239.

[11] Y.S. Nugroho, H. Hata, and K. Matsumoto, “How different are differ-
ent diff algorithms in Git?,” Empirical Software Engineering,2020, 25,
pp.790-823.

[12] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Transactions on software engineering, 2007, vol.33, no.11, pp.725-743.

[13] M. Hashimoto and A. Mori, “Diff/TS: A Tool for Fine-Grained Struc-
tural Change Analysis,” In WCRE’08: Working Conf. Reverse Eng., pages
279-288, Antwerp, Belgium, Oct. 2008.

[14] J. R. Falleri, F. Morandat, X. Blanc, M. Martinez and M. Monperrus,
“Fine-grained and accurate source code differencing,” In Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 313-324.

[15] H. A. Nguyen, T. T. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen,
“Clone Management for Evolving Software,” IEEE Trans. Softw. Eng.,
38(5):1008-1026, Sep. 2012.

[16] M.J. Decker, M.L. Collard, L.G. Volkert, J.I. Maletic. “srcDiff: A syn-
tactic differencing approach to improve the understandability of deltas,”
Journal of Software: Evolution and Process. 2020, 32(4).

[17] G. Dotzler and M. Philippsen, “Move-optimized source code tree differ-
encing,” In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, 2016, pp. 660-671.

[18] Y. Higo, A. Ohtani, and S. Kusumoto, “Generating simpler AST edit
scripts by considering copy-and-paste,” In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2017, pp. 532-542.

[19] V. Frick, T. Grassauer, F. Beck, and M. Pinzger, “Generating Accurate
and Compact Edit Scripts Using Tree Differencing,” In Proceedings of
the 34th IEEE International Conference on Software Maintenance and
Evolution, ICSME 2018, 23-29 Sept. 2018, Madrid, Spain, pp. 264-274.

[20] K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu, and W. Zhao,
“CLDIFF: Generating Concise Linked Code Differences,” In Proceedings
of the 33rd IEEE/ACM International Conference on Automated Software
Engineering, Montpellier, France, 2018, pp. 679-690

[21] J. Matsumoto, Y. Higo and S. Kusumoto, “Beyond GumTree: A Hybrid
Approach to Generate Edit Scripts,” In Proceedings of IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR), 2019,
pp. 550-554.

[22] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping developers
help themselves: Automatic decomposition of code review changesets,”
In Proceedings of the 37th International Conference on Software Engi-
neering, 2015, Vol. 1, pp.134-144.

84

Adaptive Prior-Knowledge-Assisted Function
Naming Based on Multi-level Information Explorer

Lancong Liu, Shizhan Chen, Sen Chen, Guodong Fan, Zhiyong Feng, Hongyue Wu ∗

College of Intelligence and Computing, Tianjin University, Tianjin, China
Email: (llancong, shizhan, senchen, guodongfan, zyfeng, hongyue.wu)@tju.edu.cn

Abstract—Automatic function naming aims to generate a
concise and meaningful name for a function, and has become a
popular research area. Function naming models based on deep-
learning have made significant progress in recent years. Most
of the existing neural models represent a function based on
the granularity of token or AST (Abstract Syntax Tree) node.
However, generating function names requires more fine-grained
knowledge of code, but the representation of tokens or AST nodes
is not enough to capture global function semantics. In our work,
we propose Apker, a novel Adaptive prior-knowledge-assisted
function naming based on multi-level information explorer. The
Apker includes three modules: Multi-level Information Explorer
(MIE), Adaptive Prior Knowledge Adaptor (APKA) and the
Generator. The MIE captures the function semantics from a local
and global perspective, motivated by the understanding patterns
of humans, who will first understand the meaning of each
statement and then comb their logical relations to understand
the whole function. The APKA uses the pre-retrieved prior
knowledge to assist the model, motivated by our observation
that certain name tokens can be extracted directly from certain
statements and such probability differs significantly in different
types of statements. Finally, the Generator generates function
names. The experimental results demonstrate that our approach
outperforms the baselines by 5.4% in Precision, 12.7% in Recall,
and 7.4% in F1-score.

Index Terms—function name generation, code summarization

I. INTRODUCTION

A study has shown that developers spend more time in
program comprehension than coding [13]. Developers need
to provide an understandable function name because such
names can help them to understand a function quickly without
reading the body in detail for further information. What’s
more, inappropriate names may lead to software defects. For
example, Abebe et al. [1] find that inconsistent identifier use
contributes to the faultiness of classes. For novelties, it is
difficult to generate a function name that can directly re-
flect their intent. Therefore, automatically generating function
names becomes a critical task in reverse engineering, which
can suggest appropriate names for developers.

Most existing methods use data-driven models to mine
potential information from source code and then convert it
into forms that can be understood easily by neural networks,
e.g., some studies construct code representations from split

DOI reference number: 10.18293/SEKE2022-085
*Corresponding Author

String[] getReversedArray(final String[] array) {

① final String[] newArray = new String[array.length];

for (int index = 0; index < array.length; index++) {

② newArray[array.length - index - 1] = array[index];

}

③ return newArray;

}

④ ⑤

① ② ③ ④ ⑤

①

②

③

④

⑤

Expression Statement

For Statement

Return Statement

Return Type

Parameter Statement

Extraction Probability in different types of statements

Fig. 1. Example to illustrate our motivations. We decompose the “getRe-
versedArray” function into five statements. Each statement has its own type
and we tag them respectively. The extraction probability is the prior knowledge
used in the Apker.

tokens [2] and parsed AST [3, 6, 7]. Despite their effective-
ness, such approaches are based on the granularity of token or
AST nodes. Specifically, they input tokens or AST nodes to an
encoder to learn their representations and then decode them to
generate a function name. Representing source code in such
way is not enough to capture global function semantics.

To solve this limitation, we propose a novel approach,
named Apker. There are two motivations behind the Apker.
First, to mine more fine-grained knowledge of code, we
follow the humans’ way of understanding a function. Given a
function, humans will try to understand the meaning of each
statement; then comb their logical relations to understand the
whole function [5]. Therefore, capturing the function semantics
based on statement-level may be more efficient than token or
AST node. Second, we observe that certain name tokens can
be extracted directly from certain statements and such proba-
bility differs significantly in different types of statements. Such
observations can be a branch to assist the model to generate
name tokens correctly. Take Figure 1 as an example, there
are three name tokens: “get”, “reversed” and “array”, among
which the first two tokens don’t appear in any statements,
thus, they couldn’t be extracted from any of them. For these
tokens, the model must predict them according to its captured
semantics. However, the token “array” can be extracted from
the statements and it is most likely to be extracted from the
“return statement” according to the prior knowledge.

To model the above working patterns, Apker introduces
three modules, i.e., Multi-level Information Explorer (MIE),
Adaptive Prior Knowledge Adaptor (APKA) and the Genera-
tor. The MIE captures each statement semantics from a local

85

D

7

DLocal-level

ConvAttn

D

5

⋮

C

P

GRU

MIE-L

× λ2

APKA

× λ1

SS

Global-level

GenAttn

u0

Embedded Input Statements Tokens’ Weights

H

Generator

C1 C2

C

a zoo

<s>

u1

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 prior knowledge after softmax

Concatenated

Statements vector

P(𝑤𝑡): vocabulary distribution

MIE-G

P CLOOPUPANDPAD Concatenate S Weighted Sum

public class ProfilerTimerFilter {

public long getMaximumTime(

IoEventType type)

{
if (!timeManager.containsKey(type))

{

……

}

return timeManager.get(

type).getMaximum();

}

}

profiler timer filter

long

io event type type

if time manager …

return time manager …

<0.096>

<0.160>

<0.126>

<0.069>

<0.225>

P
rio

r K
n

o
w

led
g

e

Statement Semantic Vectors

Fig. 2. Illustration of our proposed approach. This only shows the procedure
of generating function names at the first time step.

perspective, based on which, it captures the whole function
semantics from a global perspective. The APKA uses the prior
knowledge to assist the model. Here, the prior knowledge
means The extraction probability for certain name tokens
differs significantly in different types of statements. Finally,
the Generator decodes function names auto-regressively.

In summary, our main contributions are as follows:
• To explore global information by aggregating more fine-

grained local information, we design the multi-level in-
formation explorer for the task of function naming.

• We fuse the prior knowledge in an adaptive way to assist
the model to learn.

• The experiments and analysis on the public dataset ver-
ify the effectiveness of our approach, which is able to
outperform previous state-of-the-art approaches.

II. RELATED WORK

In this section, we introduce the related works according to
the granularity of representing a function.

Early studies regard source code as plain text and employ
split tokens to learn code semantics [2, 12, 14, 17, 23]. A brief
history of relevant works starts with [12]. In their work, they
aim to automatically generate summaries from code snippets
collected from StackOverflow. They split a code snippet into
tokens and apply neural machine translation networks with
attention [21] to generate code summaries. Later, Allamanis
et al. [2] designs a novel attention network purely based
on convolutional blocks for extreme code summarization and
evaluates that their network performs better than general
attention.

Code is more structural than plain text. Therefore, re-
searchers devote themselves to parsing code structure by using
code analysis tools. Parsing source code into an AST is
leveraged by various approaches as AST can obtain the syntax
structure information [4, 5, 6, 10, 11, 15, 16, 18, 22]. At
the first stage, researchers convert the ASTs into sequences
before they are fed into the model. For example, deep learning
similarity [22] expresses its parsed AST as a stream of the
nodes by performing a pre-order visit of the sub-tree. However,
converting AST to a flattened sequence destroys the original
structural information. Thus, later works focus on finding
a way of representing code structure directly. For example,
Shido et al. [18] designs Tree-LSTM as the extension of
LSTM. Tree-LSTM can learn tree structures in ASTs directly
by propagating information from leaves to the root and is more
effective than a sequential model used for machine translation
in natural language process (NLP) when applied to source
code summarization. Besides AST, other information such as
data-flow and control-flow is captured [3, 7, 8].

Despite their effectiveness, all these approaches represent
the source code based on the granularity of token or AST
node, which is limited to capture global semantic informa-
tion. What’s more, they obey humans’ reading habits when
understanding a function.

III. THE OVERALL ARCHITECTURE OF APKER

In this section, we first give a problem definition, and then
introduce the three modules separately.

A. Problem Definition

The goal of this study is to create a model able to generate
a function name in Java source code. As shown in Figure 2,
given a function F = {S0, S1, · · · , Sn−1}, where Si denotes
a statement, e.g., we decompose the function into five types
of statements and the number behind them is the pre-counted
prior knowledge, the Apker receives embedded statements as
input and outputs name tokens step by step. All name tokens
compose the final function name N = {n0, n1, · · · , nm−1},
where m is the number of tokens composing the predicted
function name.

The prior knowledge of Si is a probability and it is
calculated as the number of tokens that compose the target
function divided by the total number of tokens under such
a statement. For example, there are 33,128,737 tokens under
statements with “ClassName” type in total, among which

86

5,359,581 tokens exist in target function name. Therefore,
the prior knowledge of statements with “ClassName” type is
0.1618. As Coganc [23] has counted the probability of 33
types of statements, we directly use it as our prior knowledge.

B. Multi-level Information Explorer (MIE)

In this paper, we introduce MIE, which includes a local-
level part (MIE-L) and a global-level part (MIE-G).

MIE-L MIE-L is to capture each input statement semantics
from a local perspective. As different tokens have different in-
fluences on a statement, we first use a Convolutional Attention
Network (ConvAttn) [2] to weight tokens, then calculate their
weighted sum and use it as the statement semantics vector. The
detailed implementation is shown in Algorithm 1.

Algorithm 1 Generate a statement semantics vector
1: ConvAttn(Embedded Statement ESi)
2: L1 ← RELU(CONV 1D(ESi ,Kl1)
3: L2 ← CONV 1D(L1,Kl2)
4: Lfeat ← L2/||L2||2
5: Li

weight ← SOFTMAX(CONV 1D(Lfeat,K))

6:
∧
ni ←

∑T−1
j=0 (Li

weight)j(ESi
)j

7: return
∧
ni

Here, Li
weight = {Li

weight0
, Li

weight1
, · · · , Li

weightT−1
},

where Li
weightj

is the jth token weight under the ith statement,

and
∧
ni is our obtained statement vector.

MIE-G MIE-G is to learn correlations between obtained
statement vectors

∧
nis and then score each statement according

to its influence on the whole function semantics, which will
be used for generating the final function vector. We use
GRU to learn correlations in Equation (1) and employ the
standard attention mechanism (GenAttn) to score statements
in Equation (2).

CL = Concat(
∧
n0,

∧
n1 · · · ,

∧
nn−1)

H,ut = GRU(CL)
(1)

where CL is the concatenated statement vectors and H =
{h0, h1 · · · , hn−1}.

αit =
exp(e(hi, ut−1))∑n−1
i=0 exp(e(hi, ut−1))

(2)

Here, e(hi, ut−1) = a(ut−1, hi), a is a feedforward neural
network (FNN). αit denotes scores of statement Si at time
step t.

C. Adaptive Prior Knowledge Adaptor (APKA)

In fact, most of the words composing a function name can be
extracted from the statements directly. Thus, when predicting
a name token, if there is a thing that can assist the model
to locate the statement, it will generate a correct result more
quickly and correctly. This is just the functionality of the prior
knowledge.

In APKA, we fuse the prior knowledge and the model in an
adaptive way as shown in Equation (3). The reason we design

in such way is that the model should judge if this name token
can be extracted or predicted at each time step.

C1 =
n−1∑
i=0

αithi

P = SOFTMAX(p0, p1, · · · , pn−1)

C2 =
n−1∑
i=0

Phi

λ1, λ2 = σ(utWu + C1WC1
+ C2WC2

)

C = λ1C1 + λ2C2

(3)

Here, C1 and C2 are context vectors generated by statement
attentions and the prior knowledge respectively. pi is the prior
knowledge of Si. Wu, WC1 and WC2 are learnable parameters.
The computed λ1, λ2 ∈ [0, 1] weight the expected importance
of C1 and C2 respectively and their values can show the
adaptability.

D. Generator

Generator aims to decode the final function vector C into an
actual function name. For each step t, we predict the tth word
by generating the vocabulary distribution. Generator takes the
current input word xt(x0 =< s >), last hidden state ut−1 and
C as input. We describe it with Algorithm 2.

Algorithm 2 Generate vocabulary distribution of each step t

1: Generator(xt, ut−1, C)
2: ext

← Embed(xt)
3: input← Concat(ext

, C)
4: output, st ← GRU(input, ut−1)
5: output← Linear(Concat(output, C))
6: Pwt ← SOFTMAX(output)
7: return Pwt , ut

During training, the overall loss for the whole sequence
is calculated as the average loss at each time step shown in
Equation (4), which is the negative log likelihood of the word
wt for that step:

loss =
1

T

T∑
t=0

(−logP (wt)) (4)

IV. EXPERIMENTS

In this section, we firstly describe used dataset as well as
some widely-used metrics and experimental settings in detail.
Then we present the evaluation and analysis of the proposed
approach.

A. Datasets, Metrics and Settings

Dataset We use the Java dataset collected by [2], which
is obtained from 11 open-source Java projects on GitHub.
This dataset has been split into training/testing/validation by
projects. Particularly, we remove the functions whose length
of their names is less than 2 or longer than 6 because

87

TABLE I
COMPARISONS OF OUR APPROACH AND THE EXISTING METHODS

Approaches
Metrics Used Code Form

Precison↑ Recall↑ F1↑ tokens AST DE-AST CFG AST path stmts
Cognac 0.671 0.597 0.632

√

ConvNet 0.459 0.394 0.406
√

TBCNN 0.409 0.318 0.355
√

TreeCaps 0.526 0.414 0.468
√

GGNN 0.403 0.353 0.369
√

GREAT 0.473 0.400 0.436
√ √

Sequence GINN 0.648 0.562 0.602
√

Code2vec 0.234 0.220 0.214
√

Code2seq 0.504 0.354 0.426
√ √

Apker 0.701 0.673 0.679
√ √

TABLE II
EFFECTIVENESS OF MIE.

Attention type ConvAttn GenAttn APKA
Metrics

Precision Recall F1
Basic 0.469 0.411 0.431

+ConvAttn
√

0.609 0.556 0.573
+GenAttn

√
0.553 0.504 0.520

MIE
√ √

0.666 0.628 0.638

such functions are not practical. Our dataset contains 163,168
functions finally.

Metrics We measure prediction performance using Preci-
sion, Recall, and F1 over the sub-words in generated names,
following the metrics used by [5, 6, 7].

Settings To train our model, we optimize the objective using
stochastic gradient descent with RMSProp [20] and Nesterov
momentum [9]. We use dropout [19] on all parameters and
gradient clipping. Each of the parameters in the model is
initialized with normal random noise around zero, except for
Wu, WC1

, and WC2
in APKA are initialized with kaiming

normal. For ConvAttn, the best values for k1, k2, w1, w2, and
w3 are 8, 8, 24, and 29. The embed and hidden dimensions
are set to 100. The dropout rate is set to 25%. The batch size
is set to 32.

B. Comparison with State-of-the-art Methods

We compare our approach with a wide range of state-of-the-
art function naming models, i.e., Cognac [23], ConvNet [2],
TBCNN [16], TreeCaps [6], GGNN [3], GREAT [8], Sequence
GINN [24], Code2Vec [5] and Code2Seq [4]. As shown in
Table I, our Apker outperforms state-of-the-art approaches
across all metrics. Compared to these best scores of different
metrics, our method has a Precision improvement of 5.4%, a
Recall improvement of 12.7% and an F1-score improvement
of 7.4%. The improved performance demonstrates the validity
of our approach.

C. Effect of MIE

ConvAttn and GenAttn are the two key components to
implement the MIE module. Therefore, to evaluate the effec-
tiveness of MIE, we make an ablation study.

Here, we construct four baseline networks. Note that we
all remove the APKA module in these four networks. The

first one (denoted as “Basic”) is to remove the two attention
mechanisms. The second one (“+ConvAttn”) employs the
original MIE-L to weight token attentions for each statement,
while the third one (“+GenAttn”) uses the same MIE-L as
the first one but adds GenAttn after getting final statement
vectors. The last baseline network (“MIE”) is our approach
without APKA.

Table II shows the effectiveness of MIE. From this table, we
can know that both “+ConvAttn” and “+GenAttn” outperform
”Basic” on all metrics and “+ConvAttn” has a significant
improvement compared to “+GenAttn”. It indicates that the
generated statement vector considering different weights of
tokens reflects the statement semantics better. Moreover, MIE
outperforms “+ConvAttn” for all different evaluation metrics.
These results show that our proposed MIE makes significant
contributions to accurate function name generation.

TABLE III
EFFECTIVENESS OF APKA.

Measure MIE +SPKA +APKA
Precision↑ 0.666 0.682 0.701

Recall↑ 0.628 0.659 0.673
F1-score↑ 0.638 0.663 0.679

D. Effect of APKA

In order to evaluate the performance of APKA, we imple-
ment a static prior knowledge adaptor named SPKA to make
comparisons in Equation (5). The difference between SPKA
and APKA lies in the way to fuse the prior knowledge.

αit = αit + P

C =
n−1∑
i=0

αithi

(5)

88

Statements with Prior Knowledge ConvAttn in Tokens GenAttn in Statements

set

portlet

preferences

</s>

APKAGround Truth

S0

S1

S2

S3

finder

set

portlet

preferences

</s>

</s>

local service base

<0.160>𝐑𝐞𝐭𝐮𝐫𝐧𝐓𝐲𝐩𝐞

this portlet preferences

void

impl

portlet finder

<0.096>𝐂𝐥𝐚𝐬𝐬𝐍𝐚𝐦𝐞

<0.126>𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫

<0.125> 𝐒𝐭𝐚𝐭𝐞𝐦𝐞𝐧𝐭
𝐄𝐱𝐩𝐫𝐞𝐬𝐬𝐢𝐨𝐧

preferences

⋯

⋯

STEP1

STEP2

STEP3

STEP4

STEP0
𝜆1 = 0.998
𝜆2 = 0.053

𝜆1 = 0.572
𝜆2 = 0.745

𝜆1 = 0.624
𝜆2 = 0.788

Fig. 3. We give the visualization of our approach. In the Statements with Prior knowledge step, each dashed box refers to a statement and it has the prior
knowledge behind. Si refers to the ith statement. Tokens highlighted in yellow and statements highlighted in purple represent their attention scores. All colors
follow a principle: the darker a color is, the more important an item is. Each pair of λ1 and λ2 denotes the weights of the model and the prior knowledge at
each time step respectively.

As shown in Table III, it is clear that our APKA successfully
boosts the performance, verifying its effectiveness. Adding the
prior knowledge to the statement attentions directly means the
totally same extraction probability for all time steps, ignoring
the dynamic probability to extract or to predict at each time
step.

E. Visual Analysis

In Figure 3, we give an illustrative example to better
understand our approach. As we can see, in Apker, the
ConvAttn first learns statement semantics by scoring their
inner tokens, e.g., the first statement S0 only has a token
“void”, thus ConvAttn scores it high; S1 attends more to the
token “service” and the last two statements both attend more to
the token “portlet” than others. Then the GenAttn scores these
statements according to their influence on the whole function
semantics.

Now, look at how APKA takes effect. As the name token
“set” doesn’t appear in any statement, the APKA is expected
to weigh more in the model rather than the prior knowledge.
As we can see, the λ1 and λ2 are 0.998 and 0.053 respectively,
satisfying our expectations. But When generating “portlet” and
“preferences”, the APKA should attend to the prior knowledge
because the two tokens can be extracted from the last two
statements directly. Their λ1s and λ2s are also corresponding
to our expectations. Though the last name token “finder” is
not predicted rightly, the presented result can still verify the
capability of Apker to generate function names.

V. DISCUSSION

In this section, we discuss the strength and some threats of
Apker.

A. Strength of Apker

We have evaluated three main advantages of Apker that
may explain its effectiveness in function naming: (a) A more
comprehensive representation of source code. The Apker
decomposes a function into several types of statements. The
experiments also validate the capability of statement-level
approach than token or AST nodes. (b) A multi-level attention

mechanism. The Apker uses a multi-level attention mecha-
nism, among which, local-level attention infers the contribu-
tion of each token to the statement and global-level infers the
contribution of each statement to the whole function.

B. Threats to Validity and Limitations

Our proposed Apker may suffer from two threats. One
threat is on the prior knowledge. The obtained statement prior
knowledge is highly dependent on the empirical study. The
correctness of the prior knowledge has an influence on the
predicted results.

Another threat lies in the extensibility of Apker. Our model
needs to identify different types of statements based on a static
analysis tool. There are many tools to analyze Java source code
but few in other programming languages. Therefore, it may be
difficult to extend our approach to other languages. Besides,
we also consider the class name of the target function and other
statements in caller/callee functions. However, they can only
be parsed from a whole program. Therefore, it is challenging to
extend Apker to some datasets collected from other channels
where only a small code snippet can be extracted.

VI. CONCLUSION

In this paper, we proposed a novel prior-knowledge-guided
neural network for the task of function naming. It includes a
multi-level information explorer to capture local information
with learning to aggregate them to global information and
an adaptive prior knowledge adaptor. Two attention mecha-
nisms (ConvAttn and GenAttn) were used so that different
contributions of tokens to a statement and statements to a
function can be inferred. In particular, we fuse prior knowledge
in Apker to assist the model. We demonstrate the superior
performance of the proposed framework. For future work, we
plan to look into more accurate and valuable prior knowledge.
Furthermore, we will conduct comprehensive experiments on
other programming languages such as Python and C.

VII. ACKNOWLEDGEMENT

This work is supported by the National Natural Science Key
Foundation of China grant No.61832014 and No.62032016,
National Natural Science Foundation of China grant No.

89

62102281, and the Natural Science Foundation of Tianjin City
grant No.19JCQNJC00200.

REFERENCES

[1] Surafel Lemma Abebe, Venera Arnaoudova, Paolo
Tonella, Giuliano Antoniol, and Yann-Gael Gueheneuc.
Can lexicon bad smells improve fault prediction? In 2012
19th Working Conference on Reverse Engineering, pages
235–244. IEEE, 2012.

[2] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A
convolutional attention network for extreme summariza-
tion of source code. In International conference on
machine learning, pages 2091–2100. PMLR, 2016.

[3] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud
Khademi. Learning to represent programs with graphs.
arXiv preprint arXiv:1711.00740, 2017.

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.
code2seq: Generating sequences from structured repre-
sentations of code. arXiv preprint arXiv:1808.01400,
2018.

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. code2vec: Learning distributed representations
of code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019.

[6] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. Treecaps:
Tree-based capsule networks for source code processing.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 30–38, 2021.

[7] Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. Structured neural summarization. arXiv
preprint arXiv:1811.01824, 2018.

[8] Vincent J Hellendoorn, Charles Sutton, Rishabh Singh,
Petros Maniatis, and David Bieber. Global relational
models of source code. In International conference on
learning representations, 2019.

[9] Geoffrey Hinton, Nitsh Srivastava, and Kevin Swersky.
Neural networks for machine learning. Coursera, video
lectures, 264(1):2146–2153, 2012.

[10] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep
code comment generation. In 2018 IEEE/ACM 26th
International Conference on Program Comprehension
(ICPC), pages 200–20010. IEEE, 2018.

[11] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin.
Deep code comment generation with hybrid lexical and
syntactical information. Empirical Software Engineering,
25(3):2179–2217, 2020.

[12] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. Summarizing source code using a
neural attention model. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2073–2083,
2016.

[13] Andrew J Ko, Brad A Myers, Michael J Coblenz, and
Htet Htet Aung. An exploratory study of how developers
seek, relate, and collect relevant information during soft-

ware maintenance tasks. IEEE Transactions on software
engineering, 32(12):971–987, 2006.

[14] Yi Li, Shaohua Wang, and Tien N Nguyen. A context-
based automated approach for method name consistency
checking and suggestion. In 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering (ICSE),
pages 574–586. IEEE, 2021.

[15] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119, 2013.

[16] Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang.
Tbcnn: A tree-based convolutional neural network for
programming language processing. arXiv preprint
arXiv:1409.5718, 2014.

[17] Son Nguyen, Hung Phan, Trinh Le, and Tien N Nguyen.
Suggesting natural method names to check name con-
sistencies. In Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering, pages
1372–1384, 2020.

[18] Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto,
Atsushi Miyamoto, and Tadayuki Matsumura. Automatic
source code summarization with extended tree-lstm. In
2019 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2019.

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The
journal of machine learning research, 15(1):1929–1958,
2014.

[20] Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton. On the importance of initialization and
momentum in deep learning. In International conference
on machine learning, pages 1139–1147. PMLR, 2013.

[21] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104–
3112, 2014.

[22] Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshyvanyk.
Deep learning similarities from different representations
of source code. In 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR),
pages 542–553. IEEE, 2018.

[23] Shangwen Wang, Ming Wen, Bo Lin, and Xiaoguang
Mao. Lightweight global and local contexts guided
method name recommendation with prior knowledge. In
Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 741–753,
2021.

[24] Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang.
Learning semantic program embeddings with graph in-
terval neural network. Proceedings of the ACM on
Programming Languages, 4(OOPSLA):1–27, 2020.

90

Towards Accurate Knowledge Transfer between

Transformer-based Models for Code Summarization

Chaochen Shi 1, Yong Xiang 2, Jiangshan Yu 3, and Longxiang Gao 4

1, 2 School of Information Technology, Deakin University, Australia
3 Faculty of Information Technology, Monash University, Australia

4 Qilu University of Technology (Shandong Academy of Sciences), China

Email: {shicha, yong.xiang}@deakin.edu.au, j.yu.research@gmail.com, longx.gao@gmail.com

Abstract—Automatic code summarization generates high-level

natural language descriptions of code snippets, which can benefit

software maintenance and code comprehension. Recently,

Transformer-based models achieved state-of-the-art performance

on code summarization tasks. However, there are data gaps in

neural model training for some programming languages. To fill

this gap, we propose a novel transfer learning approach to

accurately transfer knowledge between Transformer-based

models. We train a discriminator to identify which heads of the

multi-head attention module should be transferred. On this basis,

we define a transfer strategy of parameter matrices. We evaluated

the proposed transfer learning approach on four state-of-the-art

Transformer-based code summarization models. Experimental

results show that models with transferred knowledge outperform

original models up to 10.70% in BLEU, 5.36% in ROUGE-L, and

4.34% in METEOR.

Keywords-Transfer Learning; Code Summarization

I. INTRODUCTION

Automatic code summarization is a seq2seq (sequence to
sequence) task of automatically generating natural sentences to
describe a code snippet. Due to the general lack of high-quality
source code comments in software development, automatic code
summarization tools are of great significance in helping
developers understand code and improve development
efficiency. In recent years, due to the outstanding performance
of Transformer [7] on seq2seq tasks, many studies on automatic
code summarization leverage Transformer-based architectures
[1, 2, 5, 8]. These state-of-the-art studies have proven that
Transformer architecture is highly effective in capturing
dependencies between code tokens. However, such neural code
summarization models require a large number of <code,
comment> pairs as ground truth data for training. For
mainstream programming languages such as Java and Python,
there are already large public datasets such as SIT [3] and
CodeSearchNet [4] with millions of records. However, there is
a lack of available large corpus for programming languages with
smaller communities, such as Solidity that specializes in smart
contract development on blockchain platforms. It leads to the
poor performance of directly training neural models on such
programming languages.

A potential solution to the gaps mentioned above is to
transfer specific knowledge from well-trained code
summarization models to less-trained models through transfer

learning. The idea comes from the intuition that shared features
(types, syntax, object-oriented characteristics, etc.) exist in
different programming languages. As for Transformer, each
parallel attention layer (head) pays attention to an individual
subspace, which means that some heads may focus on shared
features among different programming languages. This paper
proposes a novel transfer learning approach to accurately
transfer the Transformer's multi-head attention between
programming languages. We train a discriminator D to filter
heads that focus on similar features in transform-based models
of different programming languages. Then we transfer the
corresponding model parameters from the source domain to the
target domain according to the similarity weights of heads. Next,
we train the model of the target domain to fit its dataset. Our
contributions are as follows:

• We propose the transfer learning approach dedicated to
conducting accurate knowledge transfer between
Transformer-based code summarization models, which
can improve the performance of models in the target
domain and speed up the training process.

• Taking Python and Solidity as examples, we compare
the performance with and without the proposed transfer
learning approach on four state-of-the-art Transformer-
based models. The experimental results demonstrate
the maximum improvement reaches 10.70%, 5.36%,
and 4.34% in BLEU, ROUGE-L, and METEOR,
respectively.

II. BACKGROUND AND RELATED WORK

Attention mechanism has become an integral part of
sequence modeling, allowing the model to select the more
critical information to the current task. The self-attention
mechanism is a variant of the attention mechanism, which
reduces the dependence on external information and better
captures the internal correlations of data or features. The
attention is calculated as equation 1.

𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝘛

√𝑑𝑘
)𝑉 (1)

Where Q, K, V are three tensors of the input, 𝑑𝑘 is the dimension
of Q and K. In self-attention mechanism, Q=K=V.

DOI reference number: 10.18293/SEKE2022-111

91

Figure 1. The feature space covered by different heads. Apparently, head 1

covers more shared features between A and B than head 2, 3.

Transformer is an encoder-decoder model relying on
attention mechanism as the main component, which enables
parallel computing and improves the feature extraction ability.
As the state-of-the-art solutions to code summarization tasks,
Transformer-based models have been widely studied. Ahmad [1]
used Transformers to extract textual and structural features from
code token sequence and AST (Abstract Syntax Tree),
respectively. Clement [2] proposed Pymt5, a Python method
text-to-text transfer Transformer, which is trained to translate
between all pairs of Python method feature combinations. Liu [5]
proposed a joint summary generation model based on improving
Transformer, adding pointer mechanism and consistency loss
function to keep the original meaning in generated sentences as
much as possible. Wang [8] designed a structure encoding
algorithm to represent hierarchical code structures. They
combined it with BERT (a Transformer-based pre-trained model)
to better extract code structural features. These mentioned works
show Transformer-based models outperform existing RNN- and
LSTM-based models by a large margin, playing the leading role
in code summarization tasks recently.

III. OUR APPROACH

The knowledge mentioned in this paper is the ability of the
model to extract features from the input. Supposing there are two
programming languages A and B, where A has a well-trained
transformer-based code summarization model 𝑀𝐴 while B has a
structurally identical but undertrained model 𝑀𝐵. Our target is
accurately transferring knowledge from 𝑀𝐴 to 𝑀𝐵 to facilitate
the training process of 𝑀𝐵. Our research questions include:

• RQ1: How to identify the knowledge (heads) we need
to transfer?

• RQ2: How to transfer the selected knowledge between
Transformer-based models?

We address RQ1 and RQ2 in section III-A and III-B,
respectively.

Figure 2. The structure and training process of the discriminator D. The left

and right half are of the same Transformer 𝑀𝐴 trained by source language A. D

receives data from the multi-head attention module and tries to identify whether

inputs are from language A or B.

A. Transferable Knowledge Identification

To address RQ1, we need a strategy to identify transferable

knowledge which fits both source domain and target domain.

For Transformer-based architectures with h heads, the model

learns vector representations 𝑧1, 𝑧2, … , 𝑧ℎ from each head. Then

the multi-head attention representation Z is calculated as

equation 2.
𝑀𝑢𝑙𝑡𝑖𝐴𝑡𝑡𝑛𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑧1, 𝑧2, … , 𝑧ℎ)𝑊

𝑂 (2)

where

𝑧𝑖 = 𝐴𝑡𝑡𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (3)

Where 𝑊𝑖
𝑄 ,𝑊𝑖

𝐾 ,𝑊𝑖
𝑉 and 𝑊𝑂 are parameter matrices of linear

layers as Fig. 3 shows. The multi-head attention module of

Transformer allows the model to jointly attend to information

from h different representation subspaces at different positions

[7]. As Fig.1 shows, some heads may focus on more shared

features between A and B than others, which means such heads

can contribute more transferable knowledge. We call them

transferable heads.

Supposing we already have a well-trained Transformer-based

model 𝑀𝐴 for A. We train a discriminator D to identify

transferable heads in 𝑀𝐴. As Fig. 2 shows, D can be regarded as

a binary classification model which receives a code

representation Z of 𝑀𝐴 's multi-head attention module and tries

to identify whether Z is from A or B. Since the code token

sequence is generally long, we use a Convolutional layer and a

Pooling layer (average pooling) to reduce the dimensionality of

the input. Then the input goes through an LSTM layer and a

Softmax layer, outputs the probability P of being classified into

92

the target class. The classification result is based on P with a

threshold of 0.5. The training target is to minimize the loss as

equation 4.

𝐿𝑜𝑠𝑠 = −(𝑦 ⋅ log(�̂�) + (1 − 𝑦) ⋅ log(1 − �̂�)) (4)
Where �̂� is the probability that the model predicts the sample as

a positive example; 𝑦 is the label of the sample, which takes a

value of 1 if the sample is positive, and 0 otherwise.

The trained D identifies which programming language Z is

from. The rationale is that D captures the non-shared features

between A and B. Since the output of multi-head attention

comes from the weighted concatenate of each head, these non-

shared features also come from the subspaces of heads. Non-

transferable heads contribute more to non-shared features,

helping D distinguish A from B; Transferable heads are the

opposite. We use the F1 score to represent the predictive

performance of D since it considers both precision and recall.

𝐹1 =
2𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(5)

To evaluate the contribution of each head to D, we replace

the concatenate of h different heads as h repeated heads in the

multi-head attention module. Then the Z becomes 𝑍𝑖 for the i-

th head as equation 6.

𝑍𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑧𝑖 , 𝑧𝑖 , … , 𝑧𝑖⏞
ℎ

)𝑊𝑂 (6)

B. Transfer Process

In this way, the feature space of 𝑍𝑖 is totally contributed by
the i-th head. Since Z has the same size as Z, it can be directly
predicted by D. The strategy of selecting transferable heads is
based on the F1 score of each head. Head with a lower F1 score
means its output 𝑍𝑖 is more difficult to be predicted by D, i.e.,
this head more focuses on shared features. In this paper, we
regard the F1 score of the multi-head module as a threshold: For
heads with a lower F1 score than the threshold, we identify them
as transferable heads.

The knowledge transfer process shows as Fig. 3. According
to equation 1 and 3, the output 𝑧𝑖 of the i-th head is calculated
by linear transformations of input Q, K, V. Thus, the knowledge

transfer is to transfer the parameter matrices 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 , 𝑊𝑖

𝑉 of

linear layers. Supposing there is an undertrained multi-head
attention module of B, we transfer the linear layer of the i-th
transferable head from A to B. Then the output 𝑧𝑖

′ of the
transferred head is

𝑧𝑖
′ = 𝐴𝑡𝑡𝑛(𝑄𝑊𝑖

𝑄 , 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉)𝑡𝑖 (7)

Where 𝑡𝑖 is the transfer weight normalized from the F1 score of
the i-th head.

After 𝑀𝐵 receives n transferable heads from 𝑀𝐴, 𝑀𝐵 is able
to capture some common features between A and B as well.
However, there are domain-specific features of B that need to be
captured by 𝑀𝐵 to fit the code summarization task in its domain.
Thus, we freeze the transferred heads and train other components

(𝑊𝑖
𝑂 , feed-forward layers, and decoder) of 𝑀𝐵 on its dataset.

Supposing there are n transferred heads, the remaining h - n
heads are trained from scratch to capture domain-specific
features of B.

IV. EXPERIMENTS AND DISCUSSION

A. Dataset and Baselines

We take Python as the source domain and Solidity as the
target domain in our experiments. These two are both object-
oriented programming languages, while Solidity is used in the
blockchain area. Their shared features (types, object-oriented
characteristics, etc.) and non-shared domain-specific features are
significant, which is ideal for transfer learning.

We randomly selected 450K Python <code, comment> pairs
from the widely used corpus CodeSearchNet [4], and 45K
Solidity pairs from the corpus used in [6] to build our dataset.
We split original code texts by a set of symbols, i.e., { . ,"~' : *
() ! - (space)}. Each token written in camel-case or snake-case
shall be segmented into the original word. For example, the
token helloWorld or hello_world shall be segmented into two
separate words: hello and world. On this basis, we build our
vocabularies for sentence generation. We use four state-of-the-
art Transformer-based code summarization model [1, 2, 5, 8]
introduced in section II as baselines.

Figure 3. The knowledge transfer process. Taking head 1 as the transferable head, its parameter matrices of linear layers are transferred from 𝑀𝐴 to 𝑀𝐵.

93

B. Experimental Settings and Metrics

The word embedding size and multi-head attention size are
both set to be 512. The number of heads h is set to be 16. The
mini-batch size is set to be 64 with a learning rate of 0.001 for
both Transformer-based models and the discriminator. We use
10-fold cross-validation for experiments and run 10 epochs in
the training processes. All the experiments in this paper are
implemented with Python 3.7 and run on Google Colab with an
NVIDIA Tesla P100 GPU.

We evaluate the performance of code summarization task
based on three widely used metrics, BLEU, ROUGE-L, and
METEOR. These three objective metrics are close to human
evaluation criteria. BLEU is obtained by calculating the n-gram
matches between the candidate and reference sentences. We use
BLEU 1-4 as our metrics as in [8]. ROUGE-L is a metric that
matches the longest common sequence between two sentences
and returns the recall rate. METEOR combines both uni-gram
matching precision and recall rate using harmonic mean.

C. Experimental Results

Table I compares the effectiveness of proposed transfer
learning approach between four baselines on our dataset. The
transfer learning mechanism brings improvement of BLEU 1-4
ranged from 4.31% (BLEU-3 of [5]) to 10.70% (BLEU-4 of [1]);
For ROUGE-L, the range of improvement is from 2.82% ([2])
to 5.36% ([1]); For METEOR, the range of improvement is from
1.78% ([8]) to 4.34% ([2]). Overall, the performance of the four
baselines in the target domain has been significantly improved
after leveraging transfer learning.

D. Threats to Validity

Similarity between programming languages. Transfer

learning requires a high similarity between the data features of

the source and target domains. Both Python and Solidity used

in our experiments are object-oriented languages, so it is

adequate to use transfer learning. It is not applicable to transfer

knowledge between programming languages with significant

differences in structure and syntax, such as an object-oriented

language and an assembly language.

Number of transferable heads. Here is a trade-off: Fewer

transferable heads mean less knowledge would be transferred;

More transferable heads would reduce the model's ability to

learn domain-specific features because there would be fewer

trainable heads. For models with different numbers of heads,

the ideal threshold of identifying transferable heads may vary

according to experimental results.

V. CONCLUSION

We propose a transfer learning approach to accurately

transfer knowledge between Transformer-based models for

code summarization tasks. We train a discriminator to identify

transferable heads that focus more on common features between

source and target domains. Our approach only transfers

knowledge in similar feature spaces between domains, which is

more adaptive than simply copying and freezing neural layers.

We conducted experiments on a dataset built from a large public

corpus, proving the effectiveness of our approach.

REFERENCES

[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei
Chang. A transformer-based approach for source code summarization.
arXiv preprint arXiv:2005.00653, 2020.

[2] Colin B Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy,
and Neel Sundaresan. Pymt5: multi-mode translation of natural language
and python code with transformers. arXiv preprint arXiv:2010.03150,
2020.

[3] Wu Hongqiu, Zhao Hai, and Zhang Min. Code summarization with
structure-induced transformer. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics (ACL), 2021.

[4] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and
Marc Brockschmidt. CodeSearchNet challenge: Evaluating the state of
semantic code search. arXiv preprint arXiv:1909.09436, 2019.

[5] Xin Liu and Liutong Xu. A combined model for extractive and abstractive
summarization based on transformer model. In SEKE, pages 396–399,
2020.

[6] Chaochen Shi, Y ong Xiang, Jiangshan Y u, and Longxiang Gao.
Semantic code search for smart contracts. arXiv preprint
arXiv:2111.14139, 2021.

[7] Ashish V aswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is
all you need. Advances in neural information processing systems, 30,
2017.

[8] Ruyun Wang, Hanwen Zhang, Guoliang Lu, Lei Lyu, and Chen Lyu. Fret:
Functional reinforced transformer with bert for code summarization.
IEEE Access, 8:135591–135604, 2020.

TABLE I. PERFORMANCE COMPARISON (IN PERCENTAGE) OF BASELINES WITH AND WITHOUT TRANSFER LEARNING.

Language Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L METEOR

Python

[1]
[2]

[5]

[8]

43.31
40.17

41.05

39.39

38.54
35.42

36.22

35.75

35.25
31.09

33.02

34.87

31.02
26.34

28.39

27.69

39.26
33.67

34.15

38.66

17.17
14.18

15.38

16.54

Solidity

[1]

[1]+TL

27.31

33.50

23.13

30.37

19.65

28.26

14.50

25.20

21.09

26.45

9.96

13.19

[2]

[2]+TL

24.49

30.56

21.72

26.21

18.37

23.33

12.66

20.01

18.63

21.45

7.09

11.43

[5]

[5]+TL

24.99

31.87

22.37

28.08

19.45

23.76

13.78

18.44

18.56

21.96

8.34

10.85

[8]
[8]+TL

22.18
31.57

17.46
26.35

14.12
23.88

10.49
19.29

17.30
20.96

9.24
11.02

a. Python is the source domain, and Solidity is the target domain. TL is the abbreviation of the proposed transfer learning approach.

94

Towards Lightweight Detection of Design Patterns in Source Code

Jeffy Jahfar Poozhithara Hazeline U. Asuncion Brent Lagesse

University of Washington Bothell, WA, USA
E-mail: jeffyj@uw.edu, hazeline@uw.edu, lagesse@uw.edu

Abstract

Identifying which design patterns exist in source code
helps maintenance engineers better understand source code
and determine if new requirements can be satisfied. Au-
tomated techniques for finding design patterns generally
require much time to label training datasets or to spec-
ify rules/queries for each pattern, and is difficult to ex-
tend support to secure design patterns (SDPs) and com-
bination patterns. To address these challenges, we intro-
duce PatternScout, a technique for automatic generation of
SPARQL queries from UML Class diagrams and Sequence
diagrams. These queries are used to detect patterns in the
source code. Our results indicate that PatternScout can de-
tect object-oriented design patterns (OODP) with accuracy
that is comparable or better than existing techniques. It can
also generate queries for SDPs that can be represented as
UML Class diagrams.

1 Introduction
Since design patterns assist with satisfying security re-

quirements, it is important for maintenance engineers to de-
termine which patterns already exist in the code, including
SDPs. Finding design patterns can be time-consuming, due
to manual work required to reverse engineer the code [1].
Automated techniques also have challenges. Mining tech-
niques involve the time-consuming task of manual labeling
the training dataset and manual checking results due to false
positives [2]. On the other hand, detection using rules [3]
and queries [4] also involve time-consuming specification
of design patterns and suffer from false negative results, as
they generally lack the flexibility to handle variations. This
challenge is especially pronounced in SDPs, which have a
higher level of variability than OODPs [5].

Meanwhile, Semantic Web technologies provide a
means of encapsulating rich information, using a graph
known as Resource Description Framework (RDF). When
source code is represented as an RDF graph, we can see
design- and code-level concepts (e.g., class relationships,
class properties), which are not captured in other graph
representations of source code (e.g., abstract syntax trees).
There are several query technologies to extract information
from RDF; among these SPARQL is the most popularly
used [6]. Running queries on an RDF yields highly ac-
curate results, as these only retrieve results with matching

graph pattern. However, as we mention above, this tech-
nique also suffers from false negatives, as the results ob-
tained are very specific. Furthermore, using Semantic Web
query languages, such as SPARQL, is difficult because the
user needs to learn not only the query language syntax, but
also the vocabulary and relationships in the data [6]. This is
why researchers developed automated techniques for gen-
erating SPARQL queries [7]. However, none of these tech-
niques cater to software.

To address these challenges, we developed PatternScout
which takes advantage of Semantic Web technologies while
overcoming its difficulties. First, the difficulty of using
SPARQL queries is handled by automatically generating
queries from UML Class and Sequence diagrams. This ap-
proach works as repositories of common design patterns ex-
ist [8, 9] and they already include UML Class diagrams in
their descriptions. This also applies to SDPs as many of
them also include Class diagrams [10]. Second, we over-
come the limitation of low recall by creating a catalogue of
known design pattern variations [11] and checking for these
variations in the source code.

Our main contribution is a novel technique to gener-
ate SPARQL queries that can correctly identify design pat-
terns. Compared to other methods, our approach is more
lightweight because it does not involve any manual training
and does not require manually defining rules or queries. In
addition to the 23 GoF patterns supported by state-of-the-art
design pattern detection techniques, PatternScout can gen-
erate SPARQL queries for secure design patterns, object-
oriented design pattern variants, as well as any ad-hoc pat-
tern (e.g., combination patterns) given their UML Class di-
agram. Our second contribution are insights to improving
design pattern detection accuracy, such as incorporating be-
havioral aspects of a pattern in addition to structural charac-
teristics by incorporating stereotypes, filters, and Sequence
diagrams when necessary. Our final contribution is a repos-
itory of SPARQL queries that contains object-oriented de-
sign patterns and their variants [11].

We assessed PatternScout using experiments to measure
accuracy. Our results indicate that they are comparable, or
outperform existing techniques (e.g., [4, 12]).

2 Detecting Design Patterns

In this section, we discuss key concepts for automatically
generating queries from UML Diagrams.

DOI reference number: 10.18293/SEKE2022-167

95

Figure 1: UML Representation of the Visitor Pattern

2.1 Identify Pattern Characteristics

Design pattern characteristics can be extracted from both
UML Class and Sequence Diagrams. A Class diagram
shows the objects within a design pattern and static rela-
tionships between those objects, while Sequence diagrams
shows interactions between objects. We discuss how we use
these diagrams in detecting patterns.

In a UML Class Diagram, PatternScout extracts rela-
tionships between classes, between classes and methods,
between classes and attributes, and between methods and
parameters, such as Contain Relationships (hasMethod,
hasType, hasReturnType, hasModifiers, hasField, hasPa-
rameter, hasConstructor) and Class Relationships (As-
sociation, Generalization, Aggregation, Composition, In-
terface Realization, Dependency). PatternScout also ex-
tracts the following: OO Entities (Classes, Methods, Con-
structors, Fields, Method Parameters, Interfaces), Visibili-
ty/Property (Public, Private, Protected, Static, Final, Syn-
chronized, Abstract), Stereotypes(Constructor, Override),
and Interactions(Method Invocations).

We generate a SPARQL query by including relevant
entities (i.e., “OO Entities”) of the design pattern in the SE-
LECT clause. We then add characteristics in the WHERE
clause. For example, a project that contains a visitor pattern
may contain the following RDF triples in its RDF graph:

1 PREFIX woc: <http://rdf.webofcode.org/woc/>
2 woc:SoldierVisitor woc:implements woc:UnitVisitor .
3 woc:SoldierVisitor woc:hasMethod woc:SoldierVisitor-vistSoldier() .
4 woc:SoldierVisitor-visitComander woc:hasParameter
5 woc:visitComander(com.iluwater.visitor.Commander)-parameter-0 .
6 woc:SoldierVisitor-visitCommander(com.iluwater.visitor.Commander)
7 -parameter-0 woc:hasType woc:Commander .

These characteristics are captured in a UML Class
diagram of a Visitor pattern as shown in Figure 1. To
generate a SPARQL query, we extract all the entities in the
Class diagram, such as class names and method names and
add them to the SELECT clause, as shown below.

1 SELECT ?Visitor27 ?VisitConcreteElementA11 ?VisitConcreteElementB13
2 ?VisitConcreteElementA27 ?VisitConcreteElementB29 ?Accept13
3 ?Accept16 ?Accept20 ?VisitConcreteElementA24
4 ?VisitConcreteElementB26 ?ConcreteVisitor15 ?Element14
5 ?ConcreteVisitor211 ?ConcreteElementA18 ?ConcreteElementB22

We also add triples defining the type (role) of each
entity to the WHERE clause. For example, if a Method is
encountered, woc:Method type is added for that component
in the WHERE clause:

1 SELECT ?ClassA ?OperationA
2 WHERE {
3 ?ClassA a woc:Class .
4 ?OperationA a woc:Method .

Next, we add the structure of the pattern, such as
the aforementioned relationships between entities to the
WHERE clause. A relationship is represented by an RDF
triple in the format (fromItem, relationshipType, toItem)
representing a relation from fromItem to toItem. Both
fromItem and toItem are OO Entities. In the following snip-
pet, ClassA is the fromItem, OperationA is the toItem and
woc:hasMethod is the relationshipType.

1 ?ClassA woc:hasMethod ?OperationA .

If characteristics related to visibility, property, data
types, and return types are included in a Class diagram,
PatternScout also generates the corresponding triples. Each
line is a condition. All conditions in a WHERE clause
must be satisfied for a design pattern match to occur. The
greater the conditions, the more specific and restrictive
the queries become. On the other hand, fewer conditions
provide more allowance for variation in implementation.
A partial list of characteristics for the above Class Di-
agram that would be included in a WHERE clause is below:

1 ?Visitor27 a woc:Interface .
2 ?ConcreteVisitor211 a woc:Class .
3 ?ConcreteVisitor211 woc:implements ?Visitor27 .
4 ?ConcreteVisitor211 woc:hasMethod ?VisitConcreteElementA11 .
5 ?VisitConcreteElementA11 woc:hasParameter ?cA10 .
6 ?cA10 woc:hasType ?ConcreteElementA18 .

Some design patterns such as the Visitor pattern require
behavioral information to accurately identify it. Behavioral
specifications related to method invocation can be obtained
from Sequence diagrams. Here is an example snippet
from [13] that shows an RDF triple with a behavioral
characteristic of Visitor design pattern pattern.

1 <http://rdf.webofcode.org/woc/com.iluwatar.visitor.Sergeant-
2 accept(com.iluwatar.visitor.UnitVisitor)>
3 <http://rdf.webofcode.org/woc/references>
4 <http://rdf.webofcode.org/woc/com.iluwatar.visitor.UnitVisitor-
5 visitSergeant(com.iluwatar.visitor.Sergeant)> .

A SPARQL query based only on the Class diagram of a
Visitor pattern will include the following triple representing
an association relationship:
1 ?ConcreteElementA18 woc:references ?Visitor27 .

This structural relationship will result in false positive
results as it does not describe the defining characteristics of
a Visitor pattern. Moreover, the RDF graph representation

96

Figure 2: Sequence Diagram for Visitor Design Pattern

of the code might not include the relevant triple with ref-
erences relationship if the two classes are under the same
package, causing false negatives. However, by including
information from the Sequence diagram shown in Figure 2,
the WHERE statement would include the invocation of Vis-
itConcreteElement method in the Accept method. This not
only reduces false positives with a defining characteristic
of the pattern, but is also immune to false negatives as the
triple will be part of the RDF graph irrespective of the code
base structure. The RDF triple is as follows:

1 ?Accept16 woc:references ?VisitConcreteElementA24 .

By including Sequence diagrams and consequently
method invocation characteristics, PatternScout can distin-
guish between otherwise structurally identical design pat-
terns (e.g., State - Strategy, Adapter - Command).

2.2 Use Stereotypes

Another way to improve accuracy of design pattern iden-
tification is to use stereotypes. Although not part of the
standard UML specification, stereotypes have been used to
differentiate or represent features like Constructors, Get-
ters, Setters and Overriding of methods. Using stereo-
types, Constructors can be differentiated from other Meth-
ods using woc:Constructor instead of the woc:Method type
and woc:hasConstructor instead of the woc:hasMethod re-
lationship. Similarly, methods of a child class that over-
rides methods of a parent class are differentiated with
woc:hasAnnotation overrides relationship. We observed
this to significantly reduce false positives, especially in de-
tecting patterns like Proxy, Builder and Singleton.

2.3 Accommodate Variations with Query Map

Design patterns not only have many implementation
variations, but some variations are combinations of exist-
ing patterns (e.g, Visitor Combinator patterns is a variant of
the Visitor pattern where the GoF specification of Visitor is
combined with Composite pattern for object oriented tree
traversal). PatternScout can handle these variations as long
as they can be represented as a Class diagram.

We use a query map to efficiently connect variants with
each pattern. Instead of running one SPARQL query at a
time (as shown in Figure 3), we run multiple queries at

Figure 3: Approach Overview

once. Each design pattern has its own section. Below each
design pattern is a list of variants, with the variant name
and filename as shown below:

1 "Visitor": {
2 "Visitor GoF": "visitor.rq",
3 "Visitor Combinators": "visitor_combinators.rq"
4 },
5 "Singleton" : {
6 "Singleton GoF" : "singleton.rq",
7 "Eager Instantiation": "singleton_Eager_Instantiation.rq",

3 Validation
We conducted two analyses to evaluate if the SPARQL

queries generated by PatternScout are accurate and suffi-
cient for detecting design patterns. The approach is sum-
marized in Figure 3. The pre-processing required is as fol-
lows: generating an RDF graph for each project, creating a
Class diagram in an XMI format and generating SPARQL
queries from the Class diagram. Creating Class diagrams
and generating SPARQL queries is a one time task for each
pattern variant and can be reused for any project. The repos-
itory of SPARQL queries for known variants of object ori-
ented design patterns are packaged with PatternScout. The
only project-specific pre-processing needed is generating
an RDF graph, using CodeOntology [14]. The preparation
time taken for each project is shown in Table 1.

3.1 Detecting Presence/Absence of Patterns

Experiment: We ran an experiment to determine if Pat-
ternScout can correctly detect the presence/absence of pat-
terns. Since these pattern instances in the selected projects
are widely studied in literature (e.g., [15, 16, 12]), we used
their results as our gold standard for this analysis. If a pat-

97

Open Source Project LOC Java
Classes

RDF
triples

Preparation
Time (ms)

JHotDraw v5.1 (JHD) 8907 155 52824 2040
JRefactory v2.6.24 (JRF) 56187 569 70178 3023
JUnit v3.7 (JUN) 1347 33 9497 2001
QuickUML 2001 (QUM) 9250 156 59480 1756
MapperXML 1.9.7 (MPX) 14928 217 17147 6002
Dom4J v1.6.1 (DOM) 26350 328 29874 2059
Lizzy v1.1.1 (LZ) 12915 197 11617 1083

Table 1: Projects used for evaluation

JHD JRF QUM JUN DOM MPX LZ P R
FM* ✓|✓ ✓|✓ × |✓ × |✓ ✓|✓ ✓| × ✓| ✓ 67.67 80
PRTT ✓|✓ × | × ✓| × × | × ✓| × × | × × | × 100 33.33
SGLT ✓|✓ ✓|✓ ✓|✓ × | × ✓|✓ ✓|✓ ✓| ✓ 100 100
TPLT ✓|✓ ✓|✓ ✓|✓ ✓| ✓ ✓|✓ ✓|✓ ✓| ✓ 100 100
STT ✓|✓ ✓|✓ ✓|✓ ✓| ✓ ✓| × × |✓ ✓| ✓ 83.33 83.33
CMD ✓|✓ × | × ✓| × × | × × | × × | × × | × 100 50
OBSV ✓|✓ ✓|✓ ✓|✓ ✓| × ✓| × ✓|✓ × | × 100 66.67

Table 2: P&R based on presence(✓) or absence(×) of
Patterns. Tuple represent (Actual Label | Predicted Label)
*FM: Factory Method, PRTT: Prototype, SGLT: Singleton, TPLT: Template Method,

STT: State, CMD: Command, OBSV: Observer

tern is reported in a project (regardless of variation, as pre-
vious studies did not specify the variant used), we used a
check mark (or True) for the actual label. If it is reported as
absent, we used an X-mark (or False) (See Table 2).

Result: We summarize the precision and recall in detect-
ing each pattern in the P and R columns of Table 2. Based
on these 7 projects, we get an average precision of 92.86%
and average recall of 73.33%. During manual inspection,
we observed that the low recall was often due to SPARQL
not interpreting the transitive nature of the inheritance rela-
tionship when parsing triples in the RDF graph.

3.2 Comparing PatternScout with Existing Tools

Experiment: We also ran experiments to compare the
accuracy of PatternScout with existing tools (Table 3). In
order to calculate precision and recall of each tool, we iden-
tified the true instances of each pattern in the projects used
for benchmarking. We established the ground truth through
manual inspection and validated with other results [15, 17].
We compared unique instances of patterns retrieved by Pat-
ternScout with Finder [18] and DPD [12]. While SparT [17]
was also evaluated, we excluded it from the analysis as the
off-the-shelf implementation did not include specifications
for creational and structural patterns. We excluded Tools
that are unavailable for download (e.g., [19, 20]) or those
for which a core dependency is deprecated (e.g., [21, 15])
from the comparison.

We executed the benchmarked tools, DPD and SparT, on
a Windows 10 21H2 Virtual Machine. FINDER was exe-
cuted on a Rocky Linux 8.5 Virtual Machine. Java argu-
ments and runtime parameters for execution were as rec-
ommended by the tools. SparT did not utilize Java, but ran

PatternScout DPD FINDER
P R f1 P R f1 P R f1

FM 68.75 100 77.27 25 50 66.67 20 50 57.14
PRTT 100 33.33 50 100 100 100 100 33.33 50
CMD 88.89 57.14 69.57 100 57.14 72.73 55 78.57 64.71
STT 41.67 100 58.33 14.94 79.41 23.06 25 50 66.67
SGLT 100 100 100 100 100 100 66.67 55.56 90
TPLT 88.89 87.78 87.88 83.33 74.44 78.45 72.22 80 74.81

Table 3: Detection accuracy on JHD, MPX and QUM

natively on Windows.
Results: Precision, Recall and F1-score were calcu-

lated on JHD, MPX and QUM as these systems were in-
cluded in the required input formats with the distributions
of the selected tools (see Table 3). The average preci-
sion, recall and F1-score of SPARQL queries generated
with PatternScout(81.37%, 79.71%, 73.84%) are better than
DPD(70.55%, 76.83%, 73.49%) and FINDER(56.48%,
57.91%, 67.22%). DPD and FINDER rely exclusively on
code structure whereas queries generated by PatternScout
are able to detect both code structure and behavior.

4 Discussion: Precision & Recall Tradeoff
We now cover threats to validity, the language-agnostic

potential of our tool as well its present limitations. The
tradeoff in precision and recall depends upon how restric-
tive the SPARQL query is. For the same design pattern,
the SPARQL query can be more restrictive if there are con-
ditions specifying visibility, property, stereotypes, etc, and
less restrictive if these constraints are relaxed. While a more
restrictive query can reduce false positive results (increase
precision), this can fail to retrieve some instances that do
not conform strictly to the structure of a pattern. For pat-
terns like Singleton where access modifiers of the construc-
tor and instance are important, a more restrictive query is
appropriate. To achieve a balance between precision and
recall, we can use a query map to identify variants to detect.
The tolerance for false positives and false negatives vary for
different usecases (e.g., detecting SDPs to ensure a security
concern is addressed needs higher precision over recall).

5 Related Work
Earlier approaches for detecting design patterns in

source code ranged from sub-graph matching [22, 23] and
ontology based techniques [4] to using machine learning
(ML) techniques [2, 12]. A detailed meta-analysis of var-
ious design pattern mining approaches is discussed in [24].
Summary of comparison is in Table 4.

6 Conclusion
PatternScout is a lightweight tool that automatically gen-

erates SPARQL queries from Class and Sequence diagrams
to find design patterns in source code. The generated query
has the same granularity as input diagrams in terms of enti-
ties and relationships between those entities. Thus, it is able
to identify more types of patterns than other techniques.

98

Technique Limitation PatternScout
Semantic
Web /
Ontol-
ogy [4]

Supports variants with
same number of targets;
requires manual creation
of queries/rules for each
pattern

requires presence of
Class/Sequence diagrams,
many of which already
exist

ML /
Code
Metrics
[2] [25]

accommodates variations
but compromises accu-
racy; requires manual
training for each pattern

accommodates variations
without compromising ac-
curacy; no manual training

Subgraph
Match-
ing [23]
[26]

can’t capture design- and
code-level concepts; sub-
ject to false negatives as
results are very specific

captures design- and code-
level concepts; minimizes
false negatives using query
maps

Table 4: PatternScout with Existing Techniques

While we primarily focused on OO design patterns, SDPs
that can be expressed as Class or Sequence diagrams can
also be detected. We evaluated PatternScout using repre-
sentative patterns from three types of design patterns: cre-
ational, structural, and behavioral. Precision and recall on
the open source projects indicate that our technique is com-
parable to, or better than related tools.

Acknowledgment
The authors thank Elif Hepateskan, Conor Barrett,

Sonam Misra, Aashima Mehta, Namita Dave, Aidar
Kurmanbek-Uulu, Zhijun Huang, and Logan Petersen for
their assistance with performing evaluations. Matthew
Hewitt assisted with evaluation and related work. Jacob
McHugh assisted with providing Query Map feature. This
effort is supported in part by the University of Washington
Bothell Computing and Software Systems (CSS) Division
Project & the CSS Division Graduate Research funds.

References
[1] M. VanHilst and E. B. Fernandez, “Reverse engr to detect security

patterns in code,” in Proc. Int’l Workshop on Software Patterns &
Quality. Info Processing, 2007.

[2] S. Uchiyama, A. Kubo, H. Washizaki, Y. Fukazawa, and others, “De-
tecting design patterns in object-oriented program source code by
using metrics & machine learning,” Journal of Software Engr & Ap-
plications, vol. 7, no. 12, 2014.

[3] J. Niere, M. Meyer, and L. Wendehals, “User-driven adaption in rule-
based pattern recognition,” University of Paderborn, Germany, Tech.
Rep. tr-ri-04-249, 2004.

[4] S. Paydar and M. Kahani, “A semantic web based approach for de-
sign pattern detection from source code,” in Proc Int’l eConf on Com-
puter & Knowledge Engr, 2012.

[5] M. Bunke, “Security-Pattern Recognition & Validation,” PhD Thesis,
Universität Bremen, 2019.

[6] J. Potoniec, “Learning SPARQL Queries from Expected Results,”
Computing & Informatics, vol. 38, no. 3, 2019.

[7] F. Haag, S. Lohmann, and T. Ertl, “SparqlFilterFlow: SPARQL
Query Composition for Everyone,” in The Semantic Web: ESWC
Satellite Events, 2014.

[8] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research state
of the art on GoF design patterns: A mapping study,” Journal of
Systems & Software (JSS), vol. 86, no. 7, 2013.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley,
1995.

[10] C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, and K. Togashi,
“Secure design patterns,” CMU Softw Engr Inst, Tech. Rep., 2009.

[11] G. Rasool and H. Akhtar, “Towards A Catalog of Design Patterns
Variants,” in Int’l Conf on Frontiers of Info Tech, 2019.

[12] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design pattern detection using similarity scoring,” Trans on Soft-
ware Engr (TSE), vol. 32, no. 11, 2006.

[13] “Design patterns implemented in java,” https://github.com/iluwatar/
java-design-patterns/l, (accessed: 05.27.2020).

[14] M. Atzeni and M. Atzori, “CodeOntology: RDF-ization of source
code,” in Int’l Semantic Web Conf. Springer, 2017.

[15] A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi, “Detecting the
behavior of design patterns through model checking & dynamic anal-
ysis,” Trans on Softw Engr & Methodology, vol. 26, no. 4, 2018.

[16] D. Yu, Y. Zhang, and Z. Chen, “A comprehensive approach to the
recovery of design pattern instances based on sub-patterns & method
signatures,” Journal of Systems & Software, vol. 103, 2015.

[17] R. Xiong, D. Lo, and B. Li, “Distinguishing Similar Design Pattern
Instances through Temporal Behavior Analysis,” in Proc Int’l Conf
on Softw Analysis, Evolution & Reengineering, 2020.

[18] H. Dabain, A. Manzer, and V. Tzerpos, “Design pattern detection
using FINDER,” in Proceedings of the 30th Annual ACM Symposium
on Applied Computing, 2015, pp. 1586–1593.

[19] M. L. Bernardi, M. Cimitile, and G. Di Lucca, “Design pattern de-
tection using a DSL-driven graph matching approach,” Journal of
Software: Evolution & Process, vol. 26, no. 12, 2014.

[20] G. Rasool and P. Mäder, “A customizable approach to design patterns
recognition based on feature types,” Arabian Journal for Science &
Engr, vol. 39, no. 12, 2014.

[21] A. Binun and G. Kniesel, “Joining forces for higher precision and
recall of design pattern detection,” CS Department III, Uni. Bonn,
Germany, Technical report IAI-TR-2012-01, 2012.

[22] D. Yu, Y. Zhang, J. Ge, and W. Wu, “From sub-patterns to patterns:
an approach to the detection of structural design pattern instances
by subgraph mining & merging,” in Proc Comp Softw & App Conf,
2013.

[23] M. Gupta and A. Pande, “Design patterns mining using subgraph
isomorphism: Relational view,” Int’l Journal of Softw Engr and Its
App, vol. 270.

[24] J. Dong, Y. Zhao, and T. Peng, “A review of design pattern min-
ing techniques,” Int’l Journal of Software Engr & Knowledge Engr,
vol. 19, no. 06, 2009, publisher: World Scientific.

[25] F. Tie, J. Le, Z. Jiachen, and W. Hongyuan, “Design pattern detec-
tion method based on stacking generalization,” Journal of Software,
vol. 31, no. 6, 2020.

[26] W. Liu, C. Zhang, F. Wang, and Y. Yang, “Combining Network Anal-
ysis with Structural Matching for Design Pattern Detection,” in Proc
Evaluation & Assessment in Softw Engr, 2020.

99

A Distributed Graph Inference Computation
Framework Based on Graph Neural Network Model

Zeting Pan, Yue Yu, Junsheng Chang*
College of Computer

National University of Defense Technology
Changsha, China

{pannudt, yuyue, junshengchang}@nudt.edu.cn

Abstract—A graph is a structure that can effectively represent
objects and the relationships between them. Graph Neural
Networks (GNNs) enable deep learning to be applied in the graph
domain. However, most GNN models are trained offline and
cannot be directly used in real-time monitoring scenarios. In
addition, due to the very large data scale of the graph, a single
machine cannot meet the demand, and there is a performance
bottleneck. Therefore, we propose a distributed graph neural
network inference computing framework, which can be applied to
GNN models in the form of Encoder-Decoder. We propose the idea
of “single-point inference, message passing, distributed
computing”, which enables the system to use offline-trained GNNs
for real-time inference computations on graph data. To maintain
the model effect, we add the second-degree subgraph and mailbox
mechanism to the continuous iterative calculation. Finally, our
results on public datasets show that this method greatly improves
the upper limit of inference computation and has better timeliness.
And it maintains a good model effect on three types of classical
tasks. The source code is published in a Github repository.

Keywords-component; graph inference; graph neural network;
distributed graph computing

I. INTRODUCTION
A graph is an abstract data structure. A graph G	=	(V,	E)

consists of a vertex set V and an edge set E, which can be used
to represent multiple objects and the relationship between them.
Initially, scholars' research on graphs mainly focused on static
graphs, that is, without considering temporal information. With
the increase in applications, static graphs can no longer meet
practical requirements, so more researchers begin to explore
dynamic graphs, from discrete-time dynamic graphs to
continuous-time dynamic graphs [1]. Generally speaking, for a
dynamic graph, the vertices on the graph be represented as
∀ vi∈V, vi=(id,	feat,	timestamp), i=1,2,..., and the edges bet can
be represented as ∀ ei∈E, ei=(src,	dst,	feat,	timestamp), i=1,2,....
These properties can be summarized as identifiers,
characteristics, and timestamps.

In practical applications, the scale of graph data is often very
large, such as payment transactions, social interactions, and
biological information [2]. A survey [3] showed that the graphs
in practice typically contain more than 1 billion edges. Another
survey [4] noted that over 68.5% of tasks applied machine
learning algorithms (clustering, regression, etc.) on the graph.

The popularity of deep learning has also prompted people to
migrate it to the graph domain, such as graph neural networks
(GNNs). The more well-known networks in GNNs are GCN [5],
GAT [6], TGAT [7], etc. They mainly perform three types of
tasks: link prediction (LP), node classification (NC), and edge
classification (EC). And it has a good effect on task accuracy [8].

However, many problems arise when applying GNN models
to graph inference computations. The first is the single-machine
capacity problem. A single machine cannot withstand large-
scale graph data, and there will be serious performance
bottlenecks. Therefore, a distributed computing environment has
become an urgent need for graph computing. Apache Spark [9]
is a cluster computing framework, and GraphX [10] is a
distributed graph processing framework. GraphX can be used to
express graph computations, but it does not directly support
GNNs. The second is the real-time problem of graph computing.
The offline training method of GNNs limits its application to
scenarios with low real-time requirements. If applied to payment
security, the application will not be able to quickly intercept
fraud, money laundering, and other dangerous behaviors. In
conclusion, it is important to apply offline-trained GNN models
to distributed environments for real-time inference computation.
Therefore, this paper proposes a framework that maintains
GraphX features while supporting GNN models, enabling real-
time distributed graph inference computation.

The framework proposed in this paper is mainly to solve the
following two problems. (1) How to apply the GNN model to a
distributed system for graph inference computation. In the
application, the GNN model does not support serialization and
cannot meet the distributed requirements. To solve this problem,
we first modify the model input and output so that they can be
directly used for online inference. Next, we adopt the idea of
“single-point inference, message passing, distributed
computing”. That is, the model is stored in a distributed manner,
and models on different machines are dynamically called when
used. Finally, the output of the model is passed as a message to
the relevant vertices. In this way, the passed message size is
reduced from model level (MB-GB) to matrix level (KB-MB).
(2) How to perform real-time inference calculations and
maintain model performance. When an event occurs, the scope
of influence is often more than the source vertex (src) and the
destination vertex (dst). Therefore, we have iteratively updated
graph properties through incremental composition, computing

*Corresponding author.
DOI reference number: 10.18293/SEKE2022-042

100

second-degree subgraphs, and mailbox mechanisms. These steps
will be disassembled into many tasks during execution and
distributed to multiple worker nodes for parallel computing. In
this way, we can apply the GNN model in the form of Encoder-
Decoder to the actual environment for real-time distributed
graph inference calculations. The contributions of this paper are
summarized as follows:

• We put forward the idea of “single-point inference,
message passing, distributed computing” so that the
GNN model in the form of Encoder-Decoder can be
applied to a distributed environment.

• We propose a method based on incremental
composition, constructing second-degree subgraphs,
and maintaining mailboxes so that distributed inference
computing can ensure both timeliness and effects.

• Finally, we implemented the framework and tested it on
Wikipedia and Reddit. The results show that the single-
event inference time for a thousand events is 1.6203s,
which is only 36.19% longer than that of a single
machine under the same conditions, but the throughput
is improved by 116.89%. In addition, the effect of three
categories of tasks is maintained, among which the
accuracy of the Wikipedia LP task is 87.03%.

II. RELATED WORK

A. Distributed graph computing framework
MapReduce is a simple distributed computing framework

that facilitates the processing of massive graph data, but it cannot
iteratively compute efficiently. Bulk synchronous parallel (BSP)
[11] proposed by Valiant in 1990 is suitable for iterative
computing of graphs, which decomposes tasks into a series of
iterative operations. Inspired by BSP, Google proposed the first
vertex-centric distributed graph computing framework Pregel
[12] in 2010. Since then, researchers have successively proposed
a variety of distributed graph computing frameworks, including
PowerGraph [13], GraphHP [14], and Hybrid [15]. These
frameworks can efficiently perform graph iteration algorithms.
However, their limited expressive computation makes it difficult
to express important stages in a typical graph analysis pipeline,
such as graph modification, cross-graph computation, etc.

Spark GraphX is a distributed graph processing framework,
and its core abstraction is Resilient Distributed Property Graph,
a directed multigraph with properties on both nodes and edges.
GraphX extends the abstraction of Spark RDD and has two
views (table and graph), and only needs one physical storage
[16]. These two views have their unique operators, to obtain
flexible operation and execution efficiency. In terms of
calculation, all operations on the view will be converted into
RDD operations of the associated table view to complete. In this
way, graph computation is equivalent to the transformation
process of a series of RDDs. Therefore, GraphX finally has three
key features: Immutable, Distributed, and Fault-Tolerant.

B. Graph Neural Network
Dynamic graph representation has gone through four main

stages of development, namely static, weighted edge, discrete,

and continuous. There are also several types of methods for
learning dynamic graph representations, including tensor
decomposition, random walk, and deep learning. Among them,
GNNs in deep learning methods have received extensive
attention because they can combine time series encoding with
aggregation of adjacent nodes. GCN [5] learns features better by
aggregating the information of neighbor points, but it cannot use
temporal information. However, in the field of graphs, timing
has an important influence on the change of vertex-edge
relationship, so the research direction of GNNs gradually shifts
from static to dynamic.

Dynamic graph neural network (DGNN) aggregates deep
time series encoding and node features and is mainly divided
into discrete and continuous categories. Discrete DGNN first
uses a certain GNN to obtain vertex embedding and then uses a
certain RNN or Attention network for time series modeling. The
representative networks are DySAT [17], etc. Most of the
current methods of continuous DGNN use snapshot modeling,
which is only a rough estimation of time, and related networks
include TGAT [7], TGN [18], etc. TGN attempts to introduce
the Encoder-Decoder neural network framework in the graph
field. The encoder is responsible for encoding the vertex and
edge features on the graph into vectors, and the decoder
calculates and predicts attribute values for the encoded vectors
according to specific executing tasks. This form of decoupling
enables real-time inference computations on graphs.

III. METHOD
This section will first introduce the overall framework and

then introduce the three main modules in the framework in detail.

A. Overall Framework
Fig. 1 presents an overview of our distributed graph

inference. It is a distributed graph inference framework that
supports the Encoder-Decoder form of GNN. The framework is
mainly composed of the following modules: incremental
composition, second-degree subgraph calculation, GNN
encoder, mailbox, and GNN decoder.

• Incremental composition module corresponding to
steps (a)-(b). When a new event is generated in the data
source, the event will be added to the vertexRDD and
edgeRDD of the historical graph event, and incremental
composition will be performed to obtain the whole
graph. Note that if it is an undirected graph, for an event
e, we will generate both forward and reverse edges.

• Second-degree subgraph calculation module, which
is the “Full Graph and 2D-Subgraph” in the figure. After
the whole graph is obtained, the basic properties of some
vertices and edges will be updated according to e and its
second-degree subgraph will be calculated.

• GNN encoder module corresponding to steps (c)-(e).
After loading the trained GNN encoder model, the
second-degree subgraph feature matrix is used as the
input of the model. Then, the embedding of each vertex
in the second-degree subgraph can be obtained and then
updated to the whole graph.

101

Figure 1. Distributed graph inference system framework.

• The mailbox module corresponds to steps (f)-(g). A
mail will be sent along each edge in the second-degree
subgraph, and the main content of the mail is the current
features of the edge and some historical interaction
information. The vertex that receives the mail will add
it to its mailbox.

• GNN decoder module corresponding to steps (h)-(i).
The above results will be decoded, and logical inference
results will be given according to the types of tasks
performed (LP/NC/EC).

B. Second Degree Subgraph Algorithm

Figure 2. Second-degree subgraph algorithm.

When a new event e=(src, dst, timestamp, feat) occurs, the
edges with the same starting vertex and destination vertex are
first merged, as shown in Fig. 2. The way to merge is to leave
the edge with the largest timestamp. Since historical events are
often embedded into features by previous inferences, merging
duplicate edges does not affect results. It can also reduce the
number of edges in the graph to save resources, especially when
the vertex-to-edge ratio is large. Then, as shown in step 2 in Fig.
2, the timestamps of src and dst will be updated to max(t1,	t2).

Due to the particularity of graphs, an event often affects more
than src and dst . Considering the effect and performance
comprehensively, we decided to control its influence range
within the subgraph reachable by two hops. To obtain this
subgraph, we design steps 3 and 4, namely the sending of hop
messages and the return of feature messages. From src and dst,
two rounds of message sending operations will be performed.
The first round will send its hop-1 to the neighbor and update the
hop value of the neighbor vertex. In the second round, the

neighbor vertex sends its hop-1 to its neighbor (excluding src
and dst) and updates the hop value of the vertex that receives the
message. This obtains a second-degree subgraph about the new
event e. Step 4 is the opposite of Step 3, which will transmit its
feature information back from the second-degree vertex. After
two rounds of message return, src and dst will aggregate the
features of all vertices in the second-degree subgraph. Step 5
stores these features in src as one of the attributes of the vertex.

C. GNN Encoder algorithm
Trained GNN models tend to take up a lot of storage space

and are difficult to serialize. Even with serialization methods,
transferring models between machines incurs a significant
bandwidth overhead, which can severely impact performance.
Therefore, the inference algorithm we designed will use the
spark driver to uniformly manage the scheduling of machines,
so that each worker node has a copy of the GNN model, as
shown in Fig. 3. The model can be loaded directly and
dynamically during the inference process, without the need for
network transmission. Furthermore, all vertices in a second-
degree subgraph need to be inferred, but doing inference at the
same time introduces additional overhead. Therefore, we
propose an algorithm for “single-point inference, message
passing, distributed computing”. Based on the subgraph
collected in the previous step, we only load the model in src or
dst, then get the model output and update the vertex features.
Finally, the model output is sent to other vertices in the subgraph
in the form of a message to complete the vertex update. For the
GNN decoder algorithm, the process is the same as the GNN
encoder. Due to space limitations, we will not repeat them here.

D. Mailbox algorithm
As shown in Fig. 3, after updating the vertex features using

embedding, we will generate a mail along each edge in the
subgraph (mail	=	featsrc	+	featdst	+	feate), and then sent it to the
destination vertex. Each vertex in the subgraph will take an
average of all the received emails, and then add it to the mailbox.
That is to say, a vertex can only have one mail added to its
mailbox in one iteration, which solves the problem of supernode
message explosion. The mailbox maintained by each vertex is
implemented using a list, and the default maximum capacity of
the list is 10 (this value can be modified more practically). When

102

Figure 3. The execution process of inference and computation.

there are less than 10 mails, new mail will be added directly to
the end of the list. When it is greater than 10, the oldest mail in
the list will be deleted to leave space for new mail. Through the
mechanism of the mailbox, the storage of each vertex itself
includes vertex features, information about neighbor vertices,
and features brought by historical events. When inferring, it can
be encoded into the form of a matrix and directly input into the
model.

E. Algorithm Pseudocode
Through the above algorithm, we realize distributed graph

inference computing. That is, graphs can be incrementally
composed and iteratively performed graph computation, graph
inference, and graph update. The pseudocode of the overall logic
is shown in Table 1 below.

TABLE I. PSEUDOCODE FOR DISTRIBUTED GRAPH COMPUTING
INFERENCE

Algorithm: Distributed graph computing inference
Input: event data source e=(src,dst,feat,timestamp)
Output: logical inference results and accuracy
1: initialize spark and static resources config
2: use n-events warm up inference
3: while has new event e do
4: if vsrc/dst∉vRDD then
5: initialize vsrc/dst and add them to vRDD
6: add e to eRDD, then create graph with vRDD and eRDD
7: merge duplicate edges and update vsrc/dst with the timestamp of

the lastest edge
8: for vsrc or vdst do
9: send hopvi-1 to its neighbors
10: for each vertex that receives src or dst hop messages do
11: send hopvj-1 to its neighbors
12: collect all vertex features of received hop messages to src as

2D-subgraph
13: update feat of subgraph vertices to

embedding=Encoder(2D-subgraph)
14: for each ei∈2D-subgraph do
15: send mail messages to the dst along the edge, and calculate the

average value of all mails at dst
16: for each vi∈2D-subgraph do
17: if len(mailboxi)≥10 then

18: remove the oldest mail from mailboxi header
19: add average mail to the tail of the mailboxi
20: for triplets(src,dst,e) do
21: update the logical results of triplets to

logit=Decoder(concat(src,dst,e))
22: calculate the inference results of the whole graph to get the accuracy
23: return accuracy

IV. EXPERIMENTS
In this section, we will first introduce the experimental setup,

including the device environment, datasets, GNN models, and
inference system. Next, the results of the experiment will be
explained in terms of performance and effects. The source code
of our system is published at a Github repository1.

A. Setting
• Hardware and software environment. Due to the

limitation of cluster resources, this experiment uses
multithreading to simulate a distributed environment.
The processor is Intel(R) Core(TM) i5-8257U CPU
@2.00GHz, 16GB memory, 500G hard disk. The
operating system is macOS Catalina 10.15.7, and the
development tool is IntelliJ IDEA 2020.1.2. The
running environment is Spark 3.2.0, Hadoop 3.3.0,
Scala 2.12.15, and Java 1.8.0.

• Graph datasets. This experiment uses Wikipedia [19],
and Reddit [19] public datasets for experiments. Among
them, Wikipedia represents the interaction between
users and wiki pages. Reddit represents the interaction
events of users in social networking. The timestamps of
all edges in both datasets span 30 days.

• GNN models. The framework proposed in this paper is
suitable for GNNs in the form of encoder-decoder, we
chose APAN [20] and reproduced it. Considering that
Java does not support graph input when calling the
model, we modified the input and output data form of
APAN to matrices. The main parameters when training
the model are: the maximum epoch is 50, the batchsize
is 100, the initial learning rate is 0.0001, and the dropout

1https://github.com/napdada/Distributed-Graph-Inference-Java

103

TABLE II. GRAPH INFERENCE CALCULATION RESULTS AND MAIN STEPS TIME-CONSUMING IN TWO ENVIRONMENTS

Enviro
nment

LP task inference
time(s) Through

put cap

Time-consuming inference calculation of specific steps(ms)

1000
events

1000
events(*)

Create
Graph

Merge
Edges

Update
Ts

2D-
Subgraph Encoder Send

Emb Mailbox Decoder Evaluate

SM 1.1897 1.1210 1835 4.24 0.37 1.76 733.51 2.16 374.62 3.62 0.44 68.79

DM 1.6203 1.5335 3980 4.40 0.38 1.84 951.76 2.24 568.35 3.77 0.48 86.83

a. SM: single machine environment, DM: distributed machine environment. The names of the specific steps from left to right represent incremental composition, merge duplicate edges, update timestamp, generate
second-degree subgraph, call encoder model, send embedding, transfer mail, call decoder, and evaluate results

is 0.1. The ratio of training, testing, and validation data
is 7:1.5:1.5. After training, the “.pt” models of three
types of tasks (LP/NC/EC) on two datasets are obtained,
and the effect is the same as in the original paper.

• Inference system. Considering the system startup
process and graph initial features are zero, we set a
warm-up process of inference. That is, by default, the
first ten inferences are not included in the result. The
number of distributed cores and partitions is both 2, and
the partition strategy is EdgePartition2D. The JVM
parameters will be adjusted according to the executed
tasks, mainly adjusting the memory size. In addition, to
reduce the effect of chance, all results are the mean of
ten replicate experiments.

B. Inference performance
1) Timeliness and throughput caps.

We reproduce APAN and apply it to graph inference
computation to compare single machine and distributed. We
configure 4G memory for a single machine. We configured 2-
core 8G memory for the distributed environment, which is
equivalent to two single machines working at the same time.
After that, we calculated the average time and upper limit of
these two environments as shown in Table 2. It can be seen that
when executing the LP task with a thousand events on Wikipedia,
the distributed time is longer than that of a single machine.
However, the upper limit of distributed computing is increased,
and the number of iterations in a single-machine environment
will overflow when about 1800. That’s to say, in the face of large
graph data scenarios, distributed inference computing can solve
the capacity bottleneck problem of a single machine.

To further explore the time-consuming, we have detailed
statistics on the time-consuming of the main steps, as shown in
Table 2. The data in the table visually show that the extra time is
mainly spent on 2D-Subgraph, SendEmb, and Evaluate. Because
in a single-machine environment, vertices and edges are stored
on one machine, they only need to be read when they are used.
However, vertices are stored in partitions according to the
policies in a distributed environment, so data exchange in
different partitions will bring additional communication
overhead. Furthermore, to evaluate the results, the system needs
to retrieve data from all partitions. This operation is time-
consuming, and we count it into the results (the data marked with
“*” in Table 2 are not included in the time-consuming statistics
of this operation), so we believe that a single time consumption
of 1.62s is reasonable. Comparing the results in the two
environments, it can be seen that when the iterative inference is
executed 1000 times, the distributed graph inference calculation

uses 36.19% of the time overhead, in exchange for 116.89% of
the larger throughput.

Considering that the graph continues to grow during the
iterative process, if the resource consumption increases
exponentially as the graph grows, the huge overhead will
inevitably make the system worthless. To this end, we conducted
inference experiments with varying numbers of events, ranging
from 50 to 1000, within a range where problems such as
overflow do not occur. The average time-consuming inference
calculation is shown in Fig. 4. It can be seen that with the
increase of the graph size, the inference computation time
increases linearly. That is, our framework can be extended to
work on clusters. In the face of large graph data, it can still
guarantee the linear growth of resource consumption, rather than
the problem of exponential explosion.

Figure 4. The relationship between the number of inference events and the
time-consuming when performing LP tasks on Wikipedia

2) Partitioning and Strategy.
The number and strategy of partitions in a distributed

environment often significantly impact the results, so we
experimented with them. We set up a 4-core 5G distributed
environment that used 100 events in Wikipedia to perform LP
tasks. The results are shown in Table 3. Regarding the number
of partitions, we can find that the computation time of graph
inference increases rapidly with the number of partitions.
Therefore, we need to dynamically adjust some configurations
according to the actual situation. For small graphs, the number
of partitions can be reduced. But for large graphs, we can
increase the number of partitions and add machines to reduce the
time-consuming impact. For the partitioning strategy, we can see
that the random partitioning effect is the worst, followed by the
EdgePartition1D (partitioning based on src only). The best
partition strategy is EdgePartition2D (partition by both src and
dst). This is in line with our understanding of graphs, that for
edges, both the source and destination vertices are important.

104

TABLE III. THE EFFECT OF THE NUMBER OF PARTITIONS AND PARTITION
STRATEGY ON TIME CONSUMPTION

Number of partitions Partitioning strategy Time (ms)

1 EdgePartition2D 606.24

2 EdgePartition2D 614.87

4 EdgePartition2D 655.79

8 EdgePartition2D 786.46

4 RandomVertexCut 674.38

4 EdgePartition1D 670.95

C. Inference performance
Table 4 shows the effect of APAN original data, reproduced

APAN model data (APAN-Re), classic GNN model, and our
distributed graph inference algorithm. That is the accuracy of
performing three types of tasks on two datasets. It can be seen
that our method maintains the effect of the model better. In
addition, the method achieves the effect of classical GNN, and
even outperforms classical GNN on some tasks.

TABLE IV. ACCURACY OF INFERENCE RESULTS ON THREE TYPES OF
TASKS (LP/NC/EC)

Wikipedia Reddit

LP NC EC LP NC EC

GAT 87.34 - - 92.14 - -

TGAT 88.14 - - 92.92 - -

TGN 89.51 - - 92.56 - -

APAN 90.74 - - 94.34 - -

APAN-Re 87.42 99.81 99.81 97.76 99.91 99.91
 distributed

graph
inference

87.03 99.54 99.28 97.01 98.39 98.05

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a distributed graph inference

computing framework, aiming to use GNN models in the form
of Encoder-Decoder for online deployment and real-time
inference in distributed environments. The experimental results
show that the upper limit of inference calculation has been
greatly improved. It has also achieved good results in the
timeliness of inference, and we believe that it can meet the actual
needs in the case of limited resources. Furthermore, as graph
iterative inference proceeds, our method can maintain the
model's performance on three classes of tasks. In the future, we
can extend the algorithm to adapt to more kinds of GNN models.
And consider optimizing the communication overhead in a
distributed environment, so that the system can have stronger
real-time inference computing capabilities.

ACKNOWLEDGMENT
This work was supported by the National Key R&D Program

of China (2020AAA0103500).

REFERENCES
[1] Skardinga J, Gabrys B, Musial K. Foundations and modelling of dynamic

networks using dynamic graph neural networks: A survey[J]. IEEE
Access, 2021.

[2] Zhang X C, Wu C K, Yang Z J, et al. MG-BERT: leveraging unsupervised
atomic representation learning for molecular property prediction[J].
Briefings in Bioinformatics, 2021.

[3] Sahu S, Mhedhbi A, Salihoglu S, et al. The ubiquity of large graphs and
surprising challenges of graph processing[J]. Proceedings of the VLDB
Endowment, 2017, 11(4): 420-431.

[4] Sahu S, Mhedhbi A, Salihoglu S, et al. The ubiquity of large graphs and
surprising challenges of graph processing: extended survey[J]. The VLDB
Journal, 2020, 29(2): 595-618.

[5] Kipf T N, Welling M. Semi-supervised classification with graph
convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.

[6] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J].
arXiv preprint arXiv:1710.10903, 2017.

[7] Xu D, Ruan C, Korpeoglu E, et al. Inductive representation learning on
temporal graphs[J]. arXiv preprint arXiv:2002.07962, 2020.

[8] Dwivedi V P, Joshi C K, Laurent T, et al. Benchmarking graph neural
networks[J]. arXiv preprint arXiv:2003.00982, 2020.

[9] Zaharia M, Chowdhury M, Franklin M J, et al. Spark: Cluster computing
with working sets[J]. HotCloud, 2010, 10(10-10): 95.

[10] Gonzalez J E, Xin R S, Dave A, et al. Graphx: Graph processing in a
distributed dataflow framework[C]//11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14). 2014: 599-
613.

[11] Cormen T H, Goodrich M T. A bridging model for parallel computation,
communication, and I/O[J]. ACM Computing Surveys (CSUR), 1996,
28(4es): 208-es.

[12] Malewicz G, Austern M H, Bik A J C, et al. Pregel: a system for large-
scale graph processing[C]//Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. 2010: 135-146.

[13] Gonzalez J E, Low Y, Gu H, et al. Powergraph: Distributed graph-parallel
computation on natural graphs[C]//10th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 12). 2012: 17-
30.

[14] Chen Q, Bai S, Li Z, et al. GraphHP: A hybrid platform for iterative graph
processing[J]. arXiv preprint arXiv:1706.07221, 2017.

[15] Wang Z, Gu Y, Bao Y, et al. Hybrid pulling/pushing for i/o-efficient
distributed and iterative graph computing[C]//Proceedings of the 2016
International Conference on Management of Data. 2016: 479-494.

[16] Tang J, Xu M, Fu S, et al. A scheduling optimization technique based on
reuse in spark to defend against apt attack[J]. Tsinghua Science and
Technology, 2018, 23(5): 550-560.

[17] Sankar A, Wu Y, Gou L, et al. Dysat: Deep neural representation learning
on dynamic graphs via self-attention networks[C]//Proceedings of the
13th International Conference on Web Search and Data Mining. 2020:
519-527.

[18] Rossi E, Chamberlain B, Frasca F, et al. Temporal graph networks for
deep learning on dynamic graphs[J]. arXiv preprint arXiv:2006.10637,
2020.

[19] Kumar S, Zhang X, Leskovec J. Predicting dynamic embedding trajectory
in temporal interaction networks[C]//Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2019: 1269-1278.

[20] Wang X, Lyu D, Li M, et al. APAN: Asynchronous Propagation Attention
Network for Real-time Temporal Graph Embedding[C]//Proceedings of
the 2021 International Conference on Management of Data. 2021: 2628-
2638.

105

PEM: A Parallel Ensemble Matching Framework
for Content-based Publish/Subscribe Systems

Weidong Zhu†, Yufeng Deng§, Shiyou Qian §∗, Jian Cao§ and Guangtao Xue§
†Xuzhou University of Technology, Jiangsu, China. §Shanghai Jiao Tong University, Shanghai, China.

∗Corresponding author, Email: qshiyou@sjtu.edu.cn

Abstract—Content-based publish/subscribe systems are an ef-
fective paradigm for implementing on-demand event distribution.
Each event needs to be matched against subscriptions to identify
the target subscribers. To improve the matching performance,
many novel data structures have been proposed. However, the
predicates included in subscriptions are handled the same way
in most existing data structures, which is not efficient given the
matching probability of predicates. In this paper, we propose a
parallel ensemble matching framework called PEM, which uses
multiple algorithms with complementary behavior on predicate
matching probabilities. To achieve the performance balance of
parallel matching, we design an elastic subscription classification
method. We implement a prototype of PEM based on two existing
algorithms. The experiment results show that PEM improves the
matching performance by 43%.

I. INTRODUCTION

In the face of data explosion, fine-grained data distribution
services are required in many fields. For example, the stock
market generates massive data every day, for which investors
need to subscribe and receive information on events of interest
[1] [2]. Another example is an intelligent transportation sce-
nario, where a large number of devices are deployed to collect
a large volume of data. Likewise, drivers need a mechanism to
obtain timely congestion and accident information specific to
their driving route [3]. These applications motivate the need for
an efficient way of propagating data from publishers (sources)
to subscribers (destinations).

Content-based publish/subscribe (pub/sub) systems are an
effective paradigm for implementing on-demand event dis-
tribution. To express their interest in data, subscribers first
define subscriptions that usually contain multiple predicates
[4] and then issue them to the broker (server). The publisher
generates events consisting of multiple attribute-value pairs
and sends them to the broker. For each event, the broker needs
to match it with subscriptions to identify the target subscribers
to whom the event information should be forwarded. In this
way, publishers and subscribers are loosely coupled, which is
the most attractive feature of content-based pub/sub systems
[5].

Obviously, event matching is a key component in a content-
based pub/sub system. Given a high-dimensional space, an
event represents a point and a subscription represents a rect-
angle. Event matching is essentially a point enclosure search
problem in nature, which is expensive in high-dimensional

DOI reference number: 10.18293/SEKE2022-051

spaces. To make matters worse, when the number of subscrip-
tions is large, the matching performance degrades, becoming
a potential performance bottleneck.

To improve matching performance, many new data struc-
tures for storing subscriptions have been proposed, such as
trees [6] [7] [8] [9], tables [10] [11] [12] and bloom filters
[13] [14]. These novel data structures support efficient event
matching. However, most existing structures index predicates
in the same way, regardless of their matching probability.
As verified in [15], most matching algorithms suffer from
predicate matching probabilities. Increasing or decreasing the
matching probability will result in performance degradation.
One problem of the matching algorithm with fluctuating
performance is that it cannot guarantee fast and stable data
distribution services.

In this paper, we propose a parallel ensemble matching
algorithm called PEM, which aims to improve and stabilize the
matching performance using a multi-thread strategy. Similar to
COMAT [16] which builds a library with multiple behavior-
complementary matching algorithms, the basic idea of PEM is
to leverage each algorithm by indexing each subscription in the
appropriate algorithm. When matching events, all algorithms
run in parallel, one thread per algorithm. When designing
PEM, two points need to be addressed. First, we need to
classify subscriptions based on the behavior of each algorithm
on the predicate matching probability. Second, to prevent the
overload of a specific algorithm, we need to establish a dy-
namic feedback mechanism to ensure the performance balance
between multiple algorithms. Considering the characteristics
of algorithms and the balance of threads, we design an elastic
subscription classification method in PEM.

We implemented a prototype of PEM and conducted exten-
sive experiments to evaluate its effectiveness and performance.
The experiment results well verify the ability of PEM to
improve and stabilize the matching performance. Compared
with COMAT [16] and the other two baselines REIN [12] and
TAMA [10], the matching time of PEM is improved by 43%,
55% and 47% respectively on average.

The main contributions of this paper are as follows:
• We propose an effective parallel ensemble matching

framework called PEM to take advantage of multiple
algorithms.

• We design an elastic subscription classification mecha-
nism to maintain the performance balance between mul-
tiple threads.

106

• We implement a prototype of PEM and evaluate its effec-
tiveness and performance through extensive experiments.

The remainder of this paper is organized as follows. We
briefly discuss the related work in Section II. We describe the
design details of PEM in Section III. Section IV elaborates
the implementation of PEM. Section V presents and analyzes
the experiment results. We discuss and conclude the paper in
Section VI and VII respectively.

II. RELATED WORK

In this section, we review the matching algorithms along
two lines: sequential algorithms and parallel algorithms.

A. Sequential Matching Algorithms

Most existing matching algorithms were initially proposed
as sequential, such as TAMA [10], MO-Tree [6], OpIndex
[11], HEM [17] and REIN [12]. To achieve high matching
performance, an efficient data structure for indexing subscrip-
tions is necessary and critical for the matching algorithm.
Classical data structures include matching trees [18] [19] [7],
matching tables [20] [10] [11], binary decision diagrams [21]
[22] and bloom filters [14] [13]. The underlying data structure
of the matching algorithm is responsible for maintaining sub-
scriptions (inserts, deletes and updates) and supporting event
matching. In most existing matching algorithms, predicates
are treated in the same way, regardless of their matching
probabilities.

Liao et al. proposed a parallelization method called PhSIH
to optimize the performance and stability of the sequential
matching algorithm [23]. They parallelize three sequential
algorithms using PhSIH, namely TAMA [10], OpIndex [11]
and REIN [12]. To achieve a good parallelization effect, the
sequential matching algorithm should have three characteris-
tics. First, the workload of matching an event can be divided
into sub-tasks from a data structure perspective. Second, the
workload of the sub-tasks should be uniform, and the existence
of a few dominant sub-tasks should be avoided. Third, the
synchronization cost between sub-tasks should be small.

B. Parallel Matching Algorithms

Since most matching algorithms are executed sequentially,
they cannot effectively utilize the parallel computing power
of the hardware. Taking advantage of hardware development,
such as multi-core CPUs, FPGAs and GPUs, some parallel
matching algorithms have been proposed [24] [25] [26]. These
algorithms typically parallelize event matching using a divide-
and-conquer strategy, i.e. dividing the entire subscription set
into subsets and building data structures on these subsets.
While the divide-and-conquer approach is straightforward, it
has limitations in flexibility and memory consumption.

The composite matching framework called COMAT is
similar to our work [16]. In COMAT, each subscription
is maintained in the data structures of multiple algorithms.
When matching events, the matching time of all algorithms is
estimated, and the optimal one is selected for event matching.
COMAT can take advantage of different algorithms, but it

has two limitations. First, each subscription is stored multiple
times, which is not memory efficient. Second, in each algo-
rithm, the predicate matching probability is not considered to
optimize performance and stability.

Different from existing solutions, our work considers the
effect of predicate matching probability on algorithm perfor-
mance and stability. Considering the complementary behavior
of different algorithms on predicate matching probability,
subscriptions are maintained in the appropriate algorithm of
PEM to take full advantage of the algorithm. Therefore, PEM
can effectively improve and stabilize matching performance
on the basis of existing algorithms.

III. DESIGN OF PEM

A. Overview

Obviously, our goal is to improve the matching performance
for content-based pub/sub systems. Building on existing work,
the design of the PEM framework is inspired by the idea of
ensemble learning [27]. First, PEM uses a variety of algo-
rithms to perform event matching. Subscriptions are classified
according to their matching probability and assigned to the
appropriate algorithm. Second, since subscription classifica-
tion implies data parallelism, PEM allocates a thread to each
algorithm to achieve parallel matching. The combination of
subscription classification and parallel matching can greatly
facilitate and stabilize matching performance.

1) Subscription Classification: As discussed in the work
[15], most matching algorithms suffer from predicate matching
probabilities. Subscriptions often contain multiple predicates
with different matching probabilities. However, almost all ex-
isting matching algorithms treat predicates in their underlying
data structures in the same way, regardless of the difference in
matching probabilities. Intuitively, for subscriptions containing
predicates with low matching-probability, it is efficient to use
forward matching methods, such as TAMA [10] and OpIndex
[11]. On the other hand, it is more efficient to use backward
matching methods such as REIN [12] and GEM [28] to han-
dle subscriptions with high matching probability. Therefore,
we explore the idea of leveraging multiple algorithms with
complementary behaviors in matching probability to improve
performance.

2) Parallel Matching: Most existing matching algorithms
are single-threaded. To speed up event matching, we can
continuously optimize the performance of the single-threaded
matching algorithm, but this performance improvement is
generally difficult. With the development of computer hard-
ware, multi-core CPUs and GPUs allow us to consider par-
allel matching, which has great potential to further improve
matching performance. Therefore, we propose PEM based on
subscription classification and multi-thread matching. PEM
can greatly reduce the time to match events. In addition, PEM
is beneficial to maintain the scalability of subscriptions and
the stability of event matching under large-scale data.

107

New subscriptions

Incoming events

Divided into
groups

Classifier

Alg. library
Alg1 …

Matching
results

Alg2 Algn

Fig. 1: The architecture of Ensemble Matching.

B. The Architecture of PEM

The architecture of PEM is shown in Fig.1, which consists
of two modules: algorithm library and classifier. The library
consists of multiple algorithms with complementary behaviors
in terms of predicate matching probabilities. For each new
subscription, the classifier estimates its matching probability
and chooses the most appropriate algorithm to insert. There-
fore, each subscription is maintained by an optimal matching
algorithm. When a new event arrives, all algorithms in the
library are executed in parallel and their matching results are
aggregated.

1) Algorithm Library:
The basis for implementing PEM is to build a library of

multiple matching algorithms. To do so, we give three criteria
for choosing matching algorithms.

i) The algorithms in the library should complement each
other. In other words, algorithms should have different
performance behaviors in terms of predicate matching
probability.

ii) Candidate algorithms should have similar overall match-
ing performance, aiming to achieve good ensemble
effects.

iii) For better generality, the algorithms in the library should
support different subscription data models.

2) Classifier:
a) Quantification of Predicate Matching Probability:

The matching probability of predicates in a subscription can
be estimated by the average width of interval predicates and
the number of predicates. An interval predicate has a low
value and a high value that forms an interval. Other forms of
predicates can be transformed to interval ones. For simplicity,
we assume that events are uniformly distributed. Given a
subscription containing K interval predicates, the average
matching probability of the predicates can be estimated by

p =

∑K
i=1 wi

K
(1)

where wi is the width of the ith interval predicate.
If the distribution of events is statistically available, the av-

erage matching probability of the predicates in the subscription
can be calculated by

p =

∑K
i=1

∫ hi

li
pe(x) dx

K
(2)

Split Point

Alg. 1
0 1

Alg. 2

The elastic range
of split point

Fig. 2: Elastic classification of subscriptions considering algo-
rithm characteristics and performance balance

where li and hi represent the low value and high value of the
ith interval predicate respectively, and pe(x) is the probability
density function of events.

b) Elastic Subscription Classification Method: When de-
signing a subscription classification method for PEM, two
points need to be considered for good parallelism. First, the
correspondence between algorithm characteristics and sub-
scription probabilities should be considered to assign subscrip-
tions to appropriate algorithms. Second, since each algorithm
runs using a single thread, skewed subscriptions can cause
severe performance imbalances. Therefore, we propose an
elastic subscription classification method.

For simplicity of discussion, we normalize the value domain
of predicate matching probability in [0, 1]. Let L be the
number of algorithms in the library. Since the algorithms in
the library have complementary behaviors in terms of predicate
matching probability, each algorithm has a range of applicable
probability. The range of all algorithms collectively covers
[0,1]. For example, assuming that the ith algorithm is optimal
in the range [0.4, 0.5] and a subscription has a matching
probability of 0.45, the subscription is assigned to the most
suitable ith algorithm.

Given the L algorithms in the library, we need to compute
L − 1 split points SPi (1 ≤ i ≤ L − 1) to separate the
algorithms. SPi represents the split point between algorithm
i and algorithm i+ 1. The value of SP indicates a matching
probability in [0, 1]. Considering algorithm characteristics and
performance balance, the split point SPi can fluctuate within
a certain range [RiMIN , RiMAX], which is called the elastic
range. Specifically, SPi can be calculated by:

SPi = RiMAX
− ti × (RiMAX

−RiMIN
)

T
(3)

where ti (1 ≤ i ≤ L) is the matching time of algorithm i, T =∑L
i=1 ti is the sum of the matching time of all algorithms, and

RiMAX
and RiMIN

represent the elastic range of SPi. Both
RiMAX

and RiMIN
can be in the range of 0 to 1 and RiMIN

<
RiMAX

. The initial value of SPi is determined according to
the characteristics of each algorithm in the library. The value
of SPi fluctuates within the elastic range [SPi×(1−α), SPi×
(1 + α)]. The value of α is set to 0.2 in the implementation.

We use the case of L = 2 to illustrate the concepts of
split point and elastic range, as shown in Fig. 2. These two
algorithms are suitable for subscriptions with different match-
ing probabilities, where algorithm 1 (Alg. 1) is suitable for
subscriptions with low matching probability, while algorithm
2 (Alg. 2) is suitable for subscriptions with high matching

Algorithm 1: Matching procedure of PEM
Require: an events e and the event window size ψ.

1: j ++;
2: Match e using all algorithms in the library;
3: Aggregate the output of each algorithms to obtain the

matching results;
4: if j = ψ then
5: j = 0;
6: Compute the average matching time ti of each

algorithms in the current window;
7: Adjust the value of all split points SPi in the next

window according to Eq. (3);
8: end if

probability. The value of SP can fluctuate within an elastic
range to maintain the performance of the two threads running
the two algorithms separately.

The insertion process of PEM is straightforward. Given a
new subscription, its matching probability p is first quantified
according to Eq. (2). Then, the first split point SPi > p is
found. The subscription is assigned to the ith algorithm and
maintained in the corresponding data structure.

3) Matching Procedure of PEM: The matching procedure
of PEM is shown in Algorithm 1. For each event, all algo-
rithms in the library are used for matching, and their outputs
are aggregated to obtain matching results. After matching
ψ events in a time window, PEM adjusts the value of SPi

according to Eq. (3), aiming to maintain the performance
balance among all algorithms based on the matching time of
each algorithm in the library.

IV. IMPLEMENTATION

Similar to COMAT [16], we chose REIN [12] and TAMA
[10] in the implementation to form the library. The two
algorithms have similar overall performance and exhibit op-
posite behavior in terms of predicate matching probability.
When matching events, TAMA uses a counter to record the
predicate fulfillment condition for each subscription, while
REIN uses a bitset to mark all unmatched subscriptions. Given
an event, if a predicate evaluates to true, the counters of all
subscriptions that contain the predicate are incremented by 1
in TAMA. Conversely, if a predicate evaluates to false, the
bits representing all subscriptions that contain the predicate
are marked in REIN. Therefore, REIN can achieve higher
performance if more predicates evaluate to true, while TAMA
may have lower performance, and vice versa.

Each algorithm in PEM is assigned to a thread. In the
implementation, we need to balance the running time of REIN
and TAMA. Since the split point of PEM is the criterion for
subscription classification between REIN and TAMA, we de-
sign a dynamic feedback mechanism to maintain performance.
After ψ events are matched in each window, the split point
is adjusted according to the matching time ratio of REIN
and TAMA. In the next window, the adjusted split point is

TABLE I: Parameters used in the experiments

Note Description Values
N Number of subscriptions 1M, 2M, 3M, 4M,5M
M Event size 20, 50, 100
K Subscription size 5, 10, 15, 20
W Width of interval predicates 0.1, 0.3, 0.5, 0.7, 0.9
SP Split point of PEM 0.4, 0.5, 0.6
ψ Window size 20

applied. ψ is set to a small value of 20 in the implementation
because the adjustment cost is almost negligible. Frequent
tuning ensures that the two threads always reach a performance
balance.

V. EXPERIMENTS

A. Experiment Setup

All the experiments were conducted on a server with 16
2.3GHz vCPUs and 32GB RAM, which runs Ubuntu 18.04
with Linux kernel 4.15.0-111. All code is written in the C++
language and compiled by g++ with version 7.5.0 and -O3
optimization.

We compare PEM with three baselines: COMAT [16],
TAMA [10] and REIN [12]. According to the papers, the
discretization level of TAMA is set to 17, and the number
of buckets in REIN is set to 1000. The neural networks used
in COMAT are implemented by the TensorFlow library with
version 2.2.0-rc1. The matching time of COMAT is the sum
of the matching time of the algorithm selected from REIN
and TAMA and the prediction time of the neutral networks.
The matching time of PEM is the time to execute REIN and
TAMA in parallel using two threads. We run each experiment
10 times and obtain the average result.

In the experiments, by default, the number of subscriptions
N is set to 1 million, the width of predicates W to 0.5,
the number of predicates in subscriptions (subscription size)
K to 10, and the number of attribute-value pairs in events
(event size) M to 20. Subscriptions and events are randomly
generated based on W , K and M . In each experiment,
500,000 events are matched and the average matching time is
calculated. With large-scale datasets, we can better compare
the performance of the tested matching algorithms. Table I lists
the parameters used in the experiments. Bold values represent
default settings.

B. Matching Performance

As shown in Fig. 3 and Fig. 4, PEM always performs
best with different numbers of subscriptions N , followed by
COMAT. TAMA appears to be more sensitive to N in terms
of matching time and the standard deviation (Std) of matching
time. From Fig. 3, we can see that TAMA outperforms REIN
when the number of subscriptions is less than 3 million.
REIN outperforms TAMA when the number of subscriptions
becomes larger. When N = 1M, PEM achieves 43.7%, 68.6%
and 46.9% performance improvements over COMAT, REIN
and TAMA respectively on matching time. When N = 5M,

109

Fig. 3: Matching time with different
numbers of subscriptions N

Fig. 4: Std of matching time with dif-
ferent numbers of subscriptions N

Fig. 5: Matching time with different
subscription sizes K

the performance improvement of PEM over COMAT, REIN
and TAMA is 53.3%, 55.8% and 64.2% respectively. Overall,
PEM is around 40% faster than the second-best algorithm in all
the experiments. In addition, PEM also has the lowest standard
deviation of matching time, as shown in Fig. 4, which indicates
that PEM has good performance stability.

In addition to N , the performance of the matching algorithm
is also affected by several parameters, including K, M , and
W . In the following subsections, we vary the settings of
these parameters and evaluate their impact on the matching
performance of PEM, COMAT, REIN and TAMA.

1) Effect of Subscription Size K: Figure 5 shows the effect
of K on matching time. In the experiments, the subscription
size is randomly generated in the range [1, K]. A larger
K means that more predicates are stored in the structure of
REIN and TAMA, and subscriptions have a lower matching
probability. REIN is more susceptible to an increase in K as it
needs to repeatedly mark more subscriptions as the matching
probability of subscriptions decreases. When K = 5, PEM
is 47.7%, 67.7% and 49.4% higher that COMAT, REIN and
TAMA respectively. When K = 20, the improvement of PEM
over COMAT, REIN and TAMA is 19.3%, 52.9% and 25.87%
respectively. The performance of COMAT improves when
K increases. This is because COMAT chooses TAMA more
frequently than REIN as the number of predicates contained
in each subscription increases. TAMA is better suited to
subscriptions with a large number of predicates, reducing the
performance difference between COMAT and PEM.

2) Effect of Event Size M : In this experiment, we set M
from 20 to 100 and the results are shown in Fig. 6. A larger
M means that there are more attribute-value pairs in events
that the matching algorithm needs to process. We can find
that REIN is more affected as M increases. This shows that
under uniform distribution, REIN is more sensitive to event
size. When M = 20, PEM achieves an improvement of
39.1%, 67.5% and 54.1% over COMAT, REIN and TAMA
respectively. When M = 100, the improvement of PEM
over COMAT, REIN and TAMA is 17.6%, 72.6% and 23.7%
respectively.

3) Effect of the Width of Predicates W : The width of predi-
cates is a key parameter that directly affects the performance of
REIN and TAMA. REIN performs well at a wider width, while

TAMA does the opposite. As shown in Fig. 7, when W = 0.1,
PEM improves by -2.2%, 80.9% and 4.5% over COMAT,
REIN and TAMA respectively. In this case, PEM, COMAT
and TAMA perform almost identically, with COMAT slightly
better than PEM. TAMA’s performance is much better REIN.
Conversely, when W = 0.9, PEM improves by 12.4%, 13.6%
and 47.1% over COMAT, REIN and TAMA respectively.
In this case, REIN significantly outperforms TAMA. When
W = 0.1, almost all subscriptions are more suitable for
TAMA. So, the two threads of PEM are unbalanced, and the
results of PEM, COMAT and TAMA are very close. The
situation is similar when w = 0.9. The results of PEM,
COMAT and REIN are very close. When W = 0.5, PEM
still outperforms the three baselines significantly. We believe
that the performance of PEM is generally optimal when the
predicate width varies.

C. Effectiveness of Feedback-based Adjustment Method

As shown in Fig. 8, the strategy of dynamically adjusting
the split point consistently achieves the best performance when
increasing the number of subscriptions. When N = 200, 000,
this strategy achieves 50.5%, 27.3%and 36.4% improvement
over SP=0.4, SP=0.5 and SP=0.6 respectively. When N =
1000, 000, the strategy achieves 31.2%, 6.6%and 20.8% im-
provement over SP=0.4, SP=0.5 and SP=0.6 respectively. We
can see that the performance of SP=0.5 is better than SP=0.4
and SP=0.6. This is because the data is evenly distributed,
with roughly an equal amount of data on both sides of 0.5.
But the performance of dynamical adjustment is still better
than SP=0.5, which reflects the effectiveness of the feedback-
based update method in PEM.

VI. DISCUSSION

The time it takes to insert a subscription in PEM is the
sum of the subscription insertion time. Only one insertion
is required per subscription in PEM. In our implementation,
since the insertion time of REIN is much smaller than that of
TAMA, the insertion time of PEM is close to that of TAMA.
Subscription deletion is similar to subscription insertion.

Ideally, the dual-threaded parallel algorithm has a perfor-
mance improvement of 100% compared to the single-threaded
algorithm. In practice, we cannot have the exact same running

110

Fig. 6: Matching time with a different
total number of attributes M .

Fig. 7: Matching time with a different
width of predicates W .

Fig. 8: Matching time with different
split points.

time for both algorithms, and we also need time to classify
the subscriptions. These factors take some time. In general,
the performance improvement of PEM is still very significant.

VII. CONCLUSION

In this paper, we explore the idea of using multiple match-
ing algorithms to improve and stabilize the performance of
matching algorithms. The main idea of PEM is to classify
subscriptions, choose the most appropriate algorithm for each
subscription, and then perform parallel matching on multiple
algorithms. To evaluate the performance of PEM, we con-
ducted a series of experiments. The experiment results show
that PEM can greatly improve and stabilize the matching
performance under different parameter settings.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and
Development Program of China (2019YFB1704400) and the
National Natural Science Foundation of China (61772334).

REFERENCES

[1] S. Qian, W. Mao, J. Cao, F. Le Mouël, and M. Li, “Adjusting
matching algorithm to adapt to workload fluctuations in content-based
publish/subscribe systems,” in IEEE INFOCOM, 2019, pp. 1936–1944.

[2] T. Ding, S. Qian, J. Cao, G. Xue, and M. Li, “Scsl: Optimizing matching
algorithms to improve real-time for content-based pub/sub systems,” in
IEEE IPDPS, 2020, pp. 148–157.

[3] N. Dasanayaka, C. Wang, D. Jayalath, and Y. Feng, “Publish-subscribe
communications for V2I safety applications in intelligent transportation
systems,” in IEEE VTC Fall, 2019, pp. 1–6.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evalu-
ation of a wide-area event notification service,” ACM Transactions on
Computer Systems (TOCS), vol. 19, no. 3, pp. 332–383, 2001.

[5] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[6] T. Ding, S. Qian, J. Cao, G. Xue, Y. Zhu, J. Yu, and M. Li, “Mo-tree: An
efficient forwarding engine for spatiotemporal-aware pub/sub systems,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 32,
no. 4, pp. 855–866, 2021.

[7] S. Qian, J. Cao, Y. Zhu, M. Li, and J. Wang, “H-tree: An efficient index
structurefor event matching in content-basedpublish/subscribe systems,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 26,
no. 6, pp. 1622–1632, 2015.

[8] S. Ji and H. Jacobsen, “A-tree: A dynamic data structure for efficiently
indexing arbitrary boolean expressions,” in ACM SIGMOD, 2021, pp.
817–829.

[9] M. Sadoghi and H.-A. Jacobsen, “Be-tree: an index structure to ef-
ficiently match boolean expressions over high-dimensional discrete
space,” in ACM SIGMOD, 2011, pp. 637–648.

[10] Y. Zhao and J. Wu, “Towards approximate event processing in a large-
scale content-based network,” in IEEE ICDCS, 2011, pp. 790–799.

[11] D. Zhang, C.-Y. Chan, and K.-L. Tan, “An efficient publish/subscribe
index for e-commerce databases,” VLDB Endowment, vol. 7, no. 8, pp.
613–624, 2014.

[12] S. Qian, J. Cao, Y. Zhu, and M. Li, “Rein: A fast event matching
approach for content-based publish/subscribe systems,” in IEEE INFO-
COM, 2014, pp. 2058–2066.

[13] S. Ji and H. Jacobsen, “Ps-tree-based efficient boolean expression match-
ing for high dimensional and dense workloads,” VLDB Endowment,
vol. 12, no. 3, pp. 251–264, 2018.

[14] Z. Jerzak and C. Fetzer, “Bloom filter based routing for content-based
publish/subscribe,” in ACM DEBS, 2008, pp. 71–81.

[15] S. Qian, J. Cao, W. Mao, Y. Zhu, J. Yu, M. Li, and J. Wang, “A
fast and anti-matchability matching algorithm for content-based pub-
lish/subscribe systems,” Computer Networks, vol. 149, pp. 213–225,
2019.

[16] T. Ding, S. Qian, W. Zhu, J. Cao, G. Xue, Y. Zhu, and W. Li, “Comat:
An effective composite matching framework for content-based pub/sub
systems,” in IEEE ISPA, 2020, pp. 236–243.

[17] W. Shi and S. Qian, “HEM: A hardware-aware event matching algorithm
for content-based pub/sub systems,” in DASFAA, 2022, pp. 277–292.

[18] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D.
Chandra, “Matching events in a content-based subscription system,” in
ACM PODC, 1999, pp. 53–61.

[19] M. Sadoghi and H.-A. Jacobsen, “Analysis and optimization for boolean
expression indexing,” ACM Transactions on Database Systems (TODS),
vol. 38, no. 2, pp. 1–47, 2013.

[20] A. Carzaniga and A. L. Wolf, “Forwarding in a content-based network,”
in ACM SIGCOMM, 2003, pp. 163–174.

[21] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient
filtering in publish-subscribe systems using binary decision diagrams,”
in IEEE ICSE, 2001, pp. 443–452.

[22] G. Li, S. Hou, and H.-A. Jacobsen, “A unified approach to routing,
covering and merging in publish/subscribe systems based on modified
binary decision diagrams,” in IEEE ICDCS, 2005, pp. 447–457.

[23] Z. Liao, S. Qian, J. Cao, Y. Cao, G. Xue, J. Yu, Y. Zhu, and M. Li,
“Phsih: A lightweight parallelization of event matching in content-based
pub/sub systems,” in ICPP, 2019, pp. 21:1–21:10.

[24] A. Farroukh, E. Ferzli, N. Tajuddin, and H.-A. Jacobsen, “Parallel event
processing for content-based publish/subscribe systems,” in ACM DEBS,
2009, pp. 1–4.

[25] K. Tsakalozos, M. Tsangaris, and A. Delis, “Using the graphics pro-
cessor unit to realize data streaming operations,” in ACM Middleware
Doctoral Symposium, 2009, pp. 1–6.

[26] A. Margara and G. Cugola, “High-performance publish-subscribe match-
ing using parallel hardware,” IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), vol. 25, no. 1, pp. 126–135, 2014.

[27] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4,
pp. 5839–5847, 2018.

[28] W. Fan, Y. Liu, and B. Tang, “Gem: An analytic geometrical ap-
proach to fast event matching for multi-dimensional content-based
publish/subscribe services,” in IEEE INFOCOM, 2016, pp. 1–9.

111

MFGAN: A Novel CycleGAN-Based Network for
Masked Face Generation

Weiming Xiong, Mingyang Zhong, Cong Guo, Huamin Wang, Libo Zhang*
College of Artificial Intelligence

Southwest University
Chongqing, China

lbzhang@swu.edu.cn

Abstract—In the post-epidemic era, Masked Face Recognition
(MFR) is of great significance to our daily life, but it confronts
a severe challenge of lacking real-world large-scale masked
face datasets with identity labels. Moreover, mask enhances the
diversity of face images and further improves the requirements
for datasets. To address the above problem, we propose a novel
CycleGAN-based masked face generation method MaskedFace-
GAN (MFGAN), which is able to generate correct, authentic-
looking and type-diverse masked face while ensuring the invari-
ance of facial features. We design a three-stage training pipeline
for MFGAN, which corresponds to three modules, respectively.
Specifically, a facial feature detector is adopted to guide the model
to generate the correct mask in the correct position. Then, by
utilizing a mask binary segmentation module, the authenticity
of generated images can be guaranteed. Lastly, with mask style
encoder, the model can be optimized towards generating type-
diverse masked faces. Finally, comparing with advanced masked
face synthesis and generation methods comprehensively, our
MFGAN achieves the best results. Then we apply the generated
masked face datasets to MFR model training, which further
proves the feasibility of training MFR models on generated
datasets and the effectiveness and advancement of MFGAN
compared with other state-of-the-art methods.

Index Terms—Masked Face Generation, Image-to-Image
Translation, Mask Style Encoder

I. INTRODUCTION

In recent years, benefiting from the advancement of Con-
volutional Neural Networks (CNNs), face recognition has
developed rapidly [1], [2]. Nowadays, people wear mask in
reaction to global pandemics such as COVID-19, but it poses
a great challenge to face recognition [3]. National Institute
of Standards and Technology (NIST) found that, as most of
the facial region are occluded by mask, the discriminative
features that can be extracted by face recognition models are
reduced, which leads to the degradation of the recognition
performance of masked face [4]. However, taking off the
mask for face recognition will increase the risk of infection,
especially in crowded places such as airport [5]. Therefore,
masked face recognition (MFR) is an urgent topic to research
[3]. Furthermore, two possible solutions, occlusion robust face
recognition (OFR) [6] and partial face recognition (PFR) [7]
are not applicable, for they address different problems, as
shown in Fig. 1. Mask occlusion is a kind of fixed position,

*Corresponding author: Libo Zhang (lbzhang@swu.edu.cn)
DOI reference number: 10.18293/SEKE2022-016

large area, continuous and diverse occlusion, by contrast,
random in OFR [6]. Moreover, masked face preserves the
facial contour well, which cannot be guaranteed in PFR [7].

Occluded Faces Partial Faces Masked Faces

Fig. 1. Samples of occluded faces, partial faces and masked faces.

Despite its importance, MFR is still a challenging task
due to the absence of large-scale real-world masked face
datasets. In recent years, Generative Adversarial Networks
(GANs) [8] has greatly promoted the development of image
generation methods, and the use of them to generate dataset
has gradually been widely adopted [9]. Therefore, GANs
methods are naturally adopted to generate masked face, but
they cannot be applied smoothly. Thereinto, masked face
synthesis methods [10] directly overlay mask on face, which
is prone to produce unnatural masked face. And masked face
generation (MFG) methods confront two inevitable problems.
Firstly, it is difficult to simultaneously generate authentic-
looking mask and preserve the invariance of facial features
[9], [11], [12]. Secondly, the generated mask types are not
abundant and the methods cannot be applied to all kinds
of datasets [13]–[15]. Recently, CycleGAN-based methods
IAMGAN [15] and SimGAN [12] are specially proposed to
generate masked face. However, they still suffer from the
problems of incorrect wearing, sharpness distortion, etc, as
shown in Fig. 2. Note that MFG is different from the other
face generation tasks for the reason that the mask cover half
of the face, and have various types, and are greatly influenced
by the face posture, illumination and angle.

CycleGAN StarGANAuthentic Masked Face

Incorrect

Wearing

Sharpness

Distortion

IAMGAN AttGAN SimGAN

Eyes

Occluded

Uncovering

Mouth

Uncovering

Nose
Incorrect

Mask Shape
Correct Wearing

Ears

Occluded

Fig. 2. Example results of some advanced masked face synthesis and
generation methods reproduced in our experiments.

To address the aforementioned problems, we propose
a novel CycleGAN-based masked face generation method

112

MaskedFaceGAN (MFGAN), which aims to generate correct,
authentic-looking and type-diverse masked face images. In
addition, in order to make the generated images meet the
standard of training set, we consider more generation details,
such as mask bandage, occlusion position, sharp edge, opaque,
facial fidelity, fold feeling, multi-style, etc. Note that face
recognition is a task involving major ethical issues, and this
paper is devoted to the research of masked face generation.
This paper only uses the official face datasets collected by
legal means to conduct experiments, and only applies the
generated datasets for MFR model training. Then we guarantee
that the proposed method will not be applied to private face
images, so as to protect personal privacy as much as possible.
The generated samples on FFHQ [16] are shown in Fig. 3.
Obviously, MFGAN can generate natural-looking mask on
different ages, genders and complexion face.

Female Children Male

Fig. 3. Example results of generated masked face by proposed MFGAN.

In order to optimize MFGAN in three directions: correct-
ness, authentic-looking and type-diversity, we design a three-
stage training pipeline that introduces specific modules in
different stages, detailed in Chapter III. (1) Firstly, in order
to generate correct mask, we propose a facial feature detector,
which can detect whether the facial features are occluded or
not on the generated images according to the standard for
correct mask wearing, so as to guide the model to generate
the correct mask in the correct position. (2) Secondly, in order
to generate authentic-looking mask, we propose a mask binary
segmentation module to measure the fidelity of facial features
in non-mask areas, so as to guide the model to generate mask
without losing facial features as much as possible. (3) Thirdly,
in order to generate type-diverse mask, we propose a mask
style encoder, which can extract mask style code from the
real-world referenced masked face, so as to guide the model
to generate mask of corresponding style on the input face.

Finally, through qualitative and quantitative comparative
experiments of the generated images, the proposed MFGAN
achieves the best results. In addition, we further apply the
generated images for MFR model training, the results show
that the images generated by MFGAN is more suitable as
training dataset for MFR model. The main contributions of
this paper are listed as follows:

1) MFGAN is proposed to generate correct, authentic-
looking and type-diverse masked face as a remedy of
training dataset absence. We adopt it to generate two
masked face datasets (Masked-FFHQ, Masked-CelebA)
and publish them to facilitate future research 1.

2) We design a three-stage training pipeline. The facial
detector ensures the correctness of masks, the mask
binary segmentation module preserves the non-mask
facial area, and the mask style encoder guides model
to generate diverse styles of masks.

1https://github.com/MySky37/MySky.github.io

The outline of this paper is as follows. In Section II, we
survey the related works. Then we introduce the proposed
methods MFGAN in detail in Section III. Next, in Section
IV, we conduct the experiments for generated images. Finally,
we conclude the paper in Section V.

II. RELATED WORK

A. Masked Face Dataset

Wang et al. [17] proposed a Real-World Masked Face
Dataset (RMFRD), including 5,000 images of 525 people with
mask and 90,000 images of the same people without mask.
Anwar et al. [10] proposed MFR2 dataset that includes 269
images of 53 politicians and celebrities from the Internet.
However, the datasets proposed above are small-scale and not
enough for MFR model training, but they are barely suitable
as test sets. Therefore, we follow the previous work and adopt
RMFRD as our test benchmark.

B. Masked Face Synthesis and Generation Method

Anwar et al. [10] proposed an open-source tool MaskThe-
Face, which is used to synthesize masked face. MaskedFace-
Net [18] is a masked face synthesis method, which can synthe-
size masked face with different wearing postures, but its mask
type is too single and not authentic-looking enough. Geng et al.
[15] proposed a masked face generation method named Iden-
tity Aware Mask GAN (IAMGAN) with segmentation guided
multi-level identity preserve module, which gained certain
performance improvement compared to traditional CycleGAN
[11]. However, the above methods have various disadvantages,
as shown in Fig. 2. Following the previous work, we propose
a novel CycleGAN-based masked face generation method
MaskedFaceGAN (MFGAN).

III. METHOD

CycleGAN [11] is a classic unpaired image-to-image trans-
lation method, which is suitable for masked face generation,
so we adopt it as the backbone of our MFGAN. Correctness,
authenticity and type-diversity are three basic standards of
masked face generation, so we specially design a three-stage
training pipeline for MFGAN, as shown in Section III-A. In
Section III-B, we propose a facial feature detector to guide the
model to generate the correct mask in the correct position. In
Section III-C, we propose a mask binary segmentation module
to guide the model to generate authentic-looking mask without
losing facial features as much as possible. In Section III-D,
we propose a mask style encoder to guide the the model to
generate diverse styles of masks.

A. Three-stage training pipeline

We design a three-stage training pipeline for MFGAN, as
shown in Fig. 4, that is, we carry out gradual training for it,
so that it can “learn” correctness first, then authenticity, and
finally type-diversity. The computational complexity is also
increasing gradually, detailed in Chapter IV.

113

https://github.com/MySky37/MySky.github.io

Fig. 4. A three-stage training pipeline of MFGAN. Each stage is represented
by different colors and boxes. There are three image sets namely Face,
Mask, and Reference. GF and GM are generators, DM is a discriminator,
Det is a facial feature detector, Seg is a mask binary segment module, and
E is a mask style encoder. si is the mask style code of referenced masked
face ri. GM (f, s)F and fF represent the face with mask region removal.

B. Stage1: Generate Correct Mask

For masked face generation, the first requirement is to gen-
erate correct mask in the correct position. However, as shown
in Fig. 2, some existing methods cannot guarantee the above
premise well, and expose the problems of incorrect wearing,
incorrect mask shape, etc. Therefore, we experimentalized
and found that without additional supervision information, the
generator is often prone to “make mistakes”, as shown in Fig.
2. Therefore, we consulted the literature and learnt that the
medical standard for wearing mask is to cover the mouth and
nose, not eyes, and bandages should be hung on the ears. We
also learnt that Yolov3 is a popular face detection method,
and it can achieve good results in facial feature detection task.
Therefore, based on a pretrained Yolov3 model, we construct
a facial feature detector to check whether the mask in the
generated image is worn correctly or not, as shown in Fig. 4
(Stage 1).

Fig. 5. Examples of detection result calculation. XOR represents exclusive
OR operation, the same is 0 and the difference is 1. W means the penalty
weight vector and x means the final penalty value.

The detection process is shown in Fig. 5 and described
in detail as follows: Firstly, the proposed detector Det is
used to detect facial features of face f and corresponding
generated masked face GM (f), including face, eyes, nose,
mouth, ears, forehead, etc. Secondly, the output item Di, i ∈
face, eye,mouth, ... with consistent feature detection results
is 0, otherwise 1. For example, if eyes can be detected on
face while not on masked face, which means the detection
results are inconsistent and generated mask is incorrect, so
the output is Deye = 1. Then, all the outputs are formed into
a vector Det(f,GM (f)) = [Dface, Deye, Dmouth, ...], and
further multiplied by the penalty weight vector W to obtain
the final penalty value x = W ∗Det(f,GM (f)). Thirdly, we
input x into a revised adaptive correction function, which is
an extended version of adaptive loss function [19], to get the
adaptive correction factor λcor, the formula is as follows:

λcor = 1 +
|α− 2|

α

((
x2

c2|α− 2|
+ 1

)α/2

− 1

)
(1)

where λcor = 1 means correct mask wearing and λcor > 1
means incorrect. α ∈ R is a shape parameter that controls
the specific form of the function. c > 0 is a scale parameter.
Finally, we multiply the adaptive correction factor λcor with
the adversarial loss of the discriminator LGAN to obtain the
corrected adversarial loss λcorLGAN . It provides additional
supervisory information for discriminator to “learn” to dis-
tinguish true or false of the generated image according to
the mask wearing condition. Then, based on the antagonistic
game mechanism, by enhancing the distinctive ability of
discriminator, the generator is forced to generate correct mask
in correct position. The full objective of stage 1 is as follows:
LGAN (GM , GF , DM , DF) = λcorLGAN (GM , DM ,M, F)

+ LGAN (GF , DF , F,M)

+ λLcyc(GM , GF)
(2)

where LGAN is the standard adversarial loss [8], Lcyc is
the cycle consistency loss [11], and λ controls the relative
importance of the two objectives.

C. Stage2: Generate Authentic-Looking Mask
Authentic-looking is the key element of masked face gen-

eration. Synthesis methods directly overlay the mask on face,
which is prone to produce unnatural masked faces. Generation
methods will inevitably lose facial features in the generation
process, as shown in Fig. 6.

CycleGAN StarGAN IAMGAN AttGANMasked Faces SimGAN

Fig. 6. Examples of facial features loss results of some generation models
(CycleGAN, StarGAN, IAMGAN, AttGAN) from our experiments.

Geng et al. [15] adopted U-Net to guide masked face
generation and achieved certain effect. Therefore, based on

114

a pre-trained U-Net, we construct a mask binary segmentation
module to segment the mask area on the input face and
the generated masked face, as shown in Fig. 4 (Stage 2).
Given a masked face image GM (f), Seg predicts a binary
segmentation map SF (GM (f)), where pixel value 0 and 1
represent the mask and non-mask region, respectively. Then
we use the element-wise multiplication between GM (f) and
SF (GM (f)), as well as f and SF (GM (f)), to obtain the
image of mask area removal. Further, by calculating the
similarity difference of the non-mask region before and after
the generation, the local invariance loss function can be
constructed as follows:

Linv(GM (f)F , fF) = Ef∼pdata(f)

[
∥GM (f)F − fF ∥22

]
(3)

where GM (f)F represents GM (f)⊙SF (GM (f)) that means
generated masked face of mask region removal, while fF
represents f ⊙ SF (GM (f)) that means input face of mask
region removal. Then, we add Linv into full objective of stage
2 and derive the following formula:

L (GM , GF , DM , DF) = λcorLGAN (GM , DM ,M, F)

+ LGAN (GF , DF , F,M)

+ λLcyc(GM , GF)

+ µLinv(GM (f)F , fF)

(4)

where µ controls the relative importance of Linv .

D. Stage3: Generate Type-Diverse Mask

Type-diversity is an indispensable element in masked face
datasets construction, because people wear masks in different
types, colors and postures in the real world. However, most
existing methods do not take it into consideration. Therefore,
inspired by StarGANv2 [20] on diversified image translation
between multiple domains, we propose a mask style encoder
specially designed for masked face generation, which is used
to instruct generator to generate mask in the direction of multi-
style, as shown in Fig. 4 (Stage 3).

Generator: We extend the form of the input and output for
generator GM , which translates a face image f into a masked
face image GM (f, s) according to domain-specific style code
s provided by mask style encoder.

Mask Style Encoder: Given a referenced masked face r,
our mask style encoder E extracts mask style code s = E(r).
E can produce diverse mask style codes using different
referenced masked faces. This allows GM to generate multi-
style masked face reflecting the mask style s of the referenced
masked face r. Our mask style encoder consists of a CNN with
K output branches, where K is the number of mask style,
and one of which is selected when training the corresponding
mask domain. To make encoder more suitable for our task,
we extend the pre-activation residual blocks to two ResStage
blocks [2], and each block includes a Start ResBlock [2], a
Middle ResBlock [2] and an End ResBlock [2], and output
shape is changed correspondingly. Two ResStage block are
also shared among all domains, followed by one specific fully
connected layer for each domain. For the loss function, we

adopt style reconstruction loss and style diversification loss,
which are proposed by StarGANv2 [20].

Style reconstruction loss: It is designed to force the
generator GM to utilize the style code s when generating the
masked face GM (f, s). The formula is as follows:

Lsty(GM , F, s) = Ef∼pdata(f) [∥s− E(GM (f, s))∥1] (5)

Style diversification loss: It is designed to enable the
generator GM to produce diverse styles of masked face images
according to the mask style codes. The formula is as follows:

Lds (GM , F, s1, s2) = Ef∼pdata(f) [∥GM (f, s1)−GM (f, s2)∥1]
(6)

where the target style codes s1 and s2 are produced by E, si =
E(ri) for i = 1, 2. The goal of maximizing the loss is to force
GM to explore the image space and discover meaningful style
features from the input masked face dataset for generating
diverse masked face images. Then, we add Lsty and Lds into
full objective of stage 3 and derive the following formula:

L (GM , GF , DM , DF) = λcorLGAN (GM , DM ,M, F)

+ LGAN (GF , DF , F,M)

+ λLcyc(GM , GF)

+ µLinv(GM (f)F , fF)

+ λstyLsty(GM , F, s)

− λdsLds(GM , F, s1, s2)

(7)

where λsty and λds are the weights of the corresponding items.

IV. EXPERIMENTS

To evaluate the masked face generation performance of the
proposed MFGAN and baselines, we made qualitative and
quantitative comparative analysis and diversity display in Sec-
tion IV-C. In Section IV-D, we compared the performance of
MFR models trained on different generated datasets. Lastly, we
conducted ablation study on the effectiveness of the proposed
modules in MFGAN, detailed in Section IV-E.

A. Datasets and Implementation Details

Based on CycleGAN, MFGAN applies adaptive instance
normalization (AdaIN) for up-sampling blocks in generator,
and adds a convolution layer in discriminator. MFGAN is
trained on FFHQ (as Face) and RMFRD (as Mask) with
adam optimizer for 450K steps totally with batch size 1, and
the training steps for three stages are 100K, 200K and 150K,
respectively. Additionally, a facial feature detector Yolov3
is pretrained for 62.5K steps with adam optimizer on the
detection version of RMFRD, and a mask binary segmentation
module U-Net is pretrained for 20K steps with SGD optimizer
on the segmentation version of RMFRD.

For the training of MFR model, we select a public large-
scale face dataset CelebA and adopt three masked face
generation and synthesis methods, MaskTheFace(MTF) [10],
IAMGAN [15] and MFGAN, to construct three versions of
Masked-CelebA1, respectively.

115

B. Evaluation Metrics and Baselines

We evaluate the generated images quantitatively and qual-
itatively, and measure the masked face recognition (MFR)
performance of the model trained on generated datasets. For
quantitative evaluation, SSIM is used to measure the structural
similarity between input face and generated masked face in
non-mask area, PSNR is used for image quality evaluation,
and FID is adopted to measure the data distribution distance
between real-world masked face images and generated images.
For qualitative evaluation, it mainly includes feature fidelity,
mask transparency, mask type diversity, etc. For MFR per-
formance evaluation, we choose RMFRD as test benchmark,
and adopt verification accuracy, TAR@FAR=1e-3 and Rank-
5 accuracy as evaluation metrics. For baselines, we compare
MFGAN with two domain translation methods (CycleGAN
[11] and StarGAN [9]), two facial attribute editing methods
(AttGAN [13] and SaGAN [14]), and two CycleGAN-based
methods (IAMGAN [15] and SimGAN [12]).

C. Comparison of Masked Face Image Generation Effect

In this section, we compare the masked face generated by
our MFGAN and other generation and synthesis methods on
FFHQ, quantitatively and qualitatively.

TABLE I
QUANTITATIVE COMPARISON RESULTS OF SOME ADVANCED MASKED

FACE GENERATION METHODS.
Methods SSIM PSNR FID

CycleGAN [11] 0.723 18.42dB 64.29
SimGAN [12] 0.701 16.42dB 83.19
SaGAN [14] 0.742 21.77dB 48.16
AttGAN [13] 0.781 24.81dB 35.77
StarGAN [9] 0.732 21.19dB 51.10

IAMGAN [15] 0.801 26.33dB 27.38
MFGAN 0.838 29.52dB 21.73

1) Quantitative Comparison: As shown in Table I, our
MFGAN achieves the best results and outperforms the second
best model IAMGAN by a large margin. The largest SSIM
and PSNR indicate that, in masked face images generated
by MFGAN, the feature information of the non-mask area
is the best preserved, and the visual quality is better than
others. Then combined with the smallest FID and the visual
effect of the generated images, MFGAN can generate the most
authentic-looking masked face images.

CycleGAN StarGANAttGAN IAMGANSaGAN MFGANInput Half

Occlusion
MTF SimGANMask

Occlusion

Fig. 7. Comparison with some state-of-the-art methods on masked face
generation. MFGAN is able to generate authentic-looking masked face and
preserve the facial features well.

2) Qualitative Comparison: For fair comparison, we ran-
domly select four images from FFHQ and feed them into
the compared models to generate the corresponding masked
face images. From Fig. 7, we observe that the masked face
generated by MFGAN are the most natural-looking, and have
the best retention effect on the feature information of the non-
mask area, while the baselines all have various shortcomings.

3) Diversity Display: Furthermore, most baselines cannot
control the style of generated masked face, but our MFGAN
can generate masked face with reference to real-world masked
face, as shown in Fig. 8.

Color Diversity Posture DiversityType Diversity

Fig. 8. Diversity display of masked face images generated by MFGAN.

Obviously, MFGAN can refer to many types of real-world
masked faces and generate type-diverse masked faces. It not
only proves the effectiveness of proposed mask style encoder,
but also further proves the superiority of our MFGAN.

D. Comparison of MFR training effect on generated dataset

We adopt three methods to construct masked face datasets,
and then apply them to the masked face recognition (MFR)
training of four face recognition (FR) models, respectively.

TABLE II
TRAINING EFFECT OF FR MODELS ON Mask-CelebA, WHICH IS
SYNTHESIZED OR GENERATED BY THE LEFTMOST METHODS.

Datasets Methods Acc TAR@FAR=1e-3 Rank-5

MTF [10]

Softmax 77.2 65.1 61.2
Triplet [21] 77.8 66.2 64.6

CosFace [22] 78.4 67.9 66.5
ArcFace [23] 78.5 67.9 66.3

IAMGAN [15]

Softmax 82.1 69.2 75.1
Triplet 83.2 70.4 77.1*

CosFace 83.6 71.5 72.9
ArcFace 83.7* 71.6* 73.1

MFGAN

Softmax 89.2 75.9 80.3
Triplet 90.1 76.7 82.8(+5.7)

CosFace 90.4 78.1 78.1
ArcFace 90.9(+7.2) 78.4(+6.8) 78.9

As shown in Table IV-D, we conclude the following results:
(1) For verification task, face recognition (FR) models can
extract distinguishing features from the full face to accurately
judge whether the identities of two face are the same or not,
but when confronting the masked face, the models can only
extract a few features from non-mask areas, which easily leads
to lower verification accuracy. (2) For recognition task, FR
models can easily find the best matching identity from the
face database, but when confronting the masked face, the
models are more likely to be misled by similar faces to make
wrong judgments, so the Rank-5 accuracy is relatively low.
(3) However, with the same FR models, the training effect on
the masked face dataset generated by MFGAN has achieved
remarkable performance improvement, which fully proves the
feasibility of training MFR models on the generated datasets
and the effectiveness and advancement of our MFGAN.

116

E. Ablation Study

Finally, to analyze the function of different modules in
MFGAN, we train three variants of it by removing Linv ,
λcor, and Lsty , which controls the correctness, authenticity
and type-diversity of the generated masked face. Additionally,
we use CycleGAN as baseline, which lacks the above three
modules simultaneously. The results are shown in Table III.

TABLE III
COMPARISON OF TRAINING EFFECT AND VISUAL QUALITY BETWEEN

DIFFERENT VARIANTS OF MFGAN.

Methods Performance Visual Quality

Acc TAR@FAR=1e-3 Rank-5 SSIM PSNR FID

CycleGAN 76.3 64.8 65.7 0.723 18.42dB 64.29
w/o Linv 80.3 68.5 70.8 0.747 20.44dB 58.46
w/o λcor 85.4 73.9 76.3 0.764 23.31dB 47.66
w/o Lsty 87.2 75.3 80.1 0.813 27.31dB 25.98
All 90.9 78.4 82.8 0.838 29.52dB 21.73

Obviously, without Linv , MFGAN occurs serious perfor-
mance degradation. Without λcor, MFGAN loses the ability
to accurately control the generated position of mask. Without
Lsty , MFGAN cannot optimize in the direction of generating
type-diverse masks. In general, lacking any modules will
directly affect the model performance, which validates the
effectiveness of the proposed modules and MFGAN.

V. CONCLUSION

In this paper, to alleviate the challenge of lacking large-
scale real-world masked face datasets, we propose a novel
CycleGAN-based masked face generation method Masked-
FaceGAN (MFGAN), which enables to generate correct,
authentic-looking and type-diverse masked face images. A
three-stage training pipeline combined with facial feature
detector, mask binary segmentation module and mask style
encoder is designed to gradually optimize MFGAN. In ad-
dition, the masked face version of FFHQ and CelebA gen-
erated by MFGAN are publicly available to facilitate future
research. Extensive experiments from quantitative, qualitative
and diversity aspects have proved the practical significance
and performance advantages of MFGAN and its corresponding
modules. However, due to the lack of large area facial features,
the masked face recognition (MFR) task is inherently difficult,
and the performance of existing methods is still unsatisfactory.
But the performance improvement of MFR models training on
the datasets generated by MFGAN fully proves the feasibility
of training MFR models on generated datasets. In the future,
we will further enhance the robustness of MFGAN, and
conduct in-depth research on MFR model.

ACKNOWLEDGMENT

This work is supported by the Fundamental Research
Funds for the Central Universities (Nos. SWU021001 and
SWU021002), the National Nature Science Foundation of
China (No. 62106205), the Project of Science and Technol-
ogy Research Program of Chongqing Education Commission
of China (No. KJZD-K202100203 and KJQN202100207),
and the Natural Science Foundation of Chongqing (Nos.
cstc2021jcyj-msxmX0824 and cstc2021jcyj-msxmX0565).

REFERENCES

[1] Q. Zhang, Q. Cai, and J. Zheng, “Inspect defect of power equipment
via deep learning method.”

[2] I. C. Duta, L. Liu, F. Zhu, and L. Shao, “Improved residual networks for
image and video recognition,” in 2020 25th International Conference on
Pattern Recognition, 2021, pp. 9415–9422.

[3] A. Alzu’bi, F. Albalas, T. Al-Hadhrami, L. B. Younis, and A. Bashayreh,
“Masked face recognition using deep learning: A review,” Electronics,
vol. 10, no. 21, p. 2666, 2021.

[4] M. L. Ngan, P. J. Grother, K. K. Hanaoka et al., “Ongoing face
recognition vendor test (frvt) part 6b: Face recognition accuracy with
face masks using post-covid-19 algorithms,” 2020.

[5] N. Damer, J. H. Grebe, C. Chen, F. Boutros, F. Kirchbuchner, and
A. Kuijper, “The effect of wearing a mask on face recognition per-
formance: an exploratory study,” in 2020 International Conference of
the Biometrics Special Interest Group (BIOSIG). IEEE, 2020, pp. 1–6.

[6] D. Zeng, R. Veldhuis, and L. Spreeuwers, “A survey of face recognition
techniques under occlusion,” arXiv preprint arXiv:2006.11366, 2020.

[7] S. A. Abushanap, A. M. Abdalla, A. A. Tamimi, and S. Alzu’bi,
“A survey of human face recognition for partial face view,” in 2021
International Conference on Information Technology (ICIT). IEEE,
2021, pp. 571–576.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[9] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan:
Unified generative adversarial networks for multi-domain image-to-
image translation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 8789–8797.

[10] A. Anwar and A. Raychowdhury, “Masked face recognition for secure
authentication,” arXiv preprint arXiv:2008.11104, 2020.

[11] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

[12] S. Mumford, “Generation of realistic facemasked faces with gans,” http:
//cs230.stanford.edu/projects winter 2021/reports/70681837.pdf, 2021.

[13] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen, “Attgan: Facial attribute
editing by only changing what you want,” IEEE transactions on image
processing, pp. 5464–5478, 2019.

[14] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” in International conference on machine
learning, 2019, pp. 7354–7363.

[15] M. Geng, P. Peng, Y. Huang, and Y. Tian, “Masked face recognition
with generative data augmentation and domain constrained ranking,” in
Proceedings of the 28th ACM International Conference on Multimedia,
2020, pp. 2246–2254.

[16] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2019, pp. 4401–4410.

[17] Z. Wang, G. Wang, B. Huang, Z. Xiong, Q. Hong, H. Wu, P. Yi,
K. Jiang, N. Wang, Y. Pei et al., “Masked face recognition dataset and
application,” arXiv preprint arXiv:2003.09093, 2020.

[18] A. Cabani, K. Hammoudi, H. Benhabiles, and M. Melkemi,
“Maskedface-net – a dataset of correctly/incorrectly masked face images
in the context of covid-19,” Smart Health, 2021.

[19] J. T. Barron, “A general and adaptive robust loss function,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2019, pp. 4331–4339.

[20] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “Stargan v2: Diverse image
synthesis for multiple domains,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2020, pp. 8188–8197.

[21] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 815–823.

[22] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu, “Cosface: Large margin cosine loss for deep face recognition,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 5265–5274.

[23] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2019, pp. 4690–
4699.

117

http://cs230.stanford.edu/projects_winter_2021/reports/70681837.pdf
http://cs230.stanford.edu/projects_winter_2021/reports/70681837.pdf

Analysing Product Lines of Concurrent Systems with Coloured Petri Nets

Elena Gómez-Martı́nez Esther Guerra Juan de Lara

Universidad Autónoma de Madrid, Madrid, Spain
{MariaElena.Gomez, Esther.Guerra, Juan.DeLara}@uam.es

Abstract

Petri nets are a popular formalism to model and analyse
concurrent systems. They can be combined with software
product lines to support the specification of concurrent sys-
tem families, like variants of controllers, process models,
or configurations of flexible assembly lines. Specifically, a
Petri net product line (PNPL) comprises a (black and white)
Petri net decorated with variability inscriptions, and a fea-
ture model controlling the derivation of admissible nets of
the family. However, the derivable nets cannot be reconfig-
ured at runtime, and the techniques to analyse properties of
such reconfigurations are limited.

To tackle these issues, we present a method to embed a
PNPL into a standard Coloured Petri net. This embedding
permits using the extensive simulation and analysis capa-
bilities of powerful tools like CPN Tools, and enables the
reconfiguration of the product nets at run-time. In this pa-
per, we report on the translation of PNPLs into Coloured
Petri nets, characterize the properties that can be analysed
with this translation, and describe tool support on the basis
of a case study in the area of flexible production systems.

1 Introduction
Petri nets [1] are a popular formalism to model and anal-

yse concurrent systems. Their graphical nature makes mod-
elling intuitive, and their strong theoretical basis enables
powerful analysis possibilities. However, they are limited
when the analysis of (possibly large) families of similar sys-
tems – like variants of process models [2], robots [3], con-
figurations in flexible assembly lines [4] or reconfigurable
manufacturing systems [5] – is required.

To solve this issue, in previous work, we proposed the
notion of Petri net product line (PNPL) [6] as a compact
way to specify families of net variants based on product
line techniques. In essence, a PNPL combines a (black and
white) Petri net annotated with presence conditions, and a
feature model to express the allowed variability. Several
Petri net analysis techniques have been lifted to enable the
analysis of all nets of the family at once, instead of a case-
by-case analysis [6]. However, the analysis is limited to
structural properties (like marked graph, state machine and
free-choice) and the reconfiguration between variants is not
possible at run-time. This hinders the use of PNPLs in

Generator

Conv-1 Conv-2
...

[P
ar
tA
]

FlexCell

PartA PartB[P
ar
tB
]

PNPL

...

tr
an

sf
o
rm

at
io
n CPNswitch

PartA

switch
PartB

[isValid(a,b)]

{A=a, B=b}

Current

Config
Generator

...{A=a, B=b}

Conv-1 Conv-2

{A
=a

, B
=b

}

[PartA(a,b)] [PartB(a,b)]

{A=a, B=b}

run-time
features

design-time
features

Simulation
Analysis (state space)
Run-time reconfiguration

1

2

3

4

gA gB gA gB

initial
config.

Figure 1. Overview of the approach.
applications requiring dynamic reconfigurations, like self-
adaptive cyber-physical systems [7, 8].

To alleviate these issues, we propose to transform PN-
PLs into equivalent standard Coloured Petri nets (CPNs), as
Fig. 1 shows. CPNs [9] extend Petri nets with data types,
so that tokens can carry data, and arcs can query and pro-
duce tokens according to specified conditions. Our mapping
synthesizes a CPN that explicitly represents the current con-
figuration as a coloured token, emulates the presence con-
ditions on the net elements via suitable arcs, and permits
reconfiguring the system to a new feature configuration (cf.
label 3 in Fig. 1). Prior to synthesizing the CPN (label 2),
the user selects the features that may change at run-time,
those fixed at design-time, and an initial configuration. Our
mapping into CPNs enables the simulation of the running
system and opens the door to useful analysis possibilities,
e.g., based on model checking (label 4).

We have implemented the described mapping on an
Eclipse plugin called TITAN. This tool supports the graphi-
cal modelling of PNPLs and the lifted analysis of structural
properties. For this work, we have extended TITAN to trans-
form a given PNPL into a CPN that can be simulated and
analysed within CPN Tools [10].

2 Background
In this section, we introduce Petri nets (Sec. 2.1), PNPLs

(Sec. 2.2) and CPNs (Sec. 2.3) using an example in flexible
manufacturing systems.

2.1. Petri Nets
Petri nets [1] are a graphical formal notation to represent

concurrent systems. A Petri net is a bipartite graph with two
types of nodes: places (graphically depicted as circles) and
transitions (drawn as rectangles). Places can be connected
to transitions, and vice versa, via arcs. Petri nets have a
marking, representing the distributed state of the net. The

DOI reference number: 10.18293/SEKE2022-015

118

genA cnvA
proc

cnv1

cnv2
assembly

ctrlin

out1

out2

inc1

inc2

fix

prod pack

genB cnvB prod1

prod2

Figure 2. Petri net modelling an assembly line.

marking is given by sets of tokens (depicted as black circles
within places) associated to each place.

Fig. 2 shows an example Petri net inspired by [6]. It rep-
resents an assembly line. Transitions genA and genB model
generators of parts of types A and B, which transition proc
processes and sends to any of two parallel conveyor belts
(represented by places cnv1 and cnv2). After a quality con-
trol, transition fix sends the defective parts back. In a fi-
nal step, two machines (represented by transitions prod and
pack) process the parts, until they are assembled.

Petri nets can be simulated by the so-called token game.
A transition is enabled if each input place has at least one
token. Enabled transitions may fire at any moment. Firing
a transition removes one token from each input place of the
transition, and adds a token to each of its output places. In
Fig. 2, transitions genA, genB and pack are enabled. Fir-
ing pack would add a token to place assembly, and would
remove one token from prod1 and prod2.

2.2. Petri Net Product Lines
Petri nets are powerful to represent concurrent systems,

but they are less suitable to capture families of similar sys-
tems in a compact way. For example, each possible con-
figuration of a flexible assembly line – with different types
of input parts, fabrication layouts, and output products –
should be represented as a separate net. This is problematic
if there are many configurations, the features of the assem-
bly line can change, or properties of the whole family need
to be analysed (e.g., can the assembly line manufacture a
certain type of part in all configurations?).

PNPLs [6] combine Petri nets with product lines [11, 12]
to tackle this problem. A PNPL comprises a feature model
(FM) [13] describing the variability space, and a Petri net
(called 150% net) whose elements define presence condi-
tions (PCs). The latter are boolean formulae over features of
the feature model. Specific Petri net products can be derived
from the PNPL by selecting a configuration. This derivation
process removes all elements from the 150% net whose PC
evaluates to false after substituting the selected configura-
tion features by true, and the rest by false.

Fig. 3 shows an example PNPL with the possible config-
urations of a flexible assembly line. The feature model in
Fig. 3(a) allows selecting one or more kinds of input parts
(PartA, PartB), a fabrication layout (optional QualityControl,
optional Parallel conveyor), and one or more kinds of output

genA

[PartA]
[Parallel]

[QualityControl]

[Prod1]

[Prod2]

[Prod1Prod2]

cnvA

proc

cnv1

cnv2

assmbly

ctrlin

out1

out2

inc1

inc2

fix

prod pack

genB cnvB

[PartB]

prod1

prod2

FlexibleAssemblyLine

InParts Process OutProducts

PartA PartB QualityControl Parallel Prod1 Prod2

cross-tree constraints: Prod2 PartA PartB

(a)

(b)

Mandatory

Optional

Or Group

Legend:

Alternative

Figure 3. PNPL of a flexible assembly line. (a)
Feature model. (b) 150% net.

products (Prod1, Prod2). A constraint forces that both types
of input parts are selected to produce Prod2.

The 150% net in Fig. 3(b) has the same underlying net as
Fig. 2, but its elements have PCs (shown in square brackets).
We use dashed, coloured regions to assign the same PC to
several elements. As an example, if a configuration does
not select feature PartB, then transition genB , place cnvB

and their adjacent arcs would be removed from the derived
product net.

2.3. Coloured Petri Nets
Coloured Petri nets (CPNs) [9] extend Petri nets by al-

lowing tokens to carry data. The data structure is given by
assigning a type (a colour) to the places. In CPN Tools,
colours are specified with the Standard ML functional lan-
guage [14], which supports defining datatypes like enumer-
ations, product, union, list, and record types.

Arcs in CPNs are annotated with expressions, which
can encapsulate complex computations. They may also in-
clude free variables, that need to be bound to suitable val-
ues found in the tokens. Transitions can have guards, which
are boolean expressions that need to evaluate to true for the
transition to be enabled. They can be used to test values
from the variables bound in input arcs.

3 Analysing PNPLs with CPNs
Next, we present the transformation of PNPLs into CPNs

(Sec. 3.1) and the analysis possibilities (Sec. 3.2).

3.1. Transforming PNPLs into CPNs
Our approach to analyse behavioural properties of PN-

PLs relies on CPNs. The rationale for this transformation
is to be able to activate or deactivate the elements in the net
structure (places, transitions, arcs) by means of expressions
or guards in the CPN, according to the selected feature con-
figuration. To achieve this, we use the feature model (FM)
and the 150% net to guide the transformation.

119

3.1.1 Transforming the feature model.
To translate the feature model into a CPN, we initially gen-
erate two colour sets to encode a configuration. We create
a generic type called FEATURE (a boolean); and a record
colour set CONFIGURATION with n fields of type FEA-
TURE, being n the number of features in the FM. Each
FEATUREi stores whether the field is selected (true) or not
(false) for a particular configuration. For the running exam-
ple of Fig. 3, the created colour sets are the following:

colset FEATURE = BOOL;
colset CONFIGURATION = record
INPARTS : FEATURE * PARTA : FEATURE * PARTB : FEATURE *
PROCESS : FEATURE * QUALITYCONTROL : FEATURE *
PARALLEL : FEATURE * OUTPRODUCTS : FEATURE * PROD1 : FEATURE *
PROD2 : FEATURE;

Then, a place CONFIG with one token and the colour
set CONFIGURATION is added to the CPN to represent any
configuration, valid or not, generated from the FM. Values
for tokens are extracted from an initial configuration set
beforehand by the user. Moreover, to allow changing the
feature selection at runtime, one transition Switch Featurei

per feature is included in the CPN. This transition is con-
nected with the place CONFIG by two arcs: one input arc
that reads the current value of the feature, and one outgoing
arc switching its value. To reduce the size of the result-
ing CPN and consequently, its analysis time, we make the
following optimization: if a feature needs to be selected in
every valid configuration (i.e., it is mandatory) then we do
not generate a transition to switch its value. In our run-
ning example, for instance, we do not generate such Switch
transitions for features InParts, Process, OutProducts and
FlexibleAssemblyLine. Similarly, the corresponding Switch
transitions are not generated for the non-dynamic features
that are fixed at design time (cf. step 2 in Fig. 1).

For the created transitions, the switched value is col-
lected in a variable of type FEATURE. We also include two
variables, named c and d, with type CONFIGURATION to
store the current and the previous configuration, respec-
tively. Therefore, the defined variables for the running ex-
ample of Fig. 3 are the following:

var InParts, PartA, PartB, Process, QualityControl,
Parallel, OutProducts, Prod1, Prod2 : FEATURE;

var c, d : CONFIGURATION;

The next step is to validate whether the current selection of
features corresponds to a valid configuration. With this pur-
pose, we incorporate a transition called isValid that reads a
token from the place CONFIG. This transition has a guard,
implemented as a function in the CPN ML language, which
encodes the feature model as a propositional formula fol-
lowing the rules proposed in [15]. Therefore, only valid
configurations satisfy this guard and enable the transition.
Firing the transition passes the token with the variable c
containing the value of all features for this valid configura-
tion to the place CURRENT, and removes the old one. Thus,

Figure 4. CPN for the feature model of the
PNPL (some arc expressions omitted).

this place contains the token with the current configuration
which will be used to activate and deactivate elements in the
150% net.

The next listing shows the function implementing the
guard to validate configurations for the running example.
It uses implication and bidirectional functions that we have
defined explicitly, since they do not exist in ML.

fun implies (p,q) = not p orelse q;
fun iff (p, q) = ((not p orelse q) andalso (p orelse not q));
fun isValid (PARAM_FlexibleAssemblyLine, PARAM_Prod1,

PARAM_QualityControl, PARAM_Prod2, PARAM_InParts,
PARAM_PartB, PARAM_Process, PARAM_PartA, PARAM_Parallel,
PARAM_OutProducts) =

iff(PARAM_InParts,PARAM_FlexibleAssemblyLine) andalso
iff(PARAM_Process,PARAM_FlexibleAssemblyLine) andalso
iff(PARAM_OutProducts,PARAM_FlexibleAssemblyLine) andalso
(PARAM_PartA orelse PARAM_PartB) andalso
(implies(PARAM_QualityControl,PARAM_Process) andalso
implies(PARAM_Parallel,PARAM_Process)) andalso

(PARAM_Prod1 orelse PARAM_Prod2) andalso
implies(PARAM_Prod2,(PARAM_PartA andalso PARAM_PartB));

Fig. 4 shows the fragment of the CPN resulting from the
feature model depicted in Fig. 3(a), where features Quality-
Control and Parallel are static and hence there are no Switch
transitions for them.

3.1.2 Transforming the 150% net.
The structural elements of the 150% net (places, transitions,
arcs) have an almost direct translation into the CPN. The
type of all the places is INT and they are marked according
to the initial marking of the 150% net. To access the current
configuration, every transition of the 150% net is connected
by a bidirectional arc to the place CURRENT. The arc ex-
pression is the variable c, which stores the current configu-
ration.

We model the PCs by means of arc expressions and tran-
sition guards. They allow to activate or deactivate elements
of the net, since both determine if a transition is enabled
(for a given marking). Specifically, the PCs of transitions
are directly transformed into transition guards in the CPN.
Regarding places, there is no way to activate or deactivate
them in the CPN, hence, we emulate this behaviour by ex-
pressions in their input and output arcs. The PCs of arcs

120

are translated into if-then-else expressions, where the if -
condition is the PC of the arc, the then-part is a new token to
the output place, and the else-part is no token. For instance,
the arc expression of the arc from transition pack to place
assembly of the 150% net in Fig. 3 is:

if (#FEAT_Prod1 c andalso #FEAT_Prod2 c) then 1ˋ1 else 0ˋ1

where operator ♯ retrieves the field values within records.
Overall, the expression adds a token only if the PC
(Prod1∧Prod2) evaluates to true on the current configura-
tion (given by c). As noted, PCs are parsed into the field
names of the record colour set CONFIGURATION, and log-
ical operators (and and or) are adapted to the ML language
(andalso and orelse).

The resulting CPN model can be analysed using CPN
Tools [10] in order to study behavioural properties. Fig. 5
shows the CPN obtained from the running example.

3.2. Analysing the PNPL
Most CPNs analyses are based on the occurrence graph:

a graph-based representation of the state-space of reachable
markings [9]. In PNPLs, this state-space represents all pos-
sible executions of the net, in all possible configurations al-
lowed by the change of dynamic features. Once PNPLs are
transformed into CPN, some of their properties that can be
analysed are [10]:

Boundedness. A place is bounded if it can admit a limited
number of tokens. CPN Tools reports the minimum and
maximum bounds for each place. In PNPLs, the places as-
sociated to the feature model are bounded, and the bounds
reported for the places in the 150% net are calculated for
any possible configuration (no place in any configuration
of our PNPL is bounded).

Home markings are those reachable from every reachable
marking of the net. They may represent cyclic behaviours
that might be desirable in all valid configurations (our
PNPL lacks home markings).

Liveness is concerned with transitions staying active. CPN
Tools reports dead markings (those where no firing is pos-
sible and the execution ends), live transitions (there is a
firing sequence containing the transition in any reachable
marking), and dead transitions (not enabled in any reach-
able marking). In PNPLs, the interest is on liveness of
transitions of the 150% net, which refers to all possible
configurations of dynamic features. Our PNPL lacks dead
markings and dead transitions in any configuration.

Model checking allows formulating properties in temporal
logics, to be checked on the state-space [16]. In PNPLs,
these formulae can combine features of the feature model
with properties of the markings in the 150% net. In our
running example, we could check if, given a selection of

static features, then for every configuration of the dynamic
features, a token eventually reaches either prod1 or prod2

in every execution (so that products are produced). This
is not the case in configurations with QualityControl.

4 Tool Support
We have built the tool TITAN (Tool for Petri net product

line analysis) to support our approach. It is an Eclipse plug-
in and uses the Eclipse Modeling Framework (EMF) [17]
as the underlying modelling technology. It is available on
https://github.com/antoniogarmendia/titan.

The tool integrates a graphical editor to define the 150%
Petri net and its PCs. The editor is based on Sirius [18],
a framework to create graphical modelling environments.
TITAN also extends FeatureIDE [19] – a widely used plug-
in in the field of product line engineering – to specify the
feature model, the feature configurations and generate the
product nets. TITAN supports the lifted analysis of struc-
tural properties of the PNPL, following the approach de-
scribed in [6]. For this purpose, it relies on two libraries: the
Sat4J solver [20] for solving boolean satisfaction problems
(used to analyse properties state-machine, marked graph,
free-choice and extended free-choice), and the JaCoP Java
library as constraint programming (CP) solver [21] (used to
analyse P- and T-invariants).

The architecture of TITAN is extensible via extension
points with new analysis techniques and exporters to the
input format of other Petri net tools. In addition to CPN
Tools [10], which includes the presented transformation of
PNPLs into CPNs, TITAN has exporters of the 150% net to
GreatSPN [22], TimeNET [23] and WoPeD [24].

Fig. 6 shows TITAN with the running example. On the
left, the Eclipse explorer contains the FeatureIDE project,
which includes the PNPL of the running example, and the
generated CPN file with its configuration file. The middle
part shows the 150% net and its PCs. The right side displays
the feature model. The result of the T-invariant analysis is
presented on the bottom.

5 Related Work
Our proposal realises the notion of dynamic software

product line (DSPL) for Petri nets. DSPLs [25] allow con-
trolling the variability of adaptive systems at runtime. A
DSPL can be seen as a system where the feature configura-
tions correspond to system adaptations. Some authors anal-
yse different aspects of DSPLs (but not for Petri nets). For
instance, Sawyer et al. [26] use constraint solving to find the
optimal configuration of self-adaptive systems, Olaechea
et al. [27] employ trace checking to analyse the quality
of service of all configurations of a DSPL, Göttmann et
al. [28] translate DSPLs into timed automata to analyse the
worst/best execution time of reconfiguration sequences, Ay-
ala et al. [29] analyse DSPLs to predict the impact of recon-

121

Figure 5. CPN for the 150% net and PCs of the PNPL.

Figure 6. Screenshot of TITAN.

figurations on the system behaviour, and Quinton et al. [30]
detect inconsistencies that may arise upon evolving a DSPL.
Compared to them, our proposal relies on a translation of
Petri nets into CPNs, which enables the analysis of proper-
ties based on model checking and the reachability graph.

Other works translate SPLs into Petri nets for analysis.
For example, Martı́nez et al. [31] translate Orthogonal Vari-
ability Modeling (OVM) models capturing the variability of
an SPL, into Petri nets which are analysed to uncover vari-
ants that do not appear in any SPL configuration. Their goal
(analysing OVM models) is different from ours (analysing
Petri net families), and the analysed properties also differ.

Closer to our approach, some works extend Petri nets
with variability and variability-aware analysis techniques.
Feature nets (FNs) [32] add variability to nets by attach-
ing PCs to either transitions or arcs (but not to both at the
same time as we do). The analysis of FNs is lifted to a vari-
able reachability graph extended with PCs; instead we reuse
proven standard analysis tools for CPNs out-of-the box. Dy-
namic FNs (DFNs) [32] extend FNs by enabling the firing
of transitions to update the feature selection; instead, we use

a feature model to decouple the net structure from its vari-
ability. Adaptive Petri nets [33] use modules to represent
the variability of Petri nets. When selecting a configuration,
the net is flattened by merging all the modules into a stan-
dard Petri net with inhibitor arcs. In our case, we capture the
variability with a feature model, and the features are repre-
sented in the resulting CPN and can change at run-time.

Finally, Petri nets have been used to implement dynamic
reconfigurations in different domains. Weyers [34] uses ref-
erence Petri nets (a kind of CPN) to model adaptive graphi-
cal user interfaces. Grobelna [35] represents reconfigurable
modules of FPGAs as Petri nets, and model checks the satis-
faction of the system requirements. Zhang [36] uses object-
oriented CPNs with changeable structures to model recon-
figurable manufacturing systems. We believe that our work
could serve to define and provide analysis capabilities to
these and other reconfigurable Petri net-based approaches.

6 Conclusions and Further Work
In this paper, we have presented a mapping from PNPLs

into CPNs. The mapping enables the run-time adaptation of
the net, and allows using the tooling and analysis methods
available for CPNs. We have demonstrated the feasibility
of the approach by an implementation atop the TITAN tool,
which is able to target CPN Tools.

In the future, we plan to translate the analysis results
from CPN Tools back into TITAN. We will also enrich PN-
PLs with time, to profit from the timing analysis capabilities
of CPN Tools. Finally, we would also like to work on ani-
mating the token-game, lifting it to the PNPL level.

Acknowledgement
Work funded by the Spanish Ministry of Science

(RTI2018-095255-B-I00) and the R&D programme of
Madrid (P2018/TCS-4314).

122

References

[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[2] M. L. Rosa, W. M. P. van der Aalst, M. Dumas, and F. Milani, “Busi-
ness process variability modeling: A survey,” ACM Comput. Surv.,
vol. 50, no. 1, pp. 2:1–2:45, 2017.

[3] S. Garcı́a, D. Strüber, D. Brugali, A. D. Fava, P. Schillinger, P. Pellic-
cione, and T. Berger, “Variability modeling of service robots: Expe-
riences and challenges,” in Proc. VaMoS. ACM, 2019, pp. 8:1–8:6.

[4] Z. Nabi and T. Aized, “Modeling and analysis of carousel-based
mixed-model flexible manufacturing system using colored Petri net,”
Adv. in Mech. Eng., vol. 11, no. 12, pp. 1–14, 2019.

[5] J. Li, X. Dai, and Z. Meng, “Automatic reconfiguration of petri net
controllers for reconfigurable manufacturing systems with an im-
proved net rewriting system-based approach,” IEEE Trans Autom.
Sci. Eng., vol. 6, no. 1, pp. 156–167, 2009.

[6] E. Gómez-Martı́nez, J. de Lara, and E. Guerra, “Extensible structural
analysis of Petri net product lines,” Trans. Petri Nets Other Model.
Concurr., vol. XV, no. 12530, pp. 1–23, 2021.

[7] D. Perez-Palacin, J. Merseguer, and R. Mirandola, “Analysis
of bursty workload-aware self-adaptive systems,” in Proc. ICPE.
ACM, 2012, pp. 75–84.

[8] R. Seiger, S. Huber, and T. Schlegel, “Toward an execution system
for self-healing workflows in cyber-physical systems,” Softw. Syst.
Model., vol. 17, no. 2, pp. 551–572, 2018.

[9] K. Jensen, Coloured Petri Nets - Basic Concepts, Analysis Methods
and Practical Use, ser. EATCS Monographs on Theoretical Com-
puter Science. Springer, 1992.

[10] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured petri nets and
CPN tools for modelling and validation of concurrent systems,” Int.
J. Softw. Tools Technol. Transf., vol. 9, no. 3–4, pp. 213–254, 2007,
see also https://cpntools.org/.

[11] L. Northrop and P. Clements, Software Product Lines: Practices and
Patterns. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2002.

[12] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering. Foundations, Principles and Techniques. Springer-
Verlag Berlin Heidelberg, 2005.

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
Tech. Rep. CMU/SEI-90-TR-021, 1990.

[14] R. Milner, R. Harper, D. MacQueen, and M. Tofte, The Definition of
Standard ML, revised edition ed. MIT press, 1997.

[15] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis
of feature models 20 years later: A literature review,” Information
Systems, vol. 35, no. 6, pp. 615–636, 2010.

[16] E. M. Clarke, T. A. Henzinger, and H. Veith, “Introduction to model
checking,” in Handbook of Model Checking. Springer, 2018, pp.
1–26.

[17] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:
Eclipse Modeling Framework 2.0, 2nd ed. Addison-Wesley Pro-
fessional, 2009.

[18] Sirius, https://www.eclipse.org/sirius/.

[19] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich,
and G. Saake, Mastering software variability with FeatureIDE.
Springer, 2017.

[20] D. L. Berre and A. Parrain, “The Sat4j library, release 2.2,” JSAT,
vol. 7, no. 2-3, pp. 59–6, 2010.

[21] K. Kuchcinski and R. Szymanek, “JaCoP - Java Constraint Program-
ming solver,” in CP Solvers: Modeling, Applications, Integration,
and Standardization, 2013.

[22] E. G. Amparore, “Reengineering the editor of the greatspn frame-
work,” in Proc. PNSE@Petri Nets, ser. CEUR Workshop Proceed-
ings, vol. 1372. CEUR-WS.org, 2015, pp. 153–170.

[23] A. Zimmermann, “Modelling and performance evaluation with
timenet 4.4,” in QEST, ser. LNCS, vol. 10503. Springer, 2017, pp.
300–303.

[24] T. Freytag and M. Sänger, “WoPeD - An Educational Tool for Work-
flow Nets,” in BPM (Demos), ser. CEUR Workshop Proceedings, vol.
1295. CEUR-WS.org, 2014, p. 31.

[25] S. O. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic
software product lines,” Computer, vol. 41, no. 4, pp. 93–95, 2008.

[26] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes, “Using
constraint programming to manage configurations in self-adaptive
systems,” Computer, vol. 45, no. 10, pp. 56–63, 2012.

[27] R. Olaechea, J. M. Atlee, A. Legay, and U. Fahrenberg,
“Trace checking for dynamic software product lines,” in Proc.
SEAMS@ICSE. ACM, 2018, pp. 69–75.

[28] H. Göttmann, L. Luthmann, M. Lochau, and A. Schürr, “Real-time-
aware reconfiguration decisions for dynamic software product lines,”
in Proc. SPLC. ACM, 2020, pp. 13:1–13:11.

[29] I. Ayala, A. V. Papadopoulos, M. Amor, and L. Fuentes, “ProDSPL:
Proactive self-adaptation based on dynamic software product lines,”
J. Syst. Softw., vol. 175, p. 110909, 2021.

[30] C. Quinton, M. Vierhauser, R. Rabiser, L. Baresi, P. Grünbacher, and
C. Schuhmayer, “Evolution in dynamic software product lines,” J.
Softw. Evol. Process., vol. 33, no. 2, 2021.

[31] C. Martı́nez, H. P. Leone, and S. M. Gonnet, “A petri net approach for
representing orthogonal variability models,” International Journal of
Computers & Technology, vol. 9, no. 1, pp. 995–1003, 2013.

[32] R. Muschevici, J. Proença, and D. Clarke, “Feature nets: Behavioural
modelling of software product lines,” Softw. Syst. Model., vol. 15,
no. 4, pp. 1181–1206, 2016.

[33] C. Mai, R. Schöne, J. Mey, T. Kühn, and U. Assmann, “Adaptive
Petri nets: A Petri net extension for reconfigurable structures,” in
Proc. ADAPTIVE. Springer, 2018, pp. 15–23.

[34] B. Weyers, “Formal description of adaptable interactive systems
based on reconfigurable user interface models,” in The Handbook
of Formal Methods in Human-Computer Interaction. Springer In-
ternational Publishing, 2017, pp. 273–294.

[35] I. Grobelna, “Model checking of reconfigurable FPGA modules
specified by petri nets,” J. Syst. Archit., vol. 89, pp. 1–9, 2018.

[36] L. L. Zhang and A. Ittoo, “Development of an rms model based
on colored object-oriented petri nets with changeable structures,” in
Proc. IEEM. IEEE, 2009, pp. 1719–1724.

123

Inter- and Intra-Series Embeddings Fusion Network for
Epidemiological Forecasting

Feng Xie
National University of Defense

Technology
Changsha, China

xiefeng@nudt.edu.cn

Zhong Zhang
National University of Defense

Technology
Changsha, China

zhangzhong@nudt.edu.cn

Xuechen Zhao
National University of Defense

Technology
Changsha, China

zhaoxuechen@nudt.edu.cn

Bin Zhou∗
National University of Defense

Technology
Changsha, China

binzhou@nudt.edu.cn

Yusong Tan
National University of Defense

Technology
Changsha, China
ystan@nudt.edu.cn

ABSTRACT
The accurate forecasting of infectious epidemic diseases is the key to
effective control of the epidemic situation in a region. Most existing
methods ignore potential dynamic dependencies between regions or
the importance of temporal dependencies and inter-dependencies
between regions for prediction. In this paper, we propose an Inter-
and Intra-Series Embeddings Fusion Network (SEFNet) to improve
epidemic prediction performance. SEFNet consists of two parallel
modules, named Inter-Series Embedding Module and Intra-Series
Embedding Module. In Inter-Series Embedding Module, a multi-
scale unified convolution component called Region-Aware Convo-
lution is proposed, which cooperates with self-attention to capture
dynamic dependencies between time series obtained from multiple
regions. The Intra-Series Embedding Module uses Long Short-Term
Memory to capture temporal relationships within each time series.
Subsequently, we learn the influence degree of two embeddings and
fuse them with the parametric-matrix fusion method. To further
improve the robustness, SEFNet also integrates a traditional au-
toregressive component in parallel with nonlinear neural networks.
Experiments on four real-world epidemic-related datasets show
SEFNet is effective and outperforms state-of-the-art baselines.

KEYWORDS
deep learning; epidemiological forecasting; time series

1 INTRODUCTION
The outbreak of an epidemic will bring huge disasters to a region
and even a country. The World Health Organization (WHO) esti-
mates that influenza annually causes approximately 3-5 million se-
vere cases and 290,000-650,000 deaths.1 In recent years, the COVID-
19 pandemic has spread to more than 200 countries and territories
around the world,2 and the number of infections and deaths in
almost all affected countries is increasing at an alarming rate. Ac-
curately forecasting epidemics plays an essential role in allocating
healthcare resources and promoting administrative planning.

∗Corresponding Author: binzhou@nudt.edu.cn
1https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal)
2https://covid19.who.int/
DOI reference number: 10.18293/SEKE2022-109

The epidemic prediction is similar to the multivariate time series
forecasting task, but there are also significant differences. Multi-
variate time series forecasting methods inherently assume inter-
dependencies among variables [21], while epidemic prediction
needs to deal with unknown and complex patterns in the spread of
epidemics and dynamic correlations between regions. The epidemic
situation of a region at a certain time step is correlated with both
its previous confirmed cases and other regions’ epidemic situation.
Therefore, two types of dependencies can be utilized in time series
as demonstrated by Figure 1 and the epidemic time series modeling
of regions can be decomposed into two parts:

region j

temporal dependencies

inter-dependency
between regions

input time series prediction

co
nf

irm
ed

 c
as

esregion i

Figure 1: The blue boxes indicate the temporal dependency
between time points, while the green boxes indicate the inter-
dependency between regions.

• Inter-series embedding modeling. There are dynamic depen-
dencies among regions/time series. When epidemics spread in
different geographic regions, it is highly likely that similar pro-
gression patterns are shared among multiple regions owing to
various factors [9] (e.g., similar geographic topology or climate),
and these similar patterns can aid in prediction.

• Intra-series embedding modeling. There are temporal depen-
dencies within a region/time series (e.g., seasonal influenza). The
epidemic development trend of one region also can be distin-
guished from others, this is due to region-specific factors such
as government intervention, healthcare quality, climate, etc.
To date, various methods have been proposed for epidemic fore-

casting, but they suffer from some limitations that are bad for per-
formance. First, using vanilla Recurrent Neural Networks (RNNs) [2,

124

Inter-Series Embedding Module

Intra-Series Embedding Module

Linear

Region i

Region j

Region-Aware
Convolution

AutoRegressive Component

... ... Parametric-Matrix
Fusion

Add

×
×

L

Attention Layer

Confirmed cases data

Figure 2: The overview of SEFNet. The original time series for each region are copied to three components: (1) Inter-Series
Embedding module (top); (2) Intra-Series Embedding module (middle); and (3) AutoRegressive component (bottom).

10] or single-scale Convolution Neural Networks (CNNs) [9, 20] is
hard to capture multi-scale and complex patterns, thus resulting in
a certain degree of distortion, making it difficult to extract dynamic
dependencies between time series. Second, some methods are dedi-
cated to capturing dependencies between regions by introducing
the "Attention Mechanism" [2, 9, 10], but these dependencies may
misguide the final prediction because the progression patterns or
data distribution of different regions is not fully consistent. There-
fore, we believe both inter-series dependencies and intra-series
dependencies jointly contribute to epidemic forecasting, and their
influence degree on prediction results varies by region.

To tackle these challenges, we propose a novel deep learning
model called Inter- and Intra-Series Embeddings Fusion Network
(SEFNet) that extract inter- and intra-series embeddings through
two parallel modules respectively and fuse them using parametric-
matrix fusion [22]. To further improve the robustness, we also
integrate autoregressive component parallel to the model. Our con-
tributions are summarized below:
• We propose a new model that extracts inter-series correlations

and intra-series temporal dependencies through two separate
neural networks and uses parametric-matrix fusion to emphasize
the importance of each information for epidemic prediction.

• We propose a multi-scale unified convolution component called
Region-Aware Convolution that is capable of extracting local, pe-
riodic, and global patterns to better obtain feature representation
and capture potential dependencies between regions.

• We conduct extensive experiments on four real-world epidemic-
related datasets. The results show that our model achieves better
performance than other state-of-the-art methods and demon-
strates the effectiveness of each component.

2 RELATEDWORK
There has been a large body of work focusing on epidemic forecast-
ing in literature, including statistical models [8, 13, 18], compart-
ment models [4, 19], and swarm intelligence models [3]. In recent
years, deep learning models have shown excellent performance in

various prediction tasks due to their powerful training and data-
driven capabilities. CNNRNN-Res [20] is the first to apply deep
learning for epidemiological prediction. Deng et al. [2] proposed
Cola-GNN that treats regions as nodes in a graph and applies Graph
Neural Networks (GNNs) to capture dependencies among regions.
Jung et al. [10] proposed SAIFlu-Net that combines Long Short-
Term Memory and self-attention to capture inter-dependencies
between regions. Jin et al. [9] developed ACTs based on inter-series
attention for COVID-19 forecasting. Cui et al. [1] designed a multi-
range encoder-decoder framework for COVID-19 prediction. Nowa-
days, improving epidemic prediction is an open research problem
to help the world mitigate the crisis that threatens public health.

3 THE PROPOSED METHOD
3.1 Problem Formulation
We formulate the epidemic prediction problem as a time series
forecasting task. We have a total of 𝑁 regions, and each region is
associated with a time series input for a window𝑇 , where 𝑇 is the
length of historical observation data. Furthermore, we denote the
epidemiology profiles X = [x𝑡−𝑇+1, ..., x𝑡] ∈ R𝑁×𝑇 at time point 𝑡 .
An instance for region 𝑖 is represented by x𝑖: = [𝑥𝑖,𝑡−𝑇+1, ..., 𝑥𝑖,𝑡] ∈
R𝑇 . The goal of this task is to predict the epidemiology profile of the
future time point 𝑡 + ℎ, where ℎ is the horizon also called lead time.
The proposed model SEFNet is shown in Figure 2. In the following
sections, we introduce the building blocks of SEFNet in detail.

3.2 Intra-Series Embedding Module
The first module is Intra-Series Embedding module, which uses the
historical information of time series to focus on the autocorrelation
also called temporal dependencies of a single time series. In this
work, we apply the Long Short-TermMemory (LSTM) [5] to capture
temporal sequential dependency. The Recurrent Neural Networks
(RNNs) are shown effective in sequence modeling and LSTM is
a variant of RNNs, which can solve the vanishing gradients and
exploding gradients problems in traditional RNNs [15]. Let 𝐷 be

125

the dimension of the hidden state of LSTM, we use the original
version of LSTM and formulate it as:

h𝑖,𝑡 = LSTM(𝑥𝑖,𝑡 , h𝑖,𝑡−1), (1)

where h𝑖,𝑡 is the output representation of region 𝑖 at time point 𝑡 . For
each region, we use the last output of LSTM as region’s intra-series
embedding h𝑖𝑛𝑡𝑟𝑎

𝑖
∈ R𝐷 .

3.3 Inter-Series Embedding Module
The second module is Inter-Series Embedding module which fo-
cuses on dependencies between time series. First, we obtain tem-
poral patterns through the proposed Region-Aware Convolution
(RAConv), which is a multi-scale unified convolution component.
Next, we feed the output of RAConv into an attention layer to
generate embeddings of dynamic dependencies between regions.

(a) Local Pattern (b) Periodic Pattern (c) Global Pattern

co
nf

irm
ed

 c
as

es

Figure 3: The region 4 (blue line) has a dynamic pattern corre-
lations with different regions within different time periods.

The correlation distribution is calculated based on the feature
similarity between nodes [12]. The more accurate feature describes,
the better performance of the attention layer can be improved.
In epidemic prediction task, there are many similar progression
patterns shared among regions, such as local patterns, periodic
patterns, and global patterns. Figure 3 shows different temporal
patterns of influenza case trends in different Health and Human
Services (HHS) regions in the United States. Inspired by the In-
ception [16] in computer vision, we propose a multi-scale unified
component called Region-Aware Convolution (RAConv) that can
extract local, periodic, and global patterns simultaneously. The
structure of RAConv is shown in Figure 4. RAConv consists of
three branches that apply convolution blocks with different scales
or different types, thus is capable of capturing multi-scale and more
complex feature patterns. Each convolution block has 𝐾 filters. The
local pattern branch applies standard convolution with some small
kernel sizes to extract local patterns in the time series through local
mapping. The periodic pattern branch inspired by skip-RNN in LST-
Net [11] applies dilated convolution that enables a large receptive
field via dilation factor to capture the periodic pattern. Formally, the
dilated convolution is a standard convolution applied to input with
defined gaps. The global pattern branch applies standard convolu-
tion with the same size as 𝑇 to extract time-invariant patterns of
all time steps for regions [6] (e.g., time series uptrend in Figure 3c).
We denote convolution filter in RAConv as 𝑓1×𝑠,𝑑 where 𝑠 is kernel
size and 𝑑 is dilated factor. We empirically choose the kernel size 𝑠
to {3,5,𝑇 }, and dilated factor 𝑑 to {1,2}. We can get the local, periodic,
and global features of region 𝑖 by following equations:

h𝑙𝑖 = [Pool(BN(x𝑖: ★ f1×3,1)); Pool(BN(x𝑖: ★ f1×5,1))], (2)

Local Pattern Global PatternPeriodic Pattern

1×3×k Conv.

BatchNorm

Max Pooling

1×3×k
Dilated Conv.

BatchNorm

Max Pooling

1×5×k Conv.

BatchNorm

Max Pooling

1×5×k
Dilated Conv.

BatchNorm

Max Pooling

1×P×k Conv.

BatchNorm

T

tanh

Region i

Concatenation

Figure 4: The structure of Region-Aware Convolution, which
consists of three pattern branches.

h𝑝
𝑖
= [Pool(BN(x𝑖: ★ f1×3,2)); Pool(BN(x𝑖: ★ f1×5,2))], (3)

h𝑔
𝑖
= BN(x𝑖: ★ f1×𝑇,1), (4)

where★ is convolution operator, and [;] is concatenation operation.
𝑃𝑜𝑜𝑙 (·) is the Adaptive Max Pooling layer that can not only capture
the most representative features, but also effectively reduce the
amount of parameters. Adaptive Max Pooling is able to control the
output size same as parameters 𝑃 . 𝐵𝑁 (·) is the Batch Normaliza-
tion [7] layer that normalize the data and speed up convergence.
The convolution operation of x with f at step 𝑗 is represented as:

x★ f1×𝑠,𝑑 (𝑗) =
𝑠∑︁
𝑖=1

f1×𝑘 (𝑖)x(𝑗 − 𝑑 × 𝑖). (5)

Next, we concatenate three patterns and apply an element-wise
activation function (e.g., hyperbolic tangent):

h𝑑𝑒𝑣𝑖 = tanh([h𝑙𝑖 ; h
𝑝

𝑖
; h𝑔
𝑖
]). (6)

For each time series, we execute the above process and get the
intermediate matrix called H𝑑𝑒𝑣 ∈ R𝑁×(𝑃+1)𝐾 .

Due to the powerful feature extraction capability of the self-
attention network, we apply a typical self-attention network in-
spired by the Transformer [17] to capture the dependencies among
regions. Let 𝐴 be the dimension of inter-series embedding. We
can calculate attention distribution A and inter-series embedding
matrix H𝑖𝑛𝑡𝑒𝑟 ∈ R𝑁×𝐴 by following equations:

A = softmax((H𝑑𝑒𝑣W𝑄) (H𝑑𝑒𝑣W𝐾)𝑇), (7)

H𝑖𝑛𝑡𝑒𝑟 = AH𝑑𝑒𝑣W𝑉 , (8)
where W𝑄 , W𝐾 , and W𝑉 ∈ R(𝑃+1)𝐾×𝐴 are the weight matrices
that linearly map the H𝑑𝑒𝑣 to query, key, and value matrices.

3.4 Fusion
Directly concatenating or summing inter-series embedding and
intra-series embedding will have the following problems: (1) In-
consistent scale. Since two feature embeddings come from dif-
ferent neural network modules, the structural differences of each
module (e.g., activation function) will lead to inconsistent scales of
feature embeddings; (2) Different importance. Two feature em-
beddings describe different feature information of time series so the

126

importance of two feature embeddings is very different in the pro-
cess of epidemiology forecasting (e.g, temporal dependency is more
significant for a region with periodic recurrence of an epidemic,
although there may be similar development patterns to others).
Therefore, to address these problems, we adopt parametric-matrix
fusion [22] to adaptively control the flow of inter-series embedding
and intra-series embedding and fuse them together:

H𝑓 𝑢𝑠 = [W𝑖𝑛𝑡𝑒𝑟 ◦ H𝑖𝑛𝑡𝑒𝑟 ;W𝑖𝑛𝑡𝑟𝑎 ◦ H𝑖𝑛𝑡𝑟𝑎], (9)

where H𝑓 𝑢𝑠 ∈ R𝑁×(𝐷+𝐴) is the ouput of fusion operation. ◦ is
element-wise multiplication.W𝑖𝑛𝑡𝑒𝑟 and W𝑖𝑛𝑡𝑟𝑎 are the learnable
parameters that adjust the degrees affected by inter-series embed-
ding and intra-series embedding respectively.

3.5 Prediction
Due to the nonlinear characteristics of Convolutional, Recurrent
and self-attention components, the scale of neural network output
is not sensitive to input. Meanwhile, the historical infection cases of
each region are not purely nonlinear, which cannot be fully handled
well by neural networks. To address these drawbacks, we retain
the advantages of traditional linear models and neural networks
by combining a linear part to design a more accurate and robust
prediction framework inspired by [11, 14]. Specifically, we adopt
the classical AutoRegressive (AR) model as the linear component in
a parallel manner. Denote the forecasting result of AR component
as ŷ𝑙

𝑡+ℎ ∈ R𝑁 that can be calculated by following equation:

𝑦𝑙
𝑖,𝑡+ℎ =

𝑞−1∑︁
𝑚=0

W𝑎𝑟
𝑚 𝑥𝑖,𝑡−𝑚 + 𝑏𝑎𝑟 , (10)

whereW𝑎𝑟 is the weight matrix and 𝑏𝑎𝑟 is the bias. 𝑞 is the look-
back window of AR that need be less than or equal to input window
size 𝑇 . Then, we feed the output after fusion operation to a dense
layer to get the nonlinear part of the final prediction:

ŷ𝑛
𝑡+ℎ = H𝑓 𝑢𝑠W𝑛 + b𝑛 . (11)

The final prediction of model is then obtained by summing the
nonlinear part and the linear part got by AR component:

ŷ𝑡+ℎ = ŷ𝑛
𝑡+ℎ + ŷ𝑙

𝑡+ℎ . (12)

In the training process, we adopt the Mean Square Error as the
loss function that defined as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
\

∥y𝑡+ℎ − ŷ𝑡+ℎ ∥22 , (13)

where y𝑡+ℎ = [𝑦1,𝑡+ℎ, ..., 𝑦𝑁,𝑡+ℎ] ∈ R𝑁 is the true value at time
point 𝑡 + ℎ, and \ are all learnable parameters in the model.

Table 1: Dataset statistics: min, max, mean, and standard de-
viation (SD) of patient counts; dataset size means the number
of regions multiplied by the number of samples.

Datasets Size Min Max Mean SD

Japan-Prefectures 47×348 0 26635 655 1711
US-Regions 10×785 0 16526 1009 1351
US-States 49×360 0 9716 223 428
Canada-Covid 13×717 0 127199 3082 8473

4 EXPERIMENTS
4.1 Datasets and Metrics
We prepare four real-world epidemic-related datasets as follows,
and their data statistics are shown in Table 1.
• Japan-Prefectures. This dataset is collected from the Infec-

tious Diseases Weekly Report (IDWR) in Japan,3 which contains
weekly influenza-like-illness statistics from 47 prefectures, rang-
ing from August 2012 to March 2019.

• US-Regions. This dataset is the ILINet portion of the US-HHS
dataset,4 consisting of weekly influenza activity levels for 10
HHS regions of the U.S. mainland for the period of 2002 to 2017.
Each HHS region represents some collection of associated states.

• US-States. This dataset is collected from the Center for Disease
Control (CDC).4 It contains the count of patient visits for ILI
(positive cases) for each week and each state in the United States
from 2010 to 2017. After removing a state with missing data we
keep 49 states remaining in this dataset.

• Canada-Covid. This dataset is publicly available at JHU-CSSE.5
We collect daily COVID-19 cases from January 25, 2020 to January
10, 2022 in Canada (including 10 provinces and 3 territories).
We adopt two metrics for evaluation that are widely used in

epidemic forecasting, including the Root Mean Squared Error
(RMSE) and the Pearson’s Correlation (PCC). RMSE measures
the difference between predicted and true value after projecting
the normalized values into the real range. PCC is a measure of the
linear dependence between time series. For RMSE lower value is
better, while for PCC higher value is better.

4.2 Methods for Comparison
We compared the proposed model with the following methods.
• AR The most classic statistical methods in time series analysis.
• LRidge The vector autoregression (VAR) with L2-regularization.
• LSTNet [11] A deep learning model that combines CNN and

RNN to extract short- and long-term patterns.
• TPA-LSTM [14] An attention based LSTM network that em-

ploys CNN for pattern representations;
• CNNRNN-Res [20] A deep learning model that combines CNN,

RNN, and residual links for epidemiological prediction.
• SAIFlu-Net [10] A self-attention based deep learning model for

regional influenza prediction.
• Cola-GNN [2] A deep learning model that combines CNN, RNN

and GNN for epidemiological forecasting.

4.3 Experimental Details
All programs are implemented using Python 3.8.5 and PyTorch 1.9.1
with CUDA 11.1 (1.9.1 cu111) in an Ubuntu server with an Nvidia
Tesla K80 GPU. Our source codes are publicly available.6

Experimental setting. All datasets have been split into training
set(50%), validation set(20%) and test set(30%). The batch size is set
to 128. We use Min-Max normalization to convert data to [0,1] scale
and after prediction, we denormalize the prediction value and use it

3https://tinyurl.com/y5dt7stm
4https://tinyurl.com/y39tog3h
5https://github.com/CSSEGISandData/COVID-19
6https://github.com/Xiefeng69/SEFNet

127

Table 2: RMSE and PCC performance of different methods on four datasets with horizon = 3, 5, 10. Bold face indicates the best
result of each column and underlined the second-best. For RMSE lower value is better, while for PCC higher value is better.

Dataset Japan-Prefectures US-Regions US-States Canada-Covid
Horizon Horizon Horizon Horizon

Methods Metrics 3 5 10 3 5 10 3 5 10 3 5 10
AR RMSE 1705 2013 2107 757 997 1330 204 251 306 3488 4545 7154

PCC 0.579 0.310 0.238 0.878 0.792 0.612 0.909 0.863 0.773 0.973 0.955 0.869
LRidge RMSE 1711 2025 1942 870 1059 1270 276 295 324 3326 4372 7179

PCC 0.308 0.429 0.238 0.878 0.792 0.612 0.909 0.863 0.773 0.975 0.957 0.868
LSTNet RMSE 1459 1883 1811 801 998 1157 249 299 292 3270 6789 9561

PCC 0.728 0.432 0.518 0.868 0.746 0.609 0.850 0.759 0.760 0.967 0.847 0.645
TPA-LSTM RMSE 1142 1192 1677 761 950 1388 203 247 236 2731 3905 7671

PCC 0.879 0.868 0.644 0.847 0.814 0.675 0.892 0.833 0.849 0.980 0.956 0.767
CNNRNN-Res RMSE 1550 1942 1865 738 936 1233 239 267 260 6175 8644 9755

PCC 0.673 0.380 0.438 0.862 0.782 0.552 0.860 0.822 0.820 0.659 0.589 0.475
SAIFlu-Net RMSE 1356 1430 1527 661 871 1158 167 238 236 4409 7128 8514

PCC 0.765 0.654 0.592 0.903 0.800 0.674 0.927 0.842 0.845 0.745 0.775 0.596
Cola-GNN RMSE 1051 1117 1372 636 855 1134 167 202 241 2954 4036 7336

PCC 0.901 0.890 0.813 0.909 0.835 0.717 0.933 0.897 0.822 0.986 0.975 0.882

SEFNet RMSE (↓) 1020 1123 1319 618 821 1036 162 196 232 2157 3339 7079
PCC (↑) 0.904 0.893 0.826 0.909 0.842 0.725 0.935 0.900 0.833 0.990 0.978 0.895

for evaluation. The input window size𝑇 is set to 20, and the horizon
ℎ is set to {3,5,10} in turn. All the parameters of models are trained
using the Adam optimizer with weight decay 5e-4, and the dropout
rate is set to 0.2. We performed early stopping according to the
loss on the validation set to avoid overfitting. The learning rate is
chosen from {0.01,0.005,0.001}.

Hyperparameters setting. The hidden dimension of LSTM
𝐷 and attention layer 𝐴 is chosen from {16,32,64}. The number of
LSTM layers 𝐿 is chosen from {1,2}. The number of kernels 𝐾 is
chosen from {4,8,12,16}. The output dimension of Adaptive Max
Pooling 𝑃 is chosen from {1,3,5}. The look-back window of AR
component 𝑞 is chosen from {0,10,20}.

4.4 Main Results
We evaluate our model in short-term (horizon = 3) and long-term
(horizon = 5,10) settings. Table 2 summarizes the results of all meth-
ods. The large difference in RMSE values across different datasets
is due to the scale and variance of the datasets, i.e., the scale of the
Japan-Prefectures and Canada-Covid is greater than the US-Regions
and US-States datasets, which is closely related to the prevalence
of epidemics and population density. There is an overall trend that
the prediction accuracy drops as the prediction horizon increases
because the larger the horizon, the harder the problem.

We observe that the proposed SEFNet achieves the state-of-the-
art results on most of the tasks. Traditional statistics methods (AR
and LRidge) do not perform well in influenza-related datasets. The
main reason is that they are based on oversimplified assumptions
and only rely on historical records, they cannot model the strong
seasonal effects in influenza datasets. For deep learning-based meth-
ods, the performance is improved since they make efforts to deal
with nonlinear characteristics and complex patterns behind time
series, However, some deep learning-based models work well on
some datasets, while not well on others.

(1) Performance. The methods mainly focused on dependencies
between regions/time series (Cola-GNN and TPA-LSTM) have
better performance than the method mainly focused on depen-
dencies between time points (LSTNet), which can point out
that inter-series dependencies are quite valuable information.
Our proposed model takes inter-series correlations between
different regions and temporal relationships in a single region
into consideration and carefully fuses them for prediction to
achieve better performance.

(2) Stability. For Japan-Prefectures and Canada-Covid datasets,
the prediction performance of many compared methods greatly
decreases when the horizon increases. Because as the variance
of the dataset increases, the fluctuation within time series and
dependencies between regions are more intricate. SEFNet can
make full use of dependencies information, so its predict er-
ror rises smoothly and slowly within the growing prediction
horizon. Therefore, SEFNet has a better stability.

Through this experiment, it can be concluded that SEFNet has
better performance and stability in epidemic forecasting, especially
in long-term prediction.

4.5 Ablation Study
In order to clearly verify that the above improvement comes from
each added component, we conduct an ablation study on the US-
Regions andUS-States datasets. Specifically, we remove each compo-
nent one at a time in SEFNet. We name the model without different
components as follows:

• w/oInter The model without Inter-Series Embedding module.
• w/oIntra The model without Intra-Series Embedding module.
• w/oAR The model without the AR component.
• w/oRAConv The model uses 1×3 convolution blocks only in-

stead of Region-Aware Convolution.

128

w/oInter w/oIntra w/oFusion w/oRAConv w/oAR SEFNet

Figure 5: Results of the ablation studies on the US-Region
(top) and US-States (bottom) datasets.

• w/oFusion The model concatenates Inter-Series Embedding
and Intra-Series Embedding directly instead of using Parametric
Matrix Fusion.

The ablation results are shown in Figure 5. We highlight several
observations from these results:

(1) The full SEFNet model achieves almost the best results.
(2) Directly concatenating two feature embeddings will bring per-

formance drops, while the fusion method used in SEFNet can
bring performance gains, especially in long-term prediction
(horizon=5,10). Because when the horizon increases, the dif-
ficulty of prediction will increase accordingly, and the com-
plex dependencies among regions are more difficult to detect.
Parametric-matrix fusion adaptively learns the importance of
inter- and intra-series embeddings, which facilitates capturing
complex and potential relationships in long-term prediction.

(3) Compared with single-scale convolutions, Region-Aware Con-
volution brings performance improvement by capturing and
aggregating multi-scale features, which proves its strong fea-
ture representation power.

(4) Removing the AR component from the full model caused sig-
nificant performance drops, showing the crucial role of the AR
component in general.

This ablation study concludes that our model design is the most
robust across all baselines, especially with large horizons.

5 CONCLUSION
In this paper, we propose an Inter- and Intra-Series Embeddings
Fusion Network (SEFNet) for epidemic forecasting. We first ex-
tract inter- and intra-series embeddings from two parallel modules.
Specifically, in inter-series embedding module, we design a Region-
Aware Convolution component that is better to extract feature rep-
resentations of time series and capture the dynamic dependencies
among regions. Then, we fuse two embeddings through parametric-
matrix fusion for prediction. To further enhance the robustness, we
apply an AutoRegressive component as the linear part. Experiments

on four real-world epidemic-related datasets show the proposed
model outperforms the state-of-the-art baselines in terms of per-
formance and stability. In future work, we plan to delve into the
dynamic dependencies and mutual influences among regions.

ACKNOWLEDGMENTS
This work is supported by the Key R&D Program of Guangdong
Province No.2019B010136003 and the National Natural Science
Foundation of China No. 62172428, 61732004, 61732022.

REFERENCES
[1] Yue Cui, Chen Zhu, Guanyu Ye, Ziwei Wang, and Kai Zheng. 2021. Into the Unob-

servables: A Multi-range Encoder-decoder Framework for COVID-19 Prediction.
In Proc. of CIKM.

[2] Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning.
2020. Cola-gnn: Cross-location attention based graph neural networks for long-
term ili prediction. In Proc. of CIKM.

[3] Shuhui Guo, Fan Fang, Tao Zhou, Wei Zhang, Qiang Guo, Rui Zeng, Xiaohong
Chen, Jianguo Liu, and Xin Lu. 2021. Improving Google flu trends for COVID-19
estimates using Weibo posts. Data Science and Management (2021).

[4] Tiberiu Harko, Francisco SN Lobo, and MK3197716 Mak. 2014. Exact analytical
solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the
SIR model with equal death and birth rates. Appl. Math. Comput. (2014).

[5] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation (1997).

[6] Siteng Huang, Donglin Wang, Xuehan Wu, and Ao Tang. 2019. DSANet: Dual
self-attention network for multivariate time series forecasting. In Proc. of CIKM.

[7] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Proc. of ICML.

[8] Jayson S Jia, Xin Lu, Yun Yuan, Ge Xu, Jianmin Jia, and Nicholas A Christakis.
2020. Population flow drives spatio-temporal distribution of COVID-19 in China.
Nature (2020).

[9] Xiaoyong Jin, Yu-XiangWang, and Xifeng Yan. 2021. Inter-series attention model
for covid-19 forecasting. In Proc. of SDM.

[10] Seungwon Jung, Jaeuk Moon, Sungwoo Park, and Eenjun Hwang. 2021. Self-
attention-based Deep Learning Network for Regional Influenza Forecasting. IEEE
Journal of Biomedical and Health Informatics (2021).

[11] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling
long-and short-term temporal patterns with deep neural networks. In Proc. of
SIGIR.

[12] Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang,
and En Zhu. 2022. Deep Graph Clustering via Dual Correlation Reduction. In
Proc. of AAAI.

[13] Edson Zangiacomi Martinez, Elisângela Aparecida Soares da Silva, and Amaury
Lelis Dal Fabbro. 2011. A SARIMA forecasting model to predict the number of
cases of dengue in Campinas, State of São Paulo, Brazil. Revista da Sociedade
Brasileira de Medicina Tropical (2011).

[14] Shun-Yao Shih, Fan-Keng Sun, and Hung-yi Lee. 2019. Temporal pattern attention
for multivariate time series forecasting. Machine Learning (2019).

[15] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. 2019. The perfor-
mance of LSTM and BiLSTM in forecasting time series. In 2019 IEEE International
Conference on Big Data (Big Data).

[16] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proc. of CVPR.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Proc. of NeurIPS (2017).

[18] Zheng Wang, Prithwish Chakraborty, Sumiko R Mekaru, John S Brownstein,
Jieping Ye, and Naren Ramakrishnan. 2015. Dynamic poisson autoregression for
influenza-like-illness case count prediction. In Proc. of KDD.

[19] Miguel Won, Manuel Marques-Pita, Carlota Louro, and Joana Gonçalves-Sá. 2017.
Early and real-time detection of seasonal influenza onset. PLoS computational
biology (2017).

[20] Yuexin Wu, Yiming Yang, Hiroshi Nishiura, and Masaya Saitoh. 2018. Deep
learning for epidemiological predictions. In Proc. of SIGIR.

[21] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. 2020. Connecting the dots: Multivariate time series forecasting with
graph neural networks. In Proc. of KDD.

[22] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep spatio-temporal residual
networks for citywide crowd flows prediction. In Proc. of AAAI.

129

Unsupervised Structure Confidence Sampling for
Image Inpainting

Xinrong Hu1,2, Tao Wang1,2, Jinxing Liang1,2*, Junjie Jin1,2, Junping Liu1,2, Tao Peng1,2, Yuanjun Xia1,2
1. Engineering Research Center of Hubei Province for Clothing Information

2.School of Computer Science & Artificial Intelligence, Wuhan Textile University
E-mail: hxr@wtu.edu.cn, wtadota@163.com, jxliang@wtu.edu.cn,junjie.jin@qq.com, ljp@wtu.edu.cn,

pt@wtu.edu.cn, xiaujun@163.com

Abstract—Context: Current image inpainting methods show
great effects in different applications such as image editing,
object removal, art creation and soon, but lack of editability of
the inpainting results and convincing unsupervised features.
Objective: To improve the existing methods, an optimized
framework for image inpainting purpose is proposed based on
hierarchical variational auto-encoder (VAE) as well as some
optimization strategies. Method: Firstly, the VAE is used to
extract the distribution of the features of the masked image in
different scales, however, it will cause the distribution offset of
extracted features which is unfavorable for image inpainting.
Therefore, an optimal strategy that sampling the effective feature
and invalid feature separately to avoid the offset of feature
distribution of the masked image is integrated into the
framework. To further improve the formulation of the proposed
framework, the same encoder is used to realize the conversion
from two domains to the same domain, which is a benefit to
enhance the extraction of effective feature regions. In addition,
we also introduce the cycle consistency constraints and GAN
constraints into the framework to supervise the inpainting
process. Result: Experimental results on the available image
dataset demonstrate the effectiveness and superiority of the
proposed framework.

Keywords- Image inpainting; Auto-encoder; Self-supervision;

I. INTRODUCTION
Image inpainting is always a fundamental challenge in the

field of computer vision. The key problem of image inpainting
is how to ensure the integrity and consistency of the filled area
to the adjacent, including the content, color attribute as well as
tone of the image. Methods that producing incomplete filled
effects or artificial effects between filled area and surrounding
area are no good ones. Image inpainting has been widely used
in many fields such as image editing, object removal, art
creation and other tasks [1-5]. However, most of the existing
methods that rely on GAN-based [11] image generation of
which lose the adaptation to a variety of applications.
Fortunately, in recent years VAE-based [16] image generation
strategy based on probability introduce the new path to the
current researches on image inpainting.

Previously, the GAN-based image inpainting can be
divided into the following two categories: the one-stage
inpainting method and the progressive method. For the
one-stage method [6-10], its hypothesis that all globally valid
image information can be obtained at once for image
reconstruction. Although they can ensure the consistency of
generated information and context semantics, these methods
suffer from the problem of pixel discontinuity and semantic

gap of the inpainting result, which can be found in the presence
of many missing regions [17]. The reason comes from the large
pixel difference between the known and missing regions,
which leads to a weak correlation and further produces the hole
regions.

Different from utilizing prior available features from input,
the progressive methods [23, 25-28] consider that missing
regions can not be filled completion at once. Therefore, these
kinds of methods gradually reasoning feature value in holes
region until the missing region is filled. However, these
methods fail to consider the difference and correlation between
filled areas and some other certain regions. Most importantly,
because the image inpainting is iteratively conducted at the
image level, the computational cost is very expensive. These
kinds of methods always need more efficient computing
environment.

Significantly different from the GAN-based method,
currently the VAE-based image generation methods [12-15]
can be able to generate novel and diverse image samples by
mapping the noise of normal distribution to the image.
However, if without some optimization and improvement,
these methods cannot be directly used for inpainting of
diversified scene images, the reasons are listed as follows.
Firstly, when applied these kinds of method to inpainting of
diversified scene images, the condition label is the masked
image itself and there are no paired training images in the
training dataset for each condition label. It will lead to there
are no conditional training datasets that can explicitly express
the condition distribution for the diversity masked images.
Secondly, there are strong constraints for inpainting of
diversified scene images, which means that the repaired
images should keep integrity and consistency in color and
texture with the masked image, therefore, it is more vulnerable
to suffer from mode collapse than typical image generation.

Based on the limitations of the currents methods described
above, we propose an unsupervised image inpainting
framework in this paper based on NVAE [14]. The proposed
framework relies on the assumption of implicit space sharing
of the three domains and is based on domain transformation
and differentiated sampling for finer generation effects. For the
original NVAE, the feature information decoded by the upper
sampling is more complete, the sampling points of the lower
sampling will become unavailable due to the presence of the
holes. Different from the original NVAE, the proposed
inpainting framework firstly fill the hole area and then
combine and derive the posterior distribution based on the
feature matching strategy. After that, we realize the sharing of
the same encoder within two of the domains in the form of

* Corresponding author.
DOI reference number: 10.18293/SEKE2022-026

130

additional weights since the existence of ternary domains
brings too much coding space. At last, the patch discriminator
is used to guide image generation to refine image texture. The
main innovations of the proposed framework can be
summarized as follows.
The sharing of the same encoder has been realized in

different domains through weighting the encoder in the
proposed framework.
Different sampling methods has been performed on holes

region and mask image respectively based on differentiated
sampling.
The GAN constraints has been used to refine the image and

generate texture.
The remainder of this paper is organized as follows. Section

II analyzes the related works, Section III reports our research
methodology and loss parameters, Section IV provides our
experimental procedure and results, Finally, Section V
concludes this study.

II. RELATED WORK

A. One-stage inpainting
Context encoder [6] is firstly introduced into image

inpainting for learning semantic content. Global and local [7]
discriminators are commonly used to distinguish generated
image in global and local regions while enforcing the
consistency of generated image in missing regions. Yu et al. [9]
firstly introduce patch match in deep feature for filling missing
holes. Liu et al. [22] devise a partial convolution to express
different weights for different holes region. Liu et al. [17]
design a strategy to limit the hole filling characteristics and the
relationship between adjacent and outer regions. By
introducing contour constraint, Nazeri et al. [23] propose that
contour repair can be carried out gradually to fill the global
region. Yu et al. [24] normalize pixels from the corrupted and
uncorrupted regions separately based on the original inpainting
mask to solve the mean and variance shift problem. These
methods have improved the image inpainting accuracy
somehow but lack effective constraints on the hole center and
lack effective semantic reasoning ability in some complex
scenarios.

B. Progressive inpainting
Li et al. [25] propose to leverage a shared module to

gradually repair the edge of the hole to enhance the constraint
on the center of the hole. Yang et al. [26] devise a pyramid
structure loss to supervise structure learning and embedding
for additional structural constraints. Yi et al. [27] design a
contextual residual aggregation module as the residuals of
generated features so that the incremental generation of target
features ensures the detailed texture of generated results. Zeng
et al. [28] propose a deep generation model with a feedback
mechanism, which outputs the feature map as well as the result
of the repair feature. In their method, the highly trusted feature
pixel will be used as the valid information in the next iteration.
All these methods infer subsequent features by appending the
predicted features as prior knowledge, while the repaired
features depend on the features of the previously filled area of
the hole, the essence of their methods is that the following
inferred features come from the initial effective features. This
strong correlation makes it impossible to decouple the effective
regions from the holes region.

C. VAE-based inpainting
Zhao et al. [18] use an effective reference image as the

image inpainting style and further couple the hole image with
the reference image based on cross-attention. Peng et al. [19]
develop a structural attention module based on a hierarchical
vectorized variational auto-encoder to capture the distance
relationship, which allows for a variety of repair results. Wan
et al. [20] train two variational auto-encoders to transform old
photos and clean photos into two latent spaces, respectively.
And the translation between these two latent spaces is learned
with synthetic paired data. This method generalizes well to real
photos because the domain gap is closed in the compact latent
space. Du et al. [21] introduce discrete disentangling
representation and adversarial domain adaption into general
domain transfer framework, aided by extra self-supervised
modules including background and semantic consistency
constraints, learning robust representation under dual-domain
constraints (for example the feature and image domains).
The goal of VAEs is to train a generative model in the form

of)|()(),(zxpzpzxp where)(zp is a prior
distribution over latent variables z and)|(zxp is the
likelihood function or decoder that generates data x given
variable z . Since the true posterior distribution)|(xzp is
in general intractable, the generative model is trained with the
aid of an approximate posterior distribution or encoder

)|(xzq .
In deep hierarchical VAEs, to increase the expressiveness

of both the approximate posterior and prior, the latent
variables are partitioned into disjoint groups, z={z1, z2,...,zl},
where L is the number of groups. Then, the prior is presented
by)|()(lll zzpzp and the approximate posterior by

),|()|(xzzqxzq lll where each conditional in the

prior)|(ll zzp and the approximate posterior
),|(xzzq ll are represented by factorial Normal

distributions. We can write the variational lower
bound)(xLvae on))(log(xp as :

l llllxzqvae zzpzxzqKLzxpExL))|(||),|(()]|([log)()|((1)

The objective is trained using the reparameterization trick.

Figure 1. pipeline for image inpainting. The two domains are resolved into
a normally distributed space by the same weighted encoder. Multi-level
point sampling is used to obtain the distribution relations at different
levels, which is conducive to the reliability of the results.

131

III. PROPOSED FRAMEWORK

For the proposed framework of image inpainting, We firstly
introduce assumptions in section A. Then, we introduce in
detail the cycle-consistency constraint introduced in the
framework in section B. The implementation of the conversion
on different domains through a common encoder is described
in section C. In section D, the differential sampling method is
devised to avoid ill-posed sampling. In section E, various loss
functions are proposed, and numerical values are obtained by
calculation. Finally, we illustrate in detail the composition of
the loss function of the proposed image inpainting framework.
A. Assumption of the proposed framework
Let t and ,...)2,1(mm be true image domain and

m-th mask image domain respectively. In unsupervised
image-to-image translation, we are given samples drawn from
the marginal distribution)(tt x

P and)(mm xP . The goal is to
formulate a mapping from p1 to p2 to fill the image with holes.
Since an infinite set of possible joint distributions can yield the
given marginal distributions, we could infer nothing about the
joint distribution from the marginal samples without additional
assumptions [14].
Just as the experts can associate the masked image with the

true image and consider them as the same image, we
hypothesize that they have the shared-latent space. Explicitly,
we formulate for any given pair of images tx and

,...)2,1(mxm , there exists a shared latent code z in a
shared latent space, such that we can recover both images from
this code, and we can compute this code from each of the two
images. That is we postulate there exists functions E, G such
that, given a pair of corresponding images),(mt xx from the

joint distribution, we have)()(**
mmtt xExEz and

conversely)(* zGxt . In this model the function

)(*
mtmt xFx that maps from))(()(***

mmmtm xEGxF ,
which is a many-to-one mapping. Therefore, we can
reconstruct the input image by translating it back to the
translated input image. In other words, the proposed shared
latent space assumption supports the cycle-consistency
assumption, but not vice versa.
B. Self-cycle consistency

Feature learning of missing images deviates from the real
image distribution is an important cause of learning failure,
and the learning of real valid features will fix the distribution
ambiguity caused by this ill deviation. Our goal is to focus on
learning the best *

tmF .The migration feature of

ill-conditioned mx will make the adaptive relationships within
the model become locally valid. In the process of learning and
training, the local adaptation relationship is further enhanced,
and the encoder can't learn the distribution scheme that follows
the whole real sample. This is fatal for re-parameterized
sampling prior to decoding due to the offset of the distribution.
Therefore, we can apply self-cycle consistency constraints in

the proposed framework to further regularize the ill-posed
unsupervised image inpainting problem. Formally,

))((: **
ttt xEGx . This ensures complete representation

learning within the image range.
C. Encoder-sharing

Based on the assumption of the shared implicit space
proposed above, the true image and the masked image are
distributed in different domains, so it is a good scheme to use
two different encoders to map different domains. However, it
notes that because two different encoders learn different spatial
features, it does not transfer the learned mapping relationship
to the masked image. Correspondingly, we use the same
encoder to realize the transformation of two different domains
to the same domain through the dynamic weighting method.
Formally, we specify the input feature as X and the mask as M.
we can get ** : tm EME . Similarly, the mask is updated by
the following rules:

otherwise

MXsumif
m

,0
0))((,1

' (2)

To implement the shared latent space assumption, we
further assume a shared intermediate representation h such that
the process of generating a pair of corresponding images
admits a form of.

Figure 2. sampling module. The feature distribution obtained by the encoder
is firstly filled with the hole features by the block matching strategy.
Secondly, the decoded features from the high-level distribution sampling are
concatenated to the repaired features to further obtain the joint feature
distribution.

D. Distinctive Sampling
The absence of content leads to the ill-conditioned

representation of true distribution features, and this
ill-conditioned representation further limits sampling errors

132

due to global content sampling. Correspondingly, the sample
errors further lead to the blurring and artificial imprinting of
inpainting areas. The fundamental reason for this phenomenon
is the use of consistent feature re-parameterized sampling for
both valid and invalid feature regions, while ignoring the
undesirable bias of invalid feature regions. Therefore, we
conduct differentiated sampling in this region, which will no
longer sample the features as a whole alone, but focus on the
inpainting of sample bias in invalid feature regions. Moreover,
it can not be ignored that the characteristics of invalid areas of
different sizes and locations correspond to the different
distribution of environmental characteristics, so we perform
the sampling based on the joint distribution of the environment,
regardless of the size and location of the region of the holes.
Actually, we formulate an equation)|(xzqf i

i . To
obtain the feature distribution of the hole region, we match the
similarity of the patch region.

||||

,
|||| ','

','

,

,
',',, i

yx

i
yx

i
yx

i
yxi

yxyx f
f

f
f

sim (3)

where i
yxyxsim ',',, indicates the similarity between the

feature at the location of),(yx and)','(yx . Further, the
softmax function is used to calculate the attention
score)max(',',,',',,

i
yxyx

i
yxyx simsoftscore . Eventually,

attention scores are used to reconstruct the feature distribution.

 i
yx

i
yxyx

i
yx fscoref ,',',,,

ˆ (4)
The results of the filled feature distribution are linked to

the prior distribution from the upper-level, and the joint
probability distribution),|(1ii zxzq is obtained from the
existing residual blocks.
E.Loss Function

The loss function of the proposed framework for image
inpainting includes the sum of the three sub-loss functions, the
KL divergence loss, the reconstruction lass as well as the GAN
constraints. Details of the loss functions are described as
follows.
1) KL Divergence Loss
Inspired by NAVE hierarchical sampling, we adopt a similar

strategy for deeper-levels sampling. Practically, we examine
the KL term in vaeL , as illustrated in equation

KL(q(��|x)| p �� = 1
2

∆��
2

��
2 + ∆��2 − ���∆��2 − 1 (5)

where ∆�� and ∆�� are the relative location and scale of the
approximate posterior concerning the prior
2) Reconstruction Loss
Our network translates instance images into completion

images in an unsupervised way. At times, the instance image is
different from the corresponding completion image in pixel
level. It is desired that the instance image is the same as the
corresponding completion image in low-dimensional visible
space. Therefore, the latent space loss is defined as:

����� = ||��∗ �� − ��∗ � ��∗ �� ||1 (6)

For each masked image mx there is only one ground

true image tx corresponding to it. When its corresponding

ground truth image tx is used as the guided instance image,

the output of the generation module is tx . Therefore, an
identical reconstruction constraint is needed, which is defined
as follows:

����
� = ||�� − �(��∗ (��))||1 (7)

3) GAN Constraints
To refine our generation effects, we use a patch

discriminator to activation the mapping of different range.
The adversarial loss is defined as:

))))](((1log()(log[maxminL *
~~

,
adv * mmPdataxtPdatax

DEG
xEGDExDE

mt
m

 (8)

4) Total Loss
As is shown in equation (9), the total loss of our

method consists of three groups of component losses.
������ = �������� + ���� ����� + ����

� + �������� (9)
IV. EXPERIMENTS

The effectiveness and the superiority of the proposed
framework for image inpainting are tested on the CelebA
dataset [29]. The CelebA dataset contains more than 180,000
training images of face images. All images are re-sized and
cropped to 256×256 for training and testing. Our framework is
trained using the Adam [30] optimizer with the batch size of 6.
We use the initial learning rate as 1e-4 to train the framework,
and the learning rate is fine-tuned with learning rate of 5e-5
and decay rate of 0.02. We compare our method with several
state-of-the-art methods based on the above-mentioned dataset.
The qualitative comparisons between proposed framework
and other methods are presented in Figure 3. Compared to
other methods, the proposed framework shows more
consistency with the true face effect in general and the result
produced by the proposed framework with more detailed
texture, but the image with some blur.

In addition, we also perform the quantitative comparison
between the proposed framework with the NVAE method. It
should be note that since the first three methods cannot
generate diverse results for image inpainting, therefore these
methods have only single output in the numerical comparison
with the proposed framework, so the quantitative comparison
is only performed to the NVAE method. The metrics of the
quantitative comparison is summarized in Table 1 for the
CelebA dataset. It can be seen that the proposed framework
has better image reconstruction accuracy than NVAE for all
the tested metrics of SSIM, PSNR, and MEAN l1. More
detailed results are presented as follows.

Figure 3. Qualitative comparisons the inpainting effect of the proposed
framework (Ours) and existing methods on the CelebA dataset.

133

A.Diverse Generation
As is reported in section III, since our framework covers

multiple levels of sampling, and the sampling parameters can
be customized for each level of sampling deviation, of which
ensures a variety of results generated. Figure 4 shows the
inpainting results when setting different level of sampling
parameters. It is showed that under different sampling
parameters, the images generated by the guidance have
different local features such as mouth shape. Visually
compared to the NAVE method, the proposed framework
produces more fine textures for the repaired images.

Figure 4. Under different sampling deviations, our method produces better
texture characteristics than other method.

SSIM PSNR MEAN l1
(%)

NVAE 0.7055 25.3406 4.0404

Ours 0.7649 27.7054 3.2793

Table 1. Quantitative comparison the inpainting accuracy of the
proposed framework (Ours) and NAVE method on CelebA

dataset.
B. Effectiveness of Distinctive Sampling

In the proposed framework, we introduce the
differentiated sampling module. The differentiated sampling
module is essentially a feature repair stack, which is
conducive to obtaining more accurate feature distribution
information. In order to verify the validity of this module, we
test the image inpainting effects with and without the
corresponding module in the proposed framework. The
comparison is presented in Figure 5. We can see that with the
distinctive sampling module we get more pleased inpainting
result, where the evaluation metrics of SSIM, PSNR, MEAN
L1 get improvement with the distinctive sampling module.

Input Without Distinctive
Sampling

0.6672/23.2338/5.1048

Distinctive Sampling
0.7364/26.3136/3.8974

Figure 5. Comparison of image inpainting results with and without the
corresponding module in the proposed framework (ssim/psnr/mean l1).
The effectiveness of distinctive sampling can be inferred from metrics
of SSIM, PSNR and MEAN l1.

V.CONCLUSIONS
In this paper, we propose an unsupervised image inpainting

framework, of which can ensures the generation of credible
results through domain sharing hypothesis with KL and
refactoring constraints. We come up the strategy of encoder
sharing to greatly simplifies the proposed framework. In
addition, in order to ensure the repaired image have great
consistent texture features with ground truth in the hole areas,
we also devise a differentiated sampling strategy to
distinguish the sampling parameters of the mask region and
the effective region. Experimental results show the
effectiveness and superiority of the proposed framework,
which verifies the hypothesis behind the proposed method.
However, there still have some defects for the proposed
framework in current stage, for example, the blur
phenomenon in the generated images. On one hand, this
phenomenon comes from the limitation of VAE-based image
generation. On the other hand, some features of the input
image are missing, which will inevitably lead to the deviation
of the overall features of the image. Although we have filled
the missing features in the generation process of the proposed
framework, however, this deviation is irreversible. In the next
step of our research, we are going to address this issue and
further improve the image inpainting effect.

REFERENCES
[1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B

Goldman. 2009. PatchMatch: A Randomized Correspondence
Algorithm for Structural Image Editing. In ACM SIGGRAPH 2009
Papers (New Orleans, Louisiana) (SIGGRAPH ’09). Association for
Computing Machinery, New York, NY, USA, Article 24, 11 pages.

[2] A. Criminisi, P. Perez, and K. Toyama. 2004. Region filling and object
removal by exemplar-based image inpainting. IEEE Transactions on
Image Processing 13, 9(2004), 1200–1212.

[3] Zhan, X., Pan, X., Dai, B., Liu, Z., Lin, D., & Loy, C. C. 2020.
Self-supervised scene de-occlusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 3784-3792.

[4] Rakshith Shetty, Mario Fritz, and Bernt Schiele. 2018. Adversarial
Scene Editing: Automatic Object Removal from Weak Supervision. In
Proceedings of the 32nd International Conference on Neural Information
Processing Systems. Curran Associates Inc., Red Hook, NY, USA,
7717–7727.

[5] Linsen Song, Jie Cao, Lingxiao Song, Yibo Hu, and Ran He. 2019.
Geometry-aware face completion and editing. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 2506–2513.

[6] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros. 2016.
Context Encoders: Feature Learning by Inpainting. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
2536–2544.

[7] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2017. Globally
and Locally Consistent Image Completion. ACM Trans. Graph. 36, 4,
Article 107 (July 2017), 14 pages.

[8] Y. Zeng, J. Fu, H. Chao, and B. Guo. 2019. Learning Pyramid-Context
Encoder Network for High-Quality Image Inpainting. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 1486–1494.

[9] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. 2018.
Generative Image Inpainting with Contextual Attention. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5505–5514.

[10] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. Huang. 2019. Free-Form
Image Inpainting With Gated Convolution. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV). 4470–4479.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
2020. Generative Adversarial Networks. Commun. ACM 63, 11 (Oct.
2020), 139–144.

134

[12] Neural Discrete Representation Learning.Oord, A. V. D., Vinyals, O., &
Kavukcuoglu, K. 2017. Neural discrete representation learning. arXiv
preprint arXiv:1711.00937.

[13] Razavi, A., van den Oord, A., & Vinyals, O. 2019. Generating diverse
high-fidelity images with vq-vae-2. In Advances in neural information
processing systems. 14866-14876.

[14] Vahdat, A., & Kautz, J. 2020. Nvae: A deep hierarchical variational
autoencoder. arXiv preprint arXiv:2007.03898.

[15] Liu, H., Wan, Z., Huang, W., Song, Y., Han, X., & Liao, J. 2021.
PD-GAN: Probabilistic Diverse GAN for Image Inpainting. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 9371-9381.

[16] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114.

[17] H. Liu, B. Jiang, Y. Xiao, and C. Yang. 2019. Coherent Semantic
Attention for Image Inpainting. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV). 4169–4178.

[18] Zhao, L., Mo, Q., Lin, S., Wang, Z., Zuo, Z., Chen, H., ... & Lu, D.
2020. Uctgan: Diverse image inpainting based on unsupervised
cross-space translation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 5741-5750.

[19] Du, W., Chen, H., & Yang, H. 2020. Learning invariant representation
for unsupervised image restoration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 14483-14492.

[20] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew
Tao, and Bryan Catanzaro. 2018. Image inpainting for irregular holes
using partial convolutions. In Proceedings of the European Conference
on Computer Vision (ECCV). 85–100.

[21] K. Nazeri, E. Ng, T. Joseph, F. Qureshi, and M. Ebrahimi. 2019.
EdgeConnect: Structure Guided Image Inpainting using Edge Prediction.
In 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW). 3265–3274.

[22] Tao Yu, Zongyu Guo, Xin Jin, Shilin Wu, Zhibo Chen, Weiping Li,
Zhizheng Zhang, and Sen Liu. 2020. Region Normalization for Image
Inpainting. In AAAI. 12733–12740.

[23] J. Li, N. Wang, L. Zhang, B. Du, and D. Tao. 2020. Recurrent Feature
Reasoning forImage Inpainting. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 7757–7765.

[24] Jie Yang, Zhiquan Qi, and Yong Shi. 2020. Learning to incorporate
structure knowledge for image inpainting. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 12605–12612.

[25] Z. Yi, Q. Tang, S. Azizi, D. Jang, and Z. Xu. 2020. Contextual Residual
Aggregation for Ultra High-Resolution Image Inpainting. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 7505–7514.

[26] Yu Zeng, Zhe Lin, Jimei Yang, Jianming Zhang, Eli Shechtman, and
Huchuan Lu. 2020. High-resolution image inpainting with iterative
confidence feedback and guided upsampling. In European Conference
on Computer Vision. Springer, 1–17.

[27] Z. Liu, P. Luo, X. Wang, and X. Tang. 2015. Deep Learning Face
Attributes in the Wild. In 2015 IEEE International Conference on
Computer Vision (ICCV). 3730–3738.

[28] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic
Optimization. International Conference on Learning Representations.

135

Verifying BDI Agents in Dynamic Environments
Blair Archibald, Muffy Calder, Michele Sevegnani, Mengwei Xu

School of Computing Science, University of Glasgow, Glasgow, UK
{blair.archibald, muffy.calder, michele.sevegnani, mengwei.xu}@glasgow.ac.uk

Abstract—The Belief-Desire-Intention (BDI) architecture is a
popular framework for rational agents, yet most verification
approaches are limited to analysing the behaviours of an agent in
a subset of all possible environments. However, in practice, BDI
agents operate in dynamic environments where the exact occur-
rence of external changes is difficult to predict. For safety/security
we need to assess whether the agent behaves as required in
all circumstances. To address this, we define environments,
accounting for both sensor information about physical changes
and new tasks to be completed, as a non-deterministic finite-
state automata. We give an environment-enabled extension to
the Conceptual Agent Notation (CAN) language including an
executable semantics via an encoding to Milner’s bigraphs and
the BigraphER tool. We illustrate the framework through a
simple Unmanned Aerial Vehicle (UAV) example that is verified
using mainstream tools including PRISM model checker. Results
show our approach can automatically identify agent design flaws
to aid agent programmers in design, debugging, and analysis.

Index Terms—BDI Agents, Formal Methods, Environments

I. INTRODUCTION

Belief-Desire-Intention (BDI) is one of the most pop-
ular agent development frameworks and forms the basis
of many agent-oriented programming languages including
AgentSpeak [1], CAN [2], and 3APL [3]. (B)eliefs represent
what the agent knows, (D)esires what the agent wants to
bring about, and (I)ntentions the desires the agent is currently
acting upon. BDI features a collection of mature software and
platforms including JACK [4] and Jason [5].

BDI agents rarely stand alone but instead exist in an
environment—a source of information that the agent has been
designed to understand—and operate by means of a reasoning
cycle (see in Fig. 1) with three consecutive steps: (1) perceive,
(2) deliberate and (3) act. The first step is to perceive the
environment to update the agent’s beliefs, the second to
deliberate to determine, for example, what plan to select under
current beliefs (specified by language semantics), and the third
to act on the external environment by executing actions of
the selected plans. This approach facilitates practical agents
that effectively interact with their environments. However,
designing agents that ensure correct behaviours in all possible
environments is very difficult. As agent systems (e.g. robotic
systems [6]) are increasingly employed in many real-life
(e.g. domestic and industrial) settings, we must tackle this
problem as it is crucial to analyse agent behaviours under all
circumstances.

To illustrate the issues, we consider scenarios from Un-
manned Aerial Vehicles (UAVs). In searching operations,

DOI reference number: 10.18293/SEKE2022-149

Figure 1: Agent interactions with an environment consisting of
external physical changes due to e.g. natural phenomena. Numbers
give the order of operation. All information is fed into the belief base.

UAVs patrol a designated area to identify objects of interest,
e.g. missing persons, returning to base when detection is
successful. During the mission, UAVs are expected to interact
with the physical world. For example, UAVs should activate
parking mode if the weather becomes harsh. The changes of
these physical attributes (e.g. the weather and objects available
to be detected) can happen at any time during UAV’s mission
and all combinations of these changes may produce complex
behaviours. Therefore, we need mechanisms (e.g. verification
techniques), involving an automated exhaustive analysis, in
order to assess whether agents will always behave correctly
under any environmental conditions.

Traditionally the analysis of agent behaviours is carried out
by computational simulations. For example, the BDI platform
Jason supports simulated environments that provide certain
services to the agent (the ability to perceive and take action).
Although computational simulations are quick to run, they
are generally non-exhaustive in terms of agent behaviours
in a given environment. As such, actual agent behaviours in
deployment may not be the seen in simulation and rare cases
may not manifest despite many simulation runs. To analyse all
possible runs of agent behaviours in one environment, formal
verification can be applied to build a mathematical model of
the agent system [7]. However, if the agents are to be used
in safety-critical areas, or where agent mistakes might involve
financial penalties, this approach guarantees very little about
agent behaviours in actual environments (which are difficult
to accurately predict at design stage). To provide stronger
guarantees, we instead assess all possible agent behaviours in
all possible environments. A graphical comparison between
these approaches is in Fig. 2.

We provide a verification framework based on Bi-

136

Figure 2: Approaches to analyse agent behaviours in environments.
(a) Simulation: one run of agent behaviour in one environment; (b)
existing verification approaches: all possible agent behaviours in one
environment; (c) Proposed approach: all possible agent behaviours in
all possible environments.

graphs [8]—a graph-based universal modelling formalism—
that models both BDI agents and environments. We build on
previous work [9] on a bigraph encoding of CAN semantics [2]
(that includes classical BDI features and advanced features
such as declarative goals), that provides an executable seman-
tics for BDI agents operating in a (dynamic) environment.
Verification is achieved through mainstream software tools
including BigraphER and PRISM [10], and demonstrated by
verifying several properties of UAVs.

As the external environment with respect to an agent may
change while the agent is reasoning, the key of our approach
is to provide a formalisation of external dynamics that sum-
marises the main environment changes (due to e.g. natural
phenomena) over each of the reasoning cycle. In other words,
how the external environment has been updated in reality over
each cycle is subject to the nature of the environment and
what matters is that the agent can access the final effects of
what has changed over this cycle. By focusing on reasoning
cycles, we remain agnostic to the actual time required for
each cycle, which can be difficult to anticipate at design stage
due to the delay or variation in real process deployed on the
hardware. This approach offers a feasible way to specify the
dynamics of external environments while enabling practical
verification by avoiding both state explosion and difficult
time synchronization problem between agent reasoning and
environment simulation when using real-time.

We make the following research contributions:

• We formalise the dynamics of external environments due
to e.g. natural phenomena and other agents as a finite
non-deterministic finite-state automata.

• We provide a verification framework for environment-
enabled CAN agents via bigraphs that guarantees ex-
pected agent behaviours under all possible environments.

• We showcase our formal verification approach and illus-
trate how it can improve the design of the BDI agents.

The paper is organised as follows. In Section II we review
BDI agents and Bigraphs. In Section III we define the frame-
work for agents in dynamic environments. In Section V we
demonstrate our approach using a UAV example. We discuss
related work in Section VI and conclude in Section VII.

II. BACKGROUND

A. BDI Agents

The CAN language formalises classical BDI agents con-
sisting of a belief base B and a plan library Π. The belief
base B is a set of formulas encoding the current beliefs from
a language L and has belief operators for entailment (i.e.
B |= φ), and belief atom addition (resp. deletion) B ∪ {b}
(resp. B \ {b})1. A plan library Π is a collection of plans of
the form e : φ← P with e the triggering event, φ the context
condition, and P the plan-body. Events can be either external
or internal (i.e. sub-goals that the agent tries to accomplish).
We also use E to denote the set of events (i.e. the triggering
event) in the plan library. The language used in the plan-body
is defined by P = nil | act | e | P1;P2 | P1▷P2 | P1 ∥ P2 | e :
(|φ1 : P1, · · · , φn : Pn|) | goal(φs,P , φf) with nil an empty
program, act a primitive action, and e an internal event. In
addition, we use P1;P2 for sequence, P1 ▷ P2 to first try P1

and use P2 in case of failure, and P1 ∥ P2 for interleaved
concurrency. A set of relevant plans (those that respond to the
same event) is denoted by e : (|ψ1 : P1, · · · , ψn : Pn|). A
goal program goal(φs,P , φf) states that the declarative goal
φs should be achieved by repeatedly executing P , failing if
φf holds and exiting successfully if φs holds (see [11] for full
details). The action act is in the form of act : φ ← ϕ−;ϕ+

where φ is a precondition, and ϕ− and ϕ+ are the sets of belief
atoms to be deleted and added after the action is executed.

CAN semantics is specified by two types of transitions.
The first, denoted →, specifies intention-level evolution on
configurations ⟨B, P ⟩ where B is the belief base, and P the
plan-body currently being executed. The second type, denoted
⇒, specifies agent-level evolution over ⟨Ee,B,Γ⟩, detailing
how to execute a complete agent where Ee is the set of
pending external events to address (a.k.a. desires), B the belief
base, and Γ a set of partially executed plan-bodies (intentions).

Fig. 3 gives rules for evolving any single intention. For
example, the rule act handles the execution of an action, when
the pre-condition ψ is met, resulting in a belief state update.
Rule event replaces an event with the set of relevant plans,
while rule select chooses an applicable plan from a set of
relevant plans while retaining un-selected plans as backups.
With these backup plans, the rules for failure recovery ▷;, ▷⊤,
and ▷⊥ enable new plans to be selected if the current plan
fails (e.g. due to environment changes). Rules ; and ;⊤ allow
executing plan-bodies in sequence, while rules ∥1, ∥2, and
∥⊤ specify how to execute (interleaved) concurrent programs.
Rules Gs and Gf deal with declarative goals when either the
success condition φs or the failure condition φf become true.
Rule Ginit initialises persistence by setting the program in the
declarative goal to be P ▷ P , i.e. if P fails try P again, and
rule G; takes care of performing a single step on an already
initialised program. Finally, the derivation rule G▷ re-starts
the original program if the current program has finished or
got blocked (when neither φs nor φf becomes true).

1Any logic is allowed providing entailment is supported. A propositional
logic is used in our example.

137

act : ψ ← ⟨ϕ−, ϕ+⟩ B ⊨ ψ

⟨B, act⟩ → ⟨(B \ ϕ− ∪ ϕ+), nil⟩
act

∆ = {φ : P | (e′ = φ← P) ∈ Π ∧ e′ = e}
⟨B, e⟩ → ⟨B, e : (| ∆ |)⟩

event
φ : P ∈ ∆ B |= φ

⟨B, e : (| ∆ |)⟩ → ⟨B, P ▷ e : (| ∆ \ {φ : P} |)⟩
select

⟨B, P1⟩ → ⟨B′, P ′
1⟩

⟨B, P1 ▷ P2⟩ → ⟨B′, P ′
1 ▷ P2)⟩

▷; ⟨B, (nil▷ P2)⟩ → ⟨B′, nil⟩
▷⊤

P1 ̸= nil ⟨B, P1⟩↛ ⟨B, P2⟩ → ⟨B′, P ′
2⟩

⟨B, P1 ▷ P2⟩ → ⟨B′, P ′
2⟩

▷⊥
⟨B, P ⟩ → ⟨B′, P ′⟩

⟨B, (nil;P)⟩ → ⟨B′, P ′⟩
;⊤

⟨B, P1⟩ → ⟨B′, P ′
1⟩

⟨B, (P1;P2)⟩ → ⟨B′, (P ′
1;P2)⟩

;
⟨B, P1⟩ → ⟨B′, P ′

1⟩
⟨B, (P1∥P2)⟩ → ⟨B′, (P ′

1∥P2)⟩
∥1

⟨B, P2⟩ → ⟨B′, P ′
2⟩

⟨B, (P1∥P2)⟩ → ⟨B′, (P1∥P ′
2)⟩
∥2 ⟨B, (nil∥nil)⟩ → ⟨B, nil⟩

∥⊤

B |= φs

⟨B, goal(φs,P, φf)⟩ → ⟨B, nil⟩
Gs

B |= φf

⟨B, goal(φs,P, φf)⟩ → ⟨B, ?false⟩
Gf

P ̸= P1 ▷ P2 B ⊭ φs B ⊭ φf

⟨B, goal(φs,P, φf)⟩ → ⟨B, goal(φs,P ▷ P, φf)⟩
Ginit

B ⊭ φs B ⊭ φf ⟨B, P1⟩ → ⟨B′, P ′
1⟩

⟨B, goal(φs, P1 ▷ P2, φf)⟩ → ⟨B′, goal(φs, P ′
1 ▷ P2, φf)⟩

G;
B ⊭ φs B ⊭ φf ⟨B, P1⟩↛

⟨B, goal(φs, P1 ▷ P2, φf)⟩ → ⟨B, goal(φs, P2 ▷ P2, φf)⟩
G▷

Figure 3: Intention-level CAN semantics.

e ∈ Ee

⟨Ee,B,Γ⟩ ⇒ ⟨Ee \ {e},B,Γ ∪ {e}⟩
Aevent

P ∈ Γ ⟨B, P ⟩ → ⟨B′, P ′⟩
⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B′, (Γ \ {P}) ∪ {P ′}⟩

Astep
P ∈ Γ ⟨B, P ⟩↛

⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B,Γ \ {P}⟩
Aupdate

Figure 4: Agent-level CAN semantics.

The agent-level semantics are given in Fig. 4. The rule
Aevent handles external events, that originate from the en-
vironment, by adopting them as intentions. Rule Astep selects
an intention from the intention base, and evolves a single step
w.r.t. the intention-level transition, while Aupdate discards any
unprogressable intentions (either already succeeded, or failed).

B. Bigraphs

Bigraphs are a graph-based universal modelling formalism,
introduced by Milner [8] for describing systems with both
spatial relationships and non-local linking. They have been
used for modelling ubiquitous systems including [12], [13],
and as a unifying theory of process calculi [14]. Bigraph
dynamics are described using a rewriting system specified
via reaction rule l ▶ r that replace a bigraph matching l
(in some larger bigraphs) with a bigraph matching r. Given
an initial bigraph and set of reaction rules we derive a (non-
deterministic) transition system capturing the behaviour of the
system through repeated rule application.

We have used bigraphs to encode the existing CAN language
semantics to symbolically analyse BDI agent behaviour [9].
The encoding defines an equivalent bigraph for any CAN
agent, and defines reaction rules that faithfully model the
operational semantics. To execute bigraphical reactive systems,
we use BigraphER [15], an open-source language and toolkit
for bigraphs. BigraphER allows exporting transitions systems,
e.g. DTMCs, for analysis in PRISM. To aid writing logical
formulas over transition systems, states are labelled using
bigraph patterns that assigns a state a predicate label if it
contains (a match of) a given bigraph pattern.

III. FRAMEWORK

In this section, we first formalise our notion of an environ-
ment and then extend the existing CAN semantics to enable
the agent to perceive and alter the environment.

A. Environments

Most existing BDI frameworks either omit the environment
(e.g. CAN) or provide it with an informal treatment (e.g.

AgentSpeak). In order to analyse an agent behaviour in an
environment we first formalise environments. Following [16],
we consider environments accounting for both sensor infor-
mation (a set of beliefs literals) and external events (a set of
tasks to complete). Recall the formula in a belief base of a
BDI agent is from the language L and the set of events the
agent can respond to is E. The alphabet for an environment
is then E = L ∪ E. An environment state, representing the
environment at a point in time, is defined as follows:

Definition 1. An environment state is Θ ∈ Q such that Q = 2E

and for any formula b from language L, if b ∈ Θ, then ¬b /∈ Θ.

Environment states are sets of belief formulae and newly
requested events which are held in the environment at some
point. We assume an underlying mechanism that converts
from real-world environments to symbolic literals, e.g. through
pattern detection from sensor input. The condition ensures that
no environment states has information indicating that both b
and ¬b are true, i.e. the law of the excluded middle.

Example 1. A UAV that perceives an environment state Θ =
{¬harsh weather} believes (based on sensor information) that
the weather is not harsh.

To support cases when an agent changes the environment
but the effects of acting are undone, e.g. by humans, before the
agent starts perceiving in the next cycle, we separate environ-
ment changes imposed by the agent from environment changes
e.g. due to external factors. Environment dynamics contributed
by the agent will be formalised through the extensions of CAN
semantics in Section III-B. Meanwhile, we give the following
external dynamics with respect to an agent for an environment
over each agent reasoning cycle.

Definition 2. The external dynamics for an agent in an
environment is a tuple ⟨Q,Θ0, ϵ⟩ where Q = 2E is a set of
environment states, and Θ0 ∈ Q an initial (or start) state, and
δ : Q→ 2Q a finite nondeterministic function transitioning a
state Θ ∈ Q to a finite set of successor states {Θ1, . . . , Θn}.

138

Essentially, external dynamics of an environment is for-
malised as a non-deterministic finite-state automata and it,
by definition, is relative to the agent under consideration,
as any other agent is a part of the external environment.2

Although we assume the automata to be finite-state, this does
not preclude infinite behaviour, e.g. looping between existing
states indefinitely.

Example 2. Following Example 1, we assume the current
environment state Θ = {¬harsh weather}. Then a possible
finite set of successor states can be Θ1 = {¬harsh weather},
Θ2 = {¬harsh weather, e deliver}, Θ3 = {harsh weather}
Θ4 = {harsh weather, e deliver} where e deliver is a new
(external) event. These four states describes all combinations
of physical attribute harsh weather and the event e deliver3.

In the following section, we extend CAN semantics to
interact with the external changes in an environment.

B. Perceiving and Acting

Currently CAN does not support explicit environments. To
allow environments, we augment both intention level con-
figuration ⟨B, P ⟩ (resp. agent-level configuration) in CAN
with an environment state Θ, namely [⟨B, P ⟩, Θ] (resp.
[⟨Ee,B,Γ⟩, Θ]) where B is the belief base, P the current
intention, Ee the external event set, and Γ the set of intentions.

When perceiving, the belief base B of an agent is updated
to reflect4 the current environment state Θ where B = Θ.
While sensed information may remain in the environment,
the perceived new events should be deleted to avoid them
being adopted twice, i.e. these are explicitly removed from
the environment. The following rule Aperceive is given.

[⟨Ee,B,Γ⟩, Θ]⇒ [⟨Ee, Θ,Γ⟩, Θ \ {e | e ∈ Θ]
Aperceive

After perceiving, the agent assimilates perceived new events
to the external event set at some later reasoning cycle and
subsequently removed from the belief base (rule Aassimilate).

e ∈ B
[⟨Ee,B,Γ⟩, Θ]⇒ [⟨Ee ∪ {e},B \ {e},Γ⟩, Θ]

Aassimilate

Alongside external dynamics, the agent can alter the envi-
ronment through acting. Although there is already an intention-
level rule in CAN for acting, it only changes the belief base
(rule act in Fig. 3) which assumes that the agent immediately
believes the action has had an effect on the environment.
However as, for example, the actions on an agent might be
undone another agent, an agent should wait for the effects
to take place in the environment and update its beliefs only
after sensing from the environment in the next reasoning cycle
(through rule Aperceive). As such, we replace the old act rule
with the following rule actnew to apply effects of actions
always in the environment, not the belief base.

2This definition is a special case when the agent is fixed and can be extended
in future to allow multi-agents in a shared environment.

3Unlike belief formulae built from a language, the negation of an event in
an environment is denoted as the absence of such an event.

4Partial observability is not currently supported.

act : ψ ← ⟨ϕ−, ϕ+⟩ B ⊨ ψ
[⟨B, act⟩, Θ]→ [⟨B, nil⟩, (Θ \ ϕ−) ∪ ϕ+]

actnew

Finally, the update of an environment due to the external
dynamics is applied in the beginning of each reasoning cycle
according to Definition 2 and is detailed in Section IV

IV. AGENT REASONING CYCLE

We encode the agent cycle (Fig. 1) including external
dynamics of an environment, into bigraphs to obtain an
executable semantics (available online5) that we use for verifi-
cation. The cycle is a three step process described as follows:

Step 1 (environment update): Apply the non-deterministic
function δ in Definition 2 to update the current environment
state Θ to a finite set of states δ(Θ) = {Θ1, . . . , Θn}.

Step 2 (perceive): Using rule Aperceive, an agent perceives
everything in the current (newly updated) environment.

Step 3 (progress): Progress the agent using rule Aassimilate
or rules in Fig. 4. When Anewstep is applied, it selects an intention
non-deterministically from the intention base, and evolves a
single step w.r.t. intention-level transition (seen in Fig. 3).

The reasoning cycle is repeated until all external events and
intentions are fully addressed and no new tasks are requested.
As we seek to examine the agent behaviours, we stop analysis
when the agent stops operating.

To analyse an agent in all possible environments, model
checking is applied to the transition system generated from
our executable semantics. As we use bigraphs, the transition
system has bigraphs as states and rewrite rules as transitions.
To reason over the transition system, we label states with
bigraph patterns [13], and specify dynamic properties using
linear or branching time temporal logics such as Computation
Tree logic (CTL) [17]. As we generate a transition system, the
property specification language is constrained by the model
checker. Here we use the non-probabilistic and non-reward
logics provided by PRISM6.

V. UAVS EXAMPLE

To illustrate our framework, we consider a small example
taken from UAV surveillance mission systems [9].

A. Design

A UAV patrols a pre-defined area to identify objects of in-
terest and can park itself upon harsh weather to avoid damage.
The agent design and environment specifications are given
in Fig. 5. The first plan (line 2) addresses event e patrol init
and is always applicable (true context). The play-body consists
of a declarative goal, goal(detection, e patrol task, false), that
continually pursues e patrol task until an object of interest
is detected (i.e. detection). No failure condition is speci-
fied. If this goal completes, the action return is executed
to return to base, the effect is that result in that returned
holds (unshown here). The event e patrol task is handled
by plan on line 3 which contains a further declarative goal
goal(harsh weather ∨ battery low, e patrol, false) instructing

5https://bitbucket.org/uog-bigraph/bdi env model seke22/src/master/
6As this is supported natively by BigraphER.

139

https://bitbucket.org/uog-bigraph/bdi_env_model_seke22/src/master/

1 Plan library

2 e patrol init : true← goal(detection, e patrol task, false); return

3 e patrol task : true← goal(harsh weather, e patrol, false); e pause

4 e patrol : true← patrol

5 e pause : harsh weather ∧ ¬parked← activate parking;wait

6 e pause : harsh weather ∧ parked← wait

7 initial environment state

8 Θ0 = {¬a,¬b,¬c,¬d, e patrol init}
9 environment transition function

δ(Θ) =

{Θ, (Θ \ {¬a}) ∪ {a}, (Θ \ {¬b}) ∪ {b}, (Θ \ {¬a,¬b}) ∪ {a, b}}

if ¬a ∧ ¬b ∈ Θ (1)

{Θ, (Θ \ {¬a}) ∪ {a}}, if ¬a ∧ b ∈ Θ (2)

{Θ, (Θ \ {¬b}) ∪ {b}}, if a ∧ ¬b ∈ Θ (3)

{Θ}, if a ∧ b ∈ Θ (4)

{(Θ \ {b, c}) ∪ {¬b,¬c}}, if b ∧ c ∈ Θ (5)

where a = detection, b = harsh weather, c = waited (the effect of action wait)

and d = returned (the effect of action return).

Figure 5: Patrolling Task Design for BDI Agents.

1 Plan library

2 e patrol init : true← goal(¬harsh weather ∧ detection, e patrol task, false);

goal(¬harsh weather ∧ returned, e return task, false)

3 e patrol task : true← goal(harsh weather, e patrol, false); e pause

4 e return task : true← goal(harsh weather, e return, false); e pause

5 e patrol : true← patrol

6 e return : true← return

7 e pause : harsh weather ∧ ¬parked← activate parking;wait

8 e pause : harsh weather ∧ parked← wait

Figure 6: Discovered Corrections of Fig. 5.

an agent to patrol continuously unless the weather is harsh
when it should pause (i.e. event e pause). Plans in lines 5
to 6 handle the e pause by waiting until weather becomes
better, while the plan in line 4 performs the patrolling. For
succinctness, descriptions of actions (i.e. their precondition
and effects) such as return and wait are not shown but can
be found in our online model.

To specify environments, we assume favourable conditions
(as often in practice) in the initial state (line 8). The environ-
ment transition function (line 9) describes the set of successor
states given the current states: the object becoming available
for detection or harsh weather appearing can happen at any
time so long as they have not already occurred (cases 1–3); no
update is available if detection and harsh weather are present
(case 4); and, for practicality, the harsh weather will always
get better after some time (case 5).

B. Analysis

We check that a UAV never returns to base under harsh
weather (a safety property). To formalise this property,
we represent state formulae by bigraph patterns: φ1

def
=

B(“harsh weather”) and φ2
def
= B(“returned”). Using CTL,

we have a property ¬E[F(φ1 ∧ ¬φ2 ∧ (XXφ2))] that check
there does not exist any agent behaviours in any environment
that when the weather is harsh and UAV has not returned

to base, the UAV is believed to be returned in two states7

afterwards, i.e. we check that it does not travel through the
bad weather.

However, this safety property does not hold for design
in Fig. 5. To aid in addressing this problem, the violated states
can be automatically located (by PRISM model checker). For
debugging, the graphical output of each state in the transition
system provided by BigraphER provides a diagrammatic rep-
resentation of each state enabling us to locate subtle design
issues. In this case, there are two failing situations. (1) when
the weather becomes harsh, the agent can execute plans on
line 5 or 6 to activate parking to avoid any potential damage.
However, before the completion of parking (e.g. the execution
of the action wait), the truth of detection which happens to
hold can makes goal(detection, e patrol task, false) succeed,
leading the agent to proceed returning prematurely without
fully handling the negative environment. (2) occurs when the
weather becomes harsh shortly after the UAV completes a
detection, causing the UAV to return under harsh weather. To
fix agent design flaws, we need to add ¬harsh weather to
the success condition of goal(detection, e patrol task, false)
(blue in Fig. 6) for first case. For second case, we also require
a declarative goal structure for the return task (red in Fig. 6).
The property now holds for new agent design in Fig. 6.

We find that both designs in Fig. 5 and Fig. 6 can lead
to a loop in the agent behaviours. Such a loop includes two
situations: (1) persistent patrolling when no object is available
to be detected and (2) whenever the agent is about to patrol
or return, the weather becomes harsh so that the agent has
to wait for the weather to be normal again. We can denote
the bigraph pattern for the completion of the given intention
as φ3

def
= Intent.1 if and only if it is the only intention in

the base (which is our case), that checks that along all paths
eventually the intention is completed either with success or
with failure.

We also check that whenever a new event is requested
from the environment, it will be responded by the agent
eventually. We denote the bigraph pattern for the pres-
ence of new event request in an environment φ4

def
=

Environment.(e patrol init | id) and the successful assimila-
tion of such event in external event set (a.k.a. desires) as
φ5

def
= Desires.(e patrol init | id) where the symbol id (called

a site in bigraphs) stands for the part of model that is abstracted
away. We can have the property A[φ4 =⇒ Fφ5] which
checks that along all paths, if a new event is requested
(i.e. φ4 holds), this implies that eventually it will be added
in the desires. To check that the agent actually committed to
progressing this desire (leaving empty desire set in this case),
we have the property A[φ5 =⇒ Fφ6] where φ6

def
= Desires.1.

Both designs satisfy both of these properties.
A summary of these property checking is given in Ta-

ble I. It also details the transition system that was used in
the evaluation of each property: the number of states and

7When an action is executed by an agent (one X), it requires another step
to perceive the effects of action (another X). Hence, two Xs are needed.

140

Design in Fig. 5 Design in Fig. 6

Saftey Property False True
Completion Property False False
Response Property True True
Commitment Property True True

States 167 282
Transitions 242 373
Build time (s) 54.05 128.89
Rule applications 1306 2152

Table I: Properties checked: where safety property is ¬E[F(φ1 ∧
¬φ2 ∧ (XXφ2))], completion property A[Fφ3], response property
A[φ4 =⇒ Fφ5], and commitment property A[φ5 =⇒ Fφ6].

transitions, build time (which are in the order of minutes),
and rule applications. The rule applications are the number of
applications of reaction rules, including instantaneous reaction
rules—an advanced feature of BigraphER—that allows agents
to progress an intention without showing all sub-steps. For
example, it includes environment revision, where we see only
final output of a step of executing an action by an agent.

VI. RELATED WORK

When modelling environments for BDI agents, most exist-
ing work, similarly to this work, separates the specification
of environments from the agent designs. For example, the
JaCaMo platform [18] includes an artifact-based framework to
allow programming and executing virtual environments. While
agent computational simulations are essential, they can, by
their nature, only analyse one possible run of agent behaviours
in one environment.

Verifying BDI agent behaviours through model checking
and theorem proving has also been explored. For example,
the work [19] (resp. [20]) applys the Java PathFinder model-
checker (resps. Isabelle/HOL proof assistant) to verify BDI
programs. However, none of them has addressed how the
environment should be transitioned from state to state and they
only examine agent behaviours in a subset of environment.
On the contrary, we support the analysis of all possible agent
behaviours in all possible environments.

VII. CONCLUSIONS

A computational modelling and verification framework for
BDI-agents can aid design-time specification by allowing us
to reason about the behaviour of rational agents operating in
dynamic environments, e.g. those that feature to changes of
external world situations (harsh weather etc.).

We have provided a formalisation of an environment, includ-
ing the sensor information, incoming external events which the
agent needs to respond to, and the external dynamics (relative
to an agent) in such an environment. The computational mod-
elling of a dynamic environment is enabled by an extension
to the CAN language (that formalises the behaviour of a
classical BDI agent). The extended semantics are executable
(via bigraphs) to allow both the development of agent designs
and the specification of dynamic environments, exposing any
potentially anomalous agent behaviour in any environment.

Through an UAV example, we have shown it is possible to
reason about agent behaviours in all possible environments. In

particular, we found that our approach can aid automatically
identifying subtle agent design flaws rendered under some
dynamic situations. The future work is to investigate uncertain
environments to support numerical analysis, e.g. the probabil-
ity of completing an intention in adversarial conditions.

ACKNOWLEDGEMENTS

This work is supported by the EPSRC, under PETRAS
SRF grant MAGIC (EP/S035362/1) and S4: Science of Sensor
Systems Software (EP/N007565/1).

REFERENCES

[1] A. S. Rao, “AgentSpeak (L): BDI agents speak out in a logical com-
putable language,” in European Workshop on Modelling Autonomous
Agents in a Multi-Agent World. Springer, 1996, pp. 42–55.

[2] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah, “Declarative
and procedural goals in intelligent agent systems,” in Conference on
Principles of Knowledge Representation and Reasoning, 2002.

[3] K. V. Hindriks, F. S. D. Boer, W. V. d. Hoek, and J.-J. C. Meyer, “Agent
programming in 3APL,” Autonomous Agents and Multi-Agent Systems,
vol. 2, no. 4, pp. 357–401, 1999.

[4] M. Winikoff, “JACK intelligent agents: an industrial strength platform,”
in Multi-Agent Programming, 2005, pp. 175–193.

[5] R. H. Bordini et al., “Programming multi-agent systems in AgentSpeak
using Jason,” vol. 8. John Wiley & Sons, 2007.

[6] L. Royakkers and R. van Est, “A literature review on new robotics:
automation from love to war,” International journal of social robotics,
vol. 7, no. 5, pp. 549–570, 2015.

[7] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge, “Verifying
multi-agent programs by model checking,” Autonomous Agents and
Multiagent Systems, vol. 12, no. 2, pp. 239–256, 2006.

[8] R. Milner, The space and motion of communicating agents. Cambridge
University Press, 2009.

[9] B. Archibald, M. Calder, M. Sevegnani, and M. Xu, “Modelling and ver-
ifying BDI agents with bigraphs,” Science of Computer Programming,
vol. 215, p. 102760, 2022.

[10] M. Kwiatkowska et al., “PRISM 4.0: Verification of probabilistic real-
time systems,” in International Conference on Computer Aided Verifi-
cation, ser. LNCS, vol. 6806. Springer, 2011, pp. 585–591.

[11] S. Sardina and L. Padgham, “Goals in the context of BDI plan failure
and planning,” in International Conference on Autonomous Agents and
Multiagent Systems, 2007, pp. 16–23.

[12] M. Sevegnani, M. Kabác, M. Calder, and J. A. McCann, “Modelling and
verification of large-scale sensor network infrastructures,” in Conference
on Engineering of Complex Computer Systems,, 2018, pp. 71–81.

[13] S. Benford, M. Calder, T. Rodden, and M. Sevegnani, “On lions, impala,
and bigraphs: modelling interactions in physical/virtual spaces,” ACM
Transactions on Computer-Human Interaction, vol. 23, pp. 1–56, 2016.

[14] M. Bundgaard and V. Sassone, “Typed polyadic pi-calculus in bigraphs,”
in International Conference on Principles and Practice of Declarative
Programming, 2006, pp. 1–12.

[15] M. Sevegnani and M. Calder, “BigraphER: Rewriting and analysis
engine for bigraphs,” in the 28th International Conference on Computer
Aided Verification, 2016, pp. 494–501.

[16] S. Sardina and L. Padgham, “A BDI agent programming language with
failure handling, declarative goals, and planning,” in Autonomous Agents
and Multi-Agent Systems, vol. 23, no. 1. Springer, 2011, pp. 18–70.

[17] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching time temporal logic,” in Workshop
on Logic of Programs, 1981, pp. 52–71.

[18] O. Boissier, R. H. Bordini, J. Hubner, and A. Ricci, Multi-agent oriented
programming: programming multi-agent systems using JaCaMo. MIT
Press, 2020.

[19] L. A. Dennis, M. Fisher, M. P. Webster, and R. H. Bordini, “Model
checking agent programming languages,” Automated software engineer-
ing, vol. 19, no. 1, pp. 5–63, 2012.

[20] A. B. Jensen, “Machine-checked verification of cognitive agents,” in
Proceedings of the 14th International Conference on Agents and Artifi-
cial Intelligence, 2022, pp. 245–256.

141

Zero-Shot Object Detection with Multi-label Context

Yongxian Wei, Yong Ma
School of Computer Science and Engineering, Nanjing University of Science and Technology

Nanjing, China
{wei yx,mayong}@njust.edu.cn

ABSTRACT
Zero-shot detection (ZSD) , the problem of object detection
when training and test objects are disjoint, i.e. no training
examples of the target classes are available. ZSD increas-
ingly gains importance for large scale applications because
collecting and labeling sufficient data is extremely hard. In
this paper, inspired from human cognitive experience, we pro-
pose a simple but effective Multi-label Context (MLC) frame-
work to facilitate the detection ability for both seen and un-
seen objects by mining contextual cues. We design a multi-
label classifier which leverages the holistic image-level con-
text to learn object-level concepts. Then, novel RoI features
are generated by exploiting context information beneath both
whole images and interested regions. Moreover, background
dynamic generator (BDG) can reduce the confusion between
background and unseen classes. Our extensive experiments
show that MLC outperforms the current state-of-the-art meth-
ods on MS-COCO.

Index Terms— Zero-Shot Object Detection, Multi-label
Learning, Context Embedding, Computer Vision

1. INTRODUCTION

While object detection methods based on deep learning have
achieved great progress over the last few years [1, 2, 3, 4, 5],
these gains can be attributed to the availability of the fully su-
pervised training data. Although researchers have struggled
to acquire larger datasets with a broader set of categories, the
processing procedure is time consuming and tedious. Fur-
thermore, it is hard to collect enough training data for rare
categories. Zero-shot learning (ZSL) has been proposed to
address the problem for reasoning unseen classes [6, 7, 8],
Traditional ZSL researches mainly focus on the classification
of unseen objects and achieve high classification accuracy [7].
However, there is still a big gap between ZSL settings and
real-world scenes. ZSL only focuses on identifying unseen
objects, not detecting them. For example, most of datasets
used as ZSL benchmark have only one dominant object per
image [9, 10], while in real-world, various objects may appear

DOI reference number: 10.18293/SEKE2022-012

(a) Baseline (b) Ours

Fig. 1. Motivation and example results of our MLC frame-
work. By incorporating discriminative context information,
the semantic features of “car” are strong evidences for detect-
ing objects that are highly dependent on context information,
such as “traffic light”.

in a single image without being precisely localized. To close
this gap, [11] introduced a new “zero-shot object detection”
(ZSD) problem setting method, which aims at detecting ob-
jects seen during training as well as detecting unseen classes
as and when they appear at test-time.

Existing ZSD approaches mainly focus on learning a
visual-semantic correspondence based on intrinsic properties
of the target objects by the means of human-defined attributes
or distributed representations learned from text corpora. They
only focus on local information near an object’s region of in-
terest while ignoring rich contextual information within the
image, which has been shown to benefit the object detection
performance [12, 13, 14].

We therefore propose a novel framework named Multi-
label Context (MLC) for ZSD. In this paper, we revisit the
RoI features in region-based detectors from the perspective
of context information embedding. Our key motivation is that
while each RoI in very deep CNNs may have a very large the-
oretical receptive field which usually spans the whole input
image [1]. However, the effective receptive field [15] may
only occupy a fraction of the entire theoretical receptive field,
making the RoI features insufficient for characterizing objects
that are highly dependent on context information. We use a
simple but effective process to generate contextual RoI fea-

142

tures by exploiting embedded multi-label context information
beneath both whole images and interested regions, which are
also complementary to conventional RoI features.

MLC learns from the cognitive science about how hu-
mans reason objects through semantic information. Humans
can learn the mapping relationship between vision objects and
semantic description from seen objects and transfer it to de-
tect unseen objects. In addition, conventional object detec-
tion approaches generally tend to relegate unseen objects into
the background leading to missed detection of unseen ob-
jects. Previous works [16, 11] used the word-vector of the
“background” word to represent background class. Due to
the rough word-vector for background class used in detec-
tor head is inability to exactly represent the complex back-
ground, MLC develops a component denoted as background
dynamic generator (BDG) to learn an appropriate word-vector
for background class. Our study shows that replacing the
rough background word-vector in detector head with the new
one learned from BDG can effectively increase the recall rate
of unseen classes.

In summary, the contributions of this paper are three-fold:
(i) we develop a novel ZSD approach that adaptively exploits
the whole image context to learn discriminative features for
context-dependent object categories; (ii) to the best of our
knowledge, it is the first time to introduce multi-label learn-
ing into ZSD task; (iii) extensive experiments on two different
MS-COCO splits show significant performance improvement
on the existing ZSD benchmarks.

2. METHOD

2.1. Problem Formulation

We begin by defining the problem and then present our ap-
proach. We denote the set of all classes as C = CS ∪ CU ,
where CS denotes the set of seen classes and CU denotes the
set of unseen classes, and CS ∩ CU = ϕ. Each image is de-
noted as I ∈ Rw×h×3, with corresponding bounding boxes
and ground truth labels denoted as bi ∈ N4 and yi ∈ C re-
spectively. Let DS denotes the training dataset, which only
contains the objects belonging to CS to train the network and
use the unseen classes objects dataset DU to evaluate the de-
tection performance for unseen classes. For GZSD setting,
the test dataset DT contains objects from both seen and un-
seen classes (c ∈ C = CS ∪ CU).

2.2. MLC Framework

The overall framework of our MLC consists of four compo-
nents: Multi-Label Head for advancing the feature learning of
the objects that are highly dependent on larger context clues,
contextual RoI features generated by fusing both instance-
level and global-level information derived from Multi-Label
Head, BDG for generating suitable background word-vector,
and Zero-Shot Head for classifying the extracted objects into

seen and unseen classes and locating them. The details are
indicated in Figure 2.

2.2.1. Multi-Label Head

In parallel with the RPN branch, we exploit Multi-Label Head
upon the detection backbone, enabling the backbone to learn
object-level concepts adaptively from global-level context. It
is worth mentioning that Multi-Label Head does not require
additional annotations, as the image-level labels can be conve-
niently obtained by collecting all instance-level categories in
an image. Specifically, we first apply a 3×3 convolution layer
on the output of ResNet conv5 to obtain the input feature map,
and then follow the practice in [17] to employ both global
max-pooling (GMP) and global average-pooling (GAP) for
feature aggregation. Formally, let X ∈ Rd×w×h denote the
input feature map, where d is the channel dimensionality, w
and h are the width and height, respectively. Then, the multi-
label classifier is constructed by NS binary classifiers for all
categories:

ŷ = fCLS(fGMP (X) + fGAP (X)) ∈ RNS , (1)

where NS denotes the number of seen classes, each element
of ŷ is a confidence score (logits), and fCLS is binary clas-
sifier modeled as one fully-connected layer. We assume that
the ground truth label of an image is y ∈ RNS , where yi =
{0, 1} denotes whether object of category i appears in the im-
age or not. The multi-label loss can be formulated as follows:

LMLL = −
NS∑
i=1

yiln(
1

1 + e−ŷi
) + (1− yi)ln(

e−ŷi

1 + e−ŷi
),

(2)

2.2.2. Contextual RoI Feature Generation

With the purpose of leveraging larger context, We apply
RoIAlign [4] with proposals generated by RPN on the
context-embedded feature map X to obtain RoI features:

xglobal = fRoIAlign(X;w, h) ∈ Rd×7×7, (3)

where fRoIAlign is the RoIAlign operation and w and h are
the width and height of the input image, respectively. As the
resulting RoI feature xglobal absorbs rich context informa-
tion from the context-embedded image feature X, it is by na-
ture complementary to the conventional RoI feature extracted
from the feature pyramid network (FPN) [18]. To integrate
our contextual RoI features xglobal into the detection pipeline,
it is natural to fuse them with the original RoI features ex-
tracted from the feature pyramid network (FPN) with element
addition. Formally, let xinstance denote the original RoI fea-
ture extracted from FPN, and xfusion denote the fused RoI
feature, then we have:

xfusion = xglobal + xinstance ∈ Rd×7×7, (4)

143

Fig. 2. The architecture for MLC. After acquiring feature map from the backbone, Multi-Label Head enables the network to
learn object-level concepts from global-level context. Then, contextual RoI features which are complementary to conventional
RoI features, are generated by fusing both instance-level and global-level information. Finally, the Zero-Shot Head uses the
xfusion and BDG to locate and classify the seen and unseen objects, respectively.

As shown in Figure 2, the fused feature map xfusion is
then fed into the Zero-Shot Head to produce refined bounding
boxes and classification scores.

2.2.3. Background Dynamic Generator

We set a fully connected layer called vb without bias and
make it trainable. vb is used to represent vector for back-
ground class, which is initialized with the mean word vectors
for all seen classes. BDG will update vb during training so
that we can learn a new word-vector vb for background class.
During training, we feed the visual features derived from the
backbone network to the BDG branch and get the background
binary classification score. The calculation process is formu-
lated as follows:

c =
1

1 + e−xTvb
, (5)

specifically, T ∈ RN×d is an FC layer which is used to ad-
just the dimension of input objective feature to fit d, i.e. the
dimension of word vector.

2.2.4. Zero-Shot Head

The main idea for our Zero-Shot Head is learning the re-
lationship between visual and semantic concepts from seen
classes data and transferring it to detect unseen objects. To
this end, we replace the classification branch in Faster R-CNN
with a new semantic-classification branch. Keeping the non-
trainable seen class word vectors WS , we allow projection

of the visual feature xfusion to the word embedding space
to calculate classification scores PS . In inference, we follow
[11] to use an additional procedure to calculate the classifi-
cation scores for unseen classes. The process can be briefly
demonstrated as follows:

PU = (PSW
T
S)WU , PS = Te(xfusion)WS , (6)

where, WU contains unseen class word vectors. So we can
get the scores by performing the matrix multiplication of the
semantic feature and WU .

2.2.5. Loss Function

The whole loss function LMLC for our end-to-end network
has four components:

LMLC = LMLL + LRPN + LBDG + LZSH ,

LBDG = −(c log(ĉ) + (1− c) log(1− ĉ)),

LZSH = −
NS∑
i=1

PS,i log(PS,i) + l1(r, r̂),

(7)

where LZSH is the losses for Zero-Shot Head and it con-
tains smooth l1 regression loss. All loss terms are considered
equally important, without extra hyper-parameters to charac-
terize the trade-off between them, which reveals MLC is gen-
eralized and not trick.

144

Table 1. ZSD performance of Recall@100 and mAP with
different IoU thresholds on MS COCO dataset.

Method Seen/Unseen Recall@100 mAP

0.4 0.5 0.6 0.5

SB [16] 48/17 34.46 22.14 11.31 0.32
DSES [16] 48/17 40.23 27.19 13.63 0.54

TD [11] 48/17 45.50 34.30 18.10 -
PL [19] 48/17 - 43.59 - 10.10

Gtnet [20] 48/17 47.30 44.60 35.50 -
BLC [21] 48/17 51.33 48.87 45.03 10.60

Ours 48/17 56.03 52.52 47.73 11.30

PL [19] 65/15 - 37.72 - 12.40
BLC [21] 65/15 57.23 54.68 51.22 14.70

Ours 65/15 60.11 57.81 52.49 15.70

Table 2. Comparison of Recall@100 and mAP at IoU=0.5
under GZSD setting on MS COCO dataset. HM denotes the
harmonic average for seen and unseen classes.

Method Seen/Unseen seen unseen HM

mAP Recall mAP Recall mAP Recall

DSES [16] 48/17 - 15.02 - 15.32 - 15.17
PL [19] 48/17 35.92 38.24 4.12 26.32 7.39 31.18

BLC [21] 48/17 42.10 57.56 4.50 46.36 8.20 51.37

Ours 48/17 47.26 71.46 5.39 50.92 9.68 59.46

PL [19] 65/15 34.07 36.38 12.40 37.16 18.18 36.76
BLC [21] 65/15 36.00 56.39 13.10 51.65 19.20 53.92

Ours 65/15 40.95 67.83 14.86 59.64 21.81 63.47

3. EXPERIMENT

3.1. Dataset and Setting

We validate our proposed method on the widely used object
detection dataset MSCOCO. This dataset is more challenging
than Pascal VOC as it has 80 object classes, more small ob-
jects, and more complex background. Following the dataset
splits of MSCOCO proposed in [16] and [19], we use both
two splits of the dataset in experiments: (1) 48 seen classes
and 17 unseen classes; (2) 65 seen classes and 15 unseen
classes. Note that the seen classes and unseen classes are dis-
joint.

We use mAP and Recall@100 as the evaluation metrics,
in which 100 means that only the top 100 detections are valid
for evaluation. The experimental results are reported under
ZSD (zero shot detection) and GZSD (generalized zero shot
detection) benchmarks. The ZSD setting only requires the
detection results of unseen objects, while for GZSD setting, it

Table 3. Ablation study of our method in different splits.
ZSH means Zero-Shot Head and MLH means Multi-Label
Head.

Seen/Unseen ZSH MLH BDG Recall/mAP

seen unseen HM

48/17
✓ 65.1/40.7 43.1/4.5 51.8/7.7
✓ ✓ 70.9/47.1 45.3/5.5 55.3/9.8
✓ ✓ ✓ 71.4/47.2 50.9/5.3 59.4/9.6

65/15
✓ 60.6/32.0 54.3/12.7 57.3/18.2
✓ ✓ 65.7/39.2 55.0/14.6 59.9/21.3
✓ ✓ ✓ 67.8/40.9 59.6/14.8 63.4/21.8

requires the model predict both the seen and unseen objects.
GZSD is more challenging than ZSD, and more suitable for
practical application.

3.2. Comparison with Other Methods

We compare the performance for MLC with the state-of-the-
art zero-shot detection approaches on both 48/17 and 65/15
splits of MSCOCO under ZSD and GZSD settings. For ZSD
setting, we show the results in Table 1. Our method outper-
forms all other work and improves up to 30.38% and 20.09%
of the Recall@100 metric over the 48/17 and 65/15 splits, re-
spectively. Moreover, the improvement in mAP also shows
that the contextual RoI feature has an effective discrimination
ability to unseen class. For GZSD setting, we report the re-
sults in Table 2. MLC surpasses all previous works in terms of
mAP and Recall@100 on both seen and unseen classes. The
“HM” performance gain reveals that our method maintains a
good balance between seen and unseen classes.

3.3. Ablation Study

We conduct a controlled study of our proposed method on
GZSD evaluation. As shown in Table 3, the baseline method
with Zero-Shot Head gives a foundation and achieves com-
parable mAP and recall at IoU = 0.5. Our method is able to
consistently bring improvement on both seen and unseen cat-
egories. From these results, we can learn the significant effec-
tiveness of the Multi-Label Head. We can also observe that
BDG brings an improvement of 4.6% in terms of Recall@100
for unseen classes.

4. CONCLUSION AND FUTURE WORK

In this paper, we find that contextual information is quite
important in zero-shot detection, hence we propose a novel
framework to embed global-level context to advance the
learning of context-dependent categories with the help of
multi-label learning. In the experiment part, we described the
extensive experiments which were conducted to demonstrate

145

the superiority of the proposed model, and investigated the ef-
fectiveness of different components. In the future, we would
like to find a better approach to obtain the semantic feature
since traditional word vectors like word2vec are noisy.

5. REFERENCES

[1] Ross Girshick, “Fast r-cnn,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp.
1440–1448.

[2] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” Advances in neural in-
formation processing systems, vol. 28, pp. 91–99, 2015.

[3] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi, “You only look once: Unified, real-time
object detection,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016,
pp. 779–788.

[4] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick, “Mask r-cnn,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp.
2961–2969.

[5] Joseph Redmon and Ali Farhadi, “Yolo9000: better,
faster, stronger,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp.
7263–7271.

[6] Abhijit Bendale and Terrance E Boult, “Towards open
set deep networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016,
pp. 1563–1572.

[7] Ziming Zhang and Venkatesh Saligrama, “Zero-shot
learning via joint latent similarity embedding,” in pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 6034–6042.

[8] Yong Ma, Huaqi Mao, Haofeng Zhang, and Wenbo
Wang, “Prototype relaxation with robust principal com-
ponent analysis for zero shot learning,” IEEE Access,
vol. 8, pp. 170140–170152, 2020.

[9] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al.,
“Imagenet large scale visual recognition challenge,” In-
ternational journal of computer vision, vol. 115, no. 3,
pp. 211–252, 2015.

[10] Peter Welinder, Steve Branson, Takeshi Mita, Catherine
Wah, Florian Schroff, Serge Belongie, and Pietro Per-
ona, “Caltech-ucsd birds 200,” 2010.

[11] Shafin Rahman, Salman Khan, and Fatih Porikli, “Zero-
shot object detection: Learning to simultaneously recog-
nize and localize novel concepts,” in Asian Conference
on Computer Vision. Springer, 2018, pp. 547–563.

[12] Xiaowei Hu, Lei Zhu, Chi-Wing Fu, Jing Qin, and
Pheng-Ann Heng, “Direction-aware spatial context fea-
tures for shadow detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2018, pp. 7454–7462.

[13] Xinlei Chen, Li-Jia Li, Li Fei-Fei, and Abhinav Gupta,
“Iterative visual reasoning beyond convolutions,” in
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2018, pp. 7239–7248.

[14] Haowen Deng, Tolga Birdal, and Slobodan Ilic, “Ppfnet:
Global context aware local features for robust 3d point
matching,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 195–
205.

[15] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard
Zemel, “Understanding the effective receptive field in
deep convolutional neural networks,” in Proceedings of
the 30th International Conference on Neural Informa-
tion Processing Systems, 2016, pp. 4905–4913.

[16] Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama
Chellappa, and Ajay Divakaran, “Zero-shot object de-
tection,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 384–400.

[17] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and
In So Kweon, “Cbam: Convolutional block attention
module,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 3–19.

[18] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie, “Feature pyra-
mid networks for object detection,” in Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2117–2125.

[19] Shafin Rahman, Salman Khan, and Nick Barnes, “Im-
proved visual-semantic alignment for zero-shot object
detection,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2020, vol. 34, pp. 11932–11939.

[20] Shizhen Zhao, Changxin Gao, Yuanjie Shao, Lerenhan
Li, Changqian Yu, Zhong Ji, and Nong Sang, “Gtnet:
Generative transfer network for zero-shot object detec-
tion,” in Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 2020, vol. 34, pp. 12967–12974.

[21] Ye Zheng, Ruoran Huang, Chuanqi Han, Xi Huang, and
Li Cui, “Background learnable cascade for zero-shot ob-
ject detection,” in Proceedings of the Asian Conference
on Computer Vision, 2020.

146

Modified Communication Parallel Compact Firefly
Algorithm and Its Application

1st Jianpo Li
School of Computer Science

Northeast Electric Power University
Jilin, China

jianpoli@163.com

2nd Geng-Chen Li
School of Computer Science

Northeast Electric Power University
Jilin, China

605544372@qq.com

3rd Jeng-Shyang Pan*
College of Computer Science and Engineering
Shandong University of Science and Technology

Qingdao, China
jspan@cc.kuas.edu.tw

4th Min Gao
School of Computer Science

Northeast Electric Power University
Jilin, China

15822553806@163.com

Abstract—Coverage is an important indicator to measure
the monitoring quality of Wireless Sensor Network (WSN). As
a NP-hard problem, it is a mainstream method to introduce
swarm intelligence algorithm to solve it. After analyzing the
traditional Firefly Algorithm (FA), aiming at the defects of this
algorithm, this paper proposes Modified Communication Parallel
Firefly Algorithm (MCPFA) family algorithm, which improves
the performance of the algorithm to a certain extent. On this
basis, the compact optimization method is introduced and the
Modified Communication Parallel Compact Firefly Algorithm
(MCPCFA) family algorithm is proposed to further improve the
overall function of traditional FA. The proposed algorithm is
tested by several classical functions in CEC2013 test function
set to verify the performance of the algorithm. Finally, a WSN
node deployment scheme based on MCPCFA family algorithm is
proposed to improve the network coverage. Through simulation
experiments, compared with the traditional Partial Swarm Opti-
mization (PSO), FA, Parallel FA (PFA) and Compact FA (CFA),
MCPCFA family algorithm shows the best performance in WSN
network layout.

Index Terms—firefly algorithm, modified parallel strategy,
compact optimization method, WSN, coverage optimization

I. INTRODUCTION

Swarm intelligence algorithm is an optimization method
proposed by researchers based on the research of biological
group behavior and physical phenomena in nature. In recent
decades, many scholars at home and abroad have proposed a
variety of swarm intelligence algorithm. These algorithms are
inspired by biological evolution or natural biological habits.
Therefore, each algorithm has its own rules and characteristics.
Yang Xin-she simulated the living habits of fireflies and
proposed FA in [1]. As a swarm intelligence algorithm, it can
also be free from the nature of optimization problems. These
algorithms or their variants are used to solve optimization
problems in various fields. Like other swarm intelligence
algorithms, FA and its variants are used to solve optimization
problems in a variety of domains.

DOI reference number: 10.18293/SEKE2022-019

Internet of things and big data are hot research and appli-
cation fields in the intelligent era. As the core infrastructure
of Internet of things and big data, WSN have been widely
studied and deeply developed in recent years [2]. At present,
WSN have been integrated into life and widely used in various
fields [3]. Node deployment is one of the basic problems that
must be properly solved for any type of WSN application to
achieve the expected quality of service. Therefore, the research
on the layout of WSN is particularly important. The traditional
2D coverage research is not enough to meet the actual needs,
so the coverage research in 3D environment has attracted
extensive attention of researchers. As a NP-hard problem, the
introduction of evolutionary algorithm solves some problems
to a certain extent.

The 3-D curved surface deployment problem is a special
situation in the three-dimensional space deployment. It is
closer to the application scenarios in the real world, such
as volcano monitoring, building structure monitoring, and
disaster rescue monitoring. Sensors can only be placed on
the surface of the three-dimensional terrain, and cannot be
arbitrarily deployed in the air or in the mud. The research on
the area coverage of 3-D curved surface is to monitor the area
of the mouth mark on the terrain surface such as the mountain
surface and the building surface. Due to the complex shape
of the terrain surface and the changeable environment, it is
very difficult to monitor the events or important parameter
information of the three-dimensional surface. Therefore, the
research on the deployment of 3D surface nodes has very
important practical application value.

In this paper, our goal is to analyze the shortcomings of
FA and make corresponding improvements, so as to improve
the performance of the algorithm. Because the traditional FA
has the problem of poor convergence performance and the
algorithm is easy to fall into the local optimum, this pa-
per proposes three modified communication parallel strategy.
Then, FA has the problem of high time complexity. For this
problem, this paper proposes a compact scheme combined

147

with the FA to reduce the time complexity of the algorithm.
And combined with the parallel FA family algorithms, the
proposed compact scheme is introduced into each group,
and the MCPCFA family algorithms are proposed, which
further improves the overall performance of FA. Using the
improved version of FA proposed in this paper, MCPCFA
family algorithm optimizes the node deployment strategy of
WSN and finds the node layout mode with the maximum
coverage. The main contributions of this paper are summarized
as follows.

• MCPFA family algorithm is proposed, and the population
number of MCPFA is updated to further improve the
performance of FA.

• The performance of the proposed MCPFA is analyzed.
In order to use less memory to simulate the operation of
MCPFA, the compact idea is added, and the MCPCFA is
proposed to improve the overall function of FA.

• In this paper, CEC2013 test function set is used to test and
analyze the performance of the proposed MCPCFA fam-
ily algorithm, which verifies our theory. The data results
show that compared with other comparison algorithms,
MCPCFA shows strong ability.

• This paper introduces the traditional WSN coverage
model, 0-1 model. At the same time, MCPCFA family
algorithm was used to optimize the model. Through the
analysis of simulation results, it is confirmed that the
optimization ability of the proposed method is better
than other methods. The superiority and applicability of
MCPCFA in this field are also verified.

The rest of the arrangements are as follows. The second part
reviews the FA algorithm and proposes the MCPCFA algo-
rithm. The third part analyzes the experimental performance
of the proposed MCPCFA algorithm. Section IV introduces
the 0-1 coverage model of WSN. Section V discusses the
application of MCPCFA in WSN coverage in detail. Finally,
the work of this paper is summarized.

II. MODIFIED COMMUNICATION PARALLEL COMPACT
FIREFLY ALGORITHM

A. Firefly Algorithm

FA simulated the biological behavior of fireflies and as-
sumed that each firefly was always glowing. In order to
simulate the luminous behavior of fireflies, assuming that all
fireflies no gender distinction, each a firefly is likely to be
attracted to other individuals. In addition, the bright fireflies
will attract darker fireflies, and their brightness is directly
proportional to the fitness function value with its location. The
specific steps of FA are as follows.

First of all, each a firefly in the fitness function value
is calculated, and according to the results of this decision
direction of movement of each individual.

Then, their individual attractiveness was calculated by (1).

β = β0 × e−γr
2
ij (1)

Finally, each firefly moves its position according to the rules
of (2).

xid (t+ 1) = xid (t) + β (xjd (t)− xid (t)) + α (2)

Where, I0 is the maximum brightness of firefly individual.
γ is the light intensity absorption coefficient. rij is the spatial
distance between firefly i and j. β0 is the maximum attraction.
α is the step factor, which is a constant on [0, 1].

B. Modified Communication Parallel Firefly Algorithm

Although the traditional FA has stronger global search
ability than other algorithms, like most swarm intelligence
algorithm, FA still has the disadvantage that it is easy to
fall into the local optimal solution, resulting in the premature
convergence of the algorithm in the running process. There-
fore, aiming at this problem, based on the traditional parallel
strategy [4], this paper proposes MCPFA family algorithm.
Next, the new ideas proposed in this paper will be explained
in detail.

Firstly, it is assumed that there are pop firefly individuals
in the population, and the maximum number of iterations is
itermax. Before the algorithm starts to run, the whole firefly
population is clustered, and the population is divided into
g groups. Then there will be pop/g particles in each group
after clustering. In addition, it is also necessary to set up
an information exchange mechanism to exchange information
every time the number of iterations t of the algorithm reaches
an integer multiple of R, and the exchange strategy will
be divided into two parts according to the different search
stages of the algorithm. After this operation, the population
will return to the optimization state at the position after
information exchange to continue the optimization work. The
communication strategies in the two different search stages
are explained below. It is worth mentioning that two different
search stages will be distinguished when t = itermax

2 , the
first stage before and the second stage after. That is, when
t < itermax

2 , the algorithm is considered to be in the first
stage, while when t ≥ itermax

2 , the algorithm is considered to
be in the second stage.

a) Communication strategy in the first stage: Like most
swarm intelligence algorithm, FA also has some disadvantages,
such as poor convergence and easy to fall into local optimality.
Therefore, in this part of the work, we will improve FA to
improve the convergence and accuracy of the algorithm. In ad-
dition to the different communication strategies used, MCPFA
family algorithm will use the same grouping method and
preparations before communication. The specific operations
are as follows.
• Modified Communication Parallel Firefly Algorithm-Best

(MCPFA-B) After the grouping operation, all particles
have entered the parallel working state. Every time the
number of iterations t reaches R, the action of infor-
mation exchange will occur. Before that, the particles in
each group will be sorted according to the size of fitness
function value, and the arranged population will be di-
vided into A and B parts. Among them, A represents the

148

particles whose fitness function value is in the first half.
Then, the particle order after the A part is xAbest (xA1) >

xA2 > xA3 > ... > xAworst

(
xA pop

2

)
. The B part

represents the particles whose fitness function value is in
the last half. Then, the particle order after the B part is
xBbest (xB1) > xB2 > xB3 > ... > xBworst

(
xB pop

2

)
.

Among them, it is worth noting that the fitness function
value of xAworst is better than that of xB1. The reason
for this is that the algorithm itself has the disadvantage
of poor convergence. Using the best particle to replace
the worst particle can speed up the convergence speed of
the algorithm to a certain extent and make the algorithm
find the global optimal solution faster.

xAbest (xA1)→ xAworst

(
xA pop

2

)
xBbest (xB1)→ xBworst

(
xB pop

2

) (3)

Where xA1 and xB1 represent the position of the par-
ticle with the best fitness function value in A and B
respectively. xAworst and xBworst represent the position
of the particle with the worst fitness function in A and
B respectively. → expresses the meaning of substitution.
After information exchange, the replaced particles will
be optimized again in the updated position. When the
number of iterations t reaches an integral multiple of
R again, information exchange will be carried out again
until the end of the first search phase. Fig. 1 shows a
schematic diagram of this optimization scheme.

1G

3G

…

gG

1t 2t

2G

1t kR 2t kR

Abestx

Aworstx

Bbestx

Bworstx

Abestx

Aworstx

Bbestx

Bworstx

t kR t k nR

Fig. 1. Communication strategy of the first stage of MCPFA-B.

• Modified Communication Parallel Firefly Algorithm-
Average (MCPFA-A) Like MCPFA-B, the algorithm per-
forms grouping operation first, and then all particles
enter the optimization state. When the number of iter-
ations t = kR, the particles are sorted according to
the fitness function value. However, different from the
previous method, MCPFA-A will use the average value
of the current population for information exchange in the
operation of information exchange. As shown in (4), the
average value of the position of the particles in A and B
is calculated and recorded as xAave and xBave.

xAave =
xA1+xA2+...+xAworst

pop
2g

xBave =
xB1+xB2+...+xBworst

pop
2g

(4)

After getting the average, the algorithm will replace the
worst value in the part A with the average value in the part
A. Part B is the same as part A. The specific operation
is shown in (5).

xAave → xAworst
xBave → xBworst (5)

Where xAave and xBave represent the average position of
all particles in part A and B respectively. Fig. 2 shows the
schematic diagram of MCPFA-A optimization scheme in
the first stage.

1G

3G

…

gG

1t 2t

2G

1t kR 2t kR

Abestx

Aworstx

Bbestx

Bworstx

t kR t k nR

Aavex

Aworstx

Bavex

Bworstx

Fig. 2. Communication strategy of the first stage of MCPFA-A.

• Modified Communication Parallel Firefly Algorithm-
Rand (MCPFA-R) Similar to the methods of MCPFA-B
and MCPFA-A, MCPFA-R also needs to sort the fitness
function values of fireflies in each group before infor-
mation exchange, and divide the particles in each group
into two parts: Part A and B. Then, MCPFA-R randomly
selects one particle xArand and xBrand in A and B
respectively. These two particles are used to replace the
worst fitness particles xAworst and xBworst. The specific
operation is shown in (6).

xArand → xAworst
xBrand → xBworst (6)

Where xArand and xBrand represent the positions of
randomly selected particles in parts A and B respec-
tively. For ease of understanding, Fig. 3 shows the
schematic diagram of MCPFA-R optimization scheme in
the first stage.

1G

3G

…

gG

1t 2t

2G

1t kR 2t kR

Abestx

Aworstx

Bbestx

Bworstx

t kR t k nR

Arandx

Aworstx

Brandx

Bworstx

Fig. 3. Communication strategy of the first stage of MCPFA-R.

149

b) Communication strategy in the second stage: In the
second stage, FA begins to enter the convergence stage, that
is, the whole population begins to approach the global optimal
solution. At this stage, the operation of information exchange
still needs to be carried out. However, since the possibility
of a better position in the solution space is relatively small,
and the algorithm is in the convergence stage, the information
exchange operation in the second stage will only use the
optimal value in each group. At the same time, in order to
improve the convergence speed of the algorithm, when the
number of iterations reaches an integral multiple of M , the
previously divided g group population is fused. The so-called
fusion processing means that after each fusion, The number of
groups of the population will be reduced to half of the previous
one. At the same time, the latter half of the particles with
relatively poor fitness function value in the fused group should
be discarded and only the first half of the particles should be
retained. In this way, the number of firefly individuals in the
whole population will continue to decrease until there is only
one group left, and the fusion operation will be stopped. The
exchange of information will not be stopped until the end of
the algorithm. The schematic diagram of the proposed idea in
this stage is shown in Fig. 4.

...

iworstx
ibestx Replace

...

1G 2G
3G

4G
1gG gG

t kR

t kM

iworstx
ibestx Replace 1t k R

1G 2G
2

gG

1G 2G

...
1G

iworstx
ibestx Replace t k n R

 t k nM

Fig. 4. Communication strategy of the second stage of MCPFA.

To sum up, MCPFA family algorithm proposed in this paper
adds a modified parallel strategy on the basis of traditional FA,
divides the population into g groups and optimizes at the same
time. When the algorithm is in the first stage, whenever the
number of iterations t reaches an integral multiple of R, three
communication strategies are used to replace the position of
the worst fitness function value particle xworst in the group,
so as to improve the global search ability of the algorithm.
When the algorithm is in the second stage, in order to improve
the convergence of the algorithm, the particle xbest with the
best fitness function value in the group is used to replace
xworst. At the same time, whenever t reaches an integer
multiple of M , the packets are fused. For example, the first
group and the second group are fused, the third group and the
fourth group are fused, and the latter half of the particles with
relatively poor fitness function value are discarded to improve
the computer memory occupied by the algorithm and improve
the efficiency of the algorithm. In practical application, R and
M will be set in advance.

C. Compact optimization method

This paper proposes MCPFA family algorithm, which im-
proves the performance of the algorithm to a certain extent,
but MCPFA family algorithm still has room to improve. For
example, the traditional FA occupies too much computer mem-
ory space, and MCPFA is also troubled. In order to solve this
problem, compact optimization idea is introduced in this study.
This optimization method simulates the population behavior
of the algorithm by establishing a population distribution
probability. The most essential feature of compact method is
that it has no actual population, but uses virtual population
instead. The virtual population is a probability model, and they
are encoded in a data structure, represented by the disturbance
vector PV [5], [6].

PV = [µ, δ] (7)

Where, µ and δ are two parameters, which are expressed as the
mean and standard deviation of the PV vector respectively, t
indicates the number of iterations of the current program µ
and δ will vary in the Gaussian probability density function
PDF and are limited to the region of [−1, 1]. At the same
time, PDF is normalized so that its area is 1, and it is a
uniform distribution of complete shape [7].

PDFµi,σi (x) =
e
−−(x−µi)

2

2σ2
i

√
2
π

σi

(
erf

(
µi+1√
2σi

))
− erf

(
µi−1√
2σi

) (8)

µi (t+ 1) = µi (t) +
1

Np
(winneri − loseri) (9)

σ2
i (t+ 1) = (σi (t))

2
+ (µi (t))

2 − (µi (t+ 1))
2

+
1

Np

(
winner2i − loser2i

) (10)

Finally, the time complexity of MCPCFA is theoretically
analyzed to better introduce the MCPCFA algorithm proposed
in this paper. the time complexity of the compression strategy
FA is O(g×d), the time complexity of updating the optimal
value is O(1), and the time complexity of the FA algorithm
using the parallel strategy is O(g×g). So the above calcula-
tion complexity is max(O(g×d), O(1), O(g×g))=O(g×d), std.
d>g. The computational complexity of the entire algorithm is
O(timemax×g×d), that is, the time complexity of MCPCFA
is O(timemax×g×d).

III. TEST EXPERIMENTS TO VERIFY THE PERFORMANCE
OF THE PROPOSED ALGORITHM

In order to verify the advantages of MCPCFA family algo-
rithm proposed in this paper, several classical test functions
from CEC2013 test function set will be used to test the
performance of the algorithm in MATLAB2015b. At the same
time, comparative experiments were carried out with PSO,
FA, PFA and CFA. In order to ensure the fairness of the
experimental results, the parameter settings of each algorithm
will be set uniformly. Each test function will be run 30 times
and the results will be averaged and compared. The population

150

number of all algorithms is set to 80 and the maximum number
of iterations itermax is set to 1000. In PFA and MCPCFA
family algorithm, the population was divided into 8 groups.
In addition, make all teams exchange information every 20
iterations.

CEC2013 test function set includes Unimodal Functions,
Basic Multimodal Functions and Composition Functions. We
select two classical test functions from each category to test
the performance of the algorithm. The results of this test are
shown in Tab. I and Fig. 5.

0 100 200 300 400 500 600 700 800 900 1000

Number of iterations

0

1

2

3

4

5

6

7

8

F
itn

es
s

va
lu

e

#107

PSO
FA
PFA
CFA
MCPCFA-B
MCPCFA-A
MCPCFA-R

(a) f1

0 100 200 300 400 500 600 700 800 900 1000

Number of iterations

-900

-800

-700

-600

-500

-400

-300

-200

F
itn

es
s

va
lu

e

PSO
FA
PFA
CFA
MCPCFA-B
MCPCFA-A
MCPCFA-R

(b) f2

0 100 200 300 400 500 600 700 800 900 1000

Number of iterations

-1000

-500

0

500

1000

1500

2000

F
itn

es
s

va
lu

e

PSO
FA
PFA
CFA
MCPCFA-B
MCPCFA-A
MCPCFA-R

(c) f3

0 100 200 300 400 500 600 700 800 900 1000

Number of iterations

-280

-260

-240

-220

-200

-180

-160

-140

-120

F
itn

es
s

va
lu

e

PSO
FA
PFA
CFA
MCPCFA-B
MCPCFA-A
MCPCFA-R

(d) f4

0 100 200 300 400 500 600 700 800 900 1000

Number of iterations

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

F
itn

es
s

va
lu

e

PSO
FA
PFA
CFA
MCPCFA-B
MCPCFA-A
MCPCFA-R

(e) f5

0 100 200 300 400 500 600 700 800 900 1000

Number of iterations

1800

1900

2000

2100

2200

2300

2400

2500

2600

F
itn

es
s

va
lu

e

PSO
FA
PFA
CFA
MCPCFA-B
MCPCFA-A
MCPCFA-R

(f) f6

Fig. 5. The results of test experiment

Through the above test experiments, we can clearly see that
the MCPCFA family algorithm proposed in this study show
better performance in these three types of problems. This also
verifies the superiority of the improvement scheme proposed
in this study.

To better illustrate the advantages of memory usage after
introducing the parallel compression optimization method,
we analyze the memory situation of MCPCFA and FA. A
comparison of memory costs is shown in the Tab. II. The
number of variables for the FA and MCPCFA algorithms can
be obtained from the above update equations. In the Tab. II,
the algorithm update equation consists of Eq. (1-2) and Eq.
(7-10). Assuming that the number of particles is n, and n is a
positive integer. The population size of MCPCFA is n. So the
time complexity is 6×n×T×Iterations. Similarly, we can get
the time complexity of FA as 2×N×T×Iterations. Although

the update equation of MCPCFA is larger than that of FA, it
has only n individuals and n is much smaller than N. So it
consumes less memory than the original algorithm.

IV. 3D 0-1 COVERAGE MODEL OF WIRELESS SENSOR
NETWORK

The node deployment problem of WSN is necessary [9].
The traditional coverage problem is usually studied based on
2D plane, but if the sensor nodes are placed on 2D plane, the
simulation experiment will be obviously different from the
actual situation. Therefore, in this study, the sensor nodes are
placed on the 3D terrain, and the terrain elements such as high
and low-lying are added to the three-dimensional terrain, so
as to more truly simulate the actual coverage problem. To sum
up, the 3D 0-1 model and the terrain model proposed in this
study will be described in detail below.

In general, the sensing model of sensor nodes is usually
simplified to 0-1 model, that is, when a point in the area
is covered by sensor nodes, it is recorded as 1. If it is not
overwritten, it is recorded as 0. The most commonly used 0-1
sensing model is the sensing disk model. All points within
the radius of a disk with a fixed length r centered on a sensor
node are considered to be covered by the node. Assuming that
the coordinate of a node i in the detected area is (xi, yi, zi),
the communication radius is r and the coordinate of the target
pixel j is (xj , yj , zj), the distance between the node i and the
target pixel j is as follows.

di,j =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (11)

Use Oi,j to represent the perception quality of node i to
pixel j. When the position of the pixel j to be concerned
is within the circle of the sensing range r of node i, it is
considered that the perception quality of node i to pixel j is 1,
that is, the perception of node i to pixel j is 1. Otherwise, when
pixel j is outside the sensing range of node i, the perception of
node i to pixel j is 0, Therefore, the mathematical expression
is as follows.

Oi,j =

{
1, di,j ≤ r

0, otherwise
(12)

The traditional 2D coverage model ignores the factors in
the actual terrain. Although the problem is simplified, it can
not be applied in practice. Therefore, during the experiment,
the terrain elements of high and low-lying are added to the
terrain, so that the model can more truly simulate the actual
scene. The next simulation experiment will also use the model.

V. APPLICATION OF MCPCFA FAMILY ALGORITHM IN
WSN 3D COVERAGE OPTIMIZATION

To solve the coverage problem is essentially to find the
optimal deployment strategy. Different strategies have a sig-
nificant impact on coverage, especially on 3D terrain. By
optimizing the parameters of FA, using modified parallel
strategy and introducing compact idea, this paper proposes
MCPCFA family algorithm to improve the performance of
FA. MCPCFA family algorithm performs well in solving basic
multimodal functions, and the 0-1 coverage of WSN belongs to

151

TABLE I
COVERAGE OF DIFFERENT NUMBER OF NODES

Function f1 f2 f3 f4 f5 f6
PSO 11806088 -820.806 -706.818 -217.204 2898.773 2223.218
FA 12371935 -836.479 -614.059 -229.762 2283.462 2202.544

PFA 3051820 -869.359 -755.468 -246.415 2390.835 1963.838
CFA 5453586 -870.054 -750.4 -244.972 2562.319 2039.94

MCPCFA-B 1234468 -882.79 -773.23 -271.77 1867.24 1863.02
MCPCFA-A 1434183 -869.116 -768.149 -267.83 2349.067 1918.792
MCPCFA-R 1778181 -878.305 -766.806 -264.703 2298.769 1927.079

TABLE II
THE TIME COMPLEXITY OF THE TWO ALGORITHMS

Algorithm Particle Memory Size Computing Complexity Use Equations

MCPCFA n 6×n 6×n× T× Iteration (1)(2)(7)(8)(9)(10)

FA N 2× N 2× T× N× Iteration (1)(2)(3)

this kind of problem. Therefore, the 0-1 coverage problem of
WSN is effectively solved by the MCPCFA family algorithm.

The sensor node is set on the ground, so you only need
to know the two coordinate values of a point to calculate the
coordinates of the point. Therefore, the algorithm can optimize
the deployment strategy by optimizing the location of any
2D sensor nodes. Each particle of the algorithm represents
a deployment strategy.

Each individual updates their own location and calculates
the fitness function value according to (13).

R (t) =
1

Z

Z∑
j=1

(
P∑
i=1

Oi,j

)
(13)

Where, R (t) is the coverage at iteration t, p represents the
number of sensor nodes, and Z represents the number of pixels
in the simulation model made in this study. The purpose of
this experiment is to find a node deployment strategy with
the largest network coverage under the condition of existing
hardware facilities.

The proposed algorithm is applied to the WSN 3D coverage
model by using MATLAB 2015b simulation tool to verify the
applicability of the proposed MCPCFA family algorithm in
this field. Firstly, the sensor nodes are randomly distributed
in this 3D terrain. In order to fully prove the performance
of the proposed algorithm in 3D coverage, PSO, FA, PFA
and CFA are used for comparative experiments. The number
of sensor nodes is set to 30-55. The communication radius
r of each node is set to 5-10m. The size of the monitoring
area is 100m*100m. Sensor nodes are randomly distributed
in the 3D terrain. The simulated 3-D terrain is shown in
Fig. 6. The maximum number of iterations itermax of the
algorithm is set to 30. The initial population of pop is 80.
Information exchange is conducted every three iterations of
the program. At the same time, t ≤ 15 is the first stage of
the algorithm, and t > 15 enters the second stage of the
algorithm. In other words, from t = 18, the firefly population

will be fused between groups. Make the program fuse once
every three iterations.

-10
100

-5

100

0

80

5

50 60

10

40
20

0 0

Fig. 6. Random deployment of sensor nodes on 3-D topographic maps

It is worth noting that MCPCFA family algorithm starts the
fusion operation between groups when the number of iterations
is t = 18, while g = 8 and M = 3 are set in this experiment,
that is, the fusion action between groups occurs when t = 18,
21 and 24 respectively. Since then, the number of groups has
been gradually fused from 8 groups to 1 group, there is no
need for fusion operation. Next, the results of the two groups
of simulation experiments will be summarized and analyzed.

A. Simulation experiment when the total number of sensor
nodes is different

In this part, we will experiment with different number of
sensor nodes. For fairness, we guarantee that other parameters
remain unchanged. The total number of sensor nodes is set to

152

30, 35, 40, 45, 50 and 55 respectively, and the communica-
tion radius is uniformly set to 5m. The experimental results
optimized by different algorithms are recorded in Tab. III.

TABLE III
COVERAGE OF DIFFERENT NUMBER OF NODES

Nodes 30 35 40 45 50 55
PSO 0.4611 0.5082 0.5541 0.5959 0.6359 0.6657
FA 0.4637 0.5176 0.5608 0.598 0.6389 0.6707

PFA 0.4688 0.5203 0.5642 0.6046 0.6434 0.6752
CFA 0.4697 0.5233 0.5647 0.6095 0.6462 0.6763

MCPCFA-B 0.4952 0.5432 0.5939 0.6354 0.6784 0.7612
MCPCFA-A 0.4891 0.5341 0.5845 0.6233 0.6658 0.6937
MCPCFA-R 0.4897 0.5408 0.5881 0.6289 0.6663 0.7008

It can be seen from the results in Tab. III that with the
increase of the number of sensor nodes, the coverage of WSN
is also improving. At the same time, when the number of nodes
is 50, compared with traditional PSO, FA, PFA and CFA, the
coverage optimized by MCPCFA-B is increased by 4.52%,
3.95%, 3.5% and 3.22% respectively. When the number of
nodes is other values, the coverage has also been significantly
improved. It can be seen that no matter how many sensor
nodes are, mcpcfa finds the node deployment mode with the
highest coverage through optimization.

B. Simulation experiment with different communication radius

In this part, we will experiment with different communica-
tion radius of sensor nodes. Similarly, for fairness, the total
number of sensor nodes is uniformly set to 30, and other
parameters are consistent. We set the communication radius as
5m, 6m, 7m, 8m, 9m and 10m respectively. The experimental
results are recorded in Tab. IV.

TABLE IV
COVERAGE OF DIFFERENT COMMUNICATION RADIUS

Radius 5m 6m 7m 8m 9m 10m
PSO 0.4611 0.605 0.7265 0.8341 0.8996 0.9433
FA 0.4637 0.6234 0.7537 0.8463 0.9145 0.9587

PFA 0.4688 0.6301 0.7597 0.8513 0.9202 0.9628
CFA 0.4697 0.6323 0.7632 0.8534 0.9266 0.9683

MCPCFA-B 0.4952 0.6672 0.7988 0.8931 0.9562 0.9881
MCPCFA-A 0.4891 0.6432 0.7787 0.8762 0.9398 0.9766
MCPCFA-R 0.4897 0.6587 0.7853 0.8861 0.9437 0.9802

It can be seen from the experimental results in Tab. IV that
the coverage increases with the increase of communication ra-
dius. Through comparison, it can be seen that the performance
of MCPCFA-B is the best. Compared with traditional FA,
when the communication radius is 7m, the coverage optimized
by MCPCFA family algorithm is improved by 4.51%, 2.5%
and 3.16% respectively. When the communication radius is
other values, the trend of the results is also consistent. There-
fore, the effectiveness of mcpcfa proposed in this study and
the applicability of this method in solving the WSN coverage
optimization problem can be more determined.

VI. CONCLUSION

Aiming at the defects of traditional FA, MCPFA family
algorithm is proposed in this paper to improve the problem that
the algorithm is easy to fall into local optimal and run slowly.
Meanwhile, due to the high time complexity of MCPFA family
algorithm, this paper proposes MCPCFA family algorithm by
introducing compact optimization method. Through the test
experiments of several classical test functions in CEC2013,
MCPCFA family algorithm shows superior performance com-
pared with other methods. In the study of WSN, it is very
important to maximize network coverage by effective node
deployment under limited conditions. In order to solve this
problem, the proposed MCPCFA family algorithm is applied
to the 3D coverage research of WSN in this paper. The
applicability of the proposed algorithm in this field is verified
by simulation.

REFERENCES

[1] X. S. Yang, and X. He, “Firefly algorithm: recent advances and appli-
cations,” International journal of swarm intelligence, vol. 1, pp. 36–50,
2013.

[2] Q. Ma, Z. Cao, and X. Zheng, “BOND: Exploring hidden bottleneck
nodes in large-scale wireless sensor networks,” ACM Transactions on
Sensor Networks (TOSN), vol. 17, pp. 1–21, 2021.

[3] P. Bezerra, P. Y. Chen, J. A. McCann, and W. Yu, “Adaptive monitor
placement for near real-time node failure localisation in wireless sensor
networks,” ACM Transactions on Sensor Networks (TOSN), vol. 18, pp.
1–41, 2021.

[4] X. Sui, S. C. Chu, J. S. Pan, and H. Luo, “Parallel Compact Differential
Evolution for Optimization Applied to Image Segmentation,” Appl. Sci.,
vol. 10, pp. 2195, 2020.

[5] M. Zhu, S. C. Chu, Q. Y. Yang, W. Li, and J. S. Pan, “Compact
sine cosine algorithm with multigroup and multistrategy for dispatching
system of public transit vehicles,” Journal of Advanced Transportation,
2021.

[6] J. S. Pan, P. C. Song, S. C. Chu, and Y. J. Peng, “Improved Compact
Cuckoo Search Algorithm Applied to Location of Drone Logistics Hub,”
Mathematics, vol. 8, pp. 3–33, 2020.

[7] A. Q. Tian, S. C. Chu, J. S. Pan, H. Q. Cui, and W. M. Zheng, “A
Compact Pigeon-Inspired Optimization for Maximum Short-Term Gen-
eration Mode in Cascade Hydroelectric Power Station,” Sustainability,
vol. 12, 2020.

[8] J. P. Li, M. Gao, J. S. Pan, and S. C. Chu, “A parallel compact cat
swarm optimization and its application in DV-Hop node localization for
wireless sensor network,” Wireless Networks, vol. 27, pp. 2081–2101,
2021.

[9] S. Karimi-Bidhendi, J. Guo, H. Jafarkhani, and S. C. Chu, “Energy-
Efficient Node Deployment in Heterogeneous Two-Tier Wireless Sensor
Networks With Limited Communication Range,” IEEE Transactions on
Wireless Communications, vol. 20, pp. 40–55, 2021.

153

Self-Adaptive Task Allocation for Decentralized
Deep Learning in Heterogeneous Environments

1st Yongyue Chao
Institute of Automation, Chinese Academy of Sciences

Beijing, China
chaoyongyue2020@ia.ac.cn

2nd Mingxue Liao
Institute of Automation, Chinese Academy of Sciences

Beijing, China
mingxue.liao@ia.ac.cn

3rd Jiaxin Gao
Institute of Automation, Chinese Academy of Sciences

Beijing, China
jiaxin.gao@ia.ac.cn

4th Guangyao Li
Institute of Automation, Chinese Academy of Sciences

Beijing, China
liguangyao2020@ia.ac.cn

Abstract—The demand for large-scale deep learning is increas-
ing, and distributed training is the current mainstream solution.
Decentralized algorithms are widely used in distributed training.
However, in a heterogeneous environment, each worker computes
the same amount of training data resulting in a lot of wasted
time for waiting the straggler. In this paper, we proposed a self-
adaptive task allocation algorithm (SATA) which allows that each
worker acquires the amount of training data adaptively based on
the performance of workers in the heterogeneous environment.
In order to show the applicability of SATA in heterogeneous
clusters better, we set up the heterogeneous cluster composed
of two or three different types of GPUs. Besides, we conduct
a series of experiments to show the performance of SATA. The
experimental results illustrate several advantages of SATA. SATA
can accelerate distributed training about 3.3X that of All-Reduce
as well as about 1.9X-3.8X that of AD-PSGD algorithm. And the
total training time of SATA is reduced from 20 to 40 percentage
compared to All-Reduce.

Index Terms—distributed training, task allocation, All-Reduce,
heterogeneity

I. INTRODUCTION

As the state-of-the-art artificial intelligent approach, Deep
Neural Networks (DNNs) play an important role in various
applications, such as natural language process and computer
vision. The increasing number of large-scale DNN model
parameters provide high accuracy for complicated problems.
However, training large-scale DNNs takes a long time and
requires a large amount of memory, which is hard to train
by single machines. Therefore, distributed training is the most
popular method to alleviate the problem.

In distributed training, the model is trained by multiple
workers running on a GPU cluster. The most common idea
is data parallelism [1] in distributed training. All training
data are assigned to workers for computing gradients and
then workers aggregate gradients among others. Centralized
and decentralized training with stochastic gradient descent
(SGD) are the main approaches of data parallelism. One of
the centralized approaches, Parameter Server (PS) [2], uses
several nodes as servers, which collect the gradients from
workers as well as update the model. However, this leads to

inevitable communication bottleneck problems. Decentralized
approaches resolve these difficulties based on All-Reduce [3].
Each worker only communicates with its neighbors to obtain
the average model.

Although these approaches achieve wonderful results in
homogeneous environments, the straggler problem still appear
in heterogeneous environments. During the process of model
training, each worker holds the same amount of training
data and needs to wait for others aggregating gradients or
parameters, so the whole training speed depends on the slowest
worker in heterogeneous environments which contain different
types of GPUs and different network bandwidths in distributed
training. These heterogeneous environments result in slowing
down the training speed of clusters with the straggler. In order
to eliminate the effect of the straggler, many studies update the
model based on asynchronous SGD instead of synchronous
SGD. However, asynchronous SGD has lower accuracy and
lower usage in distributed training. Another way is assigning
tasks to each worker reasonably. The most common method
for assigning tasks is to adjust mini-batch size of each worker
and reassign dataset at every epoch. Some papers study the
algorithms in self-adaptive task allocation. However, most
of them are contributed to centralized training rather than
decentralization based on the rough empirical speculations.

In this paper, we proposed a self-adaptive task allocation
algorithm (SATA) for decentralized training. We implement
our algorithm based on Ring All-Reduce. On the basis of al-
gorithm, the amount of mini-batch data is balanced adaptively
only by training information. We establish a mathematical
model to describe the ratio of mini-batch size to global batch
size in the current epoch for task allocation. To show the
algorithm, we implement SATA based on the Ring All-Reduce
algorithm in experiments. We set a series of experiments to
show the improvement of training speed. Besides, we train
a simple convolutional neural network model on MNIST
dataset as well as some complex models including ResNet
and VGG on CIFAR10 dataset. Experimental results show
that self-adaptive task allocation algorithm can reduce 20

DOI reference number: 10.18293/SEKE2022-071
154

to 40 pecentage of training time compared to All-Reduce.
And SATA can accelerate distributed training about 3.3X
that of All-Reduce. Besides, SATA make progress in speedup
compared to other algorithms.

II. RELATED WORK

The straggler problem is very common in heterogeneous
environments. It occurs due to the performance difference
among workers and the discrepancy of communication speed
and bandwidth. Existing efforts on the straggler problem
can be classified into two types: algorithms based on task
allocation and algorithms based on model averaging.

For algorithms based on adaptive task allocation, Yang et al.
[4] proposed a batch orchestration algorithm, which balances
the amount of mini-batch data according to the speed of
workers. It makes a linear regression on training time and
mini-batch size so that allocates tasks for workers based on
slope changing. The weakness is that it introduces redundant
training information to balance tasks. FlexRR [5] addresses the
straggler problem by integrating flexible consistency bounds
with temporary peer-to-peer work reassignment. FlexRR in-
creases the cost of training due to extra communication in
worker computing. The current studies are mostly apply for
PS and based on empirical speculations.

For algorithms based on model averaging, countermeasures
for synchronization are utilized, including asynchronous ex-
ecution, bounded staleness, backup workers, adjusting the
learning rate of stale gradients and so on. AD-PSGD [6],
Partial All-Reduce [7] and gossip SGP [8] improve global
synchronization with partial random synchronization. Chen et
al. [9] proposed to set backup workers in the cluster, which
allow gradient aggregations without all workers participation.
DYNSGD [10] can dynamically adjust the local learning rate
of worker according to the delay of the worker. Zhang et
al. [11]has a similar idea, it adjusts the learning rate by the
state of gradient. However, These approaches use the same
amount of training data on every worker. They still waste the
waiting time and resources of workers while synchronizing
due to unreasonable training data distribution. Therefore, self-
adaptive task allocation algorithm is urgently needed.

III. METHOD

In order to accelerate, we proposed a self-adaptive task
allocation algorithm (SATA) by balancing the number of tasks
among workers automatically. In SATA, we reassign training
data as n subsets to n workers based on training time and the
amount of subsets from the previous epoch. First, we establish
a mathematical model coordinating with information of the
previous epoch and the current epoch to allocate tasks. Then
we integrate the All-Reduce algorithm to build our adaptive
distributed training process.

A. task allocation model

In this subsection, we construct a function describing the
amount of tasks which is only related to how long each worker
takes to process and how much training data each worker

holds at the last epoch. The detailed induction procedures are
described below.

1) preliminaries: In order to describe the model better, we
make the following premises and notations based on the real
situations.

First, due to synchronization operations before aggregating
local gradients, it is approximately though that all workers
start and end at the same time in the process of each gradient
aggregation with All-Reduce. Therefore, the gradient aggrega-
tion time of all workers tic is equal. We set:

t1c = t2c = · · · = tnc (1)

Second, in synchronous SGD algorithms, total training
procedure includes three steps: computation, synchronization
and update. All workers execute the same preprocessing steps
as well as they are blocked at barrier finally. Therefore, it can
be approximately thought that total training time of all workers
Ti will be equal. We set:

T1 = T2 = · · · = Tn (2)

Third, we set the ratio of local mini-batch size to global
batch size in the previous epoch wk−1

i and in the current
epoch wk

i . To avoid modifying learning rate along with the
global batch size, we assume that global batch size keeps as
a constant. Therefore, the sum of the ratio w and the changed
ratio ui will be set as:

wk
1 + wk

2 + · · ·+ wk
n = 1 (3)

u1 + u2 + · · ·+ un = 0 (4)

Finally, to ensure the convergence of DNN model, the data
subset Di on worker i should be the uniform distribution
over the assigned data samples. We distribute training data
by sequential assignment on a sample-by-sample basis.

Besides, there are some parameters of the task allocation
model to illustrate: gradient computing time tis, synchroniza-
tion waiting time tiw and gradient computing speed vi where
vi = Di/t

i
s, Ti = tis + tiw + tic and the gap between

synchronization waiting time is ∆tijw = |tiw − tjw|.
2) mathematical model: First, our objective functions are

described as following:

min
D

n∑
i=1

n∑
j ̸=i

∆tijw (5)

min
D

T1, T2, · · · , Tn (6)

(5) and (6) are to minimize the total synchronization waiting
time ∆tijw and total training time Ti. According to the former
preliminaries (1) - (4), ∆tijw can be optimized to ∆tijw = tiw−
tjw = tjs − tis =

Dj

vj
− Di

vi
= 0. Finally we get the following

formula:
Dwj

vj
− Dwi

vi
= 0 (7)

In appendix, we computed the updated wk+1
i in each epoch:

w
(k+1)
i = ui + w

(k)
i =

w
(k)
i /tis∑n

i=1 w
(k)
i /tis

(8)

155

It is found that the ratio wk+1
i of the next epoch only

depends on the ratio wk
i of the current epoch and total

computing time tis. To ensure the feasibility of the model, each
worker need to broadcast the above two parameters. In Fig.1
it shows the process of task allocation model in epochs. After
getting the ratio wk+1

i by the model, we design a complete
algorithm called SATA, which shows the whole process of
distributed training with the mathematical model.

Fig. 1. The execution process of self-adaptive task allocation model, the ratio
wk+1

i depends on wk
i and ts

B. self-adaptive task allocation algorithm
In this subsection, we proposed a self-adaptive task allo-

cation algorithm (SATA) to accelerate decentralized training.
Before every epoch, SATA will call the model (8) to obtain the
ratio wk

i . Then SATA reassigns data subsets for all workers.
Besides, local mini-batch size is revised by the product of
global batch size N and the ratio wk

i . As can be seen in Fig.
2, there are two cycles in the procedure of SATA. The outer
cycle means reassigning data subsets for all workers based
on the their own wk

i at every epoch. The inner cycle means
mini-batch data gradient aggregations in every epoch.

To accelerate, SATA makes use of self-adaptive task allo-
cation to speed up. Fast workers take a long time to compute
and stragglers take a short time, so the waiting time will be
reduced naturally. Superior to other task allocation methods,
SATA acquires the state of workers precisely based on reason-
able derivation instead of empirical speculations. SATA can
guarantee model parameters changing along with the gradient
descent direction and converging to the stable loss. There is no
changing in synchronous SGD back propagation. Therefore,
the convergence point is equal to the original synchronous
SGD. Besides, many papers([4,5,7,9,11]) also evaluate and
derive the convergence of model when the amount of tasks
is changed.

We describe the procedure of our SATA in Algorithm 1.
There are three main parts in the SATA algorithm, determin-
ing the ratio, redistributing the dataset and training. Under
relatively steady environment, w will be steady after several
epochs. Therefore, the time of redistribution will be eliminated
further in such an environment. By SATA algorithm, we can
accelerate the whole procedure of distributed training.

Algorithm 1 Self-Adaptive Task Allocation (SATA) algorithm
Require:

Randomly initialize the data subset ratio for each worker i
at epoch 0: w0

i

Initialize gradient computing time: tis ← 0
for the kth epoch ∈ 1, 2, · · · , N do

Broadcast tis and wk−1
i

Update wk by Adaptive task allocation model
if wk ̸= wk−1 then

Redistribute dataset to workers with wk

end if
while data are not completely consumed do

mini-batch train model
Record and update (tis)
All-Reduce on model

end while

IV. EXPERIMENTS

In this section, we developed a series of experiments on self-
adaptive task allocation algorithm to observe the DNN model
training acceleration. First, we set up several experiments to
show that SATA can speed up and be heterogeneity-tolerant
on synchronization. We set a real heterogeneous cluster con-
figured with different types of GPUs. Then We compare
the performance between a homogeneous cluster and the
heterogeneous one. Finally, we compare the results of SATA
with other algorithms contributing in straggler problems. The
results of all of these experiments show that SATA is suitable
for complex heterogeneous environments.

A. acceleration by SATA algorithm in heterogeneous environ-
ments

We do experiments on multiple machines with multiple
GPUs to evaluate results of SATA algorithm. We train ResNet,
VGG and ConvNet models on three nodes as well as one
node with multiple GPUs with different initial values of w.
We record the ratio w, gradient computing time ts and total
training time T in each epoch. In Fig. 3 and 4, the total training
time is reduced along with the increasing of epoch (subgraph
c,f in Fig. 3 and 4). The gap between gradient computing time
of two workers becomes smaller too (subgraph a,d in Fig.
3 and 4). After several epochs, the ratio w becomes steady
(subgraph b,e in Fig. 3 and 4).

Further we compared results using the same ratio with the
self-adaptive ratio among three groups of GPU clusters. The
results in Fig. 5 show that with our SATA algorithm the
training time will be reduced in heterogeneous environments.

B. compared to other algorithms for straggler problems

In the final experiment, we focus on the straggler problem
comparing with All-Reduce and AD-PSGD algorithm. We
set a straggler with 2X, 5X and 10X slowdown and set the
speedup ratio of PS as 1 as done in Prague [7]. As shown in
Fig. 6, our SATA algorithm converges more quickly compared

156

Fig. 2. The procedure of self-adaptive task allocation algorithm with three GPUs. Two cycles represent how the subsets and mini-batch sizes change as epoch
increases. After one epoch, results return to cycle (1). After one gradient aggregation, results return to cycle (2)

to All-Reduce and AD-PSGD. In Fig. 7, SATA can reach about
3.3X that of All-Reduce given 2X/5X slowdown, 3.8X that of
AD-PSGD under 2X slowdown and 1.9X under 5X slowdown.

V. CONCLUSION

To deal with stragglers in heterogeneous environments, we
proposed a self-adaptive task allocation algorithm (SATA) in
this paper. We firstly build a strict mathematical model for self-
adaptive task allocation to determine the precise amount of
mini-batch size iteratively updating for each worker. And then
we give a detail process of our SATA algorithm for distributed
training. By this algorithm, workers can reallocate local dataset
adaptively according to current gradient computing time. We
also set up a heterogeneous environment and designed a
series of experiments to evaluate the performance of SATA
for straggler problems. The experimental results show that
SATA can accelerate distributed training about 3.3X that of
All-Reduce and about 1.9X-3.8X that of AD-PSGD algorithm.
It means that SATA has sound performance for straggler
problems in heterogeneous environments.

In future, we will focus on distributed self-adaptive task
allocation algorithms which will eliminate broadcast or cen-
tralized communication.

REFERENCES

[1] T. Ben-Nun and T. Hoefler. “Demystifying Parallel andDistributed Deep
Learning: An In-Depth Concurrency Analysis”. In: ACM Computing
Surveys 52.4 (2018)

[2] Mu Li, Zhou Li , Alex Smola, Parameter server for distributed machine
learning, In NIPS, 2013

[3] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaim-ing
He. Accurate, large minibatch SGD: training imagenet in 1 hour.CoRR,
abs/1706.02677, 2013

[4] E. Y ang, D. K. Kang, and C. H. Y oun. “BOA: batch orchestration
algorithm for straggler mitigation of distributed DL training in hetero-
geneous GPU cluster”. In: The Journal of Supercomputing (2019).

[5] Aaron Harlap et al. “Addressing the straggler problem for iterative con-
vergent parallel ML”. In: Proceedings of the Seventh ACM Symposium
on Cloud Computing, Santa Clara, CA, USA, October 5-7, 2016.

[6] X. Lian et al. “Asynchronous Decentralized Parallel Stochastic Gradient
Descent”. In Proceedings of the 35th International Conference on
Machine Learning, PMLR 80:3043-3052, 2018(2017).

[7] Qinyi Luo, Jiaao He, Youwei Zhuo, and Xuehai Qian. 2020. Prague:
High-Performance Heterogeneity-Aware Asynchronous Decentralized
Training. Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems. Association for Computing Machinery, New York, NY, USA,
401–416.

[8] Yeo S , Bae M , Jeong M , et al. Crossover-SGD: A gossip-based
communication in distributed deep learning for alleviating large mini-
batch problem and enhancing scalability. 2020.

[9] Chen, Jianmin et al. “Revisiting Distributed Synchronous SGD.” ArXiv
abs/1702.05800 (2016): n. pag.

[10] J. Jiang et al. “Heterogeneity-aware Distributed Parameter Servers”. In:
Acm International Conference. 2017,pp. 463–478.

[11] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2016. Staleness-
aware async-SGD for distributed deep learning. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI’16). AAAI Press, 2350–2356

[12] C. Szegedy et al. “Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning”. In: AAAI (2016)

[13] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”.In: Computer Science (2014).

157

(a) ResNet50-ts (b) ResNet50-W (c) ResNet50-T

(d) VGG16-ts (e) VGG16-W (f) VGG16-T

Fig. 3. the gradient computing time before one gradient aggregation, the ratio and training time from one machines with RTX2080ti and GTX1080ti.

(a) ResNet50-ts (b) ResNet50-W (c) ResNet50-T

(d) VGG19-ts (e) VGG19-W (f) VGG19-T

Fig. 4. the gradient computing time before one gradient aggregation, the ratio and training time from three machines with 2*RTX2080ti and V100 respectively.
(a) and (d) represent gradient computing time among workers. (b) and (e) represent the ratio wk

i . (c) and (f) represent the total training time

158

Fig. 5. total training time in one epoch compared with different types of
GPUs

(a) convergence curve in 2X slowdown (b) convergence curve in 10X slowdown

Fig. 6. the training convergence curve of models for ResNet50.

APPENDIX

Assuming that the kth epoch task allocation of workers is
w

(k)
i , the (k + 1)th epoch is w

(k+1)
i , and the changed ratio is

ui as (9)
w

(k+1)
i = w

(k)
i + ui, i ∈ [1..n] (9)

Due to the waiting time of n workers expected to be 0, so
the relationship between workers can be expressed as (10)

Dw
(k+1)
i

vi
−

Dw
(k+1)
j

vj
= 0, i ̸= j (10)

From the view of the linear equation system, (10) is
equivalent to (11).

Dw
(k+1)
i

vi
−

Dw
(k+1)
j

vj
= 0,∀i, j = (i+ 1)mod n (11)

Simply to get:

w
(k)
i + ui

vi
−

w
(k)
j + uj

vj
= 0,∀i, j = (i+ 1)mod n (12)

Extract the coefficient matrix to get

A′ =

1
v1

−1
v2

0 · · · · · · 0 0

0 1
v2

−1
v3

· · · · · · 0 0

0 0 1
v3

−1
v4

· · · · · · 0
...

0 0 · · · · · · 0 1
vn−1

−1
vn

 (13)

(a) speedup in 2X slowdown (b) speedup in 5X slowdown

Fig. 7. the training speedup of models

The global batchsize remains unchanged, so we have (14)
and then (15).

w1 + w2 + · · · · · ·+ wn = 1 (14)

u1 + u2 + · · · · · ·+ un = 0 (15)

Combining (13) with (15) we have (16)

A =

[
A′

1 1 · · · · · · 1 1

]
(16)

The constant term is

b =

w
(k)
2

v2
− w

(k)
1

v1

w
(k)
3

v3
− w

(k)
2

v2

...
w(k)

n

vn
− w

(k)
n−1

vn−1

0

(17)

Therefore we only need to solve (18).

A • u = b

u = [u1, u2, · · · · · · , un]
T (18)

Finally we get the solution in terms of u as (19).

u =
vi∑n
j=1 vj

− w
(k)
i (19)

159

A Federated Model Personalisation Method Based
on Sparsity Representation and Clustering

Hailin Yang, Yanhong Huang*, Jianqi Shi and Fangda Cai*

National Trusted Embedded Software Engineering Technology Research Center,
East China Normal University, Shanghai, China

hlyang@stu.ecnu.edu.cn
{yhhuang, jqshi, fdcai}@sei.ecnu.edu.cn

Abstract—As federated learning (FL) becomes more exten-
sively employed, it attracts an increasing number of scholars and
practitioners. In contrast to traditional decentralized machine
learning approaches that acquire users’ raw data, FL gathers
locally updated gradients, protecting their privacy. However,
different users may have disparate data distributions, resulting
in underperformance of the federated model. It is beneficial
to adapt the federated model to various data distributions.
Numerous personalisation approaches have been examined, but
most of them are limited to a single device with minimal data,
making them susceptible to bias and overfitting. In fact, the data
distributions of certain users are similar, and these similarities
can be leveraged to increase the efficacy of personalisation. In this
research, we describe a sparsity-based clustering method, as well
as a federated personalisation strategy based on it. Our method
mitigates the impact of non-IID data and generates more accurate
local models. The trials reveal that it outperforms several of its
counterparts.

Index Terms—Federated Learning, Privacy, Personalisation,
Clustering

I. INTRODUCTION

Increasingly, internet-connected devices are becoming an
integral part of people’s daily life. During their operation,
they create a significant amount of data. Alough this data
is of immense financial worth, most users don’t want their
privacy to be abused. It’s meaningful to exploit local resources
to collaboratively train machine learning (ML) models while
keeping data on the devices. Federated learning [1] satisfies
this requirement for it only requires participants to upload their
locally determined gardiends to a sever and then aggregate
them. The most well-known aggregation algorithm is the
Federated Average (FedAvg), which simply averages each
user’s gradients. And vanilla FL refers to FL using FedAvg.
However, the global model generated by vanilla FL is usually
not satisfying for a specific user, because data is usually Non-
independently and identically distributed(non-IDD) between
clients [2].

A wealth of ways have been presented to solve the difficul-
ties that data heterogeneity poses for FL. The global model
can be improved by, for instance, retraining its parameters
using input from a single user to produce a unique local

*Corresponding Author
DOI reference number: 10.18293/SEKE2022-100

model [3]. Yu et al. [4] introduced two further ways of
personalization, namely multi-task learning and knowledge
distillation. In addition, Arivazhagan et al. [5] suggested a
federated learning strategy with personalization layers.

While all of these tactics contribute to personalisation,
they all suffer from the same disadvantage: insufficient data.
As a result, scholars investigated the feasibility of using
federated approaches to indirectly augment the data used for
personalisation. Liu et al. [7] describes a method that groups
clients based on their data distribution, and use FedAvg within
clusters to personalize the global model. Nonetheless, it was
assumed that clients belonging to the same cluster would have
the same data distribution, which occurs infrequently.

Clients’ data distributions are similar but not identical, i.e.,
clients’ preferences are consistent in general but varied in
specifics. According to Liu et al. [7] the sparsity of an input
image’s feature map is often unique and may be utilized as
a representation of the image. Simultaneously, this form of
data representation is privacy-protective, as it conceals the
underlying data. We have taken this idea and created some
beneficial changes.

In this research, we offer a privacy-preserving federated
personalisation technique to mitigates non-IID impact of FL.
To begin, we transform the data distribution of each client
into a sparsity vector. Then, we cluster these sparsity vectors
to achieve client clustering. Following that, federated person-
alisation occurs within each cluster.

Our technique implemented federated learning at a finer
grain, allowing clients in the same cluster to exchange critical
knowledge without sacrificing their identity. Each client can
obtain a model developed specifically for them. This work’s
contribution can be summarized as follows:

• We propose a privacy-preserving clustering method based
on vector representations of clients’ data distributions.

• Our strategy allows for some variation in the data distri-
bution of clients within the same cluster, which is more
practical.

• To maximize the effect of personalisation, we innova-
tively employ a FL approach with personalisation layers
within clusters.

• We ran multiple relevant experiments and found that our
technique outperforms its competitors.

160

The remainder is structured as follows: Section II provides
background information. Section III elaborates on the pro-
posed method. Section IV details the experiments and their
outcomes. Additionally, Section V discusses related work.
Section VI concludes and suggests some potential directions
worth pursuing.

II. PRELIMINARIES

As a starting point, this section gives background informa-
tion on the concepts of sparsity, clustering, and personalisation
in order to aid in the comprehension of the technique we are
proposing.

A. Sparsity

Sparsity is a numerical value that indicates the percentage
of zeros in a matrix. It is frequently used to accelerate the
inference process of Convolutional Neural Networks (CNNs)
[10]. The first instance of channel-wise sparsity being used
for data representation has appeared in [7]. A sparsity vector
is constructed as follows, vk represents the sparsity of the kth
channel.

V = {v1, v2, v3, v4, ..., vk−1, vk}

While feature maps are frequently used to portray raw
data, they reveal too much fundamental information and are
vulnerable to privacy leaks. In comparison, it is nearly impos-
sible to deduce sufficient knowledge from a sparsity vector,
offering a higher level of privacy protection. On the other hand,
this representation format also contributes to the reduction of
communication and processing overhead, as a sparsity vector
is a number that can be transferred and calculated rapidly.

B. Clustering

Clustering is a technique for grouping similar objects to-
gether, with the core issue being determining how to measure
similarity. There are a variety of distances that can be used to
estimate similarity. Among these, Euclidean Distance [10] is
a straightforward yet widely used one. The Euclidean distance
between two vectors is calculated as follows:

Dist(Va, Vb) =

√√√√j=k∑
j=1

(V
(j)
a − V

(j)
b)2 (1)

Va and Vb denote vectors, while V
(j)
a and V

(j)
b denote the

jth component of Va and Vb, respectively.
Kmeans is a well-known technique for clustering data based

on Euclidean distance. It initially selects k points as centroids
and then groups the points closest to the centroid with them.
The cluster centroid is iteratively updated until the total
distance between it and the points inside the cluster no longer
decreases. At this point, the clustering results are obtained.

C. Personalisation

FL collects and aggregates local gradients from participants
during each communication round in order to update the
global model. When users’ data distributions are comparable,
the global model easily converges and demonstrates superior

performance versus the local models. However, this is not
always the case. Once data distribution is highly variable, the
global model typically underperforms.

A bulk of academics have examined the difficulties inherent
in applying federated learning to heterogeneous data sources.
A frequently used method is to further personalize the global
model. Personalisation, in general, refers to optimization tech-
niques that make the federated global model better suited to
local clients.

III. APPROACH

This section details our strategy. For starters, we demon-
strate how to generate sparsity vectors from the user’s raw data
which consist of images with different classes. Following that,
we describe the clustering procedure using sparsity vectors.
Finally, we describe the federated cluster-wise personalisation
technique.

A. Generation of sparsity vectors

Prior to constructing a sparsity vector for a client, we must
first determine the sparsity of each image on that client. The
sparsity of an image is computed as shown in Figure 1.

Fig. 1. The process of transforming a single image into a sparsity vector.

For feature extraction, we employ the CNN structure. CNNs
are composed of multiple layers of neurons, with each layer
producing a feature map. We calculate the sparsity of fea-
ture maps produced by Rectified Linear Unit (ReLU) layers
because ReLU layers set a section of neurons’ outputs to
zero, resulting in sparse feature maps. The VGG [8] network

Fig. 2. All data are arranged in a matrix by their sparsity vectors, and the
first dimension of this matrix is averaged to generate a vector representing
the data distribution..

stacked small convolutional kernels instead of large ones
repeatedly, increasing the network’s depth while maintaining
the same field of perception, and thereby improving the
network’s capacity to extract features. VGG-11 is the simpleset

161

VGG network. We replace the original fully connected layers
of VGG-11 with a global average pooling layer, and then
use it as the feature extractor. Feature maps become more
representive with the modified VGG-11 for it establishes a
direct connection between feature maps and classes.

Additionally, we take the first three ReLU layers as the
extraction layers rather than a single one to enhance the
extraction. Feature maps from multiple ReLU layers do not
necessarily have the same number of channels, so we picked
k common channels to calculate a sparsity vector.

As a result, the sparsity vectors from separate layers become
identical in size and can be averaged into one. We will obtain
a n∗k dimensional sparsity matrix for a user with n data. A
one-dimensional sparsity vector with k elements is created by
averaging the sparsity matrix over the first dimension. Figure
2 depicts the process of expressing clients’ data as sparsity
vectors.

B. Clustering Based on Sparsity Vectors

The concept of sparsity-based clustering lies at the heart
of our approach. With respect to this idea, it was first put
forward by Liu et al. [7]. According to them, when the distance
between two sparsity vectors is smaller than a certain thresh-
old, they are considered similar. However, it’s a challenge
to determine this crucial hyperparameter in practice. It can
be counterproductive if the clustering result is inaccurate.
Considering the clustering categories are less extensive than
the threshold, we employ k-means clustering to obtain better
results.

Fig. 3. Kmeans is performed based on sparsity vectors, and then FedPerC is
conducted based on clusters.

The sparsity vector representing a client is computed using
all its data. Then we compute the Euclidean Distance between
each pair of vectors and then cluster them using the k-means
algorithm. Based on the clustering results, we ran FedPerC
to personalise the federated global model that was previously
trained. This procedure is depicted in Figure 3. FedPerC is a
cluster-based algorithm for federated personalization that will
be talked about in the next section.

For clustering, k is critical. If k is set too high, clustering
will be less successful, and if set too low, the benefits of
federated learning will be missed. We can choose k according
to our prior understanding of the dataset. If no prior knowledge
exists, we can do several trials with randomly chosen clients
to determine the best value of k and then apply it to all clients.

C. Federated Personalisation within Clusters

We expand personalisation from a single device to all
devices inside a cluster, and we refer to this approach as
FedPerC. To take use of the similarities in data distributions of
users inside a cluster without losing sight of their differences,
we split the model in two. The concept is derived from [5].
W

(k)
B,i and W

(k)
P,i signifiy the base layer and personalisation

layer parameters of client i at the kth training round, respec-
tively. W (k)

B,i(W
(k)
P,i) denote the entire model consist of this two

part. LocalUpdate function refers to the training process on a
single device. W (k)

L,i donate the local model of client i at the
kth training round. A formal description of FedPerC is given
in Algorithm 1.

Algorithm 1 FedPerC
Input: Di-the data of the ith client
C-clusters of clients
Wg-federated global model
N -training rounds
Output: Wl-personalised local models
1: Initialisation: Wl ←Wg

2: for k = 0,1,2,...,N-1 do
3: for c in C do
4: for i in c do
5: W

(k)
l,i ← LocalUpdate(W (k−1)

l,i , Di)
6: W

(k)
B,i(W

(k)
P,i)←W

(k)
l,i

7: Aggregate: W (k)
B,c ←

∑c
i=1 W

(k)
B,i

8: for i in c do
9: W

(k)
l,i ←W

(k)
B,c(W

(k)
P,i)

10: return Wl to local clients

Only the weights of base layers must be uploaded to the
parameter server throughout the personalization process, the
weights of personalization layers remain local. In Figure 4,
we illustrate the process of personalizing within clusters.

Fig. 4. Users within a cluster share the common base layers, and their
personalisation layers can be adapted to individual data.

A formal description of the personalised goals is as follows:
Suppose Mg donates the global model trained federally on
data from all clients and M i

l denotes the local model of the
ith client after personalisation. The number of clients is n, and
Ci represents the cluster to which the ith client belongs. The
goal of FedPerC is to update Mg with the assistance of Ci

162

TABLE I
ACHIEVED ACCURACY (%) ON CIFAR-100 OF THE BASELINE AND DIFFERENT PERSONALIZATION METHODS USING RESNET34.

Method client1 client2 client3 client4 client5 client6 client7 client8 client9 client10
BaseLine 45.17 41.39 43.18 41.11 41.67 35.83 38.33 39.72 38.06 41.39
FineTune 64.49 61.39 64.49 59.44 64.17 62.50 61.67 63.89 64.44 62.50

PFA 63.92 57.50 65.63 58.33 67.22 63.89 60.83 63.06 61.94 64.17
Ours 65.34 65.28 65.06 63.06 68.89 65.56 63.89 64.72 65.28 65.56

Method client11 client12 client13 client14 client15 client16 client17 client18 client19 client20
BaseLine 37.78 41.94 40.56 38.06 34.44 43.06 39.17 44.47 41.76 41.76
FineTune 56.94 62.22 60.2 58.33 57.22 65.00 59.17 64.24 63.92 68.47

PFA 58.33 64.17 59.44 60.56 60.56 67.50 58.61 66.86 63.07 63.64
Ours 61.39 65.83 61.39 62.50 61.67 67.50 63.61 70.35 66.19 70.17

TABLE II
ACHIEVED ACCURACY (%) ON CIFAR-100 OF THE BASELINE AND DIFFERENT PERSONALIZATION METHODS USING MOBILENETV1.

Method client1 client2 client3 client4 client5 client6 client7 client8 client9 client10
BaseLine 37.22 33.33 34.38 31.11 38.33 35.83 35.56 40.29 37.79 41.68
FineTune 66.48 61.39 62.22 61.11 66.39 65.57 66.11 60.56 63.33 63.89

PFA 65.63 62.78 63.35 61.11 65.56 66.39 64.72 63.89 66.39 60.00
Ours 68.75 65.56 65.34 65.56 70.56 68.06 68.33 65.56 67.50 69.44

Method client11 client12 client13 client14 client15 client16 client17 client18 client19 client20
BaseLine 37.50 41.11 35.00 29.44 33.33 41.11 34.44 40.70 40.63 31.82
FineTune 58.33 63.33 60.28 56.11 58.61 62.78 57.50 64.54 60.51 63.64

PFA 60.56 57.22 59.17 53.61 57.50 63.33 60.56 67.73 60.23 64.21
Ours 62.50 65.56 63.06 58.61 63.33 66.94 63.61 69.19 63.92 67.33

and generate a personalised model M i
l . The following is the

objective function:

min
n∑

i=0

L(Di, Ci,Mg) (2)

where L denotes the loss function, and in this work we use
the cross-entropy loss.

IV. EXPERIMENT

Detailed descriptions of the experimental setup, including
the datasets and models used, as well as the implementation
details and methodologies for comparison, are provided in this
part.

A. Settings

On two widely used network architectures, ResNet [11]
and MobileNet [12], we conducted experiments to validate
our technique. ResNet addresses the issue of gradient van-
ishing through a residual structure, improving performance.
MobileNet pioneered the notion of depthwise separable con-
volution, drastically reducing model parameters and making
itself suitable for low-resource mobile devices. We employed
ResNet34 and MobileNetV1 on the CIFAR-10 and CIFAR-100
datasets [6], respectively. They are both image classification
datasets, with 10 and 100 categories, respectively. Addition-
ally, we implement our strategy in Python using PyTorch [13].

At first, we simulate a federated environment. To be more
precise, we simulate 20 clients and 5 clients roughly belonging
to a type of distribution for each dataset. For clients from
CIFAR-10 that are expected to be drawn from the same
distribution, 80% of their data came from two common
categories and 20% from a random category. CIFAR-100 is
processed similarly, with similar clients sharing twenty classes

of data and holding an additional five classes of data. Thus,
four distinct data distributions correspond to four clusters.
Furthermore, to mimic the finite nature of client data, we limit
the quantity of data available to each client to no more than
1000.

Experiments was conducted to determine the values of the
hyperparameters. The final experimental parameters are as
follows: 50 and 30 rounds were conducted respectively for
training the federated model and personalizing. The batch size
and local epochs are set to 64 and 4, while the learning rate and
momentum are set to 0.01 and 0.5. The number of channels
used for feature extraction is 32, and the indexes of the ReLU
layers involved are 0, 1, 2. In federated personalization, the
final fully connected layer serves as the personalization layer
for both networks.

B. Results

Principal component analysis (PCA), a dimension reduction
technique, was used to visualize the clustering. In Figure 5,
we plot these reduced two-dimensional points to visualize the
clustering, with different colors signifying different clusters.
Figure 6 depicts the process of federally training a global

Fig. 5. Visualization of clustering on CIFAR-10(left) and CIFAR-100(right).

163

model on the CIFAR-100 dataset using ResNet34 and Mo-
bileNetV1. As can be observed, the heterogeneous distribution
of the data causes the global model to over-fit, necessitating
personalisation. It can be observed that each cluster contains 5

Fig. 6. The ResNet34 and MobileNetV1 training processes on CIFAR-100.

clients, and different clusters are spread in different positions
in space. The clustering findings demonstrate that our approach
matches our expectations.

we use the global model’s test accuracy to establish a
baseline for each client. The global model is then optimized
using a variety of personalization methods, including finetune,
PFA, and FedPerC. Fine-tuning is a popular migrating learning
strategy that retrains all or part of the parameters. In this
case, we refer to it as ”retraining all parameters.” And it
represents the personalisation effect on a single device. PFA
is a framework introduced in paper [7] that organizes clients
first and then personalizes within groups with the FedAvg
algorithm.

TABLE III
THE CLUSTER-LEVEL AVERAGE ACCURACY AND OVERALL AVERAGE

ACCURACY OF RESNET34 ON CIFAR-100.

Method cluster1 cluster2 cluster3 cluster4 Avg
BaseLine 42.50 38.67 38.56 42.04 40.44
FineTune 62.28 61.56 58.61 62.58 61.26

PFA 61.66 62.50 61.65 61.39 61.80
Ours 65.52 65.00 62.56 67.56 65.16

TABLE IV
THE CLUSTER-LEVEL AVERAGE ACCURACY AND OVERALL AVERAGE

ACCURACY OF MOBILENETV1 ON CIFAR-100.

Method cluster1 cluster2 cluster3 cluster4 Avg
BaseLine 34.87 38.23 35.27 37.74 36.53
FineTune 63.52 63.89 59.33 61.79 62.13

PFA 64.12 64.28 57.61 63.21 62.31
Ours 67.15 67.78 62.61 66.20 65.94

During the experiment, each approach is run three times,
and the results of the best performing rounds are averaged
as a reflection of the method’s performance. Table I and
Table II demonstrate experimental findings. When compared
to alternative localization approaches, we can see that our
approach provides a variable degree of accuracy enhancement
to each client. In Table III and Table IV, we display the average
accuracy within and across clusters. The findings indicate the
superiority of our strategy.

TABLE V
THE IMPACT OF CLUSTERING ON RESNET34’S PERFORMANCE ON

CIFAR-100.

Client
Number

Random
Clustering

No
Clustering

Sparsity-based
Clustering

client1 63.07 61.93 65.34
client2 60.83 63.06 65.28
client3 61.65 61.08 65.06
client4 61.11 60.28 63.06
client5 63.33 66.39 68.89
client6 60.83 59.72 65.56
client7 59.17 58.06 63.89
client8 58.61 61.39 64.72
client9 61.11 62.50 65.28
client10 62.22 61.94 65.56
client11 56.67 56.11 61.39
client12 61.11 61.67 65.83
client13 57.78 58.61 61.39
client14 54.44 60.00 62.50
client15 55.56 54.72 61.67
client16 64.17 65.28 67.50
client17 60.00 58.06 63.61
client18 61.92 63.66 70.35
client19 59.38 60.23 66.19
client20 63.07 63.35 70.17

Avg 60.30 60.90 65.16

Furthermore, to see whether clustering affects the impact
of personalisation, we examined the experimental findings of
ResNet34 on CIFAR-100 under three conditions: clustering,
no clustering, random clustering. Table V displays detailed
experimental data.

The experimental investigations indicate that random clus-
tering has a comparable or perhaps slightly lower personalising
impact than no clustering. When employing our clustering
approach, both models increase their accuracy on CIFAR-100
by 5% roughly.

TABLE VI
CIFAR-10 RESULTS FOR THE BASELINE AND DIFFERENT

PERSONALIZATION METHODS.

Model Method Avg

ResNet34

BaseLine 53.25
FineTune 82.55

PFA 79.45
FedPerC 84.48

FedPerC(Random Clustering) 82.55
FedPerC(No Clustering) 81.88

MobileNetV1

BaseLine 51.28
FineTune 83.53

PFA 78.95
FedPerC 85.08

FedPerC(Random Clustering) 82.85
FedPerC(No Clustering) 83.33

When the clustering is suitable, our technique is supposed
to have a favorable impact since it takes into account the users’
similarities and differences. However, when the clustering
is inaccurate, it might be detrimental. When all clients are
treated as belonging to a cluster, the result is identical to not
clustering, and our technique degrades to the FedPer algorithm
given in article [5].

Table VI presents the average accuracy of all previously
mentioned personalisation techniques on CIFAR-10. The ac-

164

curacy boost on CIFAR-10 is not as significant as on CIFAR-
100, most likely because CIFAR-100 has a higher number
of classes and the variances across clients within a cluster
are greater. Additionally, a user often owns various classes of
images in reality, so our approach has its practicalities.

V. RELATED WORK

Federated learning has extended the range of applications
for artificial intelligence (AI). In recent years, it has become a
popular research topic. However, It also confronts obstacles
on a variety of fronts [2], including privacy breaches and
heterogeneous data distribution.

Privacy violations may cause a great deal of grief in people’s
lives. As a result, individuals are becoming more conscious
of their right to privacy. Furthermore, the implementation of
applicable rules, like the General Data Protection Regulation
(GDPR) [14], not only officially protects users’ privacy but
also drives adjustments in machine learning algorithms that
need access to users’ raw data.

Secure multiparty computing (SMC) [15] is a privacy-
preserving technique that based on mathematical theory. It
safeguards all parties’ input data while generating accurate
results, and is especially beneficial in the absence of a
trustworthy third party. However, SMC requires substantial
computer power and network resources for encryption and
decryption, which is not achievable for resource-constrained
devices.

Differential privacy (DP) [16] preserves privacy by introduc-
ing noise into the data to diminish its sensitivity. Noise must
be provided to make it more difficult to derive information
about users without significantly affecting the distribution of
data. On the other hand, DP makes the data less reliable, which
has an effect on how well the training works.

As a result, when the idea of federated learning was initially
proposed, it sparked a great deal of attention. Most impor-
tantly, FL enables resource-constrained devices to cooperate
together to train a shared model that benefits each device
without requiring access to any device’s raw data. When the
distribution of data for separate clients is roughly the same,
it proves to be a realistic technique [1]. Unfortunately, this is
not always the case. Therefore, FL has established itself as a
research center dedicated to tackling the issues raised by data
non-IDD.

Mansour et al. [17] introduces a personalisation method
based on clustering. However, users are required to give out
some raw data in return for precise clustering results, compro-
mising data privacy. Wang et al. [3] applies transfer learning
to personalisation, retraining all or part of the parameters
of the federated model on local data. Another one, based
on the concept of transfer learning, is provided in [18], in
which meta-learning is utilized to establish the global model
and then fine-tuning approaches are employed to achieve
personalisation. Yu et al. [4] recommended that networks be
divided into two components: base layers and personalisation
layers, with the former being trained by all users collectively
and the latter by each user individually.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose an algorithm that implements per-
sonalisation by clustering users based on a privacy-protected
representation of their original data. This is an exploratory
way to addressing the non-IID dilemma of FL, although it has
certain downsides. For example, though the sparsity patterns of
various inputs are often distinct, there may be exceptions that
result in incorrect clustering conclusions. How to enhance the
logic of clustering is a topic that deserves to be investigated
more in the future.

Since it is almost impossible to derive the original data from
the sparsity representation, we regard it as privacy-preserving.
However, this representation’s ability to protect privacy has
not been formally demonstrated. Additionally, incorporating
established privacy-protection mechanisms such as DP is a
point of improvement. On the other hand, our method is
limited to CNNs, leaving the possibility of extending it to
other network architectures for future implementation.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, 2017, pp. 1273–1282.

[2] P. Kairouz et al., “Advances and open problems in federated learning,”
arXiv preprint arXiv:1912.04977, 2019.

[3] K. Wang, R. Mathews, C. Kiddon, H. Eichner, F. Beaufays, and D.
Ramage, “Federated evaluation of on-device personalization,” arXiv
preprint arXiv:1910.10252, 2019.

[4] T. Yu, E. Bagdasaryan, and V. Shmatikov, “Salvaging federated learning
by local adaptation,” arXiv preprint arXiv:2002.04758, 2020.

[5] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choud-
hary, “Federated learning with personalization layers,” arXiv preprint
arXiv:1912.00818, 2019.

[6] A. Krizhevsky, G. Hinton, and others, “Learning multiple layers of
features from tiny images,” 2009.

[7] B. Liu, Y. Guo, and X. Chen, “PFA: Privacy-preserving Federated
Adaptation for Effective Model Personalization,” in Proceedings of the
Web Conference 2021, 2021, pp. 923–934.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[9] B. Graham and L. van der Maaten, “Submanifold sparse convolutional
networks,” arXiv preprint arXiv:1706.01307, 2017.

[10] P. E. Danielsson, “Euclidean distance mapping,” Computer Graphics and
image processing, vol. 14, no. 3, pp. 227–248, 1980.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[12] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861,
2017.

[13] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing systems,
vol. 32, pp. 8026–8037, 2019.

[14] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, vol. 10, p. 3152676, 2017.

[15] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty compu-
tation from somewhat homomorphic encryption,” in Annual Cryptology
Conference, 2012, pp. 643–662.

[16] M. Abadi et al., “Deep learning with differential privacy,” in Proceedings
of the 2016 ACM SIGSAC conference on computer and communications
security, 2016, pp. 308–318.

[17] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approaches for
personalization with applications to federated learning,” arXiv preprint
arXiv:2002.10619, 2020.

[18] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning, 2017, pp. 1126–1135.

165

Improving Mutation-Based Fault Localization via
Mutant Categorization

Xia Li
Department of Software Engineering and
Game Design, Kennesaw State University

xli37@kennesaw.edu

Durga Nagarjuna Tadikonda
Department of Software Engineering and
Game Design, Kennesaw State University

dtadikon@students.kennesaw.edu

Abstract—Fault localization is one of the most important
activities in software debugging. Among various fault localization
techniques, mutation-based fault localization (MBFL) has been
commonly studied with its promising performance. However,
MBFL should be improved further by incorporating more useful
program information. In this paper, we propose MuCatFL, a
novel and lightweight technique for better MBFL via mutant
categorization. In details, after executing the original test suite
against all generated mutants, we categorize the mutants into
two groups, positive mutants and negative mutants, to rank the
tied program elements. We evaluate MuCatFL by performing
an extensive study on 395 real software faults from the widely
used benchmark Defects4J. The experimental results show that
MuCatFL can significantly outperform MBFL techniques (e.g.,
localizing 138 faults within the Top-1 position on method-level,
43.75% more than traditional Metallaxis technique). We also
investigate that only positive mutants can contribute to the
effectiveness of MBFL. Our findings can also provide guidance
for the strategies to reduce the execution cost of MBFL.

Index Terms—Software debugging, Fault localization, Muta-
tion testing

I. INTRODUCTION

In modern software development, bugs (a.k.a., faults) are
prevalent and inevitable due to the complexity of software
systems. They have been widely recognized as notoriously
costly and disastrous. For example, Tricentis.com [1] investi-
gated and reported software bugs impacting 3.7 billion users
and $1.7 trillion in assets. The first step of debugging is
to localize the potential faulty location(s). However, manual
fault localization can be time-consuming and error-prone due
to the huge code volume. To solve this problem, researchers
have proposed various automated fault localization (FL) tech-
niques [2], [3], [4], [5] to help reduce manual efforts. The
basic idea of fault localization techniques is to generate a
ranked list of program elements (e.g., methods or statements)
according to the descending order of their suspiciousness
values. Developers can use the ranked list to manually check
each element to find and fix the faults in the faulty program.
Thus, the target of FL techniques is to rank the faulty elements
as high as possible in the ranked list.

In the literature, spectrum-based fault localization
(SBFL) [6], [2], [7] has been intensively studied since it
simply considers the coverage information of failed/passed

DOI:10.18293/SEKE2022-157

tests which can be easily collected by many coverage analysis
tools. The basic intuition of SBFL is that one program
element is more suspicious if it is executed/covered by
more failed tests than passed tests. Based on the intuition,
various SBFL techniques are proposed (such as Tarantula [2],
Ochiai [3], DStar [8], Jaccard [6]) to utilize statistical
analysis to compute the suspiciousness values of program
elements. Despite the lightweightness, SBFL still has some
limitations. For example, some faulty elements may also
be covered by passed test cases coincidentally and failed
test cases may still cover non-faulty elements. To overcome
this limitation, researchers propose mutation-based fault
localization (MBFL) [5], [4] to consider the actual impact
information (a.k.a., killing information) of each program
element on the test outcomes by mutating program source
code. To localize faulty elements more precisely, typical
MBFL techniques such as Metallaxis [4] and MUSE [5]
generate mutants for the original program by changing
statements syntactically based on predefined rules (also called
mutation operators, such as changing a+b into a-b). All
the generated mutants are then executed by original test suite
and the new execution results of test cases are used for more
precise fault localization.

MBFL has been proved to be more effective than SBFL in
real bugs [9], but its accuracy is still not promising as expected
for many faults. The potential reason is that impact information
alone cannot help distinguish some tied program elements
(i.e., many elements share same suspiciousness values with
the actual buggy elements). Various studies are proposed to
improve the accuracy of MBFL. For example, MuSim [10]
is presented by identifying the faulty statements based on test
case proximity to different mutants. However, these techniques
heavily rely on complex computation or analysis (e.g., using
test case proximity or neural network). In this paper, therefore,
we propose MuCatFL, a novel and lightweight technique
for better MBFL by mutant categorization. In details, after
executing the original test suite against all generated mutants,
we categorize the mutants into two groups, positive mutants
and negative mutants, to rank the tied program elements.
To evaluate MuCatFL, we perform an extensive study on
395 real software faults from the widely used benchmark
Defects4J (V1.2.0) [11]. The experimental results show that
MuCatFL can significantly outperform MBFL techniques (e.g.,

166

localizing 138 faults within the Top-1 position, 43.75% more
than traditional Metallaxis technique). This paper makes the
following contributions:

• Technique A novel and lightweight MBFL technique
MuCatFL via mutant categorization.

• Study An extensive study on localizing real faults to
demonstrate the effectiveness of MuCatFL.

The structure of this paper is as follows. In Section II, we
introduce the basis of fault localization and related studies
on MBFL. In Section III, we propose the framework and
algorithm of MuCatFL. Next, we introduce the experimental
study design and analyze the experimental results in Section
IV and Section V. Finally, we conclude our paper in Section
VI and Section VII.

II. BACKGROUND AND RELATED WORK

A. Fault Localization

Spectrum-Based Fault Localization. The basic idea of SBFL
is that program elements covered by more failed test cases
tend to be more suspicious. SBFL takes the coverage infor-
mation between program elements and test suite as input and
output a suspicious ranked list in the descending order of
suspiciousness values. To date, various SBFL techniques have
been proposed such as Tarantula [12], SBI [7], Ochiai [3],
Jaccard [6], etc. Even though these techniques use different
statistical analysis, they mainly rely on the following compo-
nents for calculation: (1) the number of all failed/passed tests,
i.e., nf /np, (2) the number of failed/passed tests executing
program element e, i.e., nf (e)/np(e), and (3) the number of
failed/passed tests that do not execute program element e,
i.e., nf (ē)/np(ē). For example, SBI formula can calculate the
suspiciousness value of element e as Susp(e) =

nf (e)
nf (e)+np(e)

.
All program elements are ranked based on their suspiciousness
values calculated from the formulae and the ranked list is
provided to developers to check and repair bugs manually.
Mutation-Based Fault Localization. SBFL has one major
limitation. In buggy programs, failed tests may cover non-
buggy program elements that do not contribute to the program
failure and buggy program elements are also executed by
passed tests. MBFL techniques overcome this limitation by
considering more effective impact information between test
suite and program elements. The first MBFL technique Met-
allaxis [13], [4] is proposed based on the following intuition: if
one mutant impacts failed tests (e.g., the test outcomes change
after mutation), its corresponding program element may have
caused the failures so that this element should have higher
probability to be faulty than others. In Metallaxis, mutants that
have impacts on tests are viewed as program elements covered
by the tests while the others as uncovered. By simulating
the coverage information, Metallaxis applies traditional SBFL
formulae to calculate each mutant’s suspiciousness value.
Finally, the maximum value of mutants is treated as the
suspiciousness value of corresponding program element. For
example, based on the SBI formula, the suspiciousness value

of mutant m can be calculated as Susp(m) =
n
(m)

f
(e)

n
(m)

f
(e)+n

(m)
p (e)

,

where n
(m)
f (e)/n(m)

p (e) is the number of failed/passed tests
whose outcomes are changed due to the mutant m on element
e. Another popular MBFL technique is called MUSE [5]
which shares similar intuitions with Metallaxis that mutating
faulty program elements may cause more failed tests to pass
than mutating correct elements and mutating correct elements
may cause more passed tests to fail than mutating faulty
elements. Besides the two basic MBFL techniques, TraPT [9]
extends them to obtain more detailed impact information
by transforming test outcomes to extract various test failure
messages for better fault localization. For example, TraPT
considers MBFL results with the following four different types
of test outcomes: (1) Type1: pass/fail information, (2) Type2:
exception type, (3) Type3: exception type and exception mes-
sage, and (4) Type4: exception type, message, and the full
stack trace. The four types of test outcomes will generate
different impact information. Please note that Metallaxis uses
Type4 test failure outcomes and MUSE uses Type1 test failure
outcomes according to TraPT.

B. Improvement of Mutation-Based Fault Localization

Previous studies [4], [5], [13] have demonstrated the ef-
fectiveness of basic MBFL. However, MBFL still has two
major limitations regarding its efficiency and accuracy. The
first limitation is that MBFL suffers from the extremely high
mutant execution cost problem since it generates a significant
number of mutants for the program under test, and each mutant
must be executed by all test cases [14], [15]. To overcome this
limitation, various studies have been proposed. FTMES [16]
is proposed to use only failed tests to execute against mutants
and avoid the execution of passed test cases by replacing the
impact information with coverage information. IETCR [15] is
introduced to reduce the execution of test cases by calculating
the entropy change of tests and selecting a proportion of them
according to the entropy values. SMBFL [17] is proposed to
reduce the execution cost by examining only the statements
in the dynamic slice of the program under test to reduce the
number of statements to be mutated. Another limitation of
MBFL is that impact information alone cannot distinguish
many tied program elements so that more advanced program
features should be further extracted. For example, MuSim [10]
is presented by identifying the faulty statements based on test
case proximity to different mutants, 33.21% more effective
than existing fault localization techniques such as DStar,
Tarantula and Ochiai. In this paper, we propose a novel and
lightweight approach to improve the accuracy of MBFL, but
our results and findings can provide valuable guidance for
more efficient MBFL.
Buggy Program

Test Suite Mutation Operators Mutant Generation Suspiciousness Calculation Reranking

Mutant Categorization

positive negative

Fig. 1: MuCatFL framework

167

III. APPROACH

In this section, we introduce the framework (Section III-A)
and algorithm (Section III-B) of our new technique MuCatFL.
We also present a real-world example in Section III-C.

Algorithm 1: MuCatFL Algorithm
Input: Faulty program P , test suite T , coverage

information C, SBFL formula F , a group of
mutators Op

Output: A ranked list S
1 P ′ ← A set of elements that covered by failed tests

based on the coverage C
2 for element e ∈ P ′ do
3 M(e) ← a set of mutants for e based on Op
4 Npositive(e) ← 0 which is the number of positive

mutants for e
5 Nnegative(e) ← 0 which is the number of negative

mutants for e
6 for m ∈ M(e) do
7 Sus(m) ←

F (n(m)
p (e),n(m)

f (e),n(m)
f (ē),n(m)

p (ē))
8 if n(m)

f (e) > 0 then
9 Npositive(e) ++

10 else
11 if n(m)

p (e) > 0 then
12 Nnegative(e)++
13 end
14 end
15 end
16 Sus(e) ← Max(Sus(m))
17 end
18 List S′ ← ranked elements according to initial

suspiciousness values (descending order)
19 List S′′ ← ranked elements from S′ according to the

number of positive mutants (descending order)
20 List S′′′ ← ranked elements from S′′ according to the

number of negative mutants (ascending order)
21 Final ranked list S ← S′′′

A. Framework of MuCatFL

Figure 1 shows the framework with detailed procedures of
MuCatFL. The first several steps are same with traditional
MBFL. Given a buggy program under test and its test suite,
traditional MBFL techniques apply mutation testing to gen-
erate a huge number of mutants for each program statement
based on predefined mutation operators (also called mutators).
Next, the test suite including all failed and passed test cases is
executed against all mutants to record the impact information.
The preliminary suspiciousness values can be calculated based
on various formulae to get the initial ranked list of the program
elements.

In many cases, even the impact information is adopted, some
program elements still are tied with the same suspiciousness
value. To overcome this limitation, in MuCatFL, we also

collect various types of mutants for each program element
based on the impact information. We define the following
mutant categories based on Type1 failure message (pass/fail
information): (1) positive mutant that makes any failed test
pass, (2) neutral mutant that makes all test cases unchanged
and (3) negative mutant that makes all failed tests still fail and
makes any passed test fail. Since neutral mutants do not con-
tribute to the impact information (no change of test outcomes),
we only consider positive mutants and negative mutants in
the detailed implementations. Please note that the category
definitions based on Type4 failure message is different due
to the different impact information (e.g., Type1 for MUSE
and Type4 for Metallaxis). For example, the positive mutant
according to Type4 failure message represents the mutant that
makes the exception type, message and full stack trace of
any failed test change (even the failed test still fails on the
mutant). According to the categories of mutants, we further
rank the tied program elements to break the ties based on the
following intuitions: (1) if a program element can generate
more positive mutants, it has higher probability to be faulty,
and (2) if a program element can generate more negative
mutants, it has lower probability to be faulty. To this end,
for the tied program elements with same suspiciousness value
computed by traditional MBFL, we rank the element higher
if it generates more positive mutants than others. If there are
still tied program elements, we further rank the element lower
if it generates more negative mutants than others. Finally, we
can get the final ranked list for all program elements.

B. Algorithm of MuCatFL

Algorithm 1 describes more implementation details of Mu-
CatFL. The entries of MuCatFL include faulty program P ,
test suite T (with passed tests and failed tests), coverage
information C between P and T . It also includes SBFL
formula F used by MBFL techniques and a group of pre-
defined mutation operators Op. Next, we explain the details
of the algorithm. As the previous study TraPT [9], only
suspicious mutants occurring on program elements executed
by failed tests contribute to MBFL, so we collect a set of
elements P ′ covered by failed tests in Line 1. From Line
2 to Line 17, we iterate all elements from P ′ to collect
required components for MuCatFL. In Line 3, we generate
a set of mutants for each element e based on a group of
predefined mutation operators Op. In Line 4 and Line 5, we
initialize two variables Npositive(e) and Nnegative(e) to store
the numbers of positive mutants and negative mutants for each
element. From Line 6 to Line 15, we iterate all mutants for
e to calculate their suspiciousness values based on the basic
MBFL. We also check if the mutant is positive or negative.
In detail, we first check that if n(m)

f (e) is greater than 0 then
we add 1 to Npositive(e). Otherwise, if n

(m)
p (e) is greater

than 0, we add 1 to Nnegative(e). In Line 16, we assign the
maximum suspiciousness value of all mutants of e as its final
value. Finally, we rank all elements based on the orders of
suspiciousness values, the number of positive and negative
mutants to get the final ranked list (Line 18 to Line 21).

168

public LegendItemCollection getLegendItems() {
...
int index = this.plot.getIndexOf(this);
CategoryDataset dataset = this.plot.getDataset(

index);
--- if (dataset != null) {
+++ if (dataset == null) {

return result;
}
int seriesCount = dataset.getRowCount();
...

}

Fig. 2: Example of buggy and fixed statements from Chart-
1

public DefaultDrawingSupplier(Paint[] paintSequence,
Paint[] fillPaintSequence,...) {

...
this.fillPaintSequence = fillPaintSequence;
...
...

}

Fig. 3: Example of non-buggy statement from Chart-1

C. Example of MuCatFL
In this section, we use a real-world example from Defects4J

(V1.2.0) [11], a widely used Java bug benchmark in the field
of software testing and debugging, to demonstrate the effec-
tiveness of our technique MuCatFL. We use Chart-1 which
denotes the first buggy version from JFreeChart [18] project.
The buggy statement (i.e., if (dataset != null) is
located in the method getLegendItems() of Class
AbstractCategoryItemRenderer as shown in Fig-
ure 2. Based on the traditional MBFL, this buggy state-
ment shares the same suspiciousness value with one non-
buggy statement in Class DefaultDrawingSupplier as
shown in Figure 3. By means of mutant categorization, we
observe that there are two positive mutants generated on
this buggy statement that can make the failed test pass
according to the mutators RemoveConditionalMutator
and NegateConditionalsMutator from the widely
used mutation testing tool PIT [19] while there is
only one positive mutant generated by the mutator
MemberVariableMutator for the non-buggy statement.
This example demonstrates the effectiveness of MuCatFL to
differentiate the buggy elements and non-buggy elements via
mutant categorization, indicating that program elements with
more positive mutants are prone to be faulty.

IV. STUDY DESIGN

In this work, we aim to investigate the following research
questions:

• RQ1: How does MuCatFL perform in localizing real
faults compared with traditional MBFL techniques?

• RQ2: How do positive mutants or negative mutants
impact the performance of MuCatFL separately?

• RQ3: What mutators can generate most positive mutants
for the studied real-world faults?

A. Implementation and Tool Supports

In this paper, we perform on-the-fly bytecode instrumen-
tation using ASM [20] and Java Agent [21] to collect the
required coverage information. We apply the widely used mu-
tation testing framework PIT (Version 1.1.5) [19] to perform
mutation testing. Following the previous study TraPT [9],
we use all 16 mutation operators available in PIT-1.1.5 and
modify PIT to collect the required impact information. For
example, we modify PIT to enable it executing on programs
with failed tests and force it to execute each mutant against
the remaining tests even the mutant is killed by earlier tests.
We implement MUSE and 5 widely used traditional SBFL
formulae (Tarantula [2], Ochiai [3], DStar [8], Jaccard [6] and
SBI [7]) for Metallaxis. We use 395 faulty versions from all
the 6 projects (Lang, Chart, Time, Math, Mockito and Closure)
in widely used Defects4J benchmark (V1.2.0) [11].

B. Evaluation Metrics

Many prior studies [22], [23], [24], [25] perform fault
localization techniques on method-level, i.e., localizing faulty
methods among all source code methods, since statement-
level fault localization may be too fine-grained without context
information [26] and class-level fault localization is too coarse-
grained [27]. In these studies, the suspiciousness value of
one method is assigned as the the maximum suspiciousness
value of all mutants generated in this method. In this paper,
we also evaluate MuCatFL on method-level inspired by other
studies but make some changes since the number of mutants
is involved. In detail, we firstly rank all statements in each
source code method based on Algorithm 1. Next, we find
the top-rank statement and assign its suspiciousness value,
the number of positive mutants and the number of negative
mutants to its corresponding method. Finally, we rank all
source code methods based on the Line 18-20 in Algorithm 1.
We use following evaluation metrics to evaluate various MBFL
techniques. (1) Top-N (Top-1, Top-3, and Top-5 in our study)
metric simply represents the exact position of the buggy
elements in the ranked list. The motivation to use Top-N metric
is that most developers will stop using debugging tools if
they cannot return the actual buggy elements within the Top-5
positions [27]. (2) MFR (mean first rank). For a buggy version
with multiple buggy elements, we use MFR to compute the
mean of the first buggy element’s rank for each buggy version
since the localization of the first buggy element can be a guide
to the rest of buggy elements. (3) MAR (mean average rank)
is simply the mean of the average of all buggy elements’ ranks
for each buggy version.

V. RESULT ANALYSIS

A. RQ1 - Performance of MuCatFL

In this section, we investigate the effectiveness of MuCatFL
compared with traditional MBFL techniques (Metallaxis and
MUSE). Figure 4 shows the overall fault localization results
on all studied subjects (i.e., Lang, Chart, Time, Math, Mock-
ito and Closure from the Defects4J benchmark) in terms

169

96

192

242

138

232
265

0

100

200

300

Top−1 Top−3 Top−5

Me−Ochiai

97

193

244

138

229
263

0

100

200

300

Top−1 Top−3 Top−5

Me−DStar

79

176

228

128

223
257

0

100

200

300

Top−1 Top−3 Top−5

Me−SBI

79

176

228

122

227
260

0

100

200

300

Top−1 Top−3 Top−5

Me−Tarantula

95

191

243

137

229
265

0

100

200

300

Top−1 Top−3 Top−5

Me−Jaccard

87

170
198

116

193
215

0

100

200

300

Top−1 Top−3 Top−5

MUSE

13.72

16.23

11.49

13.96

0

5

10

15

MAR MFR

Me−Ochiai

13.92

16.57

11.86

14.41

0

5

10

15

MAR MFR

Me−DStar

15.26
17.4

12.43
14.69

0

5

10

15

MAR MFR

Me−SBI

15.26
17.4

12.32
14.6

0

5

10

15

MAR MFR

Me−Tarantula

14.12

16.52

11.95
14.28

0

5

10

15

MAR MFR

Me−Jaccard

50.77
55.05

30.38
35.12

0

20

40

60

MAR MFR

MUSE

MBFL MuCatFL

Fig. 4: Results of MuCatFL compared with Metallaxis and MUSE
TABLE I: Impacts of positive and negative mutants

Tech Name Top-1 Top-3 Top-5 MFR MAR
Me-Ochiai 96 192 242 13.72 16.23

MuCatFL(P and N) 138 232 265 11.49 13.96
MuCatFL(Only P) 133 230 263 12.08 14.71
MuCatFL(Only N) 104 205 246 12.93 15.28

of Top-1, Top-3, Top-5, MFR and MAR. The upper sub-
figures represent the Top-N results and bottom sub-figures
indicate the MFR/MAR results. Each pair of bars in the sub-
figures represents the comparison between MuCatFL and one
traditional MBFL with different formulae. Please note that in
the figure we use “Me-formula” to represent Metallaxis with
corresponding SBFL formula. In these figures, higher Top-N
value and lower MFR/MAR value indicate a better localization
technique. From the figures, we have following observations.
First, MuCatFL with mutant categorization outperforms tradi-
tional MBFL techniques for all SBFL formulae. For example,
in total, Metallaxis with Ochiai formula can localize 96 faulty
methods within Top-1, while MuCatFL is able to localize
138 faulty methods, 43.75% more effective than traditional
MBFL technique. Furthermore, in terms of MAR, MuCatFL
for Ochiai is 13.96, 13.99% more precise than Metallaxis with
Ochiai (16.23). Second, in terms of MAR/MFR, MuCatFL can
improve Metallaxis by less than 20% for the five formulae.
However, MUSE can be improved by 36.2% and 40.16% when
we consider different categories of mutants. The potential
reason can be that MUSE only considers pass/fail information
so that there are more rooms to be improved by utilizing
positive mutants and negative mutants.

B. RQ2 - Impacts of Positive Mutants or Negative Mutants

In the RQ1, we compare MuCatFL with traditional MBFL
techniques by considering both positive and negative mutants.
However, whether both of them contributes to MuCatFL has
not been studied. In this section, we investigate the effective-
ness of MuCatFL by considering positive or negative mutants
separately. Table I shows the fault localization results with
only Ochiai formula for different configurations since Mu-
CatFL with Ochiai can achieve the best performance according
to RQ1. In this table, Me-Ochiai represents traditional MBFL
technique and MuCatFL (P and N) indicates MuCatFL with

both positive and negative mutants. Also, MuCatFL (Only P)
represents MuCatFL only considering positive mutants while
MuCatFL (Only N) represents MuCatFL only considering
negative mutants. From the table, we have following obser-
vations. First, both positive and negative mutants are helpful
for MuCatFL. For example, in terms of Top-1, MuCatFL (P
and N) can localize 138 faulty methods within Top-1, more
than any other configurations. Second, only positive mutants
can still contribute to promising performance of MuCatFL. In
detail, MuCatFL (Only P) can help localize 133 faulty methods
within Top-1, very close to MuCatFL (P and N). However,
MuCatFL with only negative mutants performs worse than that
with only positive mutant (localizing 104 bugs within Top-1).
Such findings demonstrate that failed tests should be more
important than passed tests when localizing faults for MBFL,
indicating the potential improvement of accuracy for some cost
reduction strategies (e.g., FTMES [16] with the execution of
only failed tests against all mutants).

C. RQ3 - Impacts of Mutation Operators for Positive Mutants

In MBFL, we generate mutants by applying different mu-
tation operators, and the findings in RQ2 show that only
positive mutants can contribute to MuCatFL. In this section,
we investigate what mutation operators can mostly lead to
positive mutants in terms of both Type1 and Type4 test failure
messages. We count the number of positive mutants with their
corresponding mutators in Table II and Table III, accordingly.
Please note that we only include 6 most frequent mutators
in the tables, which can reveal some interesting findings. In
the two tables, the first column represents the mutators from
PIT and the second column indicates the number of positive
mutants generated by the corresponding mutators. From the
two tables, we can find that the top 6 mutators are exactly
same for Type1 and Type4 failure message even the orders are
different, indicating that program elements that can be mutated
by these mutators tend to be faulty. This finding can be also
applied to reduce the huge execution cost of MBFL. For
example, mutants generated by top frequent mutators can have
higher execution priorities, or only the top frequent mutators
can be selected to generate mutants.

170

TABLE II: Mutators generating most positive mutants in
terms of Type1 failure message

Mutator # of positive mutants
NonVoidMethodCallMutator 4686
NegateConditionalsMutator 4170

RemoveConditionalMutator EQUAL ELSE 2698
InlineConstantMutator 1998

ReturnValsMutator 1960
RemoveConditionalMutator EQUAL IF 1912

TABLE III: Mutators generating most positive mutants in
terms of Type4 failure message

Mutator # of positive mutants
NonVoidMethodCallMutator 115912
NegateConditionalsMutator 66043

ReturnValsMutator 47439
InlineConstantMutator 47218

RemoveConditionalMutator EQUAL IF 45171
RemoveConditionalMutator EQUAL ELSE 31347

VI. THREATS TO VALIDITY

The main threat to internal validity is from our implemen-
tation. To reduce this threat, we implement our techniques by
utilizing state-of-the-art tools and frameworks, such as ASM
and PIT. The main threat to external validity mainly lies in
the selection of the studied subjects. To reduce this threat,
we evaluate on more real-world projects. The main threat to
construct validity is that the measurements used may not fully
reflect real-world situations. To reduce this threat, we use Top-
N, MAR and MFR metrics, which have been widely used in
previous studies [9], [25], [28], [24].

VII. CONCLUSION

In this paper, we propose MuCatFL, a novel and lightweight
technique for better MBFL via mutant categorization. In de-
tails, after executing the original test suite against all generated
mutants, we categorize the mutants into two groups, positive
mutants and negative mutants, to rank the tied program el-
ements. We evaluate MuCatFL by performing an extensive
study on 395 real software faults from the widely used
benchmark Defects4J. The experimental results show that
MuCatFL can significantly outperform MBFL techniques (e.g.,
localizing 138 faults within the Top-1 position, 43.75% more
than traditional Metallaxis technique).

REFERENCES

[1] “Tricentis reports,” 2018. [Online]. Available:
https://www.tricentis.com/blog/how-to-avoid-the-tricentis-software-
fail-watch/

[2] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing, 2005, pp. 273–282.

[3] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in 2006 12th Pacific
Rim International Symposium on Dependable Computing (PRDC’06).
IEEE, 2006, pp. 39–46.

[4] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault
localization,” Software Testing, Verification and Reliability, vol. 25, no.
5-7, pp. 605–628, 2015.

[5] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in 2014 IEEE Seventh Inter-
national Conference on Software Testing, Verification and Validation.
IEEE, 2014, pp. 153–162.

[6] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and Industrial
Conference Practice and Research Techniques-MUTATION (TAICPART-
MUTATION 2007). IEEE, 2007, pp. 89–98.

[7] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” ACM Sigplan Notices, vol. 40, no. 6, pp. 15–26,
2005.

[8] W. E. Wong, V. Debroy, Y. Li, and R. Gao, “Software fault localization
using dstar (d*),” in Software Security and Reliability (SERE), 2012
IEEE Sixth International Conference on. IEEE, 2012, pp. 21–30.

[9] X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
Oct. 2017. [Online]. Available: https://doi.org/10.1145/3133916

[10] A. Dutta, A. Jha, and R. Mall, “Musim: Mutation-based fault localization
using test case proximity,” International Journal of Software Engineer-
ing and Knowledge Engineering, vol. 31, no. 05, pp. 725–744, 2021.

[11] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, 2014, pp. 437–440.

[12] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for fault
localization,” in in Proceedings of ICSE 2001 Workshop on Software
Visualization, 2001.

[13] M. Papadakis and Y. Le Traon, “Using mutants to locate” unknown”
faults,” in Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on. IEEE, 2012, pp. 691–700.

[14] M. Kooli, F. Kaddachi, G. Di Natale, A. Bosio, P. Benoit, and L. Torres,
“Computing reliability: On the differences between software testing and
software fault injection techniques,” Microprocessors and Microsystems,
vol. 50, pp. 102–112, 2017.

[15] H. Wang, B. Du, J. He, Y. Liu, and X. Chen, “Ietcr: An information
entropy based test case reduction strategy for mutation-based fault
localization,” IEEE Access, vol. 8, pp. 124 297–124 310, 2020.

[16] A. A. L. de Oliveira, C. G. Camilo-Junior, E. N. de Andrade Freitas,
and A. M. R. Vincenzi, “Ftmes: A failed-test-oriented mutant execution
strategy for mutation-based fault localization,” in 2018 IEEE 29th
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2018, pp. 155–165.

[17] N. Bayati Chaleshtari and S. Parsa, “Smbfl: slice-based cost reduction
of mutation-based fault localization,” Empirical Software Engineering,
vol. 25, no. 5, pp. 4282–4314, 2020.

[18] “Jfreechart website,” 2022. [Online]. Available:
https://github.com/jfree/jfreechart

[19] “Pit mutation testing system,” 2022. [Online]. Available: http://pitest.org/
[20] “Asm java bytecode manipulation and analysis framework,” 2022.

[Online]. Available: https://asm.ow2.io/
[21] “Java programming language agents,” 2022. [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-
summary.html

[22] T. Dao, L. Zhang, and N. Meng, “How does execution information help
with information-retrieval based bug localization?” in Proceedings of
the 25th International Conference on Program Comprehension, 2017,
pp. 241–250.

[23] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 169–180.

[24] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using pagerank,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2017, pp. 261–272.

[25] J. Sohn and S. Yoo, “Fluccs: using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2017, pp. 273–283.

[26] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 international sym-
posium on software testing and analysis, 2011, pp. 199–209.

[27] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 165–176.

[28] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in 2014 IEEE International Conference
on Software Maintenance and Evolution. IEEE, 2014, pp. 191–200.

171

WBS: Weighted Backtracking Strategy for
Symbolic Testing of Embedded Software

Varsha P Suresh1, Sujit Kumar Chakrabarti1, Athul Suresh1, and Raoul Jetley2

1International Institute of Information Technology Bangalore, Bengaluru, India
2ABB Corporate Research, Bengaluru, India

Abstract

Symbolic execution is an important program analysis
technique that has found a number of applications in the
last fifteen years or so. Popular symbolic execution ap-
proaches use backtracking when faced with infeasibility
along a path being explored. A simple backtracking strat-
egy (i.e. backtracking by a single decision node) may suf-
fice when the goal is to cover the entire control flow graph
(CFG). However, if the goal is to cover specific parts of the
CFG through a single path, simple backtracking may lead
to non-optimality or even non-termination. In this paper, we
present weighted backtracking strategy (WBS) that exploits
previous knowledge about the program behaviour to com-
pute ‘good’ candidates as destinations of backtracking. We
have integrated our heuristic to SymTest, a symbolic testing
framework for embedded systems. Experiments with case-
studies have demonstrated that WBS improves SymTest’s
performance both in its ability to achieve termination as
well as in computing shorter test sequences compared to
the original approach. SymTest with WBS generates shorter
test sequences compared to several other existing test gen-
eration approaches based on symbolic execution.

1 Introduction
Large amount of time and effort of software develop-

ment is spend in testing of the software. In automated test
case generation the software under test is analysed and then
test data are generated. The generated test data is used for
test execution. Test execution can be simulation of the soft-
ware or target testing, where the software is executed in the
deployment environment. In case of real time embedded
software the cost of testing goes up dramatically because
such reactive systems requires interaction with other phys-
ical subsystems, human interfaces etc. Thus cost of testing
has a direct impact on cost of software quality, which ne-
cessitates the optimization of software testing. In embed-
ded systems and systems involving interactions with other

DOI reference number: 10.18293/SEKE2022-147

physical subsystems, the test sequence length (defined in
Section 2) plays a vital role in the cost of testing. As the
test sequence length increases the interaction between phys-
ical subsystems increases which in turn increases the cost
of testing. Even though there has been significant advance-
ment in symbolic execution in recent years, there has not
been much effort put towards obtaining short test sequences.

SymTest[1] is a symbolic execution framework used to
generate short test sequences for embedded software. The
main idea in SymTest is to explore only one path that cov-
ers the target edges. If the first path computed is feasible,
SymTest indeed provides very good results in terms of the
length of the test sequence (path) generated. However, if
the path chosen is infeasible, the guarantee of the shortness
of the generated test sequence is severely curtailed. Back-
tracking by one decision is the backtracking approach of
SymTest which provides no assurance that the alternative
path thus explored even terminates. We present a heuristic,
Weighted Backtracking Strategy (WBS) which computes a
candidate backtracking destination which may be more than
one decision edge behind the last decision edge. This ap-
proach is based on weight calculations obtained from ear-
lier runs of the system. We have implemented WBS as
a part of SymTest and tested it against a number of case
studies which reflects the path exploration problem. WBS
aided in generating test sequences in multiple cases where
SymTest fails to terminate, and generates shorter test se-
quences compared to SymTest and several other existing
testing approaches based on symbolic execution.

The rest of this paper is organized as follows: A mo-
tivating example and an overview of the related works is
discussed in Section 2. Section 3 explains the WBS and
the integration of WBS in SymTest. Section 4 presents the
experiment details and the obtained results. Section 5 con-
cludes the paper.

2 Motivation and Related Works
In structural testing, the goal is to execute the system so

as to cover certain parts of the system. In first-time testing,
we may want to cover the entire system. But in regression

172

int y = 0

int x = input()

x>50

y = x + 2 y = x * 2

((y>100)&&(y<180))

((y>60)&&(y<70))x = x + 2

x = x + 15 y>65

x = x + 1 x = x + 5

((x < 50)&&(x>44))

x = x + 65 x = x + 20

true

e1

e2

e3

e4

e

e

e

ENTRY

EXIT

e2’

e4’

e

e

e

5 e6

e7 7’

e8

e9 9’

10e

11 11’

e12 e13

14
e14’

e15
e16

e17

Figure 1: CFG

testing, depending on the requirement, certain parts of the
system may need to be covered. In our work, we consider
edge coverage as the coverage criterion. Our testing aims to
cover a set T of edges, called as target edges which may be
the set of all edges in the control flow graph of the system,
or a proper subset thereof. A test sequence is a sequence of
unit interactions between the system and the environment
that completely covers a given target edge set T . During
test execution, often the most time consuming (or resource
intensive) process is the interaction with the environment
which may involve network delays, mechanical movements
and human actions. Hence, test sequence length, measured
as the number of unit interactions of the system with the en-
vironment, may have a direct implication on cost of testing.

SymTest ensures generating shorter test sequences if the
initial path obtained from the control flow graph is sat-
isfiable. If backtracking occurs, then due to path explo-
sion problem the shorter test sequences are not guaran-
teed. Consider the control flow graph (CFG) shown in
Fig. 1. The edges marked in red in the CFG are the tar-
get edges we want to cover during testing. The path,
e1e2e3e4e5e7′e9′e11e12e14e15e17e2′ is computed and on
performing symbolic execution on the obtained path, it is
found to be unsatisfiable. Next step is to figure out the alter-
native optimal feasible path which covers the target edge.
Optimal path here means syntactically shortest path that
covers the target edges. Search strategy in SymTest fol-
lows backtracking by one decision edge to find the next
path. In the example given, the new path obtained is also
found to be unsatisfiable by the SMT solver. Backtracking
proceeds further to search the feasible path and SymTest
fails to terminate as it repeatedly takes the edge e4 on
each iteration in its search. Therefore this strategy does

not ensure finding optimal path after backtracking. Con-
trary to this when we use WBS in SymTest it redirects
the execution along the edge of e4′ , the resulting path is :
e1e2e3e4′e6e7′e9′e11e12e14e15e17e2′ . This turns out to be
feasible, thus resulting in a successful generation of test se-
quence of short length.

Classical search strategies - depth first search (DFS) have
been used in tools DART [2], CUTE [3]. JPF [4] [5]
has the capability to choose the search strategy DFS or
BFS. JPF also comprises structural heuristics for path ex-
ploration. CREST and KLEE are two concolic testing
tools which have been adopted for testing in industrial
applications [6][7]. CREST uses control flow directed
search, where static structure of the program is consid-
ered to explore program’s path space. The other search
strategies devised for concolic testing in CREST includes
bounded depth-first search, uniform random search, random
branch search [8]. The commonly used search strategies
in KLEE[9] are - Coverage-Optimized Search, Depth First
Search, Random Path Select, Random State Search. Fit-
nex [10] is a search strategy used to guide path exploration
in dynamic symbolic execution to achieve test target cov-
erage. Program-derived fitness functions were used to cal-
culate the fitness values for the explored paths. The fitness
function measures how close an explored path is in achiev-
ing test target coverage. For effective exploration, the core
Fitnex strategy has been integrated with other search strate-
gies.

Search strategies used in the symbolic execution tools
like KLEE, CREST focus on achieving high code coverage.
They do not ensure target edge coverage in least number
of iterations. On the other hand the integration of WBS in
original SymTest focuses on target edge coverage in fewest
number of iterations.

3 Proposed Approach
Before explaining the WBS in detail in Section 3.2, no-

tations used in the paper are introduced here and Section 3.1
illustrates how WBS is used in SymTest to improve the gen-
eration of test sequences.
Notations Some of the notational conventions followed in
the sequel is given here.

• P: Program under test
• G: Control flow graph of P
• V (G): Node set of G
• E(G): Edge set of G
• Nodes in V (G): represented by names like n, n′, ni, , where
i ∈ N

• Edges in E(G): represented by names like e, e′, ei, where
i ∈ N

• Each decision node in G has two outgoing decision edges e
and e′. We say that e = flip(e′) and e′ = flip(e).

• T : Target edge set
• T : Computational tree
• V (T): Node set of T

173

• E(T): Edge set of T
• Nodes in V (T) are represented by names like n, n′, n1, ni,

where i ∈ N
• →G is a relation between two decision edges ei, ej ∈ E(G)

such that ei is an immediately preceding decision edge to ej
in at least one run of the program.

3.1 SymTest-WBS
A revised version of the SymTest algorithm using WBS

is presented in Algorithm 1. We use FINDCFPATH [1]
to find an optimal syntactic path through the control flow
graph that covers all members in the target edge set T . The
path thus computed is pushed into the stack as a sequence
of decision edges. We symbolically execute along this path

Algorithm 1 SymTest-WBS
1: procedure SYMTEST(G, T , W)
2: stack ←<>
3: while true do
4: stack ← FINDCFPATH(G, T , stack)
5: sympath← SYMEX(G, stack)
6: pc← PC(sympath)
7: tf,M ← SOLVE(pc)
8: if tf then
9: return M

10: else
11: b← BTP(G, stack, W , T)
12: stack ← BACKTRACK(stack, flip(b))
13: PUSH(stack, b)

giving us the symbolic trace along that path (sympath). We
convert this into a logic formula and input it to an SMT
solver (SOLVE). If the formula is found satisfiable (indi-
cated by true value of the true or false (tf) component of
the value returned by SOLVE), our search was successful;
the test input can be directly extracted from the model M
returned by the solver. However, if the solver fails to solve
the formula, it indicates that the path computed by FIND-
CFPATH is infeasible. We need to backtrack (BACKTRACK)
and explore an alternative path.

On meeting infeasibility this version of SymTest back-
tracks by potentially multiple decision edges in stack. The
decision edge b to which this backtracking takes place is
computed by BTP. BTP function takes as a parameter
W : E(G) × E(G) → R. W is a map which takes takes
two edges e1 and e2 in E(G) as inputs and returns a weight
that is related with the probability of computing a short test
path that reaches e2 through e1. The BTP function itself is
presented in Algorithm 2, after introducing the prerequisite
matter about the preprocessing steps.
3.2 Weighted Backtracking Strategy

An overview of WBS architecture is given in Fig 2. The
preprocessing and computing backtrack point are the major
steps of WBS. In preprocessing, the experience about the

program under test is collected through previous runs. Note
that once this preprocessing step is done, its output is usable
by any number of runs of SymTest. After preprocessing,
backtracking point is computed using the pending targets to
be covered and edge ordering.

Program Trace
Generation

Computation
Tree

Generation

Weight
Calculation

Computing
Backtrack

Point

Backtrack Point

Preprocessing

Traces Comp Tree

Weights

Figure 2: WBS Architecture
3.2.1 Trace Generation
We define a trace π as a list of decision edges
{e1, e2, ..., en} which are traversed during a particular run
of the program. To generate traces, we instrument the pro-
gram under test such that every time a edge is traversed dur-
ing its execution, its corresponding edge id is printed into
a file. Let D be the pre-assigned maximum depth of exe-
cution. This instrumented program is executed N number
of times to generate the set of traces Π = {π1, π2, ..., πN}.
These are used to generate the computation tree.
3.2.2 Computation Tree Generation
A computation tree is the compressed representation of set
of all the traces (Π). The computation tree is a suffix tree de-
fined over the collected traces Π. Let (treepath(πi)) be the
path in computation tree (T) which corresponds to the trace
πi in Π. If two traces π1 and π2 have a common prefix, this
will result in their corresponding paths (treepath(π1) and
treepath(π2) respectively) in the computation tree to be
merged from the root till the point where π1 and π2 diverge.
The computation tree CT has a unique root node denoted
by CT.root. Each node n in a tree is a triple (e, C, np)
where n.e corresponds to the decision edge in the control
flow graph (G) of the program (P), n.C is the set of child
nodes of n and n.np is the number of individual tree paths
in which n occurs.

3.2.3 Weight Calculation
The selection of backtracking point is based on the prefer-
ability of a decision edge as a backtracking destination.
If the current path traversed is defined by the sequence
{e1, e2, ..., en} where we meet unsatisfiability at en
then the set of candidate backtracking points (CBP) are
{e′1, e′2, ..., e′n} where for a decision edge ei, e′i = flip(ei)
is the complimentary decision edge of ei. Selection of the
candidate backtracking points yielding the best result (i.e.
the shortest test sequence covering all target edges) is un-
decidable. Hence, we have devised a heuristic to determine
the probably best backtracking point and is computed by
calculating a preferability index called weight (W) of each
CBP. Weight for a CBP is calculated taking into account
two metrics: probability of covering all the pending target

174

edges and length of the resulting test sequence.

Probability Weight (WP): The probability of reach-
ing a target edge represents how often the target edge is
covered by the paths obtained. Let e be the current decision
edge, P be the total number of all explored paths passing
through e, T = {et1 , et2 , ...etn} be the set of all target
edges, P(e,eti)

be the total number of paths that cover
the edge e and the target edge eti in that order. Then,
we estimate the probability to reach target edge eti from
current decision edge e, which we call the probability
weight (WP (e, eti)), is given by:

WP (e, eti) =
P(e,eti)

P
(1)

Length Weight (WL) : Shortness of the test sequence is
indicated by the length weight (WL). Shorter the test se-
quence larger will be the value of WL. WL is calculated
using individual length weight wL, (wL : V (T)×E(G)→
R). For any treenode n ∈ V (T), and target edge eti ∈ T ,
the individual length weight is given as:

wL(n, et2) =
∑

n′∈N2

n′.np

L(n,n′) + 1
(2)

where, N2 = {n′ ∈ V (T)|n′.e = et2}, n′ is reachable
from n, np is defined in Section 3.2.2, L(n,n′) is the length
of the path from n and n′ measured as the number of occur-
rences of the true branch of the branching node representing
the outer loop.

Length weight, WL of a decision edge e ∈ E(G) is the
sum of the individual length weights of each treenode n ∈
V (T).

WL(e1, et2) =
∑
n∈N1

wL(n, et2) (3)

where, N1 = {n ∈ V (T)|n.e = e1}

Individual Weight (WI): Individual weight WI(e
′, eti) is

defined as the weighted sum of the probability weight and
length weight between edges e′ in CBP and eti in target
edge set. Thus:

WI(e
′, eti) = WP (e

′, eti) +WL(e
′, eti) (4)

Composite Weight (W): Composite weight W (e′) of a de-
cision edge e′ is the cumulative weight of e′ for all target
edges given by:

W (e′) =
∑

eti∈T ′

WI(e
′, eti) (5)

where T ′ is the pending target edge set(defined in Sec-
tion 3.2.4) for e′ with program control state defined by
stack.

3.2.4 Computing Backtracking Point

At any point during the symbolic execution, the control state
of the execution is captured by the state of stack. Some
of the edges in the target edge set T may be included in
this stack. These target edges do not need to be covered in
the further part of the test sequence. The remainder of the
target edges are the pending targets (T ′), which need to be
covered in the further part of the generated test sequence.
T ′(ei

′) denotes the pending target edges to be covered from
ei

′.
Consider CBPs e′1 and e′2 such that W (e′1) > W (e′2).

We may want to select e′1 as the final backtracking point.
However, this may turn out to be a mistake. Let T ′(e′1) =
{e1t1 , e

1
t2} and T ′(e′2) = {e2t1 , e

2
t2} denote the set of pending

target edges for e′1 and e′2 respectively. The test sequence to
be computed for e′1 would have a suffix ts11 = ⟨e′1, e1t1 , e

1
t2⟩

or ts12 = ⟨e′1, e1t2 , e
1
t1⟩; likewise, for e′2, they will be ts21 =

⟨e′2, e2t1 , e
2
t2⟩ or ts22 = ⟨e′2, e2t2 , e

2
t1⟩. Whether e′1 should be

finally chosen as the backtracking point, or e′2, depends on
which of ts11, ts12, ts21 and ts22 turn out to be the best path.
For example, if the weights of the path suffixes ts11, ts12,ts21,
ts22 (path weight will be defined below) turn out to be related
in the following manner: W (ts21) > W (ts22) > W (ts11) >
W (ts12), it is then better to select e′2 as the backtracking
point inspite of the fact that W (e′1) > W (e′2). In summary,
to make a decision on the backtracking point, we must not
just consider the weight of a CBP, but also the weight of
the path that will be followed thereafter. In order to achieve
this, edge ordering of targets edges is performed.

Unfortunately, for a given CBP e′i, problem of comput-
ing the best test sequence suffix ⟨e′i, tsi1, tsi2, ..., tsin⟩ is akin
to vehicle routing problem (VRP) A brute force approach
would compute the path weights corresponding to all per-
mutations of the pending target edges T ′ which is exponen-
tial in |T ′|. For an arbitrarily large T ′, this would be too
expensive.

Algorithm 2 Computing Backtracking Point
1: function BTP(G, stack, W , T)
2: s←< flip(e)∀(e, tf) ∈ stack >
3: D′ ← the subset of s such that it consists of upto

N elements of s whose composed weights are the max-
imum.

4: for all d ∈ D′ do
5: T ′ ← PENDINGTARGETS(d, T , stack)
6: EO[d]← EDGEORDERING(d, T ′)
7: return argmin

d∈D′
EO[d]

In order to perform target edge ordering, initially a
weighted graph(GW) is created using a given set of pend-
ing target edges T ′ in E(G). GW is a complete weighted
digraph such that:

175

• The node set V (GW) corresponds to the edge of pend-
ing target edge set T ′. ∀n ∈ V (GW), n.e denotes the
target edge corresponding to it.

• ∀ni, nj ∈ V (GW),

ni →GW
nj if W (ni.e, nj .e) ≥W (nj .e, ni.e)

ni →GW
nj otherwise

where ni →GW
nj means that there exists an edge

between ni and nj .
• An edge e(ni, nj) from a node ni to nj is annotated

by a number e(ni, nj).w given by:

e(ni, nj).w =
1

W (ni.e, nj .e)

Augmented Weighted Graph (G′W) The weighted
graph is augmented with the candidate backtracking point
to get G′W . The edge ordering is performed on G′W . For
a given CBP e and weighted graph GW , We define an aug-
mented weighted graph G′W as follows:

• G′W has all the nodes and edges of GW .
• V (G′W) = V (GW) ∪ {n} such that n.e = e.
• For all nodes n′ ∈ V (G′W) \ {n}, there exists an edge
e(n, n′) such that e(n, n′).w = 1

W (n.e,n′.e) .

Algorithm 2 presents BTP function that selects a deci-
sion edge from the candidate backtrack points (CBP) after
performing edge ordering on the pending targets edges.

4 Experimental Evaluation
In this section we first describe the experimental set up.

We then explain the benchmarks used to evaluate the imple-
mentation followed by a discussion of the results.
4.1 Set up

We have implemented WBS and integrated it with
SymTest. The weight is calculated using 500 previous runs
of the program under test. To evaluate the effectiveness of
SymTest-WBS, we considered the following factors:

• time taken for test sequence generation
• test sequence length i.e., the number of iterations taken

to cover the target edges
• number of execution paths processed to generate the

test sequence covering the target edges
A large number of execution paths processed for test

sequence generation will result in an increase in the time
for test sequence generation. More number of iterations to
cover the target edge increases interaction with the exter-
nal environment. Both these facts contribute to the cost of
testing of an embedded software.

We compared SymTest-WBS with following tools on the
basis of above parameters:

• SymTest [1]: SymTest framework where backtracking
proceeds by a single node.

• KLEE [9]: Symbolic execution tool build over LLVM,
that generates test cases with high code coverage.

Each of the above mentioned tools is evaluated against
different test programs. We ran our tool on the benchmark
programs on an Intel Quad Core i7-3770 3.40GHz machine
running Ubuntu 18.04.4.

The number of iterations of the main loop is considered
as the performance metric for measuring the effectiveness
of symbolic execution search strategies[10]. For all our ex-
periments we have set the maximum depth of execution (i.e.
number of iterations of the main loop) as 5.
4.2 Benchmarks

TABLE 1 shows the list of benchmark programs that we
used in our experiments and the results obtained. We used
the benchmark programs which are used by other symbolic
execution tools [11] [12] [1]. As we are concentrating on
embedded software, apart from available benchmarks, we
have converted a set of single task programmable logic con-
trol programs [13] into its equivalent C program. The other
test programs are from SVCOMP test suite [14], CREST
test programs [12], RERS challenge [15].
4.3 Results

TABLE 1 shows the results of experiments. The “#iter”
column gives the number of iterations taken by the gener-
ated test case to cover the target edges,“#path” column gives
the number of explored paths, “Target Cov” gives the per-
centage of the target edges covered. The “Time (ms)” col-
umn gives the time taken by the tool in milliseconds. The
total number of iterations is calculated by taking the sum of
iterations taken by each test data. A time out (TO) happens
at a time limit of 600000ms. A time out means that the tool
could not generate a test sequence that covers all the target
edges within the stipulated time-out period.

On comparing the proposed approach with SymTest, It
is observed that in test program, cfg1 SymTest-WBS pro-
duces shorter test sequence length in less time compared
to SymTest. In problem1M, cfg2 SymTest timed out, but
SymTest-WBS succeeded to cover target edges. On com-

Figure 3: Result for path exploration

176

Sl No. Program SymTest-WBS SymTest KLEE

#iter #path
Target
Cov Time(ms) #iter #path

Target
Cov Time(ms) #iter #path

Target
Cov Time(ms)

1 cfg1 1 2 100 2081.27 2 3 100 2357.11 7 18 100 9126.10
2 cfg2 1 2 100 1040.38 - - - TO 4 14 100 9018.61
3 cfg3 1 1 100 124.10 1 1 100 245.50 3 17 100 8094.71
4 cfg4 1 1 100 337.14 1 2 100 175.77 4 44 100 5804.59
5 test program 1 2 100 513.50 4 7 100 1001.21 4 84 100 12095.66
6 timer 1 3 100 126.96 1 6 100 234.60 5 22 100 72.26
7 car parking 1 1 100 117.89 1 1 100 192.36 4 2 100 78.81
8 burglar alarm 3 2 100 1173.94 3 9 100 5542.12 - - - T0
9 g4ltl1 1 2 100 923.90 1 2 100 1594.23 5 8 100 159.56

10 g4ltl2 1 2 100 923.90 1 2 100 1594.23 5 7 100 163.30
11 trex03 1 1 100 231.54 1 1 100 240.01 1 102 100 1346.62
12 cfg test 2 3 100 292.42 2 11 100 271.34 2 7 100 380.27
13 problem1M 2 4 100 3819.30 - - - TO - - - TO
14 problem2M 2 3 100 399.79 2 10 100 8586.02 - - - TO
15 problem11M 2 2 100 510.04 2 9 100 1795.25 2 2 100 73.15
16 problem1 - - - TO - - - TO - - - TO
17 problem11 - - - TO - - - TO - - - TO

Table 1: Comparison Results

paring the proposed approach with KLEE, it is observed
that for programs having majority of statements which are
reachable, KLEE takes more time in test sequence genera-
tion compared to SymTest and SymTest-WBS for cfg test,
test program. KLEE focuses on code coverage. If we are
interested in complete code coverage (as in first-time test-
ing), KLEE is one of the best choices for test data genera-
tion. But if we want to compute test data to reach specific
program points which are deep in the code (as often seen
in regression testing), then SymTest-WBS performs better.
The number of iterations to cover the same target edges
is more in KLEE. This can be observed in g4ltl1, timer,
car parking. In problem1M, problem2M KLEE timed out,
but SymTest-WBS was successful in generating test se-
quence.

In problem1, problem11 it is observed that all the three
tools timed out. Fig. 3 shows the results of path exploration
for those programs which was successful in generating test
sequence by all the three tools. SymTest-WBS requires
less number of paths to attain target edge coverage com-
pared to SymTest and KLEE. It is worthwhile observing
that the number of TO by SymTest-WBS is less compared
to SymTest and KLEE. Both SymTest and KLEE explore
more number of execution paths to cover target edges. This
explains the timeout observed in SymTest and KLEE.

5 Conclusions and Future Work
In this paper we proposed a backtracking heuristic

named Weighted Backtracking Strategy. The knowledge
about system behaviour through previous runs is exploited
to create a computation tree. Using the computation tree
the optimal backtracking point is selected. WBS is im-
plemented in SymTest. Experiments shows that the WBS
is effective in increasing the set of cases where SymTest
achieves termination and has further shortened the test se-
quence length with respect to those achieved by SymTest

with simple backtracking. Our future work involves us-
ing machine learning techniques for selecting backtracking
point.

References
[1] S. Chakrabarti and R. S, “Symtest a framework for symbolic testing of embed-

ded software,” in SymTest. ISEC, 2016.
[2] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed au-

tomated random testing,” in PLDI, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065036

[3] CUTE: a concolic unit testing engine for C. 13th ACM SIGSOFT international
symposium on Foundations of software engineering, ESEC/FSE-13, 2005.

[4] S. Anand, C. S. Păsăreanu, and W. Visser, “Jpf-se: A symbolic execution
extension to java pathfinder,” in Proceedings of the 13th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, ser. TACAS’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 134–
138. [Online]. Available: http://dl.acm.org/citation.cfm?id=1763507.1763523

[5] Symbolic PathFinder: integrating symbolic execution with model checking for
Java bytecode analysis. Automated Software Engineering, 2013.

[6] M. Kim, Y. Kim, and Y. Jang, “Industrial application of concolic testing on em-
bedded software: Case studies,” in 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, April 2012, pp. 390–399.

[7] Y. Kim, M. Kim, Y. J. Kim, and Y. Jang, “Industrial application of concolic test-
ing approach: A case study on libexif by using crest-bv and klee,” 2012 34th In-
ternational Conference on Software Engineering (ICSE), pp. 1143–1152, 2012.

[8] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 443–446. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2008.69

[9] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs,” in Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 209–224.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855741.1855756

[10] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Fitness-guided path ex-
ploration in dynamic symbolic execution,” in 2009 IEEE/IFIP International
Conference on Dependable Systems Networks, June 2009, pp. 359–368.

[11] J. Jaffar, R. Maghareh, S. Godboley, and X.-L. Ha, “Tracerx: Dynamic sym-
bolic execution with interpolation (competition contribution),” in Fundamental
Approaches to Software Engineering, H. Wehrheim and J. Cabot, Eds. Cham:
Springer International Publishing, 2020, pp. 530–534.

[12] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,” in
2008 23rd IEEE/ACM International Conference on Automated Software Engi-
neering, 2008, pp. 443–446.

[13] https://www.sanfoundry.com, [Online; accessed 19-September-2020].
[14] https://sv-comp.sosy-lab.org/2021/benchmarks.php, [Online; accessed 19-

September-2021].
[15] http://rers-challenge.org/2017/index.php, [Online; accessed 10-September-

2021].

177

DOI reference number: 10.18293/SEKE2022-102

An Exploratory Study of Bug Prioritization and
Severity Prediction based on Source Code Features

Chun Ying Zhou
School of Computer Science and

Information Engineering
Hubei University

Wuhan, China
zcy9838@stu.hubu.edu.cn

Cheng Zeng
School of Computer Science and

Information Engineering
Hubei University

Wuhan, China
zc@hubu.edu.cn

Peng He*
School of Computer Science and

Information Engineering
Hubei University

Wuhan, China
penghe@hubu.edu.cn

Abstract—Software systems generate a large number of bugs
during their lifecycles. Managing and assigning these bug reports
is a challenging task. Building prediction models for the priority
or severity levels of bugs through bug reports can help developers
prioritize highly urgent bugs. Traditional prediction models are
based on the textual description information in bug reports.
However, most of the description is little or no. According to the
bug report, developers need to fix the corresponding source code
files. If the corresponding source code file is a core module in a
software system, the report is likely to have high-level assignment
rights. Therefore, in this paper, we investigate the effect of using
the source code file feature sets on classification performance. In
addition, we evaluate the effect of different sampling methods on
the data, namely SMOTE, RUS, SMOTEEN, Adaboost, and GAN.
Extensive experiments were conducted on five open-source
projects. The experimental results show that the source code file
feature sets do not perform as well as the textual description
features in bug reports. Besides, over-sampling methods do not
alleviate the data imbalance problem in the case of insufficient
data, while GAN performs best in the case of sufficient data.

Keywords—bug priority; bug severity; bug report; source code;
data imbalance

I. INTRODUCTION

Throughout the software lifecycle, developers will receive a
large number of bug reports. Once a bug report is committed and
confirmed, the bug needs to be fixed in a timely manner.
Different analyses can be performed based on the bug reports,
including Bug Triage, Bug Localization, Bug-fix Time
Estimation, predict defect attributes etc [1]. A bug report
contains several attributes, such as bug id, summary, description,
reporter, created date, fix version, status, priority, severity, in
which the priority levels range from P1 (most important) to P5
(least important), and the severity is categorized into blocker,
critical, major, normal, minor, enhancement, and trivial.
Priority is assigned from the developer's point of view, which
indicates the urgency of fixing bugs. Severity is assigned from
the user's point of view, which indicates the degree of impact on
the use of software function [2].

Existing studies analyzed the text of bug reports by using
machine learning methods to automatically predict priority or
severity [3]. Given the excellence of deep learning in the field of
natural language processing, researchers also explored
various neural networks to further extract semantic information
from bug reports [1, 6-9]. Unfortunately, if the bug reports
provide insufficient or misleading information, the performance
of the predictor will be greatly affected. Therefore, in addition to

the textual features of bug reports, whether there are other
appropriate features for bug prioritization and severity
prediction becomes an open challenge. To this end, we will
further consider the information of source code files. We assume
that if a source code file is a core file in the project, then it has a
higher level of importance. Once the file is defective, it is more
likely to have a higher priority or severity. Leveraging neural
networks to capture semantic and syntactic features from source
files is widely used for bug localization [4] and defect prediction
[5].

In addition, during bug repair, the co-change relationships
between source files have been proved to be potentially valuable
[10]. We assume that if two files are associated with a bug report
at the same time, there will be some correlation between these
two files. More occurrences together indicate a stronger
relationship. Hence, we construct a co-occurrence network
(COON) between source code files, and extract relational
features of the source files by network embedding learning.

The study aims at investigating the feasibility of source code
feature sets mentioned above on bug prioritization and severity
prediction, and analyzing the impact of different features on this
task. To simplify the subsequent presentation, we use FSet-1 to
represent the feature set learned from the textual information of
the bug reports, FSet-2 to represent the semantic feature set of
the source code files associated with the bug reports, and FSet-3
to represent the relational feature set learned from the co-
occurrence network of the source code files. Extensive
experiments were conducted on five open-source projects to
answer the following research questions:

RQ1: Which type of feature set performs better?

RQ2: Is it helpful to consider the importance of source code
files?

RQ3: Do the combined feature sets achieve better results?

RQ4: Is the impact of sampling methods obvious?

The remainder of this paper is organized as follows. The
related work is presented in Section II. The method is detailed in
Section III. The evaluation and analysis are presented in Section
IV. Finally, the conclusion is drawn in Section V.

II. RELATED WORK

Most of the existing models predict various attributes based
on textual analysis of bug reports (e.g., summary and

Corresponding author: Peng He (penghe@hubu.edu.cn)

178

description). Tian et al. [2] treated priority prediction as a linear
regression problem rather than a classification problem. The
priority level is an ordinal value rather than a categorical value,
while classification will make a large difference between levels.
Sharma et al. [3] evaluated the performance of different
machine learning techniques such as SVM, Naive Bayes, and
K-Nearest Neighbors in the priority prediction. Kumari et al. [6]
took care of uncertainty by using entropy-based measures.
Umer et al. [7] and Ramay et al. [8] proposed an automatic
emotion-based prediction method for sentiment analysis of bug
reports. Bani-Salameh et al. [9] used a five-layer RNN-LSTM
neural network model for bug priority prediction.

If the reporter provided an insufficient description of the bug,
it is difficult to learn valuable features from it. As far as we know,
few studies have explored bug prediction and severity in terms
of the feature sets of source code. In fact, a bug report is often
associated with at least one source code file that needs to be fixed.
Source code files can be used to indirectly learn about potential
bug features. The source code files are converted into Abstract
Syntax Trees (ASTs). Then a tree-based neural network is used
to extract semantic information. Compared to the source code,
the ASTs ignore unnecessary details but still retain lexical and
syntactic structure information [11].

With the wide use of complex networks in software
engineering, a co-occurrence network is proposed in this paper
inspired by this research trend. Considering that source code
files are not independent, when two files are associated with a
bug report at the same time, there is an association relationship
between them, and a complex network is constructed based on
this correlation. In fact, real-world networks are often more
complex in that not only topological information is available, but
also each node and edge has attributes. However, traditional
network embedding methods are unsupervised and cannot utilize
node attribute information. With the development of Graph
Neural Networks (GNNs), a group of models has emerged
specifically for learning graph structure data [12], which can
smoothly incorporate node and edge attributes while learning the
network structure to generate better robust representation.

Unlike existing studies, we not only perform textual analysis
of bug reports, but also consider semantic information of source
code files and relational information based on co-occurrence
network. Therefore, the feature sets in this paper are divided into
three categories: textual features of bug reports; semantic
features of source code files; and relational features of co-
occurrence networks. These three sets of features are then
combined and applied to bug prioritization and severity
prediction.

III. APPROACH

The workflow (cf. Figure. 1) comprises three parts: (1) FSet-
1 generation: extract the summary and description of bug reports,
then use CNN to learn the textual features; (2) FSet-2 generation:
convert source code files to ASTs, then use CNN to extract the
code semantic features; (3) FSet-3 generation: construct a co-
occurrence network between source code files, then use GNN to
learn the structural features. Finally, the three feature sets are
combined in different ways and fed into the classifier for
prediction.

a1.java

a2.java

a3.java

a4.java c1.java

c2.java
c3.java

c4.java

b1.java
b2.java

b3.java

A B

C

D

Reports Source files

A

B

C
D

a1.java a2.java a3.java a4.java

b1.java b2.java b3.java
c1.java c2.java c3.java c4.java
a3.java b1.java c4.java

f1 f2 f3 fs-1...

f1 f2 f3 fs-1 fs...

f1 f2 f3 fs-1 fs...

f1 f2 f3 fs-1 fs...

fsa1:

a2:

a3:

a4:

f1 f2 f3 fs-1 fs...mean:

f1 f2 f3 fn-1...

f1 f2 f3 fn-1 fn...

f1 f2 f3 fn-1 fn...

f1 f2 f3 fn-1 fn...

fna1:

a2:

a3:

a4:

f1 f2 f3 fn-1 fn...mean:f1 f2 f3 fr-1 fr...

Textual features Semantic features Relational Features

Bug
Reports

Source
Files

 ASTs Token vectors

COON

Word
Tokenization Word vector

dataset
Feature sets

Classifier

Prediction

Textual features

Semantic features

Node attributes

GNN

(1)

(2)

(3)

(1) FSet-1 (2) FSet-2 (3) FSet-3

FSet-1
FSet-2
FSet-3

FSet-1+2
FSet-1+3

FSet-1+2+3

CNNword2vec

word2vec CNN

Relational Features

Figure 1. Experimental workflow.

A. FSet-1 generation

The summary and description of each bug report are
combined into a document, then all textual information is
preprocessed. First, tokenize each word in the text sequences.
Second, remove words without real meaning, such as "the",
"and", "this", "that", etc. Finally, stem each word into basic
words. For example, "working" and "worked" will be converted
into "work". In addition, we further processed the tokens as
treated in [4]. Since developers usually use compound words to
name classes and methods. Therefore, according to CamelCase
naming rules, compound words are split into separate real words.
For example, "WorkbenchActionBuilder" is split into
"Workbench", "Action" and "Builder". After preprocessing,
each token is converted into a word vector using word2vec and
then fed into CNN to extract textual features for bug reports.

B. FSet-2 generation

In this part, the open-source python package javalang1 is
adopted to parse the source code files into ASTs. Three types of
nodes were selected as in [13]: (1) nodes of method invocations
and class instance creations, (2) declaration nodes, and (3)
control-flow nodes. After parsing, each Java file is converted
into a token sequence. Since CNN requires input integer vectors,
each token is mapped to a unique integer. That is, the token
sequence is converted into an integer vector. Since the length of
the token sequence of each file is unequal, the dimensions of the
converted integer vectors will be different. To keep the same
dimension of each file vector, 0 is added at the end of the integer
vector, which is equal to the length of the longest vector. Note
that adding 0 will not affect the result. Moreover, some
uncommon tokens are filtered out and only the tokens that
appear more than three times are encoded.

Suppose that there are 𝑛 Java source code files associated
with all bug reports for project 𝑃, 𝑃 = {𝑓 , 𝑓 , … , 𝑓 }. After the
above processing, the token sequence 𝑓 = {𝑡 , 𝑡 , … , 𝑡 } is
extracted, then each token is mapped to an integer, i.e., 𝑓 is
converted to a fixed-length integer vector 𝑓 ∈ ℝ , 𝑖 ∈ [1, 𝑛]. In
the embedding layer, 𝑓 is converted to a real-valued vector
matrix 𝑋 = {𝒙 , 𝒙 , … , 𝒙 }, 𝑋 ∈ ℝ × , where 𝒙 ∈ ℝ is
the embedding vector corresponding to the j-th token 𝑡 of 𝑓 .

1 https://github.com/c2nes/javalang

179

Since the source code files associated with the bug reports are
defective files, clean source code files are also needed to be fed
into the CNN for training together as positive instances.
Therefore, positive instances are randomly selected from the
remaining files in the project, keeping the same number of
negative instances. After convolution and pooling layers, the
FSet-2 is generated.

C. FSet-3 generation

Figure 1 also shows the construction of a co-occurrence
network through a simple example with four bug reports A, B,
C, and D. The source code files associated with these reports are
listed on the right. Clearly, for A, B, and C, their associated
source code files form three fully connected communities
respectively, while the associated files of D connect them, thus
forming a large co-occurrence network (COON). In COON, two
files may co-occur frequently, so in order to distinguish the
strength of the relationship between files, we use the co-
occurrence times as a weight. Note that the co-occurrence
relationship is undirected in our context.

After constructing COON, the relational features are learned
by using a GNN model, which iteratively updates the
representation of each node by aggregating the features of its
neighboring nodes. This process is mainly divided into two steps.
First, aggregate the features of neighboring information to obtain
𝑎
(), and then combine the neighboring features 𝑎() with the

node features of the previous layer ℎ(), in order to obtain the
updated features.

𝑎
()

= 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸()({ℎ
()

: 𝑢 ∈ 𝑁(𝑣)}) (1)

ℎ
()

= 𝐶𝑂𝑀𝐵𝐼𝑁𝐸()(ℎ
()

, 𝑎
()
) (2)

where ℎ() is the vector of node 𝑣 at the 𝑘 -th layer.
ℎ
()

= 𝑋 . 𝑁(𝑣) is the set of neighbors of node 𝑣 .
𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸(⋅) and 𝐶𝑂𝑀𝐵𝐼𝑁𝐸(⋅) are the aggregation
function and combination function respectively.

 Given that the source code files are defective, and when
there is only one class of instance labels, it is not possible to use
a supervised model. However, adding additional instances
would change the structure of the co-occurrence network.
Therefore, we choose an unsupervised model DGI [14] to learn
COON. Generating this type of feature set mainly consists of
three steps: (1) constructing the network; (2) initializing the node
attributes; and (3) using DGI to capture the topological structure
information and generate relational features. DGI can learn both
network relational and node attribute features. Since the original
COON has no node attributes, the node attributes in the COON
should be provided before training the DGI. In addition, rich
node attributes allow DGI to be better trained. Consequently, the
token vectors extracted from the source code are used as the
initial node attributes. Finally, the network topology and node
attributes are fed into DGI, and FSet-3 is output.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets

In this paper, we use five public datasets commonly used in
Bug Localization2. We queried the bug priority and severity
attributes from https://bugs.eclipse.org/bugs/ and
https://bz.apache.org/bugzilla/ to label these datasets. It is well

known that data imbalance is one of the problems in multi-class
prediction. To accurately predict the labels for each class, a large
amount of data is needed for training. The majority labels of bug
reports are P3 or normal, which cannot be learned adequately for
minor classes. Therefore, priority and severity levels are coarse-
grained into three categories. For priority, P1 and P2 are
classified as high, P3 as medium, P4 and P5 as low. For severity,
blocker, critical and major are classified as severe, normal as
normal, minor, enhancement and trivial as non-severe.

Table I gives the statistics of the datasets. It can be seen that
medium and normal are the majority categories in most projects.
The data imbalance problem of priority prediction is particularly
serious. For better empirical validation, we dropped the medium
category from the priority and the normal category from the
severity. That is, we perform binary classification aimed to help
developers prioritize fixing high-level bugs.

TABLE I. SUMMARY OF THE DATASETS

Products
Bug priority prediction Bug severity prediction

high medium low severe normal non-severe

AspectJ 107 477 9 114 378 101

Eclipse 1072 5301 122 1235 4473 787

JDT 1020 5163 91 690 4410 1174

SWT 230 3901 20 787 3090 274

Tomcat 981 53 22 114 636 306

B. Settings

A five-fold cross-validation is used. For each run, the dataset
is divided into five copies, of which 80% is used for training and
20% for testing, with each division ensuring that the ratio of
positive to negative instances is approximated. For each project,
the experiment was repeated 25 times, and the final results were
averaged to reduce the bias introduced by dividing the data
randomly.

The output dimension of three feature sets is set to 16. For
the CNN used in FSet-1 and FSet-2, a four-layer architecture is
employed, including an embedding layer, a convolutional layer,
a max-pooling layer and a fully connected layer. The batch size
is set to 32 and the epoch is 100, using Adam optimizer with a
learning rate of 0.001. For the DGI used in FSet-3, a two-layer
convolution is employed. The dimension of the hidden layer is
set to 64. The DGI is a full batch training with epochs of 200,
also using the Adam optimizer with a learning rate of 0.001. The
classifier is MLP. The F-measure and Accuracy are used as
evaluation metrics in this paper.

C. Analysis

1) RQ1: Which type of feature set performs better?
FSet-1 is the textual features for bug reports. For better

illustration, the preprocessed text is treated as the original
feature without CNN learning, namely origin. Tables II and III
show the prediction results. It can be seen that FSet-2 and FSet-
3 perform poorly, even worse than the origin. For priority
prediction, due to the extreme imbalance of the datasets, both
FSet-2 and FSet-3 predict into the majority class labels, which
could not construct a reasonable prediction model. For severity
prediction, the results are similar to the priority prediction.

2 https://github.com/yanxiao6/BugLocalization-dataset

180

Moreover, the performance of FSet-2 is much worse than that
of FSet-3.

2) RQ2: Is it helpful to consider the importance of
source code files?

Based on our assumption, if the source code file is a core file
with a high importance level in the project, then the bug reports
associated with it are likely to be of high priority or severity level.
Since the projects in the dataset used in this paper are not from
the same version, and many of them are test files, which cannot
be found in the official released version. Therefore, we can only
calculate the importance of the source code files from the
available data. Specifically, if the corresponding bug report has
a high or severe label, the importance value of all source code
files associated with it will be added by 10, while the medium
and normal will be added by 3, and the low and non-severe will
be added by 1. As shown in Figure 2, the importance value of
the source code file a.java associated with bug reports A, C and
D is 3+1+3=7. Similarly, after calculating the importance values
of all source code files, the importance of the bug reports can be
obtained indirectly. For example, the importance of bug report
A is the sum of the importance values of a.java, b.java, c.java,
and d.java. Tables IV and V show the results of priority and
severity prediction. △ represents the improvement considering
the importance of source code files.

Reports Source files

A
B
C
D

a.java b.java c.java d.java
b.java c.java d.java
a.java b.java d.java e.java
a.java c.java d.java

Priority

medium
high
low

medium

Source files

a.java 3+1+3=7
b.java
c.java
d.java
e.java

Importance

3+10+1=14
3+10+3=16

3+10+1+3=17
1

Reports

A 7+14+16+17=54
B
C
D

Importance

14+16+17=47
7+14+17+1=39

7+16+17=40
Figure 2. An example of importance calculation.

TABLE II. THE PERFORMANCE OF FEATURE SETS ON PRIORITY

Feature sets metrics AspectJ Eclipse JDT SWT Tomcat avg

origin
F1 0.518 0.506 0.518 0.515 0.496 0.511

ACC 0.874 0.826 0.853 0.870 0.965 0.878

FSet-1
F1 0.804 0.812 0.802 0.479 0.770 0.734

ACC 0.966 0.940 0.949 0.920 0.987 0.952

FSet-2
F1 0.480 0.473 0.479 0.479 0.494 0.481

ACC 0.922 0.898 0.918 0.920 0.978 0.927

FSet-3
F1 0.480 0.473 0.479 0.479 0.494 0.481

ACC 0.922 0.898 0.918 0.920 0.978 0.927

TABLE III. THE PERFORMANCE OF FEATURE SETS ON SEVERITY

Feature sets metrics AspectJ Eclipse JDT SWT Tomcat avg

origin
F1 0.606 0.560 0.592 0.537 0.555 0.570

ACC 0.612 0.583 0.617 0.638 0.658 0.622

FSet-1
F1 0.893 0.848 0.859 0.883 0.840 0.865

ACC 0.894 0.856 0.872 0.913 0.877 0.882

FSet-2
F1 0.398 0.390 0.428 0.427 0.421 0.413

ACC 0.514 0.610 0.629 0.742 0.729 0.645

FSet-3
F1 0.630 0.532 0.521 0.485 0.481 0.530

ACC 0.644 0.630 0.648 0.751 0.722 0.679

In priority prediction, using the importance feature for FSet-

1 reduced the overall prediction performance. In particular, the
negative impact was significant for AspectJ and Tomcat, and
SWT predicted all the labels into the majority class. Due to the
relatively sufficient data, the impact on Eclipse and JDT was
slight. For FSet-2, AspectJ, SWT and Tomcat, with insufficient
data, still failed to build a reasonable model. For Eclipse and JDT,
on the other hand, achieved some improvements. The impact of
importance feature for FSet-3 was not positive. In severity

prediction, using the importance feature for FSet-1 had a
significant negative impact on AspectJ, indicated by -32.4% F1
value, but the impact on other projects was not significant. The
importance feature showed a great improvement for FSet-2,
while it had little impact for FSet-3.

In short, the results show that the introduction of the
importance feature of the source code files does not benefit FSet-
1 and FSet-3, and even reduces the prediction performance,
while it is a great improvement for FSet-2. In addition, based on
the use of the source file importance feature, the performance of
FSet-2 is better than that of FSet-3. Moreover, the problems of
data imbalance and data insufficiency have a great impact on
prediction. Data imbalance leads to difficulties in constructing
reasonable model, while data insufficiency leads to large
fluctuations in prediction results.

TABLE IV. THE PERFORMANCE OF USING IMPORTANCE ON PRIORITY

Feature sets metrics AspectJ Eclipse JDT SWT Tomcat avg

FSet-1

F1 0.480 0.829 0.780 0.479 0.572 0.628
△ -32.4% 1.8% -2.2% 0.0% -19.8% -10.6%

ACC 0.922 0.947 0.947 0.920 0.980 0.943
△ -4.3% 0.7% -0.3% 0.0% -0.7% -0.9%

FSet-2

F1 0.480 0.579 0.514 0.479 0.494 0.509
△ 0.0% 10.6% 3.5% 0.0% 0.0% 2.8%

ACC 0.922 0.908 0.921 0.920 0.978 0.930
△ 0.0% 1.0% 0.3% 0.0% 0.0% 0.3%

FSet-3

F1 0.480 0.472 0.476 0.479 0.494 0.480
△ 0.0% -0.1% -0.2% 0.0% 0.0% -0.1%

ACC 0.922 0.860 0.862 0.920 0.977 0.908
△ 0.0% -3.8% -5.6% 0.0% -0.1% -1.9%

TABLE V. THE PERFORMANCE OF USING IMPORTANCE ON SEVERITY

Feature
sets

metrics AspectJ Eclipse JDT SWT Tomcat avg

FSet-1

F1 0.719 0.845 0.863 0.879 0.860 0.833
△ -17.4% -0.2% 0.4% -0.4% 2.0% -3.2%

ACC 0.751 0.854 0.875 0.910 0.891 0.856
△ -14.3% -0.1% 0.3% -0.4% 1.4% -2.6%

FSet-2

F1 0.656 0.616 0.542 0.606 0.576 0.599
△ 25.9% 22.6% 11.4% 17.9% 15.5% 18.7%

ACC 0.660 0.686 0.658 0.774 0.731 0.702
△ 14.5% 7.6% 2.9% 3.2% 0.2% 5.7%

FSet-3

F1 0.526 0.553 0.508 0.525 0.588 0.540
△ -10.3% 2.1% -1.3% 4.0% 10.7% 1.0%

ACC 0.564 0.625 0.586 0.616 0.736 0.625

△ -8.0% -0.5% -6.2%
-

13.5%
1.4% -5.4%

3) RQ3: Do the combined feature sets achieve better

results?
According to the results obtained above, FSet-2 and FSet-3 are

much less effective than FSet-1. Inspired by this, can hybrid
feature sets further improve prediction performance? In this RQ,
we explore three combinations: FSet-1+2, FSet-1+3 and FSet-
1+2+3. For example, given a bug report A, the source code files
associated with it are 𝑎 . 𝑗𝑎𝑣𝑎 , 𝑎 . 𝑗𝑎𝑣𝑎 , 𝑎 . 𝑗𝑎𝑣𝑎 and
𝑎 . 𝑗𝑎𝑣𝑎 , where the importance of the source code files are
𝑖𝑚𝑝 , 𝑖𝑚𝑝 𝑖𝑚𝑝 , and 𝑖𝑚𝑝 . The dimension of FSet-1 is 𝑑 ,
while FSet-2 is 𝑑 and FSet-3 is 𝑑 . Then the combined
features of A are respectively expressed as follows:

𝒙𝒓 = 𝑥 , 𝑥 , … , 𝑥 (6)

𝒙𝒔 = 𝑥 , 𝑥 , … , 𝑥 (7)

𝒙𝒏 = 𝑥 , 𝑥 , … , 𝑥 (8)

181

𝒙𝒄𝟏 𝟐
= 𝒙𝒓⨁𝑚𝑒𝑎𝑛(𝑖𝑚𝑝 ∙ 𝒙𝒔𝟏 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟐 , 𝑖𝑚𝑝

∙ 𝒙𝒔𝟑 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟒)
(9)

𝒙𝒄𝟏 𝟑
= 𝒙𝒓⨁𝑚𝑒𝑎𝑛(𝑖𝑚𝑝 ∙ 𝒙𝒏𝟏 , 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟐, 𝑖𝑚𝑝

∙ 𝒙𝒏𝟑 , 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟒)
(10)

𝒙𝒄𝟏 𝟐 𝟑
= 𝒙𝒓⨁𝑚𝑒𝑎𝑛 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟏 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟐 , 𝑖𝑚𝑝

∙ 𝒙𝒔𝟑 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟒 ⨁𝑚𝑒𝑎𝑛(𝑖𝑚𝑝

∙ 𝒙𝒏𝟏, 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟐 , 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟑, 𝑖𝑚𝑝

∙ 𝒙𝒏𝟒)

(11)

where 𝒙𝒓 ∈ ℝ is FSet-1, 𝒙𝒔 ∈ ℝ is FSet-2, 𝒙𝒏 ∈ ℝ is
FSet-3, 𝒙𝒄𝟏 𝟐

∈ ℝ is FSet-1+2, 𝒙𝒄𝟏 𝟑
∈ ℝ is

FSet-1+3, 𝒙𝒄𝟏 𝟐 𝟑
∈ ℝ is FSet-1+2+3. 𝑚𝑒𝑎𝑛(∙) is

the mean function, ⨁ is feature splicing symbol.

Tables VI and VII show the results of priority prediction
and severity prediction. △ shows an improvement compared to
FSet-1. The results show that the combined features are not as
effective as expected. FSet-1+3 and FSet-1+2+3 were
decreased greatly, indicating that FSet-3 was highly destructive
to FSet-1. Although FSet-1+2 decreased slightly and can
improve prediction performance in some cases, the enhancement
was not significant. Hence, blindly combining feature set for bug
prediction can easily lead to negative effects.

TABLE VI. THE PERFORMANCE OF COMBINED FEATURE SETS ON PRIORITY

Feature
sets

metrics AspectJ Eclipse JDT SWT Tomcat avg

FSet-1+2

F1 0.679 0.815 0.781 0.479 0.581 0.667
△ -12.5% 0.4% -2.2% 0.0% -18.9% -6.7%

ACC 0.945 0.939 0.945 0.920 0.978 0.945
△ -2.1% -0.1% -0.4% 0.0% -0.9% -0.7%

FSet-1+3

F1 0.480 0.558 0.518 0.485 0.489 0.506

△ -32.4% -25.4%
-

28.4%
0.5% -28.1%

-
22.8%

ACC 0.922 0.869 0.904 0.886 0.959 0.908

△ -4.3% -7.1% -4.5%
-

3.4%
-2.8% -4.4%

FSet-
1+2+3

F1 0.480 0.595 0.532 0.496 0.499 0.520

△ -32.4% -21.6%
-

27.1%
1.6% -27.1%

-
21.3%

ACC 0.922 0.895 0.888 0.850 0.950 0.901

△ -4.3% -4.5% -6.1%
-

7.0%
-3.7% -5.1%

TABLE VII. THE PERFORMANCE OF COMBINED FEATURE SETS ON SEVERITY

Feature sets metrics AspectJ Eclipse JDT SWT Tomcat avg

FSet-1+2

F1 0.907 0.848 0.857 0.865 0.831 0.862
△ 1.4% 0.04% -0.2% -1.8% -0.9% -0.3%

ACC 0.908 0.856 0.869 0.899 0.869 0.880
△ 1.4% 0.1% -0.2% -1.4% -0.9% -0.2%

FSet-1+3

F1 0.872 0.706 0.788 0.748 0.806 0.784

△ -2.2% -14.2% -7.1% -13.6% -3.4% -8.1%
ACC 0.873 0.722 0.810 0.822 0.852 0.816
△ -2.1% -13.4% -6.1% -9.1% -2.5% -6.7%

FSet-1+2+3

F1 0.851 0.738 0.775 0.716 0.819 0.780
△ -4.3% -11.0% -8.4% -16.8% -2.1% -8.5%

ACC 0.860 0.758 0.794 0.777 0.863 0.810
△ -3.4% -9.8% -7.7% -13.6% -1.4% -7.2%

4) RQ4: Is the impact of sampling methods obvious?
From Table Ⅰ, it is clear that the data used for prediction are

obviously unbalanced and insufficient. For example, for SWT,
the ratio of majority class to minority class was as high as 15:1.
Extreme data imbalance could easily lead to the prediction
results completely biased towards the majority class, or the
results may be very unstable. Therefore, we further investigated

several data sampling methods to explore whether they could
alleviate the data imbalance problem: (1) SMOTE [15] (2) RUS
[16] (3) SMOTEENN [17] (4) AdaBoost [18] (5) GAN [19].
SMOTE is an over-sampling method, RUS is an under-sampling
method, SMOTEENN is a comprehensive method combining
over-sampling and under-sampling, and AdaBoost is an
integrated learning method. GAN is a neural network method
that constructs two networks, a generator and a discriminator.
These two models compete with each other so that the generator
generates instances closer to the ground truth, while the
discriminator is getting stronger to identify the fake instances
and ground truth.

TABLE VIII. THE PERFORMANCE OF DIFFERENT SAMPLING METHODS ON
PREDICTION

Feature sets metrics AspectJ Eclipse JDT SWT Tomcat avg

non-
sample

F1 0.804 0.812 0.802 0.479 0.770 0.734
ACC 0.966 0.940 0.949 0.920 0.987 0.952

SMOTE
F1 0.878 0.735 0.773 0.668 0.650 0.741

ACC 0.964 0.866 0.912 0.854 0.940 0.907

SMOTE-
ENN

F1 0.790 0.686 0.733 0.626 0.619 0.691
ACC 0.927 0.815 0.877 0.802 0.918 0.868

Adaboost
F1 0.814 0.801 0.789 0.732 0.827 0.793

ACC 0.966 0.938 0.948 0.943 0.988 0.957

GAN
F1 0.478 0.730 0.733 0.479 0.495 0.583

ACC 0.917 0.925 0.937 0.920 0.980 0.936

TABLE IX. THE PERFORMANCE OF DIFFERENT SAMPLING METHODS ON
SEVERITY

Feature sets metrics Eclipse JDT SWT Tomcat avg

non-sample
F1 0.848 0.859 0.883 0.840 0.858

ACC 0.856 0.872 0.913 0.877 0.879

SMOTE
F1 0.841 0.848 0.872 0.819 0.845

ACC 0.847 0.858 0.899 0.851 0.864

RUS
F1 0.864 0.865 0.893 0.842 0.866

ACC 0.864 0.865 0.893 0.843 0.866

SMOTEENN
F1 0.838 0.842 0.842 0.797 0.830

ACC 0.842 0.850 0.868 0.826 0.847

AdaBoost
F1 0.831 0.851 0.876 0.840 0.849

ACC 0.840 0.864 0.909 0.877 0.872

GAN
F1 0.876 0.860 0.896 0.894 0.882

ACC 0.884 0.869 0.920 0.917 0.897

Tables VIII and IX show the results. In priority prediction,
AdaBoost outperforms the other sampling methods, while GAN
is the worst. The advantages of SMOTE and SMOTEENN are
not outstanding, as indicated by both enhancement and reduction.
In severity prediction, GAN performs best, followed by RUS,
which is slightly less accurate than AdaBoost. AdaBoost,
SMOTE, and SMOTEENN showed an overall decrease in
performance. The results suggest that over-sampling and
comprehensive sampling may not be able to synthesize high-
quality instances without sufficient data. Instead, RUS can avoid
noise caused by synthesized instances when sufficient data is
available. Note that GAN performs the worst in priority
prediction but the best in severity prediction due to the fact that
GAN requires a large amount of data for training. Therefore, we
recommend using the GAN model for bug prediction when
training data is sufficient.

V. DISCUSSION

In this section, we discuss the shortcomings of the research
questions in our study.

182

Firstly, for FSet-2, we use CNN to extract the semantic
features of source code files. As we know, CNN is a supervised
model, the source code files associated with bug reports are
considered as buggy. Therefore, additional clean files need to be
fed to CNN for training along with the buggy files. We randomly
select the remaining source files in the project as clean instances,
which is consistent with the number of buggy instances.
However, this may have potential noise, which leads to poor
performance of FSet-2. First, not all the remaining source code
files in the project are clean files. Second, since the mapping
between bug reports and source code files is many-to-many, we
can only determine the priority and severity of bug reports, not
the source code files. Therefore, our treatment in this paper may
lead to the learned features deviating from the actual predictions.

Secondly, for FSet-3, building a software network [5] based
on the actual dependencies between code files may better
represent their relationships. Since the projects in the datasets
may across multiple versions, it is not possible to construct the
corresponding software network accurately, so we use a co-
occurrence network (COON) instead. Note that COON is
actually a virtual network, in which the relationship between
files is not completely real. Moreover, the stability of the
network may change greatly as the dataset expands. This could
also explain the unsatisfactory performance of the relational
features.

Finally, the results show that the importance feature of the
source code files is useful for FSet-2. In fact, our method
involves only some of the source files, but the importance of
these files is calculated from the perspective of the project, such
as Key Class Identification [20]. Hence, there is still some
deviation from the real situation.

VI. CONCLUSION

This study attempts to explore the impact of source code files
feature sets on bug prioritization and severity prediction.
Leveraging CNN and GNN to learn the semantic features of
source code files and the relational features between these files.
The experimental results show that the impact of learning feature
sets is not as expected. In addition, five typical sampling
methods are also introduced to analyze the impact on data
imbalance. The results show that the GAN model synthesizes the
highest quality instances with an adequate dataset, significantly
improving the results on F-measure and Accuracy. Next is
under-sampling, while over-sampling and comprehensive
sampling do not perform well. In future work, in order to further
validate the work of this paper accurately, we need to construct
a dataset suitable for the method of this paper. The effects caused
by other factors such as data quality should be excluded as much
as possible, so that the source code file feature sets can be fully
utilized.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (Nos. 61832014, 61902114, 61977021),
and the Key R&D Programs of Hubei Province (No.
2021BAA184, 2021BAA188).

REFERENCES
[1] M. Mihaylov, M. Roper. Predicting the Resolution Time and Priority of

Bug Reports: A Deep Learning Approach, Ph.D. dissertation, Department
of Computer and Information Sciences, University of Strathclyde, 2019.

[2] Tian Y, Lo D, Sun C. Drone: Predicting priority of reported bugs by multi-
factor analysis[C]//2013 IEEE International Conference on Software
Maintenance. IEEE, 2013: 200-209.

[3] Sharma M, Kumari M, Singh R K, et al. Multiattribute based machine
learning models for severity prediction in cross project
context[C]//International Conference on Computational Science and Its
Applications. Springer, Cham, 2014: 227-241.

[4] Xiao Y, Keung J, Mi Q, et al. Improving bug localization with an
enhanced convolutional neural network[C]//2017 24th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2017: 338-347.

[5] C. Zeng, C. Y. Zhou, S. K. Lv, P. He and J. Huang, "GCN2defect: Graph
Convolutional Networks for SMOTETomek-based Software Defect
Prediction," 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE), Wuhan, China, 2021, pp. 69-79.

[6] Sharma M, Kumari M, Singh R K, et al. Multiattribute based machine
learning models for severity prediction in cross project
context[C]//International Conference on Computational Science and Its
Applications. Springer, Cham, 2014: 227-241.

[7] Umer Q, Liu H, Sultan Y. Emotion based automated priority prediction
for bug reports[J]. IEEE Access, 2018, 6: 35743-35752.

[8] Ramay W Y, Umer Q, Yin X C, et al. Deep neural network-based severity
prediction of bug reports[J]. IEEE Access, 2019, 7: 46846-46857.

[9] Bani-Salameh H, Sallam M. A Deep-Learning-Based Bug Priority
Prediction Using RNN-LSTM Neural Networks[J]. E-Informatica
Software Engineering Journal, 2021, 15(1) DOI:10.37190/e-Inf210102.

[10] McIntosh S, Adams B, Nagappan M, et al. Mining co-change information
to understand when build changes are necessary[C]//2014 IEEE
International Conference on Software Maintenance and Evolution. IEEE,
2014: 241-250.

[11] Zhang J, Wang X, Zhang H, et al. A novel neural source code
representation based on abstract syntax tree[C]//2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 2019:
783-794.

[12] Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural
networks[J]. IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[13] Wang S, Liu T, Nam J, et al. Deep semantic feature learning for software
defect prediction[J]. IEEE Transactions on Software Engineering, 2018.

[14] Velickovic P, Fedus W, Hamilton W L, et al. Deep Graph Infomax[J].
ICLR (Poster), 2019, 2(3): 4.

[15] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority
over-sampling technique[J]. Journal of artificial intelligence research,
2002, 16: 321-357.

[16] Weiss G M. Foundations of imbalanced learning[J]. Imbalanced Learning:
Foundations, Algorithms, and Applications, 2013: 13-41.

[17] Lamari M, Azizi N, Hammami N E, et al. SMOTE–ENN-Based Data
Sampling and Improved Dynamic Ensemble Selection for Imbalanced
Medical Data Classification[M]//Advances on Smart and Soft Computing.
Springer, Singapore, 2021: 37-49.

[18] Ying C, Qi-Guang M, Jia-Chen L, et al. Advance and prospects of
AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745-758.

[19] Sun Y, Jing X Y, Wu F, et al. Adversarial learning for cross-project semi-
supervised defect prediction[J]. IEEE Access, 2020, 8: 32674-32687.

[20] Pan W, Song B, Li K, et al. Identifying key classes in object-oriented
software using generalized k-core decomposition[J]. Future Generation
Computer Systems, 2018, 81: 188-202.

183

Taint Trace Analysis For Java Web Applications
Yaju Li, Chenyi Zhang

Jinan University, Guangzhou, China
Qin Li

East China Normal University, Shanghai, China

Abstract—Taint analysis is concerned about whether a value in
a program can be influenced, or tainted, by user input. Existing
works on taint analysis focus on tracking the propagation of
taint flows between variables in a program, and a security risk
is reported whenever a taint source (user input) flows to a taint
sink (resource that requires protection). However, a reported bug
may have its taint source and taint sink located in different
software components, which complicates the bug tracking and
bug confirmation for developers. In this paper, we propose Taint
Trace Analysis (TTA), which extends P/Taint, a context-sensitive
Java taint analysis project, by making the taint information
flow explicit. Thanks to the underlying Datalog semantics, we
describe a way to extract traces of taint flows across program
contexts and field accesses in the Doop framework. Different from
existing works that produce only source-sink pairs, the output
of TTA can be visualized as a set of traces which illustrate the
inter-procedural taint propagation from taint sources to their
corresponding sinks. As a consequence, TTA provides more useful
information for developers and users after a vulnerability is
reported. Our implementation is also efficient, and as shown
in our experiment, it adds only a small run-time overhead on
top of P/Taint for a range of analyses with different types of
context-sensitivities applied.

Index Terms—Taint analysis, Automatic trace generation, Pro-
gram analysis, Java web application

I. INTRODUCTION

Security vulnerabilities, which are software bugs exploitable
by attackers, have been long standing challenges in software
security and cyber security. As an example, Worm programs,
such as the Microsoft SQL server Slammer [15], the Sun
Telnet worm [26] and the Stuxnet worm [3], exploit software
vulnerabilities in client or server programs and gain access
to hundreds of thousands of new systems (including mobile
phones [24]) within minutes. Of those notorious top security
risks published by OWASP [17], Injection and Cross-Site
Scripting (XSS) are usually triggered by crafted user input
strings that are propagated through web application to reach
their victims without censorship.

Taint analysis is an indispensable weapon in our combat
against security vulnerabilities in system software, network
software, and mobile applications. Existing approaches, in-
cluding static taint analysis [18], [19] and dynamic taint
analysis [16], [6], are implemented in tools such as TAJ [25],

*Corresponding email: chenyi zhang@jnu.edu.cn.
This work is partially supported by the National Natural Science Foundation
of China under Grant 62077028, Guangdong Natural Science Foundation
under Grant 2019KTSCX010, Guangdong Basic and Applied Basic Research
Foundation under Grant 2021A1515011873, Science and Technology Planning
Project of Guangzhou under Grant 202102080307, and the Project of Guangxi
Key Laboratory of Trusted Software (No. kx202007).
DOI reference number: 10.18293/SEKE2022-161

F4F [22] and Parfait [5] for tracking taint flows in web
applications written in Java and JavaScript. However, provided
that a complicated flow of taint may potentially pass through
a number of program contexts via method calls and returns,
the existing tools report only the taint sources with their
corresponding taint sinks, which do not fully reveal all useful
details that would guide a developer to identify or locate
security vulnerabilities with ease.

Datalog has been used in program analysis since late
1990s [9]. In Datalog, program information is initially ex-
tracted into a group of base facts, from which advanced
properties can be specified and subsequently computed in the
style of logic programming. Such a reasoning pattern allows
us to explicitly encode a trace of taint flow from the outputs
of the existing points-to analysis and taint analysis facilities
in the Doop framework [2]. Therefore, in this paper, we re-
encode and extend the taint analysis constraints of P/Taint in
order to support explicitly exporting a trace of information
flow, taking advantage of Doop and its underlying Soufflé
Datalog engine [11], and provide more useful information for
developers when it is required to trace a reported vulnerability.
In this paper, we have made the following contributions.

• We propose a method that explicitly exports a collection
of taint traces associated with a given taint source-sink
pair produced from a Java web application. The reported
traces are context-sensitive, i.e., they contain all inter-
procedural information of the complete taint flows.

• We have implemented our algorithm and conducted ex-
periment on Securibench Micro [13]. The experiment re-
sults have confirmed that we only added a small overhead
on top of the existing P/Taint [8] implementation in Doop.

The rest of the paper is organized as follows. In Section II,
we illustrate how the proposed method works in a code snip-
pet. Section III formally introduces the Taint Flow Analysis,
with the implementation and experiment works presented in
Section IV. The related works are discussed in Section V, and
Section VI concludes our work.

II. A MOTIVATING EXAMPLE

The following example is simplified and adapted from
Securibench Micro [13], as shown in Fig. 1. Note that in this
example, a variable that points to the HttpServeletRequest
object is set to receive data from client (user) input, and a
reference to the HttpServeletResponse is used to write back
to client. In particular, at line 3 of doGet() method, a user
provided value is read from client and stored in variable name,
which is then passed as a parameter in a call to method foo() at

184

1 p u b l i c c l a s s Example {
2 p r o t e c t e d vo i d doGet (H t t p S e r v l e t R e q u e s t req ,

H t t p S e r v l e t R e s p o n s e r e s p) t h r o ws IOExcep t ion {
3 S t r i n g name = r e q . g e t P a r a m e t e r (‘ ‘ name ’ ’) ;
4 foo (name , ‘ ‘ abc ’ ’ , req , r e s p) ;
5 }
6 . . .
7 v o id foo (S t r i n g s t r 1 , S t r i n g s t r 2 ,

H t t p S e r v l e t R e q u e s t req , H t t p S e r v l e t R e s p o n s e
r e s p) t h r ow s IOExcep t ion {

8 Data d = new Data () ;
9 d . v a l u e 1 = s t r 1 ;

10 d . v a l u e 2 = s t r 2 ;
11 P r i n t W r i t e r w r i t e r = r e s p . g e t W r i t e r () ;
12 w r i t e r . p r i n t l n (d . v a l u e 1) ; / * BAD * /
13 w r i t e r . p r i n t l n (d . v a l u e 2) ; / * OK * /
14 }
15 }
16 . . .
17 c l a s s Data {
18 S t r i n g v a l u e 1 ;
19 S t r i n g v a l u e 2 ;
20 }

Fig. 1. A motivating example

line 4. P/Taint will report that there is a potential Leak at line
12, where a sink method println() is invoked with a tainted
parameter d.value1. Since the tainted value is directly sent
back to user, this could potentially form an XSS vulnerability,
as the request information may consist of executable malicious
code contained in a crafted link that a victim is fooled to click.

In order to trace a problem reported by a taint analysis
and rule out false positives, a developer usually needs to
manually inspect the source code and track the associated
taint flows throughout the program. Such a procedure can
be tedious and error-prone, as modern day web applications
often consist of numerous software packages with included
code written by third-party developers. Moreover, for object-
oriented programming languages such as Java, a taint flow
typically consists of a serial of inter-procedural method calls
as well as field access of a value via alias references under
different contexts, which further complicates the job of a code
inspector. Taking a closer look at the reported Leak at line
12 in Fig. 1, the value loaded from d.value1 is previously
stored and passed as a parameter at line 4 in a call to method
foo, such that we have a tainted value passing through inter-
procedural value-flow, stored in heap before being loaded
back and forwarded to a sink method. For larger programs,
a taint trace could be more complicated. In this case, Taint
Trace Analysis (TTA) is able to automatically produce a
corresponding taint trace (shown in Fig. 2) and visualize the
flow of values, for a better comprehension and confirmation
of reported security vulnerabilities.

The produced trace in Fig. 2 has six components, each
written in the form of ⟨class : method(signature)/reference⟩.
The first component is HttpServletRequest.getParameter(),
a pre-defined taint source, with its value passed to the second
component, a local variable name (line 3 in the code) of
type string. The second component then passes the flow to

Fig. 2. A taint trace for the vulnerability reported for source code in Fig. 1.

the third component which is the first parameter of method
foo (line 4 in the code), represented by @parameter0 in the
trace. Eventually the flow goes to the last component println()
which is a pre-defined taint sink (line 12 in the code).

III. CONTEXT SENSITIVE TAINT TRACE ANALYSIS

We describe our algorithm on a simplified version of Java,
with its syntax shown in Fig. 3.1 A unique entry method such
as main() is always assumed to appear in one of the classes
in a well formed program. For each method, we assume that
all local variables are defined at the beginning of the method,
and there is always a dedicated local variable to be returned
at the end. For an object allocation statement x = newo A,
we assume that o uniquely identifies the allocation site. Given
a program from the language, we define VAR for the set of
variables, OBJ for the set of (abstract heap) objects, C for the
set of classes, FLD for the set of fields, METHOD for the set
of method, SIG for the set of method signatures, and INST the
set of instructions for uniquely identifying call-sites.

We build our work on top of P/Taint [8] which is part of
the program analysis framework Doop [2]. In order to generate
facts for Datalog based reasoning, Doop makes use of the front
end of Soot, a compiler framework for Java, for extraction of
the program structural relations and basic flow relations, as
shown in Table I. The extracted patterns are assumed to be
self-explained on the right hand side of each relation of the
table. For example, ALLOC(x, o) means there exists a state-
ment x = newo A, which allocates object o to local variable
x. Note that at the same time, HEAPTYPE(o,A) is also added
to the relation indicating that the class type of object o is A.
Similarly, the existence of a relation ASSN(m,x, y) indicates
that there is a statement x = y in method m.

A. Taint Analysis with Points-to Analysis

First, we briefly review the P/Taint [8] project on which our
work is based. At its foundation, Andersen-styled subset-based

1The actual implementation that handles the full Java language is more
involved, and most of the implementation details are elided in this paper.

185

TABLE I
THE BASIC FLOW RELATIONS GENERATED FROM A PROGRAM.

ALLOC (v : VAR, o : OBJ) // v = newo A
ASSN (m : METHOD, to : VAR, from : VAR) // to = from in method m
LOAD (to : VAR, base : VAR, f : FLD) // to = base.f
STORE (base : VAR, f : FLD, from : VAR) // base.f = from
VCALL (base : VAR, m : SIG, inst : INST) // ... = base.m(...) in instruction inst
FORMALARG (meth : METHOD, i : N, v : VAR) // v is the i-th formal arg of meth
ACTUALARG (inst : INST, i : N, v : VAR) // v is the i-th actual arg at callsite inst
FORMALRET (meth : METHOD, v : VAR) // return v is a statement in meth
ACTUALRET (inst : INST, v : VAR) // v = base.m(...) in instruction inst
THISVAR (meth : METHOD, this : VAR) // “this” as a special variable in meth
HEAPTYPE (o : OBJ, A : C) // object o is of class A
LOOKUP (A : C, m : SIG, meth : METHOD) // through signature m, one can find the

// corresponding method meth in class A

C ::= class A() [extends B] {F ; M}
F ::= A f
D ::= A z
M ::= m(x) {D; s; return y}
s ::= x=newo A | x=e | x.f=y | s; s
e ::= null | x | x.f | x.m(y)
prog ::= C

Fig. 3. Abstract syntax for the core language.

TABLE II
THE BASIC POINTS-TO RELATIONS

VARPT (v : VAR, o : OBJ) // v points to object o
FLDPT (o1 : OBJ, f : FLD, o2 : OBJ) // o1.f points to o2

VARPT (v, o) ALLOC (v, o).
VARPT (v1, o) ASSN (, v1, v2), VARPT (v2, o).
VARPT (v, o1) LOAD (v, base, f), VARPT (base, o2),

FLDPT (o2, f , o1).
FLDPT (o1, f , o2) STORE (v1, f , v2), VARPT (v1, o1),

VARPT (v2, o2).

points-to analysis [1] is applied for generating the points-
to relations. For object-oriented languages such as Java, two
relations are generated, VARPT, which assigns a set of objects
to a variable (or reference), and FLDPT, which represents
the relationship between (abstract) heap objects via fields. As
shown in Table II, each relation given in the left hand side
column is defined by conditions specified in the same row of
the right hand side column. Taking VARPT, initially, v points
to o if object o is allocated to v. The second rule extends
the relation by adding VARPT(v1, o) if there is an assignment
v1 = v2 and v2 points to o (i.e., VARPT(v2, o) is already in the
relation). Likewise, the last rule adds FLDPT(o1, f, o2) if o1
is pointed by variable v1, o2 is pointed by v2, and v1.f = v2
is a (store) statement in the program.

Taint analysis is integrated with points-to analysis in P/-
Taint [8], based on the fact that taint flow can be treated in the
way similar to value flow through which an object is passed to
a variable. We walk through the following reasoning patterns
for taint analysis as shown in Table III. The first rule defines
that if method m is a taint source and instruction i calls m

TABLE III
A FEW SAMPLE TAINT FLOW RULES

TFLOW (x : VAR, v : TAINTVALUE) // taint value v flows to x
LEAK (v : TAINTVALUE, inst : INST) // taint value v flows to

// sink location inst

TFLOW (to, value) SOURCE (m, type), CALLGRAPH (i, m),
ACTUALRET (i, to), TAINT(i, type) = value.

TFLOW (v1, value) ASSN (, v1, v2), TFLOW (v2, value).
LEAK (value, i) CALLGRAPH (i, m), SINK (m, n),

ACTUALARG (i, n, v), TFLOW (v, value).

with a value returned to variable to, then there is a taint flow to
variable to, where TAINT is a constructor that introduces taint
values in a new domain TAINTVALUE.2 This definition plays
the same role as the first rule (with ALLOC(v, o)) in Table II,
since both rules are the base cases for their corresponding
recursive relations, VARPT and TFLOW, respectively. The
second rule in Table III resembles the second rule in Table II,
by extending relations with assignments. Finally, the last rule
in Table III defines the LEAK relation reporting that a taint
value has reached a sink method, where SINK(m,n) states
that the n-th parameter of method m is a pre-defined sink
location, and i is a call-site instruction that calls m with its
n-th parameter v reachable from a taint source.

Doop also supports a range of context-sensitivity options
to strengthen its points-to and taint flow computation, such
as call-site-sensitivity [20], object-sensitivity [14], [12], and
type-sensitivity [21]. The enhanced VARPT relation has four
components.

VARPT(c1 : CTX, v : VAR, c2 : HCTX, o : OBJ)

where c1 is the context for variable v and c2 is the context
for object o. The variable context domain CTX and the
heap context domain HCTX may be defined as distinct sets.
Similarly, we have the following definition for the field points-
to relation.

FLDPT (c1 : HCTX, o1 : OBJ, f : FLD, c2 : HCTX, o2 : OBJ)

2Here the CALLGRAPH(i,m) relation is taken as the context insensitive
version of the CALLGRAPH relation in Table IV. Intuitively, we retrieve the
class type of the object pointed-to by the receiver variable at the call-site i,
from which we match the signature of method m.

186

TABLE IV
SAMPLE RULES FOR k-OBJECT-SENSITIVE CONTEXT EXTENSION

REACHABLE (c : CTX, m : METHOD)
// method m is reachable with context c
CALLGRAPH (c1 : CTX, i : INST, c2, m : METHOD)
// method m is called at call-site i

REACHABLE ([], main).
REACHABLE (c1, m0), CONTAIN(m0, i),

REACHABLE (c2, m), VCALL (x, m′, i), NEWCTX (c1, o) = c2,
CALLGRAPH (c1, i, c2, m) VARPT (c1, x, c3, o),

HEAPTYPE (o, A), LOOKUP (A, m′, m).

In Doop, new contexts are always introduced at a call-site,
where variables and objects defined within the callee method
acquire a new context by combining the caller context and
the information associated with the caller instruction. As an
example, for k-call-site sensitivity, a new context is created by
appending the current call-site to the caller context (which is
a list of call-sites), and deleting the oldest component (usually
the first call-site in the current list) if the newly-formed context
exceeds the predefined limit k. New contexts in a k-object-
sensitive analysis are constructed in a similar way, with details
given as follows.

We present an example of constructing new contexts at
a call-site for a k-object-sensitivity analysis in Table IV,
where two relations REACHABLE and CALLGRAPH are re-
cursively defined. REACHABLE(c,m) denotes that method m
is reachable with context c, and main, the entry method, is
always reachable with the (pre-defined) empty context “[]”.
CALLGRAPH is used to extend a caller context to a callee
context at a call-site. As the rule explains, given a call
instruction i of the form “. . . = x.m′()”, if the context of
the enclosing method (say m0) of call-site i is c1, and the
matched method for the call-site is m (via LOOKUP), then m
is reachable in context c2. At the same time, we establish a
CALLGRAPH relation from i in context c1 to m in context
c2. Note that the semantics of context constructor NEWCTX
depends on which context-sensitivity is applied. Since we
assume k-object-sensitivity (i.e., a context is a list of heap
objects), if the length of c1 is less than k, then c2 = c1 ◦ o,
where “◦” appends o to c1; otherwise, c2 is the list of removing
the first object from c1 ◦ o.

B. Generating the One-Step Flow Relation

P/Taint only reports source-sink pairs in the form of
LEAK(c1, value, c2, invo). With this much information, it is
often difficult for developers to find out how the taint source
“value” in context c1 is propagated to the sink location “invo”
in context c2, as the actual value flow may have passed through
a number of inter-procedural calls and returns, as well as
loading a value previously stored in the heap. In this section,
we define new relations that help to make the flow of taint
explicit. We extend the P/Taint system with the logic shown
in Table V. To simplify the presentation, we assume k-object-
sensitivity is applied, and the NEWCTX(o, c) constructor in
Table V produces a new context by appending object o to

TABLE V
RELATIONS FOR ONE-STEP VALUE FLOW

// variable from in context c2 flows to variable to in context c1
VFLOW (c1: CTX, to : VAR, c2: CTX, from : VAR)
// variable v1 in context c1 and v2 in context c2 are in the “may alias” relation
ALIAS (c1: CTX, v1 : VAR, c2: CTX, v2 : VAR)

ALIAS (c1, v1, c2, v2) VARPT (c1, v1, c3, o),
VARPT (c2, v2, c3, o).

VFLOW (c, to, c, from) REACHABLE (c, m), ASSN (m, to, from).
VFLOW (c1, x1, c2, x2) REACHABLE (c1, m1), LOAD (m1, x1, v1, f),

REACHABLE (c2, m2), STORE (m2, v2, f , x2),
ALIAS (c1, v1, c2, v2).

VFLOW (c1, x1, c2, x2) CALLGRAPH (c2, i, c1, m),
FORMALARG (m, n, x1), ACTUALARG (i, n, x2).

VFLOW (c1, x1, c2, x2) CALLGRAPH (c1, i, c2, m),
FORMALRET (m, x2), ACTUALRET (i, x1).

VFLOW (c1, x1, c2, x2) VCALL (x2, , i), CALLGRAPH (c2, i, c1, m),
THISVAR (m, x1).

context c and then removing the first component of c if the
length of c is already k (so that after appending o, the new
context does not have length exceeding k).

We define two new relations in this extension.
ALIAS(c1, v1, c2, v2) can be straightforwardly derived
from the available context-sensitive points-to analysis, in the
sense that if two variables (probably in different contexts)
may-points-to the same object, then they are in ALIAS
relation. The construction of VFLOW relation is a bit more
involved, as explained in the following three cases.

1) Variable from flows to to in context c, if the enclosing
method m of “to = from” is reachable in context c;

2) Given (c1, v1) and (c2, v2) in alias relation with both
enclosing methods m1 and m2 reachable in context c1
and c2, respectively, and if there is a LOAD of v1 via
field f to variable x1 and a STORE into v2 via f from
x2, then this “load/store” can be paired to serve as a
bridge which directs a value flow from x2 to x1;

3) The last three rules describe the inter-procedural value
flow passing through a parameter, the return value, and
this reference, respectively. Taking the last rule as an ex-
ample, given a call-site from which an inter-procedural
call (represented by the CALLGRAPH relation) can be
established at call-site i from context c2 to c1 where the
callee method is identified as m, we construct a one-step
flow from the receiver x2 (in context c2) to this of m
in context c1.

C. Generating Traces for Taint Analysis

Formally, our analysis exports finite traces of the form
[w0, w1, w2 . . . wk], where wi = (ci, xi) with value xi in
context ci for all 1 ≤ i ≤ k − 1. A valid trace is required
to satisfy the following three conditions.

1) Variable x1 receives a return value from the pre-defined
taint source v0 in context c1 ∈ CTX.

2) Variable xi in context ci performs a one-step flow to
variable xi+1 in context ci+1 for all 1 ≤ i < k − 1.

3) Variable xk−1 passes value to a taint sink wk.

187

TABLE VI
SAMPLE RULES FOR TAINT TRACE GENERATION

.type list = [next:list, x:ctype]
TTRACE (trace : list) // a taint trace is a list of values
INTTRACE (trace : list) // an intermediate trace

INTTRACE ([[nil, w1], w2]) CALLGRAPH (c, i, , m),
ACTUALRET(i, x), w2 = (c, x),
w1 = (c, i), SOURCE (m, type).

INTTRACE ([t, w]) t = [t1, w1], w1 = (c1, y), INTTRACE (t),
w = (c, x), VFLOW(c, x, c1, y).

TTRACE ([t, w]) t = [t1, w1], w1 = (c, x), INTTRACE (t),
SINK (m, n), CALLGRAPH (c, i, m),

ACTUALARG (i, n, x), w = (c, i).

The construction of each trace relies on the recursively typed
records supported by the Datalog engine Soufflé [11]. For
example, in order to encode a list of values, one needs to define
a type list by [list, ctype] where ctype is the (component) type
for the values in the list, and the recursion is terminated by a
special predefined constant list nil. We present the definition
of a taint trace (TTRACE) in Table VI. In this formulation, an
intermediate trace (INTTRACE) encodes a list of component
starting with a pre-defined source location (but it has not
reached a sink location). The algorithm then tries to extend
the list by looking for elements that are reachable from the
last element in the existing list, following the VFLOW relation.
Once a INTTRACE reaches a pre-defined taint sink, the search
terminates with a complete TTRACE ready for output.

IV. IMPLEMENTATION AND EXPERIMENT

We have implemented our algorithm in Doop which extracts
Datalog facts from the Shimple code which is an SSA-based
Intermediate Representation (IR) in Soot. The experiment is
conducted on a laptop equipped with an Intel Core® i5-
8250U CPU@1.60GHz*8 and 16GB RAM, running Union-
Tech OS GNU/Linux 5.4.50-amd64-desktop. The software
environment includes Doop (version 4.24.2), soufflé (version
2.0.2), graphviz (version 2.49.3), python (version 3.8.0) and
OpenJDK (version 1.8.0). Our implementation is publicly
available at https://github.com/lyj18688610256/LDoop.3

To measure the efficiency of our implementation, we carry
out an experiment on Securibench Micro, an open source
benchmark suite with 140 pairs of known source-to-sink flows
located in a range of small web applications [13], from which
we evaluate the precision, recall and efficiency of TTA. Differ-
ent from the other methods that merely output ⟨source, sink⟩
pairs, we produce a set of graphically represented traces (with
a context at each node of the trace) similar to what is shown
in Fig. 2. We then start to manually check the traces in order
to verify whether there are false positives. Fortunately, this
procedure is not very time consuming, thanks to all taint flows
being made explicit. We observe that sometimes our analysis
produces a trace that contains a circle, i.e., vi = vj with
0 < i < j < k where k is the length of the trace. One strategy

3A substantial amount of effort has been made to ensure that TTA aligns
with the expected P/Taint analysis results. Due to recent updates in Doop, it
is currently infeasible to directly reproduce the results as given in [8].

TABLE VII
ACCURACY OF TTA ON SECURIBENCH MICRO

(2-OBJECT-SENSITIVE+HEAP)

Suite TP FP FN Precision Recall F-score
Total 131 20 9 87% 94% 90%
aliasing 11 0 1 100% 92% 96%
arrays 10 3 1 77% 91% 83%
basic 61 0 0 100% 100% 100%
collections 16 3 0 84% 100% 91%
datastructures 6 0 0 100% 100% 100%
factories 3 0 0 100% 100% 100%
inter 11 6 5 65% 69% 67%
pred 3 5 0 38% 100% 55%
reflection 4 0 0 100% 100% 100%
sanitizers 2 0 2 100% 50% 67%
session 3 1 0 75% 100% 86%
strong updates 1 2 0 33% 100% 50%

Fig. 4. Run-time (in seconds) with and without trace generation for different
context-sensitivity options. For example, 3obj + 3H means that (lists of) at
most 3 objects are used to represent method/variable contexts in CTX and
also at most 3 objects are used to represent heap contexts in HCTX.

that we currently use is to set up a search limit for traces,
which rules out most of the redundant trace being reported.
However, it should be noticed that some taint flows will be
beyond our reach and becomes false negatives if the depth is
too short. Currently, we are using an empirical limit for the
Securibench Micro suite for an optimal result.

Accuracy of TTA: The accuracy results of TTA with the
sensitive 2-object-1-heap analysis (i.e., s.2obj + H) on the
benchmark suite are shown in Table VII, where TP, FP and
FN represent true positive, false positive and false negative,
respectively. From the table, one may find that for our imple-
mentation, the worst performed portion of the benchmark suite
is the strong updates folder (33% precision), which is due to
that value flows for strong update usually require a must PTA,
while the current TTA is based on may PTA. Nevertheless,
over all, we still achieves 87% precision and 94% recall, with
a 90% F1 score. This effectively shows that TTP produces an
acceptable result for the current benchmark suite.

Performance of TTA: We also check the run-time cost of
our TTA implementation compared to the original P/Taint
algorithm [8], with results shown in Fig. 4. When running the
benchmark suite, for each context-sensitivity option, we ana-

188

lyze all programs in Securibench Micro simultaneously. From
the table, one may find that our trace generation algorithm only
adds a small amount of run-time overhead (less than 38%)
to the original algorithm. Although the run-time cost of our
implementation increases with larger contexts, for 2obj + H
and 3obj + 3H , the increased time cost becomes negligible.
One possible explanation is that although 3obj +3H analysis
needs more time to compute variable contexts, it potentially
produces less false positives. Therefore, the amount of time
required for computing the traces becomes less.

V. RELATED WORK

Perhaps the earliest taint analysis was implemented as the
“taint mode” in the Perl language, which tracks taint flows
via data-dependencies at runtime, i.e., taintness flows from the
right hand side of each assignment to the left hand side, and
reports an error if the arguments of a system call is tainted [4].
In general, a dynamic taint analysis tracks taint information at
program execution, implemented with various methodologies
such as binary instrumentation [16], [6], hardware-based taint
tracking [23], and compiler-based taint tracking [27]. Static
taint analysis heavily relies on underlying tools and repre-
sentations of a program, including control flow graph [19],
program dependence graph [10], program slicing [18], and
type system [7]. In general, dynamic taint analysis provides
security guarantee at runtime, while static analysis achieve
better coverage at the cost of false positives. Our work is in
the category of static taint analysis, with powerful context-
sensitivity options from the underlying Doop framework and
partial flow-sensitivity from the Shimple IR of Soot. Therefore,
we are able to report potential vulnerabilities with relatively
low false positive rate (c.f. Section IV). Moreover, our focus
is on producing explicit taint traces for software developers.

Our work is an extension on P/Taint [8], a unified points-
to analysis and taint analysis in the Doop framework [2]
equipped with a range of context-sensitivity options. Given
that P/Taint only reports source-sink pairs which are hard to
comprehend by human, we explore ways of trace generation
from the explicit flow relation in Type Flow Analysis [28],
which express a flow relation by joining intraprocedural flow,
inter-procedural flow, and pairing of load and store. Such a
one-step relation can be connected with a recursive encoding
technique supported in the Datalog engine Soufflé [11].

VI. CONCLUSION AND FUTURE WORK

We have introduced an extension for context-sensitive taint
analysis for Java (P/Taint), called Taint Trace Analysis (TTA),
which produces a set of taint traces with context information
included. Little run-time overhead on top of P/Taint has been
shown for our implementation. In contrast to most existing
taint analysis works, the produced taint traces from TTA may
provide more useful information for the detection and tracking
of security vulnerabilities in Java web applications. In the
future, we will extend the existing work to analyze Android
apps, and we also plan to further optimize our algorithm to
achieve higher precision and a quicker visualization procedure.

REFERENCES

[1] L. O. Andersen. Program analysis and specialization for the C
programming language. PhD thesis, DIKU, University of Copenhagen,
May 1994.

[2] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of
sophisticated points-to analyses. In OOPSLA’09, page 243–262, 2009.
https://bitbucket.org/yanniss/doop/.

[3] T. Chen and S. Abu-Nimeh. Lessons from stuxnet. IEEE Computer,
44(4):91–93, 2011.

[4] T. Christiansen. Perl security. https://perldoc.perl.org/. Taint module
available November 1997.

[5] C. Cifuentes, N. Keynes, L., N. Hawes, and M. Valdiviezo. Transitioning
parfait into a development tool. IEEE Security and Privacy, 10(3):16–
23, 2012.

[6] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis
framework. In Proceedings of the 2007 International Symposium on
Software Testing, pages 196—-206, 2007.

[7] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers.
In PLDI’02, pages 1—-12, 2002.

[8] N. Grech and Y. Smaragdakis. P/Taint: unified points-to and taint
analysis. In OOPSLA’17, pages 102:1–102:26, 2017.

[9] B. Greenman. Datalog for static analysis. History of programming
language seminar (2017) https://github.com/nuprl/hopl-s2017.

[10] C. Hammer, J. Krinke, and G. Snelting. Information flow control for java
based on path conditions in dependence graphs. In IEEE International
Symposium on Secure Software Engineering, 2006.

[11] H. Jordan, B. Scholz, and P. Subotić. Soufflé: On synthesis of program
analyzers. In CAV’16, pages 422–430, 2016.

[12] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity for points-to
analysis. In PLDI’13, pages 423–434, 2013.

[13] B. Livshits. Improving Software Security with Precise Static and Runtime
Analysis. PhD thesis, Stanford University, 2006.

[14] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object
sensitivity for points-to analysis for Java. ACM Transations on Software
Engineering and Methodology, 14(1):1–41, 2005.

[15] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the slammer worm. IEEE Security and Privacy,
1(4):33–39, 2003.

[16] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In NDSS’05, 2005.

[17] OWASP. Top 10 web application security risks. https://owasp.org/
www-project-top-ten/. Accessed: 2021-11-23.

[18] M. Pistoia, L. Koved R. J. Flynn, and V. C. Sreedhar. Interprocedural
analysis for privileged code placement and tainted variable detection. In
ECOOP’05, pages 362—-386, 2005.

[19] B. Scholz, C. Zhang, and C. Cifuentes. User-input dependence analysis
via graph reachability. In SCAM’08, pages 25—-34, 2008.

[20] O. G. Shivers. Control-flow Analysis of Higher-order Languages or
Taming Lambda. PhD thesis, Carnegie Mellon University, 1991. UMI
Order No. GAX91-26964.

[21] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts
well: understanding object-sensitivity. In POPL’11, pages 17–30, 2011.

[22] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg.
F4F: taint analysis of framework-based web applications. In OOPSLA
2011, pages 1053–1068. ACM, 2011.

[23] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In ASPLOS’04, page
85–96, 2004.

[24] Symantec. Top 10 web application security risks. Internet Security
Threat Report, Vol. 21., April 2016.

[25] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ:
effective taint analysis of web applications. In PLDI’09, pages 87–97.
ACM, 2009.

[26] US-CERT. Vulnerability note vu#881872, sun solaris telnet authen-
tication bypass vulnerability. http://www.kb.cert.org/vuls/id/881872.
Accessed: 2021-11-23.

[27] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks. In Proceedings
of the 15th USENIX Security Symposium, page 121–136, 2006.

[28] X. Zhuo and C. Zhang. TFA: an efficient and precise virtual method
call resolution for Java. Formal Aspects of Computing, 32:395––416,
2020.

189

Impact of Combining Syntactic and Semantic
Similarities on Patch Prioritization while using the

Insertion Mutation Operators
{Mohammad Raihan Ullah, Nazia Sultana Chowdhury, Fazle Mohammed Tawsif}

Institute of Information and Communication Technology
Shahjalal University of Science and Technology

Sylhet, Bangladesh

Abstract—Patch prioritization ranks candidate patches based
on their likelihood of being correct. The fixing ingredients that
are more likely to be the fix for a bug, share a high contextual
similarity. A recent study shows that combining both syntactic
and semantic similarity for capturing the contextual similarity,
can do better in prioritizing patches. In this study, we evaluate
the impact of combining the syntactic and semantic features on
patch prioritization using the Insertion mutation operators. This
study inspects the result of different combinations of syntactic
and semantic features on patch prioritization. As a pilot study,
the approach uses genealogical similarity to measure the semantic
similarity and normalized longest common subsequence, normal-
ized edit distance, cosine similarity, and Jaccard similarity index
to capture the syntactic similarity. It also considers Anti-Pattern
to filter out the incorrect plausible patches. The combination
of both syntactic and semantic similarity can reduce the search
space to a great extent. Also, the approach generates fixes for
the bugs before the incorrect plausible one. We evaluate the
techniques on the IntroClassJava benchmark using Insertion mu-
tation operators and successfully generate fixes for 6 bugs before
the incorrect plausible one. So, considering the previous study,
the approach of combining syntactic and semantic similarity can
able to solve a total number of 25 bugs from the benchmark,
and to the best of our knowledge, it is the highest number of bug
solved than any other approach. The correctness of the generated
fixes are further checked using the publicly available results of
CapGen and thus for the generated fixes, the approach achieves
a precision of 100%.

Index Terms—patch prioritization, semantic similarity, syntac-
tic similarity, automated program repair, mutation operation,
contextual similarity

I. INTRODUCTION

Automated Program Repair is the automatic repair of soft-
ware bugs without the intervention of a human programmer.
Automatic debugging and repairing of the software defects can
make a programmer’s life a lot easier.

Manual Debugging is a very difficult, time-consuming, and
painful task. Study shows that the global cost of debugging is
312 billion dollars annually and software developers spend 50
percent of their time fixing bugs [1].

Automated Program Repair (APR) reduces the bug-fixing
effort by automatically generating patches that satisfy a spec-
ification e.g. Test cases [2]. A patch is a modification applied
to a program for fixing a bug. A typical APR approach takes

DOI reference number: 10.18293/SEKE2022-047

a faulty program and a set of test cases as input (where the
program fails at least one test case) and produces a patch
to repair the fault (the patched program at least passes all
the tests). This type of technique is called the generate-and-
validate technique. Patches that are applied to a program could
exist in the faulty program itself as well as in a non-local
program. The study founds that up to 69% of the repaired
code fragments (in the form of code lines) can be obtained
from both the local program and non-local programs [3], [4].

Throughout the years, several Automated Program Repair
(APR) techniques have been introduced. Such as GenProg,
HDRepair, CapGen, ssFix, SimFix, Elixir, etc [7], [8], [9],
[10], [11], [12], [13], [14]. Many of these techniques e.g.
SimFix, ssFix, CapGen, Elixir, etc [9], [10], [12], [15], [16]
are known as search-based APR. So, APR is often described
as a search problem in a patch candidate space. In a candidate
space, there are the fixing code fragments or patches that can
be a possible fix for that particular bug. Testing the fixing
codes earlier that are more likely to be the fix for the bug can
reduce bug fixing time. Sorting candidate patches based on
their probability of being the correct fix for the bug, is called
patch prioritization.

The faulty program and the code fragment where the fix
resides share a high contextual similarity. To capture these
similarity, some method [18] [19] [20] uses Syntactic features
and some method [22] uses Semantic features. A recent study
[5] shows that combining Syntactic and Semantic features in
patch prioritization can reduce bug fixing time and achieve
higher precision. So in this study, we use the combination
of Syntactic and Semantic features in Patch Prioritization
and observe the impacts while working with Insertion as the
mutation operation. We also evaluate some different ways of
combining those feature scores to calculate the final score and
analyze their impact on Patch Prioritization. We evaluate the
techniques on IntroClassjava benchmark [23] which contains
297 real-life bugs. We were successfully able to solve six bugs
with a precision of 100%.

II. RELATED WORK

Testing the candidate patches early which, are more likely to
be the fix can help to reduce the bug fixing time and give some

190

treatment to the search space explosion problem of search-
based Automated Program Repair.

The most representative of the search-based APR category
is GenProg [17], which searches for correct patches via genetic
programming algorithm. GenProg constrains the genetic oper-
ations of mutation and crossover to operate only on the region
of the program that is relevant to the error. GenProg repairs
bugs with the help of the following components: Mutation
Space, Crossover, Evaluation Function. GenProg presents a
program as an Abstract Syntax Tree (AST) and modifies the
faulty node using the mutation operations such as insertion,
deletion, and Replacement operators. AST of the program
is modified using mutation from the mutation space. As a
result of the modification, variants of the faulty program are
generated then they are passed to the evaluation function to
see if those variants pass the test cases.

Elixir [18] generates patches based on generate-and-validate
techniques. For a given bug, Elixir takes as input a buggy
program, a test suite, and optionally a bug report, then pro-
duces a patch that passes all the test cases. Elixir works in
the following ways: Bug Localization, Generating Candidate
Patches, Ranking and Selection of Candidate Patches, Vali-
dating Selected Candidate Patches. Elixir uses four syntactical
features to rank the patches. They are Distance score between
faulty and fixing ingredients, Contextual Similarity, Frequency
in the context, Bug Report Similarity. The approach introduces
8 templates and validates only the top 50 patches generated
from each template.

SimFix [19] defines a method to obtain a search space
from existing patches based on an abstract space definition on
AST types. The approach in SimFix consists of - an offline
mining stage, an online repairing stage. SimFix uses the Ochiai
algorithm to localize fault which produces an ordered list of
suspicious statements. It extracts a set of fixing ingredients
using syntactic features, such as Structure Similarity, Variable
Name Similarity, Method Name Similarity. Then it matches
variables in the faulty and fixes ingredients and builds a
variable mapping table for code adaptation. It calculates the
difference between faulty and fixing ingredients and extracts
concrete modification. Finally, it generates a list of patches and
validates them using the test suite. These three features obtain
low precisions 63.41%, 33.33%, and 60.7%, respectively.

ssFix [20] uses the syntactic features to calculate the sim-
ilarity between faulty code and fixing ingredients. It uses the
TF-IDF model to calculate the similarity score. They evaluated
their technique on 357 bugs in the Defect4j [21] bug dataset
and successfully solved 20 bugs from that dataset.

CapGen [22] uses semantic features to prioritize patches.
It works on the fine-grained level to extract fixing ingre-
dients. They selected 30 augmented mutation operators to
generate operation space. For example: insert Simple Name
under Method Invocation or delete Expression Statement un-
der Method Declaration etc. CapGen uses three models to
calculate the similarity score between faulty nodes and fixing
ingredients. They are Genealogy Context, Accessed Variable,
Semantic Dependency. CapGen combines the three model

scores to calculate the final score. Based on that score, it
prioritizes the patches and tests the patches which are more
likely to be the fix for the bug. This approach achieves a
precision of 84%.

A study [17] showed that combining syntactic and semantic
features for patch prioritization can work better than using
syntactic and semantic features alone. In the study, they took
expression level bug and used replacement mutation operation
for patch generation. To calculate the similarity between faulty
code and fixing ingredients, it used Genealogical & variable
similarity as semantic metrics and Normalized Longest Com-
mon Subsequence (Normalized LCS) as syntactic metrics. The
approach was evaluated using 22 bugs from the IntroClassJava
benchmark [23], fixed by CapGen applying replacement mu-
tation [22]. It repaired all 22 bugs and achieved a precision of
100%.

III. METHODOLOGY

A recent study [5] shows that combining both syntactic and
semantic similarity can improve patch prioritization. It works
at Expression level and uses Replacement mutation operators
to generate the patches. In this research, we evaluate the
technique further to observe its impact on patch prioritization
while using the Insertion as the mutation operation. The
approach works at the Expression and Expression-Statement
level as the Insertion mutation operation works better at these
level [22]. It manipulates the source codes representing them
in Abstract Syntax Tree (AST). Figure 1 shows some sample
bug fixes using Insertion Mutation Operation. In figure 1a,
the bug is fixed by inserting a Simple Name under the faulty
Method Invocation. In figure 1c, the bug is fixed inserting a
Method Invocation under the If-Statement.

The approach in this paper takes a source program and
a test suite (positive and negative test cases) as input and
generates some repaired variants. For generating patches,
it uses Insertion mutation operation using Expression and
Expression-Statement level code for fixing elements. It uses
Cosine Similarity, Jaccard Similarity Index, Normalized Edit
Distance, Normalized LCS as a syntactic feature, and Ge-
nealogical similarity and Anti-Pattern as a semantic feature.
The repaired variants are thus tested with the test suite and
the correct patches for the bug are validated. The approach
works in the four following steps. The steps are quite similar
to the approach of the previous study [5].

A. Fault Localization

This step identifies the faulty code using Ochiai [26] algo-
rithm, a spectrum-based fault localization technique. It takes
help from the GZoltar [25] tool for this purpose. GZoltar takes
a source code and a test suite (including positive and negative
test cases) and generates a list of the suspicious statements. For
Insertion mutation operation, the approach identifies the faulty
AST node of Expression and Expression Statement. It outputs
a line number-wise suspicious value (probability of being a
faulty node) of a program. If a node spans across multiple

191

(a) A fixed bug (Math 70 from
Defects4J) using Insertion muta-
tion operation

(b) AST difference of the fixed bug 1a

(c) A Fixed Bug (Lang 43 in Defects4J) Us-
ing the Insertion Mutation Operation and Fix
Extracted From the Same File

Fig. 1: Sample Bug Fixes using Insertion Mutation Operation

lines, it is assigned the average of the suspicious values of
those lines.

B. Patch Generation

In this step, the approach generates patches inserting fixing
ingredients under the faulty node. For faulty nodes, it takes
Expression and Expression-Statement level bug. Ambiguity
arises while inserting a node under a block statement. This
ambiguity can be addressed as fix location selection problem.
To avoid ambiguity for fix location, it further splits the
insertion operation into two more categories:

• Insert Before: Insert a subtree before node N.
• Insert After : Insert a subtree after node N.
The operation space induced by Insertion mutation operator

is huge. To reduce this space, we use the top 10 augmented
insertion mutation operations from CapGen [22].

C. Patch Prioritization

Several patches are produced at the patch generation level.
To minimize the bug fixing time and cost, patches are pri-
oritized. It also helps to maximize the precision of patches.
For prioritizing patches, the genealogical similarity between is
used to measure semantic similarity, and normalized Longest
Common Subsequence (LCS) and Anti - Pattern [6] and
Cosine Similarity is used to measure syntactic similarity.

• Genealogical Similarity: The genealogical structure of
an AST node shows a node is frequently used under and
together with which types of code elements by checking
its ancestor & sibling node [22]. Traversal is done from
the node to its ancestor until a method declaration is

found. And nodes of category Statement and Expression
within the same Block are extracted for sibling nodes
[22]. The Genealogical Similarity is measured as

gen s(fn, fe) =

∑
tϵk min (fn(t), fe(t))∑

tϵk fn(t)
(1)

Here, fn and fe are frequencies of different node types
for faulty node and fixing ingredient respectively. K
indicates a set of all distinct AST node types captured
by fn

• Normalized LCS: LCS measures the Longest Common
Subsequences between two sets of sequence. To measure
the LCS, we take string representation of faulty node (fn)
and fixing ingredient(fe). Then the value of the LCS is
normalized to get the value in the interval [0,1].

n lcs((fn, fe)) =
LCS(fn, fe)

max (fn, fe)
(2)

• Cosine Similarity: The cosine similarity of two ASTs
representative vectors expresses the similarity between
them. The cosine similarity measure uses two finite-
dimensional vectors of the same dimension in which
each vector represents a document. Given two string
fn (string representation of faulty node) and fe (string
representation of fixing ingredient), we construct the
collection between the two elements. The collection of
terms denotes C = {c1, c2,..., cn} with ci ∈ fn | ci ∈ fe
and each ci is distinct. The strings are then represented
in an n-dimensional vectors V⃗ fn and V⃗ fe .

cos s(fn, fe) =
V⃗ fn .V⃗ fe

(|V⃗ fn | ∗ |V⃗ fe |)
(3)

• Normalized Edit Distance: Edit distance refers to the
minimum number of edit operations needed to convert
from one string to another string. For measuring the score,
we use an alternative version of Levenshtein distance
where each Insertion or Deletion cost is 1 and Substi-
tution cost is 2. The score is then normalized to get
the score between the interval [0,1]. Finally, the score
is subtracted from 1 as the approach in this paper only
considers the similarities between the faulty nodes and
fixing ingredients.

n ed(fn, fe) = 1− Edit Distance(fn, fe)

max (fn, fe)
(4)

Here, fn and fe is the string representation of faulty node
and fixing ingredient.

• Jaccard Similarity Index: The technique computes Jac-
card distance between string representation of faulty node
(fn) and fixing node (fe). The input string is converted
into a set of N-grams. In Comparing with Cosine similar-
ity, Jaccard Similarity Index takes the number of common
attributes is divided by the number of attributes that exist

192

in at least one of the two objects. In comparison, Cosine
similarity divides the number of the common attributes
by the dot product of two objects represented in vectors.

jac s(fn, fe) =
|fn ∩ fe|
|fn ∪ fe|

(5)

Here, fn and fe is the string representation of faulty node
and fixing ingredient.

• Anti-Pattern: Anti-patterns capture disallowed modifica-
tions to the buggy program [24]. If such a modification
passes all tests in the given test-suite, they are not counted
as repairs [24]. Because those modifications may later
introduce some code smell in the program. We filter out
such modifications as part of patch prioritization. We take
account of the following anti-pattern [24] for Insertion
mutation operation.

– Anti-append Early Exit: This pattern disallows the
insertion of return statements at any location except
for after the last statement.

The utility of anti-pattern is not directly used with the
semantic-based counterparts. Rather it is used to filter
out the trivial solutions.

After calculating the syntactic and semantic features, they
are then combined to calculate the final score. We keep
Genealogical Similarity and Normalized LCS fixed and used
Cosine Similarity, Normalized Edit Distance, Jaccard Similar-
ity Index one at a time. So, we evaluated total 3 combinations
of features. The first one was Com-CS, the combination of
Genealogical Similarity, Normalized LCS and Cosine Simi-
larity. The second one was Com-NED, the combination of
Genealogical Similarity, Normalized LCS and Normalized
Edit Distance. And the final one was Com-JS, the combina-
tion of Genealogical Similarity, Normalized LCS and Jaccard
Similarity Index.

We calculate the score of the patches in the following way:

patch score = gen s(fn, fe)+n lcs(fn, fe)+ simi(fn, fe)
(6)

Here, simi(fe, fn) stands for Cosine Similarity, Normalized
Edit Distance, Jaccard Similarity Index, and Jaccard Similarity
Index which we plugged into the equation one at a time.

D. Patch Validation

Patch validation validates the patch that is the correct repair
of the faulty node. This step executes negative and positive test
cases for validating the patches.

IV. EXPERIMENT

We implemented the technique addressed in this paper in
Java. It uses the Eclipse JDT parser for manipulating AST.
It uses the GZoltar [25] tool to localize the faulty codes.
GZoltar tool is used with Ochiai algorithm [26] to calculate the
suspicious value of the Expression and Expression-Statement

for being a faulty node. The pseudocode of our technique is
given in 1.

Algorithm 1: High-level pseudocode for our tech-
nique.
Input : Program P to be repaired; Set of positive test

cases, PosT; Set of negative test cases, NegT;
Set of augmented mutation operation, AugOp.

Output: Repaired program variant
1 RepairedProgramV ariants← ∅
2 ϕ← localize fault(P, PosT,NegT)
3 forall faultyNode ∈ ϕ do
4 θ ← getF ixingElement()
5 N ← getParent(faultyNode)
6 forall fixingIngredient ∈ θ do
7 OP ←

getMutationOperation(N, fixingIngredient)
8 end
9 end

10 forall fixingIngredient ∈ θ & OP ∈ AugOp do
11 syntacticSimi←

calculateSyntacticSimi(faultyNode, fixingIngredient,OP)
12 semanticSimi←

calculateSemanticSimi(faultyNode, fixingIngredient,OP)
13 finalScore←

combine(syntacticSimi, semanticSimi)
14 candidatePatches←

{faultyNode, fixingIngredient, finalScore}
15 end
16 sortedCandidatePatches←

sort(candidatePatches)
17 forall patch ∈ sortedCandidatePatches do
18 programV ariant←

insert(faultyNode, fixingIngredient,AugOp)
19 RepairedProgramV ariants←

validate(programV ariant, PosT,NegT)
20 end
21 return RepairedProgramVariants

A. Research Question
As we discussed in the earlier section, the existing patch

prioritization technique can be categorized into 3 broad cate-
gories. Recent work [5] introduced the technique for combin-
ing syntactic and semantic similarity for patch prioritization,
worked at the Expression level bug and used the Replacement
mutation operation to generate patches. In this study, we
evaluate the technique of combining syntactic and semantic
similarity to observe its impact on patch prioritization using
the Insertion mutation operation. Our evaluation aims to
answer the following research questions:

• RQ1: What is the impact of combining syntactic and
semantic similarity while using Insertion mutation oper-
ation?

• RQ2: How different syntactic and semantic similarity
features impact patch prioritization?

193

B. Evaluation

We evaluated our technique in IntroClassJava Benchmark
[23]. The benchmark contains 297 bugs from 6 projects. For
evaluation, the following are examined:

• Median Rank of the Correct Patch: The lower the
median rank, the better the approach is [10].

• Precision: If a technique can rank the correct solution
before the incorrect plausible one, it achieves higher
precision. [22]

• Rank of the first correct solution: The approach that
ranks the first correct solution higher, considered as more
efficient. [10].

C. Experiment Settings

To understand the impact of similarities, the approach
need to compared with patch prioritization techniques that
use semantic and syntactic similarity individually. Therefore,
this study further implements semantic or syntantic similarity
based patch prioritization approaches using metrics discussed
in Section III-C. The techniques are described below:

• Semantic Similarity based Approach (SSBA): It uses
only semantic similarity metrics namely genealogical to
prioritize patches. Also the anti-pattern is also used to
filter out the incorrect patches.

• LCS based Approach (LBA): It is a syntactic similarity
based approach that prioritizes patches using only nor-
malized LCS score.

• Cosine Similarity based Approach (CSBA): It is an-
other syntactic similarity based approach that prioritizes
patches using only normalized Cosine score.

• Jaccard Similarity Index based Approach (JSBA): It is
also a syntactic similarity based approach that uses only
Jaccard Similarity Index score

• Normalized Edit Distance based Approach (NBA): It
is also another syntactic similarity based approach that
prioritizes patches using only normalized Edit Distance
score.

All of these five patch prioritization approaches follow the
same repairing process as the combined ones. It ensures that
the observed effects occurred due to varied similarities used
in patch prioritization.

D. Result Analysis

The approach repairs 6 bugs from IntroClassJava benchmark
[23]. For the repaired bugs, no plausible patch is generated
before the first correct solution. Thus, the approach achieves
a precision of 100%. The implementation is publicly available
here.

In our study, we were able to repair 6 bugs from the
IntroClassJava benchmark. The results are shown in the table
I

Figure 2 shows the first correct patch rank of different
approach. The lower the rank is, the better the approach. Figure
3 shows the rank distribution of Com-CS, Com-NED, Com-
JS, SSBA, LBA, CSBA, JSBA, and NBA. Log transformation

Fig. 2: Impact of different combination of features on patch
rank

Fig. 3: Comparison of Correct Patch Rank among various
Approach

is used in this figure as the data range is high. In terms of
median rank, Com-CS, Com-NED, and Com-JS outperform
SSBA, LBA, CSBA, JSBA and NBA. The ranks are 45, 48.5,
53.5, 163.5, 177, 55, 55, 58.5 respectively. The reason is
combination of features incorporate information from multiple
domains (both textual similarity and code meaning). The
correctness of the generated patches are checked using the
publicly available results of CapGen [22] except for the bug
smallest cb243beb 000. CapGen doesn’t contain the fix for
that bug. The study [6] that shows that combining both seman-
tic and syntactic similarities works better than the syntactic
or semantic similarities alone, was able to fix 22 bugs using
Replacement Mutation Operation. In this paper we evaluate
the impact if we use Insertion Mutation Operation. So, in total
25 bugs have been solved from the IntroClassJava benchmark
[23] using the approach of combining syntactic and semantic
similarities.

V. CONCLUSION

In this paper, a patch prioritization technique is evaluated
for combining syntactic and semantic similarity for automated
program repair. Our approach uses different combinations of
syntactic and semantic matrices to see their impact on patch

194

https://github.com/CosmicBeing09/Impact-of-Syntactic-and-Semantic-Similarities-On-Patch-Prioritization-Using-Insertion-Operation

Bug Id With Cosine Similarity With Normalized Edit Distance With Jaccard Similarity Index
Total Patches Correct Patch Rank Total Patches Correct Patch Rank Total Patches Correct Patch Rank

digits 07045530 002.java 57 27 78 51 57 34
median 0cdfa335 003.java 137 44,68 170 60 137 59, 63
median 89b1a701 010.java 145 30 185 27 145 35
smallest 6aaeaf2f 001.java 197 90 226 27 197 86
smallest 818f8cf4 003.java 199 46 178 46 199 48
smallest cb243beb 000.java 168 96 189 90 168 93

TABLE I: Results of the Approach of Combining Features on IntroClassJava Benchmark

Bug Id SSBA LBA CSBA JSBA NBA
TP CPR TP CPR TP CPR TP CPR TP CPR

digits 07045530 002.java 326 107 357 342 58 23 58 42 82 67
median 0cdfa335 003.java 652 110, 120 682 287, 340 138 42, 92 138 52, 85 175 81
median 89b1a701 010.java 660 299 645 26 146 26 146 37 189 26
smallest 6aaeaf2f 001.java 817 170 870 113 198 130 198 140, 151 233 26
smallest 818f8cf4 003.java 779 157, 175 851 48, 414 200 70 200 58 181 50
smallest cb243beb 000.java 589 310 631 241 168 124 168 121 190 110

TABLE II: Results of the Approach using Only Semantic or Syntactic Features Alone on IntroClassJava Benchmark
(TP = Total Patches, CPR = Correct Patch Ranks)

prioritization while using the Insertion mutation operation for
patch generation. It uses Genealogical Similarity, Normalized
LCS, Cosine Similarity, Jaccard Similarity Index, Normalized
Edit Distance to calculate the context similarity score. It also
considers Anti-Patterns to filter out the incorrect plausible
patches. The approach observes that Cosine Similarity and
Normalized Edit Distance along with Genealogical Similarity
and Normalized LCS rank the correct patch higher. This
approach has been able to solve 6 bugs from IntroClassJava
benchmark [23]. It achieves a precision of 100% for solving
those bugs.

REFERENCES

[1] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer
Katzenellenbogen. 2013. Reversible debugging software. Judge Bus.
School, Univ. Cambridge, Cambridge, UK, Tech. Rep (2013).

[2] M. Monperrus, “Automatic software repair: a bibliography,” ACM
Computing Surveys (CSUR), vol. 51, no. 1, p. 17, 2018.

[3] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The plastic
surgery hypothesis,” in ESEC/FSE, 2014, pp. 306–317.

[4] S. Sumi, Y. Higo, K. Hotta, and S. Kusumoto, “Toward improving
graftability on automated program repair,” in ICSME, 2015, pp. 511–
515.

[5] M. Asad, K. K. Ganguly and K. Sakib, ”Impact Analysis of Syntactic
and Semantic Similarities on Patch Prioritization in Automated Program
Repair,” 2019 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), 2019, pp. 328-332, doi: 10.1109/IC-
SME.2019.00050.

[6] Z. Chen and M. Monperrus, “The remarkable role of similarity in
redundancy-based program repair,” Computing Research Repository
(CoRR), vol. abs/1811.05703, 2018.

[7] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering (TSE), vol. 38, no. 1, pp. 54 –72, 2012

[8] Y. Pei, Y. Wei, C. Furia, M. Nordio, and B. Meyer, “Code-based
automated program fixing,” in International Conference on Automated
Software Engineering (ASE), 2011, pp. 392 –395.

[9] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013.
Automatic patch generation learned from human-written patches. In
ICSE’2013. IEEE Press, 802–811.

[10] Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History Driven
Program Repair. In SANER’2016, Vol. 1. IEEE, 213–224.

[11] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and
Satish Chandra. 2013. SemFix: program repair via semantic analysis.
In ICSE’2013. IEEE Press, 772–781.

[12] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie For-
rest. 2009. Automatically finding patches using genetic programming.
In ICSE’2009. IEEE Computer Society, 364–374.

[13] V. Debroy and W. Wong, “Using mutation to automatically suggest fixes
for faulty programs,” in International Conference on Software Testing,
Verification and Validation (ICST), 2010, pp. 65 –74.

[14] D Le Xuan-Bach, Chu Duc-Hiep, Lo David, Goues Claire, Le, and
Willem Visser. 2017. S3: Syntax- and Semantic-Guided Repair Synthesis
via Programming by Examples. In FSE’2017. ACM, to appear.

[15] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. 2012. A systematic study of automated program repair: Fixing
55 out of 105 bugs for 8 each. In ICSE’2012. IEEE, 3–13.

[16] Westley Weimer, Zachary P Fry, and Stephanie Forrest. 2013. Leverag-
ing program equivalence for adaptive program repair: Models and first
results. In ASE’2013. IEEE, 356–366.

[17] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering (TSE), vol. 38, no. 1, pp. 54 –72, 2012

[18] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective
object-oriented program repair,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 648–659, IEEE, 2017.

[19] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), pp. 298–309, ACM, 2018.

[20] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated
program repair,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 660–670,
IEEE, 2017.

[21] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for Java programs,” in ISSTA,
2014, pp. 437–440.

[22] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceedings
of the 40th International Conference on Software Engineering (ICSE),
pp. 1–11, ACM, 2018.

[23] T. Durieux and M. Monperrus, IntroClassJava: A Benchmark of 297
Small and Buggy Java Programs. PhD thesis, Universite Lille 1, 2016.

[24] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoud-
hury. 2016. Anti-patterns in search-based program repair. In International
Symposium on Foundations of Software Engineering. ACM, 727–738.

[25] J. Campos, A. Riboira, A. Perez, and R. Abreu, “GZoltar: an eclipse
plug-in for testing and debugging,” in ASE, 2012, pp. 378–381.

[26] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in Proceedings of the
12th Pacific Rim International Symposium on Dependable Computing,
ser. PRDC ’06. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 39–46.

195

Two-Stage AST Encoding for Software Defect
Prediction

Yanwu Zhoua, Lu Lua,∗, Quanyi Zoub, Cuixu Lic
a School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

b School of Software Engineering, South China University of Technology, Guangzhou, China
c Guangdong Meiweixian Flavoring Foods Co.,Ltd., Zhongshan, China

∗Corresponding author email: lul@scut.edu.cn

Abstract—Software defect prediction (SDP) can find potential
containing defect modules, which assists software developers
in allocating limited test resources more efficiently. Because
traditional software features fail to capture the semantics of
source code, various studies have turned to extracting deep
learning features. Existing related approaches often parse the
program source code into Abstract Syntax Trees (ASTs) for
further processing. However, most of these approaches ignore
AST nodes’ hierarchical and position-sensitive structure. To over-
come the aforementioned issues, a two-stage AST encoding (TSE)
method is proposed in this paper for software defect prediction.
Experiments on eight Java open-source projects showed that our
proposed SDP method outperforms several traditional methods
and state-of-the-art deep learning methods in terms of F-measure
and MCC.

Index Terms—software defect prediction, abstract syntax tree
(AST), two-stage encoding, positional encoding

I. INTRODUCTION

As software evolves, the scale and complexity of the
system grow dramatically. Under limited time and resource
constraints, software becomes more prone to defect [1]. Soft-
ware defect prediction (SDP) is a promising technology for
improving software reliability by detecting program defect
modules and prioritizing testing efforts [2]. The goal of SDP
is to train a defect predictor that classify code instances as
defective or not. It is a requirement for SDP to create defect-
distinguishable software representations [3]. Software metrics
have been proposed and broadly used in SDP [4]. However,
Software metrics are hand-crafted by software specialists and
most software metrics focus on the statistical aspects of code,
ignoring the semantic characteristics of code.

In recent years, researchers have begun to leverage deep
neural networks to exact software features from source code
[5]. Related works have revealed that Abstract Syntax Trees
(ASTs) are suitably representative of programs’ well-defined
syntax [6]–[8]. It’s common practice to parse source code files
into ASTs and then convert into token vectors by traversing
the ASTs.

Pre-order traversal is adopted by most studies for AST
conversion, treating all nodes as the same level and creating
a token corpus for word embedding technology. It has two
drawbacks: 1. Not all the nodes are at the same level. The
coarse-grained information of node needs to be supplemented

DOI reference number: 10.18293/SEKE2022-039

by the fine-grained information of its child nodes. 2. If only
preorder traversal is employed for AST, the tree structure’s
positional information will be lost. Furthermore, there is a
sequential positional relationship between nodes at the same
depth.

In order to tackle the above-mentioned first drawback, it is
feasible to decompose the AST into non-overlapping subtrees
according to node granularity. For example, Zhang et al.
propose ASTNN, which divides the AST into subtrees at the
statement level and handles the subtree interior and subtree
sequence independently [9]. The second drawback can be
addressed by including the additional position information of
the tree structure.

In this paper, we mark two types of nodes with different
granularities, named ordinary nodes and block nodes, and then
execute a two-stage encoding, according to the decomposition
strategy. In the first stage, the word embedding and positional
embedding of ordinary nodes under the subtree rooted by the
block node are aggregated to the block node through the self-
attention mechanism to represent the encoding of the block
node. In the second stage, the encodings of the block nodes
in an AST are collected. The tree structure of block nodes is
retained, and the encodings are fed into a Tree-based LSTM
network to generate the final AST representation for software
defect prediction.

In summary, the main contributions of this paper are listed
as follows:

1) We propose an AST decomposition strategy that marks
AST nodes as two types of nodes according to the
hierarchy of the AST.

2) We apply the strategy on a two-stage bottom-up AST
encoding for software defect prediction. Experimental
results indicate that our method outperforms other soft-
ware defect prediction models in terms of F-measure and
MCC.

II. RELATED WORK

A. Code Representation in Software Defect Prediction

The representation of software code is a critical part of
software defect prediction. Wang et al. proposed to parse the
source code into ASTs, and then encode it into numerical
vectors as code representation [6]. Li et al. concatenate deep

196

query

key

value
attention

M
axPool

…

+ +

clasifer

the First-Stage Encoding

the Second-Stage Encoding

M
ar

k
Bl

oc
k

Su
bt

re
es

Self-Attention

Positional
Embedding

Word
EmbeddingBlock Subtree

Block Subtree
Encoding

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

M
axPool

Tree-based LSTM

AST Encoding

Block Node

Ordinary Node

Defect
probability

…
…

…

MethodDeclaration

“public” ReferenceType …

“Record”

Fig. 1. The overall framework of TSE.

semantic features with code metrics to augment the informa-
tion of code [7]. In addition to the code representation based
on AST, Phan et al. construct the Control Flow Graph (CFG)
of the program at the level of assembly instruction [10]. The
effectiveness of code visualization is demonstrated by Chen
et al., who convert each code file in the program into a two-
dimensional image. [11].

B. Deep Learning in Software Defect Prediction

There has been a slew of new deep learning applications for
SDP. Wang et al. built the Deep Believe Network (DBN) for
extracting features [6]. Li et al. considered that CNN can seize
local patterns of sources code more effectively [7]. Xu et al.
employed graph neural networks to capture the latent defect
information [12]. Wang et al. proposed a modular tree network
to dig the semantic differences among different types of AST
substructures which shows the advantage of more elaborate
structure information extraction [13].

III. METHOD

In this section, we elaborate on our method in detail. Figure
1 demonstrates the overall framework of our TSE method.
Before the encoding stages, the code file is parsed into an
AST, and then marked and converted into vectors. In the first
stage, the self-attention layer is utilized to aggregate the word
embeddings and positional encodings of all ordinary nodes to
construct the block node encodings. In the second encoding
stage, the block node encodings are fed into a Tree-based
LSTM and produce the AST’s final encoding by max pooling.
Finally, the probability that the code file is defective is output
via a fully-connected layer.

A. Marking AST nodes and Converting into Vectors

The open-source code tool, javalang1, is used to parse the
code files into ASTs under the token granularity. And then the
block nodes and ordinary nodes are marked during the pre-
order traversal of the AST. The set of block nodes and ordinary
nodes are difined as B and O, separately. Block nodes are
listed in the Table I and ordinary nodes are chosen according
to Wang’s work [6]. Note that the attribution strings of the
AST node are also regarded as ordinary nodes. Most of the
block nodes chosen create a local scope with specific context.
The nodes in the IfStatement block, for example, are in the
specific context of conditional judgment; hence, the meaning
of the nodes of IfStatement may differ while in other statement
blocks. There is a particular node in the block nodes called
StatementExpression, which is a statement-level node. This
node can further disassemble the statement block and tackle
the problem of an excessively large subtree.

An AST T is defined as a collection of its block subtrees:

T = [bT1, bT2, ..., bTn] (1)

Each block subtree is defined as:

bTi = [bi, [oTi1, oTi2...]] (2)

where bi ∈ B is the root node of the block subtree, oTij is the
ordinary subtree under bTi. An ordinary subtree is denoted as:

oTij = [oij1, oij2, ...] (3)

where oijk ∈ O.
After acquiring the marked AST, we utilize word2vec [14]

technique to convert block nodes and normal nodes into E-
dimensional vectors, denoted as xb

i and xo
ijk, respectively.

1https://github.com/c2nes/javalang

197

B. First Stage: Aggregating Ordinary Node Encodings to The
Block Node Encoding

In the first stage, the self-attention mechanism is employed
to aggregate their information onto the block nodes as the
block node encodings:

Atten(X) = Atten(Q,K, V) = Softmax(
QKT

√
dk

)V (4)

Q = WQxq,K = WKxk, V = WV xv (5)

where WQ, WK and WV are weight matrices for queries,
keys and values, and dk is the dimension of xk. In the case of
self-attention, xq , xk and xv are identical. The self-attention
mechanism can flexibly assign the attention weights of the
same nodes in different contexts and mask the difference in
the number of nodes in a subtree. Self-attention mechanism is
not sensitive to the position of nodes. However, the positional
relationship of nodes in the subtree could be a significant
factor in defect prediction. Therefore, we additionally traverse
the block subtree hierarchically and record the positional
information of each ordinary node which consists of the depth
of the node in the block subtree and the sequence number
of the node at the depth. Through an embedding layer, their
corresponding positional vectors can be represented separately
as xdepth and xnum.

Given bTi with Ni nodes, We can obtain the embedding
sequence:

XbT
i = [xb

i , x
o
i11 + xdepth

i11 + xnum
i11 , ..., xo

ijk + xdepth
ijk + xnum

ijk]
(6)

Then the encoding of a subtree enbT
i ∈ RD is calculated by:

enbT
i = (W en)Txb

i +Maxpool(Atten(XbT
i |xb

i)) + ben (7)

where D is the encoding dimension, W en ∈ RE×D is the
weight matrix, ben is the bias term, Maxpool(.) is the max
pool layer with the kernel size Ni, Atten(.) is the self-
attention layer, XbT

i |xb
i is the sequence XbT

i excluding xb
i .

C. Second Stage: Aggregating Block Node Encodings to The
AST Encoding

In the first encoding stage, the encodings of all block nodes
in an AST are collected:

XT = [enbT
1 , ..., enbT

n] (8)

Tree-based LSTM is adopted as the encoder to acquire the
final AST’s encoding, preserving more information about the
AST’s tree structure. Since all ordinary nodes in an AST have
been processed in the first encoding stage, the scale of the
AST has been considerably reduced, hence avoiding gradient
vanishing induced by long-term dependencies. Specifically, we
utilize ChildSum Tree-LSTM [15] to calculate the AST’s final
encoding by max-pooling the hidden states of block nodes:

enT = Maxpool(TreeLSTM(XT)) (9)

Then we simply use a fully-connected layer as the defect
classifier. Cross entropy loss is adopted for optimization.

TABLE I
THE CHOSEN TYPES OF BLOCK NODES

Block Nodes

ClassDeclaration, InnerClassDeclaration,
MethodDeclaration, ConstructorDeclaration,
BlockStatement, ForStatement,
WhileStatement, SwitchStatement, IfStatement,
DoStatement, StatementExpression

IV. EXPERIMENTAL SETTINGS

A. Evaluated Projects and Datasets

To evaluate the the effectiveness of our TSE approach, we
choose publicly available projects from PROMISE repository
[16]. Specifically, eight open-source Java projects are exploit
in our experiments, which are ant, camel, jedit, log4j, lucene,
poi, xalan and synapse.

B. Evaluation

In this paper, the popular evaluation indicator in SDP, F-
measure and MCC, are adopted to evaluate our proposed
method. Specifically, F-measure is a harmonic mean of Preci-
sion and Recall and MCC is a relatively balanced measure
considering diverse indicators, which are calculated by the
following equations:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
(10)

F −measure =
2 ∗ Precision ∗Recall

Precision+Recall
(11)

MCC =
TP ∗ TN − FP ∗ FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(12)

where TP, FN, FP and TN can be derived by the confusion
matrix.

C. Baseline Setting

In this paper, our TSE method are compared with the
following methods:

1) LR: A traditional method using logistic regression clas-
sifier on handcraft defect metrics.

2) SVM: A traditional method using SVM classifier with
the Gaussian kernel on handcraft defect metrics.

3) DBN: A deep learning method employing a standard
DBN model to extract semantic features from AST for
SDP [6].

4) LSTM: A deep learning method using LSTM to capture
semantic representations for SDP.

5) CNN+: An enhanced CNN-based method by combining
traditional feature and deep feature for SDP [7].

D. Parameters Setting

10-fold cross validation is used to split dataset and each
training task is repeated 10 times in the experiment. The
AST tokens and the positional vectors are embedded into 100-
dimensional vectors; The query, key, and value dimensions are
all set to 100 in the self-attention layer; The hidden dimension
of the ChildSum Tree-LSTM is 100.

198

TABLE II
F-MEASURE AND MCC VALUE FOR TSE VERSUS BASELINE METHODS

Task LR SVM DBN LSTM CNN+ TSE

F-measure MCC F-measure MCC F-measure MCC F-measure MCC F-measure MCC F-measure MCC

ant 0.568 0.427 0.561 0.417 0.371 0.220 0.533 0.214 0.566 0.437 0.505 0.403
camel 0.352 0.167 0.356 0.177 0.359 0.171 0.370 0.199 0.335 0.180 0.501 0.389
jedit 0.552 0.388 0.534 0.365 0.504 0.174 0.551 0.345 0.561 0.451 0.572 0.438
log4j 0.409 0.301 0.338 0.250 0.611 0.132 0.633 0.162 0.593 0.219 0.628 0.255

lucene 0.530 0.161 0.600 0.141 0.574 0.161 0.605 0.171 0.643 0.236 0.654 0.243
poi 0.589 0.238 0.791 0.479 0.626 0.310 0.752 0.314 0.748 0.328 0.778 0.361

xalan 0.532 0.101 0.545 0.113 0.592 0.077 0.602 0.124 0.635 0.176 0.653 0.184
synapse 0.506 0.294 0.480 0.292 0.413 0.163 0.344 0.118 0.369 0.257 0.550 0.282

Average 0.501 0.249 0.523 0.270 0.506 0.173 0.549 0.205 0.556 0.275 0.612 0.314

V. EXPERIMENTAL RESULTS

Table II record comparison results of the F-measure and
MCC indicators for the TSE method versus other baseline
methods. According to the last second line of the two tables,
our proposed TSE achieves F-measure as 0.612 and MCC as
0.314 on average value and obtains the best average value
on the two indicators. Compared to the traditional machine
learning methods, i.e., LR and SVM, which utilize statistical
defect metrics, our TSE method has an average improvement
of 22.2% and 16.9% in the F-measure indicator, and 26.1% and
16.0% in the MCC indicator. Compared to the deep learning
methods, i.e., DBN, LSTM and CNN+, our TSE method
has an average improvement of 18.8%, 11.3% and 10.1% in
terms of F-measure, and 81.4%, 52.9% and 14.0% in terms of
MCC. The above experiments suggest that TSE outperforms
traditional machine learning methods and AST-based semantic
extracting methods on eight separate projects.

VI. CONCLUSION

In this paper, a two-stage AST encoding method is pro-
posed, which employs a bottom-up encoding to learn the
semantic information software defect prediction. The main
advantages of TSE are 1. executing the encoding following
the natural hierarchy of ASTs. 2. combining the tree positional
encoding to augment the structural information of ASTs. The
performance of TSE is evaluated by comparing it with tradi-
tional methods and state-of-the-art deep learning methods in
terms of F-measure and MCC. Experimental results show that
TSE achieves better performance versus all baseline methods.
In future work, we will verify the performance of our method
on other programming languages and repositories.

ACKNOWLEDGMENT

This work was supported in part by the Zhongshan
Produce and Research Fund, PR China under grant no.
210602103890051.

REFERENCES

[1] D. Bowes, T. Hall, and J. Petrić, “Software defect prediction: do different
classifiers find the same defects?,” Software Quality Journal, vol. 26,
no. 2, pp. 525–552, 2018.

[2] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose, “Au-
tomatic feature learning for predicting vulnerable software components,”
IEEE Transactions on Software Engineering, vol. 47, no. 01, pp. 67–85,
2021.

[3] H. Wang, W. Zhuang, and X. Zhang, “Software defect prediction based
on gated hierarchical lstms,” IEEE Transactions on Reliability, vol. 70,
no. 2, pp. 711–727, 2021.

[4] M. Halstead, “Elements of software science (operating and programming
systems series),” 1977.

[5] N. Zhang, S. Ying, K. Zhu, and D. Zhu, “Software defect prediction
based on stacked sparse denoising autoencoders and enhanced extreme
learning machine,” IET Software, 2021.

[6] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning for
software defect prediction,” IEEE Transactions on Software Engineering,
vol. 46, no. 12, pp. 1267–1293, 2018.

[7] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via
convolutional neural network,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS), pp. 318–328, IEEE,
2017.

[8] X. Zhou and L. Lu, “Defect prediction via lstm based on sequence and
tree structure,” in 2020 IEEE 20th International Conference on Software
Quality, Reliability and Security (QRS), pp. 366–373, IEEE, 2020.

[9] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 783–794, IEEE, 2019.

[10] A. V. Phan, M. Le Nguyen, and L. T. Bui, “Convolutional neural
networks over control flow graphs for software defect prediction,”
in 2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 45–52, IEEE, 2017.

[11] J. Chen, K. Hu, Y. Yu, Z. Chen, Q. Xuan, Y. Liu, and V. Filkov,
“Software visualization and deep transfer learning for effective software
defect prediction,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pp. 578–589, 2020.

[12] J. Xu, F. Wang, and J. Ai, “Defect prediction with semantics and
context features of codes based on graph representation learning,” IEEE
Transactions on Reliability, vol. 70, no. 2, pp. 613–625, 2020.

[13] W. Wang, G. Li, S. Shen, X. Xia, and Z. Jin, “Modular tree network
for source code representation learning,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 29, no. 4, pp. 1–23, 2020.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013.

[15] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[16] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-
source projects: An empirical study on defect prediction,” in 2013
ACM/IEEE international symposium on empirical software engineering
and measurement, pp. 45–54, IEEE, 2013.

199

An efficient discrimination discovery method
for fairness testing

Shinya Sano
Dept. of Info. and Comp. Sci.

Keio University
Yokohama, Japan

sanoshin@doi.ics.keio.ac.jp

Takashi Kitamura
Nat. Inst. of Advanced Industrial

Science and Technology
Tokyo, Japan

t.kitamura@aist.go.jp

Shingo Takada
Dept. of Info. and Comp. Sci.

Keio University
Yokohama, Japan

michigan@ics.keio.ac.jp

Abstract—With the increasing use of machine learning
software in our daily life, software fairness has become a growing
concern. In this paper, we propose an individual fairness testing
technique called KOSEI. Individual fairness is one of the central
concepts in software fairness. Testing individual fairness aims
to detect individual discriminations included in the software.
KOSEI is based on AEQUITAS by Udeshi et al., a landmark
fairness testing technique featuring a two-step search strategy of
global and local search. KOSEI improves the local search part of
AEQUITAS, based on our insight to overcome the limitations of
the local search of AEQUITAS. Our experiments show that KOSEI
outperforms AEQUITAS by orders of magnitude. KOSEI, on
average, detects 5,084.8% more discriminations than AEQUITAS,
in just 7.5% of the execution time.

Index Terms—software testing, algorithm fairness, machine
learning

I. INTRODUCTION

With the increasing use of machine learning (ML) software
in our daily life, software fairness has become a growing
concern. A famous example is the COMPAS software, which
computes risk-assessment scores for recidivism of defendants.
It assists in the sentencing process; however, the software
makes biased and discriminatory mistakes [1]. For example,
the software is likely to falsely rate more black defendants to
be risky than white defendants.

Individual fairness is a key concept in software fairness. It is
often referred to with the concept of individual discrimination.
Individual discrimination occurs when ML software gives
different results to two similar individuals that differ in
protected attributes. Protected attributes represent attributes
often tied to social bias, e. g., gender, race, or age.

Testing ML software for individual fairness is one approach
to validate software fairness. It has recently been under active
investigation, with various algorithms being proposed. For
example, some use random sampling techniques [1], some
use probabilistic searches [2], some apply the technique of
gradient-based adversarial sampling [3], some apply symbolic
execution [4], and some apply constraint solving [5].

In this paper, we tackle black-box individual fairness testing,
proposing a technique called KOSEI1 (Keeper Of Systematic
Equality Investigation). KOSEI is based on AEQUITAS, a

DOI reference number: 10.18293/SEKE2022-064
1Japanese word which means fairness

landmark technique for black-box individual fairness testing,
developed by Udeshi et al. [2]. A characteristic feature of
AEQUITAS is that its testing algorithm is structured into two
phases of global and local search to leverage the robustness
of ML algorithms for efficiently detecting discriminations.
The two-phased structure of the algorithm has become the
basis of many crucial algorithms (e. g., [3], [4]). Focusing
on improving the second phase of the algorithm (called local
search), KOSEI aims to obtain a higher detecting ability of
individual discriminations. Our evaluation of KOSEI shows
that KOSEI outperforms AEQUITAS by orders of magnitude.
KOSEI detects, on average, 5,084.8% more discriminations
than AEQUITAS in just 7.5% of the execution time. Our
evaluation also confirms that our technical refinements realize
the performance gain.

The paper is organized as follows. Section II reviews
individual fairness testing and AEQUITAS by Udeshi et al. [2].
In Section III, we propose our method, KOSEI. In Section IV,
we evaluate KOSEI through experiments. We discuss threats
to validity in Section V. Section VI discusses related work.
Finally, Section VII concludes this paper.

II. BACKGROUND

This section reviews individual fairness testing (referring to
[6]) and AEQUITAS [2].

A. Individual fairness testing

Let P = {p1, p2, · · · , pn} be a set of attributes (or
parameters), for n ∈ N. We use pi to indicate the i-th attribute
in P . Each attribute pi(∈ P) is associated with a set of
values, called the domain of pi, denoted by Dom(pi), such
that (Dom(pi))i∈n is pairwise disjoint. The input space I of
a set of attributes P is the Cartesian product of the domains
of p1, p2 · · · pn(∈ P), i. e., I = Dom(p1)×Dom(p2)× · · · ×
Dom(pn). An element I of I is a data item, which we may
also call a test case. We use Ik as the value of the k-th attribute
of input I ∈ I. We also introduce Pprotected ⊆ P as the set
of protected attributes (e. g., gender, race, age). We interpret a
ML classifier, whose input space is I, as function f ; i. e., we
use f(I) to denote the result (i. e., decision) that the trained
classifier f makes for input I .

200

Definition 1 (Discriminatory data and Fairness [2]): Let
f be a classifier under test, γ be the pre-determined
discrimination threshold (e.g. chosen by the user), and I ∈ I.
Assume I ′ ∈ I such that there exists a non-empty set
Q ⊆ Pprotected and for all q ∈ Q, Iq ̸= I ′q and for all
p ∈ P \Q, Ip = I ′p. If |f(I)− f(I ′)| > γ , then I is called a
discriminatory data item of the classifier f and is an instance
that manifests the violation of (individual) fairness in f .

Example 1: We use the Census Income (aka, Adult)
dataset [7] as the running example. Its task is to predict if
the income of an adult exceeds $50, 000 per year. The dataset
contains 32,561 training instances with 13 attributes each. The
following example shows a numeric-represented data instance
x:

x : [4, 0, 6, 6, 0, 1, 2, 1, 1̇, 0, 0, 40, 30]

The first attribute represents ‘age’, whose domain is {0..9}
(where value ‘4’, for instance, means age from 40 to 49 years);
the ninth represents ‘gender’, whose domain is ‘male (0)’ and
‘female (1)’. The running example considers ‘gender’ (with a
dot) as the protected attribute.

Classifier f inputs a data item of the Census data set and
returns ‘1’ if the income of an adult exceeds $50, 000 per
year, and ‘0’ otherwise. According to Definition 1, the data
item x is discriminatory, for the classifier f , the protected
(i. e., ‘gender’) attribute, and γ = 0, if f(x) ̸= f(x′) with

x′ : [4, 0, 6, 6, 0, 1, 2, 1, 0̇, 0, 0, 40, 30].

Observe that x′ differs from x only in the ‘gender’ attribute.

B. AEQUITAS

We review the algorithm of AEQUITAS, focusing on its
two-phase-structured algorithm, perturbation, and an algorithm
component called local search.

1) Two-phase-structured algorithm: The algorithm of
AEQUITAS is structured into the two phases of global and
local search. The algorithm starts with the global search,
which randomly searches the input space of a ML classifier.
Following the global search, the local search searches nearby
the discriminatory data detected in the global search.

This two-phase structure of the algorithm is designed
to detect discriminatory data effectively, leveraging the
robustness of ML classifiers. The robustness of ML classifiers
means that similar prediction is likely to be produced for
similar data. So, first, the global search scans the whole input
space widely to find different kinds of discriminatory data.
Then, the local search searches the vicinities of discriminatory
data found in the global search using perturbation to find more
discriminatory data.

2) Perturbation : Given a data item, perturbation creates a
similar data item by adding small changes to it. For example,
Definition 2 gives the perturbation of AEQUITAS.

Definition 2 (perturbation): Perturbation g is a function g :
I × (P \ Pprotected) × Γ → I where Γ = {−1,+1}. If I ′ =
g(I, p, δ) where I ∈ I, p ∈ P \ Pprotected and δ ∈ Γ, then
I ′p = Ip + δ, and I ′q = Iq for all q ∈ P \ {p}.

Algorithm 1: Local Search Of Aequitas:
local_search(Dglobal , f , limit)

Data: discriminatory data (Dglobal), classifier(f), local
iteration limit (limit)

Result: Discriminatory data (Dlocal)
1 Procedure local_search(Dglobal, f, limit)
2 σpr[p]← 1

|P ′| for all p ∈ Pnon_protected

3 σv[p]← 0.5 for all p ∈ Pnon_protected
4 for I ∈ Dglobal do
5 for i in (0, limit) do
6 // apply perturbation to I
7 Select p ∈ Pnon_protected with σpr[p]
8 Select δ with σv[p]
9 I[p]← I[p] + δ

10 if eval_disc(I) then Dlocal ← Dlocal ∪ {I}
11 update_prob(I, p,Dlocal, δ)

12 return Dglobal ∪Dlocal

Algorithm 2: eval_disc(I)
Data: A data item (I)
Result: Boolean

1 Procedure eval_disc(I)
2 ▷ I(d) extends I with all values of Pprotected

3 I(d) ← {I ′|∀p ∈ Pnon_protected.Ip = I ′p}
4 if ∃I ′ ∈ I(d), |f(I)− f(I ′)| > γ then return True
5 else return False

Observe that the perturbation adds a change of only -1 or
+1 to one attribute of a given data item. As the local search
scans the vicinity of discriminatory data passed by the global
search, the perturbation stipulates the ‘vicinity’ of data.

3) Local search : Algorithm 1 shows the local search
algorithm of AEQUITAS. The algorithm takes three objects
as the input (1) f : the ML classifier under test, (2) Dglobal:
a set of discriminatory data (passed from the global search),
and (3) limit: the number of local iterations. The output is
discriminatory data found in the local search.

The algorithm begins with preparing lists σpr and σv . Given
an attribute p, σpr[p] shows the probability that p is selected
to be perturbed. σv[p] shows the probability that p is perturbed
by δ = −1, while (1− σv[p]) shows the probability that p is
perturbed by δ = +1.

After the initialization of σpr and σv , the algorithm applies
a perturbation (line 7 – line 9) to each data item (line 4)
in the given discriminatory data (Dglobal) for the limit
times (line 5). A perturbation chooses an attribute and the
direction of perturbation, respectively based on σpr (line 7)
and σv (line 8). For each perturbed data item, the algorithm
evaluates if it is discriminatory or not (line 10) using the
evaluation function (Algorithm 2). Finally, the data item
evaluated as discriminatory is added to Dlocal (line 10). Based
on evaluation results, the algorithm updates both σpr and σv

201

for tuning the probabilities. Three strategies (random, semi-
directed, and fully-directed) are provided for this probability
update. We do not look into the details in this paper because
our proposed technique is not very relevant to the strategies.

Example 2: Consider applying the local search of
AEQUITAS to the following data item x:

x : [7, 4, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]

Suppose the local search algorithm, for the first iteration (i. e.,
for the first perturbation), chooses the third attribute and the
direction of ‘+1’ (respectively based on probabilities recorded
in σpr and σv). It thus generates the following data item x′,
and check if it is discriminatory, where note that the value of
the third attribute has changed from 26 to 27:

x′
1 : [7, 4, 27, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1].

For the second iteration, the algorithm works based on this
newly generated data item x′

1. Suppose it chooses the 12th
attribute and direction of ‘+1’. It thus generates and evaluates
the following perturbed data item x′

2:

x′
2 : [7, 4,27, 1, 4, 4, 0, 0, 0̇, 1, 5, 74, 1]

For the third iteration, where it works on the new data x′
2,

suppose it chooses the fifth attribute and direction of ‘−1’. It
thus generates and evaluates the following perturbed data item
x′
3:

x′
3 : [7, 4,27, 1, 3, 4, 0, 0, 1̇, 1, 5,74, 1]

The algorithm continues similarly until the number of
iterations reaches the specified limit.

III. KEEPER OF SYSTEMATIC EQUALITY INVESTIGATION

This section proposes an individual fairness testing
technique named Keeper Of Systematic Equality Investigation
(KOSEI). KOSEI is based on AEQUITAS; it inherits the two-
phase structured search strategy (global and local search) of
AEQUITAS but improves the local search algorithm. We state
the limitations of AEQUITAS’s local search, explain technical
details of KOSEI, and discuss its advantages.

A. Limitation of AEQUITAS’s local search algorithm

1) AEQUITAS’s local search algorithm searches space,
where there may be little discriminatory data.: First, the
algorithm equally searches vicinities of discriminatory data
passed from the global search. Suppose, for example,
discriminatory data passed by the global search contain two
data d1 and d2, in the vicinities of which there are 10 and
1000 discriminatory data, respectively. Even though searching
the vicinity of d2 is likely to find more discriminatory data,
the algorithm spends an equal amount of search resources
(specified as a limit of local search) on d1 and d2.

Second, the algorithm may search not only the vicinities
of discriminatory data but also those of non-discriminatory
data. Note that the algorithm sequentially applies perturbation
to generated data, regardless of whether that data is
discriminatory or not. For example, suppose x′

1 (generated by

the discriminatory data item x by perturbation) in Example 2
is not discriminatory; the algorithm searches the vicinity of
x′
1, by applying perturbation and evaluates the perturbed data

item.
2) AEQUITAS’s local search may waste search resources

by evaluating duplicated data.: First, the perturbation process
is based on the probabilistic choice of parameter-values; thus,
the algorithm may generate a data item that has previously
been generated. However, AEQUITAS does not avoid such
duplications, which causes its inefficiency.

Specifically, the second is more concerned with
the algorithm implementation design. The AEQUITAS
implementation of Algorithm 1 (coded in Python) is
realized using the basin-hopping optimization function2. This
implementation design seems to aim to detect discriminatory
data efficiently. However, as we observe in our experiments
of executing AEQUITAS, the implementation generates quite
a few duplicated data during its executions (as is also pointed
out in [2]-page 9).

B. Two key mechanisms of our local search

We explain the two key mechanisms in the local search of
KOSEI: i. e., perturbation and dynamic update of search space.

1) Perturbation : The concept of perturbation of KOSEI
inherits that of AEQUITAS (Definition 2); i. e., the perturbation
of KOSEI changes the value of only one attribute of a
given data item by −1/ + 1. However, KOSEI uses this
perturbation concept differently from AEQUITAS. It applies the
perturbation to all the unprotected attributes one by one instead
of probabilistically choosing one attribute like in AEQUITAS.

Example 3: The following shows data obtained by applying
the perturbation to the data item x:

x : [7, 4, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]
x′
1 : [6, 4, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]

x′
2 : [8, 4, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]

x′
3 : [7,3, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]

x′
4 : [7,5, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]

...
x′
22 : [7, 4, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73,2]

The bold numerics indicate attributes to which the
perturbation has been applied. For example, x′

1 is generated
by perturbating the first (unprotected) attribute (i. e., ‘age’) of
x to the direction of −1; x′

2 is generated by perturbating the
first attribute of x to the direction of +1; x′

3 is generated by
perturbating the second attribute (‘work class’) of x to the
direction of −1. The number of data obtained from one data
item x is at most #P ′ ∗ |δ|, where #P ′ is the number of
unprotected attributes and |δ| = |{−1,+1}| = 2. Note that
some data generated by perturbation will be invalid and hence
will be excluded if the perturbed value in the perturbed data
is out of its attribute domain.

2https://docs.scipy.org/doc/scipy-1.8.0/html-scipyorg/reference/

202

Algorithm 3: Local search of KOSEI
Data: Same as Algorithm 1
Result: Same as Algorithm 1

1 Procedure local_search(Dglobal, f, limit)
2 // initialize seed data D and Dtotal

3 // Dtotal is a global variable
4 D ← Dglobal

5 for i in (0, limit) do
6 d← D.pop()
7 for p ∈ Pnon_protected do
8 for δ ∈ {−1,+1} do
9 d′ ← d; d′[p]← d[p] + δ

10 if d′[p] ∈ Dom(p) then continue
11 if d′ ∈ Dtotal then continue
12 if eval_disc(d′) then
13 // dynamic update of seed data D
14 D.push(d′)

15 Dtotal ← Dtotal ∪ {d′}

16 return D

2) Dynamic update of seed data : Naively, the number
of local iterations would be the number of non-protected
attributes times 2. In our running example, this iteration limit
would be 24 (=12 x 2). However, this would severely limit the
search space. Furthermore, in AEQUITAS, users can specify
a local iteration limit (by variable limit in Algorithm 1),
typically 1000 or 2000. These values are much higher than
the naive value of 24 stated above. This suggests we need to
consider cases where a user-specified local iteration limit is
much higher than the naive number of local iterations.

KOSEI is designed to dynamically update the discriminatory
data (called seed data) that the local search works on to bridge
this gap. Although the local search of KOSEI starts working
on discriminatory data passed by the global search as seed
data, on detecting a new discriminatory data item, it appends
that data item to the seed data so that the newly-detected data
item can also be an object of the local search. KOSEI searches
vicinities of discriminatory data detected in the global search
and those of newly detected discriminatory data during the
local search. The local search thus terminates when it reaches
the iteration limit specified by users or when there is no more
seed data.

C. Local search algorithm of KOSEI

Algorithm 3 shows the local search algorithm of KOSEI,
which incorporates the two key mechanisms.

Note first that since the proposed local search offers an
alternative to that of AEQUITAS, its input and output are
designed the same as those of AEQUITAS’s local search (in
Algorithm 1).

The algorithm sets seed data D with the discriminatory
data Dglobal (to be passed by the global search) at line 4. It
next iterates the following procedure for the number of times

specified by ‘limit’: Dequeueing the first data item from the
seed dataset D, it applies the perturbation (as explained in
Section III-B1). That is, for each attribute of the dequeued
data item, it perturbs the value of the attribute by ‘−1/+1’.
In doing so, the perturbed data item is checked to see if it is
valid (line 10) and if it has been evaluated previously (line 11,
where Dtotal remembers the list of previously evaluated data).
Next, the data item that passed these checks is evaluated
for whether it is discriminatory or not (line 12). If it is
evaluated discriminatory, it is appended to the list of seed data
(line 14). Finally, the evaluated data (regardless of whether it
is discriminatory or not) is added to Dtotal (line 15).

D. Advantages of KOSEI

KOSEI improves the limitations of the local search
algorithm of AEQUITAS, discussed in Section III-A.

The first improvement is on the limitation that AEQUITAS’s
local search scans a search space, where there may be little
discriminatory data (as stated in Section III-B1). The local
search of KOSEI searches all the neighbors of a given data
item, where all the neighbors of a data item mean all the
perturbed data of a data item defined in Definition 2. Note,
meanwhile, the local search of AEQUITAS does not necessarily
work in this way according to its probabilistic search. This
strategy of KOSEI aims to search data that are more likely
to be discriminatory. The dynamic updating of seed data of
KOSEI also can contribute to this aspect. Recall the two data
d1 and d2 in Section III-A, around which there are respectively
10 and 1000 discriminatory data. In this situation, KOSEI
may spend more search resources on d2 than d1 since its
dynamic updating mechanism updates the seed data with more
discriminatory data around d2. KOSEI is also guaranteed to
search the neighbors of discriminatory data only, which is not
guaranteed in AEQUITAS.

The second is the limitation of wasting search resources to
evaluate duplicated data. The local search of KOSEI carefully
avoids evaluating duplicated data (as clarified in line 11 in
Algorithm 3). Moreover, KOSEI is implemented without using
the basin-hopping optimization function, which is heavily used
in the AEQUITAS implementation. The optimization function’s
implementation demands a large amount of execution time
since it evaluates many data evaluated in previous iterations,
resulting in the inefficiency of detecting discriminatory data.

IV. EVALUATION

We conducted experiments to evaluate KOSEI. For the
evaluation, we pose the two research questions (RQs).

RQ1 Does KOSEI find more discriminatory data than
AEQUITAS, at a reasonable execution cost?

RQ2 Does KOSEI generate test cases likely to be
discriminatory and avoid duplicated data, better than
AEQUITAS?

RQ1 is the main RQ since the goal of this paper is
to improve AEQUITAS. RQ2 investigates if and how much
our improvement on local search improves the limitations of
AEQUITAS, as we discussed in Section III-A.

203

TABLE I
COMPARISON OF KOSEI AND AEQUITAS (RQ1)

Dataset Classifier #Discriminatory data Time (s) #Test cases Precision (%) Duplicated evaluation (%)
Aequitas KOSEI Pct (%) Aequitas KOSEI Pct (%) Aequitas KOSEI Aequitas KOSEI Aequitas

1
Census Income

DT 2,147.5 25,434.9 1,184.4 57.6 5.8 10.0 26,970.5 35,205.3 8.1 71.9 95.01
2 MLPC 8,110.2 369,629.5 4,557.6 6,105.9 609.4 10.0 26,279 515,406 33.6 71.7 99.76
3 RF 7,506.9 231,275.2 3,080.8 4,465.1 357.9 8.0 48,838.8 333,604.5 16.6 69.4 99.06
4

Statlog
DT 2,135.6 34,031.9 1,593.6 109.4 9.9 9.0 23,986.9 42,405.2 9.2 80.3 97.75

5 MLPC 1,498.2 101,092.7 6,747.6 1,371.6 52.3 3.8 17,522.9 316,411 9.0 32.0 99.84
6 RF 8,727.8 379,656.3 4,350.0 14,442.0 820.8 5.7 25,202.4 707,607.1 34.6 53.6 99.85
7

Bank Marketing
DT 8,374.2 206,718.3 2,468.5 440.2 36.5 8.3 79,605.3 276,798.6 11.8 74.7 98.68

8 MLPC 1,654.8 187,076.4 11,305.1 746.9 53.8 7.2 8,001.3 302,790.9 21.4 61.8 99.88
9 RF 7,481.0 783,700.6 10,475.9 18,380.9 1,010.1 5.5 16,273.9 1,209,985.7 46.1 64.8 99.94

Average 5,084.8 7.5 21.2 64.5 98.86

A. Experimental environment and settings

We implemented KOSEI with Python 2.7.18, extending
AEQUITAS and using the scikit-learn library [8]. The code for
KOSEI is available at: “https://github.com/sskeiouk/KOSEI”.

For a fair comparison, we use the same settings used in [2]
[6], as follows: three datasets (Census Income3, Statlog4, Bank
Marketing5), three classifiers (Decision Tree (DT), MLPC,
Random Forest (RF)), and protected attributes (‘gender’ for
Census Income and Statlog, and ‘age’ for Bank Marketing).

For AEQUITAS, we use the fully-directed search variant
since it is shown that the variant performs best among the three
variants [2]. The iteration limits for global and local search
(i. e., global and local iteration limit) are set to 2000, which
are also the settings used in [2]. We ran ten executions for
each configuration of experiments and took their average. All
experiments were executed on a laptop machine with Apple
M1, 16GB of RAM, running macOS Big Sur 11.4.

B. [RQ1] Does KOSEI find more discriminatory data than
AEQUITAS, at a reasonable execution cost?

Table I shows the results of experiments to compare KOSEI
and AEQUITAS. The rows represent configurations of datasets
and classifiers. The columns represent the number of detected
discriminatory data (‘#Discriminatory data’) and execution
time (‘Time’). The result shows that KOSEI’s performance
was orders of magnitude better than AEQUITAS. KOSEI
detects more discriminatory data than AEQUITAS, by 5084.8%
on average, for all nine configurations, and up to 11305.1%
(for the eighth configuration).

The results also show that KOSEI requires less execution
time than AEQUITAS. KOSEI runs faster than AEQUITAS, by
13.3 times on average, and KOSEI is faster by up to 26.3 times
(for the fifth configuration).

Answer for RQ1� �
Yes. The discrimination detecting ability of KOSEI is
5084.8% stronger than AEQUITAS. Also, KOSEI runs
13.3 times faster than AEQUITAS.� �

3https://archive.ics.uci.edu/ml/datasets/adult
4https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
5https://archive.ics.uci.edu/ml/datasets/bank+marketing

C. [RQ2] Does KOSEI generate test cases likely to be
discriminatory and avoid duplicated data, better than
AEQUITAS?

We measure the number of test cases generated by KOSEI
and AEQUITAS and calculate hit ratios (i. e., precisions) of
discriminatory data over generated test cases. The ‘#Test
cases’ and ‘precision (%)’ columns in Table I respectively
show them. As stated in [3], [4], AEQUITAS generates and
evaluates many duplicated data, which may cause inefficiency
of the technique. Therefore, we measured the ratio of
duplicated data over all the data evaluated in AEQUITAS,
shown in the ‘Duplicated evaluation (%)’ column.

The results confirm that the precisions of KOSEI are higher
than those of AEQUITAS by 3.04 (= 64.5/21.2) times on
average. From the ‘Duplicated evaluation (%)’ column, we
also observe that 98.8 % of evaluated data are duplicated.
Note that KOSEI avoided evaluations of duplicated data due
to the algorithm design (line 11 in Algorithm 3).

Answer for RQ2� �
Yes. KOSEI generates test cases more likely to be
discriminatory than AEQUITAS, by 3.04 times on average.
In addition, in AEQUITAS, 98.8 % of evaluated data are
duplicated, while in KOSEI, all duplicated evaluations are
avoided.� �

V. THREATS TO VALIDITY

This section discusses the main validity threats of our study.
a) Datasets, classifiers, and protected attributes used in

experiments: Our evaluation experiments use the same settings
used in [2] [6]: three datasets (Census, Statlog, and Bank),
three classifiers (DT, MLPC, RF), and one protected attribute
(‘gender’, ‘age’). As with any experiments, the number of
configurations is a threat, so additional experiments with more
datasets, classifiers, and different protected attributes (e.g.,
’Race’) would strengthen the generalization. Note, however,
that it is not easy to consider all configurations in experiments
since the number of configurations increases exponentially
due to combinations. Experiments in other fairness testing
studies thus also pick several datasets, classifiers, and protected
attributes instead of thorough configurations.

204

b) Comparison with other techniques: Our study
evaluates KOSEI by comparing it against only AEQUITAS;
that is, we did not compare it with other black-box individual
fairness testing techniques, such as SG [4] and VBT [5].
The focus of the study is on improving AEQUITAS, and
thus evaluation experiments were designed accordingly. Also,
fair comparison with SG and VBT is not easy since their
implementation details are not equivalent; e. g., KOSEI (based
on AEQUITAS) uses Scikit-Learn, while VBT and SG use
TensorFlow for ML library.

c) Construct validity: We implemented KOSEI
by extending the AEQUITAS code, obtained from
“https://github.com/sakshiudeshi/Aequitas”. Despite our
best efforts to pursue the code quality of KOSEI, it cannot be
guaranteed that the code is free of bugs, as always. Therefore,
we make the KOSEI code available online so that anyone can
inspect its validity.

VI. RELATED WORK

Galhotra et al. [1] developed an individual fairness testing
technique based on this abstract concept of individual fairness
introduced by Dwork et al. [9]. They realize it by treating two
individuals as similar if they are identical except for protected
attributes. This simple treatment of individual similarity has
been widely accepted, as most studies on individual fairness
testing (discussed below) are based on this concept of
individual similarity. This work also proposed algorithms for
the individual fairness testing, called THEMIS, which are
basically based on simple random testing.

Aggarwal et al. [4] proposed an individual fairness testing
technique, called SG, that uses a symbolic execution technique
[10]. Symbolic execution was initially developed for program
analysis to systematically search the input space in order
to cover input space efficiently. SG applies this technique
to individual fairness testing to gain its efficacy. It is also
noteworthy that SG also structures its algorithm with the global
and local search phases, inspired by AEQUITAS.

Morales et al. [6] proposed an individual fairness testing
technique named CGFT, which focused on the global search
of AEQUITAS. While AEQUITAS used random testing in the
global search, CGFT proposed using combinatorial testing
(CT) [11], which has a diverse sampling ability, resulting in
an improvement in the discrimination detecting ability.

Sharma and Wehrheim [5] proposed Verification-Based
Testing (VBT). Its key idea is to detect discriminatory data
by encoding the property of individual fairness and the
approximated ML classifier under test into a logical formula
and solving the encoded constraint with a constraint solver.

While the techniques mentioned above (i. e., [1], [2], [4]–
[6]) are all featured with a black-box testing approach,
Zhang et al. [3] proposed a white-box approach to individual
fairness testing. Specifically, it targets ML classifiers based

on Deep Neural Networks (DNN). Their algorithm, called
ADF, is inspired by a gradient technique to detect adversarial
examples. However, this technique differs from ours in that it
is only applicable to DNN based ML classifiers.

VII. CONCLUSION AND FUTURE WORK

This paper proposed a black-box individual fairness testing
technique called KOSEI. KOSEI is based on AEQUITAS and is
realized by improving the local search of AEQUITAS based on
its limitations identified by our insight. Experiments show that
the performance gain of KOSEI compared with AEQUITAS is
orders of magnitude; KOSEI, on average, detects 50.8 times
more discriminations than AEQUITAS. Experiments also show
that the performance gain is due to our technical improvement
based on our insight.

There are many directions to extend this work. The first is
to extend experiments with more datasets, more classifiers,
and different kinds of protected attributes (e. g., race) for
further generalization. The second direction is to evaluate
KOSEI, comparing it with other techniques, such as SG [4] and
VBT [5]. Another direction is to evaluate the use of detected
discriminatory data for re-training classifiers to improve its
fairness, as attempted in [2]. Finally, we also plan to combine
the improvement of the local search of KOSEI with other
techniques, such as with CGFT [6], which improves the global
search of AEQUITAS.

ACKNOWLEDGEMENT

This paper is based on results obtained from a project,
JPNP20006, commissioned by the New Energy and Industrial
Technology Development Organization (NEDO).

REFERENCES

[1] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: testing software
for discrimination,” in Proceedings of ESEC/FSE’17, 2017, pp. 498–510.

[2] S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed fairness
testing,” in Proceedings of ASE’18, 2018, pp. 98–108.

[3] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S. Dong,
and T. Dai, “White-box fairness testing through adversarial sampling,”
in Proceedings of ICSE’20, 2020, pp. 949–960.

[4] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Black
box fairness testing of machine learning models,” in Proceedings of
ESEC/SIGSOFT FSE’19, 2019, pp. 625–635.

[5] A. Sharma and H. Wehrheim, “Automatic fairness testing of machine
learning models,” in Proceedings of ICTSS’20, 2020, pp. 255–271.

[6] D. P. Morales, T. Kitamura, and S. Takada, “Coverage-guided fairness
testing,” in Proceesing of ICIS’21, 2021, pp. 183–199.

[7] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[9] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness
through awareness,” in Proceedings of ITCS’12, 2012, pp. 214–226.

[10] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in Proceedings of FSE’05, 2005, pp. 263–272.

[11] R. Kuhn and R. Kacker, Introduction to Combinatorial Testing.
Chapman & HallCRC, 2013.

205

http://archive.ics.uci.edu/ml

Data Driven Testing for Context Aware Apps
Ryan Michaels

St Edward’s University
rmichael@stedwards.edu

Shraddha Piparia
University of North Texas

ShraddhaPiparia@my.unt.edu

David Adamo
Block, Inc.

dadamo@squareup.com

Renee Bryce
University of North Texas

Renee.Bryce@unt.edu

Abstract—Context driven environments are growing in pop-
ularity. Mobile applications, Internet of Things devices, au-
tonomous vehicles, and future technologies respond to context
events in their environments. This work uses a set of context
events from real users to guide the generation of context
driven test cases. Context event sequences are obtained by
applying Conditional Random Fields (CRF). Test suites are then
constructed by interleaving the context event sequences with GUI
events. The choice of context event is made based on transitions
obtained from the CRF. Results of the empirical studies show
that techniques that incorporate context events provide better
code coverage than NoContext for the subject applications. A
heuristic technique introduced in this work, ISFreqOne, yields
4x better coverage than NoContext, 0.06x better coverage than
Random Start Context, 0.05x better coverage than Iterative
Start Context, which are control context generation techniques,
and 0.04x better coverage than ISFreqTwo, another heuristic
introduced in this work.

Index Terms—Android Testing, Context events, GUI events,
Software Testing, Test Suite Generation

I. INTRODUCTION

Many applications allow streams of context and user events
to influence their behavior. We see examples in the domains
of autonomous vehicles, Internet of Things (IoT), and mobile
devices. For instance, if a user clicks a button, an app
that responds by accessing data over the Internet to update
the user’s view will respond differently the device’s context
changes from WiFi to airplane mode. Additional examples of
context events include changes in battery levels, the device’s
physical location, sound output to speakers or headphones,
and changes to screen orientation. The work in this paper
generates context aware test suites with a strategy based on a
real-world data set of context events [1].

In the remainder of the paper: Section II summarizes
related work; Section III describes the event sequence model;
Section IV covers the data driven test generation strategy;
Section V describes experiments; Section VI shows results
and discussion; Section VII shares threats to validity; and
Section VIII gives conclusions.

II. RELATED WORK

GUI testing: GUI testing is an important task that many
tools support. Examples include Monkey [2], Dynodroid [3],
and Autodroid [4]. Most tools generate test cases without
consideration of context events and their interactions with
the application under test (AUT). Tests are often generated
with respect to an initial setup of context variables that do

not change during the testing. This may result in insufficient
exploration of application states and code.

Monkey [2] offers fast and replayable test cases in the
form of random clicks and swipes. Monkey does not interact
explicitly with on-screen elements such as buttons and text
fields, but clicks on events at specific screen coordinates [2].

Dynodroid [3] is an online testing tool that is responsive to
application changes when it generates a “next event”. It con-
siders both system and user generated events. In an extensive
study, Dynodrod generated 50 open source applications and
outperformed Monkey in terms of code coverage.

Tema [5], [6] is an online GUI testing framework that
utilizes models of application behavior informed by user
data to generate abstract tests and are independent of device
platforms. The models identify application state from abstract
user actions. In its final step, Tema translates the abstract test
cases into test cases by mapping of actions for specific devices
and applications.
Context-aware GUI testing: Testing that uses both context
and GUI events may increase fault detection for context driven
apps [3], [7]–[10]. Dynodroid [3] is one tool that considers
context events. While generating context events, Dynodroid
does not offer a guarantee of combinatorial coverage of
context and GUI event intersections will occur.

Adamsen et al. [11], Majchrzak et al. [12], and Song
et al. [10] each propose context-sensitive mobile testing
approaches. The approaches execute test suites under differing
context environments. The change in context can change a
valid test into an invalid one, such as a video streaming app
attempting to execute without WiFi. While their approaches
cover multiple context environments, there are opportunities
to improve with more cost-effective strategies.

Amalfitano et al. [7] use context and GUI event combi-
nations into test case generation. They consider a small set
of GUI and context events and interleave them during test
generation. The work demonstrates benefits of testing with
both context and GUI events.

Griebe et al. [8] use a model-based approach where testers
generate an annoted UML diagram to describe GUI behavior
and context parameters of the AUT. The authors later expand
this approach to incorporate sensor input [13]. Using the UI
sensing tool Calabash-Android, they generate sensor values
into the test cases [14]. They further provide parsing of natural
language expressions, such as ”I invert the phone” to generate
additional test data.

DOI reference number: 10.18293/SEKE2022-125 206

CAIIPA [15] is a cloud based testing service that supports
context aware apps. Their results demonstrate that using
real-world context events during test generation improves
performance fault and crash detection up to 11x better than
Monkey. CAIIPA utilizes real-world context data. However,
it is limited to hardware options such as WiFi and sensor
settings. It cannot detect context such as screen orientation.
AppDoctor [16] is another a cloud-based automation testing
tool that injects events such as changes to network states,
device storage, GUI gestures, and more during execution.

MoTiF [17] identifies and replicates context sensitive
crashes for Android apps. Future work may extend this to
not only reproduce crashes but to fully identify information
of crash patterns across applications.

MobiCoMonkey [18] extends Monkey [2] by itnerleaving
context events at random or as predefined by testers. This tool
could be enhanced in the future with systematic interleaving
of context and GUI events.
Conditional Random Fields (CRFs): Hidden Markov Mod-
els(HMMs) [19] are popular probabilistic sequence models
[20]. However, HMMs suffer difficulty in modeling arbitrary,
dependent features of input sequences. To overcome this
drawback, we apply conditional random fields (CRF) [21]
to testing context-aware systems. CRF sequence models are
discriminative in nature, which allows for maximization of
conditional likelihood.

III. EVENT SEQUENCE MODEL

Our event sequence model is built on Autodroid [22] which
comes with a test builder, abstraction manager to identify
GUI events available in the AUT at different states, an
event selector, and the event executor. We add context events
to enable dynamic context-GUI testing for context aware
applications.

Let us define GUI and context actions and events.

Definition 1. We define individual context events as a 2-tuple
(c, a); c is a context variable with a as the assigned context
action.

Screen orientation WiFi Battery AC power
portrait connected Ok connected

landscape disconnected low disconnected
- - high -

TABLE I
EXAMPLE CONTEXT VARIABLES AND POSSIBLE VALUES

Table I shows four context variables (screen orientation,
WiFi, battery status, AC power) that may be set to any of
the respective values shown in the table. A context event is
then defined as one of these variables with an assigned value,
i.e. c= ScreenOrientation = landscape, WiFi = cdisconnected,
Battery = low, Power = disconnected.

Definition 2. Action: We define an action as a user interac-
tion with the application or a system level call with a target.
Each action consists of a target, type, and value. There are
two types of actions:

• GUI action: A user executes an action using GUI
widgets, e.g. a click on a on-screen widget or filling in
a text-field.

• Context action: The mobile operating system executes
a system action, e.g. change in screen orientation.

Sometimes an action may require a value. For example, a text
box may require users to type in a value. We consider two (or
more) actions to be equivalent if they have the same target
and type.

Definition 3. Event: We define an Event consists of a
sequence of actions with pre and post conditions. A GUI event
causes a change in the GUI state after its execution. A context
event has one or more context actions and may or may not
cause a change in the GUI state. An event is a complete event
if it is executed and its post condition is known, otherwise it
is a partial event.

Definition 4. Test Case: We define a test case as a sequence
of events. Each test case has a unique id, a set of events, and
a length. Table II shows a test case of length two containing
one context event and one GUI event.

ID tc001
Event 1
(GUI event - launch)

event:
precondition:

activity name: null
state id: null

postcondition:
activity name: MainActivity
state id: 07f24

actions:
type: launch
value: null

target:
selector: system
selector value: app

type: app
description: launch

Event 2
(Context event -
Power disconnected)

event:
precondition:

activity name: MainActivity
state id: 07f24

postcondition:
activity name: MainActivity
stateId: 5d158

actions:
type: power disconnected
value: null

target:
selector: power
selector value: disconnected

type: context
description: power disconnected

TABLE II
A TEST CASE WITH ONE CONTEXT EVENT AND ONE GUI EVENT

IV. DATA DRIVEN TEST GENERATION STRATEGY

Data collection and CRF modeling. To generate the CRF
model, we observed everyday smartphone use from 58 univer-
sity students for the duration of one month, via a monitoring
app [1]. The app was configured to listen to 144 broadcasts
which occurred 16,257,795 times during the one month pe-
riod. [1]. This data fed into the construction of CRFs using

207

Fig. 1. Pseudocode for data-driven test generation algorithm based on
Autodroid framework [23]
Inputs: Android app. package (AUT), combinatorial context model

(M), context event sequence (C) context event frequency (p)
Outputs: Test suite (T)

1: Call ← generateContextsFromCoveringArray(M)
2: T ← φ . test suite
3: repeat
4: Ti ← φ . test case
5: econtext ← selectInitialContext(Call)
6: Ti ← Ti ∪ econtext

7: install AUT and execute launch event, elaunch

8: Ti ← Ti ∪ elaunch

9: scurr ← initial GUI state after app launch
10: while termination condition is false do
11: Eall ← getGuiEvents(scurr)
12: esel ← selectGuiOrContextEvent(scurr, Eall, C, p)
13: execute selected event, esel
14: Ti ← Ti ∪ esel
15: scurr ← current GUI state
16: end while
17: tearDownTestCase()
18: T ← T ∪ {Ti}
19: until completion condition is false

142,138 instances for training data and 28,663 instances of
context events for test data.

The CRF is the graph obtained after considering the top
likely transitions. We only consider the dependency between
a predefined subset of events and remove all other external
dependencies. Our aim is to find a context sequence which
represents these dependencies without self-loops. We then
select the transitions with the highest weight.
Test generation algorithm. The algorithm in Figure 1 uses
context event sequences derived from a CRF to generate a
sequence of context and GUI events, and then saves the gen-
erated sequence as a test case. The test generation algorithm
consists of the following inputs:

• A compiled Android application
• Context event sequence, C, obtained from the CRF
• An integer value, p, that determines how often a context

event will be added to a test case
The following discussion walks through the algorithm:

Step 1: Generate context covering array. Line 1 uses the
combinatorial context model provided as input to generate a
covering array. Each entry in the covering array represents a
possible starting context for one or more test cases.
Step 2: Test case setup. Lines 4-9 represent the test setup
for each test case. Line 4 initializes the test case as an empty
event sequence. At the beginning of each test case, line 5
chooses an initial context from the covering array generated
in step 1 and applies the chosen context to the execution
environment. Line 6 adds the starting context event to the test

case. Line 7 installs the AUT and launches it in the starting
context. Line 8 adds the launch event to the test case. Line 9
retrieves the initial GUI state of the AUT after launch.
Step 3: Select and execute an event. Line 11 identifies all
GUI events that are available and executable in the current
GUI state. Lines 12-14 use the current GUI state, the context
event sequence C derived from the CRF, and the specified
context event frequency p to choose which GUI event or
context event to execute.

The algorithm repeats steps 1 to 3 until a specified test case
termination condition holds true. Context events are added to
the test case at the predefined frequency p until the test case
ends or until all events in the context event sequence, C, have
been executed.
Step 4: Test case teardown. After the algorithm executes the
last event in each test case, line 17 resets the test environment
to allow tests to run independent of each other. The algorithm
repeats steps 1 to 4 to generate multiple test cases containing
a mix of context events and GUI events until a specified test
suite completion condition holds true.

V. EXPERIMENTAL SETUP

For our experiments we consider four applications, de-
scribed in Table III. The applications have between 1,215 -
15,062 lines of code, 197-1134 methods, and 46-209 classes.
Each application has over 1,000 downloads at the time of our
experiment. The application’s apk files are downloaded from
F-Droid [24].

App
Name

Installs Vers. Lines Methods Classes

Diode 10k+ 1.3.2.2 7,933 1134 209
Your
Local
Weather

5k+ 5.6.4 15,062 499 114

MovieDB 1k+ 2.1.1 2,719 319 81
Abcore 1k+ 0.77 1,215 197 46

TABLE III
CHARACTERISTICS OF THE APPS UNDER TEST

A. Experimental Setup

The experiments use the Android 10.0 Pixel emulator (API
29) to generate ten test suites of two hour duration for each
technique and application in the study. A two second delay
occurs between event executions and there is a .05 probability
to terminate a test case. We instrument subject applications
with JaCoCo [25] to measure coverage.

B. Variables and Measures

Independent Variable. The independent variable of our
experiments is our test generation technique. We consider
three control techniques and two heuristic techniques.
Control techniques:

• NoContext generates a test suite of GUI events with
only an initial set of context variables that do not
change during testing. NoContext construct test suites

208

using c = ScreenOrientation=Portrait WiFi=connected,
Battery=OK, AC Power=connected}.

• RandomStartContext (RSContext) starts each test case
by selecting a start context at random from a context
covering array and then makes random selections of only
GUI events.

• IterativeStartContext (ISContext) starts each test case
by selecting a start context in a round-robin fashion
from a context covering array and then makes a random
selection of only GUI events.

Heuristic techniques:
• IterativeStartFreqOne (ISFreqOne) iterates through

the context covering array to set a starting context and
then uses context sequences obtained from the CRF to
interleave context events with GUI events at an interval
of one until all events in the context sequence have been
executed.

• IterativeStartFreqTwo (ISFreqTwo) iterates through
the context covering array to set a starting context and
then uses context sequences obtained from the CRF to
interleave context events with GUI events at an interval
of two until all events in the context sequence have been
executed.

The heuristic techniques, ISFreqOne and ISFreqTwo, use
context event sequences derived from a CRF that includes
only events for internet connectivity, power connection, bat-
tery level, and screen orientation changes.
Dependent Variables. We assess our research questions using
code coverage:

• Line coverage measures the number of lines of code
executed by the test suite relative to the total number of
statements in the AUT.

• Method coverage counts the number of methods exe-
cuted by the test suite relative to the total number of
methods in the AUT.

• Class coverage counts the number of classes executed
by the test suite relative to the total number of classes
in the AUT.

C. Research Questions

The experiments examine two research questions:
RQ1: Do ISFreqOne and ISFreqTwo increase line, method,

and class coverage in comparison to NoContext, RSContext,
and ISContext?

RQ2: Which of the two heuristic techniques provide the
greatest coverage of lines, methods, and classes in the test
applications?

VI. RESULTS AND ANALYSIS

RQ1 Results: Tables IV, V, and VI show the average
results for line, method, and class coverage for each tech-
nique and app. We calculate the ratio of our techniques to
the controls by dividing average values of both heuristics
(ISFreqOne, ISFreqTwo) by control techniques (NoContext,
RSContext, and ISContext). The ISFreqOne technique shows
an improvement of approximately four times (312%) line

NoContext RSContext ISContext ISFreqOne ISFreqTwo
Abcore 15.83 62.87 63.95 65.15 62.83

MovieDB 40.65 45.22 45.45 47.5 47.205
YourLocalWeather 9.05 9.09 9.04 9.05 9.03

Diode 32.44 32.89 33.33 33.69 33.34
TABLE IV

AVERAGE LINE COVERAGE

NoContext RSContext ISContext ISFreqOne ISFreqTwo
Abcore 25.38 71.72 72.88 73.81 71.28

MovieDB 47.37 54.12 54.55 57.365 55.175
YourLocalWeather 15.32 15.33 15.15 15.18 15.15

Diode 43.81 44.08 45.37 45.50 44.32
TABLE V

AVERAGE METHOD COVERAGE

coverage, three times (191%) method coverage, and 3.5 times
(251%) class coverage when compared to NoContext for
the application AbCore. IsFreqOne shows an improvement
of 1.2 times (17%) line coverage, 1.2 times (21%) method
coverage, and 1.2 times (18%) class coverage for ISFreqOne
when compared to NoContext for the application MovieDB.
ISFreqOne shows about 4% increase in line, method, and class
coverage when compared to NoContext for the application
Diode. ISFreqOne does not result in improvements for Your
Local Weather relative to NoContext. For the Your Local
Weather application, method coverage values for ISFreqOne
and NoContext are similar although the class coverage is less
for ISFreqOne when compared to NoContext. Your Local
Weather has low overall code coverage. Our tool could not
explore the application much because it needs a location to be
entered or selected from the map which hindered exploration.
The average improvement of ISFreqTwo over NoContext is
1.8 times line coverage, 1.5 times method coverage, and 1.67
times class coverage across all four applications.

On average, ISFreqOne offers improvement of 3.03%
line coverage, 3.35% method coverage in comparison to
RSContext across all four applications for ISFreqOne over
RSContext. There is an average improvement of 2.2% line
coverage, 0.6% method coverage, and 1.1% class coverage
for ISFreqTwo over NoContext. Across all the applications,
there is 2.2% line coverage, 2.14 method coverage, and 0.17%
class coverage improvement in ISFreqOne over ISContext.
We observe an improvement of 1.1% line coverage and
0.92% class coverage in ISFreqTwo over ISContext across all
four applications. The method coverage, on average, did not
show improvement for ISFreqTwo over ISContext. The noted
improvements in code coverage indicate that for context-
aware mobile applications, the presence or absence of context
events in test suites has noticeable effects on the behavior of
applications and the ability of test suites to adequately explore
application functionality. The results also suggest that context
events in test suites are useful not just at the beginning of test
cases but also mixed in with GUI events at different intervals
within each test case.
RQ2 Results: We compare results obtained from both heuris-
tic techniques: ISFreqOne and ISFreqTwo. ISFreqOne out-
performs ISFreqTwo across two subject applications. For
Movie DB, there is an improvement of 0.62% line coverage

209

NoContext RSContext ISContext ISFreqOne ISFreqTwo
Abcore 21.74 76.30 77.33 76.24 76.39

MovieDB 51.36 59.88 59.45 60.49 61.11
YourLocalWeather 27.93 27.93 25.88 25.88 25.88

Diode 38.42 39.27 40.08 40.10 39.98
TABLE VI

AVERAGE CLASS COVERAGE

Fig. 2. Application Movie DB: Box plot of NoContext, RSContext, ISCon-
text, ISFreqTwo, and ISFreqOne

and 3.9% method coverage. Class coverage is 1.03% higher
for ISFreqTwo compared to ISFreqOne. The application
AbCore shows an improvement of 3.7% line coverage and
3.5% method coverage for ISFreqOne over ISFreqTwo. Class
coverage is 2.1% higher for ISFreqTwo over ISFreqOne.
Diode application shows an improvement of 1.18% line
coverage, 3.17% method coverage, and 0.42% class coverage
for ISFreqOne over ISFreqTwo. The application Your Local
Weather performs similarly for both of these techniques. On
an average, there is an improvement of 1.15% line coverage
and 3.76% method coverage for ISFreqOne over ISFreqTwo
with 0.18% less class coverage. These results indicate that
inserting context variables at an interval of one GUI events
shows more coverage than inserting at two GUI events. This
could be due to the fact that the Android applications are small
in size. Figures 2 - 5 show the box plot the line coverage of
all five techniques for Movie DB, AbCore, Diode, and Your
Local Weather respectively. The standard deviation is less for
ISFreqOne when compared to ISFreqTwo for all applications,
indicating ISFreqOne is the more reliable generation heuristic
on the AUTs in this study.

VII. THREATS TO VALIDITY

The subject applications used for the experiments have
different characteristics which may affect the performance
of our techniques. Adding more subject applications can
help to better generalize the results. We tried to minimize
this threat by choosing applications of varying sizes from

Fig. 3. Application AbCore: Box plot of NoContext, RSContext, ISContext,
ISFreqTwo, and ISFreqOne

Fig. 4. Application Diode: Box plot of NoContext, RSContext, ISContext,
ISFreqTwo, and ISFreqOne

different domains. The set of context events used in this
experiment are limited in number and do not cover the
totality of context events in Android. We minimized this
threat by focusing on events that are reliably accessible in
the emulator. We specifically excluded sensor events due
to the sheer amount of data produced by sensors and the
battery-intensive operations required to collect a constant
stream of sensor values which helps in minimizing this threat.
Inclusion of more context events may change results. For
instance, we did not consider internet changes in this work.
This was because the values in our data contain several
internet connections such as HSPA CONNECTION, HS-
DPA CONNECTION, LTE CONNECTION, etc. We hope
that future advancements in emulators or inexpensive device

210

Fig. 5. Application Your Local Weather: Box plot of NoContext, RSContext,
ISContext, ISFreqTwo, and ISFreqOne

farms will allow such expansions.

VIII. CONCLUSIONS

This work develops and studies algorithms that systemat-
ically generate test suites comprised of context events and
GUI events. In particular, these techniques are guided by a
real world data set of context data from 58 users. The choice
of context events is made based on transitions obtained from
CRF. We analyze how often context change should occur by
providing an interval as a parameter to the tool. We observe
that the techniques that incorporate context events performed
better than NoContext among all four subject applications.
The heuristic technique ISFreqOne yields four times better
coverage than NoContext, 0.06 times better coverage than
RSContext, 0.05 times better coverage than ISContext, and
0.04 times better than ISFreqTwo strategies. ISFreqOne also
has a lower standard deviation between runs. The initial
context strategies RSContext and ISContext performed better
than NoContext by up to a factor of four indicating the
importance of context while testing Android applications.

Future work will extend this study to examine larger
context data sets and apply the techniques to more mobile
applications. This work also serves as a foundation for
future work that extends our techniques to other domains
such as Internet of Things (IoT), wearable technologies, and
autonomous vehicles. Future work will further examine fault
finding effectiveness of context-aware test generation.

REFERENCES

[1] S. Piparia, M. K. Khan, and R. Bryce, “Discovery of real world
context event patterns for smartphone devices using conditional random
fields,” in ITNG 2021 18th International Conference on Information
Technology-New Generations, S. Latifi, Ed. Cham: Springer Interna-
tional Publishing, 2021, pp. 221–227.

[2] Google Inc, “Ui/application exerciser monkey.” [Online]. Available:
http://developer.android.com/tools/help/monkey.html Accessed 26 Dec
2021.

[3] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013, pp. 224–234.

[4] D. Amalfitano, N. Amatucci, A. R. Fasolino, and P. Tramontana,
“A Conceptual Framework for the Comparison of Fully Automated
GUI Testing Techniques,” in International Conference on Automated
Software Engineering Workshop (ASEW), 2015, pp. 50–57.

[5] A. Jaaskelainen, M. Katara, A. Kervinen, M. Maunumaa, T. Paakko-
nen, T. Takala, and H. Virtanen, “Automatic gui test generation for
smartphone applications-an evaluation,” in International Conference on
Software Engineering-Companion Volume. IEEE, 2009, pp. 112–122.

[6] A. Nieminen, A. Jaaskelainen, H. Virtanen, and M. Katara, “A compar-
ison of test generation algorithms for testing application interactions,”
in Intl. Conference on Quality Software. IEEE, 2011, pp. 131–140.

[7] D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Amatucci,
“Considering context events in event-based testing of mobile appli-
cations,” in International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE, 2013, pp. 126–133.

[8] T. Griebe and V. Gruhn, “A model-based approach to test automation
for context-aware mobile applications,” in ACM Symposium on Applied
Computing. ACM, 2014, pp. 420–427.

[9] Z. Liu, X. Gao, and X. Long, “Adaptive random testing of mobile
application,” in International Conference on Computer Engineering and
Technology (ICCET), vol. 2. IEEE, 2010, pp. V2–297.

[10] K. Song, A. R. Han, S. Jeong, and S. Cha, “Generating various
contexts from permissions for testing android applications,” in Software
Engineering and Knowledge Engineering (SEKE), 2015, pp. 87–92.

[11] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execution of
android test suites in adverse conditions,” in International Symposium
on Software Testing and Analysis. ACM, 2015, pp. 83–93.

[12] T. A. Majchrzak and M. Schulte, “Context-dependent testing of applica-
tions for mobile devices,” Open Journal of Web Technologies (OJWT),
vol. 2, no. 1, pp. 27–39, 2015.

[13] T. Griebe, M. Hesenius, and V. Gruhn, “Towards automated UI-tests for
sensor-based mobile applications,” in Intl. Conf. on Intelligent Software
Methodologies, Tools, and Techniques. Springer, 2015, pp. 3–17.

[14] Uber, “Calabash-android,” 2019, retrieved Feb 25, 2020 from
https://github.com/calabash.

[15] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson,
H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra, and F. Zhao, “Caiipa:
Automated large-scale mobile app testing through contextual fuzzing,”
in Intl. Conf. on Mobile Computing and Networking. New York, NY,
USA: ACM, 2014, pp. 519–530.

[16] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, effectively detecting
mobile app bugs with appdoctor,” in Proceedings of the Ninth European
Conference on Computer Systems, 2014, pp. 1–15.

[17] M. Gómez, R. Rouvoy, B. Adams, and L. Seinturier, “Reproducing
context-sensitive crashes of mobile apps using crowdsourced moni-
toring,” in Proceedings of the International Conference on Mobile
Software Engineering and Systems, ser. MOBILESoft ’16. New York,
NY, USA: ACM, 2016, pp. 88–99.

[18] A. S. Ami, M. M. Hasan, M. R. Rahman, and K. Sakib, “Mobicomon-
key - context testing of android apps,” in Intl. Conf. on Mobile Software
Engineering and Systems (MOBILESoft), May 2018, pp. 76–79.

[19] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, Feb 1989.

[20] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun, “A practical part-of-
speech tagger,” in In Proceedings of the Third Conference on Applied
Natural Language Processing, 1992, pp. 133–140.

[21] C. Sutton and A. McCallum, “An introduction to conditional
random fields,” Foundations and Trends® in Machine Learning,
vol. 4, no. 4, pp. 267–373, 2012. [Online]. Available:
http://dx.doi.org/10.1561/2200000013

[22] D. Adamo, D. Nurmuradov, S. Piparia, and R. Bryce, “Combinatorial-
based event sequence testing of android applications,” Information and
Software Technology, vol. 99, pp. 98–117, 2018.

[23] S. Piparia, D. Adamo, R. Bryce, H. Do, and B. Bryant, “Combinatorial
testing of context aware android applications,” in 2021 16th Conference
on Computer Science and Intelligence Systems (FedCSIS). IEEE, 2021,
pp. 17–26.

[24] F-Droid, “F-droid: Free and open source android app repository,”
http://f-droid.org, 2017, (Accessed: 26-12-2021).

[25] Mountainminds GmbH, “EclEmma: JaCoCo java code coverage li-
brary,” http://www.eclemma.org/jacoco/, 2017, (Accessed: 26-12-2021).

211

A Preliminary Study on the Explicitness of Bug
Associations

Zengyang Li†, Jieling Xu†, Guangzong Cai†, Peng Liang‡, Ran Mo†
†School of Computer Science & Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning,

Central China Normal University, Wuhan, China
‡School of Computer Science, Wuhan University, Wuhan, China

zengyangli@ccnu.edu.cn, {xjling, guangzongcai}@mails.ccnu.edu.cn, liangp@whu.edu.cn, moran@ccnu.edu.cn

Abstract—Bugs are usually in associations with other bugs in
a software system, e.g., a bug may result from another bug.
However, such bug associations are implicit and usually cannot be
traced without a significant amount of effort. Intuitively, if a bug
association is easier to trace, the involved bugs can be fixed in a
cleaner way. However, there is little evidence on the explicitness of
bug associations. In this paper, we aim to evaluate the explicitness
of bug associations, so as to get a basic understanding on such
associations. To this end, we defined a metric to quantify the
explicitness of a bug association, and conducted an empirical
study on 11 non-trivial Apache open source software systems.
The main findings are summarized as follows: (1) From the
perspective of code change history, around 29% of bug pairs are
not explicitly associated, and about 71% are explicitly associated
to some extent; (2) Bugs in the association of Container have rela-
tively strong association explicitness, while bugs in the association
of Blocked or Blocker, Cloners, and Dependent have relatively
weak association explicitness. These findings provide insights on
software analyzability to practitioners and researchers.

Keywords—bug association, association type, empirical study,
open source software

I. INTRODUCTION

Bugs are usually in association with other bugs in a software
system [1], [2]. For instance, in project Apache HBase, bug
HBASE-21551 on memory leak was caused by bug HBASE-
20704 that did not handle file storage properly. Such associa-
tions are important to software maintenance in the sense that
they can facilitate locating bugs and analyzing the impact of
the bugs on the system [3], [4]. Intuitively, if a bug association
is easier to trace, the involved bugs can be fixed in a cleaner
way, i.e., the bugs can be solved more completely. Despite of
the importance of bug associations, there is little evidence on
the explicitness of bug associations from the perspective of
change history of the software system. Hence, in this work,
we aim to evaluate the explicitness of bug associations, so as
to get a basic understanding on such associations.

To this end, we conducted an empirical study on 11 non-
trivial Apache open source software (OSS) projects, which
bugs are managed in JIRA, an issue tracking system deployed
by Apache Software Foundation. In JIRA, for each project,
a proportion of bug associations are manually labeled by

This work is supported by the Natural Science Foundation of Hubei
Province of China under Grant No. 2021CFB577 and the Natural Science
Foundation of China (NSFC) under Grant No. 62172311.

DOI reference number: 10.18293/SEKE2022-027

practitioners, but it is not clear whether and to what extent
such manually labeled associations can be reflected in the code
change history (i.e., commits) of the project. The results of
this question can reflect the difficulty of identifying the bug
associations and the possibility of automatic identification.

Our main contributions lie in the following two aspects. (1)
This work is an early attempt to explore the explicitness of bug
associations from the perspective of software change history.
(2) We defined a metric to quantify the explicitness of bug
associations, and examined the bug association explicitness
using this metric in 11 Apache OSS projects.

II. BACKGROUND AND RELATED WORK

A. Background

There are different types of the association between two
bugs. We collected 16 types of bug associations from JIRA1,
including: (1) Blocked, (2) Blocker, (3) ChildIssue, (4) Clon-
ers, (5) Container, (6) Dependency, (7) Dependent, (8) Dupli-
cate, (9) Incorporates, (10) ParentFeature, (11) Problem/In-
cident, (12) Reference, (13) Regression, (14) Related, (15)
Required, and (16) Supercedes. The details of all the 16 bug
association types are provided online2.

B. Links between Issues

Many studies investigated various links (e.g., associations
or dependencies) between issues (including bugs) and the
characteristics and applications of these links. Kucuk et al.
classified duplicate bugs based on analyzing the difference
between duplicate and non-duplicate bugs [5]. Tomova et al.
studied issue link type selection [6]. Researchers use trace
links to support various development and maintenance tasks,
such as impact analysis [3] and bug tracking [7]. However,
our work is not to explore what kind of relationship between
bugs, but to study the explicitness of the association between
bugs that have been manually linked from the perspective of
code change history.

C. Links between Bugs and Commits

Numerous studies investigated the links between bugs and
commits on the detection and application of the links. Le et al.

1https://issues.apache.org/jira
2https://github.com/breezesway/BugAssociationType

212

created a discriminative model for predicting whether there is
a link between commit messages and bug reports [8]. Li et al.
made use of links between bugs and commits to identify bug-
fixing commits and then calculated the change complexity of
bug-fixing commits [9], [10]. However, these studies do not
discuss the relationship between the corresponding commits
and associated bugs, which is the focus of our study.

III. STUDY DESIGN

To investigate the explicitness of bug associations, we
conducted a preliminary case study on Apache OSS projects.

A. Research Questions

RQ1: How much explicitness do the bug associations have?
Rationale: The explicitness of bug associations helps to reveal
how difficult the association is to be identified, thereby assess-
ing the likelihood that the bug can be completely resolved to
some extent. We quantify the explicitness of bug associations
for each project, and study how the explicitness is distributed.
RQ2: Is there a difference on the association explicitness
between different association types?
Rationale: We study whether there are significant differences
between different association types, in order to understand
whether the association explicitness of different association
types is different. This gives researchers and developers in-
spiration for whether to pay different attention to different
association types.

B. Case Selection

In this study, we only investigated Apache OSS projects
which main programming language is Java. For selecting each
case (i.e., OSS project) included in our study, we applied the
following criteria: C1) Over 85% of the source code is written
in Java; C2) The history of the project is more than 5 years;
C3) The number of commits of code repository of the project
is more than 4000; and C4) The number of bug pairs that
are manually associated in JIRA is more than 100. C1 is set
to ensure that the strength of the association between bugs is
clearly defined. C2 and C3 are set to ensure that the selected
project is non-trivial and has sufficient data. C4 was set to
ensure that the final sample dataset for analysis was large
enough for statistical analysis.

C. Data Collection

To answer the RQs formulated in Section III-A, we collected
the data items listed in TABLE I, which also provides the
mapping between the data items and the target RQ(s). All
data items were collected from JIRA and GitHub.

TABLE I: Data items to be collected.

Name Description Target RQ(s)

D1 Associated
bug pair

A pair of bugs
in association. RQ1

D2 Association
type

The type of association
between each pair of bugs. RQ2

D3 Changed
source files

The number of Java source
files modified in the
bug-fixing commit(s).

RQ1, RQ2

D. Data Analysis

To answer RQ1, we first defined a metric, namely Associ-
ation Explicitness or AE, to quantify the explicitness of the
association between two bugs. Assuming that the pair of bugs
α and β are in an association manually labeled in JIRA, the
set of Java source files modified in the commits for fixing α
is Fα, and the set of source files modified in the commits for
fixing β is Fβ . The AE of the association between α and β
is defined as follows:

AE =
|Fα

⋂
Fβ |

|Fα

⋃
Fβ |

(1)

The AE of a bug pair falls into [0.0,1.0]. Second, we cal-
culated the distribution of the proportion of bug pairs against
total bug pairs over different intervals of AE value. We divide
the interval into [0.0,0.0], (0.0,0.1], (0.1,0.2], . . . , (0.9,1.0),
[1.0,1.0]. Especially, we count the cases where two bugs are
fixed in the same commit(s) in the case of [1.0,1.0].

To answer RQ2, taking all bug pairs of the selected projects
as a whole, we ran the Mann-Whitney U tests to calculate
whether there is a significant difference on AE between bug
pairs of different association types.

IV. STUDY RESULTS

A. Explicitness of Bug Associations (RQ1)

TABLE II shows the distribution of percentage of bug pairs
over intervals of the AE value for the 11 projects. (1) The
percentage of the bug pairs with AE = 0.0 of each project
ranges from 22.5% to 41.1%. When taking all projects as a
whole, there are around 29.4% bug pairs with AE = 0.0. This
indicates that for those bug pairs, no source files are changed
in the bug-fixing commits for both bugs of each bug pair. (2)
Consider the AE interval of (0.0,0.5]. Taking all projects as
a whole, the AE of about 52.6% of bug pairs falls into this
interval. (3) Consider the AE interval of (0.5,1.0). Taking all
projects as a whole, the AE of about 4.1% of bug pairs falls
into this interval. (4) There are 4.6%-35.1% of bug pairs that
have a perfect association explicitness, i.e., AE = 1.0, for
each project. Taking all projects as a whole, 13.9% of the bug
pairs are with AE = 1.0, which means that the same source
files are changed in the bug-fixing commits of the two bugs
of each of those bug pairs.

We further studied the bug pairs in which the two associated
bugs are fixed in the same commit(s). The results are shown
in TABLE III, where column #BugPairA denotes the number
of bug pairs with AE = 1.0, column #BugPairSC denotes
the number of bug pairs fixed in the same commit(s), and
%BugPairSC denotes the percentage of #BugPairSC over
#BugPairA. For each project, the %BugPairSC ranges from
0.0% from 68.6%. Especially, projects Accumulo and Hadoop
do not have any bug pairs fixed in the same commit(s).

Summary: From the perspective of code change history,
on average, 29.4% of bug pairs are not explicitly associated,
while 70.6% of bug pairs are explicitly associated; further-
more, 52.6% of bug pairs have a relatively low association

213

TABLE II: Distribution of the percentage of bug pairs against the total bug pairs over intervals of AE for the selected projects.

Project [0.0,0.0] (0.0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1.0) [1.0,1.0]
Accumulo 38.2 13.6 20.0 7.3 10.0 6.4 0.0 0.0 0.0 0.0 0.0 4.6
ActiveMQ 33.1 9.7 17.7 9.7 6.5 4.8 1.6 3.2 0.8 1.6 0.0 11.3

Calcite 22.5 23.9 15.2 12.3 6.5 5.8 0.0 2.2 0.0 0.0 0.0 11.6
Hadoop 23.2 10.6 16.7 8.9 12.3 9.2 1.4 2.1 0.3 0.3 0.0 15.0
HBase 29.1 14.9 17.9 7.6 8.9 7.6 0.7 2.7 1.0 0.0 0.3 9.3
Hive 25.5 12.2 17.8 7.4 9.0 12.4 0.7 2.1 0.9 0.5 0.0 11.6

Jackrabbit Oak 38.4 11.6 16.4 9.6 7.2 6.4 0.4 2.0 0.0 0.0 0.0 8.0
Maven 41.1 4.5 10.7 3.6 10.7 11.6 0.0 0.9 0.0 0.0 0.0 17.0

PDFBox 25.0 8.8 6.1 2.7 6.1 10.8 2.0 2.7 0.0 0.7 0.0 35.1
Solr 31.8 9.9 9.9 7.1 7.5 8.3 2.0 2.4 0.8 0.0 0.0 20.2

Wicket 30.8 3.0 15.0 7.5 9.0 9.8 0.0 7.5 0.0 0.0 0.0 17.3
Average 29.4 11.6 15.5 7.7 8.7 9.1 0.9 2.4 0.5 0.3 0.0 13.9

TABLE III: Proportion of associated bugs that are fixed in the
same commit for each selected project.

Project #BugPairA #BugPairSC %BugPairSC
Accumulo 5 0 0.0
ActiveMQ 14 4 28.6

Calcite 16 5 31.2
Hadoop 44 0 0.0
HBase 28 7 25.0
Hive 67 3 4.5

Jackrabbit Oak 20 5 25.0
Maven 19 5 26.3

PDFBox 52 7 13.5
Solr 51 35 68.6

Wicket 23 6 26.1

explicitness (⩽ 0.5), and 13.9% of bug pairs are perfectly
associated.

B. AE of Different Association Types (RQ2)

We calculated the average AE values of different associa-
tion types for each selected project as shown in TABLE IV,
where the last row is the average for all projects. Association
types Blocked/Blocker, Cloners, Dependent, and Required
have relatively small AE values on average, while Container
has a relatively large AE on average. Association types
ChildIssue/ParentFeature and Dependency each has only one
bug pair, the average AE values for these two types do not
make much sense.

We ran Mann-Whitney U tests to examine if there are
significant differences on AE between bug pairs of different
association types. Since ChildIssue/ParentFeature and Depen-
denccy have only one bug pair, and Duplicate has even no bug
pair, we did not run the tests for these three association types.
The test results are shown in TABLE V, where cells with p-
value<0.05 are filled in gray. Specifically, a gray-filled cell
with a number in bold (resp. regular) indicates that the AE
of bug pairs with the association type of the corresponding
row is significantly larger (resp. smaller) than the AE of bug
pairs with the association type of the corresponding column.
The main points are reported as follows: (1) The average
AE of bug pairs with association type Blocked/Blocker is
significantly smaller than the average AE of bug pairs with
association types Container, Problem/Incident, Required, and
Supercedes. (2) The average AE of bug pairs with association
type Cloners is significantly smaller than the average AE of

bug pairs with association types Container, Problem/Incident,
Reference/Related, Regression, and Supercedes. (3) The av-
erage AE of bug pairs with association type Container is
significantly larger than the average AE of bug pairs with
association types Dependent, Incorporates, Reference/Related,
Regression, and Required. (4) The average AE of bug pairs
with association type Dependent is significantly smaller than
the average AE of bug pairs with association types Prob-
lem/Incident, Reference/Related, Regression, and Supercedes.

Summary: Relatively speaking, bug pairs with association
types Blocked/Blocker, Cloners, Dependent have relatively
weak association explicitness, while bug pairs with association
type Container have relatively strong association explicitness.

V. DISCUSSION

A. Interpretation of Study Results

RQ1: (1) As we can see from TABLE II, the association
explicitness of each project shows a distribution pattern: a
significant proportion of bug pairs are not explicitly associated,
a majority of bug pairs are explicitly associated to some
extent, and a non-trivial proportion of bug pairs are perfectly
associated in the bug-fixing commits. (2) On average, 70.6%
of the bug pairs are with an association explicitness larger
than 0, which indicates that the association of a majority of
manually-associated bug pairs can be traced with some clues
in the code change history. In contrast, on average 29.4% of
bug pairs in the selected projects are not explicitly associated,
indicating that the association of a minority of manually-
associated bug pairs cannot be reflected in the code change
history. (3) 13.9% of the bug pairs are fixed in the same
commit(s), and a potential reason is that those bug pairs may
be in specific types of associations so that the bug pairs tend to
be fixed simultaneously in the same commit(s). For instance,
in project ActiveMQ, bugs AMQ-2967 and AMQ-2959 are in
the association of Supercedes; by definition, when AMQ-2967
is fixed, AMQ-2959 should also be fixed, and consequently
these two bugs are fixed in the same commit.

RQ2: (1) The association explicitness of bug pairs with
association type Container is significantly larger than that of
bug pairs with most of other association types. One potential
reason for this phenomenon is that the two bugs in an
association of Container tend to be fixed in the same commit(s)
according to the definition of Container. (2) The association

214

TABLE IV: Average AE values of different association types for each selected project.

Project

B
lo

ck
ed

/
B

lo
ck

er

C
hi

ld
Is

su
e/

P a
re

nt
Fe

at
ur

e

C
lo

ne
rs

C
on

ta
in

er

D
ep

en
de

nc
y

D
ep

en
de

nt

D
up

lic
at

e

In
co

r p
or

at
es

Pr
ob

le
m

/
In

ci
de

nt

R
ef

er
en

ce
/

R
el

at
ed

R
eg

r e
ss

io
n

R
eq

ui
re

d

Su
pe

rc
ed

es

Accumulo 0.133 0.063 0.069 0.083 0.271 0.147 0.230 0.056
ActiveMQ 0.159 0.353 0.500 0.256 0.370 0.109 0.385

Calcite 0.110 0.292 0.667 0.142 0.206 0.410 0.245 0.341 0.071 0.643
Hadoop 0.068 1.000 0.142 0.269 0.333 0.378 0.345 0.291 0.148 0.200
Hbase 0.218 0.000 0.305 0.546 0.271 0.249 0.174 0.322 0.500
Hive 0.166 0.202 1.000 0.000 0.219 0.099 0.544 0.317 0.371 0.195 0.325

Jackrabbit Oak 0.129 0.177 0.125 0.108 0.500 0.089 0.218 0.289 0.414 0.000
Maven 1.000 0.398 0.778 0.246 1.000

PDFBox 1.000 1.000 1.000 0.193 0.500 0.470 0.750 0.500
Solr 0.161 0.333 0.639 0.280 0.273 0.202 0.362 0.339 0.235

Wicket 0.167 0.357 0.429 0.000 0.281 0.341 0.375
All 0.180 1.000 0.235 0.668 0.000 0.224 0.287 0.345 0.302 0.318 0.233 0.384

TABLE V: P-values of Mann-Whitney U tests between different association types.

Association type

B
lo

ck
ed

/
B

lo
ck

er

C
lo

ne
rs

C
on

ta
in

er

D
ep

en
de

nt

In
co

rp
or

at
es

Pr
ob

le
m

/
In

ci
de

nt

R
ef

er
en

ce
/

R
el

at
ed

R
eg

r e
ss

io
n

R
eq

ui
r e

d

Su
pe

r c
ed

es

Blocked/Blocker - 0.755 0.001 0.465 0.151 <0.001 1.097 2.733 0.012 0.001
Cloners 0.755 - 0.003 0.419 0.210 0.021 0.034 0.007 0.098 0.019

Container 0.001 0.003 - 0.002 0.010 0.057 0.009 0.017 0.010 0.093
Dependent 0.465 0.419 0.002 - 0.394 0.008 0.006 <0.001 0.067 0.011

Incorporates 0.151 0.210 0.010 0.394 - 0.155 0.502 0.154 0.434 0.119
Problem Incident <0.001 0.021 0.057 0.008 0.155 - 0.181 0.509 0.159 0.722
Reference/Related 1.097 0.034 0.009 0.006 0.502 0.181 - 0.072 0.942 0.130

Regression 2.733 0.007 0.017 <0.001 0.154 0.509 0.072 - 0.359 0.323
Required 0.012 0.098 0.010 0.067 0.434 0.159 0.942 0.359 - 0.095

Supercedes 0.001 0.019 0.093 0.011 0.119 0.722 0.130 0.323 0.095 -

explicitness of bug pairs with association type Dependent is
significantly smaller than that of bug pairs with most of other
association types. One potential reason is that the two bugs
in an association of Dependent may be coupled more in code
structure than in code change history.

B. Implications

Most bug pairs are explicitly associated to certain degree,
which implies that the code change history is a helpful
resource for developers to deal with bugs and their impact. A
significant proportion of bug pairs are not explicitly associated
at all in each project, which implies that it is necessary to turn
to other sources (e.g., code structure dependencies) for bug
analysis.

VI. CONCLUSIONS

This work investigates to what extent manually associated
bugs can be explicitly traced in their code change history,
and whether there is significant difference on the association
explicitness between bugs in different types of association. To
answer these questions, we performed an empirical study on
11 Apache OSS projects, and obtained the following findings:
(1) Around 71% of manually-associated bug pairs can be
traced with overlapped changed source files in the code change
history, and in contrast, around 29% are not explicitly reflected
in the code change history at all. (2) Bug pairs with association
types Blocked/Blocker, Cloners, and Dependent have relatively

weak association explicitness, while bug pairs with association
type Container has relatively strong association explicitness.

REFERENCES

[1] A. Nicholson and G. Jin L.C., “Issue link label recovery and prediction
for open source software,” in Proceedings of REW. IEEE, 2021, pp.
126–135.

[2] P. Heck and A. Zaidman, “Horizontal traceability for just-in-time
requirements: the case for open source feature requests,” Journal of
Software: Evolution and Process, vol. 26, no. 12, pp. 1280–1296, 2014.

[3] D. Falessi, J. Roll, J. Guo, and J. Cleland-Huang, “Leveraging historical
associations between requirements and source code to identify impacted
classes,” IEEE Transactions on Software Engineering, vol. 46, no. 4, pp.
420–441, 2020.

[4] P. Rempel and P. Mäder, “Preventing defects: The impact of require-
ments traceability completeness on software quality,” IEEE Transactions
on Software Engineering, vol. 43, no. 8, pp. 777–797, 2017.

[5] B. Kucuk and E. Tuzun, “Characterizing duplicate bugs: An empirical
analysis,” in Proceedings of SANER 2021. IEEE, 2021, pp. 661–668.

[6] M. T. Tomova, M. Rath, and P. Mäder, “Poster: Use of trace link types
in issue tracking systems,” in Proceedings of ICSE Companion. IEEE,
2018, pp. 181–182.

[7] D. Ståhl, K. Hallén, and J. Bosch, “Achieving traceability in large scale
continuous integration and delivery deployment, usage and validation of
the eiffel framework,” Empirical Software Engineering, vol. 22, no. 3,
pp. 967–995, 2016.

[8] T.-D. B. Le, M. Linares Vásquez, D. Lo, and D. Poshyvanyk, “Rclinker:
Automated linking of issue reports and commits leveraging rich contex-
tual information,” in Proceedings of ICPC. IEEE, 2015, pp. 36–47.

[9] Z. Li, X. Qi, Q. Yu, P. Liang, R. Mo, and C. Yang, “Multi-programming-
language commits in oss: An empirical study on apache projects,” in
Proceedings of ICPC. IEEE, 2021, pp. 219–229.

[10] Z. Li, Q. Yu, P. Liang, R. Mo, and C. Yang, “Interest of defect technical
debt: An exploratory study on apache projects,” in Proceedings of
ICSME. IEEE, 2020, pp. 629–639.

215

Data Selection for Cross-Project Defect Prediction
with Local and Global Features of Source Code

Xuan deng
School of Computer Science and

Information Engineering
Hubei University
Wuhan, China

xuan_deng@qq.com

Peng He*
School of Computer Science and

Information Engineering
Hubei University
Wuhan, China

penghe@hubu.edu.cn

Chun Ying Zhou
School of Computer Science and

Information Engineering
Hubei University
Wuhan, China
zcy9838@qq.com

Abstract1 ： An open challenge for cross-project defect prediction
(CPDP) is how to select the most appropriate training data for target
project to build quality predictor. To our knowledge, existing
methods are mostly dominated by traditional hand-crafted features,
which do not fully encode the global structure between codes nor the
semantics of code tokens. This work is to propose an improved
method which is capable of automatically learning features for
representing source code, and uses these feataures for training data
selection. First, we propose a framework ALGoF to automatically
learn the local semantic and global structural features of code files.
Then, we analyze the feasibility of the learned features for data
selection. Besides, we also validate the effectiveness of ALGoF by
comparing with the traditional method. The experiments have been
conducted on six defect datasets available at the PROMISE
repository. The results show that ALGoF method helps to guide the
training data selection for CPDP, and achieves a 48.31%
improvement rate of F-measure. Meanwhile, our method has
statistically significant advantages over the traditional method,
especially when using both the local semantic and global structural
features as the representation of code files. The maximum
improvement of F-measure can reach 42.6%.

Keyword ： cross-project defect prediction; semantic feature;
structural feature; software quality; representation learning.

I. INTRODUCTION
The main purpose of cross-project defect prediction (CPDP)

is to predict defect-prone files in a project based on the defect
data collected from other projects.. Peter et al. [1] proposed that
a major issue in CPDP is how to find the appropriate training
data set (TDS) for the target project. That is, the selection of
high-quality cross-project training data is a key
breakthrough.Nowadays,there is a growing collection of defect
datasets on the Internet.Thus, the construction of an appropriate
TDS is a more serious challenge for CPDP.

To address this issue, researchers in this field have
attempted to characterize code files by using traditional hand-
crafted features (e.g., CK, Halstead, MOOD, and McCabe’s
CC metrics), and guide the TDS selection based on these
metric values[3-4,6]. Unfortunately, these metrics only contain
statistical information of programs and require human design.
As we known, programs have well-defined syntax and rich

1DOI reference number: 10.18293/SEKE2022-086

semantics hidden in the Abstract Syntax Trees (ASTs), which
have been successfully extracted and used for defect prediction
[7]. In addition, researchers also validated that the globally
structural information extracted by network representation
learning can lead to more accurate defect prediction [9-11].In
other word, both the local semantic and global structural
information of source code files may affect the selection of
TDS in CPDP.

Thus,we propose a new framework called ALGoF to
Automatically learn the Local semantic (fine-grained) and
Global structural (coarse-grained) Features of code files for
data selection in CPDP and seek empirical evidence that they
can achieve acceptable performance compared with the
traditional method. Our contributions are summarized as
follows:

We leverage representation learning technique to
automatically learn the local and global features of the
program from source code files, and use to guide the
training data selection in CPDP.
The results on six projects show that the proposed ALGoF
method can improve CPDP, compared to using traditional
hand-crafted features. The combination of global and
local features has greater impact on the improvement of
prediction performance.
The rest of this paper is organized as follows. Section 2 is a

review of related work. Sections 3 describes the proposed
approach.Section 4 is the detailed experimental setups, and
Section 5 shows and discusses the experimental results. Finally,
Section 6 concludes the work and presents the agenda for
future work.

II. RELATED WORK

A. Data Selection for CPDP
In software engineering, CPDP has drawn wide attention

and many studies are carried out to explore the strategies of
training data selection. Peters et al. [1] proposed a filter guided
by the structure of content-rich source project data and
achieved great performance.To obtain a comprehensive
evaluation, Bin et al. [8] even conducted a thorough experiment
to compare nine relevancy filters on 33 datasets.Hosseini et al.
[6] further showed that the selection of training data can lead to

216

mailto:zcy9838@qq.com

better performance in CPDP, and concluded that search-based
methods combined with feature selection was a promising way.

From the above rich results, there is a commonality that is
the defect data used are represented by traditional hand-crafted
software metrics.

B. Representation Learning in Software Engineering
Representation learning has been widely applied to feature

learning.In software engineering, some algorithms have been
adopted to the Abstract Syntax Trees (ASTs) representation of
source codes. For example, Wang et al. [7] leveraged Deep
Belief Network to automatically learn semantic features from
token vectors extracted from programs’ASTs and further
validated that the learned semantic features significantly
improved defect prediction.Besides, some studies have
demonstrated the effectiveness of structural features in
improving defect prediction. For example, Qu et al. [10] used
network embedding technique, node2vec, to automatically
learn to encode dependency network structure into low-
dimensional vector spaces to improve software defect
prediction. Zeng et al. [11] also recently analyzed the influence
of network structure features of code on defect prediction.

Existing studies have verified the usefulness of semantic
and structural features on defect prediction, but do not involve
the analysis of the impact on data selection in CPDP.

III. APPROACH

This section introduces the entire framework of ALGoF
method in detail, mainly comprised of three parts:
automatically learning the semantic and structural features of
code files, training data selection and defect prediction (Figure
1). First, we extract the dependencies between the classes from
the source code files to construct a class dependency network.
Then, we perform network embedding learning on the CDN to
generate the global structural features of classes. Meanwhile,
we leverage a Convolutional Neural Network (CNN) to
automatically learn semantic features using token vectors
extracted from the class files’ abstract syntax trees (AST).
Second, combine the structural and semantic features of the
class obtained in the previous step, and use them as the
representation of the class file. After that, the similarity scores
between source file instances and each target file instance are
recorded and used to guide how to select appropriate source file
instances for cross-project defect prediction. Finally, we use the
resulting source file instances to train the predictor and test on
the target instances.

A. Generation of local semantic features
1) Parsing AST
As previous study [9] has shown, AST can represent the
semantic information of source code file with the most
appropriate granularity.

Figure 1. The entire framework of ALGoF method

We first parse the source code files into ASTs by calling an
open-source python package javalang. Given a path of the
source code, the token sequences of all files will be output.As
treated in [7], we only select three types of nodes on ASTs as
tokens: (1) nodes of method invocations and class instance
creations; (2) declaration nodes, i.e., method/type/enum
declarations; (3) control flow nodes, such as while, if, and
throw. For more details, please refer to our previous work [11].

Then,we convert the extracted token sequences into the
numerical token vectors.We append 0 to each integer vectors to
make each files' lengths consistent with the longest vector.Note
that, to filter out infrequent tokens, we only encode tokens
occurring three or more times, the others denote as 0.

2) Building CNN
After encoding and preprocessing token vectors,we exclude
the input and output layers. We train the CNN model with four

layers: an embedding layer (turn integer token vectors into real-
valued vectors of fixed size), a convolutional layer, a max-
pooling layer, and a fully connected layer.

Given a project P, assume tha it contains � source code
files, all of which have been converted to integer token vectors
� ∈ ℛ� , where � is the length of the longest token
sequence.Through the embedding layer, each file becomes a
real-value matrix ��×� . As the input of convolutional layer, a
filter ℒ ∈ ℝℎ×� is applied to a region of h tokens to produce a
new feature.

Then, the max-pooling operation is performed on the
mapped features and the maximum value �� = ��� { � } is
taken as the feature corresponding to that particular filter ℒ .
Usually, multiple filters with different region sizes are used to
get multiple features. Finally, a fully connected layer further
generated the local features.

217

http://keras.io/

B. Generation of Global structural Features
Before applying network embedding to represent global

structural features of source codes, it is necessary to build a
Class Dependency Network. As did in [11], we use
DependencyFinder API to parse the compiled source files (.zip
or .jar extensions) and extract their relationships using a tool
developed by ourselves. With the CDN, we further perform
embedding learning using the node2vec method. For more
details on node2vec, please refer to the literature [2].

C. Training Data Selection
The general training data selection process consists of three
steps: candidate TDS setup, ranking and remove duplicate.For
more details, please refer to our previous work [4].In order to
characterize each code file, the two types of features obtained
above are connected and marked with defect label, so as to
generate the defect data set required for subsequent tasks.

An instance is characterized as a feature vector, and each
target instance as an input. A similarity index (e.g., cosine
similarity) is applied to construct a model for ranking source
instances based on the given target instances. For instance, the
cosine similarity between a source instance �� and an input
target instance �� is computed via their vector representations:

��� ��, �� = ����� ∙�����

�� × ��
= �−1

� (���×���)�

�=1
� ���2� × �=1

� ���2�
(1)

Where ����� and ����� are the feature vectors for instances ��
and �� respectively. �� represents the ��ℎ feature value of the
features.

For each target instance, the top-k (k=10) source instances
are ranked by the Sim values and returned. Hence, the finally
selected TD is composed by integrating the set of top-k source
instances of each target instance (i.e., the duplicate instances
are removed to maintain uniqueness).

IV. EXPERIMENT SETUP

A. Dataset
In this paper, 6 defect datasets from the PROMISE

repository2 were selected for validation. Detailed information
on the datasets is listed in Table 1, where #files and defect rate
are the number of files and the percentage of defective files,
respectively.

B. Experimental Design
To make a comparison between the traditional hand-crafted

features and automatically learn features in our paper, four
scenarios will be considered in our experiments.

(i)THC represents predictor based on the traditional
hand-crafted features.

(ii)ALoF represents predictor based only on the local
semantic features.

(iii)AGoF represents predictor based only on the global
structural features.

(iv)ALGoF represents predictor based on both the local

2 http://promise.site.uottawa.ca/SERepository/datasets-page.html

and global features.

C. Classifiers and Evaluation Measures
This paper utilizes logistic regression (LR), which is widely

used in the defect prediction, as the classifier. We use the
default parameter settings for LR specified in Weka3 unless
otherwise specified.

To evaluate the defect prediction model’s performance, we
use widely adopted F-measure, which is the harmonic mean of
precision and recall.

TABLE I. DETAILS OF THE DATASETS

Project Releases #files defect rate(%)
Camel 1.4 892 17.1
Lucene 2.0 186 48.9
Poi 2.5 379 65.1

Synapse 1.1 222 27.0
Xalan 2.6 875 47.0
Xerces 1.3 446 15.0

V. EXPERIMENTAL RESULTS

RQ1: Does data selection based on ALGoF and its variants of
CPDP work well?

We first take the case where the initial source TDS without
any selection is considered as a baseline, labeled as iTDS. On
contrary, we label the case of TDS selection using the features
learned in this paper as sTDS. Then we perform cross-project
predictions in both cases mentioned above.

Figure 2. A comparison on F-measure of CPDP under the case of iTDS and
sTDS.

TABLE II. THE IMPROVEMENT OF F-MEASURE OF CPDP UNDER THE
CASE OF ITDS AND STDS.

Model iTDS sTDS ∆（%）

ALoF 0.292 0.352 20.55%
AGoF 0.456 0.470 3.07%
ALGoF 0.325 0.482 48.31%

Figure 2 shows that, on average across the six datasets, for
CPDP with iTDS, the median F-measure are 0.292,0.456 and
0.325 respectively,while sTDS are 0.352,0.470 and 0.482
Clearly, the results verify the necessity of data selection for
CPDP. The improvement rate is the most obvious in the
ALGoF scenario, reaching 48.31%, followed by that of ALoF
with 20.55%. The results also show that AGoF performs better
than ALoF whether data selection is used or not. However,
ALGoF outperforms ALoF and AGoF when only considering

3 http://www.cs.waikato.ac.nz/ml/weka/

218

http://promise.site.uottawa.ca/SERepository/datasets-page.html

the training data selection, indicated by the largest F-measure
value in bold.

Figure 3. The improvement rate of F-measure values compared with THC
scenario (with data selection).

TABLE III. THE WILCOXON SIGNED-RANK TEST AND CLIFF'S DELTA
(0.33≤|δ| <0.474 MEANS THE MEDIUM EFFECTIVENESS LEVEL, AND |δ| ≥

0.474 MEANS THE LARGE EFFECTIVENESS LEVEL [7]).

Additionally, statistical tests assist in understanding
whether a statistically significant difference between two
results exists. We further utilize the Wilcoxon signed-rank test
and Cliff’s effect size (�) to check whether the difference
among the prediction models is significant. In Table 3, the
results highlight that there are no significant differences
between CPDP with iTDS and CPDP with sTDS in our
experiment, indicated by all the p-values >0.05. However, the
effectiveness level between ALGoF_iTDS and ALGoF_sTDS
is large, indicated by |�| = 0.484 . Besides, the effectiveness
level between ALoF_sTDS and ALGoF_sTDS is medium.

TABLE IV. COMPARISON OF WILCOXON SIGNED-RANK TEST AND CLIFF'S
EFFECT SIZE OF THE AUTOMATIC EXTRACTION FEATURES WITH THC.

In short, for the data selection task in CPDP, the features
automatically learned from the source code are helpful to guide
the task, so as to improve the prediction performance. In
addition, the global structural feature works better than the
local semantic feature, but the combination of the two is
optimal. Nevertheless, data quality is more important than data
quantity.

RQ2: For CPDP data selection, which is better: automatically
learned features or traditional hand-crafted features?

In this part, we mainly compare the ALGoF method
proposed in this paper with THC. As seen in Figure 3, the
improvement rates of F-measure of ALoF, AGoF and ALGoF
are 4.14%, 39.05% and 42.6% respectively. That is, for the data
selection problem of CPDP, the use of automatically learned

features to represent the source code files is better than the use
of traditional hand-crafted features. In addition, Table 4 also
further shows that there are significant differences between
ALGoF (AGoF) and THC, indicated by the small p-value of
0.035 (<0.05) and the large δ value of 0.667 (>0.474).
Meanwhile, according to the p-value of 0.719 and the � value
of 0.111, the local semantic features seem to have comparable
effects to traditional source code features.

In summary, the method proposed in this paper can pick
higher quality training sets for CPDP than using traditional
hand-crafted features. Especially when both local semantic
features and global structural features are considered.

VI. CONCLUSION
This study is to propose an improved method which is capable
of automatically learning features for representing source code,
and uses these feataures for training data selection. The results
indicate that features automatically learned from the source
code (e.g., local semantic feature and global structural feature)
are helpful to guide the training data selection for
CPDP.Meanwhile, compared with the case of no data selection
processing, the F-measure improvement rate of ALGoF is
48.31%. In addition, the results also show that our method is
significantly better than the traditional method, especially when
using both the local semantic and global structural features as
the representation of code files. Notedly, about 42.6% defective
instances can be additionally predicted by our method.

In the future, we would like to extend our automatically
feature generation approach to C/C++ projects for CPDP. In
addition, it would be promising to leverage our approach to
guide heterogeneous defect prediction.

REFERENCES
[1] F Peters, Menzies T , Marcus A . Better cross company defect

prediction[C]// in Proceedings of the 10th MSR, 2013:409–418.
[2] A. Grover and J. Leskovec, node2vec: scalable feature learning for

networks[C], in Proc. of ACM SIGKDD Inte. Conf. on Know. Dis.&
Data Min., San Francisco, CA, USA, August 2016.

[3] Ryu D , Jang J I , Baik J , et al. A Hybrid Instance Selection Using
Nearest-Neighbor for Cross-Project Defect Prediction[J]. Journal of
Computer Science & Technology, 2015, 30(005):969-980.

[4] He P , He Y , Yu L , et al. An Improved Method for Cross-Project
Defect Prediction by Simplifying Training Data[J]. Mathematical
Problems in Engineering, 2018, (PT.6):2650415.1-2650415.18.

[5] Hosseini S., Turhan B., Mäntylä M.: A benchmark study on the
effectiveness of search-based data selection and feature selection for
cross project defect prediction. Inf. Softw. Technol. 2018,95, 296–312.

[6] Hosseini S , Turhan B . A comparison of similarity based instance
selection methods for cross project defect prediction[C]. 36th ACM/
SIGAPP Symposium on Applied Computing, 2021:1455-1464.

[7] Wang S , Liu T , Nam J , et al. Deep Semantic Feature Learning for
Software Defect Prediction[J]. IEEE Transactions on Software
Engineering, 2020,46(12):1267-1293.

[8] Y. Bin, K. Zhou, H. Lu, Y. Zhou, B. Xu, Training data selection for
cross-project defection prediction: Which approach is better?[C]. Int.
Sym. on Emp. Soft. Eng. & Meas. ,2017:354–363.

[9] A. V. Phan, M. L. Nguyen, and L. T. Bui, Convolutional Neural
Networks over Control Flow Graphs for Software Defect Prediction,
2018, https://arxiv.org/abs/1802.04986.

[10] Qu Y , Liu T , Chi J , et al. node2defect: using network embedding to
improve software defect prediction[C]. The 33rd ACM/IEEE Inte. Conf.
on Automated Software Engineering, 2018:844-849.

[11] Zeng C , Zhou C Yi , Lv S K , et al. GCN2defect：Graph Convolutional
Networks for SmoteTomek-based Software Defect Prediction[C]. The
32nd Inter. Sym. on Software Reliability Engineering (ISSRE 2021)

Sig. p-value
(0.05)

cliff's delta (�)

ALoF_iTDS-ALoF_sTDS 0.934 -0.028
AGoF_iTDS-AGoF_sTDS 0.745 0.000

ALGoF_iTDS-ALGoF_sTDS 0.116 -0.484
ALoF_sTD-ALGoF_sTDS 0.219 -0.389
AGoF_sTD-ALGoF_sTDS 0.345 -0.083

Sig. p-value
(0.05) cliff's �

ALoF_sTDS - THC_sTDS 0.719 0.111
AGoF_sTDS - THC_sTDS 0.035 0.417
ALGoF_sTDS - THC_sTDS 0.035 0.667

219

RIRCNN: A Fault Diagnosis Method for Aviation Turboprop Engine

Lei Li1, Zhe Quan�,1, Zixu Wang1, Tong Xiao1, Xiaofei Jiang1, Xinjian Hu1 and Peibing Du2

1College of Information Science and Engineering, Hunan University, Changsha, China
{aleilei, quanzhe, wangzixu, xiaotong18, jiangxiaofei,

huxinjian}@hnu.edu.cn
2Northwest Institute of Nuclear Technology, Xi’an 710024, China

dupeibing1@nint.ac.cn

Abstract

Aero-engine is the ‘heart’ of the aviation aircraft.
Practical failure prediction of aero-engines is difficult
due to the performance degradation covered by the con-
tinuous switching between various operating conditions.
In order to solve the above problem, we propose a new
type of aero-engine fault diagnosis model–RIRCNN
(Residual Independently Reccurent and Convolutional
Neural Network). It can process long sequences, and
has superior feature extraction effect. We gather flight
data sets through ground bench experiment of the
aviation turboprop engine, and intensively conduct
comparative experiments to evaluate the effectiveness
of our model. The verification results demonstrate that
our model can achieve excellent performance compared
with other available baseline models.

Key words- Air Circuit Fault Diagnosis; Aviation Tur-
boprop Engine; Neural Networks

1 Introduction

The safety of the aircraft is very important to ensure the
military and people’s livelihood. Aviation turboprop en-
gines are mainly used in military transport aircraft. Com-
pared with other types such as gas turbine engines, turbo-
prop engines have a harsher working environment. The air
circuit is the most prone to failure, so it is important to de-
tect its failure. The traditional model-based, data-driven,
and knowledge-based diagnostic methods are not accurate
and economical. Thus, it is necessary to carry out research
on key technologies such as feature data extraction, intelli-

DOI reference number: 10.18293/SEKE2022-112

gent fault diagnosis and turboprop engine health state pre-
diction. The artificial intelligence algorithm has strong rea-
soning ability and generalization ability, and has inherent
advantages for complex engine fault diagnosis. Some in-
telligent algorithms have been applied in advanced Aero-
engine health management systems, such as Deep Belief
Network [1], LSTM (Long Short-Term Memory) [2] and
Data Mining Techniques [3]. Although effective in differ-
ent ways, these methods all have certain drawbacks.

Our purpose is to perform diagnostics on air path fault
data from aero-turboprop engines. Considering that the
essence of engine flight data is a kind of regular time se-
ries data, the model used for processing time series data in
machine learning is given priority. RNN (Recurrent Neural
Network) has been proposed as a solution to process time
series and widely used and improved. LSTM [4] is a vari-
ant of RNN, proposed for solving the gradient disappear-
ance and explosion problems. However, for data dealing
with long time steps LSTM still has the limitation, it can
only discriminate tokens in a small range and have diffi-
culty capturing long-term dependencies. The flight condi-
tions are constantly changing, and the flight duration is not
invariable, it may cause the amount of series data be very
long. So a more suitable model is needed.

In this paper, after investigating a lot of methods we pro-
pose a new model named RIRCNN. It is a new model based
on the residual combination of IndRNN (Independently Re-
current Neural Network) [5] and CNN (Convolutional Neu-
ral Networks) [6]. Our main contributions are shown below:

(1) In the aviation turboprop engine bench experiment,
we simulate flight states of normal and component failures
under different working conditions, and obtain the data sets.

(2) We propose a novel model called RIRCNN that can
process for long-series time series data and extract global
feature fast.

(3) We conduct extensive experiments and verify that

220

our model outperforms other available methods in air cir-
cuit fault diagnosis of aero-turboprop engines.

2 Related Work

Since the aviation turboprop engine is mostly used in the
military transportation bureau, its technology and data in-
volve secrecy. Only few public information and research
are publicly available. Almost of the existing more cutting-
edge artificial intelligence method resea are based on some
public civil aviation turbine engine data. For example, a
study [7] utilized a DFC and LSTM to established an of-
fline health flight state estimation model and a degradation
trend prediction model. Another group studied out a trans-
fer learning method based on CNN and SVM for gas turbine
fault diagnosis [8]. Zhou [9] employed a Res-BPNN and in-
troduced the method of maximizing the domain confusion
loss based on the adversarial mechanism in the experiment,
so that the features learned from different domains are as
close as possible and reduce the distribution difference of
each aero-engine model.

Therefore, in order to conduct research based on turbo-
prop engine failure data, it is necessary to obtain the corre-
sponding data of the relevant model engines first. For exam-
ple, the Australian Aviation and Navigation Research Labo-
ratory took the F404 turbofan engine as the object, injected
corresponding faults into several components such as the
variable geometric angle and nozzle area of the compressor.
And in this way, they finally obtained the simulated fault
flight data.

In this paper, we obtain the data set through the ground
simulation experiment of aviation turboprop engine, which
made up for the shortcoming of insufficient data of this type
of engine failure. Then we design a neural network named
RIRCNN which can classify the data and detect faults by
extracting the time series features and global features of the
data.

3 Approach

How IndRNN implements a neuron-independent archi-
tecture within a layer and solves the gradient problem are
described in Subsection 3.1; the newly proposed model
RIRCNN in the paper is introduced in Subsection 3.2.

3.1 Principle of IndRNN

Traditional RNNs models map the hidden states to out-
puts via the following recursive equation, it shares a weight
W at each stage and its final output can be represented
by f [W...[Wf [Wfi]]]. Obviously seen from the cumula-
tive formula: when the gradient to be solved in reverse, if

Figure 1. IndRNN basic model.

the derivative of f is not 1 or 0, it is easy to cause a gra-
dient problem. Therefore, IndRNN is trying to introduce
non-saturating activation functions ReLU to stack multiple
layers of IndRNN to build very deep networks. The basic
IndRNN structure is shown in Figure 1. Every neuron of
IndRNN only receives information from the input and its
own hidden state at the previous time step, which enables
each neuron in the same layer can independently process
a spatial-temporal pattern. Different neurons can be cross-
correlated by stacking two or more layers, in which case
each neuron in the next layer processes the output of all
neurons in the previous layer. The hidden state calculation
formula specific to a single neuron in the hidden layer of
IndRNN is as follows:

ht = f(wn,xtxt + wn,ht
⊙ hn,t−1 + b) (1)

where ⊙ represent the Hadamard product, wn,xt is the nth

row of the input weight matrix, and wn,ht
is the recurrent

weight matrix in hidden layer, respectively. For the back-
propagation of the temporal gradient of each layer, since
there is no interaction between neurons in the layer, the gra-
dient of each neuron can be calculated independently. For
the nth neuron ht, assuming the output at time step T is Jn,
the gradient back-propagated to time step t is

∂Jn

∂hn,t
=

∂Jn
∂hn,T

T−1∏
k=t

∂hn,k+1

∂hn,k

=
∂Jn

∂hn,T

T−1∏
k=t

fn,k+1(wn,k+1 ⊙ ht−1 + bn)

=
∂Jn
∂hn,T

wT−t
n,ht

T−1∏
k=t

fn,k+1

(2)

where fn,kis the derivative of the activation function
such as ReLU and Tanh, which shows its gradient
wT−t

n,ht

∏T−1
k=t fn,k+1 is directly depends on the value of the

recursive weight matrix wn,ht
. When using ReLU as activa-

tion function(the result is the constant 0 or 1). Assuming the
maximum gradient value to ensure that the gradient doesn’t
explode is γ. So the range of |wn,ht | can be represented as
[0, T−t

√
γ]. In the case of |wn,ht | = 0, the neuron only re-

gards the information from the current input and does not

221

retain any past memory. This method basically maintains
the gradient within an appropriate range and does not af-
fect the gradient backtracked through the neuron. It avoids
the errors caused by the commonly used gradient clipping
method. By stacking the basic IndRNN structures, it is pos-
sible to build a deep network that can even handle sequences
over 5000 time steps.

3.2 Structure of RIRCNN

As inferred by Li [5], neurons in first layer of IndRNN
mainly sequence position information, one neuron in sec-
ond layer aggregates input into long-term memory, while
other neurons usually retain their state or process short-term
memory. Therefore, in order to extract time series charac-
teristics and state parameter characteristics of the aviation
turboprop engine air circuit time series fault data as accu-
rately as possible, we need to design a model with more than
two layers. When a multi-layer IndRNN network stacked,
the neurons in each layer contain the parameter character-
istics of all neurons in the previous layer, and the output
of the network contains the feature extraction results of all
neurons in the hidden layer. We finally superimpose 4-layer
IndRNN with 512 neurons in each layer. After the IndRNN
model, if simply stacking the fully connected layer and the
dropout layer to extract the classification results, although
the probability distribution of the desired format can be
obtained, the randomly discarded neuron information may
cause the loss of some important information. It makes the
classification precision exist a certain bottlenecks.

Therefore, in order to eliminate defects, this paper uses
IndRNN as a general design for processing time series data
to extract time series features. Then a convolutional neu-
ral network structure is introduced as a classifier, and the
output tensor of IndRNN is used as the input of CNN. The
probability distribution of the fault category can be obtained
after the output of the convolution calculation. CNN adapts
to data extraction features by combining convolutional lay-
ers and pooling layers. As the number of network layers in-
creases, the corresponding extracted features are more com-
plex, also, the receptive field is larger. When CNN calcu-
lates, the weight information of neurons in different posi-
tions is shared, and the global features of the input data
can be extracted by integrating the information. These fea-
tures make CNN as a classifier in the line with the pur-
pose of digital data classification in this paper. IRCNN is a
simple serial combination structure of 4-layer IndRNN and
2-layer CNN. However, simply superimposing CNN may
cause overfitting of the model and reduce the diagnostic pre-
cision. Therefore, further research is needed.

Residual network proposed by He [10] is to address the
degradation problem of Deep networks. The structure of
residual learning is somewhat similar to a “short circuit” in

Figure 2. RIRCNN structure.

a circuit. It is to directly transfer concepts captured by pre-
vious layer to next layer. Our proposed RIRCNN residual
connect 4-layer IndRNN and 2-layer CNN shown as Figure
2. We introduce residual connections between all network
layers, and add the output data of the previous layers and
the output data of the latter layers by weight directly. Ex-
plaining in principle, the stacked layers only do the iden-
tity mapping without increasing the parameters and com-
putational complexity. It don’t need to be re-learned every
time, which improves reusability and reduces redundancy.
In order to speed up the training, Batch Normalization is
inserted after each layer. The output of residual connection
is adjusted by fully connected linear layer, and then output
to softmax activation function layer to calculate probability
distribution of the fault category.

4 Experiment

4.1 Data Introduction

The existing aero-engine air circuit parameter baselines
calculation model is not disclosed by the engine manufac-
turer as a commercial secret. And there are only a handful of
fault data obtained during actual flight. In order to increase
the reliability of data, we plan to obtain the data of changes
in air circuit components sensed by sensors from the actual
aviation flight and the ground experiments. In addition to
collecting the history field data, simulating operation of the
military aero-turboprop engine “WJ-XX”1 under different

1The details of the aircraft cannot be disclosed due to non-disclosure
agreements

222

working conditions in bench experiments is needed to ob-
tain stable and long-term data.

We adjust performance parameters (such as pressure
compressor Delta flow HPC/LPC-DW etc.), then we ob-
tain the corresponding aviation turboprop engine air circuit
measurement parameter changes. Aero-engines have hun-
dreds of air circuit components, according to expert prior
knowledge and historical experience, we extract the key at-
tributes below: T1, torque, ITT, PCNF, PCNC, PCNP, P3,
WFB and the working condition. We sample the data at
interval (every 0.1s) according to the equipment situation
and took out the data with same flight time. The data step
size is maintained at about 800. Then, 8 main fault and 1
healthy states of the aviation turboprop engine air circuit
are summarized: blade corrosion, blade tip wear, foreign
object damage, blade fouling, insufficient opening of high-
pressure/low-pressure turbine valve, improperly open/close
of the turbine valve. Finally, a data set with sample size of
6149 is obtained. Training dataset and testing dataset are
divided by the ratio of 8:2.

Considering the degradation trend of sensor measure-
ment variables and some outliers are usually exist. We
use the classic isolated forest algorithm to clean the data
has achieved good results. Moreover, in order to make the
distribution of the data more concentrated and accelerate
the convergence of the model, we normalize the data. The
cleaned effective data can also reduce unnecessary abnor-
mal parameter troubleshooting.

4.2 RIRCNN Fault Classification Experiment

Affected by weight initialization, neural network outputs
have correlated randomness. To counteract the effects of
randomness, we repeat each experiment 10 times and take
average of the fault classifications for comparison. We use
a variety of models to compare the performance of the RIR-
CNN model on 6419 flight data including 9 states. Each
model uses random 5.1k pieces data to train and another
1.4k pieces data to test.

The performance comparison experiments with RIR-
CNN include Transformer, CNN, ResNet, LSTM, IndRNN
and IRCNN. During the designing of each neural network
fault diagnosis model, we first use fully connected neu-
ral network to non-linearly map features extracted by each
model. Then, we use function to normalize the output value
of fully connected neural network to convert the probabil-
ity of different categories predicted by the model. On this
basis, in the training process of classifier model, the Cate-
gorical Cross Entropy Loss is used as evaluation function,
Adam is used as optimization algorithm and Dropout tech-
nique is adopt to prevent the overfitting of model. In view
of different structures of each model and different types of
applicable data, we select the optimal configuration for each

Table 1. Memory-Usage(MemoUsg) and per-
formance.

model MemoUsg Precision Macro-F1
Transformer 2011Mib 76.82% 0.7710
CNN 1693Mib 82.38% 0.8258
ResNet 1689Mib 83.03% 0.8332
LSTM 2249Mib 92.50% 0.9277
IndRNN 1745Mib 92.53% 0.9291
IRCNN 1945Mib 94.44% 0.9466
RIRCNN 1991Mib 95.73% 0.9610

Figure 3. Macro-F1 of all models

in terms of number of layers and hidden units, so these pa-
rameters are not included in the assessment. We evaluate
the model by calculating the failure classification precision
and the multi-classification problem scoring metric Macro-
F1. Table 1 records the memory required at runtime and the
Precision and Macro-F1 score of fault diagnosis. Figure 3
visualizes Macro-F1 of each model.

It can be seen that the LSTM model has high precision in
the task of air circuit fault data diagnosis of aero-turboprop
engines, but with the highest memory consumption during
model training. Compared to LSTM, RIRCNN has better
performance with less memory consumption. The optimal
average classification precision of LSTM and IndRNN can
only reach 92.50% and 92.53%, while RIRCNN can exceed
95%, and also RIRCNN is better than other models in the
Macro-F1 score. It proved that our proposed model is ef-
fective.

5 Conclusion

In this paper, we propose a novel model RIRCNN which
can extract spatial information independently and extract
global features and fast convergence. RIRCNN solves the
limitation of RNN and its variants in terms of network
depth, it can process long sequences without a large in-

223

crease in memory consumption. Multiple comparison ex-
periments were conducted with existing baseline models.
The result verifies that the proposed RIRCNN model is su-
perior to the existing neural network models in the problem
of air-circuit fault data diagnosis of areo-turboprop engines.

References

[1] P. Tamilselvan, Y. Wang, and P. Wang. Deep belief network
based state classification for structural health diagnosis. In
Aerospace Conference, 2012.

[2] AE Elsaid, B. Wild, J. Higgins, and T. Desell. Using lstm
recurrent neural networks to predict excess vibration events
in aircraft engines. In 2016 IEEE 12th International Confer-
ence on e-Science (e-Science), 2016.

[3] H. Gharoun, A. Keramati, M. M. Nasiri, and A. Azadeh. An
integrated approach for aircraft turbofan engine fault detec-
tion based on data mining techniques. Expert Systems, 36(2),
2019.

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computation, 9:1735–1780, 1997.

[5] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao. Independently
recurrent neural network (indrnn): Building a longer and
deeper rnn. IEEE, 2018.

[6] Yann LeCun et al. Handwritten digit recognition with a back-
propagation network. In NIPS Conference, Denver, Col-
orado, USA, November 27-30, 1989, pages 396–404.

[7] B Cwa, B Zz, C Nla, C Yca, and C Bja. A data-driven degra-
dation prognostic strategy for aero-engine under various op-
erational conditions. Neurocomputing, 2021.

[8] Shi sheng Zhong, Song Fu, and Lin Lin. A novel gas turbine
fault diagnosis method based on transfer learning with cnn.
Measurement, 137:435–453, 2019.

[9] Xingjie Zhou et al. Regression model for civil aero-
engine gas path parameter deviation based on deep domain-
adaptation with res-bp neural network. Chinese Journal of
Aeronautics, 34:79–90, 2021.

[10] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Confer-
ence on CVPR, pages 770–778, 2016.

224

Automated Unit Testing of Hydrologic Modeling Software
with CI/CD and Jenkins

Levi T. Connelly, Melody L. Hammel, Benjamin T. Eger, Lan Lin
Department of Computer Science, Ball State University, Muncie, IN 47306, USA

{ltconnelly, mlhammel, bteger, llin4}@bsu.edu

Abstract

Composed of developers with diverse backgrounds in
multiple disciplines, the NSF CyberWater project team
needed to research and implement effective software test-
ing methods to improve the team’s workflow efficiency and
software quality. In this paper we present a practical and
effective strategy for automated black-box testing of Cyber-
Water modules using a Continuous Integration / Continuous
Deployment (CI/CD) pipeline and the Jenkins automation
server, Python unittest and ptest, and a novel technique we
call object-method replacement, which isolates the backend
from the front-end logic. Our experience can be adapted
and extended to other research projects to mitigate the risk
of programming errors and mistakes incurred through con-
tinuous development on a code repository.

1 Introduction and Related Work

An automated software testing workflow plays a cru-
cial role in preventing issues from creeping into the soft-
ware, but the implementation of these workflows varies
from project to project due to the complicated nature of soft-
ware and testing. The NSF CyberWater project team faced
some unique challenges with automated testing. In partic-
ular, their software was derived from legacy systems that
integrated with VisTrails [7], a third-party software used to
build scientific workflows as well as to support data analy-
sis and visualization needed for hydrologic modeling and
simulation. The design of CyberWater modules (as ex-
tended VisTrails modules) tightly couples the frontend and
backend logic. We came up with a new technique called
object-method replacement that allows us to address the
testing problem created by the tightly coupled frontend and
backend code without the need for proprietary tools for
Windows-based GUI testing. Using this technique, we de-
veloped black-box unit tests using both Python unittest [6]
and ptest [5] frameworks for two example modules: the

PythonCalc module that comes with the VisTrails pack-
age and CyberWater’s MainGenerator module. Addi-
tionally, we researched and developed a CI/CD pipeline
with a minimal set of tools supported by Jenkins [4] so that
software developers from the domain would be able to use
the pipeline on daily basis after a few training sessions effi-
ciently and effectively.

Light-weight, agile methods and processes have drasti-
cally impacted the practice of software testing and quality
control, putting testing first and in parallel with develop-
ment to decrease development cost while increasing prod-
uct quality [8]. State-of-the-art testing practices such as
unit testing, continuous integration (CI), test-driven devel-
opment, a test pyramid, test coverage analysis, etc. are
considered a mandatory and indispensable part of modern
software development [11]. A crucial step to leverage the
benefits brought by the best industry practices, shared with
successful practitioners, relies on a CI implementation [12].
Although the ideas are appealing to embrace, the choices for
implementing unit testing, CI and test automation are usu-
ally heavily influenced by the particular software task and
development environment, and unavoidably intimidating to
software developers whose main expertise is in the domain
sciences [9, 10]. The risk of software faults, programming
errors and mistakes can be mitigated by continuous integra-
tion, regression testing and test automation, implemented
by a testing workflow proposed here.

2 The NSF CyberWater Project and Chal-
lenges of Automated Unit/Module Testing

Funded by NSF, the CyberWater project aspires to build
a new cyber infrastructure with an open data, open modeling
framework and software to reduce the user time and effort
required for hydrologic modeling studies, allowing related
discoveries to be made sooner [2].

One of the key challenges of testing CyberWater mod-
ules is that the frontend and the backend are tightly coupled.
Because the backend code depends on the frontend code for

DOI reference number: 10.18293/SEKE2022-074
225

input, the backend cannot be tested apart from the frontend
without modifying the code for the backend.

In the VisTrails GUI (see Figure 1), each module is dis-
played with a set of input and output ports. Users can spec-
ify values for certain input ports for modules, while other
input ports must receive data from the output of another
module. Users can specify the flow of data from one module
to the next by dragging a connector from the first module’s
output port to the next module’s input port. A collection
of connected modules that produces an output is called a
workflow. When executed, the workflow usually generates
a graph or model that visualizes the input datasets.

Figure 1. The VisTrails GUI

To retrieve the input data needed for the module’s com-
putation, the backend code of each module calls a method
called get input, which retrieves the input data from the
module’s input ports from the frontend. This dependency
makes it so the backend code for VisTrails modules cannot
be run or tested without input from the GUI without modi-
fying the code.

3 Our Solution to Automated Unit Testing
with CI/CD

3.1 A Novel Technique for Model-View
Separation

We developed a technique called object-method replace-
ment to achieve model-view separation. To isolate and test
the backend logic we exchange a method from a specific in-
stance of a class with a newly defined function. We define
the replacement function to be nearly identical to the in-
stance’s original method, but we remove any dependencies
to the frontend logic. With the backend logic isolated, we
unit test the VisTrails module without having to modify the
source code. By replacing methods in an instance of a class
rather than modifying the class itself, changes to methods
only affect the instance that is being altered, not the class in

its entirety. Therefore, other instances of the class will not
be affected by the changes.

Object-method replacement leverages the dict at-
tribute of Python objects. This attribute is a dictionary that
maps the names of each of the object’s local attributes (as a
string) to its corresponding value. The dict attribute is
mutable, so developers can alter the values of the attributes
stored in the dict , as shown below:

Because VisTrails modules correspond to Python classes,
we can instantiate a class corresponding to a VisTrails mod-
ule and leverage the instance’s dict attribute to replace
the instance’s methods. This technique allows us to replace
methods such as get input that introduce dependencies
to the GUI. We can replace the get input method with a
new version that simulates the GUI input, as shown below:

Since we only modify the dict of a single instance
of a class, this modification only changes the method for the
specific instance of the class we are modifying.

Object-method replacement can be generalized with
the function shown below. We call this function
mutate method.

The function has three parameters: the target object, the
name (string) of the method in that object we want to re-
place, and the new function. This replacement function can
be structured like a normal function but with self parameters
and calls to self inside the function if needed. The function
we used to replace the get inputmethod is shown below.

Though this revised version of the get input func-
tion is not defined in a class, the first parameter is self.
If Python attempted to execute this revised get input
method without first binding it to a class, the program would
throw an error. However, after using the mutate method
to inject the replacement function into an instance of the
class we are testing, the replacement method functions the
same as any other method of the class.

Object-method replacement allows developers to test the
functionality of methods with dependencies to the GUI

226

without using specialized software to automate GUI inter-
actions. Simply write a replacement version of the method
that performs the same functionality without interacting
with the GUI, instantiate a new instance of the class one
is testing, and inject the new method in place of the old one.

3.2 Python Unit Testing Frameworks

There are two frameworks we have been using in tan-
dem throughout this project: ptest by Karl Gong [5], and
Python’s built-in unittest library [6]. Ptest provides mul-
tiple advantages: testing using decorators allows for bet-
ter in-code documentation with tags for grouping and a
description given to every test, as well as the assertion
of exceptions thrown within the decorator itself using the
expected exceptions parameter. These decorators
include BeforeMethod and AfterMethod, which de-
fine code to be run before and after every individual test is
run. They also include BeforeClass and AfterClass,
which define methods to run before all of the tests run
and to run after every test has finished, respectively. The
TestClass decorator defines a class similar to creating a
superclass of unittest.TestCase in Python’s builtin,
but has a parameter that allows for running tests in paral-
lel with multiple threads. The most notable feature, how-
ever, is the test report that is generated. Ptest, upon finish-
ing its tests, generates a graphic test report using HTML,
CSS, and JavaScript as a visual representation of the tests
that ran. It includes information about which tests failed,
as well as reports of what was happening using the library’s
preporter module. It displays stack traces and descrip-
tions of the tests that failed that were specified by the tester.
This is shown in Figure 2. Python’s unittest, alter-
natively, also offers distinct advantages. One problem we
found with Ptest is that GitHub [3] Actions, Bitbucket [1]
Flows, and Jenkins [4] Pipelines would all still recognize
a build as passing even when ptest-based tests would fail.
Using Python’s unittest, however, these systems would
recognize builds to be failing if the tests failed. It also pro-
vides setup and teardown methods, akin to ptest, and ter-
minal output. Ptest also has a terminal output, shown in
Figure 3.

3.3 Jenkins for CI/CD

One challenge that our team faced was developing a
CI/CD pipeline to automatically test and merge changes
made to CyberWater modules. We found that an efficient
solution was to setup a Jenkins [4] server and link it to our
Bitbucket repository. With Jenkins, developers can define
jobs, which automatically run a set of tests to determine
whether to automatically merge the changes from the dev
branch into the master branch.

Figure 2. Ptest’s generated test report

Figure 3. Ptest’s terminal output

After installing Jenkins on our Linux server, our team
defined a Freestyle project from the dashboard. We then
linked the Freestyle project to our Bitbucket repository in
the Source Code Management section. This section allows
developers to insert the URL and credentials for Jenkins to
access the Bitbucket repository.

We then configured Jenkins to build the dev branch. Un-
der Build Triggers, we selected Build when a change is
pushed to Bitbucket. This trigger configures Jenkins to au-
tomatically run the job every time someone pushes changes
to the repository. Finally, we added a build step to execute
a Unix shell command to run our ptest and unittest scripts.

Developers also have the option to add Post-build Ac-
tions which offer helpful features such as sending an email
with the build results or publishing an HTML report of the
build.

4 CyberWater Unit Testing Case Studies

4.1 PythonCalc Module Testing

The PythonCalc module is a simple module designed
to incite familiarity with how to create VisTrails modules
and the functionality of the VisTrails interface. It func-
tions as a simple calculator with four possible operations:

227

addition, subtraction, multiplication, and division. Its in-
put ports consist of two Floats or Integers and a
String. All of these are wrapped as VisTrails modules,
not Python literals. The Float / Integer input ports
consist of two numbers to be operated on. The String
input port is where the module expects an operator – this
can be either ‘+’, ‘-’, ‘*’, or ‘/’. Anything else entered will
raise an exception. The module then reads the values of the
number input ports, reads the String input port, and per-
forms the operation on the numbers. For example, if the
user entered 3, 5, and ‘+’, the module would add 3 and 5,
and return 8. The output port of the module is the result of
the operation. It is typically sent to the StandardOutput
module to print it to the persistent console that accompanies
VisTrails. Shown in Figure 4 is an example of a possible
workflow with the module, with the output in the console.

Figure 4. Usage of the PythonCalc module
within VisTrails

Beginning the tests is where object-method replacement
must be used. After injecting our own get input method
into the instance of the class we created as shown in Fig-
ure 5, we first test to ensure that all of the operators work
properly, using two arbitrary numbers and an operator, as-
serting that the result is correct (four tests). We then test
using an invalid operator to assert that an exception is
raised, and we attempt to divide by zero to assert that a
ZeroDivisionException is raised (two tests; see Fig-
ure 6). All the unit tests (using either Python unittest or
ptest) pass when configured to run within Jenkins.

4.2 MainGenerator Module Testing

The MainGenerator module is designed as a compo-
nent of the CyberWater framework to set up the directory for
running a user’s model where the simulation will take place
and data will be stored. Shown in Figure 7, its input ports
consist of 01 Path and 02 GPF, of types Directory
and File, both wrapped as VisTrails modules. It then has
15 more input ports, named Dataset 01, Dataset 02,
etc. 01 Path is the aforementioned directory of the simu-
lation, and 02 GPF is a “global parameters file,” designed
to hold specific information needed in the simulation. The

Figure 5. Setup methods for the PythonCalc
tests using ptest, including object-method re-
placement of get input

Figure 6. Testing for an invalid operator and
the divide-by-zero fault using ptest

Dataset NNs are of type (VisTrails) String, indicating
all the received datasets (with a maximum of 15) to be im-
ported for running the user’s model.

Based on the module specification provided by the de-
velopment team, it begins by checking whether the direc-
tory the user has entered in 01 Path exists. If it does, it
deletes the folder and re-creates it (to ensure there are no
files inside it already). If it doesn’t, it creates the folder. It
then copies the file specified in 02 GPF into the new direc-
tory that was created. Then, it outputs the directory from
01 Path in its first output port, and all the String ob-
jects of the Dataset NN input ports are compiled into a
Python Dict<str, str>, with the keys being the input
ports, Dataset NNs and the values being the Strings
that were given to those input ports, but converted back into
Python strs.

It is necessary to use object-method replacement to re-
place the get input method of this module, just as with
all other modules with input ports (see Figure 8). Figure 9
shows a diagram of our designed unit tests based on the
MainGenerator module specification.

We begin by running a simple test of the compute
method with no inputs to the module, asserting that it raises
an exception. Then we proceed with three tests for the first
input port 01 Path, testing the module’s behavior on a di-

228

Figure 7. A diagram of the inputs and outputs of the MainGenerator Module

Figure 8. Object-method replacement of the
get input method for MainGenerator test-
ing using ptest

rectory that already exists, a directory that does not exist,
and a directory that exists but for which the module doesn’t
have permission to access. Similarly we design three tests
for the second input port 02 GPF, assuming the file exists,
or it doesn’t already exist, or it exists but with no read per-
mission. In each case, we make an assertion or assert a
raised exception.

The module has two output ports GT Path and
DataSet Class as shown in Figure 7. We test that
GT Path outputs the working directory we gave the mod-
ule (with one test). For DataSet Class we design four
tests. We first test that specifically the first data set is present
in the output when run, due to the special way it is han-
dled (its input port is always shown on the GUI). We then
test, giving the module two random datasets (say, chosen
DataSet 01 and DataSet 04) that every dataset that was not
given any input does not appear in the output. Next we give
the module any dataset that isn’t the first one, asserting that
it exists in the output and the first one doesn’t. Finally, we
test that, when given no datasets, the output simply consists
of an empty Python dictionary.

In all, there are twelve tests we designed, and all pass
using both ptest and Python unittest. The unit tests ran au-
tomatically using Jenkins jobs. Figure 10 shows the HTML
test report of ptest. Figure 11 and Figure 12 show our unit
tests that test the second input port 02 GPF using ptest and
unittest, respectively.

Figure 9. Design for the MainGenerator unit
tests

229

Figure 10. The ptest HTML output of the twelve
MainGenerator tests

Figure 11. Ptest tests for 02 GPF for
MainGenerator

5 Conclusion and Future Work

This paper reflects on and reports our experience in
applying black-box unit testing and test automation, in a
CI/CD pipeline supported by Jenkins, to the CyberWater
software developed for hydrologic modeling studies. We
propose a novel technique called object-method replace-
ment that provides a solution to the problem of testing
software with tightly-coupled frontend and backend with-
out the need to revise the underlying code. This is not a
replacement for model-view separation, but rather a solu-
tion for software testers who want to automate testing of a
legacy program with model-view separation violations. It
could also be applied in scenarios where a method of an ob-
ject needs to have its functionality temporarily altered. We
demonstrate a testing workflow using the Jenkins automa-
tion server for CI/CD, and Python unittest and ptest frame-
works for test automation. Future work along the line in-

Figure 12. Python unittest tests for 02 GPF for
MainGenerator

cludes automated testing of more complicated CyberWater
modules and integrated workflows. The preliminary results
are promising.

Acknowledgments

This work was generously funded by the National Sci-
ence Foundation (NSF) under Grant 1835602. It was also
supported in part by an Undergraduate Honors Fellowship,
funded by the Honors College, Ball State University.

References

[1] ATLASSIAN Bitbucket. https://bitbucket.org/
product/.

[2] CyberWater. https://www.cuahsi.org/
projects/cyberwater/.

[3] GitHub. https://github.com.
[4] Jenkins - Build great things at any scale. https://www.

jenkins.io.
[5] Ptest 2.0.3 - Light test framework for Python. https://

pypi.org/project/ptest/.
[6] Unittest - Unit testing framework. https://docs.

python.org/3/library/unittest.html.
[7] VisTrails. https://vistrails.org.
[8] P. Ammann and J. Offutt. Introduction to Software Testing,

2nd Edition. Cambridge University Press, 2016.
[9] L. D. Couto, P. W. V. Tran-Jørgensen, R. Nilsson, and P. G.

Larsen. Enabling continuous integration in a formal methods
setting. International Journal on Software Tools for Technol-
ogy Transfer, 22(6):667–683, 2020.

[10] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig.
Usage, costs, and benefits of continuous integration in open-
source projects. In 2016 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pages
426–437, 2016.

[11] D. Spinellis. State-of-the-art software testing. IEEE Soft-
ware, 34(5):4–6, 2017.

[12] S. Stolberg. Enabling agile testing through continuous inte-
gration. In 2009 Agile Conference, pages 369–374, 2009.

230

Ensemble Approaches for Test Case Prioritization
in UI Testing

Tri Cao1,2,3, Tuan Ngoc Vu2,3, Huyen Thao Le2,3, Vu Nguyen1,2,3,*

1Katalon LLC
2Faculty of Information Technology, University of Science, Ho Chi Minh City, Vietnam

3Vietnam National University, Ho Chi Minh City, Vietnam
{cttri19, vntuan19, lthuyen19}@apcs.fitus.edu.vn, nvu@fit.hcmus.edu.vn

Abstract—Test case prioritization, which focuses on ranking
test cases, is an important activity in software engineering
given a large number of test cases to be executed within a
short period of time. Recent approaches use test execution
history and test coverage as the key information for ranking
prediction while reinforcement learning has the potential for
improving the accuracy of prioritization. Still, each approach
has its own advantages and limitations. This paper proposes a
ensemble method to take advantages of several existing models
by combining different them into a single one. We evaluate our
ensemble models on the data sets, including sixteen projects.
The results show that one of our proposed models outperforms
all single models on 12 over 16 data sets.

Index Terms—test case prioritization, UI testing, ensemble
method

I. INTRODUCTION

Test case prioritization (TCP) is an important activity to
reduce testing effort in software projects given the lack of time
for testing and delivering software releases. For user interface
(UI) testing, TCP is even more important as UI testing requires
more time to execute than do other types of testing [1]. TCP
helps determine a subset of tests to run instead of running
all available tests while aiming to satisfy a certain objective.
One common objective is to maximize the chance of detecting
faults.

A number of approaches have been introduced for TCP
using this objective [2]–[5]. Among them, history-based and
coverage-based approaches have been shown to be effective in
prioritizing tests [2], [4], [5]. The history-based method uses
the test verdicts from the execution history of test cases while
the coverage-based focuses on optimizing the coverage of test
cases using features such as length of test cases, functions,
and code changes [2], [3], [6]. Bryce et al. [6] calculated
the coverage of test cases based on defined parameter-value
pairs. Nguyen and Le [4] proposed an approach combining test
execution history and test coverage together with reinforce-
ment learning to prioritize UI test cases. Each approach has
its own strengths and limitations. For example, history-based
and coverage-based approaches do not take into account the
addition of test cases in regression testing since the added

* Corresponding: Vu Nguyen (nvu@fit.hcmus.edu.vn)
DOI reference number: 10.18293/SEKE2022-148

test cases have less information of execution history and
coverage. Whereas the reinforcement learning method shows
its advantage in such scenarios as it facilitates the interaction
between the agent and the environment (i.e., the test cases
added).

In this paper, we present an ensemble method to build
test prioritization models by combining different approaches
with the hope of taking advantages of these approaches.
We introduce three ensemble models, including History-based
ensemble by combining two single models that use execution
history as the primary information, Coverage-based ensemble
by using two single models that rely on coverage information,
and History Coverage-based ensemble by combining History-
based and Coverage-based models. The ensemble method
proposed falls into the parallel category, which means each
model is run independently, and the final ranking is the average
of results received from those models. Furthermore, as our
method focuses on UI testing, it can take advantage of the
information of test steps in each test case. By that, the method
uses the test step verdict to calculate the weight of each test
case. To the best of our knowledge, though ensemble methods
are fairly common in machine learning, their application in UI
test case prioritization has not been explored before.

We perform experiments evaluating the proposed and other
state-of-the-art individual approaches using 16 data sets. The
results obtained from our experiments demonstrate that our
best ensemble model outperforms base models on 12 over 16
data sets. This finding suggests that the ensemble method can
take advantage of each individual method to produce better
test prioritization performance.

The rest of our paper is organized as follows. In section
II, we describe related studies on test case prioritization
in the context of UI testing. Section III presents in detail
our approach. Section IV describes the experimental setup,
including research questions, evaluation metrics, and data sets.
The experimental results are shown in section V and discussed
in section VI. Section VII is our conclusion and future work
discussion.

II. RELATED WORK

Research on test suite optimization can be grouped into
three main problems: test case selection, test set minimization,
and test case prioritization [7]. Since our work focuses on test

231

case prioritization for UI testing, this section presents related
works for this specific task.

Coverage approaches [2], [6] try to order test cases to cover
the target items (which can be branches, functions, objects,
code changes, etc.). These approaches are straightforward and
simple. However, code coverage tools which are used to track
code items during execution are not always available.

History-based approaches [8], [9] use the verdicts from the
execution history of test cases in different ways to prioritize
test cases. Hemmati et al. grouped test cases with similar
fault percentages and used diversity or random algorithms to
prioritize test cases in each group [5]. Other studies proposed
functions that calculate a historical value from the cost and
fault severity of each test case, then order these test cases
using their values [10], [11]. Noor and Hemmati calculate the
similarity between the code of each test case using Hamming
distance, edit distance, basic counting and combine the simi-
larity with historical verdicts to prioritize the test cases. Wu
et al. [12] consider the time window before the execution of
each test case, calculate the percentage of failure for each time
window, then sort the test cases based on their likelihood of
failure.

Alongside new methods to represent and extract data, ma-
chine learning algorithms have been used in TCP recently
because they can learn the rules automatically and therefore
becomes more compatible for each project compared to tra-
ditional methods. Learning to rank algorithms, which were
originally used to rank searching results or prioritize content
on websites, was applied to TCP in [13]. In [4], researchers
proposed a coverage graph that can utilize both the historical
and coverage information of the test case. The graph can
update itself after each cycle so that cycles would affect the
order of test cases. Sharma and Agrawal built an information
graph from UML and user story, then fed that graph into meta-
heuristic algorithms [14]. Kaur et al. extracted the elements
of UI in each test step, then used this data as input for
traditional machine learning algorithms (SVM, decision trees,
naive Bayes, etc.) [15]. For the first time, ensemble methods
are applied with traditional machine learning for a general case
of TCP in [16].

III. OUR APPROACH

In this section, we describe the proposed ensemble method
for UI test case prioritization.

A. Ensemble method for UI test case prioritization

Ensemble is a common method in machine learning where
models need to make predictions. Combining the predictions
of two or more models often gives better results than the
performance of a single model [17]. This is because by
joining multiple models together, weaknesses of one model are
expected to be improved by other models and vice versa. In UI
test case prioritization, there are different approaches with their
own strengths and limitations which are able to complement
each other. Hence, we apply this idea of the ensemble method
for prioritizing UI test cases.

Ensemble methods in machine learning have two main
paradigms: sequential ensemble methods and parallel en-
semble methods [18]. In sequential ensemble methods, the
dependence between base models is exploited by successively
applying those base models one after another. On the contrary,
parallel ensemble methods focus on the independence between
base models by running them in parallel and combining the
results later on. In this paper, we apply parallel methods since
we do not observe any considerable dependencies between the
chosen UI test case prioritization approaches.

Fig. 1 provides an overview of our model. Our ensemble
method is divided into two phases: the first is to obtain
predictive ranking from different models, and the second phase
is to combine results from the first phase to one final ranking
using a voting policy. The test suite to be prioritized contains N
test cases that are passed through each individual model. The
output of every single model is the order of the test cases in
the test suite. That is, each test case has an index representing
its position corresponding to each model. Thus, each test case
in the test suite will have M position values from M single
models, where M is the number of models participating in the
ensemble model. We calculate the final weight of a certain
test case by adding all the weights of that test case from M
models. Specifically, in formula (1), ai is the final weight of
the test case ith in the original order, and it is the sum of wji

where wji represents the weight (position) of the ith test case
in the test suite given by the jth model. The test cases are
then sorted according to their final weights.

B. Strategies to choose the method for ensemble

In the context of UI testing, many TCP approaches have
been proposed. Two common approaches are history-based
and coverage-based. Both aim to increase the efficiency of
fault detection, yet they use different information and are
based on different hypotheses. Moreover, each method carries
different advantages. We implement ensemble models to com-
bine those advantages in the hope that they can help increase
the overall performance. In detail, we propose three ensemble
models, which are History-based, Coverage-based, and History
Coverage-based models.

1) History-based ensemble: History-based approach is
based on the hypotheses that test cases with errors in the
past have a high probability of continuing to detect errors. We
choose two methods to include in the history-based ensemble.
The first method prioritizes test cases according to the number
of failures of each test case in the past. This approach, which
is called HBRL hereafter, was proposed by Hemmati et al.
[5]. The second is RLTCP [4], which also uses execution
history information and a combination of test coverage and
reinforcement learning. Although RLTCP is generally more
efficient, the first method prevails in the first cycles of the
application under test (AUT) because RLTCP needs to go
through several cycles to be effective. Combining an ML-based
and a traditional method is expected to provide a stable use
of the model across stages in software development.

232

Model 1

Model m

Test suite ...
...

...
...

...

...

...
Sorting

Final
ranking

Fig. 1: The basic scheme of the two-step data fusion approach. The first one is to obtain predictive results from different
models. The second one is to combine these results to one final result with voting policy

2) Coverage-based ensemble: Coverage-based is based on
the coverage information of a test case for one or several
components in the AUT. We choose two methods for the
coverage-based ensemble. The first method is implemented by
sorting based on the number of test steps of a test case, i.e.,
the length-based method. The test case with the most number
of test steps will be ranked first. The second method, called
StepGreedy, tries to cover all test steps as quickly as possible
using a greedy algorithm. The former considers test cases to
be independent of each other, meaning that though test cases
include the same test steps, they are considered different. In
other words, if two test cases share the same large number
of test steps, they are both ranked high even though we just
need to execute one of them. Whereas the latter takes into
account the relation between test cases, which means that two
test steps doing the same action are considered as one test step.
After one test case is ranked, its test steps are marked satisfied
and removed from further consideration. We select a next test
case that maximizes the number of test steps not covered in
previously selected tests. In the context of UI testing, certain
test cases depend on each other, but there are also test cases
entirely independent of each other. Therefore, the expectation
of combining these two methods is to increase the efficiency
of the model.

3) History Coverage-based approach: We choose RLTCP
and StepGreedy from the coverage-based approach for the
history coverage-based ensemble. This combination aims to
create an approach that uses both execution history and
coverage information of test cases.

IV. EXPERIMENTAL DESIGN

A. Overview

We conduct experiments based on how TCP approaches can
be used in the software development process. At each iteration
or cycle, testers use the models to predict the order of test cases
to be executed for the release corresponding to the iteration.
They then use the prediction to execute tests that are highly
ranked given their time limit.

B. Research Questions

We design the experiments to answer the following research
questions:

RQ1: How do the ensemble models perform in comparison
with individual models in UI test case prioritization?

We compare the performance of ensemble models with
single models to see how effective they are. Single models
are the four that we discussed in section III. From that, we
find out which ensemble method has the best performance for
optimizing early error detection.

RQ2: How does the performance of the ensemble models
change over test iterations?

The number of test cases changes after each iteration in
software development. Test cases that fail in previous iterations
may no longer fail in the current iteration or vice versa.
We perform an experiment to represent the performance of
ensemble models to compare with the single methods across
test execution iterations.

C. Evaluation metrics

We use a standard metric in the Test case selection and
prioritization problem called Average Percentage of Fault
Detected (APFD). This metric is proposed by Rothermel et
al. [19], and it measures the proportion of errors identified at
each percentage of test suite execution and then calculates the
average to evaluate the effectiveness of a test case prioritizing
approach. APFD is calculated according to equation (1). For
each fault, the metric determines the first test case index that
detects that fault and computes the summation of those indexes
of all faults, then divides it by the product of m total faults and
n total test cases in the test suite. TFi denotes the number of
tests needed to execute before discovering the fault i. That is,
if all test cases that expose undetected errors are prioritized
and run before test cases that fail to detect new errors, the
APFD value for that order will be the highest.

APFD = 1− TF1 + TF2 + TF3 + ...+ TFm

mn
+

1

2n
(1)

We use a paired-sample non-parametric Mann-Whitney U
test with a confidence level of 0.05 to confirm if the APFD
difference between the proposed and other methods is sta-
tistically significant. The null hypothesis states that the two
methods have no statistically significant difference in APFD.
If a paired-sample Mann–Whitney U test has a p-value of
less than 0.05, the null hypothesis is rejected, which means

233

that the difference between two methods in terms of APFD is
statistically significant.

D. Data sets

In our experiment, we use four web applications, includ-
ing Mattermost1, Moodle2, Spectrum3, and Elementary Web4

as the AUT. The applications are quite popular, adequately
mature, and accumulate a considerable number of software
iterations.

To create automated UI test cases and run tests, we utilize
the test automation tool Katalon Studio5. After executing the
test suite, the results of test execution will be stored in reports.
The report contains the name of test cases, the test steps that
each test case includes, the verdict of each test case, and the
step that causes failure for test cases. We use these reports as
the data sets for validation.

We establish a test suite and tweak its test cases and the
AUT’s source code to produce mutations across numerous it-
erations to replicate a realistic software development situation.
The specific is described as follows:

• Iteration 1: Initialize the original suite by creating UI test
cases based on the original AUT version. The number of
test cases in the original suite is at least 20, and some
test cases may fail.

• Iteration 2: Test suite will be added at least 10 test cases.
Newly added test cases may fail. Test cases that failed in
the previous iteration may have been fixed.

• Iteration 3: The suite contains at least 40 test cases. Some
components can be added, removed or modified to the
AUT to simulate real software development. Some test
cases may fail due to these modifications.

• Iteration 4 and after: The number of test cases in each test
suite varies, but no test suite has less than 20. The AUT
continues to be tweaked with each iteration to simulate
software development. Test cases that fail in an iteration
can be debugged to ensure that a test case does not
repeatedly fail in successive iterations. The last iteration
may contain no failing test case.

The details for each data set is represented in Table I.
No.test, No.step, No.fail are the number of total test cases,
test steps in all test cases, and failing tests respectively that
are accumulated across all test suites.

In general, the number of iterations of data sets ranges from
10 to 15. Sixteen groups of senior computer science students
correspond to 16 data sets. Each of the four student groups
worked independently of one another. This procedure reflects
the nature of software development, where functionality and
test cases may be added or updated after each release.

1https://github.com/mattermost/mattermost-webapp
2https://github.com/moodle/moodle
3https://github.com/withspectrum/spectrum
4https://github.com/vector-im/element-web
5https://katalon.com

TABLE I: Number of iterations, test cases, test steps and
failing tests in sixteen data sets.

Datasets No.iteration No.fail No.step No.test
Elementary01 10 104 10,740 690
Spectrum01 10 46 2,041 240
Spectrum02 14 316 3,295 638
Spectrum03 15 80 1,948 431
Moodle01 15 84 9,623 690
Moodle02 15 79 11,796 690
Moodle03 15 96 9,996 690
Moodle04 15 88 7,739 690
Moodle05 15 81 13,368 690
Moodle06 15 92 5,225 675
Moodle07 15 216 11,276 684
Moodle08 15 98 13,995 690
Moodle09 14 161 8,574 640

Mattermost01 11 198 4,631 451
Mattermost02 10 61 8,336 440
Mattermost03 14 183 6,708 637

Fig. 2: APFD of the methods over each iteration for some
datasets

V. RESULTS

Table II describes our experimental results of the ensemble
methods and single methods across all data sets. Each cell
in the table represents the average APFD value of a method
on the corresponding data set. The two last rows are the
standard deviation and mean values of the APFD scores for
each method over 16 data sets.

While EnCov gives a second-worst result at both standard
deviation and APFD score with the value of 9.1 and 63.9,
respectively. The other two ensemble methods have the highest
APFD score and a relatively small variance when compared
to individual methods.

Among the based models, StepGreedy is the most stable
one with a standard deviation of 4.3. LengthBased has the
lowest APFD score of 56.0 and the biggest variance when its
standard deviation is significantly higher than other methods
(9.1 while the others vary from 4.3 to 6.9). RLTCP often has
the highest APFD score among individual methods, and its
results are sometimes comparable or even bigger than EnHis

234

TABLE II: Average APFD over iterations of each method on considered dataset

Datasets StepGreedy LengthBased RLTCP HBRL EnCov EnHis EnCovHis
Elementary01 69.3 43.2 68.1 66.1 51.7 73.1 74.4
Spectrum01 66.8 49.6 67.2 67.7 57.8 70.8 71.2
Spectrum02 67.4 44.5 70.2 62.0 55.0 70.3 74.5
Spectrum03 63.8 65.0 77.6 70.6 68.0 77.7 76.1
Moodle01 63.8 58.5 59.9 54.4 61.5 61.3 64.4
Moodle02 64.2 53.5 63.3 54.1 60.2 63.1 68.5
Moodle03 64.3 56.7 66.4 65.8 64.4 70.3 70.5
Moodle04 64.9 58.9 75.2 59.0 67.6 70.9 74.1
Moodle05 66.2 59.9 79.7 57.7 71.3 74.2 80.5
Moodle06 66.6 45.2 67.2 60.8 51.2 70.4 72.4
Moodle07 67.7 68.3 73.4 65.0 72.2 75.8 77.5
Moodle08 68.8 58.5 73.1 62.9 66.6 75.6 75.8
Moodle09 73.0 51.0 73.0 61.9 62.8 74.2 77.6

Mattermost01 73.6 68.2 74.0 70.6 65.6 74.4 77.2
Mattermost02 79.7 70.5 85.3 76.7 74.4 87.6 88.0
Mattermost03 68.9 45.3 72.5 66.8 62.5 71.8 75.0

Stdev 4.3 9.1 6.3 6.1 6.9 5.9 5.3
Avarage 68.1 56.0 71.6 63.9 63.3 72.6 74.9

and EnCovHis.
Table III is the p-value of the Mann–Whitney U test

mentioned in section IV when comparing EnCovHis with
other methods being experimented with within this paper.
The bold value indicates the statistically significant difference
in APFD between the EnCovHis and the others (p-value
≤ 0.05). The table suggests rejecting the null hypothesis
for most of the dataset. The results show that EnCovHis is
better than RLTCP on twelve datasets. Even in Elementary01,
Moodle07, Mattermost01, their p-values are less than 0.01. On
Spectrum01, Spectrum03, Moodle04, Moodle05, p-values are
greater than 0.05, although only two of them have average
APFDs smaller.

Figure.2 illustrates the APFD score of each algorithm
throughout cycles for six data sets. It can be seen that
EnCovHis and EnHis may perform badly during some first
iterations because of lacking historical information, which is
crucial for RLTCP and HBRL to give a good prioritize order,
but they get better and become more stable in the latter cycles.
Meanwhile, since StepGreedy does not use the execution
history, it maintains a small variance during iterations of the
data sets.

VI. DISCUSSION

This section focuses on answering the research questions in
Section IV using the experimental results from Section V.

RQ1: How do the ensemble models perform in comparison
with individual models in UI test case prioritization?

As mentioned above, it can be seen that EnCov does not
have good results. This may be because the performance of
the LengthBased method is too low compared to StepGreedy.
Therefore, instead of combining with each other to get a higher
result, LengthBased drags the StepGreedy method down, so
the APFD scores of EnCov usually lie somewhere between
these two methods.

While EvCovHis and EnHis both have promı́sing results,
EnCovHis has a slightly better performance with a more
significant average APFD score and a smaller standard de-
viation. The difference between standard deviations can be

TABLE III: p-value results of Mann-Whitney U tests between
EnCovHis and four single methods

Dataset StepGreedy LengthBased RLTCP HBRL
Elementary01 0.004 0.001 0.001 0.005
Spectrum01 0.016 0.004 0.131 0.049
Spectrum02 0.007 0.001 0.015 0.002
Spectrum03 0.029 0.054 0.736 0.021
Moodle01 0.472 0.242 0.046 0.025
Moodle02 0.145 0.035 0.032 0.013
Moodle03 0.047 0.006 0.040 0.117
Moodle04 0.007 0.009 0.712 0.001
Moodle05 0.001 0.003 0.484 0.001
Moodle06 0.076 0.002 0.030 0.009
Moodle07 0.002 0.021 0.005 0.003
Moodle08 0.013 0.003 0.040 0.001
Moodle09 0.033 0.001 0.033 0.002

Mattermost01 0.120 0.007 0.002 0.034
Mattermost02 0.038 0.038 0.038 0.021
Mattermost03 0.001 0.001 0.035 0.007

explained when examining the standard deviations of every
single model. EnHis, which uses two methods with similar
standard deviation values, gives a smaller deviation compared
to every single method. However, because EnCovHis has
StepGreedy, which is the most stable method acting as one
of its base models, it has a better standard deviation than that
of EnHis.

The Mann-Whitney U test results from Table III suggest that
EnCovHis outperforms the four considered existing methods in
most of the dataset with the confidence of 95%. However, there
are some exceptions, such as Moodle01, Moodle02 where the
performance of history-based methods is extremely unstable.
The variance of ensemble methods for these datasets is there-
fore affected, while the Coverage-based method can still keep
a good standard deviation, so there is not enough evidence
to reject the null hypothesis. RLTCP has a higher overall
performance when compared to StepGreedy, LengthBase, and
HBRL. Therefore, in some datasets, the APFD score of the
ensemble methods only varies around RLTCP’s score, and the
improvements are not significant.

Examining more closely at the Table II in each dataset,

235

we can see that the ensemble model will be more likely to
have higher results than each of its base models if these base
models have a similar performance. Therefore, EnCovHis may
perform better than EnHis since its two single models have
a closer average APFD score than the two base methods of
EnHis.

To sum up, the ensemble method can be used in prioritizing
UI test cases to get a higher result if the base models are
suitable. The experiment result suggests using methods with
similar performances and small variances in order to get higher
ensemble performance. The APFD score of the ensemble
method throughout cycles depends on its based methods.

RQ2: How does the performance of the ensemble models
change over test iterations?

The Fig.2 shows the APFD score of each method for all
iterations of a dataset. For most of the cases, the pattern
would look similar to that in Spectrum03 and Elementary01.
The historical data in the first cycles are not adequate for
history-based approaches to make a good decision, so they
perform badly at the beginning, then become more stable and
exceed coverage-based approaches. Meanwhile, since Step-
Greedy does not use the execution history, it maintains a
small variance during iterations of the datasets but cannot
improve the result after each iteration. EnCovHis and EnHis
can neutralize the pros and cons of both History-based and
Coverage-based approaches. They suffer less from the lacking
of execution data in the first iterations, improve faster for the
next cycles while giving a stable and high APFD score in the
latter ones.

VII. CONCLUSION

In this paper, we proposed a test case prioritization tech-
nique in regression UI testing by ensembling multiple sin-
gle models into a single one. We design three ensemble
models, which are history-based, coverage-based, and history
coverage-based ensembles. These three models were evaluated
using 16 data sets with the source code of four different AUT,
including Elementary, Spectrum, Moodle, and Mattermost.
The evaluating result shows that the history coverage-based
model is the best one which achieves the average APFD of
74.9%. This indicates that with suitable based models, the
ensemble method can outperform its own base algorithms.

Though ensemble learning is a popular machine learning
technique, this is the first time it is applied in UI test case
prioritization. Thus, it is a promising direction and can be
further explored in the future. Not only in UI testing, but
the ensemble method can also be applied in other testing
problems. Furthermore, due to the limitation of our data sets,
we only conduct experiments based on the idea of the parallel
ensemble method, i.e., bagging ensemble. However, other
ensemble approaches are still applicable and worth investing
in when having larger data and suitable base models.

ACKNOWLEDGEMENTS
This research is funded by Katalon LLC. We would also

like to thank students at the University of Science, Vietnam

National University, Ho Chi Minh city for participating in our
experiments.

REFERENCES

[1] H. Vocke. (2018) The practical test pyramid.
[Online]. Available: https://martinfowler.com/articles/practical-
test-pyramid.html?fbclid=IwAR31q-GxAE7fx-
8rLO8ayUmeFXsSy6fs1vcqylLmZVtnL2VuWVKWR0I4dboUiTests

[2] R. C. Bryce and A. M. Memon, “Test suite prioritization by interaction
coverage,” in Workshop on Domain specific approaches to software test
automation: in conjunction with the 6th ESEC/FSE joint meeting, 2007,
pp. 1–7.

[3] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-
based regression test case selection, minimization and prioritization: A
case study on an industrial system,” Software Testing, Verification and
Reliability, vol. 25, no. 4, pp. 371–396, 2015.

[4] V. Nguyen and B. Le, “Rltcp: A reinforcement learning approach to
prioritizing automated user interface tests,” Information and Software
Technology, vol. 136, p. 106574, 2021.

[5] H. Hemmati, Z. Fang, M. V. Mäntylä, and B. Adams, “Prioritizing
manual test cases in rapid release environments,” Software Testing,
Verification and Reliability, vol. 27, no. 6, p. e1609, 2017.

[6] R. C. Bryce, S. Sampath, J. B. Pedersen, and S. Manchester, “Test suite
prioritization by cost-based combinatorial interaction coverage,” Inter-
national Journal of System Assurance Engineering and Management,
vol. 2, no. 2, pp. 126–134, 2011.

[7] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software testing, verification and reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[8] J.-M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” in Proceed-
ings of the 24th international conference on software engineering, 2002,
pp. 119–129.

[9] A. Khalilian, M. A. Azgomi, and Y. Fazlalizadeh, “An improved method
for test case prioritization by incorporating historical test case data,”
Science of Computer Programming, vol. 78, no. 1, pp. 93–116, 2012.

[10] H. Park, H. Ryu, and J. Baik, “Historical value-based approach for
cost-cognizant test case prioritization to improve the effectiveness of
regression testing,” in 2008 Second International Conference on Secure
System Integration and Reliability Improvement. IEEE, 2008, pp. 39–
46.

[11] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for
continuous regression testing: An industrial case study,” in 2013 IEEE
International Conference on Software Maintenance. IEEE, 2013, pp.
540–543.

[12] Z. Wu, Y. Yang, Z. Li, and R. Zhao, “A time window based rein-
forcement learning reward for test case prioritization in continuous
integration,” in Proceedings of the 11th Asia-Pacific Symposium on
Internetware, 2019, pp. 1–6.

[13] Y. Huang, T. Shu, and Z. Ding, “A learn-to-rank method for model-based
regression test case prioritization,” IEEE Access, vol. 9, pp. 16 365–
16 382, 2021.

[14] M. M. Sharma and A. Agrawal, “Test case design and test case priori-
tization using machine learning,” International Journal of Engineering
and Advanced Technology, vol. 9, no. 1, pp. 2742–2748, 2019.

[15] P. Kaur, P. Bansal, and R. Sibal, “Prioritization of test scenarios derived
from uml activity diagram using path complexity,” in Proceedings of
the CUBE International Information Technology Conference, 2012, pp.
355–359.

[16] R. Lachmann, “Machine learning-driven test case prioritization ap-
proaches for black-box software testing,” in The European Test and
Telemetry Conference, Nuremberg, Germany, 2018.

[17] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits
and systems magazine, vol. 6, no. 3, pp. 21–45, 2006.

[18] P. Bühlmann, “Bagging, boosting and ensemble methods,” in Handbook
of computational statistics. Springer, 2012, pp. 985–1022.

[19] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case
prioritization: An empirical study,” in Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Main-
tenance for Business Change’(Cat. No. 99CB36360). IEEE, 1999, pp.
179–188.

236

Investigating Cognitive Workload
during Comprehension and Application Tasks

in Software Testing
Daryl Camilleri

Department of Computer Science
University of Malta

daryl.camilleri.11@um.edu.mt

Chris Porter
Department of Computer Information Systems

University of Malta
chris.porter@um.edu.mt

Mark Micallef
Department of Computer Science

University of Malta
mark.micallef@um.edu.mt

Abstract — Software testers are an integral part of software
development teams, and consequently need to understand from
different perspectives the project entrusted to them. While
developers might be required to understand a particular module
or area of specialisation within a project, testers’ comprehension
requirements are more far-reaching [1]. Gaining insights into how
testers fare in different comprehension tasks is useful because it
sheds light on how we could potentially support the efforts of the
testing community. This paper reports the results of a laboratory
experiment involving 15 professional software testers. Using
NASA Task Load Index as our instrument of choice, we asked
participants to carry out eight comprehension and application
tasks across four categories (test case design, test automation,
bug finding and adequacy analysis). We then analysed the data
collected to seek to understand the effect of different task types,
education level and participant experience on effectiveness and
cognitive workload.

The results suggest that, while experience is a key element in
successful task completion, this is also influenced by task type. In
fact, the more experienced persons actually tended to fare worse
than their less experienced counterparts in certain tasks (namely,
test case design and adequacy analysis). Level of education had no
significant bearing on successful task completion but differences
in cognitive workload could be observed for both experience and
education-level variables.

I. INTRODUCTION

Program comprehension is a prerequisite for the effective
completion of most tasks in a software engineering context.
Sneed [1] argues that the program code is not the only
artefact that should be of concern. More specifically, effective
members of a development team would need to understand
the code, the environment in which it is deployed, the domain
which it serves, the stakeholders involved and so on. This is
especially the case for software testers, whose comprehension
requirements tend to be more demanding than those of a
developer. Vanitha and Alagarsamy [2] define software testing
as “one of the five main technical activity areas of the software
engineering life-cycle that still poses substantial challenges”.
Other than what seems to be a simple process of checking a
sample of runs, software testing encompasses various intricate
challenges and enfolds a mixture of activities and techniques.

Indeed, with the constantly growing demand for software
and its complexity, ensuring that the software performs as

per the required level of quality is becoming highly critical
and expensive [3]. From a comprehension perspective, while
developers might be required to understand a particular module
or area of specialisation within a project, the testers’ compre-
hension requirements usually span a significantly wider area
of a project. They also typically deal with a broader range of
stakeholders and are expected to carry out a variety of tasks
having significant comprehension prerequisites.

In this context, it would be desirable to gain insights into the
cognitive workload experienced by testers as they comprehend
a task, understand what is required and apply their understand-
ing in completing the task. Such an insight would help guide
recruitment, training, work allocation and mentoring efforts
within organisations. To this end, we approached this work by
posing the following research questions:

RQ1: How are cognitive load and effectiveness in software
testers affected when carrying out different types of
testing tasks?

RQ2: How are cognitive load and effectiveness influenced
by an individual’s experience and education?

The rest of this paper is organised into five further sections,
with Section II providing the necessary background on cogni-
tive workload measurement. Section III outlines the method-
ology we have adopted in this study. Section IV explores
the results and provides the bases for Section V, where the
results are discussed in the context of the research questions
posed above. Finally, through Section VI, we submit proposals
regarding future work, based on the observations made.

II. COGNITIVE WORKLOAD

The term cognitive workload (or mental workload) is widely
used and, while having many definitions, most of them con-
verge on two main aspects: stress and strain [4]. The first refers
to the demands of the task, whereas the second refers to its
impact on the person carrying it out.

When adapting a definition of mental workload, Galy et
al. [5] make reference to Young and Stanton’s [6] claim that
one should also consider “the amount of attentional resources
necessary to perform task as a function of task demand,

DOI reference number: 10.18293/SEKE2022-155
237

environmental context in which the task is performed, and
past experience of individual with task” [5].

A. Measuring Cognitive Workload

The two most widely used instruments for measuring cog-
nitive workload are the subjective workload assessment tech-
nique (SWAT) [7] and the NASA-Task Load Index (NASA-
TLX) [8]. SWAT measures three dimensions of cognitive
workload (time load, mental effort and psychological stress)
whereas NASA-TLX has six subscales (mental demand, phys-
ical demand, temporal demand, performance, effort and frus-
tration). We have chosen to focus on NASA-TLX because of
its wide application across different domains, and its multi-
dimensional assessment of workload, which provides a richer
insight into the sources of workload over SWAT.

1) NASA-Task Load Index: NASA-TLX [8] is a multi-
dimensional scale designed to obtain workload estimates from
one or more operators as they are performing a task or imme-
diately afterwards. Since its publication in the 1980s, NASA-
TLX has been cited extensively and used in several fields,
ranging across nuclear power plant control rooms, certification
of aeroplanes, operating rooms, computer-generated fighting,
and designing of websites [9]. It consists of a multi-item
questionnaire which, when processed, provides an overall task
load index with a range between 0 and 100. The higher the
rating, the more demanding the task would be. The instrument
also provides measurements of six subscales, as indicated
above (i.e., mental demand, physical demand, temporal de-
mand, performance, effort and frustration). A weighted load
index could also be obtained following a pairwise comparison
of these subscales. Like other interface metrics and question-
naires, the TLX application cannot tell what to repair, but
it assists research in understanding if variations made to an
interface generated a better or deteriorated workload. Although
the instrument has most commonly been used in studies that
contain physical components [10], existing literature on the
topic also includes a substantial amount of work where the
study was used to analyse ergonomics in software systems in
which the physical component was not necessarily of concern.
On the basis of a survey of 500 studies, undertaken 20 years
after first being developed [9], its creator noted that while the
instrument was originally developed for use in the aviation
sector, it had grown to be used in a wide variety of sectors,
not least in software engineering.

III. METHODOLOGY

In this section, we present the methodology and discuss key
decisions taken during its design. All material related to the
methodology and results is available on our OSF repository1.

A. Task Design

Task selection and design was of critical importance in this
study. Given the rich spectrum of activities in which software
testers are involved, it was important to choose a reasonable

1https://osf.io/gnyv7/?view only=963454403e5c42acbd344d8d8e2c80cd

subset of tasks that could be carried out in the limited context
and time-frame of a lab-based experiment.

1) Tasks Taxonomy: Hrabovská et al. [11] carried out a
wide ranging review of software-testing process models. As
part of this review, they identified five groups of practices,
as follows: planning (21 practices); design (9 practices); set-
up (12 practices); execution (13 practices); and monitoring (17
practices). These groups collectively characterise the spectrum
of tasks that testers carry out, depending on which process
model they follow. We employed this knowledge to guide us in
selecting a pragmatic subset of tasks that could be carried out
in a lab setting, in a restricted amount of time (approximately
one hour). This led us to focus on these four practices: (1) test
case design; (2) test automation; (3) exploratory test execution
or bug finding; and (4) test adequacy analysis.

In order to minimise participant fatigue, we set out to
ensure that the experiment would take approximately one hour.
After factoring in an estimated 10 minutes for participant on-
boarding and exit interviews, we calculated 40 minutes for
data collection. Hence, we deemed it best to design a series
of eight tasks, each of which we estimated would take 3-5
minutes to complete. Each task was to be preceded by a 2-
minute calming fish-tank video, which enabled participants to
reset their mental state in preparation for the task. We also
opted to include two practice tasks to be carried out at on-
boarding stage, and thus helping to reduce possible participant
anxiety due to unfamiliarity during data collection.

We decided to distribute the eight tasks as follows: three test
case design tasks of increasing difficulty, three test automation
tasks of increasing difficulty, one bug-finding task and one
adequacy analysis task. During each task, participants were
required to read a concise specification or a short snippet of
C# code presented on screen. They were then asked to verbally
explain how they would complete a specific task related
to what they were observing on the screen. For example,
after being presented with the specification for a feature,
participants were asked to outline how many tests would be
required for testing the implementation of that specific feature.
The full set of tasks can be found in our replication pack.

B. Data Collection
Data was collected in two ways. Firstly, participants con-

sented to the recording of their onscreen activity and their
voice. This enabled us to evaluate, at a later stage, the success
rate in the completion of each task. Secondly, participants
filled in a NASA-TLX evaluation on paper for each task.

C. Experimental Procedure
Participants were welcomed to the lab, introduced to the

experiment and given time to review and sign consent forms.
Once the formalities were completed, the participants were
introduced to the two practice tasks in order to familiarize
themselves with the experiment. At this point, participants
iteratively watched a fish-tank video to reset their mental state,
carried out a task and completed a NASA-TLX assessment for
the task. When all tasks were completed, an exit interview was
carried out and the experiment was concluded.

238

IV. RESULTS

This section explores the data collected in the experiment
guided by the research questions posed in Section I.

A. Participant Demographics

Following initial screening of participants, we selected 20
individuals, of whom 15 made it to the lab and success-
fully completed the assigned tasks. In terms of experience,
3 participants (20%) had up to 2 years’ experience, 8 par-
ticipants (53%) had between 3 and 5 years of experience,
and 4 participants (27%) had 6 years’ experience or more.
Education levels consisted of 2 participants (13%) having a
diploma level of education, 9 participants (60%) holding a
first degree, and 4 participants (27%) having postgraduate
qualifications. Unfortunately, the gender balance of our cohort
was heavily skewed towards male participants, who constituted
14 participants (93%).

B. Task Performance

We post-processed the collected data towards establishing
the extent to which participants were successful in their
allocated tasks. For each task, we classified the participants’
individual performance as not successful, mostly successful
or successful. Although determining task success was not a
primary goal of this experiment, it provided another dimension
from which to evaluate the research questions.

Out of 120 attempts, 24 (20%) were unsuccessful, 44 (37%)
were mostly successful and 52 (43%) were successful. Success
decreased as tasks became more difficult within each category.
Whilst 60% of participants completed the first test design task
successfully, this was only the case with 33% in the third
task. Similarly, 80% of participants completed the first test
automation task successfully, whereas none were successful
with the third one. However, is worth noting that while
the number of completely unsuccessful candidates increased
with each level of difficulty in test case design, the number
of unsuccessful attempts at test automation tasks remained
constant at 7% (one participant). The bug-finding task had
a reasonable level of success, when taking into account that
the participants did not know that they were expected to find
10 bugs. Finally, the participants seemed to find test-adequacy
analysis the most challenging, with only 27% getting it right
and 47% getting it wrong.

1) Effect of Experience on Task Success: We analysed the
success by task type and participant experience. The data
indicates that experience is a determining factor in task success
with 0-2, 3-5 and 6+ year cohorts being successful or mostly
successful 92%, 81% and 69% of the time respectively. It is
interesting to note that, overall, relatively inexperienced testers
had a higher success rate, outperforming individuals more
experienced in test case design and test adequacy analysis.
We believe that this is due to the recent nature of their formal
training. However, experience seems to play a key role in
determining success in test automation and bug-finding tasks.

2) Effect of Education on Task Success: When analysing
task success by education, the data at hand suggested that
the level of education did not have a significant impact
on performance. When considering all tasks collectively, the
participants having a diploma were successful or mostly suc-
cessful 81% of the time, participants having a first degree
were successful 79% of the time, and those with postgraduate
degrees were successful 81% of the time. This contrasts with
the more varied success rates when grouping participants by
experience.

C. Overall Cognitive Workload

We began our analysis by taking a high-level view of the
cognitive workload generated by tasks among our participants.
This was done by analysing the distribution of NASA-TLX
scores across task types and participants. We did this from the
point of view of participant experience and the participants’
level of education.

1) Analysing Workload by Experience: When grouping the
NASA-TLX scores by task type and participant experience,
one notices that the general trend was for cognitive workload
to decrease with experience. This was particularly evident in
test case design and test adequacy tasks. Both are activities
which are taught in all testing curricula, but require repeated
practice in order to be applied confidently.

Interestingly, the less proficient testers experienced a lower
cognitive workload when carrying out implementation tasks
and bug-finding tasks. We believe that this is due to a number
of reasons. Firstly, less experienced testers are likely to be
fresh graduates, having completed a degree programme focus-
ing on programming skills. Hence, their comfort zone at this
point would consist mostly of coding. Secondly, it is probable
that experienced testers would specialise in certain subfields
of software testing. Therefore, a test engineer specialising
primarily in building regression test automation frameworks
would be out of touch with bug-hunting skills (and vice-versa).
This argument is further strengthened when one notes that the
more experienced testers were subject to extreme upper and
lower whisker values, which indicate individuals who have
specialised in or away from that particular skill.

2) Analysing Workload by Education: When considering all
NASA-TLX scores regardless of tasks, one notes that partici-
pants with the lowest level of education tended to experience
the lightest cognitive workload. The highest score for this
cohort was 71, compared to 97 and 73 for undergraduates and
postgraduates respectively. This pattern was driven by scores
related to test design, test automation and bug-finding task
categories, but not test adequacy analysis. The measurements
for the latter category suggest that higher levels of education
result in a lighter cognitive workload when carrying out
adequacy analysis. However, it is to be noted that, since there
was only one adequacy analysis task and one bug-finding
task, the sample plots for these tasks were equivalent to the
number of participants in each education group. For instance,
the sample of diploma graduates was only 2.

239

The cohort of participants exposed to the largest cognitive
load tended to be first-time graduates, with the top of their
interquartile range clearly exceeding 70 for test automation
tasks and bug-finding tasks. The resulting mean overall tasks
for undergraduates was 52, with 44 for diploma holders and
49 for postgraduates.

D. Individual NASA-TLX Scales

We also examined how participants fared in individual
scales of NASA-TLX, the main categories being: (1) mental
demand; (2) physical demand; (3) temporal demand; (4) effort;
and (5) frustration. It is to be noted that, although we have
charted the values for physical demand, we have opted not to
analyse this aspect for these tasks. The main reason for this
being that it did not offer a scale of interest for our tasks.

1) NASA-TLX Scales by Experience: Beginning with the
scales related for test case design tasks (Figure 1(a)), we
have noted that the less proficient participants experienced the
heaviest cognitive load in all the scales, with notable peaks
for mental demand, frustration and effort. This is interesting
when considering that this group accomplished these tasks at
optimal levels, outperforming the other two cohorts. It is also
interesting to note that their performance score was higher
than that of the other cohorts, indicating that they did not feel
they were successful with the task.

In the test automation tasks (Figure 1(b)), mental demand,
frustration, effort and performance were quite similar for all
three groups, with the least experienced group recording the
lowest values. As regards the temporal demand value, there
was a marked spike among the participants with 3-5 years’
experience.

The radar chart for bug finding (Figure 1(c)) indicates
elevated levels of effort for both the group with 0-2 years’
experience and the group having 3-5 years’ experience. The
more experienced testers in the group seem to have been min-
imally affected in all scales except mental demand. Moreover,
on the basis of the compiled data, we established that the most
experienced cohort performed exceptionally well in this task.

Finally, following an analysis of test adequacy analysis
(Figure 1(d)), we observed a somewhat similar picture to
test case design. More precisely, the least experienced cohort
registered the highest levels of scales, compared to other
cohorts, even obtaining an average score of 75 for effort. This
effort paid off, with the group significantly outperforming the
others in test adequacy analysis. It is worth nothing that all
groups scored a very low score on the performance scale,
which would suggest that participants felt they were successful
in this particular task.

2) NASA-TLX Scales by Education: When analysing indi-
vidual NASA-TLX scales from the perspective of the par-
ticipants’ education, one of the most notable values is the
level of frustration experienced by diploma-level holders when
carrying out the test adequacy analysis task. Being the most
pronounced component in this task it called for particular
attention, when one considers that all other scales for the same
task scored similar values to other cohorts. This outcome may

be due to a lack of training in this particular technique at
diploma level.

One also notes that first-degree graduates tended to be
exposed more than other cohorts, scoring an average of 60 in
every task category except test case design. Postgraduates had
similar temporal demand readings in test automation and bug-
finding tasks. Unlike the other two groups, diploma holders
tended rarely to experience any significant temporal demand.

V. DISCUSSION

This section seeks to address each of the two research ques-
tions defined in Section I, discussing the respective outcomes
on the basis of the results presented in Section IV.

A. Effect of Types of Testing Task (RQ1)
The discussion of RQ1 revolves around effectiveness and

cognitive load.
1) Task Effectiveness: The results indicate that participant

effectiveness decreased when we increased the difficulty level
of tasks in both the test design category and the test automation
category. However, the pattern of diminished effectiveness
differed substantially between the two categories. In test
design tasks, the number of participants who were completely
unsuccessful in their attempts, increased from 7% to 27%
to 40% for each successive task and difficulty increment.
More encouragingly, the percentage for the test automation
category remained constant at 7%. A closer look at our raw
data revealed that the failing participant was a different person
in each test automation task, leading us to conclude that the
failure may be due to lack of familiarity with the specific test
automation technique being used in that task. In contrast, the
participants who failed the second test design task, also failed
the third one, and were joined by three new participants who
were similarly unsuccessful in the task. This suggests that test
design tasks tend to be more cohesive in nature than their
automation counterparts.

The number of partially successful candidates in the test
design tasks remained relatively constant from one task to the
other (33%, 27%, 27%). We have interpreted this to suggest
that, with test case design, participants either know a technique
or they do not, with little room for a middle ground. On the
other hand, test automation tasks saw the partially successful
range going from 13% to 47% to 93%, but with no candidates
completing the task successfully. This would suggest that
there are multiple ways in which to carry out the same test
automation task and that the nature of test automation would
allow a wider margin of error without resulting in complete
failure.

The bug-finding task was not based on any specific tech-
nique but relied on the participants’ level of observation and
ability to detect anomalies. More than half the participants
(53%) managed to find all 10 bugs on the screenshot, while
27% found at least 8 (which was our boundary for a partially
successful rating).

Finally, participants found test adequacy analysis, the most
challenging task of all with 47% failing the task completely
and only 27% completing it successfully.

240

Fig. 1. NASA-TLX scales by experience for (a) test design, (b) test automation, (c) bug finding, and (d) adequacy analysis

2) Cognitive Workload: When analysing the NASA-TLX
scores across all participants, we observed that both the test
design tasks and the bug-finding task had a mean score
of 47. However, there were differences in the distribution
of the scores. Whereas interquartile scores (middle 50% of
participants) for test design tasks were compacted between 34
and 60, the interquartile range for bug finding ranged from
26 to 74. This suggests that test design tasks generate a more
consistent cognitive load than bug finding, which tends to be
more varied. Test automation tasks generated a mean cognitive
load of 55, with an interquartile range of 39 to 70. Finally,
test adequacy analysis generated a mean load of 52 with an
interquartile range of 40 to 63. This makes test adequacy the
most compactly distributed task category.

In the NASA-TLX scales (see Table I) the type of task had
minimal effect on mean mental demand, temporal demand
and effort. The exception to this was that the test design
had a significantly lower value (45) than the cluster of the
other three categories (56, 52, 53). However, performance and
frustration were significantly affected by the type of task.
The performance scale indicated that participants were most
confident with test design and bug finding, but less so with
adequacy analysis and test automation. It is worth noting that
the maximum value of 50 was nowhere near the higher end of
the scale’s bounds, thus indicating that the participants were
relatively confident in their performance, even if the actual
results appeared to point in a different direction.

Frustration also exhibited a certain variability based on
the type of task being carried out. Participants found test
automation to be the most frustrating category with a score of
54. This was followed by adequacy analysis (49), test design
(40) and bug finding (35).

B. Effect of Experience and Education (RQ2)

As discussed in Section IV, the participants’ experience in
the field had an impact on both their effectiveness and cog-
nitive workload. However, whilst education did demonstrate
some variability in cognitive workloads, it had a negligible
impact on task effectiveness.

1) Task Effectiveness: The idea that experience would have
an effect on task effectiveness was arguably an expected
outcome of this work. However, we were surprised to ob-
serve that this impact was not always positive with the less

experienced participants outperforming more experienced ones
in test design and adequacy analysis tasks. This may be
due to a combination of two factors. Firstly, less experi-
enced candidates would have just recently been trained in the
methodological aspects of testing required by these two types
of tasks. Secondly, in our conversations with the participants
collectively working across a spectrum of studies over these
past years, we have observed that testers tend to eventually
settle into a preferred role or specialisation. For example, one
might specialise as a test engineer, a test analyst or a test
lead. Each of these specialisations would result in certain skills
being given less attention in favour of others, over time.

The opposite held true for test automation and bug finding.
An interesting point, here, was that the increased effectiveness
in test automation is not impressive, in that it ranged from
89% to 92% to 100% as the level of experience increased.
One could argue that an 89% success rate is actually to be
expected. However, the differences in bug finding were much
more pronounced, ranging from 67% to 79% to 100%. We
believe that bug finding is one skill that benefits more from
a trained eye, developed through experience and practice, as
opposed to a technique that could be applied methodologically.

2) Cognitive Workload: The highest mean levels of cogni-
tive workload were exhibited in test automation tasks for can-
didates with 3-5 years of experience (57) and undergraduates
(59). The interquartile range for 3-5 years’ experience ranged
from 40 to 75, whereas that of the undergraduate cohort ranged
from 41 to 78. The means were at 63 and 57 respectively,
indicating that experience produced a wider distribution of
NASA-TLX scores. In both cases, the scores seemed to be
driven by all subscales concurrently, with no specific subscale
providing a disproportional influence.

As regards test design tasks, cognitive load decreased as
experience increased, going from a mean of 57 (0-2 years) to
47 (3-5 years) to 41 (6+ years). The influence of education in
this category was less pronounced and moved in the opposite
direction, with means of 43, 46, and 51 for diploma holders,
first-degree holders and postgraduates respectively.

Bug finding inflicted the least cognitive demands on both
the least educated (34) and the least experienced (42). Among
the least-qualified participants, this was driven by low levels
of mental demand, frustration, effort and temporal demand,
whereas in the least experienced the higher mean was driven

241

TABLE I
MEAN VALUES FOR NASA-TLX SCALES

Mental Demand Physical Demand Temporal Demand Performance Effort Frustration
Test Design 50 38 45 31 52 40
Test Automation 54 47 56 50 55 54
Bug Finding 47 57 52 38 55 35
Adequacy Analysis 52 45 53 41 56 49

by higher levels of effort (57 vs 35) and temporal demand (47
vs 30). This suggested that a lack of experience generates the
need for more effort and concentration than does a lack of
education.

C. Threats to Validity

This work is subject to the same threat to external validity as
other experiments, in that it is a single experiment. Although
we have presented some of the results on the basis of empirical
analysis, we cannot claim that these results are representative
of the whole testing population. Nevertheless, we are confident
that they provide a useful insight and form a foundation for
further study. We also mitigated internal validity risks through
rigorous experimental procedure and utilising NASA-TLX,
which has been used successfully in countless studies.

VI. CONCLUSION AND FUTURE WORK

In this paper, we set out to shed light on the cognitive
workload experienced by testers from different cohorts as they
attempted to complete a range of tasks typical of the field. Our
results uncovered interesting patterns in effectiveness based
on the type of task alone. They also indicated that, although
experience is a key influence on successful task completion,
success is also conditioned by task type. Moreover, more
experienced persons tended to fare worse than their less
experienced counterparts in certain tasks (test case design and
adequacy analysis). Level of education had no significant bear-
ing on successful task completion but differences in cognitive
workload could be observed for both experience and education
level variables. Here too, it was experience that exerted the
strongest influence.

Throughout the course of analysing our data and writing the
paper, we have identified a number of shortcomings, which
would be addressed as part of our future work.

A. Future Work

This study lays the foundations for a number of oppor-
tunities for further exploration. Firstly, it would be useful
to observe a better balance of demographic properties, such
as a much wider representation of the female population.
Moreover, a more balanced sample of education level and
experience would be similarly highly desirable. More varied
cohorts would shed light on whether the results presented
here do indeed hold for a wider population. In addition, it
would be beneficial to refine the experimental protocol to
balance out the number of tasks within each category and
provide the space for more qualitative data through follow-up
discussions. This would make it possible to elaborate upon

mere numbers, and gain deeper insight into, for example, why
the more experienced persons tended to fare worse than their
less experienced counterparts in certain tasks.

Once the data would have been sufficiently replicated, we
would be in a better position to apply our observations to
producing guidelines for companies regarding the management
of software testers. At present, the data presented here could
be used to inform recruitment decisions, team composition
decisions, project management, training paths and promotion
ladders in the field of software testing.

REFERENCES

[1] H. Sneed, “Program comprehension for the purpose of testing,” in
Proceedings. 12th IEEE International Workshop on Program Compre-
hension, 2004., 2004, pp. 162–171.

[2] A. Vanitha and K. Alagarsamy, “Software testing in cloud platform: A
survey,” 04 2019.

[3] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” 06 2007, pp. 85 – 103.

[4] M. S. Young, K. A. Brookhuis, C. D. Wickens, and P. A. Hancock, “State
of science: mental workload in ergonomics,” Ergonomics, vol. 58, no. 1,
pp. 1–17, 2015.

[5] E. Galy, J. Paxion, and C. Berthelon, “Measuring mental workload with
the nasa-tlx needs to examine each dimension rather than relying on the
global score: an example with driving,” Ergonomics, vol. 61, no. 4, pp.
517–527, 2018.

[6] J. Q. Young, R. M. Wachter, O. Ten Cate, P. S. O’Sullivan, and D. M.
Irby, “Advancing the next generation of handover research and practice
with cognitive load theory,” BMJ quality & safety, vol. 25, no. 2, pp.
66–70, 2016.

[7] G. B. Reid and T. E. Nygren, “The subjective workload assessment
technique: A scaling procedure for measuring mental workload,” in
Advances in psychology. Elsevier, 1988, vol. 52, pp. 185–218.

[8] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load
index): Results of empirical and theoretical research,” in Advances in
psychology. Elsevier, 1988, vol. 52, pp. 139–183.

[9] S. G. Hart, “Nasa-task load index (nasa-tlx); 20 years later,”
Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, vol. 50, no. 9, pp. 904–908, 2006. [Online]. Available:
https://doi.org/10.1177/154193120605000909

[10] H. Mansikka, K. Virtanen, and D. Harris, “Comparison of nasa-tlx
scale, modified cooper–harper scale and mean inter-beat interval as
measures of pilot mental workload during simulated flight tasks,”
Ergonomics, vol. 62, no. 2, pp. 246–254, 2019, pMID: 29708054.
[Online]. Available: https://doi.org/10.1080/00140139.2018.1471159

[11] K. Hrabovská, B. Rossi, and T. Pitner, “Software testing process models
benefits & drawbacks: a systematic literature review,” arXiv preprint
arXiv:1901.01450, 2019.

242

Visualization of automated program repair focusing on suspiciousness values

Naoki Tane, Yusaku Ito, Hironori Washizaki, Yoshiaki Fukazawa
Department of Fundamental Science and Engineering

Waseda University
Tokyo, Japan

n.tane0228@fuji.waseda.jp

Abstract–Automated program repair (APR) can real-
ize efficient debugging in software development. Auto-
mated program corrections using genetic algorithms (GA)
can repair programs, including those with multiple bugs,
but the repair process of GA-based APR is difficult to
understand using logs because many modification pro-
gram codes are generated. Consequently, Matsumoto et
al. implemented a methodology for visualizing the pro-
cess. Their proposed methodology provides an intuitive
understanding of the conformance values (test case pass
rates), generations, states, and operations performed to
generate each variant; however, it lacks sufficient infor-
mation to analyze whether defect localization is appropri-
ate in APR. Herein we propose a new methodology to visu-
alize the impact of fault localization on program evolution
in GA-based APR and create a new tool. Additionally, a
case study demonstrates the effectiveness of the proposed
methodology and future works are considered.

Keywords–Visualization; Genetic Algorithm; Auto-
mated Program Repair; Fault Localization; Bug Local-
ization

1 Introduction

Automated program repair (APR) is a technique that re-
moves bugs without human intervention. APR outputs a
bug-free program when given a buggy program and test
suites.

kGenProg, which is a Java programmatic implementa-
tion of genProg, is a tool that uses genetic algorithms (GAs)
for APR (GA-based APR)[1]. A key feature of kGenProg
is its high portability. Users can easily change its param-
eters because kGenProg has an adaptable fault localization
framework. However, it is difficult to analyze the repair
process using the logs alone because kGenProg generates

DOI reference number: 10.18293/SEKE2022-159

multiple programs during the modification process.
Macaw is an open-source software to visualize the evo-

lutionary process of programs by kGenProg[2]. Macaw
shows the code genealogy as a bird’s eye view tree struc-
ture and detailed variant information, where a variant is a
program generated in the evolutionary process. Its visual-
ization provides an intuitive understanding of each variant.
This information can be used to adjust the kGenProg pa-
rameters. One shortcoming is that Macaw does not provide
enough information to analyze whether the fault localiza-
tion is appropriate.

To address this issue, we propose a new methodology to
visualize the impact of fault localization on the evolution of
programs in kGenProg. Specifically, we create a new tool
called Grackle based on this methodology and evaluate the
visualization efficiency via a case study.

2 Background and problem

2.1 Fault Localization

Fault localization methods identify faulty program lines
based on information obtained from the success or fail-
ure of test cases. A common category is spectral-based
methods[3]. Spectral-based methods assign suspicious-
ness values according to a program statement’s likelihood
of a flaw. Tarantula[4], Ample[6], Jaccard[5], Ochiai[5],
and Zoltar[7] represent Spectrum-Based Fault Localiza-
tion(SBFL) to calculate the suspiciousness values (Table 1).
The effectiveness depends on the given test case and pro-
gram.

243

Table 1. Formulas to calculate the suspicious-
ness values for select SBFL methods

SBFL formula for calculating the suspiciousness value

Ample Suspiciousness =
∣∣∣ aef

aef+anf
− aep

aep+anp

∣∣∣
Jaccard Suspiciousness =

aef

aef+anf+aep

Ochiai Suspiciousness =
aef√

(aef+anf)×(aef+aep)

Tarantula Suspiciousness =

aef
aef+anf

aep
aep+anp

+
aef

aef+anf

Zoltar Suspiciousness =
aef

aef+anf+aep+10000×anf×
aep
aef

aep: Number of successful tests that executed the line
aef : Number of failed tests that executed the line
anp: Number of successful tests that did not execute the line
anf : Number of failed tests that did not execute the line

2.2 APR

Many researchers have actively investigated technolo-
gies to increase the efficiency of debugging because debug-
ging accounts for half of system implementation and testing
costs[8]. These studies often focus on APR. APR removes
bugs from buggy programs without human intervention[9].
It works by taking a buggy program and test cases as input
and outputs a bug-free program.

2.3 kGenProg

GenProg is an APR methodology based on source code
reuse[10]. kGenProg is an APR tool written in Java. It is a
reimplementation of GenProg, which automatically repairs
bugs using GAs. kGenProg works as follows. First, it infers
the bug’s line using a fault identification technique. Second,
it generates multiple variants by modifying the lines that
contain bugs. This step has two primary operations. One is
mutation. Mutation means making minor changes to a se-
lected variant to create a new variant such as insert, delete,
or replace. The other is crossover. Crossover mixes two se-
lected variants to generate a new variant. Third, unit tests
are run on the generated variants. A repaired program is
outputted if a variant passes all the tests. If not, kGenProg
selects some of the generated variants and generates new
variants based on them. Selection means that kGenProg
takes some variants from the latest generation. kGenProg
decides which variants to select by the pass rate of the unit
test. Additionally, it selects some variants from the previous
generation to account for the possibility of a poor pass rate
for all generated variants.

2.4 Problem in use and existing visualization

Macaw visualizes the evolutionary process of programs
with kGenProg. It was developed by Matsumoto et al..
Macaw’s visualization provides an intuitive understanding
of each variant’s fitness value (test case pass rate), genera-
tion, state, and operation (insertion, deletion, replacement,
crossover, or copy). Macaw helps adjust the parameters of
the APR. However, it does not provide sufficient informa-
tion to comprehend the impact of failure localization on the
APR in the program’s evolution. To address this shortcom-
ing, we propose a new methodology to visualize the impact
of fault localization on program evolution in kGenProg and
evaluate the effectiveness of our methodology. This study
aims to answer the following two research questions (RQs):

RQ1: Does the proposed methodology facilitate the under-
standing of fault localization?

RQ2: Is the effect of fault localization in GA-based APR
easily understood?

3 Visualization of code genealogy with fault-
localization results

Similar to the Macaw project, our visualization displays
the evolutionary process of kGenProg with the code geneal-
ogy shown as a bird’s eye view tree structure and detailed
variant information. These two factors can explain the rep-
resentation of the alleged values. The color intensity repre-
sents suspicious values set for the row that operated to gen-
erate each variant. The color intensity also represents each
row that is subject to the suspicious values of each variant.
Figure 1 depicts the visualization of the suspiciousness val-
ues in the detailed information of the variant. Our visual-
ization method provides an intuitive recognition of the sus-
piciousness value for the lines in the bug framework. The
source code of each variant is displayed at the top of the
detailed information, and the suspiciousness is indicated in
red. The darker the red color, the higher the suspiciousness
value in the line.

Figure 2, which shows the flow to generate child vari-
ants, overviews the proposed visualization of the suspi-
ciousness values for the code genealogy. First, fault local-
ization calculates the suspiciousness values of each line of
the parent variant. This is similar to how kGenProg gen-
erates variants. Second, the suspiciousness value set at the
line where kGenProg is performed is identified by the color
intensity of the edge of the tree structure in the bird’s eye
view.

Figure 3 shows the visualization of the suspiciousness
value for the code genealogy. Similar to the visualization
proposed by Macaw, each node represents a single variant,

244

Figure 1. Proposed method to visualize the
suspiciousness values in the detailed infor-
mation of the variant

Figure 2. Flow of the generation of child vari-
ants

and nodes on the same y-axis mean that they are from the
same generation of kGenProg. Circle nodes represent newly
generated variants, and small circle nodes denote variants
copied from all ages. Crosses indicate variants that failed
to compile or invalid variants. The proposed visualization
describes the number of nodes in each generation below the
cross. The adaptive value is an indicator of the pass rate.
In our method, the darker the green color, the higher the
adaptive value.

Unlike Macaw, the red intensity of the edge of the tree
structure in the bird’s eye view of our method represents the
suspiciousness value set at the point where kGenProg op-
erated (insertion, deletion, or replacement). The darker the
color, the higher the suspiciousness value of the changed
part. It should be noted that edges representing crossover
and copy operations are not colored because the crossover
operation combines codes of two variants and the copy op-
eration in kGenProg does not make any changes. Hence,
areas with high suspiciousness values are easily visualized
and the influence of fault localization on APR can be un-
derstood intuitively. Similar to Macaw, clicking on a node
shows details of the generated variants.

Figure 3. Visualization of the suspiciousness
value for the code genealogy

4 Tool implementation

To implement our methodology, kGenProg must be mod-
ified. By default, kGenProg has an option to output JSON
files. In addition to JSON files, the source code and suspi-
ciousness values must also be outputted in JSON to imple-
ment our method. Therefore, we created a modified kGen-
Prog to output the source code and suspiciousness values
as JSON files. We also created a tool to implement our

245

methodology. We call this tool Grackle. Grackle can vi-
sualize the suspiciousness values by reading the JSON file
output from the modified kGenProg.

Figure 4 shows the flow using Grackle. First, our
methodology builds a modified kGenProg, which outputs
source code and suspiciousness values as JSON files and
creates an executable file (JAR file). Second, our methodol-
ogy runs the auto-fix in the executable file. Finally, Grackle
is used to visualize the flow of the automated modification
by inputting the JSON file output from the involuntary con-
version.

Figure 4. Flow of Grackle

Figure 5 shows a screenshot of the code genealogy vi-
sualized by Grackle. The left side shows the code geneal-
ogy, while the right displays detailed variant information.
Grackle highlights the selected variant with a blue border
and the parent variant with a light blue frame. Hence, users
can visualize the suspiciousness value of each line of code
in the variant. Additionally, the red intensity of the edge of
the tree structure in the bird’s eye view represents the suspi-
ciousness value set at the changed line in the code system.

Figure 5. Screenshot of the code genealogy
visualized by Grackle

The source code differences and test results in Variant
Details can be viewed by changing the mode. Hence, the
edge types in Code Genealogy and Macaw can express var-
ious operations. Figure 6 shows an example of the visual-
ization when changing the mode in Grackle. Figure 7 shows
a screenshot.

Figure 6. Example of the visualization when
changing the mode in Grackle

Figure 7. Screenshot of the code genealogy
visualized by Grackle

We implemented Grackle using the Javascript frame-
work Vue.js. Grackle can also run in modern web browsers
such as Google Chrome, Firefox, Safari, and Microsoft
Edge. This example handles a small log. A normal behavior
is observed even for a relatively large record with 1970 vari-
ants and a generation number of 100. However, it does not
support visualizations of the suspiciousness values for mul-

246

tiple java programs. This support should be addressed in the
future. Clicking on a node in the bird’s-eye view on the left
shows detailed information about the variant on the right.
Clicking on the button in the upper left corner changes the
edges of the bird’s eye view. The correct upper dialog al-
lows users to select a JSON file representing the APR pro-
cess output by kGenProg. Then users can select the code
and the Diff representing the alleged value using the select
box above the detailed information. They can also select a
table of suspiciousness values and unit test results using the
selection box below the detailed information.

5 Case study

5.1 Conditions

We performed an APR with kGenProg under the follow-
ing conditions to verify whether our methodology is effec-
tively implemented:

Program: kGenProg’s QuickSort test program (Quick-
Sort.java)
Fault Localization: Ochiai

We also examined the RQs by comparing Macaw and
Grackle visualizations for APR under the above conditions.
Macaw is a project to visualize the evolution process of pro-
grams using kGenProg, while Grackle is the tool devised in
this study.

5.2 Results

Figure 8 shows a screenshot of Macaw. Figure 9 shows
a screenshot of Grackle. Both Macaw and Grackle provide
code genealogy to intuitively understand the test case pass
rate, generation, status, and operation performed by kGen-
Prog to generate each variant. Both also generate detailed
information about the variants, allowing users to understand
the differences between the before and after operations and
the unit test results. In addition, Grackle provides the al-
leged value of the changes made. Grackle also shows the
suspiciousness value calculated for each variant line by fault
localization in the variant details.

5.3 RQ1: Does the proposed methodology facili-
tate the understanding of fault localization?

Macaw does not give information about the suspicious-
ness with bugs calculated by fault localization in each vari-
ant. On the other hand, Grackle provides an intuitive under-
standing of which line of code in each variant is responsible
for the calculated suspiciousness value. Thus, the proposed
method facilitates the understanding of fault localization.

Figure 8. Screenshot of Macaw

Figure 9. Screenshot of Grackle

5.4 RQ2: Is the effect of fault localization in GA-
based APR easily understood?

Macaw’s code genealogy does not provide information
about the alleged value of the point of change in each op-
eration. On the other hand, Grackle’s code genealogy gen-
erates information about the alleged value of the point to
be changed in each mutation operation. This information
helps realize an intuitive understanding of APR’s fault lo-
calization behavior using GAs. Thus, the proposed method
clarifies the effect of fault localization.

6 Conclusion and future work

Herein we propose a methodology and tool to visualize
the impact of fault localization on the evolution of programs
in kGenProg. The effectiveness was evaluated via a case
study. The case study qualitatively demonstrates the useful-
ness of our methodology and tool.

We visualize three prominent use cases: to compare dif-
ferent fault localization strategies, to select an appropriate
fault localization strategy, and to realize an intuitive un-
derstanding of changes made by KGenProg. kGenProg
can easily change fault localization strategies. The pro-
posed methodology supports an intuitive understanding of

247

the changed parts of the code using the code genealogy and
the suspiciousness values. For example, using a test suite
and a buggy program as inputs, different fault localization
strategies (Ample, Jaccard, Ochiai, Tarantula, or Zoltar) can
be applied and the APR run. The proposed methodology
can compare fault localization strategies directly and eluci-
date the impact of automated corrections by strategy.

The proposed methodology can provide an understand-
ing for setting suspiciousness values for fault localization.
It can be employed to check the code genealogy and the de-
tails of the variant to verify that the suspiciousness value is
set appropriately. For example, a fault localization strategy
may negatively impact the APR if the suspiciousness value
is set low for a buggy part or high for a non-buggy part. In
this way, fault localization can be evaluated, allowing users
to select an appropriate bug identification tool. This should
improve the efficiency of APR.

Use cases assume that the fault localization strategy
is working properly. Our methodology highlights signif-
icant changes made by kGenProg. The visualization of
suspiciousness values using code genealogy edges shows
changes with high suspiciousness values (i.e., where bugs
are likely to be present). In this case, a bug is likely to be
fixed accurately.

In the future, we plan to evaluate our methodology and
tool quantitatively. We also plan to devise use cases for
the proposed methodology and verify the practicality of our
methodology and tool.

References

[1] Y. Higo, S. Matsumoto, R. Arima, A. Tanikado, K.
Naitou, J. Matsumoto, Y. Tomida, and S. Kusumoto,
”kGenProg: A High-Performance, High-Extensibility
and High-Portability APR System,” 2018 25th Asia-
Pacific Software Engineering Conference (APSEC),
Nara, Japan, 2018, pp. 697-698.

[2] Y. Tomida, Y. Higo, S. Matsumoto and S. Kusumoto,
”Visualizing Code Genealogy: How Code is Evolu-
tionarily Fixed in Program Repair?,” 2019 Working
Conference on Software Visualization (VISSOFT),
2019, pp. 23-27, doi: 10.1109/VISSOFT.2019.00011.

[3] J. Xuan and M. Monperrus ”Learning to Combine
Multiple Ranking Metrics for Fault Localizetion”
2014 IEEE International Conference on Software
Maintenance and Evolution pp. 191-200 2014.

[4] J. A. Jones, M. J. Harrold and J. Stasko, ”Visualiza-
tion of test information to assist fault localization”,
Proceedings of the 24th international conference on
Software engineering, pp. 467-477, 2002.

[5] R. Abreu, P. Zoeteweij and A. J. Van Gemund, ”On the
accuracy of spectrum-based fault localization”, Test-
ing: Academic and Industrial Conference Practice and
Research Techniques-MUTATION 2007. TAICPART-
MUTATION 2007, pp. 89-98, 2007.

[6] V. Dallmeier, C. Lindig and A. Zeller, ”Lightweight
bug localization with ample”, Proceedings of the sixth
international symposium on Automated analysis-
driven debugging, pp. 99-104, 2005.

[7] T. Janssen R. Abreu and A. J. C. van Gemund
”ZOLTAR: A toolset for automatic fault localization”
Proceedings of the International Conference on Auto-
mated Software Engineering (ASE’09) - Tool Demon-
strations.

[8] Britton, T., Jeng, L., Carver, G., Cheak, P. and
Katzenellenbogen, T. (2013). Reversible Debugging
Software: Quantify the time and cost saved using re-
versible debuggers.

[9] YASUDA, Kazuya, ITOH, Shinji, NAKAMURA,
Tomonori, HARADA, Masao, HIGO, Yoshiki. Au-
tomated Program Repair Using Donor Code Gener-
ation Based on Features of Targeted Systems. Com-
puter Software. 2021, vol. 38, no. 4, p. 4 23-4 32.

[10] C. Le Goues, M. Dewey-Vogt, S. Forrest and W.
Weimer, ”A Systematic Study of Automated Program
Repair: Fixing 55 out of 105 Bugs for $8 Each”,
ICSE’12, pp. 3-13.

248

Beyond Numerical – MIXATON for outlier

explanation on mixed-type data

Jakob Nonnenmacher

University of Oldenburg

Oldenburg, Germany

jakob.nonnenmacher@uol.de

Jorge Marx Gómez

University of Oldenburg

Oldenburg, Germany

jorge.marx.gomez@uol.de

Abstract— Outlier explanation approaches are employed to

support analysts in investigating outliers, especially those detected

by methods which are not intuitively interpretable such as deep

learning or ensemble approaches. There have been several studies

on outlier explanation in the last years. Nonetheless, there have

been no outlier explanation approaches for mixed-type data. In

this paper we propose multiple approaches for outlier explanation

on mixed-type data. We benchmark them by using synthetic

outlier datasets and by generating ground-truth explanation for

real-world outlier datasets. The results on the various datasets

show that while there is no approach that dominates others for all

types of outliers and datasets, some can offer a consistently high

performance.

Keywords-outlying aspect mining; outlier explanation; mixed-

type; anomaly detection

I. INTRODUCTION

Being able to understand the output of a machine learning
model is a core requirement for its successful deployment in
real-world applications. Outlier detection models do not always
fulfill this requirement. To remedy this, a number of outlier
explanation methods have been proposed in the last years [1–5].
Outlier explanation is important because outlier detection
methods are often used in a more explorative context which
makes it important for analysts to investigate the results before
they can take action. Furthermore, outlier detection methods
often only provide information on whether something is an
outlier but not why it is an outlier [1, 2, 5]. More recent state-of-
the-art approaches based on deep-learning or ensemble methods
are especially known for not being easily explainable [6]. This
includes methods like IForest [7] as well as autoencoders [8].
Another aspect, which makes outlier explanation relevant, is the
fact that all outlier detection methods employ some kind of
statistical measure to determine the outliers. The problem with
this is that the statistical measure might select an entry as an
outlier that does not necessarily match the outlier definition
within the domain the detector is used [4]. To weed out these
potential false positives from the results, the analyst has to
understand why an entry has been selected as an outlier.

Despite the large number of outlier explanation methods that
have been proposed so far, most of them have been created for
numerical data. A few methods explicitly address categorical
data [9, 10] and one method has been presented which claims to
work for both numerical as well as mixed-type data but has only
been evaluated on the former [2]. Data in real-world applications

is often mixed-type and multiple outlier detection methods and
adaptions for mixed-type data exist [11–13]. Finding outliers,
including those that are only apparent when considering both
numerical and categorical features together, is important for
uncovering fraud or identifying cyber-attacks. The fact that no
outlier explanations approaches exist for mixed-type data makes
the application of state-of-the-art mixed-type outlier detection
approaches potentially less effective and practical for these and
other real-world applications. To address this challenge, we
propose and evaluate multiple variations of outlier explanation
approaches for outliers detected on mixed-type data. Overall, the
contribution of this work includes:

• Multiple adaptions of outlier explanation
approaches for mixed-type data

• Creating a benchmark for outlier explanation
approaches for mixed-type data

• Recommendations for which methods to use for
mixed-type data

The rest of this paper is organized as follows: Sec. II
introduces related work. Sec. III presents our developed
approaches. Sec. IV contains the evaluation as well as the
discussion of our results and in Sec. V we conclude our work.

II. RELATED WORK

The first prevalent outlier explanation approach is the so-
called score-and-search approach in which subsets of the
original full featurespace are created and then scored using a
scoring metric. The subset featurespace in which an outlier
receives the highest score is selected as the explaining subspace
for that outlier. Multiple variations of this score-and-search
approach have been proposed, focusing on reducing the number
of subspaces to score [3, 4, 14–16] and on making the scores
comparable between subspaces of different dimensionality [3,
15, 16].

The second prevalent approach is the so-called feature
transformation and importance approach. Most of these
approaches work by using a classifier that is trained to
differentiate between the inliers and the outliers to explain. Then
a feature selection technique like Lasso is used to determine the
importance of the individual features for this classification task
[5, 17–19]. One technique that is similar to this approach is to
train a classification model and to then extract an explanation
using the general model explanation technique SHAP which was

 DOI reference number: 10.18293/SEKE2022-110

249

presented by [20]. SHAP is a method derived from game theory
and attributes credit to each feature for the achieved prediction.
In outlier explanation, this credit attribution is then used as the
feature importance. This approach is, in combination with a
classifier, used as a benchmark for the approaches presented by
[2] and [1].

The approach by [1], called ATON, determines the feature
importance by using a neural network with self-attention that
learns to increase the distance between outlier and inlier. They
use a triplet-loss by using the outlier to explain and sampling
inliers from the neighborhood of that outlier as well as random
inliers. After training the network, the self-attention is extracted
from the network as the feature importance. They benchmark
their approach against other numerical explanation approaches
with their approach achieving superior performance.

The approach by [2], called Explainer, is an approach which
works similar to isolation forests. It uses isolation trees which
are built by performing splits in those leaves that contain the
outlier. Leaves are split in such a way that the size of the
resulting leaf containing the outlier is as small as possible [2]. At
the end of the training, rules are extracted from the individual
trees and the rules which are the most frequent among all trees
are presented to the user to explain the outliers. The rule
frequency is also used to determine the feature importance. This
approach claims to work for mixed-type data but is not evaluated
for it.

One prevalent way of differentiating outliers from inliers is
their distance [21]. This is used in the approach by [1] when
determining the local neighborhood of an outlier to select an
inlier to differentiate it from. Since their method is designed for
numerical data, they utilize simple Euclidean distance.
However, the Euclidean distance might not be suitable when
determining distances in mixed-type data [21].

Multiple approaches have been suggested to make mixed-
type data usable in single-type methods. One-hot encoding is one
of the most prevalent methods of allowing mixed-type data to be
used in numerical methods [21]. In one-hot encoding, a set of
binary dimensions is created for each categorical feature where
each dimension stands for one unique feature value within the
categorical features.

There are numerous distance metrics which have been
designed for numerical data such as Euclidean or Manhattan
distance [21]. Only a few have been designed for mixed-type
data. One metric specifically designed for mixed-type data is the
Gower distance [22].

III. IMPLEMENTATION

To develop an outlier explanation approach for mixed-type
data, we used the currently best-performing method on
numerical data, called ATON [1], as a foundation. We call the
overarching family of our approaches MIXATON. We then
designed multiple variations of this approach while
incorporating specific adjustments for mixed-type data. The
proposed methods are MIXATON_OE_SUM,
MIXATON_OE_AVG, MIXATON_GD and MIXATON_EL.

1. MIXATON_OE_SUM This approach works by first encoding
the categorical features using one-hot encoding and joining them
with the numerical features. The neighborhood search for
identifying inlier samples from the neighborhood of the outlier
is then performed on this preprocessed dataset using k nearest
neighbor with Euclidean distance. These, together with random
inlier samples and the outlier are subsequently used to train the
network. Afterwards, the learned self-attention is extracted from
the network. To obtain the feature importance for the categorical
features from the learned self-attention, the attention is added up
for each created one-hot encoded feature per categorical feature.
For the numerical features, the obtained attention can be used
directly as importance. This way, one unique feature importance
value is obtained per feature.

2. MIXATON_OE_AVG This variant is mostly equivalent to the
MIXATON_OE_SUM approach. The key difference is that the
attention for one-hot encoded categorical features is not summed
but instead averaged to obtain the final importance of each
categorical feature. This is done to prevent a potential
overweighing of categorical features that could occur in the
summing approach.

3. MIXATON_GD This approach addresses the potential
unsuitability of using the Euclidean distance in the neighborhood
search on one-hot encoded data for determining samples. This is
done by using the Gower distance, as it is a distance metric
specifically designed for mixed-type data, on the unprocessed
dataset for determining the training samples. Only after
determining the samples, the data is one-hot encoded and used
for training the network.

4. MIXATON_EL The final variant we propose is the
MIXATON_EL approach. In this approach, the categorical
features are one-hot encoded in the beginning before the
neighborhood search. To mitigate the effect of the resulting one-
hot encoded features being seen as independent [23], embedding
layers are used in this approach. The neural network is amended
with one embedding layer for each categorical feature. The layer
size is chosen for each categorical feature as half its cardinality.
After the training of the network, the importance for the
categorical features is averaged based on the resulting
performance for each embedding layer.

To benchmark our developed variations, we used the only
method which has been explicitly proposed for mixed-type data
so far, the Explainer approach by [2] as well as XGBoost in
combination with SHAP.

IV. EVALUATION

In our evaluation, we first created suitable datasets on which
we subsequently applied the different approaches.

A. Creating suitable datasets for evaluation

To be able to evaluate the explanation methods, we required
both knowledge about which entries within the dataset are
outlying as well as which features make these entries outlying.
To achieve this, we followed two different approaches.

250

1) Synthetic outliers
For our first method, we adapt an approach which has been

used for creating evaluation datasets in mixed-type outlier
detection studies [11, 12]. In this approach datasets without
obvious outliers are used and then artificial outliers are injected
by shifting values in numerical features and swapping categories
in categorical features. This way both the outliers as well as the
responsible features are available as a ground-truth. The
approach works by randomly selecting 10% of entries in the
dataset. We then randomly selected 30% of the features of each
of those entries. If the feature is numeric its value gets shifted by
two times the feature’s standard deviation. In cases in which the
feature is categorical or binary the feature value is replaced by
another value of that feature. The datasets we used are the
Australian credit (a_credit), German credit (g_credit), Heart,
Thoracic surgery (thoracic), Auto MPG and Contraceptive
(contra) datasets from the UCI ML repository
(https://archive.ics.uci.edu/ml/index.php).

2) Pseudo-ground-truth for real outliers
The advantage of using injected outliers is that it is

objectively clear what caused the outliers but they might not
accurately reflect what real outliers look like. To address this
potential limitation, we created a second benchmarking dataset
using datasets with real outliers, also from the UCI ML
repository.

To generate pseudo-ground-truth explanations, all feature
subspaces of these datasets were created and the outliers were
scored using IForest, with one-hot encoded categorical features,
as well as SPAD [24] and MIXMAD [12] as mixed-type outlier
detection methods. Since it is not certain whether the used
methods are dimensionally unbiased [16], the rank of the outlier
in each subspace is used to determine the explaining subspace.
This way, three ground-truth subspaces are obtained for each of
the datasets. Since all subspaces had to be created for this
approach, we only selected datasets with a dimensionality of 15
or less. This is done because with 16 dimensions or more over
65,000 subspaces would have to be scored using each method
which would have been computationally infeasible for multiple
datasets.

B. Conducting the evaluation

We evaluated our proposed approaches as well as the already
existing method by [2], called Explainer, as well as XGBoost in
combination with SHAP on the created datasets. We used
multiple metrics to compare the methods’ performance. All
evaluated explanation methods return an ordered list of
explaining features which we used, together with the ground-
truth labels, to determine the performance. For providing a fair
comparison with the Explainer method which only returns a
limited subset of features, we employed R-Precision as a
measure [25]. Using this metric, the Explainer method did not
provide good results. The rigid way of splitting for specific
feature values on categorical data might not be able to account
for more complex outliers and thus leads to worse performance.

Since the Explainer method showcased the lowest
performance and it does not return a ranking for the full
featurespace, we are comparing the other methods on the
complete featurespace using average precision (AP).The result

for the synthetic outliers can be seen in TABLE I. When taking
the whole feature set into account both the approach of summing
the importance and the approach of averaging the importance
seem to provide good results on the synthetic outliers.

TABLE I. AVERAGE PRECISION ON SYNTHETIC OUTLIERS

XGBoost

SHAP

MIXATON_

OE_SUM

MIXATON_

GD

MIXATON_

OE_AVG

MIXATON_

EL

a_credit 0.3928 0.4091 0.4153 0.4193 0.4047

autompg 0.4457 0.4845 0.4276 0.4468 0.4591

contra 0.5283 0.5191 0.4954 0.5575 0.4002

g_credit 0.4090 0.4250 0.4202 0.4237 0.4165

heart 0.3551 0.4035 0.3521 0.4022 0.4023

thoracic 0.3775 0.4182 0.4145 0.4098 0.3945

avg 0.4181 0.4432 0.4208 0.4432 0.4129

The result rated via the AP for the real outliers can be seen
in TABLE II. All MIXATON approaches provide good
performance with the method using the Gower distance achieved
the best performance.

TABLE II. AVERAGE PRECISION ON REAL OUTLIERS

Dataset
XGBoost

SHAP

MIXATON

_

OE_SUM

MIXATON

_

GD

MIXATON

_

OE_AVG

MIXATON

_

EL

abalone_iforest 0.4468 0.4218 0.4162 0.4309 0.5271

abalone_mixmad 0.5308 0.6089 0.5973 0.6308 0.6382

abalone_spad 0.3486 0.4694 0.4747 0.4577 0.4996

adap_iforest 0.4091 0.3486 0.3766 0.4109 0.3721

adap_mixmad 0.4067 0.4320 0.4285 0.3569 0.3961

adap_spad 0.3465 0.2734 0.3225 0.3400 0.2931

credit_iforest 0.4112 0.4440 0.4297 0.3894 0.3871

credit_mixmad 0.4522 0.4492 0.4333 0.4094 0.4115

credit_spad 0.3438 0.3863 0.3858 0.3526 0.3460

heart_iforest 0.3642 0.3982 0.4096 0.3881 0.3937

heart_mixmad 0.4445 0.4498 0.4693 0.4526 0.4616

heart_spad 0.3680 0.3923 0.4069 0.3529 0.3628

mammography_iforest 0.6389 0.6870 0.7124 0.6327 0.5444

mammography_mixm

ad
0.6995 0.7406 0.7254 0.7426 0.6492

mammography_spad 0.6483 0.6705 0.6786 0.6554 0.5889

avg 0.4573 0.4781 0.4844 0.4669 0.4581

Some of the key observations for the overall results are:

1. No single approach is always superior or inferior. This is to

be expected since each data set has different characteristics.

2. Certain approaches provide consistently better

performance on a large variety of ground truth labels and

datasets. The MIXATON_GD, MIXATON_OE_SUM and

251

MIXATON_OE_AVG approaches provide the best

performance. This is notable, since these approaches have

been introduced for the first time in this paper.

3. There are some approaches that are stronger on certain

datasets while other approaches are stronger on other

datasets (XGBoost and SHAP, MIXATON_GD). This

insight means that it might be possible to construct

approaches that utilize the strength of multiple approaches

to obtain a superior performance.

4. The result of methods might depend on how important

either the numerical or categorical features are for making

a certain entry an outlier. Thus, the method

MIXATON_OE_SUM might perform better on a dataset in

which the categorical features are more important for

making an outlier outlying while MIXATON_OE_AVG

might perform better when the responsibility is evenly

distributed between the feature types. This should be

further investigated in future research.

V. CONCLUSION

In this paper, we propose multiple approaches for explaining
outliers on mixed-type data. We also perform the first
benchmark of outlier explanation approaches on mixed-type
data and describe two approaches for preparing suitable
benchmark datasets for this purpose. We show that our proposed
approaches MIXATON_OE_SUM, MIXATON_OE_AVG and
MIXATON_GD show good performance on various datasets and
outperform previously introduced approaches. Using these
methods, outlier detection can be made more useful in domains
in which it is applied on mixed-type data.

One important question that is raised in this comparison of
multiple approaches is: Which explanation method is the most
suitable for explaining my detected outliers? Our experimental
findings suggest that there is no one best performing outlier
explanation measure for all mixed-type datasets. Although, the
different MIXATON variations we propose, apart from
MIXATON_EL, all seem to provide consistently good
performance on most datasets.

One possible approach to mitigate the fact that different
methods perform better on different datasets would be to
combine explanation methods in an ensemble approach. This
should be investigated in future research.

REFERENCES

[1] H. Xu et al., “Beyond Outlier Detection: Outlier Interpretation by

Attention-Guided Triplet Deviation Network,” in Proceedings of the
Web Conference 2021, 2021, pp. 1328–1339. [Online]. Available:

https://doi.org/10.1145/3442381.3449868

[2] M. Kopp, T. Pevný, and M. Holeňa, “Anomaly explanation with random
forests,” Expert Systems with Applications, vol. 149, pp. 1–18, 2020,

doi: 10.1016/j.eswa.2020.113187.

[3] D. Samariya, S. Aryal, K. M. Ting, and J. Ma, “A New Effective and
Efficient Measure for Outlying Aspect Mining,” in Web Information

Systems Engineering ‐ WISE 2020, 2020, pp. 463–474.

[4] M. A. Siddiqui, A. Fern, T. G. Dietterich, and W.-K. Wong, “Sequential

Feature Explanations for Anomaly Detection,” ACM Trans. Knowl.

Discov. Data, vol. 13, no. 1, Article 1, 2019, doi: 10.1145/3230666.

[5] N. Liu, D. Shin, and X. Hu, “Contextual outlier interpretation,” in
Proceedings of the 27th International Joint Conference on Artificial

Intelligence, Stockholm, Sweden: AAAI Press, 2018, pp. 2461–2467.

[6] M. Carletti, M. Terzi, and G. A. Susto, Interpretable Anomaly Detection
with DIFFI: Depth-based Feature Importance for the Isolation Forest.

[7] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation Forest,” 2008, doi:

10.1109/ICDM.2008.17.
[8] J. Nonnenmacher, F. Kruse, G. Schumann, and J. Marx Gómez, “Using

Autoencoders for Data-Driven Analysis in Internal Auditing,” HICSS,

2021, doi: 10.24251/HICSS.2021.697.
[9] H. Xia, H. Q. Vu, J. Tan, X. Li, and G. Li, “Characterizing the Outlying

Feature Set of Groups,” Procedia Computer Science, vol. 165, pp. 119–

125, 2019, doi: 10.1016/j.procs.2020.01.086.
[10] F. Angiulli, F. Fassetti, and L. Palopoli, “Detecting Outlying Properties of

Exceptional Objects,” ACM Trans. Database Syst., vol. 34, no. 1, 2009,

doi: 10.1145/1508857.1508864.
[11] S. Eduardo, A. Nazabal, C. K. I. Williams, and C. Sutton, “Robust

Variational Autoencoders for Outlier Detection and Repair of Mixed-

Type Data,” in Proceedings of the Twenty Third International

Conference on Artificial Intelligence and Statistics, S. Chiappa and R.

Calandra, Eds., Proceedings of Machine Learning Research: PMLR,

2020, 4056--4066. [Online]. Available: http://proceedings.mlr.press/
[12] K. Do, T. Tran, and S. Venkatesh, “Energy-based anomaly detection for

mixed data,” Knowledge and Information Systems, vol. 57, no. 2, pp.

413–435, 2018, doi: 10.1007/s10115-018-1168-z.
[13] M. Garchery and M. Granitzer, “On the influence of categorical features in

ranking anomalies using mixed data,” Knowledge-Based and Intelligent
Information & Engineering Systems: Proceedings of the 22nd

International Conference, KES-2018, Belgrade, Serbia, vol. 126, pp.

77–86, 2018, doi: 10.1016/j.procs.2018.07.211.
[14] J. Zhang and H. Wang, “Detecting outlying subspaces for high-

dimensional data: the new task, algorithms, and performance,”

Knowledge and Information Systems, vol. 10, no. 3, pp. 333–355, 2006,
doi: 10.1007/s10115-006-0020-z.

[15] N. X. Vinh et al., “Discovering outlying aspects in large datasets,” Data

Mining and Knowledge Discovery, vol. 30, no. 6, pp. 1520–1555, 2016,
doi: 10.1007/s10618-016-0453-2.

[16] L. Duan, G. Tang, J. Pei, J. Bailey, A. Campbell, and C. Tang, “Mining

outlying aspects on numeric data,” Data Mining and Knowledge
Discovery, vol. 29, no. 5, pp. 1116–1151, 2015, doi: 10.1007/s10618-

014-0398-2.

[17] B. Micenková, R. T. Ng, X. Dang, and I. Assent, “Explaining Outliers by
Subspace Separability,” 2013, doi: 10.1109/ICDM.2013.132.

[18] X. H. Dang, B. Micenková, I. Assent, and R. T. Ng, “Local Outlier

Detection with Interpretation,” in Machine Learning and Knowledge
Discovery in Databases, 2013, pp. 304–320.

[19] X. H. Dang, I. Assent, R. T. Ng, A. Zimek, and E. Schubert,

“Discriminative features for identifying and interpreting outliers,” 2014
IEEE 30th International Conference on Data Engineering, 2014.

[20] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model

Predictions,” in Advances in Neural Information Processing Systems,
2017. [Online]. Available: https://proceedings.neurips.cc/paper/2017/

file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

[21] C. C. Aggarwal, Outlier analysis: Springer, 2017.
[22] T. Wangchamhan, S. Chiewchanwattana, and K. Sunat, “Efficient

algorithms based on the k-means and Chaotic League Championship

Algorithm for numeric, categorical, and mixed-type data clustering,”
Expert Systems with Applications, vol. 90, pp. 146–167, 2017, doi:

10.1016/j.eswa.2017.08.004.

[23] P. Cerda and G. Varoquaux, “Encoding high-cardinality string categorical
variables,” IEEE Transactions on Knowledge and Data Engineering, p.

1, 2020, doi: 10.1109/TKDE.2020.2992529.

[24] S. Aryal, K. M. Ting, and G. Haffari, “Revisiting Attribute Independence
Assumption in Probabilistic Unsupervised Anomaly Detection,” in

Intelligence and Security Informatics, 2016, pp. 73–86.

[25] G. O. Campos et al., “On the evaluation of unsupervised outlier detection:
measures, datasets, and an empirical study,” Data Mining and

Knowledge Discovery, vol. 30, no. 4, pp. 891–927, 2016, doi:

10.1007/s10618-015-0444-8.

252

Log Sinks and Big Data Analytics along with User

Experience Monitoring to Tell a Fuller Story

Vidroha Debroy, Senecca Miller, Mark Blake, Alex Hibbard and Cody Beavers

Product and Development

Dottid

Dallas, Texas, USA

{vidroha.debroy, senecca.miller, mark.blake, alex.hibbard, cody.beavers}@dottid.com

Abstract—Understanding and continually improving the user

experience is critical to the success of web applications, especially

those that are business-driven. There exist a multitude of tools to

monitor user activities on a website, which then provide metrics

to help developers and company leadership understand where

their users experience pain-points. However, all tools suffer from

their own limitations and ultimately it is important for companies

to have as much control (as possible) over all data collected by

third-party tools, and be able to make decisions related to its

storage, retention, processing, etc., in an agile manner. At Dottid,

we use a third-party tool to understand and enhance the user

experience on our web application, recently however, we ran into

a problem regarding failed logins that required us to architect a

solution ourselves, since the tool cannot address this issue for us.

The solution leverages log collection and big data analytics and

its architecture has paved the way for us to build more actionable

insights than if we were using the tool as-is. We transparently

share our experiences, and the details of our solution and

rationale, with the goal of benefiting others, and promoting

further industry-academic collaboration, in this space.

Keywords: Software, Logging, Monitoring, Big Data, Analytics

I. INTRODUCTION

Creating a good User Interface (UI) and User Experience
(UX) is very important, especially given that more and more
products and services are now sold over the internet [12]. The
focus on Human-Computer Interaction (HCI) and Interaction
Design (IxD) – fields acknowledging that understanding users
is crucial to successful design for all interactive products” – is
also not new to academia [11]. Indeed, from a user experience
standpoint, a lot of care needs to be taken when designing web
apps1 as opposed to web sites (the former typically offering a
wide range of interactive features and dynamic information and
the latter offering mostly static content).

Dottid [1] is a tech company in the business domain of
Commercial Real Estate (CRE) and we are relatively small-
sized (less than 50 employees) and relatively new (less than 5
years in business). Our core product is a web application that
follows a microservice architecture, and we run in the cloud

1 In the interests of brevity, we used ‘application’ and ‘app’ interchangeably

in this paper, both in the singular and plural sense.

DOI 10.18293/SEKE2022-175

(Google Cloud Platform, i.e., GCP) to leverage benefits such as
economies of scale. While a lot of business in commercial real
estate has historically taken place over in-person meetings and
over physical media such as paper; our company revolutionizes
the model by providing an online platform to organize deals,
expedite transactions and accelerate time to revenue.
Understandably ensuring our users have a good experience
when navigating our application is very important to us and
thus, we leverage real-time user monitoring2 wherever possible.

This is achieved by using the out-of-the-box capabilities
provided by GCP, but we also rely on a third-party tool named
fullstory [7]. By integrating some code into our application, we
stream information on user interactions back to fullstory where
we can view all the data collected in a consolidated way (this
includes security and privacy controls over what data is
collected and who can view it). One of the more exciting
features of fullstory is the record-and-replay functionality (also
known as session replay) which allows us to reproduce events
such as mouse movements, clicks, scrolling, etc., exactly as the
user performed them and better understand the resultant
behavior of our app exactly as the user experienced it.

 It should be noted though that user experience monitoring
is most meaningful in the context of an actual user, i.e., we care
the most about our actual customers. For this reason, we only
send data to fullstory after a valid user has authenticated (i.e.,
successful login) and is inside our web app. This leads to an
interesting question – what about the user experience when
trying to log into our web app? Addressing this was a real issue
that we had to deal with as it was directly affecting some of our
customers. There is more to this then simply letting the user
know if their login was unsuccessful or offering them a way to
reset their password. There are ramifications in terms of how to
track the data, store the history, etc., and more interestingly
how to connect it to activities after the user successfully logs in
and then derive further actionable information. This paper
serves to discuss the solution that we came up with, and
currently employ, at Dottid and discuss our rationale. In doing
so, we hope to help others that might be in a similar situation as
well as provide industry-experience in an academic publication.

2 In a lot of discussions ‘monitoring’ implies performance monitoring of an

app, which is different from understanding how users interact with an app (our
focus). Application Performance Monitoring (APM) [6] is certainly correlated

with User Experience, but we clarify that this is not the focus of our paper.

253

II. BACKGROUND AND MOTIVATION

A. Web Application Setup

Our web app is microservice-based and is hosted in the
cloud along with dependencies. Our cloud of choice is Google
Cloud Platform (GCP) – however, all architectural choices are
cloud agnostic. Stated differently, we will not need to re-design
our application for a different cloud provider, and this also
means the discussions in this paper are not limited to CGP and
can be generalized irrespective of cloud provider.

B. Integration with fullstory

We follow the standard model for integrating with fullstory
in that our client-side code contains a snippet of JavaScript
code provided by fullstory and once this script code loads it
captures all web-based interactions and mutations. We only
specify what data we want to collect and what to ignore, and
we leverage features such as masking, and apply protections as
to who can access what data. These are features that are built-
into fullstory and offered to all of their clients. All data is stored
on the fullstory side, and we access the data using their web
application which is also where we view session recordings and
leverage the dashboards and analytics that fullstory provides.

C. Understanding the Problem

Much like other web apps we have a standard login screen
that is shown in Figure 1. We note that at this point, i.e., the
login screen, fullstory is not collecting data (rather data is not
being collected for fullstory). Also, for all practical intents and
purposes, anyone on this screen is not a recognized user (we
have not yet identified them as such). Which then leads to the
problem – if someone runs into an issue on this page/screen,
what would they do and how is the data we collect useful?

Figure 1. The standard login screen to our web app

Identifying the actual cause is not the problem and neither
is this the focus of our paper. The real problem is how this
hampers the user experience, and the question is beyond just
identifying the cause of the issue, but rather how to convey it3
and then come up with requisite actions to solve the problem.

The problem is only half-solved if this is a continually
repeated exercise every time it occurs, and this stops us from

3 The conveyance of this information is very important in the interests of

security and avoiding attacks: some companies may want to indicate that a

user does not exist when a bad username is entered, and some companies may
not want to divulge that. Similarly, some companies may want to indicate a

bad password, some companies may want to provide a generic error message.

being an Agile development team, or an Agile company for
that matter. Also, if our customer representative needs to
always contact an administrator on our side to look for further
information, then it means a delay in resolution and also more
frustration for our customer/user, which is definitely something
we want to avoid. Unfortunately, as discussed next, we faced
this same exact situation and fullstory could not be used to
solve this problem, and neither could the out-of-the-box cloud
(GCP) monitoring in a way that was acceptable to us.

We rely on Cloud Identity and related-technologies offered
by GCP to track our authentication information and it is true
that audit logs will confirm when an attempt was made to login
and upon failure, why that failure occurred. But at the same
time, a limitation is that one needs to be an administrator in
order to access the audit logs [14]. So, with the existing setup
we ran into a very-real issue: if a user had trouble logging in,
and they felt that they were inputting the correct credentials,
how would the customer representative provably identify the
issue and the fix? Granting all of our customer representatives
with admin-level access was infeasible; at the same time,
having our customer representatives always contact our
administrators to resolve login issues was too slow (both in
action and in response) and did not make for a good customer
experience. We needed a solution for this.

III. CONSTRUCTING A SOLUTION

A. Logging User Activities

The first part of our solution stems from the intuition that
when leveraging the cloud for authentication, all such (login)
activities are logged, if not for our purposes, then for auditing
and debugging purposes on the cloud provider’s side. If we
were to transfer those logs, then we could have finer-grained
control over the data within. So, the very first thing we did is to
enable that level of logging across the Identity Platform for
each our environments of interest in GCP. On the surface this
may look like just checking a checkbox on an interface (as
shown in Figure 2), but it comes with significant consequences.

1

2

Figure 2. User activity logging in GCP

First, with respect to the figure, checking that box
(annotated as 1) does not address everything as is described by
the link to ‘audit logging’ (annotated as 2) and some non-trivial
configuration is still needed. Second, the checkbox is
representative in intent but not in where the data goes in terms

254

of identifying a destination for consuming that information.
Furthermore, since the information exists just in unprocessed
logs – we incur charges not just in terms of storage, but also in
terms of queries run against said logs; especially relevant if we
were looking for a particular user (since it would be a pure text-
based search). Thus, this gives us the data we want but not in a
format we can consume in a cost-effective manner.

B. Converting to the Consumable

The next part of our solution focuses on directing these logs
and then transforming them into queryable data. Since the logs
are officially owned by us, we can pipe these to storage (that
we own) and can establish filters on what is piped in and what
is not (to reduce the data footprint). The first thing we did is to
figure out where to store the data and we went with BigQuery
[2]. BigQuery represents a highly scalable, performant and
flexible data warehouse solution and provides an Application
Programmer Interface (API) for interacting with one’s data
and represents a full-scale data storage and analytics solution.
Sinks [4] control how logs are routed to all their supposed
destinations. We defined a sink with inclusion rules to focus
only on Identity Logs and piped them into a BigQuery dataset.
This represented a truly composite and scalable solution, much
more so because the transformation in this manner allows us to
query the text-based logs in Structured Query Language (SQL)
which is a very common and popular language/standard.

TABLE I. SIMPLIFIED VERSION OF OUR LOG SINK

 Sinks are true cloud resources, with definitions that can be
maintained within source control, which make them especially
attractive. To illustrate this and the earlier feature descriptions,
TABLE I lists a simplified definition of our log sink with
details regarding project/dataset or account names intentionally
obfuscated (using the word ‘masked’) for privacy reasons.

C. Maximizing the Benefits of Data Analytics

Beyond just making the data easy to query - by piping our

logs in real-time to alternative storage, we maintain a simple

rolling-history on the text-based logs themselves which results

in cost-savings since the log-sizes always stay small (we only

retain a minimal history). Furthermore, by creating partitioned

tables we can divide our data into segments that are easier to

manage and query, for example: based on time periods. This in

turn reduces the size of individual queries (in terms of the

number of bytes) which consequently reduces costs. The prior

discussions are best appreciated visually and by using a real

example and so in TABLE II we present the actual query to

find login information on a user via their email address (one of

the authors simulated a failed login by intentionally supplying

a valid username but a bad password). The query is written as

standard SQL and can run verbatim against our production

environment with only one exception: for privacy reasons, as

before, we again obfuscate the name of our actual GCP project

name and dataset name, using the term ‘masked’ instead.

TABLE II. QUERYING FOR LOGIN INFORMATION BY EMAIL

select * from (select COALESCE(

jsonpayload_logging_requestlog.request.email,

jsonpayload_logging_requestlog.metadata.tokeninfo.claims.email,

jsonpayload_logging_requestlog.response.email) as `UserEmail`,

severity,

timestamp,

jsonpayload_logging_requestlog.methodname as `MethodName`,

jsonpayload_logging_requestlog.status.message

from `masked.masked_ds.identitytoolkit_googleapis_com_requests`

WHERE DATE(timestamp) >= "2022-03-24"

order by timestamp desc)

where UserEmail = 'vidroha.debroy@dottid.com'

This query does quite a bit – it coalesces 3 different

sources of email info; looks up severity, timestamp and any

message information along with the name of the GCP Identity

method; and it filters this down to on or after March the 24th,

for just the email searched (vidroha.debroy@dottid.com);

finally ordering any data in descending order of timestamp. In

the interests of brevity, only 2 sample rows of output are

shown in Figure 3, but it can be clearly seen from the 2nd row

that there was a failed login for this user due to an incorrectly

supplied password, while the 1st row shows normal interaction.

Figure 3. Results of the query

Even more exciting - thanks to the power of BigQuery, we

receive a lot of useful meta-data on the query and its execution

that can be used for subsequent optimization; we can save the

query and trigger alerts based off of the results; we can export

the results to different formats, and automatically build

charting using the results as shown in Figure 4.

Figure 4. Meta-data on query execution and other options

gcloud logging sinks describe masked-login-sink

bigqueryOptions:

 usePartitionedTables: true

 usesTimestampColumnPartitioning: true

description: Piping login data from logs into BigQuery.

destination:

bigquery.googleapis.com/projects/masked/datasets/ masked_ds

filter: logName=

"projects/masked/logs/identitytoolkit.googleapis.com/requests"

writerIdentity:

serviceAccount:masked@gcp-sa-logging.iam.gserviceaccount.com

255

D. Telling a Fuller Story

As discussed earlier, fullstory offers us useful ways to track
user activity once they have logged into our app. At the time of
writing of this paper, we are actively researching approaches to
export data out of fullstory [10] and store it in a cost-effective
way. The approach presented in this paper helps us solve user
issues when they haven’t yet logged into our app (which cannot
be tracked by fullstory). In this manner, it may seem like these
are opposite sides of the same coin (tracking before login and
tracking after login), and in many ways this is true. In fact, for
all practical purposes they represent completely independent
datasets, and the only real piece of information that connects a
user from one dataset to the other is the username4 (which is an
email address in our case and thus, is guaranteeably unique).

But by adopting big data analytics we can now establish
meaningful correlations where it was otherwise very difficult to
do so. Both datasets track timestamps, IP addresses, user agent
strings etc. which can be used to match up related events even
in the absence of referential integrity. For example, if a user
enters a bad username at log in – by looking at the source IP
address, which Operating System/Browser was used, etc., we
can infer (with some degree of confidence) whether these were
from a valid user or some malicious attack. And for valid users
we can examine whether it is manual error or ask ourselves
why users are having trouble logging in (maybe users click in
the wrong spot due to a layout problem) and then identify
improvements to our own user-interface to make it more usable
and friendly. Thus, using big data analytics allows us to learn
more about the end-to-end experiences of our users, thereby,
telling a much fuller story.

IV. RELATED WORK

Usability is a critical aspect in interactive software systems
[16] and has been recognized as an important factor in the
acceptance of software by end users [5]. However, even with
decades of research, there is still a debate about the relationship
between usability and user experience [8]. A/B Testing is a
technique employed in practice to evaluate partial functionality
as well as how users respond to new features. Taking data into
account is a big aspect of such endeavors [13] and they help
software developers understand their users, much as we rely on
fullstory. Our focus is on very specific goals: improving the
experience for users who are unable to login, as well as tying
that to disparate data sets for users who have logged in.

Understanding and processing the data from a usability
testing perspective is also an important concern and research
has been conducted on how to make sense of the data [9].
While similar in intent, our work is contrasted in that our focus
is on how to leverage data collected from real users in our
production environment. The idea of using big data analytics
for user activity analysis is relatively new [15] and it has been
noted that applying processing techniques such as machine
learning to UX research has received little academic attention
[3]. We share the intent to draw attention, further the literature,
and promote industry-academic collaboration in this space.

4 This does not imply that there is any key-based referential integrity in any

tables from the login info dataset to the fullstory dataset based on the

username, it only suggests that this piece of data exists in both datasets.

V. CONCLUSION

We discuss our approach at Dottid to address a problem
that real users were running into related to failed logins. While
we utilize a third-party user-monitoring tool, it proved to be
ineffective in terms of solving the problem at hand. Since we
run in the cloud (GCP), we leveraged cloud-oriented solutions
such as logging (log sinks) and big data analytics (BigQuery) to
bridge the gap between what used to be two independent (yet
related) sides of the story – users who had logged in and users
who might experience trouble logging in. We transparently
share details of our approach to help others in similar situations
and promote industry-academic collaboration. Future work
includes applying machine learning and related techniques, to
analyze the volume of data we collect, for actionable insights.

REFERENCES

[1] About – Dottid. https://dottid.com/about-dottid, last accessed March 14th
2022.

[2] BigQuery – GCP. https://cloud.google.com/bigquery, last accessed
March 15th 2022.

[3] M. Chromik, F. Lachner and A. Butz, “ML for UX? – an inventory and
predictions on the ser of machine learning techniques for UX research”,
in Proc. of the 11th Nordic Conference on Human-Computer
Interaction: Shaping Experiences, Shaping Society (NORDCHI),
Tallinn, Estonia, October 2020.

[4] Configure and Manage Sinks – GCP.
https://cloud.google.com/logging/docs/export/configure_export_v2, last
accessed March 18th 2022.

[5] L.M. Cysneiros and A. Kushniruk, “Bringing usability to the early stages
of software development”, in Proc. of the 11th IEEE Intl. Requirements
Engineering Conference, Monterey Bay CA, USA, September 2003.

[6] V. Debroy, A. Mansoori, J. Haleblian and M. Wilkens, “Challenges faced

with application performance monitoring (APM) when migrating to the

cloud”, in Proc. of the IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW), pp. 153-154, Portugal, October 2020.

[7] Digital Experience Intelligence – fullstory. https://www.fullstory.com/digital-

experience-intelligence-platform/, last accessed March 15th 2022.

[8] T. Haaksma, M de Jong, and J. Karreman, “Users’ Personal Conceptions
of Usability and User Experience of Electronic and Software Products”,
IEEE Software, pp. 116-132 vol. 61, issue 2, June 2018.

[9] W. Haiyan and Y. Baozhu, “A data-processing mechanism for scenario-
based usability testing”, in Proc. of the 2nd IEEE Intl. Conference on
Computing, Control and Industrial Engineering, China, August 2011.

[10] Fullstory – segment exports. https://developer.fullstory.com/create-
segment-export, last accessed March 28th 2022.

[11] A. Granic, “Technology in use: the importance of good interface
design”, in Proc. of the Intl. Conference on Infocom Technologies and
Unmanned Systems (ICTUS), pp 43-49, Dubai, UAE, December 2017.

[12] R. Gunawan, G. Anthony and M. Vendly, “The effect of design user
interface (UI) e-commerce on user experience (UX)”, in Proc. of the 6th
Intl. Conference on New Media Studies (CONMEDIA), pp. 95-98,
Tangerang, Indonesia, October, 2021.

[13] R. King, E. Churchill and C. Tan, “Designing with data”, O’Reilly
Media Inc, April 2017.

[14] Login audit – Help. https://support.google.com/a/answer/4580120, last
accessed March 15th 2022.

[15] M. Parwez, D. Rawat and M. Garuba, “Big data analytics for user-
activity analysis and user-anamoly detection in mobile wireless
networks”, in IEEE Transactons on Industrial Informations, 13(4):
2058-2065, January 2017.

[16] R. Ren, J.W. Castro, S. Acuna and J. Lara, “Usability of chatbots: a
systematic mapping study”, in Proc. of the 31st Intl. Conference on
Software Engineering and Knowledge Engineering (SEKE), Lisbon,
Portugal, July 2019.

256

https://dottid.com/about-dottid
https://cloud.google.com/bigquery
https://cloud.google.com/logging/docs/export/configure_export_v2
https://www.fullstory.com/digital-experience-intelligence-platform/
https://www.fullstory.com/digital-experience-intelligence-platform/
https://developer.fullstory.com/create-segment-export
https://developer.fullstory.com/create-segment-export
https://support.google.com/a/answer/4580120

A Node-Merging based Approach for Generating
iStar Models from User Stories

Chao Wu1, Chunhui Wang*1, Tong Li2 and Ye Zhai1

1College of Computer Science and Technology,Inner Mongolia Normal University,Hohhot, China
wuchao@mails.imnu.edu.cn, ciecwch@imnu.edu.cn, cieczy@imnu.edu.cn

2Faculty of Information Technology,Beijing University of Technology, Bejing, China
litong@bjut.edu.cn

Abstract—User story is a widely adopted requirement notation
in agile development. Generally, user stories are written by cus-
tomers or users in natural language with limited form to describe
user’s needs for the software system from their perspectives.
However, since user stories are generally presented in a flat
list, the relations derived from the user stories are difficult to
capture. It reduces the understanding of the system as a whole.
One solution to this problem is to build goal-oriented models
that provide explicit relations among user stories. But extracting
concepts and relationships from a large number of discrete
user stories often take a lot of time for the agile development
team. This paper proposes an iStar model generating approach
based on node-merging from user stories. The method first
extracts the iStar nodes from the semi-structured user stories,
then uses a BERT (Bidirectional Encoder Representations from
Transformers) model to measure the similarity between the
nodes, and then nodes to be merged are identified and the edges
between the iStar nodes are connected. Experiments are designed
to illustrate the effectiveness of the proposed approach.

Index Terms—User story, iStar, Model construction

I. INTRODUCTION

Agile software development includes a group of soft-
ware development methods based on iterative and in-
cremental development, where requirements and solutions
evolve through collaboration between self-organizing, cross-
functional teams [1]. It advocates adaptive planning, evolu-
tionary development and delivery, and encourages rapid and
flexible response to changes [2]. These features have led
to agile methods to achieve remarkable success in software
industry.

User story is a widely adopted requirement notation in
agile development. Generally, user stories are written by
customers or users in natural language with limited format that
illustrates requirements from the user’s perspective. A general
user story pattern relates a who, a what and possibly a why
dimension, and uses keywords arranged these dimensions into
one sentence (e.g., Cohn suggests a user story pattern [3]:
As a < type of user>, I want <some intention>, [so that
<some reason>]). Although a user story is short and simple
descriptions, it normally consist of the following elements:
Role (the aspect of who representation), Goal/task (a circum-
stance described by roles or specific things that must be done),

DOI 10.18293/SEKE2022-176
*Corresponding Author

and quality (expectations of the customer for the quality of the
final product).

One challenge that is not addressed by user stories is to
capture the relations of the user stories. For example, it is
difficult to know the relations of decomposition and hierarchy
between user stories. Such relations help the developers to
better understand and structure the backlog items between user
stories.

Goal-oriented modeling allows for the clear and explicit de-
pendencies of goals to facilitate understanding of stakeholder
needs, dependencies, etc. Some studies have observed that
some concepts and relationships in user stories can potentially
be aligned with goal models, and proposed the transformation
approach from user stories to goal models [4]–[6].

Building goal models from user stories takes a lot of time
and human overhead when user stories are large in scale.
An automated goal-oriented model extraction approach is
proposed in [7]. They propose 3 heuristic rules to identify
refinement relationships between the what parts in user stories
by using natural language processing (NLP) techniques. Their
approach ignores the information in the why part of the user
story and also ignores the relationship between the what and
why parts. And this information is necessary to identify the
model concepts and the hidden hierarchical relationships.

iStar model is a goal model that has been applied in many
areas, e.g., healthcare, security analysis, eCommerce [8]. It
focuses on the intentional (why), social (who), and strategic
(how) dimensions. The concepts of iStar model correspond to
the concepts of user story, and can express the composition
and hierarchical relationships between user story concepts.

In [9], we proposed a preliminary framework for con-
structing iStar models from user stories and summarized 5
heuristic rules for extracting iStar elements from input user
stories. In this paper, we focuse on the refinement relationship
between iStar nodes. The key to identifying the refinement
relationships is a node-merging based approach. This approach
pays attention to the nodes with similar description in the
model, and combines them based on merging rules. The
process of this approach consists of three steps: model node
identification, node merging and edge identification. Model
node identification extracts iStar nodes from a set of user
stories by using NLP techniques. Node merging combines

257

the similar nodes by using a node similarity measurement
approach based on BERT mode. Edge identification can find
the edges between the iStar nodes by using three rules and
finally obtains an initial iStar model. Several experiments are
designed to evaluate our approach.

The rest of the paper is organized as follows. Section
2 outlines the relevant work. Section 3 details the process
of building an initial iStar model from user stories. Section
4 performs this process with a small example. Section 5
evaluates the effectiveness of our proposed approach by using
three real user story datasets from different domains. Section
6 summarizes the paper.

II. RELATED WORK

A. From user strories to goal models

There has been some research focusing on the transforma-
tion from user stories to goal models. However, since existing
goal oriented modeling methods tend to be overly complex
for non-technical stakeholders, some researchers propose some
simplified goal models. Wautelet et al. [4] proposed a rationale
diagram to build various trees of relating user story elements
in a single project. Lin et al. [5] use a light weight goal net
to model user stories. The goal net supports goal selection
and action selection mechanisms and provides flexibility to
task selection and process optimization in agile software
development.

To build goal models from user stories, some studies define
heuristic rules for the transition from user story templates
to model elements. Jaqueira et al. [10] propose role in user
story is mapping to actor in istar model, action in user story
is mapping to task in goal model, and goal is mapping to
goal in goal model. Gune et al. [7] propose to automatically
generate a goal model from a set of user stories by applying
NLP techniques and 3 heuristics. The heuristics focuses on
grouping the user stories around common objects or verbs.

Our approach also focuses on automated generation from
user stories to iStar models. We propose to use node merging
to extract refinement relationships between user stories. The
key is to compare concepts that can be combined in the iStar
model. In addition, we also focus on the identification of iStar
nodes and their connected edges. Our goal is to generate a
realistic model.

B. Similarity calculation of requirements

Similarity calculation is a key technique for identifying
similar concepts and grouping similar user stories. At present,
in the field of requirements engineering, there are mainly two
types of methods: lexical-based methods and semantic-based
methods [11].

Lexical-based methods regard the requirements as a se-
quence of words and concern with the similar of charac-
ters in word and their sequence of characters. There are
many algorithms, such as Levenshtein distance [12], Jaccard
[13], Hamming distance. Mihany et. al. [11] proposed an
automated system for measuring similarity between software
requirements to identify reused components. This system uses

Dice, Jaccard, and cosine similarity methods to measure the
similarity between requirements in order to identify reusable
components.

Semantic-based methods consider the meaning of words
rather than characters of words. In order to compare the
meaning of two words, corpus and some kind of language
model are usually used. For example, some researchers use
neural network models (e.g. Word2Vec, CNN, BERT) to
generate word vector. Arau et al. [14] pre-trained BERT model
to generate semantic textual representations to automatically
identify software requirements from APP review. They trained
seven different applications, and then an eighth application
was used to evaluate the model. The results of the evaluation
showed that the F1 scores were more than 40%.

In our work, we use the BERT model to generate word
embedding for user stories. In order to accommodate the
similarity comparison of short texts, we add the corpus of
similarity pairs when pre-training the BERT model.

III. A NODE-MERGING BASED APPROACH

In this section, we introduce the proposed approach to
generating iStar models from user stories, the process of this
method consists of three steps (shown in Fig. 1): iStar node
identification, node merging, and edge identification.

Fig. 1. The process of a node-merging based approach

A. Node identification

In this phase, we identify iStar nodes and their types from
a set of input user stories. There are three types of nodes: role
type, intention type, and quality type. The detailed definitions
of these three types can be found in [8], where the intention
nodes includes goal nodes and task. Since it is difficult for
automated methods to distinguish these two concepts, we do
not make a distinction between these two concepts in this
paper.

Given a set of user stories, we first extract user story
components to construct iStar nodes. Each user story in the set
has a fixed format. We use the following common user story
pattern [3]: As a < type of user>, I want <some intention>,
[So that <some reason>]. From this pattern, we use NLP
techniques to extract their components: who, what and why.
These components correspond to the part after the three fields
“As a”, “I want to” and “so that”, respectively.

Specifically, we perform the following NLP steps: (1)
Convert case: all nodes were converted in to lowercase.
(2) Tokenization: nodes were split into a set of words by

258

removing spaces and commas. (3) Remove special characters:
special characters are usually non-alphabetic and numbered
characters. To remove noisy data, we remove special characters
using the re regular expressions. (4) Remove stop words: stop
words are removed like “a”, “to” etc and remove the keywords
“As a” , “ I want” and “ So that”. And in the final step (5) Word
Lemmatization: removes the affixes of words depending on
part-of-speech (POS) tagging identifies the lexical properties
and maps them to their root form to find the original form.

After applying the above steps to a set of user stories, we
obtain the user story components, and apply the following 3
rules to extract role and intention nodes from user stories.

• Each who component maps to role type node;
• Each what component maps to intention type node;
• Each why component maps to intention type node.
In order to discover quality type nodes, we query the quality

word in intention type nodes. To obtain the quality words,
we collected 241 words from 4 related works [15]–[18] that
contained a keyword list of non-functional requirements. The
adjectives and adverbs were selected among these words and
58 words were obtained, such as easy, high, clear, friendly,
early, ugly, fast, and so on.

B. Node merging

Node merging mainly includes three steps: representing
node with BERT model, calculation of node similarity, and
return of node pairs with high similarity.

We pre-train the BERT model [19] with STSbenchmark
dataset of similarity scores (8628 sentence pairs) [20], and its
parameters are set to that batch size is 16, epoch is 20, step is
1000, eventually saved fine-tune BERT model for generating
the corresponding node vector. Equation 1 is used to measure
the similarity between two vectors obtained by BERT model.
The similarity result is a value between 0 and 1. For pairs
with a similarity higher than 0.8 (see the section V-D for the
details of threshold selection), we consider nodes that should
be merged and merge them.

cos(x, y) =
x · y

|x| · |y|
(1)

C. Edge identification

In this phase, we automatically identify the edges between
nodes based on the identified iStar nodes and the merged
nodes. There are three types of edges: means-ends, refinement
and contribution. The means-ends connects two intentions
nodes in a user story. The source is from what part in the
user story. The target is from why part in the user story. The
detailed definitions of refinement type and contribution type
in this paper show in [8].

3 rules are used to identify the above three types of edges.
• Rule 1: Add an edge of type means-ends for two intention

nodes from the same user story. The source is from what
part in the user story. The target is from why part in the
user story.

• Rule 2: Add edges of type refinement type for a merged
node and its components (nodes).

• Rule 3: Add an edge of type contribution for a quality
node and its corresponding intention node.

IV. ILLUSTRATIVE EXAMPLE:ONLINE SHOPPING

In this section, we use a case of Book Factory [21] to
illustrate the proposed method. The Book Factory is a small
online book purchasing system. In the online shopping system,
users should be allowed to browse online book details, add
books to shopping cart, complete online orders and query
logistics information. On the other hand, for the system, it
should calculate the order prices before customers pay for the
orders. In addition, online payments are processed through the
Ogone payment platform to improve payment security. For this
group of user stories, we unified the user story template (using
the key words of as a, I want to and so that), and the user story
description information is shown in Table I.

TABLE I
THE USER STORIES SET IN BOOK FACTORY.

US ID Dimension User Story

US1
Role
Feature
Benefit

As an owner
I want my clients to be able to place orders online
so that the customer-friendliness of our services
increases.

US2
Role
Feature
Benefit

As a client
I want to complete an order
so that I can place it online.

US3
Role
Feature
Benefit

As a client
I want to fill my online cart with products.

US4
Role
Feature
Benefit

As a client
I want to pay my invoice
so that I can complete an online order.

US5
Role
Feature
Benefit

As a system component
I want to calculate the total amount of the order
so that the invoice can be paid .

US6
Role
Feature
Benefit

As a system component
I want to pay my order online
so that my invoice is paid .

US7
Role
Feature
Benefit

As a system component
I want to process payments on the Ogone-payment
platform
so that the payment is secured.

Next, we describe the process of this case according to the
method proposed in section III.

A. Node identification from BookFactory

After we input the user stories in Table I and execute
the process of node identification, we extract the nodes with
role, intention and quality type. Fig. 2 shows the results of
this process. Here, nodes with intention type are graphically
represented as ovals, nodes with role type are represented with
circle, while qualities are represented as more curved cloud-
like shapes.

B. Merging similarity nodes

Second, the BERT model-based approach generates node
embedding for each node; then any two node embeddings
are calculated using the cosine similarity algorithm to derive
a similarity score; the pairs of nodes with our score greater

259

Fig. 2. Identifying iStar nodes of the run example

than a threshold are merged. Here, we list the merged nodes
together for viewing ease. The result of this step is shown in
Fig. 3.

Fig. 3. Merging similarity nodes of the run example

C. Edge identification

On the basis of node identification and merging similarity
nodes, we identify the edges between nodes according to

rules, as shown in Fig. 4. Here, the contribution edges are
represented graphically via a dotted line connecting the node
type that is qualifies. The refinement edges are represented
graphically via a solid arrow directed connecting the node type
that is merged node.

Fig. 4. Identifying iStar edges of the run example

V. EVALUATION WITH EXPERIMENT

We evaluate the effectiveness of our proposed approach in
both quality node extraction and similarity node merging. 3
sets of user stories from different fields (game, business and
education) are used to evaluate our approach. These 3 data
sets are first manually labeled and then used to evaluate the
performance of the proposed approach.

A. Dataset
a) GA: GA is from Ben-Gurion University of the Negev

and is used for model building experiment [22]. The data set
contains 21 user stories with correct syntax, which mainly
describes the needs of setting up games and playing games in
the development of game products.

b) WebCompany: webCompany comes from a Dutch
company which makes custom web business applications [23].
The data set contains 79 user stories with correct syntax, which
mainly covers the development of a web application focused
on interactive story telling in 2014.

c) BADcamp: The BADcamp case study is obtained
from the public user story requirements data set [24]. It is
composed of 70 user stories with correct syntax. It mainly
describes the needs of the educational platform in five scenar-
ios: scheduled meeting, training course, sponsorship, blog and
session.

260

B. Manually labeled datasets

For these 3 data sets, we conducted two sets of labeling
experiments. One is for quality requirements, and the other
is for finding similar pairs of user stories. The participants in
these labeling experiments consist of 4 graduate students with
software engineering related knowledge. Each student has one
semester of software engineering class experience.

In order to ensure the availability of the labeled results, in
each group of the labeling experiments, we divided the par-
ticipants into two groups. The labeling process is as follows:

• Divide the data to be labeled into two parts;
• Divide the 4 students into two groups;
• Each group separately labels a part, and each student of

the group labeled all the data in the part assigned to the
group;

• Each group separately reviews the inconsistent data la-
beled by other group, and form a final labeled data set.

When labeling similar pairs, since there are a total of 170
user stories in the 3 data sets, 57630 pairs to be labeled will
be generated. After preliminary research, we found that pairs
with a similarity lower than 0.5 basically do not have the
same semantics. So, in the labeling stage, we only let the
students label pairs with a similarity greater than 0.5 and let
them determine if the pairs are similar. A similarity greater
than 0.5 have 443 pairs, then there were conflicting 71 pairs
in the first round, then all conflicting pairs were identified in
the second round, we finally obtained 49 similar pairs.

C. Metrics

We use precision, recall, and F1-score to evaluate the
effectiveness of quality node identification and the merging
node identification. The precision is used to evaluate the
correctness of the node identification. The recall is used to
measure the coverage. The F1-score is used to balance the
accuracy and recall of the model. Equation 2, Equation 3, and
Equation 4 are used to measure the precision, recall and F1-
score, respectively. Where, TP represents true positive which
is the nodes identified by automated approach, FP represents
false positive which is the nodes identified by automated
approach but not by labeled, and FN represents false negative
which is the nodes identified by labeled but not by automated
approach.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 =
2 ∗ precision ∗ recall
precision+ recall

(4)

D. Experiment Result and analysis

Table II shows the precision, recall and F1 score to identify
quailty node and similarity pairs for each of the 3 user story
sets. For quality nodes identification, the average precision,
recall and F-value of our method based on quality words are

76.5%, 73.3%, and 72.1%, respectively. BADcamp data set
has a higher precision (100%) than other data sets. The reason
is that it only uses the “quickly” and “easily” quality words
in non-function description. In other data sets, there are still
some quality nodes are not found, the reason is the keyword
list extracted by this paper less the related quality works and
need to be expanded.

For similar node identification, we summarize the precision,
recall and F-1 score of manually labeled semantically identical
pairs with different thresholds (0.5-1, step size is 0.1) in the
data sets, as shown in Figure 5. The result shows that we can
select nodes with a similarity greater than 0.8 to merge.

Fig. 5. Similarity result with different thresholds in three datasets

We merge node pairs with a threshold greater than 0.8, and
the results of precision, recall and F-1 score are 77.1%, 75.6%,
and 73.4%, respectively (the details shown in Table II). GA
data set has a higher recall (100%) than other data sets. The
reason is that similar sentences of manually label to besides
have a sentence to exactly the same, the other sentences in
length and the key action and object are the same. Such
features can be used to find pairs of similar sentences by our
approach. Then webcompany data set has a higher precision
(89.7%) than other data sets. The reason is that it has several
same nodes in this dataset. Then BADcamp data set has a
worst recall(40%) than other data sets. The reason is that the
similarity score of sentence pairs are relatively close, and the
high threshold value leads to some nodes not being discovered.

VI. CONCLUSIONS AND FUTURE WORKS

Software requirements are usually expressed in natural lan-
guage (such as user stories). Although the text is readable, it is
difficult to provide an overall view of the most relevant entities
and relationships. Especially in the case of a sharp increase
in requirements, it is becoming more and more difficult to get
the whole in mind. Model-driven development uses model to
create a product and form a whole perspective to observe user
needs. The iStar model is a widely used goal-oriented model.
Its concepts can be aligned with user stories.

To construct iStar model from user stories, the nodes and
edges in iStar model need to be identified from user stories.
However, since the user stories provide by different stake-
holders are scattered, the relationships between user stories

261

TABLE II
EFFECT OF USER STORY ANALYSIS OF THREE DATASETS

Dataset Quality nodes Similarity of node pairs
TP FP FN Precision Recall F1-score TP FP FN Precision Recall F1-score

GA 2 1 2 66.6% 50% 57.1% 4 2 0 66.6% 100% 80%
webCompany 7 4 0 63% 100% 77.7% 26 30 4 89.7% 86.7% 88.1%

BADcamp 7 0 3 100% 70% 82.3% 6 2 9 75% 40% 52.1%

are difficult to identify. This paper focuses on the refinement
and contribution relationships between user stories. A node-
merging based approach is proposed to identify the potential
refinement relationships. A quality word list is built to find
the non-function user story and to identify the contribution
edges. 3 data sets are used to evaluate the effectiveness of the
proposed approach.

As for our next step work, we plan to develop a prototype
tool that implements our proposed framework. In addition, we
will conduct extended experiments on more data sets to verify
the effectiveness of the proposed approach.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (No.62162051), the Project of Beijing
Municipal Education Commission (No.KM202110005025),
the Natural Science of Foundation of Inner Mongolia Province
(No.2021MS06024) and Inner Mongolia Normal University
Graduate Students’research Innovation fund(CXJJS21158).

REFERENCES

[1] B. Ramesh, C. Lan, and R. Baskerville, “Agile requirements engineering
practices and challenges: an empirical study,” in Information Systems
Journal, 2010, pp. 60–67.

[2] M. Aoyama, “Agile software process and its experience,” in Software
Engineering, 1998. Proceedings of the 1998 International Conference
on, 1998, pp. 3–12.

[3] M. Cohn, “user story applied for agile software development,” in
Addison-Wesley Professional, 2004, p. 304.

[4] Y. Wautelet, S. Heng, M. Kolp, I. Mirbel, and S. Poelmans, “Building
a rationale diagram for evaluating user story sets,” in 2016 IEEE
Tenth International Conference on Research Challenges in Information
Science (RCIS), 2016, pp. 1–12.

[5] J. Lin, H. Yu, Z. Shen, and C. Miao, “Using goal net to model user
stories in agile software development,” in 15th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, SNPD 2014, Las Vegas, NV, USA,
June 30 - July 2, 2014. IEEE Computer Society, 2014, pp. 1–6.

[6] R. Mesquita, A. Jaqueira, M. Lucena, C. S. Filho, and F. M. R. Alencar,
“Us2startool: Generating i* models from user stories,” in Proceedings
of the Eighth International i*Workshop, iStar 2015, in conjunction
with the 23rd International Requirements Engineering Conference (RE
2015), Ottawa, Canada, August 24-25, 2015, ser. CEUR Workshop
Proceedings, vol. 1402. CEUR-WS.org, 2015, pp. 103–108.

[7] T. Gune and F. B. Aydemir, “Automated goal model extraction from
user stories using nlp,” in IEEE Requirements Engineering Conference,
2020, pp. 382–387.

[8] F. Dalpiaz, X. Franch, and J. Horkoff, “istar 2.0 language guide,” in
Software Engineering, 2016, https://arxiv.org/abs/1605.07767/.

[9] C. Wang, C. Wu, T. Li, and Z. Liu, “A preliminary framework for
constructing istar models from user stories,” in iStar Workshop, 2021,
pp. 35–41.

[10] A. Jaqueira, M. Lucena, F. M. R. Alencar, J. B. de Castro, and E. Aranha,
“Using i * models to enrich user stories,” in iStar, 2013, pp. 55–60.

[11] F. A. Mihany, H. Moussa, A. Kamel, E. Ezzat, and M. Ilyas, “An
automated system for measuring similarity between software require-
ments,” in Proceedings of the 2nd Africa and Middle East Conference
on software engineering, 2016, pp. 46–51.

[12] G. Navarro, “A guided tour to approximate string matching,” in ACM
Computing Surveys, vol. 33, no. 1, 2000, p. 31–88.

[13] P. Jaccard, “Etude comparative de la distribution florale dans une portion
des alpes et des jura,” in bulletin del la societe vaudoise des sciences
naturelles, vol. 37, no. 142, 1901, pp. 547–579.

[14] A. F. de Araújo and R. M. Marcacini, “Re-bert: automatic extraction of
software requirements from app reviews using bert language model,” in
Requirements Engineering, 2021, p. 1321–1327.

[15] T. Li, “Identifying security requirements based on linguistic analysis
and machine learning,” in 2017 24th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2017, pp. 388–397.

[16] A. Ahmad, C. Feng, K. Li, S. M. Asim, and T. Sun, “Toward empirically
investigating non-functional requirements of ios developers on stack
overflow,” in IEEE Access, vol. 7, 2019, pp. 61 145–61 169.

[17] M. S. Kumar and A. Harika, “Extraction and classification of non-
functional requirements from text files: A supervised learning approach,”
in PSYCHOLOGY AND EDUCATION, vol. 57, 2020, pp. 4120–4123.

[18] A. Mahmoud and G. Williams, “Detecting, classifying, and tracing non-
functional software requirements,” in Requirements Engineering, vol. 21,
no. 3, 2016, pp. 357–381.

[19] https://huggingface.co/all-MiniLM-L12-v2.
[20] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline for

sentence embeddings,” in ICLR, 2017.
[21] Y. Wautelet, M. Velghe, S. Heng, S. Poelmans, and M. Kolp, “On

modelers ability to build a visual diagram from a user story set: A
goal-oriented approach,” in Requirements Engineering: Foundation for
Software Quality, 2018, pp. 209–226.

[22] F. Dalpiaz, “Form b-eng.pdf.utrecht university. dataset.” https://doi.org/
10.23644/uu.11605254.v1, 2020.

[23] M. Robeer, G. Lucassen, F. Dalpiaz, and S. Brinkkemper, “Automated
extraction of conceptual models from user stories via nlp,” in Require-
ments Engineering Conference, 2016, pp. 196–205.

[24] F. Dalpiaz, “Requirements data sets (user stories),” https://data.mendeley.
com/datasets/7zbk8zsd8y/1, 2018.

262

KEMA: Knowledge-Graph Embedding Using
Modular Arithmetic

Hussein Baalbaki
ISEP

Sorbonne University
Paris, France

hussein.baalbaki@ext.isep.fr

Hussein Hazimeh and Hassan Harb
Faculty of Sciences
Lebanese University

Beirut, Lebanon
hussein.hazimeh@ul.edu.lb, hassan.harb.1@ul.edu.lb

Rafael Angarita
ISEP

Sorbonne University
Paris, France

rafael.angarita@isep.fr

Abstract—Knowledge graph is a knowledge representation
technique that helps representing entities and relations in a
machine understandable way. This promising trend suffers from
the problem of incompleteness that was best solved by link
prediction. Indeed, link prediction is the most successful method
for understanding the structure of the large knowledge graphs.
Knowledge graph embedding KGE is one of the best link
prediction methods. Its effectiveness is mainly affected by the
accuracy of learning representations of entities and relations. In
this paper, we propose a new knowledge graph embedding model
called KEMA (Knowledge-graph Embedding using Modular
Arithmetic). KEMA has the ability to represent simple and com-
plex relations in an efficient way. Consequently, this allows our
model to outperform the majority of the existing models. Mainly,
KEMA depends on representing the relations in a knowledge
graph by modular arithmetic operations applied between entities.
Experimental results on multiple benchmark knowledge graphs
verify the accurate representation, low complexity and scalability
of KEMA.

Keywords; Knowledge Graph Embedding, Knowledge Graphs,
Link Prediction, Reasoning, Modular Arithmetic.

I. INTRODUCTION

Knowledge graph (KG) rises recently as one of the best
ways for knowledge representation. We have seen the con-
struction of many KGs of different sizes, domains, and cov-
erage, like Freebase [1], Yago [2], and WordNet [3]. KG
is a multi-relational graph built of nodes representing real
world entities such as objects and events. These entities are
connected by edges representing the relations and interactions
between them. KG is represented by a set of triplets that shows
the relations linking the entities. KG has proven to be effective
in many real-world applications like recommender systems [4],
natural language processing [5], and question-answering [6].

Although a KG may consist of a huge number of entities
and relations, it is usually incomplete. It is impossible for a
KG to cover every single entity or relation in whole world, no
matter how huge this KG is. This is called the completeness
problem of KG. This challenge represents one of the main
issues facing KGs that researchers are working to solve. Link
prediction emerges as efficient way to overcome the KG
completeness problem. Subsequently, link prediction is used
to predict not only the existence of a relation between two
entities, but also the specific type of this relation. However,

DOI reference number: 10.18293/SEKE2022-036

these predictions are infeasible using traditional methods. So
the need for novel link prediction approaches like Knowledge
graph embedding arises. Knowledge graph embedding (KGE)
methods have proven to be very effective applied in link
prediction. KGE embeds a KG into a continuous vector space
while preserving certain information of the graph. Generally,
KGE replaces any object (entity, relation, ..) with a vector
of continuous numbers holding this object semantics. Mainly,
KGE models differ in how these numeric vectors are used.
and divided into three categories accordingly. The first one is
the Translational that consider relations as a motion between
entities. The second category is Tensor factorization that uses
tensors for embedding vectors processing. The third category
is the Neural network, in which the embedding vectors are fed
to neural networks for training.

In this paper, we introduce a novel knowledge graph em-
bedding model based on the modulus operation called as
KEMA. Indeed, KEMA adopts a new way for dealing with
embedding vectors away from translational, tensor factoriza-
tion, and neural networks. Our model relies on the modular
arithmetic mathematical operation. Since modular arithmetic
is an equivalence relation, it helps handling different types
of knowledge graph relations such as symmetry, inversion,
and composition. Moreover, KEMA can deal with relations
of complex mapping patterns like one-to-many, many-to-one,
and many-to-many. To prove the effectiveness of our proposed
model, we evaluate KEMA on a set of knowledge graph
benchmark datasets including FB15k-237 [7] and WN18RR
[8], and we compared the results to state-of-the-art approaches.

The rest of the paper is organized as follows. Section II
gives an overview about different knowledge graph embedding
models existing in the literature. Section III explains the
modular arithmetic mathematical operation and its working
way. Section IV presents KEMA, our proposed model. The
obtained simulation results are exposed in Section VI. Finally,
we conclude the paper and provide directions for future work
in section VII.

II. RELATED WORK

In the literature, we can distinguish between three types of
knowledge graph embedding categories [9]: (1) Translation-

263

based models; (2) Tensor factorization-based models; (3) Neu-
ral network-based models.

A. Translation-based models

The first translational-based model is called TransE [10].
Typically, TransE considers the relation between two entities
as a translation operation in embedding space that starts by
the head entity and leads to the tail. A score function f is
used to compute the authenticity of the given triplet (h, r, t):
fr(h, t) = |h+r−t|. Although TransE shows a high efficiency
when applied in large-scale knowledge graph embedding, it
still struggle when dealing with complex relations such as
1 − N,N − 1, and N − N. In order to overcome such
challenge, the authors of [11] proposed an extension of TransE
called TransH. Indeed, TransH assigns a hyper-plane to each
relation, so that the heads and the tails of this relation are
projected to. This model enables each entity to have different
embedding representations depending on the relation involved
in. In [12], TransR focuses on the entities carrying various
semantic meanings. As a result, TransR expands the relation-
specific hyper-planes concept of TransH to relation-specific
spaces. Compared to transE and transH, transR makes a
significant performance improvement but still has some gaps.
One TransR weakness is sharing one projection matrix by both
head and tail. The attributes of the same entity may differ
according to its position in a relation (head / tail). To solve
this problem, TransD [12] solves this problem by creates two
different projection matrices for each single relation. The first
matrix is used for head projection and the other is for the tail
projection. Lastly, the authors of [13] proposed RotatE that
represents the relation between two entities as rotation motion
that starts from the head entity and ends by the tail.

B. Tensor factorization-based models

The idea behind tensor factorization-based models is based
on representing all the triplets of a knowledge graph in a 3D
binary tensor X . Two dimensions of X are of size n, the
number of the entities in KG, while the third dimension is of
size m, the number of relations in KG. Sr is (n∗n) slice of X
that represents the relation r. The index Sr[head][tail] of the
slice Sr is filled with 1 if the relation between the head and
the tail entities holds, otherwise it is filled by 0. The obtained
tensor X is then broken down using factorization into a set of
embedding matrices that are assigned to entities and relations.
RESCAL [14] uses Rank − d factorization to obtain three
matrices:

X = ARAT , (1)

where A is a 2D matrix carrying the semantics of the KG
entities, AT is its transpose, and R is the 3D embedding matrix
of the relations in KG. Accordingly, the scoring function of a
given triplet (h, r, t) is calculated as follow:

fr(h, r) = hTmrt, (2)

where hT is the transpose of h embedding vector, mr is
a 2D slice of R holding the relation r embedding matrix,

and t is the tail embedding vector. To reduce the calculation
complexity, a simplified version of RESCAL called DistMult
is proposed in [15].In DistMult, any relation matrix mr,
obtained after factorization is considered to be diagonal with
a score function:

F = hT diag(mr)t. (3)

This step not only facilitates calculations, but it also shows
improvement in terms of performance. Moreover, in order to
capture the pairwise compositional representations of entities,
HolE is proposed in [16]. Basically, HolE relies on a circular
correlation with the following score function

fr(h, t) = rT (h ⋆ t) (4)

HolE reduces the composite representation complexity com-
pared to tensor product. Lastly, ComplEx [17] was proposed as
extension of DistMult, where it closes the gap resulting from
the inability of DistMult to deal with asymmetric relations by
integrating a complex space as follows:

fr(h, t) = Re(ht ∗ diag(r)− t) (5)

where Re(·) denotes the real part of a complex value, and t
represents the complex conjugate of t.

C. Neural network-based models

Neural networks are used for expressing complex nonlinear
projections. They become recently a hot topic used to embed a
knowledge graph into a continuous feature space. Particularly,
Semantic Matching Energy SME [18] is a neural network-
based model that calculates the energy of a given triplet (h, r,
t) by applying two projection matrices, Mleft is applied for the
head h and the relation r embedding vectors, while Mright is
applied for relation r and the tail t embedding vectors. Then,
the results are given to a fully connected layer that returns
the score of the semantic matching energy. ConvKB [19] is
another model that uses convolutional neural network (CNN)
to capture the latent semantic information in the triplets. In
such model, the embedding vectors of the elements of a triplet
are combined to form a matrix. Then, the matrix is fed to a
convolution layer to produce multiple feature maps. Finally,
these feature maps are concatenated and projected to a score
that is used to estimate the authenticity of the triplet. Neural
Association Model NAM [20] utilizes a deep neural network
structure to represent a KG. After representing each element of
a triplet by embedding vector, it concatenates the head entity
vector and the relation vector to a single vector. The single
vector is then fed to the next layer. Finally, NAM calculates
the score by applying the output of the last hidden layer zL

with the tail embedding vector t:

fr(h, t) = σ(zLt) (6)

where σ(·) is a sigmoid activation function.

264

Alice

(E1)

Bob

(E2)

Spouse

(E1)

1 mod(2)

=3

1

(r)

1
.
In

p
u

t
K

n
o
w

le
d

g
e
 G

r
a
p

h

Valeria (E3)

2
.
K

E
M

A
 E

m
b

ed
d

in
g
 M

o
d

el
3
.

K
E

M
A

 M
o
d

el
 O

u
tp

u
t

1 2 5 1

5 mod(4)

=1

(E3) 3 2 1 1

2 mod(5)

=2

1

2

0

2

1 mod(2)

=1

1

1 2 1 1
2 3 2 3

1 2 5 1

3 2 1 1

2 5 4 2

, 3

, 2

3

4

13

000

Fig. 1. KEMA architecture.

III. OUR EMBEDDING MODEL: KEMA

Knowledge graph embedding is the process of representing
the entities and relations of a given knowledge graph using
numerical vectors. In this way, mathematical operations can be
applied to these vectors in order to help studying and predict-
ing the links connecting the entities. In this paper, we introduce
a new embedding KG approach called KEMA. Indeed, KEMA
does not follow any of the classifications detailed in the
related work section. It relies on one simple mathematical
operation called modular arithmetic. The objective of KEMA
is to predict the missing links connecting the entities of a
given knowledge graph. As shown in Fig. 1, first, the input
knowledge graph layer receives a knowledge graph as input.
Then, KEMA embedding layer processes the knowledge graph
components and embeds it to a low dimension continuous
space. Finally, KEMA output layer returns a representative
numerical vector for every entity and relation in the KG. These
representative numerical vectors are then used for predicting
links between KG entities.

A. Modular arithmetic

Modular arithmetic is a system of arithmetic that replaces
all the numbers by their remainders of its division to a fixed
number. Subsequently, the fixed number is an integer called
“modulus”. In modular arithmetic, every value of modulus m
can be considered as a representative space mod(m). In this
space, we can represent every integer i by its remainder r
resulting from its division by m, as shown in Equation (7).
Since all the remainders of the division by m are smaller than

m itself, then all the representative integers in mod(m) space
are smaller than m (Equation (8)).

i = m ∗ x+ r ⇐⇒ r = i mod(m), ∀ i ∈ Z, (7)

r = i mod(m) ⇐⇒ r ∈]−m,m[(8)

where m, r, x ∈ Z
Indeed, an important example to illustrate the process of

the modular arithmetic in this paper is 12-hour clock. In such
example, the modulus value is 12 and the day is divided into
two 12-hour periods. Whenever the hours count exceeds 12,
it wraps around, and returns the remainder value.

Usually, modular arithmetic produces a set of integers
having the same remainder when dividing by m. These integers
are considered equal in the mod(m) space, and are said to be
congruent (≡), as shown in Equation (9).

x mod(m) = y

z mod(m) = y

x ≡ z

(9)

B. KEMA Embedding Model

The novel idea behind KEMA is to represent the relation
between two entities through modular arithmetic operation. In
other words, the tail embedding vector is considered to be
the projection of the head embedding vector in the modular
arithmetic space of the relation embedding vector, as shown
in Equation (10).

t = h mod (r) (10)

where h, t, and r represent the embedding vectors of the head,
the tail and the relation respectively.

The second layer of our model is called KEMA embedding
model (see Fig. 1), and it shows the way the embedding vectors
are assigned for entities and relations of a given KG. KEMA
starts by assigning random vectors for entities and relations.
Then, it modifies these vectors in a way it satisfies the score
function shown in Equation (10). First, every index Eh[j]
in the vector of the head entity Eh is subjected to modular
arithmetic operation of modulus r[j], the j-th index of relation
r. Then, the vector of numbers obtained from this operation
is assigned to the tail entity E3 of the relation r.

C. Types of Relations

Despite the simplicity of the calculation process used in
KEMA, it has proved to be highly effective and accurate
compared to other models. This simplicity can also be seen in
the low complexity of both training and prediction processes.
As well as simple relations, KEMA can effectively handle
complex relations of KG such as 1-N and N-N.

1) Simple Relations: Simple relation is that connecting no
more than two entities, the head and the tail. According to the
existing literature, three types of simple relation patterns are
very important: symmetric, inverse, and composed patterns.
All these patterns are covered by KEMA embedding model as
follows:

265

• Symmetric Relation: This relation, switching between
the head and the tail entities of a relation is possible. A
relation r is said to be symmetric, if ∀x, y ∈ E, the set
of entities

(x, r, y) =⇒ (y, r, x) (11)

• Inverse Relation: A relation r2 is said to be inverse of
relation r1 whenever r1 and r2 have opposite directions
connecting the same entities. A relation r2 is the inverse
of r1, if ∀x, y ∈ E, the set of entities in KG

(x, r1, y) =⇒ (y, r2, x) (12)

• Composed Relation: A relation r is said to be composed,
if it can be broken down into two relations or more. A
relation r is a composed relation, if ∃ r1, r2 ∈ R, the set
of relations in KG

(x, r, z) + (z, r, y) =⇒ (x, r, y) (13)

Where x, y, z ∈ E, the set of entities.

For Modular Arithmetic

Let a, b, n ∈ Z such that:
a ≡ b(mod n)

=⇒ a− b = kn, for some k ∈ Z
=⇒ b− a = (−k)n and −k ∈ Z
=⇒ b ≡ a(mod n)

Thus modular arithmetic is a symmetric relation.

Let a, b, n ∈ Z such that:
a ≡ b(mod n)

=⇒ a− b = kn, for some k ∈ Z
=⇒ b− a = (−n)k and −n ∈ Z
=⇒ b ≡ a(mod k)

mod(n) is inverse to mod(k).
Thus modular arithmetic is an inverse relation.

Let a, b, n, c ∈ Z, such that:
a ≡ b(mod n) and b ≡ c(mod n).

then a = b+ kn, k ∈ Z and b = c+ hn, h ∈ Z.
a = b+ kn

=⇒ a = (c+ hn) + kn
=⇒ a = c+ (hn+ kn)
=⇒ a = c+ (h+ k)n, h+ k ∈ Z .

Hence a ≡ c(mod n) .
Thus modular arithmetic is a composed relation.

2) KEMA Complex Relations: The majority of the models
proposed in the literature can deal with simple relations
between KG entities, i.e 1-to-1 relations. However, relying
on simple relationships to build knowledge is impractical.
Contrarily, KEMA has the ability to handle both simple and
complex relationships.

Giving a 1-to-N relationship r, the set of tails T =
{t1, t2, ..tN} can share a unique head whenever all these tails
are congruent in mod(r) space, Equation (14). Similarly, the
set of heads H = {h1, h2, ..hN} can share the same tail

TABLE I
EMBEDDING VECTORS OF ENTITIES AND RELATIONS

Entity Embedding vector Relation Embedding vector
Bob [1,2,1,1] Spouse [2,3,2,3]
Alice [1,2,5,1] Child [2,5,4,2]

V aleria [3,2,1,1] Parent [2,4,10,2]

whenever all these heads are congruent in mod(r) space,
Equation (15). Moreover, KEMA allows the representation of
N-to-N complex relationships, in which one relation can have
several heads and tails at once, by combining both equations
(14) and (15)

t1 ≡ t2 .. ≡ tN ⇐⇒ h = t mod (r), ∀ t ∈ T, (14)
h1 ≡ h2 .. ≡ hN ⇐⇒ t = h mod (r), ∀ h ∈ H, (15)

For Modular Arithmetic

Let a, b, n, c ∈ Z such that:
a ≡ b(mod n)

then a = b+ kn, k ∈ Z
=⇒ a = b+ (k − c+ c)n
=⇒ a = b+ cn+ (k − c)n, k − c ∈ Z .

Hence a ≡ b+ cn(mod n) and a ≡ b(mod n)

Thus modular arithmetic holds for 1-N relations.

Given the 1-N relation:

a ≡ b+ cn(mod n) and a ≡ b(mod n)

Since modular arithmetic is symmetric relation, then:

b+ cn ≡ a(mod n) and b ≡ a(mod n)

Thus modular arithmetic can represent N-1 relations.
By combining the 1-N and N-1 modular arithmetic relations,

we conclude its ability to represent N-N relation, and thus
modulus can represent all the complex relation patterns.

D. Analytical example

In this section, we illustrate an example to show the
effectiveness of KEMA in terms of representing simple and
complex relations. According to the input knowledge graph
layer shown in figure 1, the sub graph shows the relations
between three entities. Table I shows the embedding vectors
that KEMA assigned to every entity and relation.

The relation “Spouse” is an example of the symmetric
relation. In Fig. 1, the output layer of KEMA shows that this
relation holds in both directions. Moreover, in Table II, the
first row shows that the tail of the relation ”Spouse” with head
entity ”Bob” is ”Alice”. On the other hand, the second row
represents the opposite direction, where the tail of the relation
”Spouse” with head entity ”Alice” is ”Bob”.

266

TABLE II
SYMMETRIC RELATION EXAMPLE

Head Relation Tail (result)
[1,2,1,1] [2,3,2,3] [1,2,5,1]
[1,2,5,1] [2,3,2,3] [1,2,1,1]

TABLE III
INVERSE RELATIONS EXAMPLE

Head Relation Tail (result)
[1,2,5,1] [2,4,10,2] [3,2,1,1]
[3,2,1,1] [2,4,5,2] [1,2,5,1]

In Fig. 1, the relations ”Child” and ”Parent” show the
inversion pattern of simple relations. In the first row of the
Table III, ”Alice” is the head of the relation ”Child” while
”Valeria” is its tail. In the opposite direction, the second row
shows the relation ”Parent”, where ”Valeria” is the head and
”Alice” is the tail. Then the relations ”Parent” and ”Child” are
said to be inverse.

Furthermore, Fig. 1 shows that the relation ”Spouse” is
a composed relation. Fig. 1 shows that the relation ”Child”
of head ”Alice” and tail ”Valeria”, followed by the relation
”Parent” of head ”Valeria” and tail ”Bob”, can be replaced by
the relation ”Spouse” having the same head as ”Child”, and
the same tail as ”Parent”.

2 3 2 3

1 2 5 1 1 2 1 13 2 1 1

Child Parent

Spouse

Alice Valeria Bob

Fig. 2. Composed relation example.

Indeed, the strength of KEMA in terms of representing
complex relations is shown through the relations ”Parent”
and ”Child” in Fig. 1. Since ”Parent” has one head which
is ”Valeria”, and two tails which are ”Bob” and ”Alice”, then
it is a complex relation of 1 − N mapping pattern. Whereas
”Child” relation has two heads ”Bob” and ”Alice” connected
to one tail ”Valeria”, representing N-1 pattern.

IV. SIMULATION RESULTS

In this section, we will show the experiment setting to im-
plement our model followed by the discussion of the obtained
results.

A. Experimental setting

To evaluate our model, we implemented KEMA using
Ampligraph python library. Then, we compare it to the state-

of-the-art models on two commonly used benchmark datasets:
WN18RR, and FB15K-237.

• WN18RR is a subset of WordNet, a KG that clusters
words into synonym groups and features lexical relation-
ships between words. It consists of 40,943 entities, 11
relation types, and 93003 triples. WN18RR contains sym-
metry, antisymmetry and composition relation patterns.
The main pattern is the symmetry since almost each word
has a symmetric relation in WN18RR, e.g., also − see
and similar − to [13].

• FB15k-237 is a subset of Freebase, a large knowledge
graph that stores general knowledge facts. It consists of
14951 entities, 237 relation types, and 310116 triples.
The main patterns of the relation in FB15k are symmetry,
antisymmetry and composition [13].

To train and evaluate our model, we need to use negative
triples, which are not available in both WN18RR and FB15K-
237. As a result, we used to corrupt the positive triples of the
datasets to generate negative samples for each positive. This
is what is called the local closed world assumption. That is,
for a triple, we randomly replace the entity in the subject or
the object position by another, but not both at once.

We applied three tests to evaluate the performance of link
prediction of KEMA. These tests rely on ranking each positive
test triple against all its generated negatives according to its
score. The first test is Mean Rank (MR) which is calculated
as follow:

mean(rankt) ∀t ∈ T (16)

with T is the set of positive test triples, and rankt is the
rank of triple t against its negatives.

The second evaluation test is Mean Reciprocal Rank
(MRR). It is similar to MR, but it uses the reciprocal rank
of a triple instead of its rank, what make it less sensitive to
outliers [16]:

mean(1/rankt) ∀t ∈ T (17)

The last evaluation test is Hits@N, which counts the test
triples having a rank less than or equal to N .∑

tN , where tN ∈ T, ranktN >= N (18)

B. Main Results

In our simulation, we compared KEMA to several state-of-
the-art models including TransE [10], DistMult [15], ComplEx
[17], ConvE [8], and RotatE [13]. We show the efficiency of
our proposed model inferring the relation patterns for the task
of predicting missing links. Tables IV shows the results of the
evaluation tests of our model and the state-of-the-art models
based on WN18RR and FB15K-237 datasets respectively.

FB15K-237 dataset contains symmetry, anti-symmetry and
composition relation patterns. The main pattern in this dataset
is the composition [13]. The domination of the composition
pattern can be inferred from the results shown in Table IV. So
that Table IV shows that the model TransE, representing com-
position and anti-symmetry patterns, outperforms ComplEx
model representing symmetry and anti-symmetry patterns.

267

TABLE IV
RESULTS OF MODELS EVALUATION ON WN18RR AND FB15K-237 DATASETS

WN18RR FB15K-237
Model MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10
TransE 3384 0.226 - - 0.501 357 0.294 - - 0.465
DisMult 5110 0.43 0.39 0.44 0.49 254 0.241 0.155 0.263 0.419

ComplEx 5261 0.44 0.41 0.46 0.51 339 0.247 0.158 0.275 0.428
ConvE 4187 0.43 0.40 0.44 0.52 244 0.325 0.237 0.356 0.501
RotatE 3340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
KEMA 1898 0.477 0.442 0.486 0.543 244 0.311 0.223 0.342 0.486

Furthermore, Table IV shows the superiority of KEMA over
TransE, DistMult, and ComplEx in all the tests, due to its abil-
ity to perfectly represent composition and symmetry patterns.
On the other hand, ConvE and RotatE surpass KEMA due to
its ability to represent all the relation patterns of FB15K-237,
which is composition, symmetry, and anti-symmetry.

Table IV shows the results of the evaluation tests of KEMA
and the state-of-the-art models on WN18RR dataset. Similar to
FB15K-237 dataset, WN18RR contains composition, symme-
try and anti-symmetry relation patterns. Symmetry is the dom-
inating pattern in this dataset. This conclusion can be easily
inferred from the Table IV. So that the model DistMult, repre-
senting only symmetric relations, performs better than TransE
representing both anti-symmetry and composition patterns. On
WN18RR dataset, our model outperforms all the state-of-the-
art models. Although RotatE and ConvE both represent all
the relation patterns contained in WN18RR, KEMA surpasses
both models that confirms its high performance.

V. CONCLUSION AND FUTURE WORK

Link prediction is among the most prominent methods that
solve the problem of incompleteness of Knowledge graph. It
is used to predict the existence and the type of a relation
connecting two entities. The more the knowledge graph is
well represented, the more the predictions are accurate. In
this paper, We proposed a novel knowledge graph embedding
model (KEMA) that relies on modular arithmetic operation
in representing relations between entities. KEMA applies
modular arithmetic to the head entity with modulus equal
to the relation vector. The main strength of our model lies
in its ability to represent complex relations like one-to-many,
in addition to representing symmetry, inverse, and composed
simple relations. The results of our experiments show that
KEMA outperforms the majority of the existing models in
representation accuracy while preserving low level of com-
plexity.

In the future work, we plan to build a complete KEMA
framework that contains beside the proposed model a loss
function and a suitable negative sampling method.

REFERENCES

[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: a collaboratively created graph database for structuring human
knowledge,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, 2008, pp. 1247–1250.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” in Proceedings of the 16th international conference on
World Wide Web, 2007, pp. 697–706.

[3] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[4] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative
knowledge base embedding for recommender systems,” in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, 2016, pp. 353–362.

[5] B. Yang and T. Mitchell, “Leveraging knowledge bases in lstms for
improving machine reading,” arXiv preprint arXiv:1902.09091, 2019.

[6] Y. Hao, Y. Zhang, K. Liu, S. He, Z. Liu, H. Wu, and J. Zhao, “An
end-to-end model for question answering over knowledge base with
cross-attention combining global knowledge,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2017, pp. 221–231.

[7] K. Toutanova and D. Chen, “Observed versus latent features for knowl-
edge base and text inference,” in Proceedings of the 3rd workshop on
continuous vector space models and their compositionality, 2015, pp.
57–66.

[8] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional
2d knowledge graph embeddings,” in Thirty-second AAAI conference on
artificial intelligence, 2018.

[9] Y. Dai, S. Wang, N. N. Xiong, and W. Guo, “A survey on knowledge
graph embedding: Approaches, applications and benchmarks,” Electron-
ics, vol. 9, no. 5, p. 750, 2020.

[10] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” Advances
in neural information processing systems, vol. 26, pp. 1–9, 2013.

[11] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 28, no. 1, 2014.

[12] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding
via dynamic mapping matrix,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume
1: Long Papers), 2015, pp. 687–696.

[13] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “Rotate: Knowledge graph
embedding by relational rotation in complex space,” arXiv preprint
arXiv:1902.10197, 2019.

[14] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective
learning on multi-relational data,” in Icml, 2011.

[15] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and
relations for learning and inference in knowledge bases,” arXiv preprint
arXiv:1412.6575, 2014.

[16] M. Nickel, L. Rosasco, and T. Poggio, “Holographic embeddings of
knowledge graphs,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, no. 1, 2016.

[17] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Com-
plex embeddings for simple link prediction,” in International Conference
on Machine Learning. PMLR, 2016, pp. 2071–2080.

[18] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “A semantic match-
ing energy function for learning with multi-relational data,” Machine
Learning, vol. 94, no. 2, pp. 233–259, 2014.

[19] D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Phung, “A
novel embedding model for knowledge base completion based on
convolutional neural network,” arXiv preprint arXiv:1712.02121, 2017.

[20] Q. Liu, H. Jiang, A. Evdokimov, Z.-H. Ling, X. Zhu, S. Wei, and Y. Hu,
“Probabilistic reasoning via deep learning: Neural association models,”
arXiv preprint arXiv:1603.07704, 2016.

268

Embedding Knowledge Graphs with
Semantic-Guided Walk

Hao Tang, Donghong Liu, Xinhai Xu*, and Feng Zhang*
Academy of Military Science, Beijing, China

Abstract—Knowledge graph completion can complete knowl-
edge by predicting missing facts, which is a increasingly hot
research topic in knowledge graph construction. Prevalent
approaches propose to embed knowledge graphs in a low-
dimensional vector space and use these embedding to predict,
but they neglect either semantic information or graph structures.
We propose a new approach to knowledge graph completion
named as ATTWALK, which learns embedding by exploiting
both structural and semantic features of a knowledge graph.
This is achieved by leveraging a key insight that an entities’
embedding is influenced by its multi-hop neighbors’, which can
be further distinguished by their semantic importance to the entity.
ATTWALK orchestrates a two-step workflow by first evaluating
neighbors’ semantic weights using graph attention networks for
each entity, then exploring the entities’ local structural features
by performing a semantic weight guided walk. We evaluate
ATTWALK by conducting extensive experiments, which show
that ATTWALK outperforms 12 representative approaches on
average across 3 publicly available datasets.

Index Terms—knowledge graph embedding, graph attention
networks, random walk

I. INTRODUCTION

A knowledge graph (KG) is a directed graph which excels
at organizing relational facts. It represents factual entities as
nodes and semantic relations as edges. For a fact that entity h
has a relationship r with entity t, KGs model it as an edge r
pointing from node h to node t, which is denoted as a triple
(h, r, t). As a structured form to model human knowledge,
many large-scaled KGs have emerged as the backbone of
many AI related applications such as question answering [1],
recommendation systems [2] and intelligent services [3], and
become increasingly important nowadays.

Although KGs can be large in size, they are far from com-
plete. This gives rise to the task of automatic KG completion,
which aims at predicting missing facts based on existing triples
in a KG. A prevalent research direction proposes to map nodes
and edges of a KG into distributed representations in a low-
dimensional vector space, so as to simplify the prediction while
preserving their relations. This is also known as knowledge
graph embedding (KGE) and is gaining massive attention
recently.

Among all the previous KGE works, facts-based and relation
path-based approaches are two main representatives, but they
either overlook rich structural features or semantic information
of a KG. Facts-based approaches take a KG as a set of triples
(i.e., facts). They propose different scoring functions on the

DOI reference number: 10.18293/SEKE2022-048
* corresponding author

embedding of each triple to measure its factual plausibility,
and obtain the embeddings by maximizing the function values.
Instead, relation path-based approaches compute embeddings
considering multi-hop relationships and handle relation paths
using composition strategies [4], but the huge number of
composed paths brings critical complexity challenges [5].
This gives rise to more feasible approaches of path sampling,
which often relies on heuristics or prior knowledge but under-
utilizes semantic information in a KG. Such approaches include
Node2Vec [6], RelWalk [7] and so on.

Motivated by the above challenges, we propose a new
approach named ATTWALK to knowledge graph completion,
which learns embedding by exploiting both structural and
semantic features of a KG. Unlike using semantic information
from textual material [8], we consider using semantic informa-
tion from the triple itself. ATTWALK is inspired by a point of
view in social reference theory [9] that an individual’s social
role is influenced by his or her personal relational network
instead of only direct links, moreover, those entities in this
network contribute differently to his or her social role. As
an analogy, for a node n in a KG, n’s embedding essentially
models its role or feature, which is influenced by the community
(i.e., a sub-graph) c that n is located in, instead of only n’s
one-hop neighbors, and the influences posed by nodes in c
may vary according to their semantic importance to node n.
Following this idea, ATTWALK orchestrates a simple two-step
workflow: for each node n, its multi-hop neighbors’ semantic
weights are first evaluated using graph attention network, then
the weights are used to guide a random walk starting from n
in order to aggregate its multi-hop neighbors’ influences and
obtain n’s embedding.

In summary, the contributions of this paper are threefold: (1)
We borrow an idea from sociology and propose a simple but
effective approach ATTWALK to KGE. ATTWALK provides a
new angle that can exploit both graph structures and semantic
relations to embedding KGs; (2) We design and implement a
workflow to put the idea of ATTWALK into effects; and (3)
We evaluate ATTWALK by conducting extensive experiments.
ATTWALK outperforms 12 related approaches on average
across three publicly available datasets, which demonstrates
the effectiveness of ATTWALK.

II. MOTIVATION

Figure 1 serves as a motivating example throughout this
section, which is simplified from a large-scaled KG due to
space limit.

269

Cristiano RonaldoReal Madrid

Portugal

PlayFor

187CM

H
eight

?

CoachedBy

Occupation

Karim Benzema

Football

CoachedBy

Mourinho
Natio

nalit
y

Football Player

Athelete

IsA

Play

Teammate

Fig. 1. A KG example describing some real-life relations connected with Cristiano Ronaldo.

We first describe related preliminaries to KGE (Section II-A),
then introduce the general ideas of existing works (Section II-B)
and our approach (Section II-C) in solving the KGE task.
Without loss of generality, let us focus on how these approaches
learn the embedding of the specific node Cristiano Ronaldo in
Figure 1

A. Preliminaries

Knowledge Graph. A knowledge graph G = (E ,R), where
E and R represent the set of entities and relations respectively.
Each triple (edge) (h, r, t) contains a subject entity h ∈ E ,
a predicate r ∈ R, and a tail entity t ∈ E , denoting
head entity h has a relation r to tail entity t. For example,
(Cristiano Ronaldo, Nationality,Portugal) implies the nation-
ality of Cristiano Ronaldo, as is shown in Figure 1.

B. Related Work

Facts based approaches generally take the KG in Figure 1
as a set of 8 triples, one for each edge connecting two
nodes. For each triple, they propose a model to describe
how the triple holds and a scoring function to measure its
plausibility. Embeddings are obtained by maximizing the value
of the scoring function. In this way, the semantic of each
triple is captured, but the multi-hop neighbors’ influence and
graph structures are not fully utilized. For example, although
Football is a 2-hop neighbor of Cristiano Ronaldo, it is more
semantically relevant than Cristiano Ronaldo’s 1-hop neighbor
187cm. These approaches can be divided into four categories:
(i) translation-based models, which consider the translation
operation between entity and relation embedding, such as
TransE [10] and TransH [10]; (ii) factorization-bsaed models,
which assume KG as a third-order tensor matrix, and the triple
score can be carried out through matrix decomposition. Such
as RESCAL [11], HOLE [12]; (iii) CNN-based models, which
employ convolutional neural networks to determine the scores
of triples, such as ConvE [13] and ConvKB [14]; and (iv)
Graph neural network-based models, which extend convolution
operations onto non-Euclidean graph structures, such as RGCN
[15], KBGAT [16], EIGAT [17] and CompGCN [18].

By contrast, the path sampling based approaches lay more
emphasis on the graph structures around the target node. They

perform a truncated random walk starting from node Cristiano
Ronaldo along the outgoing edges, which results in a path
p, then propagate embeddings of nodes in p to the target
node’s, such as DeepWalk [19], node2vec [6]. However, these
approaches learn the embedding of Cristiano Ronaldo based
on its co-occurrence with nodes in the path p, without utilizing
the semantics of edges shown in Figure 1. For example, node
187cm may pose more influence than node Football Player on
the embedding of node Cristiano Ronaldo, though the former
is less semantically relevant than the latter.

C. Our Solution

ATTWALK learns the embeddings considering both semantic
information and graph structures of the KG, and conducts a
two-step procedure. Step-1: For each node n, ATTWALK first
evaluates the importance of n’s neighbors, based on the intuition
that different neighbors pose different influences to n. For
example, to node Cristiano Ronaldo, the path Occupation →
Football Player should contribute more to its embedding than
path Height → 187cm, therefore, the former is assigned more
weights than the latter. This is achieved using a graph attention
network. Step-2: Starting from node Cristiano Ronaldo, a
truncated walk is performed, but which path to take is guided by
the weights of the paths. The sampled paths are then aggregated
to capture multi-hop neighbors’ influences on node Cristiano
Ronaldo. In this way, both structural and semantic features are
exploited in the embedding. Moreover, the relational importance
is automatically learned without prior knowledge.

III. ATTWALK

This section introduces our approach ATTWALK. The general
architecture is shown as Figure 2. We detail its critical technical
components, the graph attention module and the weighted walk
module, in Section III-A and Section III-B, respectively.

A. Graph Attention Network

ATTWALK leverages both entity and relation features in the
multi-relation knowledge graph. Because in the knowledge
graph, we think relations are as crucial as entities. To better
manipulate entity and relation embedding, such as inner product,
cross product, and subtraction, we map both of them into the
same dimension. Each layer of GAT takes a set of entity features

270

e
v

e
1 e

5e
2

Agg

channel-wise concat e
r

Decoder

ConvE

ev

e1

e4

e2

e3

r 1

r 2

r 1
r 5

e7 e6

e
5

ev

e1

e4

e2

e3

r 1

r 2

r 1
r 5

e7 e6

r
3

r
4

Input

walk sampling

receptive filed

Graph Attention Module Attention-guided Walk Module

Attentions

e
v

(l)

e
v

random

e
r

(l)

e
v

r
3

r
6

r
4

Fig. 2. Overview of ATTWALK architecture.

e ∈ RNe×P and relation features r ∈ RNr×P as input, and
outputs a new set of entity and relation features: e ∈ RNe×V ,
r ∈ RNr×V , where the i-th row of e is the embedding of entity
ei and the j-th row of r is the embedding of relation rj . Ne

and Nr is the number of entities and relations, respectively.
P and V are the input and output dimension of entity and
relation embedding, respectively.

Considering different neighbors may have different impor-
tance related to one entity, we perform a shared attention
mechanism. We first learn a representation of each triple, for
example, (hi, rj , tk), by performing a linear transformation
over entity and relation embedding, as shown in Equation 1.

cijk = WΦ(⃗hi, r⃗j , t⃗k) (1)

where Φ represents operations over entity and relation embed-
ding. Inspired from [10], [20] and [21], we define three kinds
of operators, subtracting, multiplying and cross-product. W is
the linear transformation matrix. We also notice that knowledge
graphs are directed relational graphs. As shown in Figure 1,
Football Player is embraced by neighborhood entities Football
and Cristiano Ronaldo, and linked by out-relation Play and in-
relation Occupation. Football Player can be either a head entity
or a tail entity, so we distinguish the direction of the relations.
We learn two disjoint patterns of relations, out-relations and
in-relations, respectively. Therefore, Equation 1 can again be
written as follows.

cijk = W1Φ(⃗hi, r⃗j , t⃗k) (2)

ckji = W2Φ(⃗tk, r⃗j , h⃗i) (3)

where W1 and W2 are direction-specific linear transformation
matrices. Similar to [16], we learn the importance of each
triple denoted by attijk.

attijk = LeakyReLU (W3cijk) (4)

where W3 is a linear transformation matrix that is used to
calculate attention scores. To get the relative attention values,
a softmax function is applied over attijk as shown in Equation
5.

αijk = softmaxjk (attijk)

=
exp (attijk)∑

n∈Ni

∑
r∈Rin

exp (attinr)

(5)

To aggregate information from neighbor u, the feature of node
v is updated by:

e⃗v = σ1

(∑
u∈Nv

∑
i∈Rvu

αviucviu

)
(6)

As is shown in Figure 2, we incorporate the weighted walk
model to get the final entity embedding.

e⃗v = σ1

(∑
u∈Nv

∑
i∈Rvu

αviucviu

)
∥σ1(e

random
v) (7)

where ∥ represents channel-wise concatenation, σ1 is a non-
linearity, and erandomv denotes the representation of node v
derived from the weighted walk model, which will be explained
in next section. After updating entity embedding, the relation
embedding is transformed by Equation 8.

r⃗j = W4rj (8)

where W4 is a relation transformation matrix that is used to
update relation j.

B. Weighted Walk

Unlike Node2Vec [6], which views neighbors as equally
important, we think different neighbors in a graph play different
roles for a specific node, thus have different contributions
to the node’s embedding. This is achieved by incorporating
attention schemes into the random walk process. We propose
an attention-guided random walk aggregation model following
the hypothesis that accumulating information from local
structural relations of n-step ranges will benefit learning robust
embedding.

Therefore, instead of feeding adjacent matrix A to implement
random walks, we utilize attention matrix D generated from
the graph attention module. As is shown in Equation 9, we
define linear combinations of features.

Hi+1 = D̂jHi (9)

where Hi represents input entity embedding. The weighted
walk algorithm is shown as Algorithm 1. The jth line of Hi+1

is a representation of entity j, denoted as erandomj .
We view the random walking process as a Markov chain.

Let D denote the one-step transfer probability matrix (attention

271

Algorithm 1 The weighted walk algorithm
1: procedure RANDOMWALK(Dj , Hi)
2: Hi ←WHi + b
3: Hi ← drop(σ(Hi))
4: D̂j = WeightedPruning(Dj)
5: for i← 1, walklength do
6: Hi+1 = D̂jHi

7: end for
8: Hi+1 = σ(Hi+1)
9: return Hi+1

10: end procedure

matrix), whose state representation space is the set of all entities.
D has the following properties:

dij ≥ 0, i, j ∈ E (10)∑
j∈E

dij = 1, i ∈ E (11)

Based on that, we have the following definition.

Definition III-B.1. Let the conditional probability be defined
as p

(n)
ij = P{Xn = j|Xm = i}, i, j ∈ E , where entity Xn is

n-step neighbor of entity Xm.

Lemma III-B.1. The n-step transfer matrix (attention matrix)
has the following property:

D(n) = DD(n−1) (12)

D(n) = Dn (13)

From the above properties, we can accumulate n-step
information by the one-step transfer matrix, i.e., attention
matrix. Line 4 in Algorithm 1 tends to select entities of
higher importance, that is, we select a local subgraph. For
example, as shown in Figure 1, starting from Cristiano Ronaldo,
the weighted walk process will choose Football Player with
higher probability over other neighbors. The final subgraph we
obtain will be an n-step local structure composed of relatively
important entities.

IV. EXPERIMENTS

We first introduce the experiment settings, including the
datasets and experiment descriptions (Section IV-A), and
the configurations (Section IV-B), then report the overall
performance results on KG completion task (Section IV-C), and
finally investigate the contributions of different components of
ATTWALK by conducting an ablation study (Section IV-D).

A. Datasets

We evaluate our approach on three publicly available
benchmark datasets: WN18RR [13], FB15k-237 [26] and
Kinship [27]. We use the standard training, validation, and test
sets. FB15k-237 contains entities and relations from Freebase,
which is a large common-sense knowledge base. FB15k-237
removes duplicate and inverse relationships to prevent direct
prediction. WN18RR is derived from WordNet, a lexical

Fig. 3. Impact of walk length on Kinship

database of semantic relations between words. Similar to
FB15k-237, WN18RR also removes duplicates and reverse
relationships. The Kinship database consists if relationships of
24 unique entities in two families.

B. Configurations

We implement our approach with Pytorch and use Adam
to optimize the parameters with an initial learning rate set as
0.001. We run our model under Ubuntu 18.04 on an i9-9900K
CPU, equipped with RTX 2080ti 12GB. The embedding size
V is set to 200, and the number of negative samples is fixed
as 1000. The dropout rate is selected from {0.1, 0.2, 0.3, 0.4}.
For algorithm 1, the walk length is tuned amongst {1, 3, 10,
60, 100}. The kernel size of convolution is set as 7×7. We
assign label 1 to valid triples and label 0 to negative triples to
distinguish them. We use the CrossEntropyLoss function
as our loss function. Each experiment runs five times and the
average number is reported.

C. Results and Analysis

Table I and Table II show the comparison results on all data
sets. We can observe that our proposed approach ATTWALK has
comparable performance with SOTA baselines on most of the
metrics, validating the effectiveness of exploiting both structural
and semantic features of a KG. For Kinship, ATTWALK is
always the best performer, which outperforms the best baseline
by 3.8% on MRR, 2.5% on MR, 6% on Hits@1, 2.3% on
Hits@3 and 0.2% on Hits@10 of Kinship, as shown in Table II.

D. Ablation Study

To analyze the effectiveness of each key module in our
proposed approach, we investigate an ablation study, which is
shown in Table III. In addition, we compare the behavior of our
proposed approach when replacing the weighted walk module
with NODE2VEC under different aggregation mechanisms and
show the results in Table IV. Finally, we compare the effects
of different walk lengths, as shown in Figure 3.

1) Effects of Different Modules: As shown in Table III,
removing the weighted walk module clearly degrades all
the performance metrics, which denotes the effectiveness
of weighted walk. When we do not use the updated entity

272

TABLE I
EXPERIMENTS RESULTS FOR THE LINK PREDICTION TASK ON WN18RR AND FB15K-237 TEST SETS. HITS@N VALUES ARE IN PERCENTAGE. THE BEST

SCORE IS IN BOLD AND THE SECOND IS UNDERLINED. THE RESULTS OF ALL THE BASELINE METHODS ARE TAKEN FROM THE PREVIOUS PAPERS(’-’
DENOTES MISSING VALUES).

WN18RR FB15k-237

Hits@N Hits@N

MRR MR @1 @3 @10 MRR MR @1 @3 @10

TransE [10] 0.226 3384 - - 50.1 0.294 357 - - 46.5
DistMult [20] 0.43 5110 39 44 49 0.241 254 15.5 26.3 41.9
ComplEX [22] 0.44 5261 41 46 51 0.247 339 15.8 27.5 42.8

RGCN [15] - - - - - 0.248 - 0.151 - 41.7
ConvE [13] 0.43 4187 40 44 52 0.325 244 23.7 35.6 50.1

ConvKB [14] 0.249 3324 5.7 41.7 52.4 0.243 311 15.5 37.1 42.1
KBGAT [16] 0.412 1921 - - 55.4 0.157 270 - - 33.1
SACN [23] 0.47 - 43 48 54 0.35 - 26 39 54
RotatE [24] 0.476 3340 42.8 49.2 57.1 0.338 177 24.1 37.5 53.3
ConvR [25] 0.475 - 44.3 48.9 53.7 0.35 - 26.1 38.5 52.8

CompGCN [18] 0.479 3533 44.3 48.9 53.7 0.355 197 26.4 39.0 53.5
RelWalk [7] 0.451 3232 42 47 51 0.329 105 24.3 35.4 50.2

ATTWALK (ours) 0.483 2810 44.5 49.7 56 0.36 195.8 26.8 40 54.5

TABLE II
EXPERIMENTS RESULTS FOR THE LINK PREDICTION TASK ON KINSHIP TEST
SETS. HITS@N VALUES ARE IN PERCENTAGE. THE BEST SCORE IS IN BOLD

AND THE SECOND IS UNDERLINED. THE COMPARISONS ARE FROM [16].
WE REPRODUCE THE RESULTS OF KBGAT, RELWALK AND COMPGCN

USING [28], [7] AND [18] RESPECTIVELY.

Kinship

Hits@N

MRR MR @1 @3 @10

TransE [10] 0.309 6.80 0.9 64.3 84.1
DistMult [20] 0.516 5.26 36.7 58.1 86.7
ComplEX [22] 0.823 2.48 73.3 89.9 97.1

RGCN [15] 0.109 25.92 0.3 8.8 23.9
ConvE [13] 0.833 2.00 73.8 91.7 98.1

ConvKB [14] 0.614 3.3 43.62 75.5 95.3
KBGAT [16] 0.548 4.25 36.8 66.5 91.5

CompGCN [18] 0.835 2.06 74.5 91.4 98.3
RelWalk [7] 0.377 4.7 18.4 43.1 92

ATTWALK (ours) 0.867 1.95 79.0 93.5 98.5

embedding of the graph attention network, but only consider
the entity representation obtained from the weighted walk
model, we find that experimental results are comparable to
ConvE [13], DistMult [20] and RelWalk [7], resulting from
that local graph structure features are captured, denoting the
effectiveness of Algorithm 1.

2) ATTWALK v.s. Word Embedding Model: From Table IV,
we find that combining the graph attention network and the
weighted walk model as our encoder provides competitive
performance for the ConvE [13] score function. Analyzing the
experimental results, TransE [10] does not perform as well

TABLE III
THE EFFECT OF EACH MODULE ON MODEL PERFORMANCE. ATTWALK-W

REPRESENTS ATTWALK WITHOUT WEIGHTED WALK MODULE. ATTWALK-O
REPRESENTS THERE IS ONLY WEIGHTED WALK MODULE.

MRR MR @1 @3 @10

ATTWALK 0.483 2810 44.5 49.7 56.0
ATTWALK-W 0.476 3207.4 44.4 49.0 55.0
ATTWALK-O 0.44 4396 40 45.4 52.0

as DistMult [20] and ConvE [13] after the introduction of
local structural features, as TransE [10] tends to express the
relationships between individual triples, but on the contrary,
ConvE [13] has a stronger expression for capturing the
relationships between entities and the local structure of entities.
In addition, we evaluate ATTWALK by replacing the weighted
walk process with word embedding methods and observe a
performance decrease, as shown in Table IV.

3) Effects of Walk Lengths: Finally, we evaluate the effects
of different walk lengths. As shown in Figure 3, we find that
the performance observes an obvious improvement with the
increase of walk lengths l at the beginning, but gets stabilized
gradually from around l = 10. This is in line with our intuition
that the more distant an entity is, the smaller its influence is.
Besides, note that the training time increases as the walk length
increases, so we need to consider performance improvement
and time overhead altogether and make a balance.

V. CONCLUSION

In this paper, we propose a new perspective combining
graph structures and semantic information in a KG completion

273

TABLE IV
LINK PREDICTION PERFORMANCE ON KINSHIP DATASET. X+NODE2VEC (Y) INDICATES THAT WE REPLACE THE ATTENTION-GUIDED WALK MODULE, AS
SHOWN IN FIGURE 2, WITH THE CLASSICAL WORD EMBEDDING MODEL NODE2VEC, WHERE X IS THE DECODER FUNCTION AND Y IS THE AGGREGATION

METHOD.

Decoder→ TransE DistMult ConvE

Methods↓ MRR MR @10 MRR MR @10 MRR MR @10

X+ATTWALK (sub) 0.068 38.2 16.5 0.672 3.52 92.0 0.669 14.9 78.8
X+ATTWALK (mult) 0.070 47.5 11.1 0.612 3.99 90.6 0.841 2.15 97.8
X+ATTWALK (cross) 0.065 47.9 12.9 0.627 3.87 91.0 0.867 1.95 98.5

X+NODE2VEC (sub) 0.06 47.2 11.9 0.587 4.49 89.2 0.385 27.9 50.0
X+NODE2VEC (mult) 0.055 48.3 10.5 0.557 4.68 88.5 0.816 3.35 92.8
X+NODE2VEC (cross) 0.051 48.3 9.5 0.391 7.50 73.8 0.837 2.79 95.8

task. The idea is simple but effective, and can be combined
with many existing KGE approaches. Experiments indicate the
effectiveness and provide additional insights that the structural
expressiveness of random walks can improve the performance
of KGE as well as how to set a walk length. We hope our work
can shed some light on and inspire more KGE approaches.

ACKNOWLEDGMENT

This work is supported by grants from the National Natural
Science Foundation of China (No.11901578 and No.62102444).

REFERENCES

[1] Antoine Bordes, Sumit Chopra, and Jason Weston. Question answering
with subgraph embeddings. arXiv preprint arXiv:1406.3676, 2014.

[2] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying
Ma. Collaborative knowledge base embedding for recommender systems.
In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 353–362, 2016.

[3] Yi Ma, Paul A Crook, Ruhi Sarikaya, and Eric Fosler-Lussier. Knowledge
graph inference for spoken dialog systems. In 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5346–5350. IEEE, 2015.

[4] Kelvin Guu, John Miller, and Percy Liang. Traversing knowledge graphs
in vector space. In EMNLP, 2015.

[5] Shaoxiong Ji, Shirui Pan, E. Cambria, Pekka Marttinen, and Philip S.
Yu. A survey on knowledge graphs: Representation, acquisition and
applications. IEEE transactions on neural networks and learning systems,
PP, 2021.

[6] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864,
2016.

[7] Danushka Bollegala, Huda Hakami, Yuichi Yoshida, and Ken-ichi
Kawarabayashi. Relwalk a latent variable model approach to knowledge
graph embedding. arXiv preprint arXiv:2101.10070, 2021.

[8] Binling Nie and Shouqian Sun. Knowledge graph embedding via
reasoning over entities, relations, and text. Future Generation Computer
Systems, 91:426–433, 2019.

[9] Pnina Shachaf. Social reference: Toward a unifying theory. Library &
Information Science Research, 32(1):66–76, 2010.

[10] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston,
and Oksana Yakhnenko. Translating embeddings for modeling multi-
relational data. Advances in neural information processing systems, 26,
2013.

[11] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way
model for collective learning on multi-relational data. In Icml, 2011.

[12] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic
embeddings of knowledge graphs. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 30, 2016.

[13] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian
Riedel. Convolutional 2d knowledge graph embeddings. In Thirty-second
AAAI conference on artificial intelligence, 2018.

[14] Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung.
A novel embedding model for knowledge base completion based on
convolutional neural network. arXiv preprint arXiv:1712.02121, 2017.

[15] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den
Berg, Ivan Titov, and Max Welling. Modeling relational data with graph
convolutional networks. In European semantic web conference, pages
593–607. Springer, 2018.

[16] Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul.
Learning attention-based embeddings for relation prediction in knowledge
graphs. arXiv preprint arXiv:1906.01195, 2019.

[17] Yu Zhao, Huali Feng, Han Zhou, Yanruo Yang, Xingyan Chen, Ruobing
Xie, Fuzhen Zhuang, and Qing Li. Eigat: Incorporating global information
in local attention for knowledge representation learning. Knowledge-
Based Systems, page 107909, 2021.

[18] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar.
Composition-based multi-relational graph convolutional networks. arXiv
preprint arXiv:1911.03082, 2019.

[19] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 701–710, 2014.

[20] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.
Embedding entities and relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575, 2014.

[21] Wen Zhang, Bibek Paudel, Wei Zhang, Abraham Bernstein, and Huajun
Chen. Interaction embeddings for prediction and explanation in
knowledge graphs. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, pages 96–104, 2019.

[22] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and
Guillaume Bouchard. Complex embeddings for simple link prediction. In
International conference on machine learning, pages 2071–2080. PMLR,
2016.

[23] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen
Zhou. End-to-end structure-aware convolutional networks for knowledge
base completion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3060–3067, 2019.

[24] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate:
Knowledge graph embedding by relational rotation in complex space.
arXiv preprint arXiv:1902.10197, 2019.

[25] Xiaotian Jiang, Quan Wang, and Bin Wang. Adaptive convolution
for multi-relational learning. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 978–987, 2019.

[26] Kristina Toutanova and Danqi Chen. Observed versus latent features for
knowledge base and text inference. In Proceedings of the 3rd workshop
on continuous vector space models and their compositionality, pages
57–66, 2015.

[27] Xi Victoria Lin, Richard Socher, and Caiming Xiong. Multi-hop
knowledge graph reasoning with reward shaping. arXiv preprint
arXiv:1808.10568, 2018.

[28] Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and
Yiming Yang. A re-evaluation of knowledge graph completion methods.
arXiv preprint arXiv:1911.03903, 2019.

274

Dual Contrastive Learning for Unsupervised Knowledge Selection

Xiang Cao1, Lei Wang2 and Yujiu Yang1

1Tsinghua Shenzhen International Graduate School, Shenzhen, China
2Ping An Technology (Shenzhen) Co., Ltd., Shenzhen, China

cao-x19@mails.tsinghua.edu.cn, wangleis25@pingan.com.cn,
yang.yujiu@sz.tsinghua.edu.cn

Abstract

Although dialogue systems based on the Seq2Seq model
have achieved success, they suffer from tending to generate
general responses. Recent works have shown that selecting
external knowledge is helpful for dialogue systems to gener-
ate informative and diverse responses. However, selecting
appropriate knowledge from an unlabeled knowledge set,
which is referred to as unsupervised knowledge selection,
remains a tricky challenge. Therefore, we propose a dual
contrastive method, which utilizes two source-target pairs
which are based on the same knowledge set to construct
dual contrasts. Specifically, for a source utterance, we con-
sider its paired and unpaired target response as a positive
and negative sample, then obtain the positive and negative
posterior distribution over the knowledge candidates set,
respectively. Then we lead the prior distribution to be close
to the positive posterior distribution and distant from the
negative one. Similarly, the posterior distribution is treated
with the same criterion. Experimental results show that our
method improves generated responses in terms of BLUE,
DISTINCT, and knowledge utilization. Our codes are avail-
able at https://github.com/CaoXiang1997/DualCL4UKS.

1. Introduction

A dialogue system aims to produce an appropriate re-
sponse given a post as its input. Recently, the genera-
tive method based on the encoder-decoder frame [4] has
attracted considerable attention for generating fluent re-
sponses [15, 17]. However, it tends to generate general and

DOI reference number: 10.18293/SEKE2022-054

boring responses like ”I don’t know”, lending conversations
into unattractive and boring situations.

Existing works have shown that leveraging external
knowledge is helpful for dialogue systems to improve infor-
mativeness and diversity of generated responses [6, 10, 14].
External knowledge is sometimes in the form of multiple
utterances in a set of knowledge [19, 5]. Intuitively, ex-
ternal knowledge builds an information bridge for dialogue
systems from the source to the target. However, not all utter-
ances in the knowledge set help models generate appropri-
ate responses, and manual annotations are often expensive.
Therefore, it is necessary to select appropriate knowledge
from an unlabeled knowledge set, referred to as unsuper-
vised knowledge selection.

For unsupervised knowledge selection, a tricky chal-
lenge is the lack of supervisory signals. Several works
proposed attentive methods which use attention mecha-
nism [10] or its more powerful varieties [14] to calculate
the probability distribution over the knowledge set and se-
lect knowledge softly. However, those attentive methods
only relied on the distant supervisory signal from the cross-
entropy loss between the generated response and the target
response to supervise knowledge selection, helpless to the
lack of the supervisory signal. [10] attempted to use target
response to compute posterior distribution as guidance for
prior distribution, but still didn’t provide a strong enough
supervisory signal.

In this paper, inspired by previous works on contrastive
learning [2, 7], we propose a dual contrastive method for
unsupervised knowledge selection. From contrastive learn-
ing, the model benefits from the contrast between positive
samples and negative samples. We think that appropriately
selected knowledge is helpful for the model to distinguish
positive samples from negative ones. Specifically, for a

1

275

source utterance, we consider its paired target response as
the positive response and an unpaired target response as the
negative response, compute positive and negative posterior
distribution on the positive and negative response, respec-
tively, and lead the prior distribution to be close to the posi-
tive posterior distribution and distant from the negative one.
Similarly, we utilize the same criterion for the posterior dis-
tribution. Our contributions are listed as follows.

• As far as we know, we are the first to introduce con-
trastive learning into unsupervised knowledge selec-
tion, which provides an alternative solution for the la-
bel unavailability issue.

• We propose a dual contrastive method for un-
supervised knowledge selection, which learns
prior/posterior distribution from contrasts between
positive and negative posterior/prior distributions.

• Experimental results show that our method outper-
forms other existing competitive methods on diversity
and knowledge incorporation of generated responses
and almost flats on other metrics.

2. Related Work

Sequence to sequence (Seq2Seq) models [4] promote the
development of dialogue systems, but it suffers from gener-
ating general responses. Recently, some works utilize ex-
ternal knowledge to help dialogue systems generate diverse
and informative responses. In some early works [6, 12], the
model encoded external text entirely into a vector, which
led to irrelevant knowledge noise in generated responses.
Therefore, unsupervised knowledge selection became a re-
search hotspot whereas the lack of labels. [10] proposed a
prior-posterior framework that computes posterior distribu-
tion by the ground-truth response and drives the prior distri-
bution to approach the posterior distribution. [14] proposed
a global-to-local knowledge selection mechanism where the
global knowledge selection module forms a topic transi-
tion vector and the local knowledge selection module se-
lect knowledge at each decoding step under the guidance of
the topic transition vector. [16] proposed a teacher-student
framework where the teacher builds response-aware docu-
ment memory given the ground-truth response and the stu-
dent learns response-anticipated document memory from
the teacher. [3] introduced knowledge distillation to ad-
dress the exposure bias issue of knowledge selection. [11]
proposed recurrent knowledge interaction among decoding
steps and introduced a knowledge copy mechanism to copy
words from external knowledge. [8] proposed a sequen-
tial latent model which uses sequential latent to model the
knowledge selection process in multi-turn dialogue genera-
tion.

However, existing works use one single source-target
pair to select knowledge, ignoring the difference between
knowledge selected by two source-target pairs. That re-
sults in more attention to the common information than the
special information of knowledge candidates, which is bad
for the model to incorporate relevant knowledge and gen-
erate diverse responses. In this paper, We propose a dual
contrastive method for unsupervised knowledge selection,
which leads the model to learn the difference in knowledge
selection between two source-target pairs and generate re-
sponses based on specially selected knowledge.

3. Model

As presented in Figure 1, the architecture overview of
our model is generally based on a sequence-to-sequence
frame. We let

{
(xi, yi)

}n

i=1
denote a set of multi-turn di-

alogue, where n is the turn number, and xi and yi are the
source utterance and the target utterance of the i-th turn,
respectively. K =

{
kj
}N

j=1
denotes a set of knowledge ut-

terances, where N is the number of utterances in K, and kj

is the j-th knowledge utterance. Our model’s goal is to se-
lect correct a knowledge utterance kj from K and generate
appropriate responses yi for each xi.

3.1. Base Architecture

Our method is based on an encoder-decoder architecture
with a prior-posterior knowledge selector which uses the
posterior distribution to guide the prior distribution.

Encoder We implement a source encoder with a bidirec-
tional gated recurrent unit (GRU), which encode source ut-
terance xi into a forward hidden state

−→
h i

x and a backward
hidden state

←−
h i

x for each xi. We concatenate the last hidden
states in two directions into hi

x as the representation vector
of xi as follows.

−→
h t = GRU(xi

t,
−→
h t−1) (1)

←−
h t = GRU(xi

t,
←−
h t+1) (2)

hi
x = [

−→
h i

|xi|;
←−
h i

1] (3)

where [;] represents vector concatenation, |xi| represents
the token number of xi. In this way, we encode xi as hi

x for
each i.

We implement a knowledge encoder with the same struc-
ture as the source encoder, but they don’t share any parame-
ters. Similarly, we concatenate the last hidden states of two
directions into an overall vector hj

k for each kj . Moreover,
we use the knowledge encoder to encode yi as hi

y for each
i.

276

Source

Encoder

Knowledge

Encoder

𝑥𝑖

𝑥𝑗

𝑦𝑖

𝑦𝑗

𝑦1

…

𝑦𝑁

ℎ𝑥
𝑖

ℎ𝑥
𝑗

ℎ𝑦
𝑖

ℎ𝑦
𝑖

ℎ𝑘
1

…

ℎ𝑘
𝑁

Dual

Contrastive

Knowledge

Selector

… …

… …

Negative

Prior Distribution

Positive

Prior Distribution

Negative

Posterior Distribution

Positive

Posterior Distribution

Pull togetherPush apart Decoder

in testing phase

in training phase

Generated

Response 𝑦𝑖

Figure 1. The architecture overview of our model. In this figure, we only show contrasts where the
i-th turn (xi, yi) is the positive sample and the j-th turn (xj , yj) is the negative one.

Knowledge Selector The goal of the knowledge selector
is to select appropriate knowledge from the knowledge set.
Inspired by [10], we set two modes for the knowledge se-
lector – the prior and posterior modes. In the prior mode, the
knowledge selector computes a prior distribution pix using
the source utterance xi. In the posterior mode, the knowl-
edge selector computes a posterior distribution pix using the
target utterance yi. The knowledge selector is implemented
with attention mechanism [1] as follows.

p(k|z) = softmax(hz · [h1
k, · · · , hn

k]) (4)

where z ∈
{
xi
}n

i=1
∪
{
yi
}n

i=1
is the representation vec-

tor of an source or target utterance. For convenience, we
use pix and piy as simplifications of p(k|xi) and p(k|yi), re-
spectively.

In the training phase, we use the posterior distribution
as knowledge selection distribution to sample a knowledge
utterance. In the testing phase, we have no choice but to
use the prior distribution, because the target utterance is to
be generated and can not be used to compute the posterior
distribution.

To ensure the knowledge selector work in the testing
phase, we use the posterior distribution to guide the prior
distribution in the training phase. Therefore, we introduce
the Kullback-Leibler Divergence (KLD) loss to minimize
the distance between the prior distribution and the posterior
distribution.

ℓiKLD = KLD(piy||pix) = piy log
piy
pix

(5)

When the knowledge selection distribution p(k)is given,

the selected knowledge utterance sk ∼ p(k) is sampled ac-
cording to it.

Decoder The decoder integrates the selected knowledge
hi
sk and generates response word by word. We use a hierar-

chical gated fusion unit (HGFU) [18] to implement it. An
HGFU consists of two GRUs, which are fed by the word
generated in the last step yt−1 and the selected knowledge
hK , respectively, as follows.

siy,t = GRU(emb(yiy,t−1), s
i
t−1, c

i
t)

sik,t = GRU(hi
sk, s

i
t−1, c

i
t)

(6)

where emb is the embedding layer, sit−1 is the last hid-
den state of the decoder, cit is the attentive context vector.

Then, HGFU combines the syt and skt with a soft gate g
as follows.

sit = gṡiy,t + (1− g)⊙ sik,t (7)

g is computed by syt and skt through multilayer percep-
trons and control the their contributions to the final hidden
state st.

The word is sampled from a distribution computed by sit
and cit as follows.

yit ∼ pit = softmax(Wo[s
i
t; c

i
t]) (8)

where Wo is the parameters of the output layer.

277

Loss Function We introduce the negative-log likeli-
hood(NLL) loss to measure the difference between the re-
sponse generated by the model and the target response as
follows.

ℓiNLL = − 1

|yi|

|yi|∑
t=1

log p(yit|yit−1, x
i, ski) (9)

Like [10], we introduce the bag-of-words(BOW) loss to
ensure the accuracy of the selected knowledge as follows.

ℓiBOW = − 1

m

m∑
t=1

log p(yt|k) (10)

Therefore, the total loss function of our model is as fol-
lows.

ℓ = ℓKS + ℓNLL + ℓBOW (11)

3.2. Dual Contrastive Knowledge Selector

We think that an appropriately selected knowledge is
helpful not only for approaching the target response but
also for distinguishing the target response from other re-
sponses. Therefore, we propose two kinds of contrastive
loss as follows. For the posterior distribution piy , we use the
prior distribution pix of the same turn as the positive and the
prior distributions

{
pjx

}n

j=1,j ̸=i
of other turns as the nega-

tives. Then, we minimize the distance of piy from the posi-
tive prior distribution pix and maximize the average distance
of piy from the negative prior distributions

{
pjx

}n

j=1,j ̸=i
. In

this way, We introduce the prior contrast and propose the
prior contrastive loss as follows.

ℓiPRIOR = piy log
piy

p(k|xi
− 1

n− 1

n∑
j=1,j ̸=i

piy log
piy

pjx

= −piy(log pix −
1

n− 1

n∑
j=1,j ̸=i

log pjx)

(12)

To ensure ℓPRIOR is positive, we change it to its final
form as follows.

ℓiPRIOR = −piy[log pix+
1

n− 1

n∑
j=1,j ̸=i

log(1− pjx)] (13)

Similarly, for the prior distribution pix, we use the pos-
terior distribution piy of the same turn as the positive and
the posterior distributions

{
pjy
}n

j=1,j ̸=i
of other turns as the

negatives. Then, we minimize the distance of pix from the

positive posterior distribution piy and maximize the aver-
age distance of piy from the negative posterior distributions{
pjy
}n

j=1,j ̸=i
. In this way, we introduce the posterior con-

trast and propose the posterior contrastive loss as follows.

ℓiPOST = piy log
piy

p(k|xi
− 1

n− 1

n∑
j=1,j ̸=i

pjy log
pjy
pix

= [piy log p
i
y −

1

n− 1

∑
j=1,j ̸=i

pjy log p
j
y]

− [piy log p
i
x −

1

n− 1

∑
j=1,j ̸=i

pjy log p
i
x]

(14)

For the whole multi-turn dialogue, we have

n∑
i=1

[piy log p
i
y −

1

n− 1

∑
j=1,j ̸=i

pjy log p
j
y] = 0 (15)

Therefore, ℓiPOST can be simplified as follows.

ℓiPOST = −piy log pix +
1

n− 1

∑
j=1,j ̸=i

pjy log p
i
x (16)

Similarly, we change ℓiPOST to ensure it is positive as
follows.

ℓiPOST = −piy log pix−
1

n− 1

∑
j=1,j ̸=i

pjy log(1−pix) (17)

Overall, the total loss function of knowledge selection is
as follows.

ℓiKS = ℓiKL + α · ℓiPRIOR + β · ℓiPOST (18)

where α and β are coefficients to control the contribution
of ℓiPRIOR and ℓiPOST , respectively.

4. Experiments

4.1. Experiment Settings

Datasets We carry experiments on two open-domain
knowledge-grounded dialogue datasets, namely Per-
sonaChat [19] and Wizard-of-Wikipedia [5]. Although
Wizard-of-Wikipedia has labels for knowledge selection,
we did not use them because we focus on improvements in
unsupervised knowledge selection.

Baselines We compared our models with the following
baselines.

278

Table 1. Automatic Evaluation on PersonaChat and Wizard-of-Wikipedia.
Datasets Models BLEU-1 / 2 / 3 Distinct-1 / 2 / 3 Knowledge-R / P / F1

PersonaChat
Seq2Seq 0.1764 / 0.0725 / 0.0315 0.0136 / 0.1015 / 0.2908 0.0062 / 0.0206 / 0.0095
PostKS 0.1736 / 0.0720 / 0.0326 0.0136 / 0.0968 / 0.2676 0.0098 / 0.0407 / 0.0158

our model 0.1799 / 0.0739 / 0.0333 0.0144 / 0.1011 / 0.2804 0.0110 / 0.0430 / 0.0176

Wizard-of-Wikipedia
(Test Seen)

Seq2Seq 0.1802 / 0.0608 / 0.0248 0.0480 / 0.2575 / 0.5468 0.0175 / 0.2427 / 0.0327
PostKS 0.1936 / 0.0679 / 0.0278 0.0487 / 0.2642 / 0.5539 0.0245 / 0.3381 / 0.0457

our model 0.1961 / 0.0686 / 0.0281 0.0500 / 0.2759 / 0.5709 0.0248 / 0.3255 / 0.0461

Wizard-of-Wikipedia
(Test Unseen)

Seq2Seq 0.1735 / 0.0560 / 0.0227 0.0397 / 0.2148 / 0.4849 0.0143 / 0.1827 / 0.0264
PostKS 0.1805 / 0.0575 / 0.0221 0.0325 / 0.2077 / 0.4951 0.0208 / 0.2557 / 0.0384

our model 0.1808 / 0.0585 / 0.0228 0.0318 / 0.2001 / 0.4805 0.0210 / 0.2620 / 0.0388

Table 2. The ablation results on the PersonaChat dataset of our model.
Models BLEU-1 / 2 / 3 Distinct-1 / 2 / 3 Knowledge-R / P / F1

our model 0.1799 / 0.0739 / 0.0333 0.0144 / 0.1011 / 0.2804 0.0110 / 0.0430 / 0.0176
w/o prior contrast 0.1745 / 0.0725 / 0.0330 0.0146 / 0.0995 / 0.2748 0.0102 / 0.0414 / 0.0163

w/o posterior contrast 0.1785 / 0.0737 / 0.0333 0.0144 / 0.0991 / 0.2739 0.0109 / 0.0437 / 0.0175

• Seq2Seq [4] is an attentive seq2seq model that does
not have access to external knowledge.

• PostKS [10] is an attentive seq2seq that selects knowl-
edge with the posterior distribution in the training
phase and the prior distribution in the testing phase.

Implementation. We use a bidirectional GRU with
400 hidden states for each layer as our encoder and 1-
layer GRUs with 800 hidden states in our decoder. All en-
coders and decoders do not share any parameters. We set
the word embedding size to be 300 and initialized it using
GloVe [13]. We use a vocabulary table that has no more
than 20,000 words. We use an Adam optimizer [9], where
the batch size of 16, and the learning rate is 5e-4. In the
first five epochs, we minimize the BOW loss only for pre-
training the knowledge selector. In the remaining epochs,
we minimize the sum of all losses. We evaluated our model
on the validation set every 100 steps and stopped training
when the model did not update the minimal loss for a whole
epoch.

Evaluation. We adopted several automatic metrics to
perform the evaluation. BLEU-1/2 and Distinct-1/2 are two
widely used metrics for evaluating the quality and diversity
of generated responses. Due to the lack of labels, the qual-
ity of selected knowledge is hard to be measured directly.
Following [10], we use Kownledge-R/P/F1 to evaluate the
knowledge quality of generated responses via measuring the
relevancy between generated responses and the knowledge
set. Specifically, given the set of non-stop words in a re-
sponse Y and in the knowledge set K, denoted by WY and
WK , Knowledge-R/P/F1, denoted by R/P /F1 respectively,
are defined as follows.

R =
|WY

⋂
WK |

|WK |
(19)

P =
|WY

⋂
WK |

|WY |
(20)

F1 = 2 · R · P
R+ P

(21)

4.2. Evaluation Results.

Effect of Dual Contrastive Learning The evalua-
tion results are summarized in Table 1. Bold numbers
show the best results among all models. We observe
that our model outperforms baseline models in terms of
knowledge utilization of generated responses on almost
all datasets. For example, Knowledge-R/P/F1 on Per-
sonaChat is increased from 0.0098/0.0407/0.0158 (PostKS)
to 0.0110/0.0430/0.0176 (our model), indicating the im-
provement in terms of the quality of knowledge selection.

Ablation Study The ablation results on PersonaChat of
our model are reported in Table 2. We observe that both
prior and posterior contrast contribute to our model because
the performance degrades without any of them. By com-
parison, the prior contrast contributes more, where we think
the reason is that the prior distribution is directly used in the
testing phase. The prior contrast directly increases knowl-
edge selection compared to the posterior contrast.

279

5. Conclusion

This paper proposes a dual contrastive method for unsu-
pervised knowledge selection in dialogue systems, which
is the first work that introduces contrastive learning into
knowledge selection in dialogue systems. Experiment re-
sults show that our model has improved on diversity and
knowledge incorporation of generated responses. As for
future work, we plan to extend our contrastive method to
Transformer-based architecture.

ACKNOWLEDGMENTS

This research was supported in part by the Ministry
of Science and Technology of China under Grant No.
2020AAA0104200, and the Shenzhen Key Laboratory
of Marine IntelliSense and Computation under Contract
ZDSYS20200811142605016.

References

[1] BAHDANAU, D., CHO, K., AND BENGIO, Y. Neu-
ral machine translation by jointly learning to align and
translate. In Proc. of ICLR (2015).

[2] CAI, H., CHEN, H., SONG, Y., DING, Z., BAO, Y.,
YAN, W., AND ZHAO, X. Group-wise contrastive
learning for neural dialogue generation. In Proc. of
EMNLP (2020).

[3] CHEN, X., MENG, F., LI, P., CHEN, F., XU, S., XU,
B., AND ZHOU, J. Bridging the gap between prior
and posterior knowledge selection for knowledge-
grounded dialogue generation. In Proc. of EMNLP
(2020).

[4] CHO, K., VAN MERRIENBOER, B., BAHDANAU, D.,
AND BENGIO, Y. On the properties of neural machine
translation encoder-decoder approaches. In Proceed-
ings of SSST@EMNLP 2014, Eighth Workshop on
Syntax, Semantics and Structure in Statistical Trans-
lation, Doha, Qatar, 25 October 2014 (2014).

[5] DINAN, E., ROLLER, S., SHUSTER, K., FAN, A.,
AULI, M., AND WESTON, J. Wizard of wikipedia
knowledge-powered conversational agents. In Proc.
of ICLR (2019).

[6] GHAZVININEJAD, M., BROCKETT, C., CHANG, M.,
DOLAN, B., GAO, J., YIH, W., AND GALLEY, M.
A knowledge-grounded neural conversation model. In
Proc. of AAAI (2018).

[7] GUTMANN, M., AND HYVARINEN, A. Noise-
contrastive estimation of unnormalized statistical
models, with applications to natural image statistics.
J. Mach. Learn. Res. (2012).

[8] KIM, B., AHN, J., AND KIM, G. Sequential la-
tent knowledge selection for knowledge-grounded di-
alogue. In Proc. of ICLR (2020).

[9] KINGMA, D. P., AND BA, J. Adam A method for
stochastic optimization. In Proc. of ICLR (2015).

[10] LIAN, R., XIE, M., WANG, F., PENG, J., AND WU,
H. Learning to select knowledge for response genera-
tion in dialog systems. In Proc. of IJCAI (2019).

[11] LIN, X., JIAN, W., HE, J., WANG, T., AND CHU, W.
Generating informative conversational response using
recurrent knowledge-interaction and knowledge-copy.
In Proc. of ACL (2020).

[12] PARTHASARATHI, P., AND PINEAU, J. Extending
neural generative conversational model using external
knowledge sources. In Proc. of EMNLP (2018).

[13] PENNINGTON, J., SOCHER, R., AND MANNING,
C. D. Glove global vectors for word representation.
In Proc. of EMNLP (2014).

[14] REN, P., CHEN, Z., MONZ, C., MA, J., AND DE RI-
JKE, M. Thinking globally, acting locally distantly su-
pervised global-to-local knowledge selection for back-
ground based conversation. In Proc. of AAAI (2020).

[15] SHANG, L., LU, Z., AND LI, H. Neural responding
machine for short-text conversation. In Proc. of ACL
(2015).

[16] TIAN, Z., BI, W., LEE, D., XUE, L., SONG, Y., LIU,
X., AND ZHANG, N. L. Response-anticipated mem-
ory for on-demand knowledge integration in response
generation. In Proc. of ACL (2020).

[17] VINYALS, O., AND LE, Q. V. A neural conversa-
tional model. CoRR abs1506.05869 (2015).

[18] YAO, L., ZHANG, Y., FENG, Y., ZHAO, D., AND
YAN, R. Towards implicit content-introducing for
generative short-text conversation systems. In Proc.
of EMNLP (2017).

[19] ZHANG, S., DINAN, E., URBANEK, J., SZLAM, A.,
KIELA, D., AND WESTON, J. Personalizing dialogue
agents I have a dog, do you have pets too. In Proc. of
ACL (2018).

280

Dynamic Heterogeneous Information Network
Embedding in Hyperbolic Space

Dingyang Duan*, Daren Zha*, Xiao Yang** and Xiaobo Guo(�)*

*Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
*School of Cyber Security,University of Chinese Academy of Sciences, Beijing, China

**Aerospace Internet of Things Technology Co.,Ltd, Beijing, China
**China Aerospace Times Electronics Co., Ltd, Beijing, China

Abstract—Heterogeneous information network (HIN) embed-
ding, aiming to project HIN into a low-dimensional space, has
attracted considerable research attention. Existing heterogeneous
graph representation learning methods also take temporal evo-
lution into consideration in Euclidean space which, however, un-
derestimates the inherent complex and hierarchical properties in
many real-world temporal networks, leading to sub-optimal em-
beddings. To explore these properties of a dynamic heterogeneous
network, we propose a dynamic hyperbolic heterogeneous embed-
ding(DyHHE) model that fully takes advantage of the hyperbolic
geometry and structural heterogeneity. More specially, to capture
the structure and semantic relations between nodes, we employ
the meta-path guided random walk to sample the sequences
for each node. Then DyHHE maps the temporal graph into
hyperbolic space, and capture the structural heterogeneity and
evolving behaviors by facilitating the proximity measurement.
Experimental results on two real-world datasets demonstrate the
superiority of DyHHE, as it consistently outperforms competing
methods in link prediction task.

Index Terms—Dynamic Graphs, Hyperbolic Space, Heteroge-
neous Information Network

I. INTRODUCTION

Modeling data in the real world as heterogeneous informa-
tion networks(HINs) can capture the internal relations of rich,
complex data across various modalities. However, many real-
world graphs are dynamic where graph structures constantly
evolve over time. They are usually represented as sequence of
graph snapshots at different time steps [1]. Examples include
co-authorship networks where authors may periodically switch
social network whose users may develop their multiple-type
connections(follow, reply, retweet, etc) with others over time.
The dynamics of a network and the structural heterogeneity
provide abundant information for encoding nodes. So far,
a number of HIN embedding methods have been proposed
such as metapath2vec [2] and HAN [3]. These methods have
overlooked a problem, that is, the formation of the neighbors
is actually in order, it is related to time. There has been an
ever-increasing amount of research on dynamic networks like
DySAT [4] and HDGAN [5]. However, in the vast majority
of these works, the space used for representing networks is
Euclidean. In recent years, it has been suggested that complex
networks may have underlying hyperbolic geometry and that

hyperbolic space can better represent the structure of networks
[6]. One fundamental property of hyperbolic space is that it
expands exponentially and can be regarded as a smooth version
of trees, abstracting the hierarchical organization. Despite the
recent achievements in hyperbolic graph embedding, attempts
on temporal heterogeneous networks are still scant. To fill this
gap, in this work, we propose a novel dynamic hyperbolic
heterogeneous embedding model, which fully takes advantage
of the hyperbolic geometry and structural heterogeneity to
capture the spatial dependency and temporal regularities of
evolving networks via a recurrent learning paradigm. In sum-
mary, the main contributions are stated as follows:
• We propose a novel hyperbolic temporal graph embed-

ding model on heterogeneous network, named DyHHE,
to learn temporal regularities and implicitly hierarchical
organization.

• We devise a hyperbolic structural network(HSN) module
to preserve the HIN structure and semantic correlations
in hyperbolic spaces based on the meta-path guided
random walk. Then we apply a hyperbolic temporal
network(HTN) module to effectively extract the diverse
scope of historical information. To the best of our knowl-
edge, this is the first study on dynamic heterogeneous
network embedding in hyperbolic space.

• Experimental results on two real-world datasets demon-
strate the superiority of DyHHE, as it consistently out-
performs competing methods in link prediction task.
The ablation study further gives insights into how each
proposed component contributes to the success of the
model.

II. RELATED WORKS

Recently, some methods have been proposed representation
learning methods for HIN. Heterogeneous networks are usu-
ally characterized by meta-paths to find hidden relationships
between nodes. Metapath2vec [2] obtains a corpus through
random walks based on meta-paths, and uses skip-Gram for
training. HAN [3] applies the attention mechanism to het-
erogeneous graphs through meta-path based neighbors. Real-
world networks are not static, on the contrary, many networks
are constantly changing, such as social networks. HDGAN
[5] attempts to use the attention mechanism to take the

281

***This paper was withdrawn by the authors due to errors in the paper.
DOI reference number: 10.18293/SEKE2022-087

heterogeneity and dynamics of the network into account at
the same time. DySAT [4] use the scaled dot-product form
of attention to learn dynamic graph embedding. Most of the
prevalent methods are built-in Euclidean space which, how-
ever, may underemphasize the intrinsic power-law distribution
and hierarchical structure. Existing representation learning in
hyperbolic space such as HGCN [11] and PoincareEmb [21]
mainly focus in static graph. Despite the recent achievements
in hyperbolic graph embedding, attempts on dynamic hetero-
geneous networks are still scant, which motivates us to explore
hyperbolic geometry on dynamic heterogeneous networks.

III. PRELIMINARIES

In this section, we first present the problem formulation
of dynamic heterogeneous graph, then we introduce some
fundamentals of hyperbolic geometry, which are essential in
our proposed framework.

Definition 1. Heterogeneous Information Network(HIN) [7].
An HIN is defined as a graph G = (V,E), in which V and
E are the sets of nodes and edges. Each node v ∈ V and
each edge e ∈ E are associated with their mapping functions
φ(v) : V → V and ψ(e) : E → E respectively. V and E denote
the sets of node and relation types, where |V|+ |E| > 2.

Definition 2. Meta-path [2]. Given a HIN G = (V,E), a
meta-path P is a sequence of node types Vv1 ,Vv2 , ...,Vvn
connected by edge types Ee1 , Ee2 , ..., Een−1

: P = Vv1
Ee1−→

Vv2
Ee2−→ ...

Een−1−→ Vvn . A meta-path instance consists of
specific nodes and edges, e.g., a1

write−→ p1
publish−→ v1.

Definition 3. Dynamic Heterogeneous Graph. A heteroge-
neous temporal is defined as a graph G =< V,E,A, T >,
from definition 1, we know that |V| + |E| > 2, where V
represents the node type and E represents the edge type.
A represents an event that sequence formed for each node’s
neighbors, and T is a time stamp. By definition 2, we can get
the neighbor set of node i in the heterogeneous network. The
neighbor formation sequence of node i refers to organizing the
neighbors of the nodes in the network as a sequence based on
the time of neighbor interaction events [8].

Then, we introduce some concepts of geometry to make this
article more clear. A Riemannian manifold M is a space that
generalizes the notion of a 2D surface to higher dimensions
[9]. For each point x ∈ M, it associates with a tangent
space(Euclidean) TxM of the same dimensionality as M.
Intuitively, TxM contains all possible directions in which
one can pass through x tangentially (see Fig. 1). There are
multiple models that can be used to represent hyperbolic
space, each having different advantages. The Poincaré ball
model is the best model for low dimensional visualizations
of the embeddings. The Poincaré ball model with negative
curvature −c(c ≥ 0) corresponds to the Riemannian manifold
(Hn,c, gH), where Hn,c = {x ∈ Rn : c||x||2 ≤ 1} is an open
n-dimensional ball. if c = 0, it degrades to Euclidean space,
i.e., Hn,c = Rn. In addition, [9] shows how Euclidean and

Fig. 1. The tangent space TxM and a tangent vector v, along the given point
x of a curve traveling through the manifold M.

hyperbolic spaces can be continuously deformed into each
other and provide a principled manner for basic operations
(e.g., addition and multiplication) as well as essential functions
(e.g., linear maps and softmax layer) in the context of neural
networks and deep learning.

IV. PROPOSED MODEL

The overall framework of the proposed model DyHHE
is illustrated in Fig. 2. DyHHE has two primary modules:
hyperbolic structural module and hyperbolic temporal module,
which benefits from the expressiveness of both hyperbolic em-
beddings and temporal evolutionary embeddings. As sketched
in Fig. 2, DyHHE is a recurrent learning paradigm and falls
into the prevalent discrete-time temporal graph architecture
formulated by (1). More specifically, DyHHE can be sum-
marized as two procedures: (a)Given the original input node
feature, this procedure projects it into hyperbolic space, and
preserve the structure by facilitating the proximity between
the node v ∈ V and its neighborhoods cV ∈ CV(v) with
type V . We use meta-path guided random walks [2] to obtain
heterogeneous neighborhoods of a node. (b)These sequences
of node representations then feeds as input to the temporal re-
current module to capture the sequential patterns. Furthermore,
we propose an attention mechanism based on the hyperbolic
proximity to obtain the attentive hidden state. Owning to the
superiorities of self-attention, this unit attending on multiple
historical latent states to get a more informative hidden state.
We elaborate on the details of each respective module in the
following paragraphs.

Ht(φ) = f2(f1(At, Xt), Ht−1) (1)

A. Feature Map
Before going into the details of each module, we first

introduce two bijection operations, the exponential map and
the logarithmic map, for mapping between hyperbolic space
and tangent space with a local reference point [10], [11], as
presented below.

In this work, we use Poincaré model with constant curvature
c = 1 as the hyperbolic space for entity embeddings [12].
In particular, we denote d-dimensional Poincaré centered at
origin as Hn,c = {x ∈ Rn : c||x||2 ≤ 1}, where || · || is the
Euclidean norm. The Poincaré model of hyperbolic space is
equipped with Riemannian metric:

gHx = λ2x′g
R (2)

282

Fig. 2. Architecture of DyHHE.

where λcx′ := 2
1−c||x′||2 and gR denotes the Euclidean metric,

i.e., gR = I. The mobius addition ⊕ defined on Poincaré model
with curvature c is given by:

u⊕ v :=
(1 + 2c 〈u, v〉+ c||v||2)u+ (1− c||u||2)v

1 + 2c 〈u, v〉+ c2||u||2||v||2
. (3)

For each point x′ ∈ Hd,c, the tangent space Tx′Hd,c is the
Euclidean vector space containing all tangent vectors at x′.
For x′ ∈ Hd,c, a ∈ Tx′Hd,c, b ∈ Hd,c, and a 6= 0, b 6= x′.
One can map vectors in Tx′Hd,c to vectors in Hd,c through
exponential map expcx′(·) : Tx′Hd,c → Hd,c as follows:

expcx′(a) = x′ ⊕c (tanh(

√
cλcx′ ||a||

2
)

a√
c||a||

) (4)

Conversely, the logarithmic map logcx′(·) : Hd,c → Tx′Hd,c
maps vectors in Hd,c back to vectors in Tx′ , in particular:

logcx′(b) :=
2√
cλcx′

artanh(
√
c||−x′⊕cb||) −x

′ ⊕c b
|| − x′ ⊕c b||

(5)

Also, the hyperbolic distance between u, v ∈ Hd,c is:

dc(u, v) = (2
√
c artanh(

√
c|| − u⊕c v||)) (6)

B. Hyperbolic Structural Network(HSN)

On a dynamic heterogeneous graph, various kinds of in-
teractions are constantly being established over time, which
can be regarded as a series of observed heterogeneous events.
We aim to learn the representation of nodes to preserve the
structure and semantic correlations in hyperbolic spaces for
each snapshot. In each time step, HSN is employed to preserve
the structure by facilitating the proximity between the node
v ∈ V and its neighborhoods cV ∈ CV(v) with type V , which
leveraging promising properties of hyperbolic geometry.

The input of HSN is the node feature, whose norm could
be out of the Poincaré ball defined in hyperbolic space. To
make the node feature available in hyperbolic space, we use
the exponential map to project the feature into the hyperbolic
space, shown in (4). Specifically, let an Euclidean space vector
xEi ∈ Rd be the feature of node i, and then we regard it
as the point in the tangent space Tx′Hd,c with the reference

point x′ ∈ Hd,c, using the exponential map to project it into
hyperbolic space, obtaining xH ∈ Hd,c, which is defined as:

xHi = expcx′(x
R
i). (7)

Then, We use meta-path guided random walks to obtain
heterogeneous neighborhoods of a node [2]. Given an arbitrary

meta-path P = Vv1
Ee1−→ Vv2

Ee2−→ ...
Een−1−→ Vvn , our goal is

to learn the semantically meaningful embeddings for all nodes
under the constraint of meta-path P . The transition probability
at step i is defined as follows:

p(vi+1|viVvi ,P) =

{
1

|NVvi+1
(viVvi

)| , (vi+1, viVvi
) ∈ E

0, otherwise
(8)

where viVvi is node v ∈ V with type Vvi , and NVvi+1
(viVvi

) de-
notes the Vvi+1

type of neighborhood of node viVvi .The meta-
path guided random walk strategy ensures that the semantic
relationships between different types of nodes can be properly
incorporated into HSN.

The premise of network embedding models is to preserve
the proximity between a node and its neighborhood. Therefore,
in hyperbolic space, we use distances in Poincaré model to
measure their proximity, as given in (6). We use a probability
to measure the node cV is a neighborhood of node v as
following:

p(v|cV ; Θ) = σ[−d(u, v)] (9)

where σ(·) = 1
1+exp(−x) is an activate function. According

to the (9), the object of HSN module is to maximize the
probability as followings:

argmax
∑
v∈V

∑
cV∈CV (v)

log p(v|cV ; Θ) (10)

C. Hyperbolic Temporal Network(HTN)

Historical information plays an indispensable role in tem-
poral graph modeling since it facilitates the model to learn the
evolving patterns and regularities. Although the latest hidden
state Ht−1 obtained by the recurrent neural network already
carries historical information before time t, some discriminate
contents may still be under-emphasized due to the monotonic
mechanism of RNNs that temporal dependencies are decreased
along the time span [13]. Inspired by [14], we design the
hyperbolic temporal attention(HTA) unit generalizes Ht−1 to
the latest time window w snapshots Ht−w, ...,Ht−1, attending
on multiple historical latent states to get a more informative
hidden state. These historical states in the state memory are
concatenate together and feed as input to the HTA unit,
which is performed in tangent space due to its computational
efficiency. Owing to the superiorities of attention, this unit
fuses the final hidden state by figuring out the importance each

283

graph snapshots. The dataflow in the HTA unit is characterized
by the following equations:

HE
t = logcx′(H

H
t) (11)

H = concat(HE
t−w, ...,H

E
t−1) (12)

HE
t−1 = softmax(kT tanh(QH))H (13)

HHt−1 = expcx(HE
t−1) (14)

The learnable weight matrix Q and K are utilized to extract
contextual information, where Q weights the node importance
in each historical state and K determines the weights across
the time windows.

Then, we use GRU, a variant of LSTM, as primary part of
HTN to incorporate the current and historical node states, in
view of the GRU is the newer generation of Recurrent Neural
networks and is pretty similar to an LSTM. GRU gets rid of
the cell state and used the hidden state to transfer information.
It also only has two gates, a reset gate and update gate.

HTN unit receives the sequential node embedding XHt from
HSN and the hidden state HHt−1 which is obtained from HTA.
As sketched in Fig. 2, the input representations of HTN unit
are assumed to sufficiently capture local structural information
as well as attentive hidden state. The dataflow in the HTN unit
is characterized by the following equations:

XE
t = logcx′(X

H
t), (15)

HE
t−1 = logcx′(H

H
t−1), (16)

HE
t = GRU(XE

t , H
E
t−1), (17)

HHt = expcx(HE
t). (18)

The main part of the unit is GRU. As the GRU is built
in tangent space, we use the logarithmic transformations to
project the XHt and HHt−1 into tangent space. After processing
representation using GRU, we project the embedding back to
hyperbolic space. As we can see, the final embedding HHt
fuses structural heterogeneity, content, and temporal informa-
tion.

V. OPTIMIZATION

Uniting the above modules, we formulate the learning
objective from two aspects: topological learning and temporal
evolution, corresponding to the following hyperbolic structural
loss and hyperbolic temporal loss.

A. Hyperbolic Structural Loss

We leverage the negative sampling proposed in [15], which
basically samples a small number of negative objects to
enhance the influence of positive objects. The hyperbolic
structure loss L(Θ) aims to minimize the proximity between
v and its neighborhood cV while maximize the proximity
between v and its negative sampled node n. The objective
equation (9) can be formulated as following:

L(Θ) = log σ[−d(xv,xcV)]+
M∑
m=1

Enm∼P (n){log σ[d(xv,xnm)]}

(19)

where P (n) is the pre-defined distribution from which a neg-
ative node nm is drew from for M times. Our method builds
the node frequency distribution by draw nodes regardless of
their types.

B. Hyperbolic Temporal Loss

We build a hyperbolic temporal consistency consistency
constraint L(t) on two consecutive time steps (Gt, Gt−1)),
which is defined as:

L(t) =
T∑
t=1

σ[d(xv,xnm)] (20)

where the t denotes the loss is with respect to time step t.

C. The Unified Loss

To enable the learned representations to capture structural
evolution, our objective function set the final loss function as:

L = L(Θ) + λL(t) (21)

where λ ∈ [0, 1] is the hyper-parameter to balance the temporal
smoothness and structural regularity. The final L not only min-
imizing the hyperbolic distance of a node with its connected
nodes and maximizing with the sampled negative neighbors,
but also minimizing the distance between the same node over
two consecutive timestamps. As the parameters of DyHHE
live in a Poincaré model which has a Riemannian manifold
structure, it should be noted, the back-propagated gradient is
a Riemannian gradient. It makes no sense Euclidean gradient
based optimization works in this manifold. Therefore, we
optimize L via Riemannian stochastic gradient descent(RSGD)
optimization method [16]. The gradient of their distance can
be derived as:

∆v(d(xv,xnm)) =
4

β
√
γ2 − 1

(
‖xv‖2 − 2 〈xv,xnm〉

α2
xv−

xv
α

)

(22)
where α = 1 − ‖xv‖2, β = 1 − ‖xnm‖2, γ = 1 +
2
αβ ‖xv − xnm‖2.

VI. EXPERIMENTS AND ANALYSIS

In this section, we conduct extensive experiments with the
aim of answering the following research questions:
• RQ1 How does DyHHE perform.
• RQ1 What does each component of DyHHE bring?

A. Datasets

To evaluate the effectiveness of our model, we conduct
experiments on two datasets from real-world platforms. The
datasets are summarized in Table I
• DBLP is a database of publications. Specifically, we col-

lected the papers from four research areas which contains
three types of nodes, i.e., author(A), paper(P), venue(V)
and two types of edges, i.e., author-paper(write), paper-
venue(publish). Timestamps denote the year of the pub-
lication.

• MovieLens [17] contains knowledge about movies.
MovieLens users from the late 1990s to the early 2000s.

284

We extract a subset of MovieLens, which contains three
types of nodes, i.e., actor(A), movie(M), and director(D)
and two types of edges, i.e., actor-movie(act in) and
director-movie(direct).

TABLE I
STATISTICS OF DATASETS

DBLP A P V AP PV Snapshots
14475 14376 20 41794 14376 16

MovieLens A M D AM MD Snapshots
11718 9160 3510 64051 9160 13

Data with power-law structure can be naturally modeled in
hyperbolic spaces [6]. Therefore, we use two real-world HINs
datasets which have been proved to conform to the power-law
distribution of nodes [18], [19].

B. Baselines

We present comparisons against several static graph em-
bedding methods to analyze the gains of using temporal infor-
mation for link prediction. To ensure a fair comparision, we
also conduct experiments on several heterogeneous network
representation model to further demonstrate the superiority of
the proposed model DyHHE. Moreover, we also compare to
the hyperbolic embedding model, HGCN and PoincareEmb.
• Node2vec [20] is a static embedding method to generate

vector representations of nodes on a graph. It learns low-
dimensional representations for nodes in a graph through
the use of random walks.

• Metapath2vec [2] is an HIN embedding method. It learns
feature representations by capturing node pairs within w-
hop heterogeneous neighborhood via meta-path guided
random walks in the network.

• HGCN [11] is a static embedding method which lever-
ages both the expressivenees of GCNs and hyperbolic
geometry to learn node reoresentations for hierachical and
scale-free graphs.

• DySAT [4] computes node representations by jointly
employing self-attention layers along two dimensions:
structural neighborhood and temporal dynamics.

• HDGAN [5] is based on three levels of attention, namely
structural-level attention, semantic-level attention and
time-level attention and attempts to use the attention
mechanism to take the heterogeneity and dynamics of
the network into account at the same time, so as to better
learn network embedding.

• PoincareEmb [21] is a method that preserves proximities
of node pairs linked by an edge via embedding network
into a Poincaré ball.

For random walk based methods like Node2vec and Meta-
path2vec, we set neighborhood size to 5, walk length to 80,
ignoring the temporal regularity. As for meta-path guided
random walks like metapath2vec and PoincareEmb, we use
meta-path ”A–P–V–P–A” in DBLP and ”A-M-D-M-A” in
MovieLens. For dynamic homogeneous baselines Dysat, we

treat events as homogeneous. The train/test ratio is set to
80%/20%.

C. Link Prediction Comparison(RQ1)

Link prediction is to predict the type V interaction at time
step t, which can be used to test the generalization perfor-
mance of a network embedding method. Given all temporal
heterogeneous events before time step t and two nodes u and
v. For each type of edge, we treat all events at time t as the
positive link, and an equal number of negative examples in
the training set are created by sampling the node pairs not
interconnected. Subsequently, we split the chosen edges and
negative samples into validation and test. In our experiments,
we test the models regarding their ability of correctly classify-
ing true and false edges by computing average precision (AP)
and area under the ROC curve (AUC) scores. We uniformly
train both the baselines and DyHHE by using early stopping
based on the performance of the training set.

TABLE II
AUC SCORES OF LINK PREDICTION RESULT.

DBLP MovieLens
Edge A-P P-V A-M M-D
Node2vec 85.32± 0.7 85.25± 0.8 81.27± 0.2 83.44± 1.1
Metapath2vec 87.46± 0.9 88.11± 0.9 82.3± 0.1 81.57± 1.4
HGCN 89.8± 1.2 90.27± 0.4 85.4± 0.2 85.17± 1.3
DySAT 90.66± 0.2 90.21± 0.4 87.32± 0.3 86.75± 0.9
HDGAN 87.42± 0.4 88.66± 0.6 85.78± 0.9 86.12± 0.7
PoincareEmb 87.85± 0.4 87.16± 0.3 86.71± 1.7 85.63± 0.9
DyHHE 92.69± 0.4 93.19± 0.3 90.13± 0.4 90.77± 0.3

TABLE III
AP SCORES OF LINK PREDICTION RESULT.

DBLP MovieLens
Edge A-P P-V A-M M-D
Node2vec 86.94± 0.4 86.78± 0.6 83.17± 0.3 82.15± 0.9
Metapath2vec 87.83± 1.2 86.43± 0.7 81.77± 0.4 82.72± 0.3
HGCN 88.6± 0.7 89.33± 0.5 84.6± 1.2 84.45± 1.1
DySAT 90.37± 0.4 90.71± 0.3 85.72± 0.6 85.25± 0.3
HDGAN 89.61± 0.3 87.74± 0.6 86.33± 1.1 85.12± 0.9
PoincareEmb 88.15± 1.1 86.29± 0.2 84.12± 0.8 85.81± 0.7
DyHHE 92.13± 0.7 93.49± 0.5 91.02± 0.6 89.43± 0.8

We repeat each experiment five times and report the average
value with the standard deviation on the test sets in Table II and
Table III. It is observed our model achieves the best results and
has a more than 4−6% AUC and AP improvement comparing
to the best baseline across all datasets. First of all, the
Metapath2vec has a better performance than Node2vec which
means the advantage of the proper consideration and accom-
modation of the network heterogeneity. Despite the existence
of multiple types of nodes and edges in heterogeneous graph,
Metapath2vec performs pooly compared with the dynamic
methods DySAT and HDGAN, which confirms the importance
of temporal regularity in dynamic graph modeling. Moreover,
the performance gap between DyHHE and HDGAN suggests
that the significantly benefit from hyperbolic geometry. It is

285

TABLE IV
ABLATION STUDY(AUC).

DBLP MovieLens
edge A-P P-V A-M M-D
No Hyperbolic 89.03± 0.5 90.72± 0.4 85.34± 0.3 84.79± 0.5
No Temporal 89.18± 0.5 89.14± 0.6 89.26± 0.4 90.81± 0.6
Original 92.69± 0.4 93.19± 0.3 92.13± 0.4 90.77± 0.3

worth mentioning that HGCN and PoincareEmb also has not
bad performance despite being agnostic to semantic relation-
ships and temporal information in heterogeneous graph, which
indicates further improvements to DyHHE on transforming
embeddings from Euclidean space to Hyperbolic space.

D. Ablation Study (RQ2)

To investigate the superiority of the main components of
our model, we conduct an ablation study by independently
removing the hyperbolic geometry and temporal modules from
DyHHE to create simpler architectures. And we compare Dy-
HHE with different variants on DBLP and MovieLens datasets.
When we remove the hyperbolic geometry and build the model
in Euclidean space, the HSN and HTN units are converted
to the corresponding Euclidean space. We show the variant
models results in Table IV. From the results, we observe that
in MovieLens the removal of hyperbolic geometry consistently
deteriorates performance, while the DBLP only declines about
4%. One major explanation is that the MovieLens has a
high-hyperbolicity, which indicates the dataset has a more
evident hierarchical structure. And the hierarchical structure
and tree-like data can naturally be represented and preserved
by hyperbolic geometry. The effect of temporal module is
also significant because of the performance degradation by
removing the temporal block. This observation conforms to
the nature of graph evolution since the behaviors usually have
periodical patterns such as recurrent links or communities. In
summary, DyHHE generates more appropriate embeddings for
dynamic heterogeneous neetwork than comparative baselines,
suggesting its ability to capture and incorporate the underlying
structural and temporal information.

VII. CONCLUSIONS

In this work, we introduce a novel hyperbolic geometry-
based node representation learning framework in dynamic
heterogeneous networks in which there exists diverse types
of nodes and links. To address the network heterogeneity and
temporal evolution, we propose the DyHHE model. In gen-
eral, DyHHE computes dynamic node representations through
maximize proximity in consideration of multiple types of
neighborhoods for a given node and follow the effective GRU
framework by leveraging the superiority of hyperbolic graph
neural network. Our experimental results on two real-world
datasets indicate significant performance gains for DyHHE
over several static and dynamic heterogeneous graph embed-
ding baselines. An interesting future direction is generalizing
our method to more challenging tasks.

REFERENCES

[1] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM transactions on Knowledge
Discovery from Data (TKDD), vol. 1, no. 1, pp. 2–es, 2007.

[2] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable rep-
resentation learning for heterogeneous networks,” in Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery
and data mining, 2017, pp. 135–144.

[3] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Hetero-
geneous graph attention network,” in The world wide web conference,
2019, pp. 2022–2032.

[4] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks,”
in Proceedings of the 13th International Conference on Web Search and
Data Mining, 2020, pp. 519–527.

[5] Q. Li, Y. Shang, X. Qiao, and W. Dai, “Heterogeneous dynamic
graph attention network,” in 2020 IEEE International Conference on
Knowledge Graph (ICKG). IEEE, 2020, pp. 404–411.

[6] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Bo-
guná, “Hyperbolic geometry of complex networks,” Physical Review
E, vol. 82, no. 3, p. 036106, 2010.

[7] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, “A survey of
heterogeneous information network analysis,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 1, pp. 17–37, 2016.

[8] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, “Embedding
temporal network via neighborhood formation,” in Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery
& data mining, 2018, pp. 2857–2866.

[9] O. Ganea, G. Bécigneul, and T. Hofmann, “Hyperbolic neural networks,”
Advances in neural information processing systems, vol. 31, 2018.

[10] Q. Liu, M. Nickel, and D. Kiela, “Hyperbolic graph neural networks,”
arXiv preprint arXiv:1910.12892, 2019.

[11] I. Chami, Z. Ying, C. Ré, and J. Leskovec, “Hyperbolic graph convo-
lutional neural networks,” Advances in neural information processing
systems, vol. 32, pp. 4868–4879, 2019.

[12] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical
representations,” Advances in neural information processing systems,
vol. 30, 2017.

[13] J. Liu, G. Wang, P. Hu, L.-Y. Duan, and A. C. Kot, “Global context-
aware attention lstm networks for 3d action recognition,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 1647–1656.

[14] Q. Cui, S. Wu, Y. Huang, and L. Wang, “A hierarchical contextual
attention-based network for sequential recommendation,” Neurocomput-
ing, vol. 358, pp. 141–149, 2019.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013.

[16] S. Bonnabel, “Stochastic gradient descent on riemannian manifolds,”
IEEE Transactions on Automatic Control, vol. 58, no. 9, pp. 2217–2229,
2013.

[17] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” Acm transactions on interactive intelligent systems (tiis), vol. 5,
no. 4, pp. 1–19, 2015.

[18] X. Wang, Y. Zhang, and C. Shi, “Hyperbolic heterogeneous information
network embedding,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, no. 01, 2019, pp. 5337–5344.

[19] Y. Zhang, X. Wang, N. Liu, and C. Shi, “Embedding heterogeneous
information network in hyperbolic spaces,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 16, no. 2, pp. 1–23,
2021.

[20] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[21] Z. Huang and N. Mamoulis, “Heterogeneous information net-
work embedding for meta path based proximity,” arXiv preprint
arXiv:1701.05291, 2017.

286

Using Multi-feature Embedding towards Accurate
Knowledge Tracing

Yang Yu, Caidie Huang, Liangyu Chen, Mingsong Chen
MoE Engineering Research Center of Software/Hardware Co-Design Technology and Application

East China Normal University, Shanghai, China
lychen@sei.ecnu.edu.cn, mschen@sei.ecnu.edu.cn

Abstract—Knowledge tracing is a crucial task in intelligent
tutoring systems. Aiming at the shortcomings of traditional
knowledge tracing technology such as low prediction accuracy,
overfitting and low utilization of multi-features, this paper pro-
poses a knowledge tracing model SRGCA-M using multi-feature
embedding with stacked residual GRU network. Compared with
the traditional methods that only use the historical record of
answering exercises, our approach utilizes a variety of features
in the learning process of students to deep characterize students’
learning. We increase the layers number of GRU network to
expand the capacity of sequence learning and use residual connec-
tions to solve the problems of network degradation and vanishing
gradient. We use the auto-encoder to solve the problem that
the cross-feature encoding will rapidly increase the dimension of
the input data. Comprehensive experimental results demonstrate
that compared with various advanced techniques, our approach
can not only achieve better performance of tracking knowledge
changes of students but also fully utilize multi-feature information
of students in the learning process.

Index Terms—Knowledge Tracing; GRU; Multi-feature Em-
bedding; Auto-Encoder

I. INTRODUCTION

Intelligent tutoring systems (ITS) are computer-based educa-
tional systems that act as smart teachers to guide students’
learning. Knowledge tracing is the key step in ITS to track
the change process of the knowledge mastery of students
according to the historical records of learning, predict their
future learning performance, and better provide students with
personalized learning guidance services. Some pedagogical
researchers believe that the knowledge concepts investigated
in the exercise may be specific and relevant, and the mastery
of the knowledge investigated in the exercise will affect their
performance in the exercise, which means that the exercise
investigation is the manifestation of the cognitive state of
students.

With the popularization of online education, a large number
of exercise answering data of students have been generated
on the Internet, including knowledge concept of exercise,
students’ answer scores, students’ answer practice, students’
answer times, etc. Enough data promote the research progress
of knowledge tracing models. However, there are still some
problems, such as inaccurate prediction results, slow con-
vergence speed and low utilization of multi-features. These
problems limit the application and promotion of knowledge

DOI reference number:10.18293/SEKE2022-142

tracing in education to a certain extent. Researches have
shown that a variety of features are helpful for evaluating
students and personalizing instruction. Therefore, the research
on knowledge tracing can not only promote the development
of knowledge tracing in the education industry, but also reduce
the stress of teachers and improve learning efficiency of
students. Therefore, the research on knowledge tracing is of
great significance to intelligent education.

In order to improve the prediction accuracy of the knowl-
edge tracing model, this paper proposes a Stacked Residual
Gate Recurrent Network using Multiple Features with Cross
Encoding and Auto-encoder (SRGCA-M), which can use var-
ious data in the process of students’ answering. First, we use
the lightGBM algorithm to select the features with high im-
portance, and the cross-feature encoding and one-hot encoding
method to encode the selected features. Because cross-feature
encoding will rapidly increase the dimension of input features,
we utilize an auto-encoder to compress the input features, and
the compressed features are input into the SRG for training
and prediction. SRGCA-M is tested on the Riiid dataset and
compared with lightGBM and DKT. In addition, three ablation
experiments are executed to verify the effects of multi-feature
encoding and auto-encoder compression. The results show
that the SRGCA-M achieves the best performance. This paper
makes the following three major contributions:

• To improve model performance, we make full use of
multiple features in the learning process of students
by utilizing lightGBM feature selection, multi-feature
cross-encoding and auto-encoder. In contrast, traditional
knowledge tracing methods utilize the historical answer
records of exercises.

• We increase the layers of network to expand the capacity
of sequence learning by using the stacking GRU network.
Besides, the use of residual connections solve the prob-
lems of network degradation and gradient vanishing.

• We improve the performance of the model by using an
auto-encoder to represent the features which addresses the
problem that cross-feature encoding will rapidly increase
the dimensionality of the input data.

The rest of this paper is organized as follows. Section 2
summarizes the related works on knowledge tracing. Section
3 demonstrates our SRGCA-M model. Section 4 presents
the experimental results and discussion. Finally, Section 5

287

concludes the paper.

II. RELATED WORKS

In order to solve the problems of low accuracy of knowledge
tracking and low utilization of multi-features, various knowl-
edge tracking methods have been proposed. For example,
Bayesian Knowledge Tracing (BKT) [1] is a typical model
based on probability graph. The model uses a set of binary
variables to model the knowledge space characteristics of
students, and each variable represents whether students master
some knowledge concepts. The knowledge tracing model
based on probability graph uses pedagogical theory, which is
highly interpretable. However, the prediction efficiency largely
depends on the rationality of establishing the probability
map. When the establishment of the probability map is not
reasonable, the performance will be greatly reduced.

Knowledge Proficiency Tracing (KPT) model [2], based
on Probabilistic Matrix Factorization (PMF) [3] is proposed
for knowledge tracing task. This model can effectively im-
prove the prediction performance using the expert-marked
topic knowledge concept matrix (Q matrix). However, the
matrix decomposition model cannot add relevant information
other than the topic knowledge concepts, such as exercise
discrimination and exercise difficulty.

The Deep Knowledge Tracing (DKT) model proposed by
Piech et al. [4] is the basic model in the field of deep knowl-
edge tracing, which is based on the Recurrent Neural Network
(RNN). The prediction performance of DKT is better than the
classical methods at that time [5]. However, the DKT model
suffers from poor interpretability, long-term dependencies, and
few learning features [6]. In order to solve these problems,
many researchers are committed to in-depth research on DKT
and put forward many new methods. Dong et al. [7] used
Jaccard coefficient to calculate the attention weight between
knowledge components in the model a-dkt, and combined
LSTM and total attention value to get the final prediction
result. Zhang et al. [8] used the method of feature engineering
to add the dimension reduction of answer time, answer times
and the first action to the input layer of LSTM by using an
auto-encoder.

For many years, the knowledge tracing method based on
RNNs [9] has been dominant for the following reasons: i)
the method based on neural network does not need to select
features manually; ii) online education platforms generate
massive amounts of data. The score data of exercises is
the most relevant explicit data in students’ knowledge space,
and it is also easy to obtain. Therefore, the neural network
method based on score data is universal; iii) the calculation
of RNN and its variants combines the output of past time
information and integrates them into the calculation of current
time. Therefore, in knowledge tracing, this kind of model can
achieve good results on datasets with temporal information.

Therefore, in this paper, we propose a residual network
based on GRU, which uses a stacked residual GRU network
(SRG) to learn students’ answer sequences, and uses residual
connections to reduce the difficulty of model training.

III. OUR METHOD

A. Problem Definition

The task of knowledge tracking is to track students’ knowledge
mastery level and predict their future performance according
to the historical records of answering exercises. The input is
represented by the following formula,

D = {S1, S2, . . . , SN} ,
Si = {xi1, xi2, . . . , xit, . . . , xiM} ,
xit = {qit, ait} .

(1)

Suppose that there are N students, each student answers
M exercises and Si = {xi1, xi2, . . . , xit, . . . , xiM} makes
a exercise sequence for the students, and D represents the
student set. At time t, xit contains two parts: i) the exercise
that the student is answering at the current moment; ii) the
learner’s answer to the exercise ait. When xit is 0, it means
that the student answered incorrectly, and 1 means that the
student answered correctly. The student behavior sequence
is encoded and input into the recurrent neural network for
training, and the learner’s knowledge mastery level is obtained
through the prediction output layer. Finally, the correct rate of
the student’s answer at the next moment is predicted. The
range is 0 to 1, indicating the prediction probability. There
are two basic tasks of knowledge tracking: i) predict students’
future answer performance, i.e., the correct answer rate in the
next time step; and ii) track the changes of students’ mastery
of knowledge concept to facilitate personalized learning guide.

B. Overall Structure

The framework of SRGCA-M model is shown in Figure 1
and consists of the following parts: data preprocessing, feature
selection, multi-feature encoding and deep learning prediction.
In the data preprocessing stage, the original dataset needs to be
cleaned and sorted to get a relatively complete dataset. In the
feature selection stage, we use lightGBM algorithm to calcu-
late the importance of features, obtain the feature importance
ranking, and predict the students’ scores as a comparative
experiment. In the multi-feature encoding stage, cross-feature
encoding and one-hot encoding are used to encode the selected
important features and students’ response features. The en-
coded features are compressed by auto-encoder (AE). Finally,
in the deep learning prediction stage, the compressed feature is
integrated into SRG model to track students’ knowledge level
and predict students’ achievement.

C. Multi-Feature Selection

Saivastava et al. [10] pointed out that the performance of
models using cross-features is improved compared to models
using single feature. Inspired by this, we utilize lightGBM to
process multi-feature data. Firstly, input the students’ muti-
feature answer data, use the histogram algorithm to find
the feature with the maximum gain, and determine the op-
timal segmentation point of the decision tree according to
the feature. Using leaf-wise leaf growth strategy with depth
constraints to generate cart tree. Then calculate the residual

288

Cross Encoding

Auto-Encoder

Encode Decode

ℎ2,1

𝑘1 𝑘2 𝑘𝑡

𝑥1 𝑥2 𝑥𝑡𝑓1 𝑓2 𝑓𝑡

ℎ1,1

ℎ2,2

ℎ1,2

ℎ𝑡,3

ℎ𝑡,3

Embedding

…

…

…

…

Feature Selection

Data Preprocessing

Fig. 1. SRGCA-M model framework.

value of cart tree, take the residual result of the previous tree
as the training sample, train the next cart tree and repeat the
training. Finally, the cart tree generated by each training round
is weighted and summed to obtain the final prediction model.

LightGBM [11] algorithm measures the importance of fea-
ture attributes based on the number of times the feature is
used as segmentation points. Sort the feature elements from
large to small according to the attribute importance. Search
from the complete set of all features, and judge whether to
delete the feature with the lowest importance according to the
result accuracy. Traverse all features and output the optimal
feature subset. The input of the algorithm are the dataset D,
the feature set F = {Ti | i = 1, 2, . . . , d}, and the output is
the optimal feature subset Fbest.

D. Multi-Feature Encoding

After the features of the dataset are filtered by lightGBM algo-
rithm, multiple features need to be encoded to form the input
data. In this paper, we pose three multi-feature embedding
methods: direct concatenating method, cross-feature encoding
method and compressed cross-feature encoding method. Next,
three embedding methods are introduced in detail.

Direct concatenating method forms a new vector by con-
catenating the answer data and the optimal feature directly.
This method can simply convert a single feature vector into
multiple feature vectors, which is the input xt of the model.

Crossed features refer to the cross-encoding result of student
answers and selected multi-features. The The cross-feature
encoding method can be expressed by the following formula,

C (st, ct) = st + [max(s) + 1] ∗ ct,
xt = O (C (st, ct))⊕O (C (Ft, ct))⊕O (Ft) ,

(2)

where C represents cross encoding, O represents one-hot
encoding, ⊕ sign indicates the concatenation of two vectors,
i.e., C = A ⊕ B, which indicates that vector B is spliced at
the end of vector A. The number of rows of vector C is the
same as that of A and B. The number of columns of vector
C is the sum of that of A and B.), st represents the ID of

the knowledge concept, and ct represents the result of answer
(1 means correct, 0 means wrong), Ft represents the optimal
features selected by the LightGBM algorithm.

Because the cross-feature encoding will lead to the rapid
increase of input dimension, the compressed cross-feature en-
coding method used in SRGCA-M utilizes an auto-encoder to
compress the cross-encoded features. The specific calculation
method is listed as follows,

zt = E (xt) = σ (Wxt + b) ,
x′
t = D (zt) = σ (Wxt + b) ,

(3)

where xt is the input, the function E represents the encoding
operation, and the function D represents the decoding oper-
ation. zt represents the learned latent variable, which can be
used as input data.

E. Stacked Residual GRU Network (SRG)

This paper uses the stacked residual GRU network to deal with
the deep knowledge tracing task [12]. It improves the perfor-
mance of traditional recurrent neural networks by increasing
the number of network layers to expand the capacity of
sequence learning. Besides, the residual connections help solve
the problems of network degradation and gradient vanishing.
The stacked residual GRU network SRG can be defined by
the following formula,

h1,t = fgru−1 (h1,t−1, xt) ,
h2,t = fgru−2 (h2,t−1, h1,t) ,
kt = σ (Wkth2,t + bk) .

(4)

The input xt enters the first layer of GRU network to obtain
the hidden variables h1,t. Then the output of the first layer is
used as the input of the second layer to obtain the output h2,t

of the second layer GRU network. Then the knowledge level
vector kt is obtained from the full connection layer.

Because the increase of layers of the recurrent neural
network will make it challenging to fit the model training, the
SRG model introduces residual connection [13]. The addition
of residual connections can make the training of stacked GRU
network converge easily, so this paper proposes a stacked
residual GRU network SRG with residual connections.

kt = σ (Wkh (h2,t ⊕ xt) + bk) . (5)

Equation (5) reflects this idea by concatenating the input xt

of the model with the output h2,t of the hidden layer. Then
input the concatenated vector to the next layer for prediction.
The loss function is defined as follows:

L = −
∑
t
(at log kt+1 (qt) + (1− at) log (1− kt+1 (qt)))

−
∑
t
(xt log x

′
t + (1− xt) log (1− x′

t)).

(6)
The whole loss is divided into two parts. The first part is
SRG loss and the second part is the loss function of the auto-
encoder, which also uses the cross-entropy loss function. x′ is
the reconstructed data generated from the encoder.

289

IV. EXPERIMENTS

To evaluate the effectiveness of our approach, we implement
SRGCA-M based on Pytorch framework in this section. We
evaluate and compare the effectiveness of SRGCA-M with
other methods. All the experiments are conducted on a work-
station computer with Centos 7 operating system, Intel i7-
9700K CPU with 16 GB memory, and NVIDIA GRX2080Ti
GPU with 11 GB memory.

Formally, we design substantial experiments to answer the
following two research questions.

RQ1: (Effectiveness of multi-feature): What is the perfor-
mance of SRGCA-M using multiple features cross encoding
and auto-encoder compared with SRG-S using single feature?

RQ2: (Effectiveness of cross encoding and auto-
encoder): What is the performance of SRGCA-M using
multiple features cross encoding and auto-encoder compared
with SRG-M using multiple features and SRGC-M using
multiple features and cross encoding?

A. Dataset Configurations

The dataset used in the experiments is Riiid, which is derived
from Riiid Answer Correctness Prediction, a student perfor-
mance prediction competition on the Kaggle website. The
Riiid dataset provides historical learning records of students,
other students’ performance on the exercises and other meta-
data of the exercises. All Riiid data are divided into three files:
train.csv, questions.csv and collections.csv. The details of Riiid
dataset are shown in Table I. In the experiments, the dataset is
divided into training set and verification set according to the
ratio of 4 : 1.

TABLE I
STATISTICAL INFORMATION OF DATASET.

Dataset Students Knowledge Concepts Records Answers/Person

Riiid 174,954 187 41,667,551 238

Table II describes the specific field content of the ques-
tions.csv file. This file contains the relevant information of
the question, such as id, correct answer and corresponding
knowledge concepts. In the process of data preprocessing, it is
necessary to compare the students’ answer records in train.csv
with the correct answers to the exercises in questions.csv to
determine whether the students answered correctly.

TABLE II
QUESTIONS DATA CONTENT DESCRIPTION.

Field name Field Description

question id ID of the problem
bundle id ID of the problem set

correct answer Right key
part Relevant parts of TOEIC test
tags One or more detailed label codes

The train.csv file contains multi-feature information about
the exercises and the learning process of students. It includes
whether the exercises are answered correctly, the time it takes
to answer the exercise, the historical answering time, the time

from the first interaction of students to the completion of the
exercise, and the average time it takes to answer the previous
set of exercises, whether students viewed explanations and
correct answers after answering the previous set of exercises.
Note that the students’ learning is divided into two forms:
watching lectures and answering exercises, and the informa-
tion of watching lectures should be ignored in the records.

B. SRGCA-M Using Multiple Features

1) Experimental Settings: The baseline model in this ex-
periment is lightGBM. At the same time, three groups of
ablation experiments are set according to the characteristics,
namely single feature SRG model (SRG-S), multi-feature SRG
model (SRG-M) and multi-feature cross-encoding SRG model
(SRGC-M).

LightGBM: lightGBM is the feature selection algorithm
used in this experiment. LightGBM predicts students’ scores
through these feature training models. The results can get the
importance ranking of features to the results. According to
the feature importance ranking of lightGBM, the top-ranked
features are selected for multi-feature encoding.

SRG-S: SRG-S is a single-feature SRG model. It uses a
stacked residual GRU network to predict students’ grades. The
model is a single-feature model, which only predicts future
grades through knowledge concepts and historical answer
records of students.

SRG-M: SRG-M is a multi-feature SRG model based on
SRG-S, where additional features are highly important features
extracted from the lightGBM experimental results. SRG-M
encodes students’ answer records and additional features as the
input of the prediction model. The model simply concatenates
the features without cross-feature encoding or multi-feature
compression.

SRGC-M: SRGC-M is a cross multi-feature SRG, which
performs one-hot encoding and cross-feature encoding on
student answer records and additional features, and takes the
fused features as the input of the prediction model. The model
adds cross-feature encoding based on SRG-M. There is no
multi-feature compression like SRG-M.

SRGCA-M: SRGCA-M is a compressed cross-encoded
multi-feature SRG proposed in this paper. The model com-
presses student answer records and additional features after
one-hot encoding and cross encoding as the input of the
prediction model. Based on the SRGC-M, an auto-encoder
is used to compress the cross-encoded multi-features. Then
the compressed latent variables are input into the prediction
network SRG for training.

2) Parameter Settings: Parameters of LightGBM are set as
follows. The number of leaves is 200. When building a weak
learner, the proportion of random sampling of features is 0.75,
the sampling frequency is set to 10, bagging fraction is set to
0.8, the maximum number of iterations is set to 10000. The
early stop round is set to 10 which means stop the training if
the 10 training times are not optimized, verbose evaluation
is set to 50, which means information is output every 50
iterations. The learning rate of SRGCA-M is set to 0.001, the

290

maximum step size is set to 50, which means every 50 records
are a set of input data, less than 50 data are filled with 0, the
minimum batch number is set to 128.

We set up three ablation experiments to verify the effec-
tiveness of the model, where each ablation model verifies the
effectiveness of a corresponding module. The learning rate
is set to 0.001, the maximum step size is set to 50, which
means every 50 records are a group of input data, less than
50 data are filled with 0, the minimum batch number is set to
128. SRGCA-M model and its ablation experimental model are
optimized by Adam optimizer. All models use the evaluation
functions AUC, RMSE and F1 as performance evaluation
metrics.

3) Feature Selection: We calculate new features from the
original data after cleaning raw data and selecting four million
answer records with relatively complete data. After the training
of lightGBM algorithm, we get the importance ranking of
these features, shown in figure 2. These features are ranked as
follows: the interval time of students answering the exercises
for the first time, the average correct rate of exercises, and the
average correct rate of students, the interval time of students
answering the exercises for the third time, average answering
time of the exercises, average number of times to check the
problem analysis, average answering time of students, time for
students to answer the previous set of exercises, the interval
time for students to look back after answering wrong exercises,
the interval time of students answering the exercises for the
second time, the average number of times students viewed the
problem resolution and correct answers, the top category code
of lecture, the number of correct answers, and whether students
viewed the resolution and correct answers after answering the
exercises. We remove the last three features with obvious low
scores and select the remaining features which are useful for
evaluating the knowledge level of students and predicting their
future performance.

Fig. 2. Results of feature selection.

4) Student Achievement Prediction: The result of student
achievement prediction is crucial in the performance evalua-
tion of knowledge tracing task. In this experiment, lightGBM
method is chosen as the comparative baseline, and the models
SRG-S, SRG-M and SRGC-M are designed in the ablation
experiment. The Riiid dataset is used in the experiment. We
use the data after feature selection. The dataset is divided into
training set and test set according to 4 : 1. The AUC, RMSE
and F1 scores of each model on the Riiid dataset are recorded
respectively.

Table III shows experimental results for different methods
and Fig.3 compares them in visualization. One can easily
observe that SRGCA-M achieves the highest AUC value and
F1 score, while the RMSE value is also the lowest. Obviously,
the prediction performance of SRG-based methods is much
better than that of LightGBM. Except that the performance
of SRGC-M using cross-feature encoding is lower than that
of LightGBM, the performance of other SRG-based models
is better than that of LightGBM. The performance of SRG-
S using a single feature is similar to that of SRG-M, and
slightly lower than the performance of SRGCA-M. In ad-
dition, The effect of SRG-M is worse than that of single-
feature SRG-S. After adding additional features to SRG-
M, the input dimension is increased by 11 times, so the
training of the model will be more difficult. What’s more,
the performance of SRGC-M using cross-feature encoding
is worse than the simply connected SRG-M. After adding
additional features and crossed features to SRGC-M, the input
dimension is increased by 22 times, so there are too many
network parameters. Instead, the model becomes bloated and
more difficult to converge. Importantly, after using the auto-
encoder to compress the cross-multiple features, SRGCA-M
has a great improvement than SRGC-M in the prediction
performance compared , and the AUC value is improved by
more than 16%.

TABLE III
TEST RESULTS OF EACH MODEL ON RIIID DATASET.

Model AUC RMSE F1
LightGBM 0.778 0.423 0.771

SRG-S 0.866 0.298 0.831
SRG-M 0.818 0.411 0.795

SRGC-M 0.708 0.529 0.704
SRGCA-M 0.868 0.296 0.833

AUC RMSE F1
0.0

0.2

0.4

0.6

0.8

Sc
or

es

Fig. 3. Comparison of each model on Riiid Dataset.

291

In addition to predicting the correct rate of students answer-
ing questions at the next moment, another task of knowledge
tracking is to track the change of students’ knowledge level.
Figure 4 is the visualization result of the data randomly
selected from the Riiid validation set and predicted by the
SRGCA-M model.

(2
3,0

)
(5

6,0
)

(5
6,1

)
(9

0,0
)

(7
8,1

)
(7

8,0
)

(9
0,1

)
(1

63
,1)

(2
3,1

)
(2

3,1
)

(1
63

,1)
(7

8,0
)

(7
8,1

)
(5

6,1
)

(1
63

,1)

q_23
q_56
q_78
q_90

q_163 0.2

0.4

0.6

0.8

Fig. 4. Heatmap of SRG model tracking knowledge changes.

The horizontal axis represents the time series of a student
answering questions. A two-tuple is used to represent the
answer records. For example, the first record (23,0) represents
the student’s answer to question No. 23, and the answer is
wrong. The vertical axis represents questions answered by
students. The color of each square in the figure represents
the student’s mastery of knowledge at the current moment.
The darker the color, the worse the student’s mastery of the
knowledge point corresponding to the question.

The color of each knowledge concept changes at different
times, which indicates that the mastery level of knowledge
concept is also changing accordingly. Focus on the first row,
it is the changing process of students’ mastery of knowledge
concept No. 23. At the first moment, the student answered the
question incorrectly, so the color of the corresponding square
is dark. At the ninth and tenth moments, the student answered
the question correctly, so the color of the square becomes light,
and the color of the tenth moment is light. The change process
of other knowledge concepts also has similar rules. From the
results shown in Figure 4, we can sum up that the SRGCA-
M model can effectively track the changes of mastery level
of knowledge, which helps students to provide personalized
tutoring services for learning guidance.

V. CONCLUSION

With the advent of the information age, the demand of people
for online education is continuously increasing. As a key
technology in intelligent tutoring systems, knowledge tracing
has attracted many attentions. Although knowledge tracing
technology has made great progress, there are still some
problems. Aiming at the problems of inaccurate prediction
results, slow convergence speed and low data utilization in
knowledge tracing technology, this paper proposes a multi-
feature knowledge tracing model SRGCA-M, which can effec-
tively use the multi-feature information of students’ learning
history. SRGCA-M model first uses the lightGBM algorithm
to filter student features for selecting the features with high
importance to the results. The important features and historical
answers of students are coded by cross-feature encoding

method and one-hot encoding method. Because the feature
dimension after encoding is too high, auto-encoder is used
to compress the feature for better performance. Finally, the
knowledge tracing model SRG is used to predict students’
future performance and track students’ knowledge mastery
level. The experimental results show that the SRGCA-M
model surpasses the lightGBM and DKT related models in
prediction performance, and also gets better performance than
other models in ablation experiments, which shows that our
model can better track the knowledge level of students.

ACKNOWLEDGMENT

This work was supported by Natural Science Foundation of
China 61872147 ,Shanghai Trusted Industry Internet Software
Collaborative Innovation Center and Open Research Fund of
Engineering Research Center of Software/Hardware Codesign
Technology and Application, Ministry of Education (East
China Normal University). Mingsong Chen and Liangyu Chen
are the corresponding authors.

REFERENCES

[1] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon, “Individualized
bayesian knowledge tracing models,” in International Conference on
Artificial Intelligence in Education (AIED). Springer, 2013, pp. 171–
180.

[2] Y. Chen, Q. Liu, Z. Huang, L. Wu, E. Chen, R. Wu, Y. Su, and G. Hu,
“Tracking knowledge proficiency of students with educational priors,” in
Proceedings of Conference on Information and Knowledge Management
(CIKM), 2017, pp. 989–998.

[3] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,”
in Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2008, pp. 1257–1264.

[4] C. Piech, J. Spencer, J. Huang, S. Ganguli, M. Sahami, L. Guibas,
and J. Sohl-Dickstein, “Deep knowledge tracing,” ArXiv Preprint
arXiv:1506.05908, 2015.

[5] M. Khajah, R. V. Lindsey, and M. C. Mozer, “How deep is knowledge
tracing?” ArXiv preprint arXiv:1604.02416, 2016.

[6] J. Lee and D.-Y. Yeung, “Knowledge query network for knowledge
tracing: How knowledge interacts with skills,” in Proceedings of the
International Conference on Learning Analytics & Knowledge (LAK),
2019, pp. 491–500.

[7] D. Liu, H. Dai, Y. Zhang, Q. Li, and C. Zhang, “Deep knowledge track-
ing based on attention mechanism for student performance prediction,”
in Proceedings of International Conference on Computer Science and
Educational Informatization (CSEI). IEEE, 2020, pp. 95–98.

[8] L. Zhang, X. Xiong, S. Zhao, A. Botelho, and N. T. Heffernan, “Incor-
porating rich features into deep knowledge tracing,” in Proceedings of
ACM Conference on Learning @ Scale (L@S), 2017, pp. 169–172.

[9] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur,
“Recurrent neural network based language model.” in Proceedings of
the Annual Conference of the International Speech Communication
Association (INTERSPEECH), vol. 2, no. 3. Makuhari, 2010, pp. 1045–
1048.

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research (JMLR), vol. 15,
no. 1, pp. 1929–1958, 2014.

[11] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), vol. 30, pp. 3146–3154, 2017.

[12] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (gru)
neural networks,” in Proceedings of International Midwest Symposium
on Circuits and Systems (MWSCAS). IEEE, 2017, pp. 1597–1600.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

292

A Zero-Shot Relation Extraction Approach Based
on Contrast Learning

Hongyu Zhu, Jun Zeng, Yu Yang, Yingbo Wu
School of Big Data & Software Engineering

Chongqing University
Chongqing, China
zengjun@cqu.edu.cn

Abstract—The most significant advantage of the unseen
relation extraction is that it can recognize unlabeled relations.
While Zero-Shot Learning can meet the requirements of the
identification of unseen relation through relation description
information without labeled datasets. However, unseen rela-
tion extraction requires an effective method in representation
and generalization, which become a challenge for zero-shot
learning approach. In this paper, we propose a Zero-Shot
learning Relation Extraction based on Contrastive learning
Model (ZRCM) to capture deep interrelation text information.
We design a comparison sample generation method which
can produce several instances for one input sentence and
compare the distance between positive instance and negative
ones, so as to improve the hidden text information mining
ability. Experiments conducted on relation extraction common
datasets confirmed the promotion of ZRCM compared with
the existing methods. Especially, our model can improve the
F1 value by up to 7% at best. When there are fewer unseen
relations to predict, our model can achieve better performance.

Index Terms—relation extraction, zero-shot learning, con-
trastive learning

I. Introduction
Relation Extraction (RE) is a task of extracting the

possible relation between a given ordered pair of entities
and the relevant context information from one passage or
sentence. Relation extraction is a predecessor task of NLP
and plays an important role in many downstream tasks,
such as constructing or expanding knowledge graph [15]
and question answering system [8]. Existing methods for
RE often require large-scale labeled datasets to conduct
the training process, these labeled datasets require manual
pre-process, which are time-consuming and labor-intensive
[13]. One possible way to solve this problem is to use
distant supervision generate annotation datasets [10].
However, existing datasets are always difficult to cover
all the relations, due to the variety of relations. If the
training datasets do not contain the labels for all relations,
the existing supervised learning methods for relation
extraction cannot handle this situation adequately.

It is unreasonable to assume that training data always
contains relations which need to be distinguish in real
world. Therefore, it is crucial to explore new models to
predict new classes which are not defined or observed in

DOI reference number: 10.18293/SEKE2022-032

advance, such tasks are called Zero-Shot learning (ZSL)
[7]. By applying ZSL to relation extraction, Zero-Shot
Relation Extraction (ZS-RE) become a paradigm which
has a logical strategy in dealing with unseen relation. ZS-
RE can identify new relations which don’t have labeled
data. In other words, it requires the model to predict
whether an input sentence containing with two entities
matches one relation whose description can be found from
a series of relations. The core of ZS-RE is to find the
indicative text information that can be used to judge
whether the input sentence contains unseen relations, and
the model can use it as a comparison basis to define
the type of the relation among the input sentence. ZS-
RE can also be regarded as a textual entailment task
[17] in a broad sense, which is applied to identify new
relations without corresponding labeled data for training,
or requires the model to predicts whether the input
sentence containing two entities also contains a relation
matching the description of a given relation. The unseen
relations are predicted through the existing labeled data,
thus avoiding the over-dependence on the training data of
a large number of sequence annotation tasks.
Studys on ZS-RE can be divided into two categories

by the indicative text information of the comparison
part. One is the generative method. The generative
method means that the index text information required
by ZSL need to be generated through the existing model.
For example, [14] question the relations in the sentences
using the generation method of Query in Q&A and take
these questions as the key information for subsequent
model training. Another approach we called self-labeling
method uses explanatory text information in the network
as indicator text information. Through the contrastive
learning method [3], [4], the self-labeling method can
achieve the purpose of training model by reducing the
distance between the vector representation of input sen-
tences generated by the representation learning method
and the indicator text information. We call it self-
labeling method because the text information indicator we
need is usually the definition of a word or phrase, such as
naturally marked and interpretable texts, and these texts
are often highly reliable and relatively easy to obtain, such
as Wiki-data. Owing to the advantages of the self-labeling

293

method, this paper adopts the relational description as the
indicative text information of the contrastive learning, and
identifies the unseen relations by extending the semantic
space with generalization ability through the represen-
tation learning. But it is difficult to learn the semantic
space with robustness and generalization, especially the
over-fitting problem in ZSL and the uncertainty of unseen
relation prediction.

In order to improve the performance of the model
and get more generalization ability of the model and
weaken the influence of the fitting problem, we propose
an adversarial contrastive learning method for relation
extraction, design a negative sample generator for zero-
shot contrastive learning to generate different negative
complements which can complete missing information or
weaken the information that positive samples pay much
attention to, so that the model can obtain better result
in generalization ability. Finally, the model parameters
are optimized by loss function specially designed to get
better performance. This paper provides a method to
improve the accuracy and stability of ZSL relation ex-
traction by constructing a targeted contrastive learning
method based on the comparative information of relation
descriptions and BERT [6] pre-training language model.
The contribution of this article can be summarized as
follows:

• In general, we use relational description information
to construct a contrastive training method for zero-
shot relation extraction, which not only has the
interpretability and simplicity of natural language,
but also has significant advantages for the relation
extraction task involving unseen relations.

• Methodologically, considering the generalization abil-
ity of the model, we construct a generation method of
contrastive learning instances for relation extraction,
and a negative samples generator for adversarial
training, which lead to the significant improvement
in the model accuracy, recall and F1 value.

• Experimentally, sufficient experiments based on two
representative datasets demonstrate the effectiveness
of our contrastive learning method for relation ex-
traction and the effectiveness of the negative sample
generation method in contrastive learning.

II. Problem Definition
We consult the definition of zero-shot relation extraction

given by [1] and transform it to suit our model requires.
There is a text collection W , which includes a number of
sentences S, each sentence contains two entities e1 and e2
respectively. Besides, each sentence also contains a specific
relation R with its description d for the entity pair e1 and
e2. There is another text collection W̄ , together with a
serious of sentences S̄, each of which also contains an
entity pair ē1 and ē2. But we do not know what the
relation R̄ between entities is. Our goal is to train a
model M , which deduce the relation R̄ in sentences S̄ from

training by input sentences S together with its relation
description d. That is to say, we use model to infer unseen
relation with labeled data. Out input can be expressed as
P = (S0, e1, e2, R, d), through the model, the result can
be indicated as M(P) ⇒ R̄ ∈ S̄. That is the process of
judging unseen relation by seen relation.
In the process of model training, in order to capture

more detailed textual information, we put forward a
Negative Sample Generator. It generates multiple different
representation instances of the same sentence, these nega-
tive samples S1, S2, S3 carry different levels of information
containing the original data. We improve the model effect
by reasonably adjusting the composition and training
of examples to maximize the span between positive
and negative samples. Then, our method is updated as:
M(P̄) ⇒ R̄ ∈ S̄, P̄ = (S0, e1, e2, R, d), where i = 0, 1, 2, 3.
P̄ represents the new input to the model. This approach
promotes our method to mine more detailed hierarchical
information, as detailed in chapter 3.
Relevant researches on zero-shot relation extraction are

few. This paper is similar to [1], who use training instances
formed by input sentences and relation descriptions map
into the embedding space by minimizing the distance
between sentences and relation descriptions jointly and
classify the seen and unseen relations. Since zero-shot
relation extraction can be regarded as a text implication
task, methods containing text implication thought can also
achieve similar effects, like Enhanced Sequential Inference
Model (ESIM) [2] and Conditioned Inference Model (CIM)
[16]. By pairing each input sentence with each relation
description, they trained the model to answer whether the
paired text was contradictory or implicit. These models
can infer and predict unseen relations by training input
sentences and unseen relation descriptions. Contrastive
Learning is often regarded as unsupervised learning or
self-supervised learning method. Its core purpose is to
obtain vector representations which are compatible with
downstream work by limited data and labels. Thus, the
use of labeled data and the choice of training methods
are very important. In this paper, contrastive learning is
included in the comparison of text-implied task methods,
and the learning ability and generalization ability of model
representation learning are improved by increasing the
available information with samples generated.

III. The Proposed Model
In this section we discuss our model ZRCM whose basic

process is shown in 1 The Negative Sample Generator and
our training method are also explained in detail.

A. Model Process
We tokenize the sentences and send them into encoder

to obtain contextual representation. For sentence Si
0, S

i
0 ∈

S0, every token is represented as a vector Hi, where i ∈
[0, n] and n denotes the number of tokens in Si

0. [CLS]
contain the whole information in sentence indicated as H0,

294

Fig. 1. The architecture of ZRCM.

where [CLS] is the classification token for sentences . We
extract the representation of two entities and concatenate
the vector representations respectively:

He1 =
1

j − i+ 1

j∑
a=i

Ha,Ha ∈ He
1 , (1)

He2 =
1

v − u+ 1

v∑
a=u

Ha,Ha ∈ He
2 , (2)

where i and j represent the start and end position of
the tokens for e1, u and v represent the start and end
position of the tokens for e2. He

1 = {Ha|i ≤ a ≤
j},He

2 = {Hb|u ≤ b ≤ v}. The vector representing the
entities are finally obtained by mean pooling, respec-
tively. To capture the further information in entities, we
concatenate He1,He2 and H0 by a fully connected layer
and activation operation which are added to H0: Ṽ + =
H0+W (tanh([H0

⊕
He1

⊕
He2]))+b, where W and b are

the parameters that model needs to learn,
⊕

represents
the vector concatenation. Then Ṽ + is sent through a fully
connected layer and activation to get V +, which is one
of the most important generate representation. It is clear
that the entity pairs confirmed as the kernel of RE, but
we do not want to pay too much attention to it to weaken
other important information in the input sentence. Thus,
we use residual network structure concatenate He1,He2

and H0 to construct V +, which represents the relation
representation contained in our input sentence for this
model. On the other hand, the relation description d in
input is feed to Sentence-BERT model, and which also
be represented as a vector representation, donated as
V d. Noted that we need relation descriptions to modify
our input representation, which are fixed and generated
by the Sentence-BERT provided by [12]. The closer
the distance D(V +, V d) between V + and V d, the more
expressive V + the model obtain, where D represents a
distance algorithm for calculating similarity of distance,
including three possible choices of Euclidean distance,

inner product and cosine similarity. In order to fully dig
out the information of the potential implication relation
contained of the input sentences we generate a negative
sample generator for the zero-shot relation extraction. The
detailed information of the negative sample generator will
be introduced in chapter 3. We send input sentence Si

0 to
negative sample generator and we will get three different
processed sentences Si

1, S
i
2, S

i
3, which will be feed into our

model together with Si
0 in our input P̄ .

B. Negative Sample Generator
The choice of negative samples has a considerable

influence on the effect of comparative learning. Negative
samples are generally borne by other positive samples in
batch. Although this method is simple and convenient,
it obviously has certain shortcomings. From an empirical
point of view, the negative samples selected in this way
are highly random and may cause fluctuations in the
training of the model, and the validity of negative samples
produced in this way needs further confirmation. Such
selections of negative samples are difficult to stand up in
terms of interpretability. The false negatives generated
by other sentences in the batch may have a similar
relation description with the positive sample, which will
greatly interfere with the training of the model. There-
fore, we design a negative sample generator for zero-
shot relation extraction. It can generate three different
types of negative samples from the positive samples. We
named them Random Negative Samples (RNS), Relational
Negative Samples (ReNS), and Entity Negative Samples
(ENS). What needs to be mentioned is that relational
negative samples and entity negative samples are weak
negative samples produced in order to cooperate with the
contrastive learning of positive samples. They have a small
gap with the positive samples and need to be used in
conjunction.
For a positive sample of a trained sentence Si

0, we take
one vector representation from other sentences in the
same batch which is the farthest away from the vector
representation of this relation as the random negative
sample Si

1. In order to retain the real information and
produce a large gap with the vector representation of
the positive sample, we choose to use the same method
as the positive sample for training and generate the
corresponding vector representation V −

1 . Then we can
express it as: D(V −

1 , V d) = max(D(V +
i , V d)), i ∈ b, where

b represents the size of the batch size, V +
i represents other

sentences contained in the same batch, and D represents
the similarity function. Although the selection of random
negative samples is uncertainty, it can improve the gen-
eralization ability of the model through randomness in
zero-shot learning scenarios.
In order to more deeply capture the relational infor-

mation contained in the sentence, we have generated
weak negative samples V −

2 , that is, relational negative
samples.V −

2 is generated by mask tokens that may directly

295

indicate relational words in the sentence. We maximize
the distance D(V −

2 , V d) by the sentence and the vector
representation of the relation description V d to obtain
information which may be missed by the positive sample
as a supplement. Many sentences may not contain tokens
which can directly indicate relation words. When this
happens, we use a certain percentage of tokens in the
random mask sentence as an alternative method (the
entity pair tokens are not included).

For zero-shot tasks, over-fitting is one of the most
serious problems. We think this is a major problem that
limits its generalization performance for this model that
pays too much attention to entity information. Therefore,
we mask the tokens of the entity pair in the sentence to
generate the negative input of the entity, and maximize
the distance D(V −

3 , V d) between the generated negative
vector representation V −

3 and the relation representation
V d.

For the last two methods, they generate weak negative
samples and have no need to focus on the entities. We
directly use the hidden layer corresponding to [CLS] to
pass through an activation function layer and a dropout
layer as V −

2 and V −
3 , respectively. In this way, through

the negative sample generator, a positive sample generates
several negative samples with different emphasis informa-
tion.

C. Training

The training of ZRCM consists of two objectives. Firstly,
by generating suitable positive and negative samples, and
increasing the span between positive and negative samples
as much as possible to obtain a more generalized model
effect. We compare the distance of the positive case with
the three negative case distances as a pair of calculations:

C(D(V +, V d), D(V −
i , V d))

= max(0, γ −D(V +, V d) +D(V −
i , V d)), (3)

where i = 1, 2, 3. Then the goal of our model is expressed
as:

C =

1,2,3∑
i

[C(D(V +, V d), D(V −
i , V d))] (4)

where γ is a hyper-parameter, whose purpose is to keep a
certain buffer space for the distance difference between the
positive sample and the negative sample. In the training,
we iterate the computation to make D(V +, V d) obtain
a larger value while ensuring that D(V −

i , V d) is smaller,
that is we increase the distance between positive samples
and the relation discription representations while reduce
the distance between negative samples and the relation
discription representations.

Our second objective is to use cross-entropy loss to
maximize the accuracy of Relation Label Classification
based on visible relations:

D = max(0,

0,2,3∑
j

(−1)2×jV R
j log(V̄ R

j) + β), (5)

where V R
j represents the visible relation, V̄ R

j represent
its relation represents the probability distribution of the
corresponding visible relation prediction, and β is a hyper-
parameter, in order to ensure the full use of the training
data. In addition, we also generated the corresponding
visible relation prediction distributions for the other
negative samples which are divided and can ensure the
sufficiency of the negative samples we generate when used
in the first objective. Because the syntax structure of the
input two negative samples is very similar to the positive
sample, and it is necessary to ensure the difference in
this way. The larger the relation prediction gaps are, the
more representative the negative samples we generated
and the more helpful for generalization ability. In general,
the larger the D, the higher the probability that the
predictions are correct.
Combining the two objectives described above, our final

objective function can be expressed as:

L = (1− α)× C − α×D (6)

where C comes from Eq.(4), and D comes from Eq.(5),
which are the hyper-parameters. All the hyper-parameters
mentioned in the model will be studied and discussed in
detail in the subsequent experimental part.

IV. Experiments
A. Experimental Setup
Datasets. We use two datasets for experiments, FewRel

[9] and Wiki-ZSL [5]. FewRel has 70,000 sentences selected
by a large number of crowd workers from Wikipedia,
which contains about 100 relations. Then use the distant
supervision method to complete the preliminary labeling,
and then manually filter out the wrong sentences, so that
the dataset becomes a clean RC dataset, which has 56,000
examples containing 80 different relationships. For another
data set Wiki-ZSL, which originally came from Wiki-KB,
it was also generated with a distant supervision method,
with 93483 examples and 113 different relations. The two
data sets have one thing in common, that is, they are
both built on the basis of data in Wikipedia, which allows
them to be accurately linked to the Wiki-data knowledge
base. This provides possibility and great convenience for
the zero-shot relation extraction.
ZSL Experimental Setup. We divide a data set into

three different predictive relation quantities a. That is,
one part of the data set is used for training, and the
other part is used for prediction. a has three possible
options: 5, 10, and 15. In order to meet the requirements
of zero-shot learning, it is necessary to ensure that there

296

is no intersection between the trained relational data and
the predicted relational data. We use Precision, Recall
and F1 value as a measurement method to evaluate the
effect of the experiment. We repeat the experiment for
more than 5 times, randomly select relations as test
set, make the rest of them as training set, report the
best result of every single experiment and evaluate the
final results comprehensively. We do our best to ensure
the comparability of our experimental method and other
comparison methods.

Comparison Methods. R-BERT is a supervised method
of relation extraction. It has excellent results in fully
supervised relation extraction experiments but performs
poorly on zero-shot prediction tasks. ESIM [2] and CIM
[16] are two texts which contain tasks. They accept
sentences and relation descriptions as input, and output a
binary label indicating whether they match semantically.
ZS-BERT is the baseline of this experiment, and it has
an experimental effect far superior to other models by
using zero-shot learning. The experimental results of other
comparison methods are from [1]. In general, we hope to
show the advantages or disadvantages of this method by
comparing the results with other methods.

Parameter Settings. Our model is based on Hugging
Face and PyTorch. We use the Adam [11] optimizer, the
batch size is set to 4, the size of the hidden layer is 768,
the embedding dimensions of the input sentences and the
dimensions of the attribute vectors are 1024. To make
the experiments easy to compare, we used exactly the
same data set with the traditional evaluation indicators:
Precision, Recall and F1. For different datasets our
hyperparameters are not the same. For FewRel, α =
0.4, β = 4, γ = 7.5, for Wiki-ZSL, α = 0.4, β = 0, γ = 7.5.
α is the weight parameter of the balances loss function.
The similarity function D has been compared through
many experiments and found that using inner product
will achieve a more stable and high-quality effect.

B. Experimental analysis
Main Experiment. We predict the experimental results

of different numbers of unseen relations which can be seen
from Table 1. First of all, we can see that our model’s effect
is significantly better than other models, especially when
a = 5. Our model outperforms the second model about
7.7% at F1 value in FewRel dataset which can show the
ability of case comparison method to capture potential
information. For a = 15 our model can also achieve
F1 value increase of about 3% at best, which reflects
our model’s superiority in predicting more generalization
ability of unseen relations. When a = 10 ZRCM lags
ZS-BERT by about 3.4% in FewRel, we believe that it
may be due to insufficient data that the negative samples
and positive samples are not reasonably divided. On the
whole, when a is smaller, the predicted unseen relations are
fewer and the experimental precision recall and F1 value
will be ignificantly higher than when a is larger. This is

TABLE I
The comparative results of the experiments

Wiki-ZSL FewRel
a = 5 a = 5

P R F1 P R F1
R-BERT 39.22 43.27 41.15 42.19 48.61 45.17
ESIM 48.58 47.74 48.16 56.27 58.44 57.33
CIM 49.63 48.81 49.22 58.05 61.92 59.92
ZS-
BERT

71.54 72.39 71.96 76.96 78.86 77.90

ZRCM 76.15 77.1 76.6 86.70 84.51 85.60
a = 10 a = 10

P R F1 P R F1
R-BERT 26.18 29.69 27.82 25.52 33.02 28.20
ESIM 44.12 45.46 44.78 42.89 44.17 43.52
CIM 46.54 47.90 45.57 47.39 49.11 48.23
ZS-
BERT

60.51 60.98 60.74 56.92 57.59 57.25

ZRCM 62.41 64.16 63.27 53.67 53.96 53.81
a = 15 a = 15

P R F1 P R F1
R-BERT 17.31 18.82 18.03 16.95 19.37 18.08
ESIM 27.31 29.62 28.42 29.15 31.59 30.32
CIM 29.17 30.58 29.86 31.83 33.06 32.43
ZS-
BERT

34.12 34.38 34.25 35.54 38.19 36.82

ZRCM 33.47 36.71 35.01 40.27 40.72 40.50

predictable. On the one hand, we only need to predict
fewer target relations, and at the same time, the sources
of information we can obtain are also increasing. It can be
seen that although the textual implication models such as
ESIM and CIM have a higher improvement than R-BERT,
there is a big gap between ZS-BERT and this experiment,
which shows that the textual implication tasks cannot
be perfectly covered and fit unseen. For ZS-BERT and
ZRCM, it can be seen that the results of our model have
substantial improvements on ZS-BERT, which reflects the
effectiveness and superiority of the overall process setting
of our model.
Ablation. In order to fully demonstrate the effectiveness

of our negative samples, we design the ablation experi-
ments for them based on the method of controlling vari-
ables. That is to say, we eliminate the distance constraint
between the label and the input hidden layer vector and
only consider the unilateral impact of negative samples
on the experimental result. ZRCM is our model, ZRCM*
expresses our first goal, that is, the result of ZRCM after
removing the Relation Label Classification. RNS, ReNS
and ENS are the samples that we build with Negative
Sample Generator to compare with the positive samples.
It can be obtained from the data analysis in Table2 that
ZRCM get the better results than ZRCM*, which proves

297

the contribution of our goal 1 to the overall model effect.
Besides, for three comparative negative samples we can
see that RNE contributes the most to the result which
is understandable, because although other comparative
negative samples may carry more deep attributes, they
still need a sufficient distance to optimize the model.
Since different data sets have different text features, it
is reasonable that the results of the same comparison
negative sample on the two data sets are different.

TABLE II
The impact of different negative sampling methods

F1 FewRel Wiki-ZSL
ZRCM* 0.4387 0.2950

ZRCM* - RNS 0.1314 0.0748
ZRCM* - ReNS 0.4178 0.3236
ZRCM* - ENS 0.4591 0.3098

ZRCM 0.4544 0.3298

Hyperparameter Experiment. In order to achieve the
optimal performance of our model, we conduct exten-
sive experiments to judge the effect of different hyper-
parameters on the performance.

Fig. 2. Changes in F1 under the influence of β

In particular, we show how changes in the parameter β
in Eq.(5) affect the model performance, β is a boundary
parameter. To determine that the objective 2 of the
experiment obtains a more ideal optimization distance,
we tried different values of β when a = 10. For generating
better negative samples, objective 2 is designed to help the
model generate more representative negative representa-
tions, which makes the vector representation of the labels
have greater distance from the vector representation of
the negative samples generated by the negative sample
generator. The results on two datasets are exhibited
on Fig. 2, the two curves have the same trend, but
they achieve the best performance in different place.
It’s reasonable for the inherent differences in the textual
information of the two datasets.

V. Conclusion
In this work, we present a novel method matching

representation learning for Zero-Shot Relation Extraction.
With the Negative Sample Generator, our model can cap-
ture depth information for the input sentences. Besides,
we use multi-task learning structure with negative sample
training model. Results show that our model can substan-
tially improve the performance, we also carry out extensive
experiments which can verify the effectiveness of the
designed adversarial training. The ability to understand
and summarize the text and the problem of over-fitting
are the important factors which limit the effectiveness of
the model, which also forms the basic idea of our method.

Acknowledgment
This research is supported by the National Key

Research and Development Program of China (Grant
No. 2019YFB1706101), Natural Science Foundation of
Chongqing, China (No. cstc2020jcyj-msxmX0900), and
the Funda-mental Research Funds for the Central Uni-
versities (Project No. 2020CDJ-LHZZ-040)

References
[1] Chih-Yao Chen and Cheng-Te Li. 2021. ZS-BERT: Towards

Zero-Shot Relation Extraction with Attribute Representation
Learning. Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Pages: 3470–3479.
Association for Computational Linguistics.

[2] Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang,
Diana Inkpen. 2017. Enhanced LSTM for Natural Language
Inference. Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), pages 1657–1668 Vancouver, Canada. Association for
Computational Linguistics.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey
Hinton. 2020. A simple framework for contrastive learning of
visual representations. Proceedings of the 37th International
Conference on Machine Learning, Vienna, Austria, PMLR
119:1597-1607.

[4] Xinlei Chen, Haoqi Fan, Ross Girshick, Kaiming He. 2020.
Improved baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297.

[5] Sorokin Daniil, and Iryna Gurevych. 2017. Context-aware repre-
sentations for knowledge base relation extraction. Proceedings
of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 1784-1789 Copenhagen, Denmark.
Association for Computational Linguistics.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171-
4186, Minneapolis, Minnesota. Association for Computational
Linguistics.

[7] Kodirov Elyor, Tao Xiang, and Shaogang Gong. 2017. Se-
mantic autoencoder for zero-shot learning. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3174-3183.

[8] Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna Yuan, Duo
Chai, Mingxin Zhou, Jiwei Li. 2019. Entity-Relation Extrac-
tion as Multi-Turn Question Answering. Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics, pages 1340-1350 Florence, Italy. Association for
Computational Linguistics.

298

[9] Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan
Yao, Zhiyuan Liu, Maosong Sun. 2018. FewRel: A Large-
Scale Supervised Few-Shot Relation Classification Dataset
with State-of-the-Art Evaluation. Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pages 4803-4809 Brussels, Belgium. Association for
Computational Linguistics.

[10] Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. 2017. Distant
supervision for relation extraction with sentence-level attention
and entity descriptions. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, AAAI’17, page
3060–3066. AAAI Press.

[11] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv: 1412.6980.

[12] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks. Proceedings
of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Computational
Linguistics.

[13] Yong Shi, Yang Xiao, Pei Quan, Minglong Lei, Lingfeng Niu.
2021. Distant Supervision Relation Extraction via Adaptive
dependency-path and Additional Knowledge Graph Supervi-
sion. Neural Networks, 134:42-53.

[14] Oscar Sainz, Oier Lopez de Lacalle, Gorka Labaka, Ander
Barrena, Eneko Agirre. 2021. Label Verbalization and En-
tailment for Effective Zero and Few-Shot Relation Extrac-
tion. Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 1199–1212. Association
for Computational Linguistics.

[15] Haoze Yu, Haisheng Li, Dianhui Mao & Qiang Cai. 2020. A
relationship extraction method for domain knowledge graph
construction. World Wide Web 23.2 (2020): 735-753.

[16] Shu Zhang, Dequan Zheng, Xinchen Hu and Ming Yang. 2015.
Bidirectional long short-term memory networks for relation clas-
sification. Proceedings of the 29th Pacific Asia conference on
language, information and computation, pages 73-78 Shanghai,
China.

[17] Obamuyide, Abiola, and Andreas Vlachos. 2018. Zero-shot
relation classification as textual entailment. Proceedings of the
First Workshop on Fact Extraction and VERification (FEVER).

299

Similarity matching of time series based on key point

alignment dynamic time warping

Yangzheng Li, Zhigang Chen+, Xiaoheng Deng

School Of Computer Science And Engineering

Central South University

Changsha, China

+ Corresponding author mail: czg@csu.edu.cn

Abstract—Similarity measurement is an important basis in time

series analysis. Among them, dynamic time warping distance

(DTW) is considered to be the most effective distance

measurement method. However DTW’s huge computational

overhead is difficult to meet the application requirements in the

era of big data. Previous optimization methods often focus on

reducing unnecessary calculation objects and do not involve

warping distance calculation itself. After studying many related

optimization algorithms, we propose a DTW matching algorithm

based on key structure point alignment. By extracting the key

structure points of time series and calculating the warping

alignment relationship between the key structure points, the

constraint range of the cumulative distance matrix of the

approximate optimal warping distance from the path is mapped,

which greatly reduces the amount of calculation of the distance

cumulative matrix, then approximate warping distance can be

calculated quickly. The experimental results show that the

calculation speed of our method is significantly improved

compared with the traditional algorithm in similarity matching,

and it also has a good performance in classification accuracy.

Keywords-time series; data mining; dynamic time warping

distance

I. INTRODUCTION

Time series is a concept derived from data mining, which
generally refers to an ordered set of the same statistical index
values arranged according to their time order. The analysis of
time series has made important applications in the fields of
finance, medical treatment, meteorology, geology and so on[1-
4].

The similarity measurement is an important basis of time
series analysis. Comparing and judging the similarities and
differences of two groups of time series can further realize the
classification and clustering of time series, thus it can be used as
an important basis for time series analysis. In related research,
distance is usually used as the measure of similarity between
time series. The smaller the distance is, the more similar the time
series is. Euclidean distance is the most classical time series
distance measurement, which is simple and fast to calculate, but
the calculation method of point-to-point alignment can not be

used for the comparison of unequal time series, nor can it solve
the problems of distortion, scaling and drift on the time axis, so
it is rarely used in practical application.

Another common classical distance measure, dynamic time
warping (DTW)[5], has been proposed for many years and still
plays an important role. It aligns each series point through
dynamic programming to find the minimum cumulative distance,
allows warping alignment in time axis, and solves the limitation
of Euclidean distance, but the calculation cost of cumulative
distance matrix is large, The time complexity of DTW is O(n2),
which is hard to apply to the time series analysis of big data.

Many other distance measurement algorithms have also been
proposed. For example, the symbolic editing distance based on
time series (EDR)[6], the longest common subsequence
(LCSS)[7], the most similar subsequence (TSW)[8], etc. they are
also algorithms based on dynamic programming, which has
considerable time complexity compared with DTW. In addition,
there are non dynamic programming methods, although the
complexity is lower, but the accuracy is often insufficient. The
maximum shifting correlation distance[9] has only the time
complexity of O(n). It finds the maximum Pearson correlation
coefficient of the two time series through the sliding window to
obtain the approximate distance. The fragment alignment
distance[10] uses the approximate derivative and the number of
continuous segments of each segment of the sequence to
represent a segment of subsequence, and calculates the distance
in the way of approximate diagonal alignment. Since the
complex alignment is not considered, the computational
complexity is reduced to linear. The fluctuation features
distance[11] considers the trend change of time series and
calculates the distance by weighting the change value. The
MPdist[12] uses the method of matrix representation of the
sequence, divides the sequence into multiple subsequence
groups, puts forward the closest subsequence pair to form a
sequence, and takes a large enough value as the distance result.

However, due to its excellent universality and matching
accuracy, DTW is still difficult to replace. In order to solve the
computational cost of DTW, researchers have proposed many
methods, such as the following boundary distance[13,14], early

This work is supported by the Intelligent software and hardware system of medical process assistant and its application belong to “2030 Innovation

Megaprojects” - New Generation Artificial Intelligence (Project no. 2020AAA0109605), and Major special project of Changsha science and technology

plan (Project no. kh2103016).

DOI reference number: 10.18293/SEKE2022-021

300

abandonment[15]. At the ACM SIGKDD conference, Thanawin
et al.[16] proposed the UCR suite, which integrates important
DTW acceleration methods in the past. These methods try to
skip the calculation of part of the warping distance, so as to save
the overall calculation time, and do not involve the calculation
of the warping distance itself. Another idea is to reduce the
dimension of time series, and then calculate the distance by
dynamic programming as usual. Pr-DTW[17] method represents
the segmented time series by weighting multiple statistical
indicators, and calculates the distance after greatly reducing the
amount of data. Soft-DTW[18] proposes a method to find the
approximate warping path by subdividing the warping distance
matrix step by step, which does not need to calculate the
complete warping distance matrix.

Based on these studies, this paper proposes a distance
measurement algorithm based on key point alignment. The
cumulative distance is calculated by finding the near optimal
path through the key points, which significantly reduces the
computational complexity. The algorithm in this paper is used
for the measurement of 1-NN classifier for experimental test.
The results show that compared with the traditional algorithm,
the algorithm in this paper significantly reduces the time cost and
maintains good matching accuracy.

II. PRE KNOWLEDGE

A. Classical dynamic time warping method

Set the time series as 𝑋{𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑚} , and 𝑌{𝑦1,
𝑦2, 𝑦3, … … 𝑦𝑛}, define the DTW distance between the two time
series as DTW (X, Y), and construct an matrix D of size m × n,

calculate the value of each matrix element D[i][j] (i∈[1, m], j∈
[1, n]) according to the following method:

𝑫[1][1] = 𝑑(1,1) (1)

𝑫[𝑖][𝑗] = 𝑑(𝑖, 𝑗) + min {

𝑫[𝑖 − 1][𝑗]

𝑫[𝑖][𝑗 − 1]

𝑫[𝑖 − 1][𝑗 − 1]
 (2)

𝑑(𝑖, 𝑗) = |𝑥𝑖 − 𝑦𝑗| or (𝑥𝑖 − 𝑦𝑗)2 (3)

Then D[m][n] is DTW (X, Y). In the process of calculating
DTW (X, Y), connect the minimum values of D[i][j] to obtain a
path of warping distance accumulation:

𝑝𝑎𝑡ℎ = {(1, 1), … … (𝑖, 𝑗) … … , (𝑚, 𝑛)} (4)

where the two values in each binary represent two elements
from two time series, and i and j represent their time axis
positions in their respective series. When path can make the

cumulative distance function ∑ 𝑑(𝑥𝑖 , 𝑦𝑗)
𝑙𝑒𝑛(𝑝𝑎𝑡ℎ)
𝑖,𝑗 𝑖𝑛 𝑝𝑎𝑡ℎ gets the

minimum value, that is, DTW (X, Y), at this time, the path is
called the optimal alignment path of these two time series, and
each pair of binary in the path is called the "alignment"
relationship.

B. Constraint range

The calculation of DTW (X, Y) needs to traverse all elements
in the calculation matrix. Its complexity is O(m×n) , can be
recorded as O(n2). Global constraint is an idea of optimizing

DTW distance calculation, which reduces the amount of
calculation by limiting the cumulative range of warping distance.
For 𝑋{𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑚} and 𝑌{𝑦1 , 𝑦2, 𝑦3, … … 𝑦𝑛} , the
element that far from the diagonal in the warping distance matrix,
such as D[1][n], reflect the alignment between the first element
in X and the last element in Y. This means that time series is
aligned with the time axis in a very distorted state.

This alignment usually does not conform to the actual
situation. The value on the matrix is often too large to be added
to the final result. In fact, this part of the calculation can be
omitted. In the methods of Itakura constraint[19] and Sakoe-
Chuba constraint[20], as shown in Figure 1, the calculation
range is limited near the diagonal of the warping distance matrix,
as the dark part in the figure.

However, this global constraint method lacks flexibility. If
the alignment path is outside the constraint range, there will be
a large error between the calculation result and the optimal
distance. When the alignment path is in the constraint range,
there is still a large computational overhead.

Figure 1. Itakura constraint and Sakoe-Chuba constraint

III. METHOD

In fact, to get the final DTW distance value, only needs to
calculated the value on the optimal alignment path in the matrix.
Because the value on the path only depends on the minimum of
the three candidate cumulative distance values. The problem is
that the optimal alignment path cannot be known until the
complete warping matrix is calculated, but the near optimal
alignment path can be found through some methods. By
constraining the calculation range of the waping distance matrix
near the near optimal path, a very close DTW distance can be
obtained.

A. Find key structural points

Due to the continuity of the time series, a few key structural
points in the time series can reflect the approximate trend shape
of the whole time series image. Therefore, a set 𝑋′{(𝑘1, 𝑥𝑘1)，
(𝑘2, 𝑥𝑘2), (𝑘3, 𝑥𝑘3), … … (𝑘𝑝, 𝑥𝑘𝑝)} can be used to represent

time series 𝑋{𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑚} approximantely. Where ki

represents the time axis position of each key structure point, p is
the number of key stuctural points in the time series image, and
p is much smaller than m.

In order to find the key points of the time series, firstly use
the PAA[21] method to process the time series data to reduce the
noise jitter of the time series image and improve the operation
efficiency. Then the extreme points in all time series image
points should be screened. The left and right derivatives of the
extreme points are opposite, as shown follows:

301

{𝑥𝑖|(𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖+1 − 𝑥𝑖) < 0} (5)

And add those non extreme points 𝑥𝑖 with large turning
points, as shown follows:

{𝑥𝑖||𝑎𝑟𝑐𝑡𝑎𝑛(𝑥𝑖 − 𝑥𝑖−1) − 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥𝑖+1 − 𝑥𝑖)| > 𝛾} (6)

Where γ is the threshold, its value is π/6 in this paper.

Some time series data may have local jitter, resulting in the
aggregation of key points in a small section. In order to ensure
that the key points reflect the overall morphological trend of the
time series, these points need to be further filtered to reduce local
aggregation. When the distance between a newly added key
point and the previous key point is lower than the threshold 𝛾𝑐,
it will not be added to the key points set. And 𝛾𝑐 can be
calculated as equation (7):

𝛾𝑐 = 0.1 ∗ √(max(𝑥) − min (𝑥))2 + 𝑚2 (7)

In addition, the first and last points of each time series are
specified as key points.

 Assuming that there are time series 𝑋{𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑚}
and 𝑌{𝑦1, 𝑦2 , 𝑦3 , … … 𝑦𝑛} , 𝑋′{(𝑘1, 𝑥𝑘1), (𝑘2, 𝑥𝑘2), … … ,
(𝑘i, 𝑥𝑘i), … … (𝑘𝑝, 𝑥𝑘𝑝)} and 𝑌′{(𝑙1, 𝑦𝑙1), (𝑙2, 𝑦𝑙2), … … , (𝑙j,
𝑦𝑙j), … … (𝑙𝑞 , 𝑦𝑙𝑞)} are obtained after key point filtering. Where

ki and lj respectively represent the time axis position of key
points in the corresponding time series, and p and q are the
number of key points in the corresponding time series.

B. Key structural points alignment

Elements of the distance accumulation matrix K of the key
point sequence 𝑋′ and 𝑌′ is calculated as follows, and the size

is p×q:

𝑲[1][1] = 𝑑𝑘(1,1) (8)

𝑲[𝑖][𝑗] = 𝑑𝑘(𝑖, 𝑗) + min {

𝑲[𝑖 − 1][𝑗]

𝑲[𝑖][𝑗 − 1]

𝑲[𝑖 − 1][𝑗 − 1]
 (9)

𝑑𝑘(𝑖, 𝑗) = |𝑥𝑘𝑖 − 𝑦𝑙𝑗| ∗ (1 + |𝑘𝑖/𝑘𝑝 − 𝑙𝑗/𝑙𝑞|) (10)

When calculating the distance accumulation matrix of key
points, in addition to calculating the difference of time series
elements corresponding to key points, it can be multiplied by the
correction value of time axis position to obtain a more
reasonable alignment relationship. After calculating the
cumulative distance matrix K of key points, the optimal
alignment path of key points pathkp can be obtained.

We get the pathkp reflecting the alignment relationship of key
points. Due to the morphological continuity of time series, the
alignment relationship between key points will be affected by
key points. We can approximate the alignment path of the
original time series by mapping the alignment path of the key
points.

C. Mapping to original distance matrix

Construct the cumulative distance matrix D of the original
time series, with the size of m×n. The corresponding points in

the pathkp obtained in the previous step are mapped into the
warping distance matrix of the original time series.

For each (i, j) in pathkp indicates that the key point (𝑘i, 𝑥𝑘i)
from 𝑋′ is aligned with (𝑙j, 𝑦𝑙j) from 𝑌′ , and mapped to the

original distance matrix D is [𝑘𝑖][𝑙𝑗]. Each group of alignment

relations in the pathkp are mapped to D in turn to obtain a series
of points on the near optimal path of the original time series, as
shown in Figure 2.

Connecting them, as shown in the red part of the matrix in
Figure 3, we can get a path similar to the optimal alignment path
(the gray part of the matrix). As shown in Figure 4, expand the
connection path outward by r areas range. The greater the value
of r, the closer the result to the optimal distance can be obtained.
In this paper, r = 1, and the final distance calculation constraint
range can be obtained.

Figure 2. Mapping to distance matrix

Figure 3. Approximate alignment path

Figure 4. Constraint range

302

D. Calculate distance under the constraint range

Through the above methods, we get a constraint range close
to the optimal warping path, which is based on the key structure
alignment of the time series. Compared with the global
constraint, it is more suitable for the actual alignment of the time
series.

Under the constraint range, the calculation of distance matrix
can be reduced, the result is closer to the optimal distance, and
no need to traverse the entire distance matrix, but only the part
of the matrix within the constraint range. The pseudo code for
calculating the near optimal warping distance under the
constraint range is as follows:

Algorithm 1 Constrainted warping distance

Input: Constraint C , series X and Y

Output: Distance

dist(1, 1) = d(1,1)

for (i, j) in C

 if (i-1, j) in C

d1 = d(i-1, j)

if (i, j-1) in C

d2 = d(i, j-1)

if (i-1, j-1) in C

d3 = d(i-1, j-1)

 dist(i, j) = min(d1, d2, d3)

return dist(C.end)

IV. EXPERIMENTAL

UCR[22] is a representative data set in time series research.
It contains 128 sub data sets from different sources, and the
amount of data is very abundant. So we chose to run the
experiment on the UCR dataset. In the experiment we take the
measurement algorithm in this paper as the distance
measurement of 1-NN classifier, preprocess it with PAA
reduction method and Z-score standardization, and test its
classification performance. We mainly investigate its running
time and classification error rate, reflecting the calculation
efficiency and matching accuracy of the algorithm respectively.
We selected four algorithms DTW, EDR, LCSS, and TSW as
the control. TABLE I lists the basic information of the data sets
used.

In PAA reduction, we can control the processed time series
length by modifying the window w size of PAA. The larger w is,
the smaller the processed length is. When w = 1, the original time
series is returned. We counted the time taken by each algorithm
to complete a similarity search on the arrowhead training set for
the same data set. Figure 5 shows the change of each algorithm
time with the PAA window w. Among them, KPDTW is the
algorithm of this paper, and the rest are four control algorithms.
In the chart, as the w value increases, that is, the time series
length decreases. We can see the time of the control algorithm
decreases sharply, and the time of the algorithm in this paper
decreases gently, which is lower than that of the control
algorithm. Conversely, as the w value decreases, that is, the time
series length increases, the time of the control algorithm
increases sharply, while the time growth of the algorithm in this
paper is relatively flat. This shows that the algorithm in this

paper has better time complexity performance when the amount
of data increases.

TABLE I. DATA SET INFORMATION

Name of data set
Size of

train sets

Size of

test sets
length

Number

of classes

Adiac 390 391 176 37

ArrowHead 36 175 251 3

BME 30 150 128 3

CBF 30 900 128 3

Coffee 28 28 286 2

CricketX 390 390 300 12

ECG200 100 100 93 2

FaceAll 560 1690 131 14

GestureMidAirD1 208 130 Vary 26

GesturePebbleZ1 132 172 vary 6

Gunpoint 50 150 150 2

Lightning7 70 73 319 7

OliveOil 30 30 570 4

Plane 105 105 144 7

ShapesAll 600 600 512 60

Symbols 25 995 398 6

ToeSegmentation1 40 228 277 2

Trace 100 100 275 4

TwoPatterns 1000 4000 128 4

UMD 36 144 150 3

UWaveGestureLibra

ryX
896 3582 315 8

Wafer 1000 6164 152 2

WordSynonyms 267 638 270 25

Yoga 300 3000 426 2

Figure 5. The relationship between spend time of each algorithm and w

(ArrowHead dataset)

By running the classification test under 24 data sets, Figure
6 shows the cumulative running time of each algorithm. It can
be seen that with the increase of the running data set, the
cumulative time growth of the control algorithm is significantly
higher than that of the algorithm in this paper which is expressed
in KPDTW, especially in the data set with longer length, the
running time will rise sharply. After running the classification
tasks of 24 data sets, the algorithm in this paper saves several
times the time overhead compared with the control algorithm.

303

In TABLE II, the classification error rates of different data
sets of this algorithm and four control algorithms under 1-NN
classifier are listed. The lower the error rate, the more accurate
the matching result is. The algorithm with the best performance
will be expressed in bold. The results show that the algorithm in
this paper has excellent performance in five algorithms, achieves
low error rate in 24 data sets, and the average ranking is slightly
better than DTW algorithm.

Figure 7 shows the error rate comparison between the
algorithm KPDTW in this paper and the control algorithm. It can
be seen that the algorithm in this paper is highly close to DTW.

Figure 6. The accumulated time of each algorithms

TABLE II. CLASSIFICATION ERROR RATE OF ALGORITHM

Name of data set
Error rate

KPDTW DTW EDR LCSS TSW

Adiac 0.399 0.391 0.859 0.849 0.847

ArrowHead 0.251 0.210 0.268 0.229 0.234

BME 0.060 0.053 0.167 0.193 0.227

CBF 0.002 0.004 0.009 0.013 0.007

Coffee 0.036 0.000 0.071 0.071 0.071

CricketX 0.267 0.297 0.464 0.428 0.490

ECG200 0.120 0.150 0.310 0.170 0.140

FaceAll 0.015 0.025 0.050 0.045 0.090

GestureMidAirD1 0.346 0.362 0.477 0.777 0.685

GesturePebbleZ1 0.181 0.175 0.199 0.649 0.333

Gunpoint 0.067 0.087 0.160 0.080 0.093

Lightning7 0.288 0.288 0.341 0.301 0.301

OliveOil 0.167 0.133 0.833 0.833 0.833

Plane 0.000 0.000 0.028 0.000 0.000

ShapesAll 0.145 0.198 0.230 0.130 0.100

Symbols 0.053 0.062 0.179 0.104 0.124

ToeSegmentation1 0.145 0.170 0.195 0.215 0.145

Trace 0.010 0.010 0.030 0.230 0.110

TwoPatterns 0.000 0.002 0.050 0.090 0.095

UMD 0.028 0.028 0.139 0.250 0.243

UWaveGestureLibrar

yX
0.297 0.227 0.343 0.300 0.350

Wafer 0.005 0.005 0.055 0.000 0.005

WordSynonyms 0.280 0.262 0.455 0.340 0.345

Yoga 0.188 0.156 0.274 0.178 0.188

Average ranking 1.542 1.583 4.167 3.375 3.417

Figure.7 Error rate comparison of algorithms

V. RESULT ANALYSIS

As the most robust distance measurement method, DTW can
ignore the distortion and stretching of time series in time axis
through warping alignment, which has a good performance in
many data sets. The algorithm in this paper is based on DTW
and obtains the approximate optimal alignment relationship
through the alignment of key points. The better the key point
series fits the original time series, the closer the approximate

304

distance is to the DTW distance, and the matching accuracy of
the experimental results is also similar to DTW. Although the
algorithm in this paper obtains the approximate distance, the
approximate distance also reduces the influence of local noise, it
has achieved better results in the matching accuracy under some
data sets. Compared with DTW, the algorithm in this paper only
sacrifices little accuracy, but the computational efficiency is
significantly improved.

Let the length of the time series be n, the time complexity of
extracting the time series of key points be O(n), the number of
key points be p, the time complexity of key point alignment and
near optimal path generation be O(p2), the constraint range
obtained is a fixed width, and its coverage is only linearly related
to the data length. So the time complexity of calculating the near
optimal distance under the constraint is O(n), The final total time
complexity of calculating the distance once is O (p2 + n).

In the worst case, that is, each point of the time series
sequence is taken as the key point, it becomes the same time
complexity O (n2) as DTW algorithm. Generally, considering
that the number of key structure points is often much less than
the length of the whole time series, generally p << n, the
complexity of this algorithm is significantly lower than O(n2) of
DTW. The experimental results verify this.

VI. SUMMARY

In this paper, a time series matching algorithm based on the
key points alignment is proposed. It constructs the approximate
constraint range based on the alignment relationship of key
points, which significantly reduces the computational overhead
of distance matrix. The experimental results under multiple time
series data sets show that compared with the traditional
algorithm, the algorithm in this paper significantly improves the
computing speed while maintaining good matching accuracy.

REFERENCES

[1] Pal S H, Patet J N. Time-series data mining: A review[J]. Binary Journal
of Data Mining & Networking, 2015, 5(1): 01-04.

[2] Kirlić A, Hadžić M. Big data and time series: A literature review paper[J].
Univerzitetska misao-časopis za nauku, kulturu i umjetnost, Novi Pazar,
2017 (16): 139-146.

[3] Susto G A , Cenedese A , Terzi M . Time-Series Classification Methods:
Review and Applications to Power Systems Data[J]. Big Data Application
in Power Systems, 2018:179-220.

[4] Wu Y, Shen K, Chen Z, et al. Automatic measurement of fetal cavum
septum pellucidum from ultrasound images using deep attention
network[C]//2020 IEEE International Conference on image processing
(ICIP). IEEE, 2020: 2511-2515.

[5] Gorecki T, Luczak M. Non-isometric transforms in time series
classification using DTW[J]. Knowledge-Based Systems, 2014, 61(may):
98-108.

[6] Chen L, Tamer Özsu M, Oria V. Robust and fast similarity search for
moving object trajectories [C]// Acm Sigmod International Conference on
Management of Data. ACM, 2005, 491-502.

[7] Gorecki, Tomasz. Classification of time series using combination of DTW
and LCSS dissimilarity measures[J]. Communications in statistics, B.
Simulation and computation, 2018, 47(1-2):263-276.

[8] Hajihashemi Z, Popescu M. A multidimensional time series similarity
measure with applications to eldercare monitoring[J]. IEEE Journal of
Biomedical & Health Informatics, 2016, 20(3):953-962.

[9] Jiang G, Wang W, Zhang W. A novel distance measure for time series:
Maximum shifting correlation distance[J]. Pattern recognition letters,
2019, 117(JAN.):58-65.

[10] Zhang M, Pi D. A New Time Series Representation Model and
Corresponding Similarity Measure for Fast and Accurate Similarity
Detection[J]. IEEE Access, 2017, 5:1-1.

[11] Chen H, Gao X. Similarity Measurement and Cluster Analysis of Time
Series Based on Fluctuation Features[J]. Statistics & Decision, 2019.

[12] Gharghabi S, Imani S, Bagnall A, et al. Matrix profile xii: Mpdist: a novel
time series distance measure to allow data mining in more challenging
scenarios[C]//2018 IEEE International Conference on Data Mining
(ICDM). IEEE, 2018: 965-970.

[13] Kim S W, Park S, Chu W W. An index-based approach for similarity
search supporting time warping in large sequence databases[C]//
Proceedings 17th international conference on data engineering. IEEE,
2001: 607-614.

[14] Izakian H , Pedrycz W , Jamal I . Fuzzy clustering of time series data
using dynamic time warping distance[J]. Engineering Applications of
Artificial Intelligence, 2015, 39(mar.):235-244.

[15] Keogh E, Wei L, Xi X, et al. Supporting exact indexing of arbitrarily
rotated shapes and periodic time series under Euclidean and warping
distance measures[J]. VLDB Journal. 2009, 18: 611-630.

[16] Rakthanmanon T, Campana B, Mueen A, et al. Searching and mining
trillions of time series subsequences under time warping[C]// Acm
Sigkdd International Conference on Knowledge Discovery & Data
Mining. ACM, 2012.

[17] Cai Q, Chen L, Sun J. Piecewise statistic approximation based similarity
measure for time series[J]. Knowledge-Based Systems, 2015, 85: 181-195.

[18] Cuturi M, Blondel M. Soft-dtw: a differentiable loss function for time-
series[C]//International conference on machine learning. PMLR, 2017:
894-903.

[19] Geler Z , Kurbalija V , Ivanovic M , et al. Dynamic Time Warping:
Itakura vs Sakoe-Chiba[C]// 2019 IEEE International Symposium on
INnovations in Intelligent SysTems and Applications (INISTA). IEEE,
2019.

[20] Geler Z, Kurbalija V, Radovanovi M, et al. Impact of the Sakoe-Chiba
band on the DTW time series distance measure for kNN classification[C]//
International Conference on Knowledge Science, Engineering and
Management. Springer, Cham, 2014.

[21] Keogh E , Chakrabarti K , Pazzani M , et al. Dimensionality Reduction
for Fast Similarity Search in Large Time Series Databases[J]. Knowledge
and Information Systems, 2001, 3(3):263-286.

[22] Chen Y, Keogh E, Hu B, Begum N, et al. The UCR Time Series
Classification Archive. 2018. www.cs.ucr.edu/~eamonn/time_series_date

305

http://www.cs.ucr.edu/~eamonn/

Auto-Encoding GAN for Reducing Mode Collapse
and Enhancing Feature Representation

Xiaoxiang Lu, Yang Zou*, Xiaoqin Zeng, Xiangchen Wu, Pengfei Qiu
Institute of Intelligence Science and Technology, School of Computer and Information,

Hohai University, Nanjing, China
{luxx0824, yzou, xzeng, wxc}@hhu.edu.cn

Abstract—Generative Adversarial Nets (GAN) has been a popular
research topic in processing of images, speech, texts, and videos,
and many other fields. However, GAN still has some drawbacks
such as unstable training and mode collapse. To address these
challenges, this paper proposes an auto-encoding GAN, which is
composed of a set of generators, a discriminator, an encoder and a
decoder. A set of generators is responsible for learning different
modes, accelerating the convergence of the model and preventing
model collapse. The discriminator is used to distinguish between
real samples and generated ones. In order to improve feature
representation of the encoder and prevent multiple generators
from covering a certain mode, an approach consisting of three
phases is proposed accordingly. First, a clustering algorithm is
presented to perceive the distribution of real and generated
samples. Then, cluster center matching is utilized to keep
consistency of the distribution of real and generated samples.
Finally, the encoder and decoder are jointly optimized by the
generated and real samples. Therefore, the encoder can map the
generated and real samples to the embedding space so as to encode
distinguishable features, and the decoder can distinguish from
which generator the generated samples come and from which
mode the real samples come. Experiments are conducted on image
datasets to verify effectiveness of the auto-encoding GAN for
reducing mode collapse and enhancing feature representation.

Keywords-GAN; mode collapse; feature representation; cluster

I. INTRODUCTION

GAN [1] is a generative model proposed by Goodfellow, and
it has a wide range of applications in data generation, style
transfer, image inpainting, etc. [2,3,4,5]. However, GAN suffers
from several problems such as unstable training, blurred images
and mode collapse, etc. Among them, mode collapse has been a
crucial problem that needs to be addressed for GAN. Mode
collapse means that GAN only generates some of all modes, and
others are missing. In order to reduce mode collapse, researchers
have made a number of improvements, which can be
summarized in the following four classes.

1) Adding constraints: Unrolled GAN [6] stabilizes the
training of GAN by K-step cyclic training to avoid the generator
falling into a single mode. CGAN [7] strengthens the
relationship between input and output data by using conditional
information, forcing the generator to learn different modes.

InfoGAN [8] maximizes the mutual information between the
input data and the hidden code to obtain interpretable and
distinguishable features and avoid mode collapse. Mixture
Density GAN [9] encourages the discriminator to conform to
Gaussian mixture distribution in the embedded space, which
ensures that the generator fits Gaussian mixture distribution as
much as possible, covering different modes.

2) Adding generators: The typical models are MADGAN
[10] and MGAN [11]. Unlike GAN, their discriminators not only
need to distinguish between real samples and generated samples,
but also distinguish from which generator the generated samples
come.

3) Modifying loss function: WGAN [12] uses the EM
distance to measure the difference between generated
distribution and real distribution, avoiding the problem of
gradient disappearance of the generator, and making sure the
generated distribution is as close to real distribution as possible
to cover multiple modes.

4) Imposing gradient penalty: DRAGAN [13] imposes a
gradient penalty on the training samples to the discriminator, and
tries to construct a linear function on the training samples to find
the global optimal solution.

In classes 1) and 2), the discriminator only considers the
distribution of the generated samples, but neglects the
distribution of the real samples, which may lead to a problem
that multiple generators cover different parts of a certain mode,
resulting in mode collapse. As for 3) and 4), although the
generator can cover multiple modes, it still retains the
characteristics of continuous mapping in GAN, which may cover
the blank area between modes and generate poor samples,
resulting in training instability.

In order to address the issues of modes collapse and training
instability, this paper proposes an auto-encoding GAN, which
consists of a set of generators, a discriminator, an encoder and a
decoder. The network architecture is shown in Fig. 1, where a
set of generators is responsible for covering different modes, and
the discriminator, like GAN, is used to distinguish between real
samples and generated samples, ensuring that the generated
distribution does not deviate from real distribution. In order to
prevent multiple generators from covering different parts of a
certain mode, different from the above-mentioned multi-
generator model, a clustering algorithm is introduced to perceive *Corresponding author: yzou@hhu.edu.cn (Y. Zou)

DOI reference number: 10.18293/SEKE2022-152

306

the distribution of real samples and generated samples, and an
algorithm of cluster center matching is presented to keep
consistency of the distribution of real and generated samples.
Then, the encoder and decoder are jointly optimized by the
generated and real samples. Therefore, the encoder can map
generated samples and real samples to the embedding space so

as to encode distinguishable feature, and the decoder can
distinguish from which generator the generated samples come
and from which mode the real samples come. Experimental
results show that the trained auto-encoding GAN can not only
reduce mode collapse, but also have preferable capability in
feature representation.

... ...

Distinguishing from which mode
the real samples come

Distinguishing from which generator
the generated samples come

Figure 1. Architecture of Auto-Encoding GAN. 0,1z N is input to different
1 2
, , ...,

k
G G G in equal amounts. The generated samples

 1i i kG z and real samples

x are input to the discriminator and encoder-decoder respectively, and the discriminator distinguishes the real and the fake and the encoder extract features. The pseudo

labels datay and
iGy of real and generated samples are determined by the cluster center matching algorithm. The decoder distinguishes from which generator the

generated samples come and from which mode the real samples come by cross-entropy loss.

The technical contributions of the paper are summarized as
follows:

1) From the perspective of data distribution, it verifies that
adding generators is an effective way to tackle training
instability and mode collapse.

2) An algorithm for cluster center matching is proposed to
keep consistency of the distribution of real and generated
samples, prevent multiple generators from covering different
parts of a certain mode and reduce mode collapse.

3) The encoder and decoder are jointly optimized by
generated samples and real samples, which reduces the mode
collapse of generator and enhancing the feature representation of
encoder.

II. AUTO-ENCODING GAN

This section elaborates on the auto-encoding GAN’s
network architecture, objective function and algorithm of cluster
center matching in detail.

A. Adding Generators to Reduce Training Instability and
Mode Collapse

The training instability of GAN means that the learning
processes of generator G and discriminator D are difficult to
converge together. From the perspective of data distribution, the
reason is that the complexity of the real samples’ distribution
affects the speed of G and D convergence. If the real samples
are a single-mode simple distribution, G and D converge
together soon. If the real samples are a multi-mode complex
distribution, G and D are difficult to converge together, as
shown in the Fig. 2 and Fig. 3.

Figure 2. Left is mode coverage of GAN on single-mode simple distribution,
where blue and red points represent real and generated samples, respectively.
Right is the loss curve of G and D of GAN on the single-mode distribution.

Figure 3. Left is mode coverage of GAN on four-mode complex distribution,
where blue and red points represent real and generated samples respectively.
Right is the loss curve of G and D of GAN on the four-mode distribution.

As shown in Fig. 3, it can be seen from the loss curve of four-
mode complex distribution that the training of G and D is
unstable and difficult to converge together. However, in Fig. 2,
G and D of GAN converge easily together for single-mode
simple distribution. Obviously, if one generator is used to learn
multiple modes, it will be difficult to converge and the training
is unstable. Therefore, if a set of generators is employed to learn
multiple modes, trying to ensure that a single generator covers a
single mode, the training instability of GAN can be effectively

307

settled, as shown in Fig. 4. Accordingly, it can be seen from Fig.
3 and Fig. 4 that the generators and discriminator of auto-
encoding GAN converge and tend to be stable much more
quickly than that of GAN.

Figure 4. Left is mode coverage of Auto-Encoding GAN on four-mode complex
distribution, where blue points represent real samples, and others represent
generated samples in which samples generated from different generators are
denoted by different colors. Right is the loss curve of G and D of Auto-
Encoding GAN on the four-mode distribution.

The mode collapse of GAN refers to that GAN tends to
concentrate continuously mapped values on a single mode
during the training process. The main reason for the
phenomenon is GAN can only approximate continuous mapping,
on the contrary, but the multi-mode distribution belongs to the
discrete distribution that is not continuous, so GAN is difficult
to cover discrete multi-mode distributions with continuous map.
If a continuous map is forced to cover all modes, the values of
the continuous map will inevitably cover some blank areas
outside the mode, so GAN may generate some samples that have
no realistic meaning, which explains why GAN may generate
some poor samples. For a theoretical proof of GAN’s mode
collapse, please refer to [14].

Therefore, the key to addressing mode collapse is to build a
discontinuous map. Adding generators can discretize the
generation distribution, so that each generator covers a mode,
which is essentially similar the way that multiple GAN utilizes
to achieve the discontinuous mapping of multi-mode distribution,
but the difference is that simply adding generators can do.

In summary, auto-encoding GAN adopts the way of adding
generators to realize discontinuous mapping of multi-mode
distribution, which can not only speed up convergence of the
model, but also cover multiple modes.

B. Objective Function of Auto-Encoding GAN

Assume real samples is subject to distribution of real samples

datax P , where dataP is the distribution of real samples,

containing k modes, and noise samples is subject to standard
normal distribution 0,1z N . According to the architecture

of the auto-encoding GAN, k generators 1 2, , ..., kG G G G

are designed to try to cover various k modes. A discriminator
D is responsible for distinguishing between real and generated
samples. An Encoder is used to map the generated samples and
real samples to the embedding space. A Decoder not only
distinguishes from which generator the generated samples come,
but also distinguishes from which mode the real samples come,
where G , D , -Encoder Decoder ED are deep networks.

iGy represents the label corresponding to the generated samples

by the -i th generator, and
dataPy represents the label

corresponding to the real sample, which is mainly a pseudo-label
after cluster center matching. The purpose of auto-encoding
GAN training is to obtain a set of 1 2, ,..., kG G G G that can

cover different modes and an Encoder with capability of
feature representation. Therefore, the objective function that
needs to be optimized for auto-encoding GAN can be written as
follows.

~

~

,
1

1
~

, ,

1
da

d

Gi

G at

ta

i di ta aa

k

x P
G ED D

i
z P i

z
i

P P x

k

PG

minmax L G D ED E log D x E

E

log

y E log

D G z

ED G z DE lo xy g

 (1)

where is the weight to keep the balance between D and ED .

Assume G , D , and ED have sufficient capacity and
training time, the conditions of convergence of them are given
below.

Proposition 1. For G fixed, the optimal D is

1
i

data
k

data G
i

P
D x

P P

Proposition 2. For G fixed, the optimal ED is

i

data

k

G G
i

x p

ED G z y

ED x y

For the convenience of description, ED can be divided into

 GED x and xED x , which are responsible for the

representation and classification of generated samples and real
samples, respectively.

Obviously, when
1

i

k

data G
i

P P

 , D converges to the

optimum. At this time, it can be deduced that G z x , that is

1
i data

k

G p
i

y y

 . When
1

i data

k

G p
i

y y

 , it can be deduced that

dataG pED G z ED x y , so the convergence condition of

ED is also reached.

Proposition 3. For the optimized D and ED fixed, the
optimized generator G is

1 1

4 2 || 2
i i i

k k

data G G G
i ix

G log JSD P P y log y

When
1

i

k

data G
i

P P

 ,
1

|| 0
i

k

data G
i

JSD P P

 .since

both
iGy and Paday are known, the generator G converges to

1

4 2
i i

k

G G
ix

G log y log y

 .

308

Due to limited space, the proofs of convergence of D ,
ED and G are omitted, which is similar to that of GAN.

C. Minimizing Cluster Center Matching

If the decoder only distinguishes from which generator the
generated samples come, it may cause the generated samples to
cover different parts of a certain mode, resulting in modes
collapse. Here, the training results of the InfoGAN and MGAN
on 2D dataset are taken as an example to show the case where
the modes collapse, as shown in the Fig. 5.

Figure 5. Left is the results of InfoGAN on 2D dataset, and right is the results

of MGAN on 2D dataset.

If the mode distribution of real samples is taken into account,
the classifier can effectively avoid mode overlap. However, the
mode distribution of real samples is unknown, so how to
approximate the distribution of real samples is a key issue. Both
the generated distribution and real distribution are distributions
of the embedding space output by the encoder. Since the same
mode is usually clustered in the embedding space due to the
similarity between real samples, a clustering algorithm is
employed to perceive the mode distribution of real samples.

At the same time, in order to prevent perceived results from
deviating from the real distribution, we take the generated
distribution as a reference, and balance the deviation by
minimizing the cluster centers matching of the generated
distribution and real distribution. The reason why the generated
distribution can be used as a reference is that it is constantly
approaching the real distribution during the training process.
Theoretically, when the model converges, the generated
distribution approximates the real distribution. However, in
actual training the encoder cannot accurately learn the
characteristics of the real distribution, since the generated
distribution cannot fully represent the real distribution. If some
prediction information of the real distribution is added, the
learning capability of the encoder for the real distribution will be
considerably improved.

According to the above analysis, assuming that the generated
samples and the real samples are fed into the encoder, the
embedded features output by the encoder are respectively

 xh Encoder x and G zh Encoder G z . The cluster

centers of real samples and generated samples obtained by the
clustering algorithm are ,1 ,2 ,, ,...,x x x kx and

1 2,1 ,2 ,, ,...,

kG z G z G z kG z . In order to minimize the

matching of the cluster centers of the real distribution and the
generated distribution, the loss function that needs to be satisfied
is given as follows.

G

22

, ,
1

2

, ,

,

data i ii

i

k

c x P x x i z P G z i
i

x i z i

G z

G

minL G Encoder hE h E

 (2)

Combined with the loss function, the process of minimizing
cluster center matching is introduced in detail, which includes
the following three steps.

1) First, the encoder is utilized to take the generated and real
samples as input, and outputs the embedded features. Then, k-
means++ algorithm is used to cluster the generated samples and
real samples in the embedded space respectively, and obtain the
clustering center sets x and G z of the generated samples and

real samples respectively.

2) To minimize the cluster center matching, the distance
matrix between the center sets x and G z is calculated, and

-i th ,x i the closest matching center ,G z i is found to ensure

2

, ,ix i G z i is the smallest.

3) To unify the cluster assignment of the real samples and
the generated samples, the generated samples are used as a

reference to keep the matching center pairs , ,,
ix i G z i

consistent with the corresponding cluster labels.

After the above process, the current loss of centers matching
between real distribution and the generated distribution can be
obtained, and the generator and encoder can be further optimized.

D. Training of Auto-Encoding GAN

Combined with the above introduction of auto-encoding
GAN, the specific algorithm of auto-encoding GAN is given.

309

III. EXPERIMENTS

In this section, we conduct experiment on image datasets and
demonstrate the effectiveness and of auto-encoding GAN for
reducing mode collapse and enhancing feature representation.

A. Implementation Details

For the convenience of experiment reproduction, we provide
the experimental details. In the process of cluster center
matching, it is necessary to obtain the cluster center for matching
by k-means++ algorithm (or GMM). The generated and real
samples are clustered in each iteration, where k-means++ adopts
default parameters of a python package “sklearn” except for the
number of clusters that need to be specified.

It can be seen from the loss function that the hyperparameter
involved in this paper is mainly , and it is used to balance the
weight between the discriminator and the encoder-decoder.
Their losses can be unified to magnitude according to the actual
training value. In our experiments, set to 0.5. In addition, k
determines the number of generators, and is generally equal to
the number of categories of the dataset in experiments.

B. Experiments of Image Datasets

In this subsection, we conduct experiments on the image
datasets to verify the effectiveness of auto-encoding GAN. We
choose some frequently used datasets, USPS, MNIST, Fashion-
MNIST, Coil-20, and Cifar-10, to conduct experiments.

Image Datasets. USPS and MNIST [15] are digital image
datasets. USPS contains 9298 images (16 16) of 10 categories,
where 7291 images for training and 2007 images for testing.
MNIST contains 70000 images (28 28), including 60000
training images and 10000 testing images, with 10 categories.
Fashion-MNIST is similar to MNIST, except that it contains
different categories. Coil-20[16] contains 1440 images (128
128), with 20 categories. Cifar-10[17] involves 60,000 color
images (32 32) of 10 categories, including 50000 for training
and 10000 for testing. Only the training images is used in the
experiments.

Evaluation Indicators. The generator is evaluated from the
quality and diversity of the generated images, and FID [18] is
often used to serve this purpose. The lower the FID score, the
closer the generated distribution is to the real distribution,
which means that the quality of the generated images is higher
and the diversity is better.

As for the evaluation of the encoder-decoder, the feature
representation of the encoder is verified from the classification
of images. Clustering accuracy (ACC) and normalized mutual
information (NMI) is usually exploited as the evaluation
indicators of feature representation (especially unsupervised).
The larger the value of ACC and NMI, the better the capability
of feature representation.

Network Architecture. For USPS, MNIST and Fashion-
MNIST datasets, both the generator and discriminator choose
the DCGAN network architecture. The encoder has the same
convolution architecture as the discriminator. The decoder is
coded as a fully connected layer, and the activation function is
softmax for classification of generated and real samples. The
other parameters of the above datasets are set as follows: the

optimizer is uniformly Adam, the learning rate is 0.0004, the
batch size is 128, and the epochs is 500.

Experimental Results. Comparative experiments are
implemented from the coverage degree of the mode and the
feature representation of the model on image datasets, and each
class is regarded as a mode in the image datasets. The models
selected for comparison are WGAN, DCGAN, InfoGAN and
MGAN, as they are representative in each category and more
relevant to our model.

1) Experiments are implemented for the mode coverage of
different models on the image datasets. The degree of model
coverage is mainly evaluated by the FID. The experimental
results are shown in Table Ⅰ.

TABLE Ⅰ. FID (lower is better) of different models on Image Datasets

 Datasets

Models
USPS MNIST

Fashion-
MNIST

Coil-20 Cifar-10

DCGAN 51.41 28.70 72.78 41.39 95.47
WGAN 60.74 83.86 82.79 57.46 100.25

InfoGAN 34.06 26.71 72.92 37.41 80.82
MGAN 30.85 25.29 81.24 36.92 87.23

Ours 28.42 22.07 64.63 35.27 85.46

From the experimental results in Table Ⅰ, it can be concluded
that auto-encoding GAN is better than other models on USPS,
MNIST, Fashion-MNIST and Coil-20. On Cifar-10, InfoGAN
is the best and better than auto-encoding GAN.

From the average of FID over all datasets, auto-encoding
GAN is 10.77 lower than DCGAN, 27.06 lower than WGAN,
4.01 lower than InfoGAN, and 4.53 lower than MGAN. It is
further demonstrated that auto-encoding GAN is significantly
better other models in reducing mode collapse.

In addition to the above FID comparison experiments, some
images generated by various models on MNIST are shown in
Fig. 6.

WGAN DCGAN InfoGAN

MGAN Auto-Encoding GAN

Figure 6. Images generated by various models on MNIST

From the generated images on MNIST, it can be seen that
the quality of the images generated by WGAN and DCGAN is
poor, and the images are generated in a random way. Both

310

InfoGAN and MGAN generate a variety of modes, but partial
modes have a phenomenon of overlap, such as '1' of MGAN,
and the purity of the generated images is low, such as '9' and '4'.
Compared with InfoGAN and MGAN, auto-encoding GAN
generate all modes, and the purity of generated images is higher.

2) Experiments are implemented for feature representation
capabilities of different models on the image datasets. Because
WGAN and DCGAN do not have multi-mode representation
abilities, only InfoGAN, MGAN and auto-encoding GAN are
selected in the experiments. NMI and ACC are used to evaluate
the feature representation capabilities of a model. The
experimental results are shown in Table Ⅱ and Table Ⅲ.

TABLE Ⅱ. NMI (%) (higher is better) of different models on Image Datasets

Datasets

Model
USPS MNIST

Fashion-
MNIST

Coil-20 Cifar-10

InfoGAN 72.57 85.27 59.49 74.70 20.49
MGAN 75.99 85.01 54.11 66.49 17.26

Ours 76.21 87.24 59.83 79.34 18.34

TABLE Ⅲ. ACC (%) (higher is better) of different models on Image Datasets

 Datasets

Model
USPS MNIST

Fashion-
MNIST

Coil-20 Cifar-10

InfoGAN 71.42 92.64 58.44 60.41 34.80
MGAN 74.13 92.52 56.09 56.53 32.17

Ours 74.92 93.27 58.11 68.94 33.34

From the experimental results in Table Ⅱ, it can be
concluded that auto-encoding GAN is better than other models
on USPS, MNIST and Coil-20 and Fashion MNIST. On Cifar-
10, InfoGAN performs better than auto-encoding GAN. The
possible reason for this is InfoGAN can randomly select the
hidden code to prevent overfitting of the model compared with
multi-generator models.

From the average of NMI over all datasets, auto-encoding
GAN is 1.69% better than InfoGAN, and 4.22% better than
MGAN. It is further demonstrated that auto-encoding GAN
have preferable capability of feature representation.

IV. CONCLUTION

This paper proposed an auto-encoding GAN to reduce the
mode collapse of the generator and enhance feature
representation of the encoder. It consists of a set of generators, a
discriminator, an encoder and a decoder. A set of generators is
responsible for learning different modes, accelerating the
convergence of the model and preventing mode collapse. The
discriminator is used to distinguish between real samples and
generated samples. The encoder maps the generated samples and
real samples to the embedding space, encoding distinguishable
feature information among modes. The decoder distinguishes
from which generator the generated samples come and from
which mode the real samples come. Different from other multi-
generator models, in order to improve the feature representation
of the encoder and prevent multiple generators from covering a
certain mode, an approach consisting of three phases is proposed
accordingly. First, a clustering algorithm is presented to perceive
the distribution of real and generated samples. Then, cluster

center matching is utilized to keep consistency of the distribution
of real and generated samples. Finally, the encoder and decoder
are jointly optimized by the generated and real samples. We have
conducted experiments on image datasets to fully demonstrate
the effectiveness of auto-encoding GAN in reducing mode
collapse and enhancing feature representation.

REFERENCES
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley and

S. Ozair. “Generative adversarial nets,” Advances in neural information
processing systems, 2014.

[2] A. Radforda, L. Metz, and S. Chintala. “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[3] T. Karras, S. Laine and T. Aila. “A style-based generator architecture for
generative adversarial networks,” In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4401-4410,
2019.

[4] JY. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” In Proceedings
of the IEEE international conference on computer vision, pp. 2223-2232,
2017.

[5] D. Pathak, P. Krahenbuhl, J. Donahue J, T. Darrell and A.A. Efros,
“Context encoders: Feature learning by inpainting”. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2536-
2544, 2016.

[6] L. Metz, B. Poole, D. Pfau , and J. Sohl-Dickstein, “Unrolled generative
adversarial networks,” arXiv preprint arXiv:1611.02163, 2016.

[7] M Mirza and S. Osindero, “Conditional generative adversarial nets,”
Computer Science, arXiv preprint arXiv:1411.1784, 2014.

[8] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
“InfoGAN: Interpretable representation learning by information
maximizing generative adversarial nets,” Advances in neural information
processing systems, 2016.

[9] H. Eghbal-Zadeh, W. Zellinger, and G. Widmer, “Mixture density
generative adversarial networks,” In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5820-5829,
2019.

[10] A. Ghosh, V. Kulharia, V. Namboodiri, V. P. Namboodiri, P. H. Torr, and
P. K. Dokania, “Multi-agent diverse generative adversarial networks,” In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8513-8521, 2018.

[11] Q. Hoang, T.D. Nguyen, T. Le, and D. Phung, “MGAN: Training
generative adversarial nets with multiple generators,” In International
conference on learning representations, February 2018.

[12] M. Arjovsky, S. Chintala, and L.Bottou, “Wasserstein generative
adversarial networks,” In International conference on machine learning,
pp. 214-223, July 2017.

[13] L. Tran, X. Yin, and X. Liu, “Disentangled representation learning gan for
pose-invariant face recognition,” In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1415-1424, 2017.

[14] Y. Guo, D. An, X. Qi, Z. Luo, S. T. Yau, and X.Gu, “Mode collapse and
regularity of optimal transportation maps,” arXiv preprint
arXiv:1902.02934., 2019.

[15] Y. Lecun, and L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,”. Proceedings of the IEEE,
1998, 86(11):2278-2324.

[16] S. Nene, S. Nayar, and Murase, “Columbia object image library (coil-20),”
Technical Report, 1996.

[17] A. Krizhevsky, and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[18] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” Advances in neural information processing systems, pp.
6629-6640, 2017.

311

An Explainable Knowledge-based AI Framework
for Mobility as a Service

Enayat Rajabi1, 2, S lawomir Nowaczyk1, Sepideh Pashami1, and Magnus Bergquist1

1Center for Applied Intelligent Systems Research, Halmstad University, Halmstad, Sweden
{enayat.rajabi,slawomir.nowaczyk,sepideh.pashami, magnus.bergquist}@hh.se

2Shannon School of Business, Cape Breton University, Canada
enayat rajabi@cbu.ca

Abstract

Mobility as a Service (MaaS) is a relatively new do-
main where new types of knowledge systems have re-
cently emerged. It combines various modes of trans-
portation and different kinds of data to present person-
alized services to travellers based on transport needs.
A knowledge-based framework based on Artificial In-
telligence (AI) is proposed in this paper to integrate,
analyze, and process different types of mobility data.
The framework includes a knowledge acquisition pro-
cess to extract and structure data from various sources,
including mobility experts and add new information to
a knowledge base. The role of AI in this framework
is to aid in automatically discovering knowledge from
various data sets and recommend efficient and person-
alized mobility services with explanations. A scenario
is also presented to demonstrate the interaction of the
proposed framework’s modules.

1 Introduction

In recent years, with an increasing number of trans-
port services offered in cities and the advancements in
technology, an innovative Mobility as a Service (MaaS)
concept was introduced [7]. MaaS combines differ-
ent transportation modes to deliver users’ various ser-
vices based on transport needs, including trip planning,
reservation, and payments, through a single interface
[8]. The main goal of MaaS is to make commuting
convenient for travellers and offer them flexible, price-
worthy, reliable, and sustainable mobility services for
goods shipping and delivery. Integrating various ser-

vices and systems such as electronic ticketing, booking,
route planning, and payment services across different
modes of transportation can make this happen, as part
of Smart Cities transformation [13].

Artificial Intelligence (AI) is also increasingly used
these days in MaaS to develop advanced mobility ser-
vices [5] leveraging both spatial (location-based) and
temporal detail recorded frequently by devices such as
smartphones, micro-mobility vehicles, on-board vehi-
cle computers, or app-based navigation systems to im-
prove traffic flow or transportation logistics. One of the
prerequisites of using AI models in a multi-stakeholder
domain such as transportation is to provide explain-
ability and the possibility of tracing back the decisions
made to their sources. It is crucial for building trust
and adoption of AI systems in settings where trans-
parency is required due to high-stakes scenarios [6].

The interpretation of huge amount of data collected
from several sources can not be achieved without the
presence of a knowledge-based AI system. For example,
if a knowledge-based AI system can capture travellers’
preferences, it can exclude travel plans or routes of no
interest to those users. However, how to obtain this
knowledge is one of the key open challenges. Broadly
speaking, it can be acquired by extracting and structur-
ing data or information from various sources, including
human experts, and storing the data into a knowledge
base. The system’s knowledge acquisition process may
consist of collecting facts, designing rules, concepts,
procedures, heuristics formulas, relationships, ontolo-
gies, statistics, or other helpful information. Acquiring
specific knowledge about travellers allows MaaS to rec-
ommend a ranked list of MaaS planes/routes to select
the ones that better fit the user’s preferences by in-
ferring the similarity of available plans to the user’s

1DOI reference number: 10.18293/SEKE2022-0020

312

profile. Knowledge-based AI systems also enable the
possibility of providing the right information to the
right user with understandable explanations. In this
study, we investigate how one can combine different
information sources with an understanding of the trav-
eller’s context to present a personalized service to trav-
ellers based on the users’ preferences. The article aims
at proposing a knowledge-based AI framework to pro-
vide personalized and explainable mobility services to
travellers, service providers, drivers, and other mobil-
ity users. This framework covers procedures for data
collection, knowledge extraction, inference, recommen-
dations and explanations.

2 Related Works

Understanding what makes MaaS particularly chal-
lenging is the first step toward identifying the essen-
tial features required of the proposed framework in this
study. AI has been generally used successfully in many
different settings in the field of transportation over the
years; see, for example [14, 10, 2, 15].

A recent study [9] proposed an AI model to predict
the traffic intensity before the vehicles reach the in-
tersection. The vehicle trajectory data was collected
from GPS sensors, longitudinal, lateral and yaw mo-
tion, heading and speed of automobile movements. The
vehicles with similar conditions were clustered to pro-
vide a route planner to users. In terms of traffic flow
prediction, Li and Xu [11] developed a short-term traf-
fic flow prediction model based on Support Vector Re-
gression (SVR) to improve the accuracy of traffic flow
prediction systems on the California Highway Perfor-
mance Evaluation System (PeMS) videos. AI-based
models are also used to classify driving styles, ranging
from aggressive to calm. The classification algorithms
are widely used to customize driver assistance systems,
assess mobility, crash risk, fuel consumption, or emis-
sions, among others. For example, Mohammadnazar
et. al [12] extracted volatility measures based on speed,
lateral longitudinal acceleration, and temporal driving
volatility (using a 3-second time-frame window) from a
set of data and used them for cluster drivers (in aggres-
sive, normal, and calm) using K-means and K-medoids
methods. Although several studies applied various AI-
based models in MaaS, relatively few of them consid-
ered leveraging knowledge-based systems in the models
to provide personalized and explainable mobility ser-
vices. Arnaoutaki et al. [1], as an example, proposed
a hybrid knowledge-based system that uses constraint
programming mechanisms to provide mobility plans to
travellers based on their preferences and exclude the
routes that do not match those preferences. Close

to this study and in conjunction with the other AI-
based models, we propose a knowledge-based AI mo-
bility framework that utilizes context information and
knowledge of mobility (acquired from travellers and ve-
hicles) to provide personalized mobility services while
being interpretable and explainable for both travellers
and domain experts.

3 Proposed Framework for Mobility as
a Service

There are different sources of mobility knowledge,
including contextual data (weather, traffic, disrup-
tions), operational (routes, schedules, business rules,
and deliveries), personal (passengers, travellers, and
drivers) and transactional (booking, tickets, and pay-
ments). We propose a knowledge-based framework
(Figure 1) that provides customized, explainable, and
enriched services based on various types of mobility
data. The framework intends to integrate different mo-
bility data types processes, analyze them, and recom-
mend a real-time personalized service with customized
explanations based on mobility users’ needs. We will
discuss the main modules of this framework briefly be-
low.

3.1 Semantic enrichment

A semantic enrichment module matches concepts in
a system with the most appropriate semantic entities
available from various sources. It leverages mobility on-
tologies, vocabularies, and API services to fetch data
and integrate similar entities using semantic similari-
ties metrics from different resources. The outcome of
this module is an enriched set of entities that are in-
jected into the knowledge base.

3.2 Mobility ontology

Ontology can be seen as a formal representation
of entities in a domain, their relations, properties or
attributes, and constraints. Different mobility con-
cepts can be defined as terminologies and vocabular-
ies to describe real-world features or phenomena as-
sociated with a specific discipline, domain or appli-
cation and their relationships. Developing mobility
ontologies in a knowledge-based AI system facilitates
knowledge acquisition and allows knowledge reasoning.
The concepts of ambiguity and semantic heterogene-
ity in mobility systems can be resolved using ontolo-
gies in knowledge bases. Leveraging ontologies also
solves semantic heterogeneity problems and enriches

2

DOI reference number: 10.18293/SEKE2022-0020 313

Figure 1. Knowledge-based AI framework for mobility as a service

services’ descriptions to make their semantics machine-
interpretable and provides efficient search results.

3.3 Rule engine

Ontologies assist in defining new entities, concepts
and their relationships. However, information about
the context and procedural knowledge are usually rep-
resented by logic rules in the form of condition–action
pairs: IF condition holds, THEN perform action. Con-
ditions usually contain patterns and variables that may
be linked to facts. Each rule has a first, matching part,
and a second, action one, which modifies the working
memory or outputs something. A rule may have vari-
ables that are linked to values in the working memory
using pattern matching [3]. For example, consider a
rule stating that a traveller would not use an e-bike in
rainy weather; the variables ?t (traveler), ?e (e-bike),
and ?u (uses) are matched to all the available data that
satisfies the condition.

3.4 Recommendation system

The recommender systems understand the prefer-
ences and needs of MaaS users, their context and their
environment to assist them with a personalized mo-
bility service. The recommendation system module of
the proposed framework is connected to the inference
engine, explainability, and representation modules to

suggest a customized and personalized mobility service
based on inductive reasoning.

3.5 Representation

The representation module is responsible for prepar-
ing the outputs of the recommender system and ex-
plainability modules and visualizing them understand-
ably and convincingly for the users. Since different ex-
planations and visualizations might be needed for vari-
ous users, this module assigns proper explanations and
delivers them to the interface layer to be visualized.

3.6 Explainability

Explainability makes an AI system more under-
standable, transparent and responsible while reducing
risks. This module is responsible for justifying the per-
sonalized recommendation made by the recommenda-
tion system – to both travellers and domain experts.
For example, the module explains the reasons for rec-
ommending a specific service (e.g., a taxi with an elec-
tric car) for a traveller or, in extreme cases, why no rec-
ommendations are available for a particular user. One
approach toward explainability is using features sug-
gested by experts to bridge the gap between knowledge-
driven and data-driven approaches.

3

DOI reference number: 10.18293/SEKE2022-0020 314

4 Scenario

The following scenario shows how a knowledge-
based AI system can provide a customized and per-
sonalized service to two different travellers. As Figure
2 illustrates, the knowledge-based AI system (forming
the core of the proposed framework) is connected to
contextual and non-contextual sources, such as pub-
lic transport, taxi, rental car services, and weather
data – to capture various information. It also provides
a mobile application or wearable device for travellers
to address their needs and schedules. With the help
of mobility experts and knowledge engineers, a set of
rules is created based on the different information and
integrated into the knowledge base. These rules are
updated regularly based on changing circumstances,
trends in mobility patterns, etc.

In this scenario, two travellers, namely Alex and
Mary, usually use e-bikes on Wednesdays. However,
the system notices that next Wednesday will be rainy,
based on weather forecast data. The system uses a
rule engine and concludes that travellers cannot ride e-
bikes in rainy weather, recommending an alternative
transportation solution with an explanation to each
traveller. According to the knowledge base, Mary is
interested in sustainable mode of transportation and
prefers using electric cars, while Alex likes gas automo-
biles. The system searches the taxi drivers in Mary’s
area and arranges a taxi service with an electric car
for her. It also suggests a gas car for Alex according
to his location. Both travellers are connected to the
corresponding taxi drivers. If there are no taxi drivers
available for these travellers, the AI system might not
provide any recommendations and notifies the domain
expert or knowledge engineer to add a new rule to the
system to expand its functionality.

5 Discussion

Knowledge-based AI systems can make valuable
contributions to generating flexible and intelligent so-
lutions; however, there are several challenges due to
the complexity of mobility services. Collecting the re-
quirements of MaaS users and accessing real-time data
(contextual and non-contextual) from several sources
is challenging. Also, updating the proposed knowledge
base with, e.g., contextual data such as weather or traf-
fic information requires real-time services to respond
to the travellers’ up-to-date requirements and needs.
Furthermore, connecting different types of data with
various structures and identifying their semantic rela-
tionships adds another challenge while providing richer
explainable services. In terms of semantic enrichment,

a semi-automatic approach should be followed to enrich
different types of data coming into the system and facil-
itate interoperability issues in MaaS. A mobility expert
with extensive knowledge of mobility data should con-
struct a mobility ontology or adjust existing ontologies
in the system and define rules in the system. To answer
questions like ”what should happen if someone uses e-
bikes in rainy weather?”, the mobility expert should
inject a rule in the knowledge base. The system should
provide tools and interfaces to update and optimize the
system’s rules efficiently.

In terms of explainability, one type of explanation
can not be sufficient for different mobility users such
as domain experts, knowledge engineers, and Maas
end-users. Although recently emerged explainability
approaches [4] can address the knowledge engineers’
needs, they have not been adapted to handle the
requirements of mobility stakeholders and end-users.
Recommendations augmented with reasoning and ex-
planations can increase awareness of the framework’s
performance.

6 Conclusion

In the light of technological advancement in the mo-
bility domain due to widespread AI adoption, individu-
als demand more personalized transportation solutions.
Off the shelf, AI solutions provide pieces of the puz-
zle to solve transportation needs in MaaS. This paper
proposed a knowledge-based AI framework consider-
ing all the necessary modules to enable new services
in MaaS, including three important modules (knowl-
edge base, recommendation system, and explainabil-
ity) to provide personalized and explainable services
to MaaS users. Although a scenario was presented to
support the proposed framework, further investigation
is needed concerning the development of its modules
and their technical interactions.

References

[1] K. Arnaoutaki, B. Magoutas, E. Bothos, and
G. Mentzas. A hybrid knowledge-based recommender
for mobility-as-a-service. In ICETE (1), pages 101–
109, 2019.

[2] L. Barua, B. Zou, and Y. Zhou. Machine learning
for international freight transportation management:
a comprehensive review. Research in Transportation
Business & Management, 34:100453, 2020.

[3] C. Berdier. An ontology for urban mobility. In Ontolo-
gies in Urban Development Projects, pages 189–196.
Springer, 2011.

4

DOI reference number: 10.18293/SEKE2022-0020 315

Figure 2. A scenario based on the proposed knowledge-based AI framework

[4] U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly,
Y. Jia, J. Ghosh, R. Puri, J. M. F. Moura, and
P. Eckersley. Explainable machine learning in de-
ployment. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, FAT* ’20,
page 648–657, New York, NY, USA, 2020. Association
for Computing Machinery.

[5] M.-R. Bouguelia, A. Karlsson, S. Pashami,
S. Nowaczyk, and A. Holst. Mode tracking us-
ing multiple data streams. Information Fusion,
43:33–46, 2018.

[6] K. Gade, S. C. Geyik, K. Kenthapadi, V. Mithal, and
A. Taly. Explainable AI in industry. In Proceedings of
the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’19, pages
3203–3204. Association for Computing Machinery.

[7] W. Goodall, T. Dovey, J. Bornstein, and B. Bonthron.
The rise of mobility as a service. Deloitte Rev, 20:112–
129, 2017.

[8] P. Jittrapirom, V. Caiati, A.-M. Feneri,
S. Ebrahimigharehbaghi, M. J. Alonso González,
and J. Narayan. Mobility as a service: A critical
review of definitions, assessments of schemes, and key
challenges. 2017.

[9] S. J. Kamble and M. R. Kounte. On road intelligent
vehicle path predication and clustering using machine
learning approach. In 2019 Third International con-
ference on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud)(I-SMAC), pages 501–505. IEEE, 2019.

[10] T. Kim, S. Sharda, X. Zhou, and R. M. Pendyala.
A stepwise interpretable machine learning framework
using linear regression (lr) and long short-term mem-
ory (lstm): City-wide demand-side prediction of yellow
taxi and for-hire vehicle (fhv) service. Transportation
Research Part C: Emerging Technologies, 120:102786,
2020.

[11] C. Li and P. Xu. Application on traffic flow prediction
of machine learning in intelligent transportation. Neu-
ral Computing and Applications, 33(2):613–624, 2021.

[12] A. Mohammadnazar, R. Arvin, and A. J. Khattak.
Classifying travelers’ driving style using basic safety
messages generated by connected vehicles: Applica-
tion of unsupervised machine learning. Transportation
research part C: emerging technologies, 122:102917,
2021.

[13] S. Nowaczyk, T. Rögnvaldsson, Y. Fan, and E. Ca-
likus. Towards Autonomous Knowledge Creation from
Big Data in Smart Cities, pages 1–35. Springer Inter-
national Publishing, Cham, 2020.

[14] T. Rögnvaldsson, S. Nowaczyk, S. Byttner, R. Prytz,
and M. Svensson. Self-monitoring for maintenance of
vehicle fleets. Data Mining and Knowledge Discovery,
32:344–384, 2018.

[15] N. Servos, X. Liu, M. Teucke, and M. Freitag. Travel
time prediction in a multimodal freight transport re-
lation using machine learning algorithms. Logistics,
4(1):1, 2020.

5

DOI reference number: 10.18293/SEKE2022-0020 316

Enhancing Pre-Trained Language Representations
Based on Contrastive Learning for Unsupervised

Keyphrase Extraction

Zhaohui Wang12, Xinghua Zhang12, Yanzeng Li3, Yubin Wang12, Jiawei Sheng12, Tingwen Liu12∗, Hongbo Xu12
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China, {wangzhaohui, liutingwen}@iie.ac.cn

2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
3Wangxuan Institute of Computer Technology, Peking University, Beijing, China

Abstract—Keyphrase extraction (KPE) aims to obtain a set of
phrases from a document that can summarize the main content
of the document. Recently, pre-trained language models (LMs),
especially BERT and ELMo, have achieved remarkable success,
presenting new state-of-the-art results in unsupervised KPE.
However, current pre-trained LMs focus on building language
modeling objectives to learn a general representation, ignoring
the keyphrase-related knowledge. Intuitively, the joint embedding
of the keyphrase set should tend to be close to that of the
extracted document, and far from those of other documents.
In this work, we propose a contrastive learning-based semantic
representation task to further improve BERT for unsupervised
KPE. Particularly, we design a doc-phrase attention module to
generate joint semantic embedding of the keyphrase set as a
positive sample and select other semantically similar documents
as hard negative samples. In the prediction layer, we further add
an accumulated self-attention module to calculate the final scores
of candidate phrases. We compare with eight strong baselines,
and evaluate our model on three publicly available datasets.
Experimental results show that our model is effective and robust
on both long and short documents.

Index Terms—keyphrase extraction, contrastive learning, pre-
trained language models, unsupervised, attention

I. INTRODUCTION

With a vast amount of scientific or non-scientific articles
published online every year, indexing and information retrieval
have become challenging. Keyphrase extraction (KPE) is con-
cerned with automatically extracting a set of representative
phrases from a document that concisely summarizes its content
[1]. It can significantly accelerate the speed of information
retrieval and help people get first-hand information from a long
text quickly and accurately. As a result, automatic keyphrase
extraction is crucial in natural language processing (NLP).

Recently, pre-trained language models (LMs), such as
ELMo [2] and BERT [3], have caused a stir in the KPE
community. These LMs are pre-trained on unlabeled text and
then applied to KPE, in either an embedding-based unsu-
pervised [4], [5] or a supervised [6] manner, both offering
substantial performance boosts. Despite refreshing the state-of-
the-art performance of KPE, the current pre-trained techniques
are not directly optimized for KPE. Typically, these models

∗Corresponding author
DOI reference number: 10.18293/SEKE2022-131

build unsupervised training objectives to capture dependency
between words and learn a general language representation [7],
while rarely considering incorporating keyphrase information
which can provide rich knowledge for KPE. Due to little
knowledge connection between KPE and general language
modeling, how to adapt public pre-trained models to be KPE-
specific remains an open problem.

The embedding-based unsupervised KPE, which has been
widely studied, ensures high retrieval speed and outstanding
performance on certain datasets without a large amount of
annotated data. However, these methods commonly include the
following steps: extracting noun phrases from the document
as candidate phrases, utilizing a pre-trained language model to
generate document and phrase embeddings, calculating each
candidate’s final score independently. During the scoring stage,
they generally use cosine similarity to assess the relevance
between a single candidate phrase and document. However,
the semantic information contained in the keyphrase set, which
expresses the main content of a document, is ignored.

In this paper, we aim to fully utilize the joint semantic
information of the keyphrase set. Inspired by the success of
contrastive learning in computer vision (CV), the most recent
methods are interested in determining whether it could also
assist language models in promoting representation ability
[8]. With the simple intuition that the joint semantics of the
keyphrase set tends be close to its document and be dissimilar
to other document in semantic space, we propose a contrastive
learning-based semantic representation task, which leverages
triplet loss [9] to effectively optimize the representations of
the pre-trained language model.

Specifically, we use BERT [3] language model to en-
code documents and candidate phrases. In triplet loss, we
use the document embeddings as anchors. The doc-phrase
attention module is designed to distinguish keyphrases and
non-keyphrases and generate joint semantic embeddings of
keyphrase sets as positive samples. We also select semantically
similar documents as hard negative samples. In the prediction
stage, we utilize the linear integration of doc-phrase attention
and accumulated self-attention modules to calculate the final
scores of candidate keyphrases.

We compare our model with eight unsupervised keyphrase

317

mailto:wangzhaohui@iie.ac.cn,liutingwen@iie.ac.cn

extraction methods on three benchmark datasets. Two datasets
contain short documents, and one contains long documents.
Experimental results show that our model performs better than
or as competitive as the baselines. The main contributions of
this paper are summarized as follows:
• We propose a contrastive learning-based semantic repre-

sentation task to enhance pre-trained LMs for unsuper-
vised KPE;

• We design a doc-phrase attention module to generate
joint semantic embedding contained in keyphrase set and
combine accumulated self-attention module to calculate
the scores for candidate phrases;

• Experimental results show that our model outperforms
eight strong baselines and is robust to identify keyphrases
from both short and long documents of different domains.

II. RELATED WORK

This section briefly describes prior works about unsu-
pervised keyphrase extraction and contrastive self-supervised
learning, which have strong connections with this paper.

A. Unsupervised Keyphrase Extraction

Keyphrase extraction is an important problem in NLP area.
Researchers have developed a wide range of solutions for this
task in the last few years, including supervised and unsuper-
vised methods. In the supervised setting, keyphrase extraction
is usually treated as a classification problem [10], [11] or
text generation [12], [13] task, which needs large amounts of
annotated data for training and are generally domain-specific.
In this paper, we discuss unsupervised keyprhase extraction
only.

Traditional unsupervised methods such as TF-IDF and
YAKE! [14], are statistic-based methods. YAKE! incorporates
five different features for each term to calculate a ranking score
after preprocessing the text by splitting it into individual terms.

In addition, graph-based methods via converting a document
into graphs are popular. Motivated by Brin and Page [15],
TextRank [16] was proposed to rank nodes of graphs con-
structed by word co-occurrence windows and implements
PageRank iteratively. After this, various works attempted to
expand TextRank. SingleRank [17] is one of the modifications
in which the weight of each edge is equal to the number of
co-occurrences of two corresponding words. TopicRank [18]
assigned a salience score to each topic by candidate keyphrase
clustering.

Embedding-based methods rely on notable new develop-
ments in text representation learning by encoding text se-
quences into low-dimension vectors. Hence, embedding-based
unsupervised keyphrase extraction has gained a lot of attention
in recent years. EmbedRank [19] proposed to measure the
text similarity between phrase and document embeddings to
make predictions. Sun et al. [4] proposed SIFRank, which
improves the static embedding of EmbedRank with a pre-
trained language model and a sentence embedding model
SIF [20]. AttentionRank [5] proposed a hybrid attention model

to identify keyphrases from a document. These embedding-
based methods ignore the information carried in the keyphrase
set, while we effectively capture and utilize the information by
a doc-phrase attention module and achieve competitive results.

B. Contrastive Self-Supervised Learning

Self-supervised learning has gained popularity due to its
ability to avoid the cost of annotated large-scale datasets.
It can adopt self-defined pseudo labels as supervision and
use the learned representations for several downstream tasks.
Specifically, contrastive learning has recently become a dom-
inant component in self-supervised learning methods in CV,
NLP, and other domains [21]. Contrastive learning aims to
learn effective representation by pulling semantically close
neighbors together and pushing non-neighbors apart. CERT [8]
applied the back-translation to create augmentations for origi-
nal sentences. Declutr [22] regarded that different spans inside
one document are similar to each others. SCL [23] proposed
a supervised contrastive learning objective to increase the
distance between categories for the fine-tuning stage. Sim-
CSE [24] described an unsupervised approach, which takes
an input sentence and predicts itself in a contrastive objective,
with only standard dropout used as noise. Intuitively, the joint
semantics of the keyphrase set tends to be close to the entire
document, and far from other documents in semantic space.
Therefore, we desingn a contrastive learning-based semantic
representation task to enhance pre-trained language model for
unsupervised KPE.

III. PROBLEM DEFINITION

Keyphrase extraction is the task of automatically selecting
a small set of phrases that summarize the document’s main
content. Formally, given a document d = {w1, w2, . . . , wn}
in dataset D consisting of n words, candidate phrases can
be selected as set C = {c1, c2, . . . , cm}, where m is the
number of candidates. Each candidate ci consists of several
words ci =

{
c1i , c

2
i , . . . , c

l
i

}
. Keyphrase extraction is to select

Top-K candidates from C forming a keyphrase set K =
{k1, k2, . . . , kt} according to their scores, usually t < m.

IV. METHODOLOGY

In this section, we introduce our method in detail. The
overall architecture is illustrated in Figure 1, which can be
divided into three parts: (a) extracting a candidate set C from
a document for the contrastive framework and prediction stage;
(b) our contrastive architecture to enhance BERT model and
(c) the final score calculation strategy for each candidate.

A. Candidate Generation

We use the candidate generation module implemented in
EmbedRank [19]. Firstly, the document is tagged to a sequence
of words with part-of-speech tags. Then, we extract the noun
phrases (NPs) from the sequence according to the part-of-
speech tags using NP-chunker (pattern written by regular

318

Fig. 1. Overview of Our Method.

expression). The NPs extracted from the document are the can-
didate keyphrases. Specifically, we use the Stanford CoreNLP
to tokenize part-of-speech tags. And regular expression <NN.
* |JJ> * <NN.*> is used to extract noun phrases as candidate
keyphrases.

B. Model Architecture

Existing embedding-based works measure the semantic sim-
ilarity between each candidate phrase and the document inde-
pendently, which ignores the semantic information contained
in the keyphrase set. Intuitively, the joint semantics of the
keyphrase set, which can better describe the main content of
a document, tends to be close to the entire document, but
far from other documents in semantic space. In this part,
we introduce how to generate a joint semantic embedding
from a phrase set and how to model the relationship between
keyphrase set and document embeddings using ontrastive
learning.

1) Encoder: BERT model encodes document d into a
sequence of vectors Ed =

{
e1d, e

2
d, e

3
d, . . . , e

n
d

}
, where edi is

the i-th word’s contextualized embedding in document d from
the last transformer layer.

E = Bert (w1, w2 . . . , wn) (1)

MeanPooling method is adopted to obtain document-level and
phrase-level embeddings.

ed = MeanPooling
(
e1d, e

2
d, e

3
d, . . . , e

n
d

)
(2)

ci = MeanPooling
(
c1i , c

2
i , . . . , c

l
i

)
(3)

2) Doc-Phrase Attention Module: The doc-phrase attention
is designed to measure the importance between candidate
phrases. Considering that only part of the candidate phrases

https://stanfordnlp.github.io/CoreNLP/

are keyphrases, we design a doc-phrase attention module to
distinguish keyphrases from non-keyphrases. The input of doc-
phrase attention module is the embedding of document d and
the embeddings of candidate phrases in set C, where the
former is used as query and the latter is considered as key
and value. The joint semantic embedding of phrase set for
target document d can be calculated as the weighted sum of
ci.

Att (ed, ci) = eTd Wci (4)

αi =
eAtt(ed,ci)∑m
i=1 e

Att(ed,ci)
(5)

et =
m∑
i=1

αici (6)

3) Contrastive supervision: Triplet loss [9] was used as the
overall training objective. In order to ensure fast convergence,
we design an effective strategy to select hard negative samples.

Given the triplets (ea, ep, en) where a, p, n represent anchor,
positive and negative examples respectively, triplet loss aims
to narrow the gap between anchor and positive examples
and distinguish between anchor and negative examples. The
constraint is shown as Equation 7. Typically, a document’s
main content tends to be close to itself and far from other
documents in semantic space. We take the target document
embedding as the anchor, the joint semantic embedding of the
target document as the positive sample and the embedding of
other documents in dataset as the negative samples.

∥ea − ep∥22 +m < ∥ea − en∥22 ,∀ (ea, ep, en) ∈ R (7)

The loss function can be defined as the following:

L =
∑
d∈D

[
∥ead − epd∥

2

2
− ∥ead − end∥

2
2 +m

]
+

(8)

319

https://stanfordnlp.github.io/CoreNLP/

Fig. 2. Visualization Example of The Accumulated Self-attention Module.

where ead and end represent the embedding of target docu-
ment and the embedding of other documents calculated by
Equation 2. Furthermore, epd represents the joint semantic
embedding of target document’s phrase set calculated by
Equation 6 and m denotes margin.

In addition, it is crucial to select or mining triplets that
violate the triplet constraint in Equation 7. This means that,
given ea we need select an ep (hard positive) such that
argmaxep ∥ea − ep∥22 and similarly en (hard negative) such
that argmaxen ∥ea − en∥22. We select documents that are
semantically closer to the target document as negative exam-
ples. As for the positive example, according to experimental
results, the joint semantic embedding generated by doc-phrase
attention module can meet the triplet loss requirements.

C. Prediction Strategy

1) Accumulated Self-attention Module: Motivated by [5],
[25], we extract self-attention weights of the words from the
BERT. As shown in Figure 2, we sum the attention weights
that a phrase received in the document, and all the noun
phrases are highlighted. The higher self-attention it receives,
the darker the noun chunk is. Intuitively, noun phrases with
darker colors should be selected as keywords with higher
probabilities. The calculating method is introduced as follows.

To obtain the attention value rw of the word w within a
sentence, we sum the attentions rw′w that a word w received
from other words w′ within the same sentence s, shown as
Equation 9. This attention value rw represents the importance
of the word within the context of a sentence.

rw =
∑
w′∈s

rw′w (9)

To calculate the self-attention of a candidate c in sentence
j, we add up the attentions of the words in c, shown as
Equation 10.

rcj =
∑
w∈c

rw (10)

The document level self-attention value of candidate c is
computed as the sum of all self-attention values of c in each
sentence of document d, shown as Equation 11.

rc =
∑
j∈d

rcj (11)

2) Final Score Calculation: For document d, the doc-
phrase attention value αc and the accumulated self-attention
value rc are calculated and normalized separately for each
candidates. The final score of a candidate is generated by

TABLE I
STATISTICS OF THE THREE DATASETS.

Dataset
Documents Keyphrases

Total Type AveWords AveSentences Total AveNumber AveLength

Inspec 500 Abstracts 134 6 4912 9.8 2.3
SemEval2017 493 Paragraph 168 7 8529 17.3 3
SemEval2010 243 Full papers 8154 369 3662 15.1 2.1

linear integration of these two values using Equation 12, where
β ∈ [0, 1].

Sc = β ∗ rc + (1− β) ∗ αc (12)

V. EXPERIMENTS

In this section, we first set up the experiments by preparing
the datasets and introducing the comparison methods, and then
report the results of conducted experiments to demonstrate the
effectiveness of the proposed method.

A. Datasets and Evaluation Metrics

To fully evaluate the performance of our model, we tes-
tify it on three benchmark datasets. The statistics of the
three datasets are shown in Table I. Datasets Inspec [26]
and SemEval2017 [27] contain short documents, whereas
SemEval2010 [28] contains long documents.

The Inspec dataset consists of 2000 short documents se-
lected from scientific journal abstracts. There are 1000 docu-
ments for training, 500 for validation and 500 for test. We use
the test part to validate our model in this paper.

The SemEval2017 dataset is the Task 10 in SemEval2017
competition. It contains 493 paragraphs selected from Sci-
enceDirect journal, covering computer science, materials sci-
ence and physics. Each document is annotated with keyphrases
by an undergraduate and an expert.

The SemEval2010 dataset consists of 243 full papers from
the ACM Digital Library. The articles are purposefully se-
lected from four different areas.

B. Baselines

We compared our model with eight keyphrase extraction
methods which are all unsupervised models in three types:
statistic-based model, graph-based model and embedding-
based model. The statistic-based models are TF-IDF and
YAKE! [14]. The graph-based models are TopicRank [18],
PositionRank [29] and SingleRank [17]. The embedding-based
models are EmbedRank [19], SIFRank [4] and Attention-
Rank [5].These baselines all generate candidates using noun
phrases without any additional steps. We used PKE to run
SingleRank, RAKE, and TopicRank. The published GitHub
code of YAKE!, PositionRank, EmbedRank, SIFRank and
AttentionRank were used to produce the results on the selected

https://github.com/boudinfl/pke
https://github.com/LIAAD/yake
https://github.com/ymym3412/position-rank
https://github.com/swisscom/ai-research-keyphraseextraction
https://github.com/sunyilgdx/SIFRank
https://github.com/hd10-iupui/AttentionRank

320

https://github.com/boudinfl/pke
https://github.com/LIAAD/yake
https://github.com/ymym3412/position-rank
https://github.com/swisscom/ai-research-keyphraseextraction
https://github.com/sunyilgdx/SIFRank
https://github.com/hd10-iupui/AttentionRank

TABLE II
MODEL COMPARISION WITH PRECISION(P), RECALL(R), AND

F-SCORE(F1) @5, @10, @15 ON THREE BENCHMARK DATASETS. N IS
THE NUMBER EXTRACTED FROM A SINGLE DOCUMENT BY THE MODELS.

THE BEST PERFORMANCES ARE BOLD.

N Method Inspec SemEval2017 SemEval2010
P R F1 P R F1 P R F1

5

TF-IDF 16.71 8.51 11.28 28.31 8.18 12.69 14.93 4.72 7.17
YAKE! 25.04 11 15.29 24.79 7.96 12.05 16.87 5.65 8.46

TopicRank 27.4 11.93 16.62 38.13 11.02 17.1 10.37 3.52 5.26
PositionRank 29.8 12.15 17.26 40.65 11.75 18.23 5.16 1.62 2.47
SingleRank 30.26 12.24 17.43 40.57 12.6 19.23 2.33 1.41 1.76
EmbedRank 33.77 12.43 18.17 44.72 12.93 20.06 3.29 1.1 1.65

AttentionRank 35.44 12.72 18.72 45.27 13.15 20.38 19.51 6.3 9.52
SIFRank 39.64 13.83 20.51 45.16 13.23 20.46 11.44 3.83 5.74

Ours 39.04 14.01 20.61 47.30 13.74 21.30 22.22 7.18 10.85

10

TF-IDF 13.76 14.01 13.88 22.19 12.83 16.26 13.18 9.59 11.1
YAKE! 19.48 16.67 17.97 23.33 14.86 18.16 14.94 10 11.98

TopicRank 27.11 22.27 24.45 30.87 17.84 22.61 9.26 6.2 7.43
PositionRank 28.04 23.25 25.42 33.1 20.2 25.09 4.61 3.05 3.67
SingleRank 28.32 23.43 25.64 35.25 20.38 25.83 2.23 2.53 2.37
EmbedRank 29.97 22.3 25.57 37.48 23.21 28.67 3.58 2.34 2.83

AttentionRank 31.47 23.15 26.68 39.66 23.03 29.14 16.83 10.87 13.21
SIFRank 35.89 24.77 29.31 40.31 23.32 29.55 7.82 5.18 6.23

Ours 34.06 24.25 28.33 41.52 24.12 30.52 19.18 12.39 15.05

15

TF-IDF 11.44 17.47 13.83 18.01 15.62 16.73 12.16 11.39 11.76
YAKE! 17.12 21.7 19.14 21.41 20.07 20.72 12.87 12.86 12.86

TopicRank 24.09 29.04 26.33 26.85 23.17 24.87 7.98 8.06 8.02
PositionRank 24.59 28.53 26.41 29 26.5 27.69 4.15 4.02 4.08
SingleRank 27.34 27.26 27.3 32.95 28.48 30.55 2.62 4.37 3.28
EmbedRank 26.41 30.2 28.18 34.68 29.61 31.95 3.65 3.63 3.64

AttentionRank 28.43 29.09 28.76 35.26 30.64 32.79 14.24 13.79 14.01
SIFRank 30.84 30.98 30.91 35.90 31.10 33.33 6.20 6.11 6.15

Ours 29.53 30.57 30.04 37.05 32.25 34.48 16.27 15.76 16.01

datasets. It is worth noting that the produced results of the
baselines are slightly higher or lower than the results presented
in the original papers.

C. Experiment Settings

In the experiment, we use ”bert-base-uncased” as our pre-
trained model. Our model is optimized using Adam with 1e-5
learning rate and 8 batch sizes. We use maximum sequence
length 512. The number of negative samples is 2. For all
datasets, we set the linear combination ratio β to be 0.5 for
Inspec and 0.8 for SemEval2017 and SemEval2010. For the
baseline methods, the parameters published on the correspond-
ing GitHub were used. All of the models are implemented
under PyTorch running on 2 NVIDIA Tesla T4 GPUs.

D. Results

Table II shows the results of Precision, Recall and F1 @5,
10, and 15 using our model and baseline models on three
datasets.

Short document. The results show that the embedding-
based methods, including our model, perform better than the
statistic-based (TF-IDF and YAKE!) and graph-based algo-
rithms (SingleRank, TopicRank, and PositionRank) on short
document sets (Inspec and SemEval 2017). Statistic-based and
graph-based unsupervised methods, despite their simplicity, do
not perform as well as other methods on short documents, for
which semantic information is assumed to be very important.

SIFRank performs slightly better than our model on Inspec.
It works better than our model when K is set to 10 or 15.

Fig. 3. Evaluation of the Linear Proportions’ Impact on Performance.

Nevertheless, our model has a slightly better F1 than SIFRank
and other baselines when the top 5 candidates are used for
evaluation. Moreover, our model outperforms SIFRank on
SemEval2017 dataset. It shows that our method performs
competitively with SIFRank.

Long document. Our method shows advantage on long
document set SemEval2010. The F1 value is at least 1.3% bet-
ter than the highest baseline. Statistic-based methods achieve
prominent results than other baselines on long documents.
This may indicate that for long documents, statistical features
such as word frequency and inverse document frequency are
more important for the selection of keyphrases. Existing graph-
based methods and embedding-based methods have difficulty
in capturing these features, which can be well solved in our
method.

E. Impact of hyperparameters

Our model linearly integrates the doc-phrase attention value
and the accumulated self-attention value to measure the impor-
tance of a candidate phrase. We study the influence of the two
modules by adjusting β (in Equation 12) from 0 to 1. Figure 3
shows that the best ratio is different for different datasets.

For short document datasets such as Inspec and Se-
mEval2017, the addition of both parts of the attention values
can improve the model performance. Specifically, for dataset
Inspec, F1 value is highest when β is round 0.5. For Se-
mEval2017, the best performance can be achieved when β is
set to 0.5, 0.8 and 0.8. However, the contribution of accumu-
lated self-attention value is higher than doc-phrase attention
value for long ducument dataset-SemEval2010. When β is set
to 1, the model achieves the best performance, which means
only accumulated self-attention value is needed to find the
keyphrases.

We consider that the accumulated self-attention module
captures the repetition of the keyphrases implicitly through

321

the self-attention weights accumulation over the document.
However, for short document dataset like Inspec, the doc-
phrase attention value has more impact. Since there are only
a few sentences in a document, the repetition of the phrases is
low. Nonetheless, the contextual relevance among keyphrases
and sentences and documents still needs to be emphasized.

VI. CONCLUSION

This paper proposes a contrastive learning-based semantic
representation task to enhance pre-trained language model for
unsupervised keyphrase extraction, which takes advantage of
triple loss to combine the target document, joint information
of keyphrase set, and other documents in semantic space. We
utilize a doc-phrase attention module and an accumulated self-
attention module to rank candidate phrases. The doc-phrase
attention is designed to measure the importance between can-
didate phrases. The accumulated self-attention module aims to
determine the importance of a candidate phrase in the context
of the document. We compared the proposed model with eight
strong baselines on three benchmark datasets, including two
short document datasets and one long document dataset. Our
model gains a better or competitive F1@5, 10, and 15 on
all datasets. The ablation study shows that accumulated self-
attention has a higher contribution to the long document set.
The linear integration of the two attention modules shows the
best results for short documents. In conclusion, our model
is an efficient and robust unsupervised method for keyphrase
extraction task, which regards the keyphrase set as a whole
and fully leverages the semantic information from keyphrase
set and document.

ACKNOWLEDGEMENTS

This work is supported by the National Key Research and
Development Program of China (grant No.2021YFB3100600),
the Strategic Priority Research Program of Chinese Academy
of Sciences (grant No.XDC02040400) and the Youth Innova-
tion Promotion Association of CAS (Grant No. 2021153).

REFERENCES

[1] K. S. Hasan and V. Ng, “Automatic keyphrase extraction: A survey
of the state of the art,” in Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2014, pp. 1262–1273.

[2] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), Jun. 2018, pp. 2227–2237.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[4] Y. Sun, H. Qiu, Y. Zheng, Z. Wang, and C. Zhang, “Sifrank: a new
baseline for unsupervised keyphrase extraction based on pre-trained
language model,” IEEE Access, vol. 8, pp. 10 896–10 906, 2020.

[5] H. Ding and X. Luo, “Attentionrank: Unsupervised keyphrase extraction
using self and cross attentions,” in Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, 2021, pp. 1919–
1928.

[6] S. Sun, Z. Liu, C. Xiong, Z. Liu, and J. Bao, “Capturing global infor-
mativeness in open domain keyphrase extraction,” in CCF International
Conference on Natural Language Processing and Chinese Computing.
Springer, 2021, pp. 275–287.

[7] H. Tian, C. Gao, X. Xiao, H. Liu, B. He, H. Wu, H. Wang, and
F. Wu, “Skep: Sentiment knowledge enhanced pre-training for sentiment
analysis,” arXiv preprint arXiv:2005.05635, 2020.

[8] H. Fang, S. Wang, M. Zhou, J. Ding, and P. Xie, “Cert: Contrastive
self-supervised learning for language understanding,” arXiv preprint
arXiv:2005.12766, 2020.

[9] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 815–
823.

[10] R. Alzaidy, C. Caragea, and C. L. Giles, “Bi-lstm-crf sequence labeling
for keyphrase extraction from scholarly documents,” in The world wide
web conference, 2019, pp. 2551–2557.

[11] D. Sahrawat, D. Mahata, M. Kulkarni, H. Zhang, R. Gosangi, A. Stent,
A. Sharma, Y. Kumar, R. R. Shah, and R. Zimmermann, “Keyphrase
extraction from scholarly articles as sequence labeling using contextu-
alized embeddings,” arXiv preprint arXiv:1910.08840, 2019.

[12] R. Meng, S. Zhao, S. Han, D. He, P. Brusilovsky, and Y. Chi, “Deep
keyphrase generation,” arXiv preprint arXiv:1704.06879, 2017.

[13] J. Gu, Z. Lu, H. Li, and V. O. Li, “Incorporating copying mechanism in
sequence-to-sequence learning,” arXiv preprint arXiv:1603.06393, 2016.

[14] R. Campos, V. Mangaravite, A. Pasquali, A. M. Jorge, C. Nunes, and
A. Jatowt, “Yake! collection-independent automatic keyword extractor,”
in European Conference on Information Retrieval. Springer, 2018, pp.
806–810.

[15] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[16] R. Mihalcea and P. Tarau, “Textrank: Bringing order into text,” in
Proceedings of the 2004 conference on empirical methods in natural
language processing, 2004, pp. 404–411.

[17] X. Wan and J. Xiao, “Single document keyphrase extraction using
neighborhood knowledge.” in AAAI, vol. 8, 2008, pp. 855–860.

[18] A. Bougouin, F. Boudin, and B. Daille, “Topicrank: Graph-based topic
ranking for keyphrase extraction,” in International joint conference on
natural language processing (IJCNLP), 2013, pp. 543–551.

[19] K. Bennani-Smires, C. Musat, A. Hossmann, M. Baeriswyl, and
M. Jaggi, “Simple unsupervised keyphrase extraction using sentence
embeddings,” arXiv preprint arXiv:1801.04470, 2018.

[20] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline
for sentence embeddings,” in International conference on learning
representations, 2017.

[21] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon,
“A survey on contrastive self-supervised learning,” Technologies, vol. 9,
no. 1, p. 2, 2021.

[22] J. M. Giorgi, O. Nitski, G. D. Bader, and B. Wang, “Declutr: Deep
contrastive learning for unsupervised textual representations,” arXiv
preprint arXiv:2006.03659, 2020.

[23] B. Gunel, J. Du, A. Conneau, and V. Stoyanov, “Supervised contrastive
learning for pre-trained language model fine-tuning,” arXiv preprint
arXiv:2011.01403, 2020.

[24] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning of
sentence embeddings,” arXiv preprint arXiv:2104.08821, 2021.

[25] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What
does bert look at? an analysis of bert’s attention,” arXiv preprint
arXiv:1906.04341, 2019.

[26] A. Hulth, “Improved automatic keyword extraction given more linguis-
tic knowledge,” in Proceedings of the 2003 conference on Empirical
methods in natural language processing, 2003, pp. 216–223.

[27] I. Augenstein, M. Das, S. Riedel, L. Vikraman, and A. McCallum,
“Semeval 2017 task 10: Scienceie-extracting keyphrases and relations
from scientific publications,” arXiv preprint arXiv:1704.02853, 2017.

[28] S. N. Kim, O. Medelyan, M.-Y. Kan, and T. Baldwin, “Semeval-
2010 task 5: Automatic keyphrase extraction from scientific articles,” in
Proceedings of the 5th International Workshop on Semantic Evaluation,
2010, pp. 21–26.

[29] C. Florescu and C. Caragea, “Positionrank: An unsupervised approach to
keyphrase extraction from scholarly documents,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2017, pp. 1105–1115.

322

Exploring Relevance and Coherence for Automated
Text Scoring using Multi-task Learning

Yupin Yang
College of Computer Science

Chongqing University
Chongqing, China

yyp@cqu.edu.cn

Jiang Zhong
College of Computer Science

Chongqing University
Chongqing, China

zhongjiang@cqu.edu.cn

Chen Wang
College of Computer Science

Chongqing University
Chongqing, China

chenwang@cqu.edu.cn

Qing Li
School of computer science

Northwestern Polytechnical University
Xi’an, China

qingli@nwpu.edu.cn

Abstract—With the explosive growth of the information on the
Internet, the evaluation of the quality and credibility of web
content has become more important than ever before. In this
work, we focus on the quality assessment of texts. Recently,
various methods have been proposed for the automated text
scoring task and obtained competitive results. However, few
studies have focused on both relevance and coherence, which are
two important factors in evaluating text quality. To improve the
scoring task, we propose two auxiliary tasks using negative sam-
pling and integrate them into a multi-task learning framework.
The first auxiliary task is relevance modeling and the other one
is coherence modeling. We evaluate our model on the Automated
Student Assessment Prize (ASAP) dataset. Experimental results
show that our model achieves higher Quadratic Weighted Kappa
(QWK) scores with an improvement of 1.5% on average.

Keywords—automated essay scoring, multi-task learning, nat-
ural language processing

I. INTRODUCTION

Web2.0 accelerates the transition to Web3.0, and global
data storage presents explosive growth. The Internet is flooded
with all kinds of information. Organizations with poor website
quality or inefficient service may establish a bad image and
weaken the status of the organization. Therefore, it is necessary
to develop effective Web content quality control. Research
shows that if visitors find the site pleasant, they are more
likely to visit the site again. Accordingly, we explore utilizing
neural network models to assess the quality of texts.

Automated text scoring (ATS) aims to predict scores related
to the quality of a text. Evaluating texts is time-consuming,
and different evaluators may grade different scores to the
same text. In this case, the computer-based automatic text
scoring system can effectively overcome the inadequacies of
manual scoring [1]. Typically, researchers use a combination
of Natural Language Processing (NLP) and machine learning
to perform this task.

DOI reference number: 10.18293/SEKE2022-024

Existing ATS models can be divided into two types: fea-
ture engineering-based and neural networks-based methods.
The approach based on feature engineering uses handcrafted
features (e.g., text length) to score texts. For example, the
Enhanced AI Scoring Engine (EASE) is a typical model that
has been shown to work well [2]. These models are highly
interpretable but require additional engineering. To address
the issues, the neural networks-based approach automatically
extracts features (e.g., lexical features) from texts for the
final grading. Recently, these approaches have achieved high
performance. For example, Taghipour and Ng [3] innovatively
used Recurrent Neural Network (RNN) and Convolutional
Neural Network (CNN) to learn text features. Dong et al.
[4] adopted Recurrent Convolutional Neural Network (RCNN)
with an attention mechanism to model this task and grade the
texts automatically.

The automated text scoring task is usually evaluated on
the ASAP dataset. However, few studies have focused on the
relevance of essays and prompts as well as the coherence of
sentences in the essay. Note that the prompt refers to the topic
of the essay, which usually consists of reading materials and
task descriptions. Relevance is how an essay fits the topic and
coherence is what makes multi-sentences of text logical and
syntactical. To capture the relevance between the essay content
and the prompt, Chen et al. [5] incorporated the similarity
between the essay and the prompt into the final representation
to grade the text. To further obtain the relevance between each
sentence and the source materials, Zhang et al. [6] introduced
the co-attention based neural network to model the similarity
between them. Besides, the coherence of sentences in the
essay is also one of the important criteria for scoring. To
our knowledge, a well-written essay is more coherent than a
random combination of sentences. Based on this point, Mesgar
et al. [7] introduced a local coherence model to obtain the flow
of content that semantically connects adjacent sentences in the
essay. Li et al. [8] employed the self-attention mechanism to
learn the relationship between long-distance words in the essay

323

to estimate coherence scores.
In this work, we propose a multi-task learning framework

for automated text scoring. In our framework, two auxiliary
tasks are introduced including relevance modeling task and
coherence modeling task. The relevance modeling task aims
to enhance the ability to extract prompt-specific features.
Specifically, we mix all the essays under different prompts
together and feed them into the model, and then predict
which prompt the essay belongs to. The coherence modeling
task aims at enhancing the ability to capture the discourse
coherence of essays. In our model, this task can be regarded
as a binary classification task. We randomly select three
consecutive sentences as a group and make some modifications
to the group-based data to construct negative samples, and
then predict whether the essay is coherent or not. Finally, we
integrate these two auxiliary tasks with the scoring task into
a multi-task learning framework for final scoring.

To verify the effectiveness of our multi-task learning
framework, we conduct experiments on the ASAP dataset.
Experimental results show that our method achieves better
performance than previous methods, which demonstrates that
our proposed method is effective for automated text scoring.
Our work also shows that auxiliary tasks can enhance the
performance of the BERT model on downstream tasks.

II. RELATED WORK

The discussion of related work is divided into two sub-
sections: ATS-related and MTL-related. In our model, we
apply multi-task learning to the task of automated text scoring.
There is a long history of automated essay scoring and multi-
task learning, and in this chapter, we concisely review some
common methods.

A. Automated Essay Scoring

Automated essay scoring is an important application of
natural language processing (NLP) in education. Previous
methods were mainly based on feature engineering, in which
the ATS task was considered as a classification or regression
problem. In the case of the former, the classifier directly
outputs the label that represents the score. In the latter case,
the output is in the range of the golden score. The feature-
engineering methods require handcrafted features, which in-
clude some statistical features such as essay length, number
of spelling errors, etc. These approaches include e-rater [9],
PEG [10], and EASE [2]. In the PEG, more than thirty writing
quality factors are considered. Besides, Cozma [11] combined
string kernels and word embeddings to capture text features,
namely the bag-of-super-word-embeddings (BOSWE). Das-
calu et al. [12] implemented an automated essay scoring
system for Dutch by integrating features such as lexical and
semantics features.

To avoid the need for feature engineering, researchers begin
to explore the application of neural networks to the automated
essay scoring task. Taghipour and Ng [3] innovatively com-
bined CNN and Long Short-Term Memory (LSTM) to learn
text representations for final scoring and obtained competitive

Scoring Layer
Relevance

Modeling Layer
Coherence

Modeling Layer

BERT Layer

[CLS] Tok 1 Tok 2 Tok N

Transformer Block

...

Transformer Block

...

...

Tok 3 Tok 4

...

Auxiliary Task Auxiliary Task

Figure. 1. An overview of our multi-task learning architecture. It first adopts
BERT as the shared encoder. Then, three task-specific layers are connected
behind the encoder, sharing the text representation learned from the BERT
layer.

results. Dong et al. [4] adopted ConvNet and LSTM to learn
sentence representation and text representation respectively.
Mesgar et al. [7] employed the RNN layer for the words in the
sentence to integrate contextual information. Yang et al. [13]
introduced the BERT model to learn text representations.

B. Multi-task Learning

Multi-task learning was firstly proposed in 1994 by Caru-
ana [14] to improve the generalization ability of the model. It
is an inductive transfer mechanism that shares parameter in-
formation between multiple tasks [15]. Compared with single-
task learning, multi-task learning refers to learning multiple
tasks simultaneously, which can achieve better performance.
In multi-task learning, the main task and auxiliary tasks
learn from each other and jointly enhance the generalization
ability [16]. For auxiliary tasks, a basic assumption is that
auxiliary tasks should be related to the main task and can
promote the learning of the main task.

Multi-task learning has been widely used across applications
of machine learning, from natural language processing [17]
and speech recognition [18] to computer vision [19]. Liu et
al. [20] introduced Two-Stage Learning Framework for ATS
where semantic score, coherence score, and prompt-relevant
score are computed at the first stage and they are combined
with handcrafted features in the second stage. Nadeem et al.
[21] used natural language inference and discourse marker
prediction as auxiliary tasks for capturing discourse charac-
teristics of essays.

III. METHOD

In this section, we demonstrate the main steps of our
proposed model. It consists of a shared encoder and three task-
specific layers including the scoring task, relevance modeling

324

task, and coherence modeling task. The overview of our pro-
posed model is shown in Fig.1. In the following subsections,
more details of each module will be introduced.

A. Shared Encoder

Large pre-trained language models (e.g., BERT [22],
GPT [23], and XLNet [24]) have shown the remarkable ability
of representation and generalization in many tasks. These pre-
trained language models achieve great success in learning text
representations with deep semantics. In our framework, we
choose BERT as the shared encoder to better capture the
semantics of the given essay.

BERT is trained on enormous corpora with more than
3000M words. It has two target tasks, including the masked
language model and next sentence prediction. Many NLP
downstream tasks, such as sentence classification and ques-
tion answering, have gained benefits by utilizing pre-trained
BERT to learn text representation. Specifically, we adopt
RoBERTa [25] as the encoder to get better performance. The
self-attention mechanism [26] is the key to the success of
BERT, in which a sequence calculates the word weights with
itself. The attention process is defined as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

where Q, K, and V are the matrix transformed from the input.
dk denotes the hidden dimension of matrix K.

Given an input essay E = {w1, w2, ..., wN}, where N
is the length of the essay, we add a special token [CLS]
at the beginning of the sequence and get a new sequence
E′ = {[CLS], w1, w2, ..., wN}. Then, we send the sequence
E′ into a pre-trained BERT and take the hidden state of the
[CLS] token as the text representation:

H = BERT (E′) (2)

R = H[CLS] (3)

where H denotes the final hidden state sequence of BERT,
and R is the text representation.

B. The Scoring Task

The main task of our method is the scoring task, which
aims to predict a score for each essay. Following other ATS
methods [3], [20], [21], [27], we utilize a dense layer to
compute the score with the text representation R as:

ps = sigmoid(WsR+ bs) (4)

where Ws is the weight matrix, bs is the bias initialized with
the mean score of the essays, and sigmoid is the activation
function to normalize the calculated score into [0,1]. In this
part, we select mean square error (MSE) as the loss function:

LS =
1

m

m∑
i=1

(ys − ps)
2 (5)

where ys is the true target, and ps is the prediction result for
the scoring task.

C. Relevance Modeling Task

To our knowledge, there is a close relevance between the
essay content and the topics. ATS systems may give a high
score to an unrelated but well-written essay. However, a human
rater will give higher scores to those essays related to the
topics, and lower scores to those essays that are not relevant
to the topics. To exploit the prompt-specific knowledge, we
design this auxiliary task named relevance modeling. Since
high-scoring essays always stick to the prompt, we first mix
up the top 40% essays of all prompts, and their labels are
the prompt they belong to. After that, we feed the latent text
representation R learned from BERT into a dense layer to
predict the prompt:

prm = softmax(WrmR+ brm) (6)

where Wrm is the weight matrix, brm is the bias, and soft-
max is the activation function for the multi-classifier. In this
module, we optimize this auxiliary task with the cross-entropy
loss as:

LRM = −
∑

yrm ∗ log(prm) (7)

where yrm is the true target, and prm is the prediction result.

D. Coherence Modeling Task

Language learners may have learned to make both mean-
ingful and grammatical sentences but do not know how to
organize the sentences together to construct a good essay.
Coherence is what makes a multi-sentence text meaningful,
both logically and syntactically. In this work, our coherence
modeling task is used to better capture the discourse coherence
of essays.

In this task, we regard the coherence modeling task
as a binary classification task. The vanilla essay is with
the label ”1” while the others are with the label ”0”. To
construct negative samples, we perform three operations on
the essays. Note that each negative sample is prompt-related
but incoherent. For an input essay, we randomly select three
consecutive sentences as a group. There are three ways to
construct negative samples: 1) delete operation—removing the
selected group; 2) replace operation—replacing the selected
group with a new group from another essay of the same topic;
3) inserting operation—appending a group from another essay
under the same prompt to the beginning or end of the selected
group. For example, given an essay E consisting of k sentences
E = {s1, ..., si−1, si, si+1, si+2, si+3, ..., sk}, the one with
delete operation is formed as E∗ = {s1, ..., si−1, si+3, ..., sk}.
The one with replace operation is denoted as
E∗ = {s1, ..., si−1, s

′

j , s
′

j+1, s
′

j+2, si+3, ..., sk}.
The one with inserting operation can be E∗ =
{s1, ..., si−1, s

′

i, s
′

i+1, s
′

i+2, si, si+1, si+2, si+3, ..., sk} or
E∗ = {s1, ..., si−1, si, si+1, si+2, s

′

j , s
′

j+1, s
′

j+2, si+3, ..., sk}.
After that, we send negative samples and positive samples
into the model for training. Moreover, to reduce the deviation
caused by imbalanced samples, we mix the positive sample
and the negative sample evenly. Our approach is based on the

325

TABLE I
STATISTICS OF THE ASAP DATASET.

Prompt Essay Type #Essays Avg length Scores
1 Argumentative 1,783 350 2-12
2 Argumentative 1,800 350 1-6
3 Source-Dependent 1,726 150 0-3
4 Source-Dependent 1,772 150 0–3
5 Source-Dependent 1,805 150 0–4
6 Source-Dependent 1,800 150 0–4
7 Narrative 1,569 250 0–30
8 Narrative 723 650 0–60

assumption verified in Lin et al.’s work [28] that the original
article is always more coherent than the changed one.

In this module, we feed the hidden states H obtained
from BERT into a Bi-LSTM network to model the semantic
relationships among sentences:

ht = Bi-LSTM(ht−1, Hi) (8)

where Hi is the i-th output of the BERT layer and ht is
the hidden state of the Bi-LSTM at time t. We concatenate
the forward and backward output together and obtain the last
hidden state hN . Then, a fully connected layer is adopted to
predict whether the essay is coherent or not:

pcm = sigmoid(WcmhN + bcm) (9)

where Wcm is the weight matrix, bcm is the bias, and sigmoid
denotes the activation function for the binary classification
task. We then train this task with the binary cross-entropy
loss as:

LCM = −ycm ∗ log(pcm)− (1− ycm) ∗ log(1− pcm) (10)

where ycm is the true target and pcm is the prediction result.
While training, we alternatively optimize the scoring task

with LS in Equation (5), the relevance modeling task with
LRM in Equation (7), and the coherence modeling task with
LCM in Equation (10). The ‘mix ratio’ of the three tasks is
set as λS : λRM : λCM = 0.6 : 0.2 : 0.2.

IV. EXPERIMENT

In this section, we introduce the ASAP dataset and experi-
ment settings firstly. Then the evaluation metric is illustrated.
In addition, baseline models, results of the experiment, and
analyses are displayed.

A. Experiment Settings

We use a common dataset for the ATS task, which is from a
Kaggle competition. There are 8 prompts of different genres,
and the number of essays in the dataset is 12976. In Table I,
we list some statistics of the ASAP dataset.

We implement our model using Pytorch and the BERT
comes from HuggingFace [29]. Since the average length of
the essay in prompt 8 is 650, we truncate the essays with
the max length of 512 words. For the BERT model, we use

https://www.kaggle.com/c/asap-aes/data
https://github.com/huggingface/transformers

the uncased BERTbase model with 12 layers, 768 hidden
units, and 12 heads. We use the pre-trained parameters and
fine-tune the parameters with the learning rate set to 1e-
5. Following previous works, we also utilize 5-fold cross-
validation to evaluate our model with a 60/20/20 split for train,
validation, and test sets.

B. Evaluation Metric

QWK is the official evaluation metric in the ASAP competi-
tion, which measures the agreement between ratings assigned
by humans and ratings predicted by ATS systems. Following
previous works, we adopt QWK as the evaluation metric. The
quadratic weight matrix is calculated as follows:

Wi,j =
(i− j)2

(N − 1)2
(11)

where i and j are gold scores and calculated scores respec-
tively. N is the number of possible ratings. The QWK value
is defined as:

κ = 1−
∑

Wi,jOi,j

Wi,jEi,j
(12)

Where O is the observed score matrix and E is the expected
score matrix. Oi,j denotes the number of essays that receive
rating i by human rater and j by ATS system. E is calculated
as the outer product of histogram vectors of the two (reference
and hypothesis) ratings.

C. Baselines

In this section, we introduce several baseline models. En-
hanced AI Scoring Engine (EASE) is a statistical model based
on hand-crafted features such as length-based features and
part-of-speech tags. After feature extraction, support vector
regression (SVR) and bayesian linear ridge regression (BLRR)
are used to build the model [2]. Cozma et al. [11] pro-
posed HISK+BOSWE, which combined string kernels and
word embeddings to extract text features on both low-level
character n-gram features and high-level semantic features.
Wang et al. [30] proposed RL1, which is a reinforcement
learning framework incorporating quadratic weighted kappa
as guidance to optimize the scoring system. Taghipour and
Ng [3] proposed to assemble CNN and LSTM. Dong et
al. [4] introduced hierarchical neural networks with attention
mechanisms to learn the representation of essays. Tay et al.
[31] proposed SKIPFLOW LSTM, where there is a mechanism
to simulate the relationship between hidden states in the LSTM
network during reading, so as to learn the characteristics of
text coherence. Yang et al. [13] proposed R2BERT that utilized
a pre-trained language model to get the scores and used mean
square error loss and the batch-wise ListNet loss with dynamic
weights to constrain the scores simultaneously.

https://github.com/edx/ease

326

TABLE II
QWK SCORES OF DIFFERENT METHODS ON THE ASAP DATASET (* DENOTES STATISTICAL MODEL). IN THIS TABLE, RM DENOTES THE RELEVANCE

MODELING TASK AND CM DENOTES THE COHERENCE MODELING TASK.

Methods Prompt1 Prompt2 Prompt3 Prompt4 Prompt5 Prompt6 Prompt7 Prompt8 Average
EASE(SVR)* 0.781 0.621 0.630 0.749 0.782 0.771 0.727 0.534 0.699
EASE(BLRR)* 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705
HISK+BOSWE* 0.845 0.729 0.684 0.829 0.833 0.830 0.804 0.729 0.785
RNN 0.687 0.633 0.552 0.744 0.744 0.757 0.743 0.553 0.675
RL1 0.766 0.659 0.688 0.778 0.805 0.791 0.760 0.545 0.724
LSTM 0.780 0.697 0.683 0.787 0.795 0.767 0.758 0.651 0.740
CNN+LSTM 0.821 0.688 0.694 0.805 0.807 0.819 0.808 0.644 0.761
LSTM-CNN-att 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764
SKIPFLOW 0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.765
R2BERT 0.817 0.719 0.698 0.845 0.841 0.847 0.839 0.744 0.794
BERT 0.815 0.720 0.730 0.814 0.820 0.824 0.833 0.730 0.786
BERT+CM 0.838 0.731 0.733 0.816 0.826 0.845 0.836 0.742 0.796
BERT+RM 0.831 0.728 0.741 0.838 0.834 0.853 0.829 0.733 0.798
BERT+RM+CM 0.842 0.733 0.746 0.842 0.836 0.857 0.842 0.747 0.806

D. Results

In this part, the performance of the baselines and our method
on the ASAP dataset are analyzed in detail. Table II shows the
QWK scores of different methods on each prompt.

In general, neural network-based methods have achieved
better results than statistical-based methods. Even so, the
statistical model HISK+BOSWE gain a better QWK score
on Prompt 1, reaching 0.845. To some degree, it shows that
when the handcrafted features can adequately represent the
information in the original text, better results can be obtained.
We notice that EASE performs better than RNN which also
shows well-designed handcrafted features are more effective
than simple neural networks. Among the methods based on
neural networks, the performance of RNN and LSTM is not
as good as R2BERT. This is because that there are hundreds
of words making it difficult to learn long-term dependencies.
Meanwhile, we observe that CNN+LSTM, SKIPFLOW, and
LSTM-CNN-att outperform LSTM models, which means that
the ensemble model can make up for the shortage of simple
neural networks. Additionally, BERT based model outperforms
all other neural models on the average QWK score, which in-
dicates the pre-trained language model does well in capturing
deep semantic features.

Compared with other baseline models, the average QWK
scores on eight prompts show that our model achieves the
best results. Our model outperforms R2BERT by 1.5% in the
average QWK score. The result demonstrates that through
the multi-task learning framework, our model can capture
more coherence and relevance information for the final score
evaluation. On Prompt 4 and 5, R2BERT achieves higher
results, indicating that combining complementary objectives
via dynamic weights can effectively enhance the performance
of the scoring system. In particular, BERT with auxiliary
tasks outperforms R2BERT on each prompt except Prompt
4 and 5, which shows the effectiveness of the auxiliary tasks
and the success in improving the performance of BERT on

downstream tasks. Overall, BERT+RM+CM gains a higher
average QWK score compared with the aforementioned neural
models as well as the latest statistical model HISK+BOSWE.

E. Discussion

To further verify the effectiveness of our proposed auxiliary
tasks, we conduct ablation experiments with different settings.
The relevant results are illustrated in Table II.

We can see that both the auxiliary tasks improve the
automated essay scoring performance remarkably. Compared
with the baseline BERT, employing the coherence modeling
task (BERT+CM) yields a result of 0.796 in averaged QWK
score, which brings a 1.3% improvement. Meanwhile, em-
ploying the relevance modeling task (BERT+RM) individually
outperforms the baseline by 1.5%. The two tasks behave
differently on different prompts. The RM task performs better
on Prompt 3 to Prompt 6, while the CM task does on the
others. The results may be due to differences in the genre and
guidelines of the essay. For example, In Prompt 5, students
were asked to describe the mood created by the author in the
memoir and use the relevant information in the source material
to support the answer. Therefore, for Prompt 5, a high-scoring
essay is expected to contain specific information about the
memoir, and the details of the memoir mentioned in the written
essay are more important than the coherence of the sentence.
For Prompts 7 and 8, the type of essay is narrative. The
guidelines for these two prompts require human raters to give
the highest score to essays that are coherent and engage the
reader’s attention through telling a story. Accordingly, the CM
task shows better performance as it captures the sequence of
semantic changes. When we integrate the two auxiliary tasks
together (BERT+RM+CM), the performance further improves
to 0.806 in the QWK score on average. It is obvious that these
two auxiliary tasks have brought great benefits to the scoring
task.

327

V. CONCLUSION

In this work, we introduce an approach based on two
auxiliary tasks to assess the quality of texts. We integrate
the auxiliary tasks into a multi-task learning framework to
benefit the scoring task. To verify the effectiveness of our
proposed method, we compare our model with several methods
on the ASAP dataset. Experimental results show that our
model outperforms previous methods. Our work also shows
that auxiliary tasks can enhance the performance of the BERT
model for downstream tasks. For future work, we plan to
explore more dimensions for the automated text scoring task.

ACKNOWLEDGMENT

The authors acknowledge National Natural Science Foun-
dation of China (Grant No: 62176029), the Key Re-
search Program of Chongqing Science and Technology
Bureau (cstc2020jscx-msxmX0149), and Graduate Research
and Innovation Foundation of Chongqing, China (Grant
No.CYS21061). This work is also supported by the National
Natural Science Foundation of China under Grant 62102316,
in part by the NWPU Development Strategy Research Fund
Project Grant 2022FZY16. This work is also supported by
National Natural Science Foundation of China under Grant No.
62002226 and Zhejiang Provincial Natural Science Foundation
of China under Grant No.LHQ20F020001.

REFERENCES

[1] J. G. Borade and L. D. Netak, “Automated grading of essays: A review,”
in International Conference on Intelligent Human Computer Interaction.
Springer, 2020, pp. 238–249.

[2] P. Phandi, K. M. A. Chai, and H. T. Ng, “Flexible domain adaptation
for automated essay scoring using correlated linear regression,” in
Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, 2015, pp. 431–439.

[3] K. Taghipour and H. T. Ng, “A neural approach to automated essay
scoring,” in Proceedings of the 2016 conference on empirical methods
in natural language processing, 2016, pp. 1882–1891.

[4] F. Dong, Y. Zhang, and J. Yang, “Attention-based recurrent convolutional
neural network for automatic essay scoring,” in Proceedings of the
21st Conference on Computational Natural Language Learning (CoNLL
2017), 2017, pp. 153–162.

[5] M. Chen and X. Li, “Relevance-based automated essay scoring via
hierarchical recurrent model,” in 2018 International Conference on Asian
Language Processing (IALP). IEEE, 2018, pp. 378–383.

[6] H. Zhang and D. Litman, “Co-attention based neural network for source-
dependent essay scoring,” arXiv preprint arXiv:1908.01993, 2019.

[7] M. Mesgar and M. Strube, “A neural local coherence model for
text quality assessment,” in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, 2018, pp. 4328–
4339.

[8] X. Li, M. Chen, J. Nie, Z. Liu, Z. Feng, and Y. Cai, “Coherence-based
automated essay scoring using self-attention,” in Chinese Computational
Linguistics and Natural Language Processing Based on Naturally An-
notated Big Data. Springer, 2018, pp. 386–397.

[9] M. Chodorow and J. Burstein, “Beyond essay length: evaluating e-rater’s
performance on tofel essays,” ETS Research Report Series, vol. 2004,
no. 1, pp. i–38, 2004.

[10] M. D. Shermis and J. C. Burstein, Automated essay scoring: A cross-
disciplinary perspective. Routledge, 2003.

[11] M. Cozma, A. Butnaru, and R. T. Ionescu, “Automated essay scoring
with string kernels and word embeddings,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), 2018, pp. 503–509.

[12] M. Dascalu, W. Westera, S. Ruseti, S. Trausan-Matu, and H. Kurvers,
“Readerbench learns dutch: building a comprehensive automated essay
scoring system for dutch language,” in International Conference on
Artificial Intelligence in Education. Springer, 2017, pp. 52–63.

[13] R. Yang, J. Cao, Z. Wen, Y. Wu, and X. He, “Enhancing automated
essay scoring performance via cohesion measurement and combination
of regression and ranking,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: Findings, 2020,
pp. 1560–1569.

[14] R. Caruana, “Learning many related tasks at the same time with
backpropagation,” in Advances in neural information processing systems,
1995, pp. 657–664.

[15] ——, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75,
1997.

[16] S. Thrun and J. O’Sullivan, “Discovering structure in multiple learning
tasks: The tc algorithm,” in ICML, vol. 96, 1996, pp. 489–497.

[17] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning, 2008,
pp. 160–167.

[18] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications: An
overview,” in 2013 IEEE international conference on acoustics, speech
and signal processing. IEEE, 2013, pp. 8599–8603.

[19] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[20] J. Liu, Y. Xu, and Y. Zhu, “Automated essay scoring based on two-stage
learning,” arXiv preprint arXiv:1901.07744, 2019.

[21] F. Nadeem, H. Nguyen, Y. Liu, and M. Ostendorf, “Automated essay
scoring with discourse-aware neural models,” in Proceedings of the
Fourteenth Workshop on Innovative Use of NLP for Building Educa-
tional Applications, 2019, pp. 484–493.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[23] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[24] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding,” in Advances in Neural Information Processing Systems,
vol. 32. Curran Associates, Inc., 2019.

[25] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly
optimized BERT pretraining approach,” CoRR, vol. abs/1907.11692,
2019. [Online]. Available: http://arxiv.org/abs/1907.11692

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017.

[27] Y. Farag, H. Yannakoudakis, and T. Briscoe, “Neural automated essay
scoring and coherence modeling for adversarially crafted input,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), 2018, pp. 263–271.

[28] Z. Lin, H. T. Ng, and M.-Y. Kan, “Automatically evaluating text
coherence using discourse relations,” in Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human
Language Technologies, 2011, pp. 997–1006.

[29] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art
natural language processing,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstra-
tions. Online: Association for Computational Linguistics, Oct. 2020,
pp. 38–45.

[30] Y. Wang, Z. Wei, Y. Zhou, and X.-J. Huang, “Automatic essay scoring
incorporating rating schema via reinforcement learning,” in Proceedings
of the 2018 conference on empirical methods in natural language
processing, 2018, pp. 791–797.

[31] Y. Tay, M. Phan, L. A. Tuan, and S. C. Hui, “Skipflow: Incorporating
neural coherence features for end-to-end automatic text scoring,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
no. 1, 2018.

328

Exp-SoftLexicon Lattice Model Integrating Radical-

Level Features for Chinese NER

Lijie Li1, Shuangyang Hu1, Junhao Chen1, Ye Wang1,*, Zuobin Xiong2
1 College of Computer Science and Technology, Harbin Engineering University, Harbin, China

2 Department of Computer Science, Georgia State University, Atlanta, USA

{lilijie, sunyonge, junhaochen, wangye2020}@hrbeu.edu.cn, zxiong2@student.gsu.edu

Abstract—The Lattice series model using potential words infor-

mation has been proved to be effective in Chinese Named Entity

Recognition (NER). The recently proposed Simplified Lattice not

only brings new baseline results, but also improves the inference

speed of Lattice models. However, the Simplified Lattice fails to

fully explore the rich information contained in the radical-level

features of the character sequences. Moreover, the performance of

the Simplified Lattice decreases dramatically as the length of en-

tity increases. In this paper, we propose the SLRL-NER model that

integrates word, character, and radical-level information to allevi-

ate the above problems. Specifically, text Convolutional Neural

Network (CNN) is used to extract the radical-level features. The

original SoftLexicon set is expanded to refine the relative position

information of characters in the candidate words to cope with the

challenge of increasing entity length. Experiments on three da-

tasets show SLRL-NER outperforms the state-of-the-art compari-

son methods.

Keywords- Chinese NER; radical-level features; SoftLexicon

I. INTRODUCTION

Named Entity Recognition (NER) is a fundamental task in
Natural Language Processing (NLP) that aims at identifying en-
tities from plain text segments and tagging them with types, such
as person, location, organization, etc. Many high level tasks,
such as question answering [1], knowledge graph construction
[2], and information retrieval [3] are all inseparable from NER.

Due to the implicit word boundary of Chinese sentences,
Chinese NER is more difficult than English NER. The existing
Chinese NER methods are mainly classified into word-based
and character-based models. In the word-based model, a Chinese
Word Segmentation (CWS) system is firstly used to segment the
original input sequence. However, the performance of word-
based model has been proved to be worse than character-based
model because of the word segmentation errors from the CWS
system [4]. In the character-based model, segmentation errors
are naturally avoided. But character-based model does not ex-
ploit word-level information in input sequence at all. To inte-
grate words information into character-based model, many
works have attempted to use external gazetteers to extract word
information [5-7]. Yue Zhang and Jie Yang [4] proposed the Lat-
tice-LSTM model which encodes the matched lexical words in-
formation into character sequence with a gate mechanism and
achieved a great success. Next, Ma et al. [8] proposed the Sim-
plified Lattice model, where they constructed a SoftLexicon set

for each word and used a word-weighting strategy to fuse word-
level information. However, the Simplified Lattice model still
faces two challenges.

Firstly, to the best of our knowledge, existing lattice models
do not explore the radical-level information inherent in the Chi-
nese characters. Radicals originate from pictograms [9], which
are the minimum semantic units for Chinese characters. Differ-
ent from the character representations obtained by the pretrained
language model, radical-level features are context-independent
[10] and relates only to the character itself. Thus, they have ad-
ditional intrinsic information that is not present in the pretrained
character embeddings. Dong et al. [11] have shown that the rad-
ical-level features can effectively improve the performance of
Chinese NER. However, they ignored the word information in
the sequence which has been demonstrated to be very important
for Chinese NER by many works.

Fig. 1. The SoftLexicon method. “BMES” indicates the position of the
character in the corresponding candidate word is: begin, middle, end and

single.

Secondly, although the Simplified Lattice utilizes word in-
formation in a straightforward and efficient way, there is still a
loss of position information for long words. As shown in Fig. 1,

for the input sentence “中国足球队 (Chinese football team)”,

according to the position of the character in the word, the “mid-

dle” group word set of the character “球 (ball)” includes: “足球

(football team)”, “国足球队 (Chinese football team)” and “中
国足球队 (Chinese football team)”. The character “球 (ball)” is

the second, third and fourth character in three different words.
However, the SoftLexicon method indistinguishably places the

three different words of the character “球 (ball)” in the “Middle”

group, which does not properly identify their specific relative
positions within the words. As a result, this method loses a large
amount of relative position information, which is proved to be
essential for Chinese NER [12], and the problem becomes more
serious as the length of entity grows.

DOI reference number: 10.18293/SEKE2022-037.

∗Corresponding authors

329

In this paper, we consider all these issues systematically and
present a novel exp-SoftLexicon Lattice Model Integrating Rad-
ical-Level Features for Chinese NER (SLRL-NER) to deal with
these issues. For radical-level information: we elaborate a text
CNN to extract radical-level information of characters from
three different perspectives: radical, structural and unique posi-
tion features. To further exploit the position information of
characters in candidate words: we expand the original Soft-
Lexicon module to enrich the relative position information of the
“Middle” group to cope with the challenge of increased length
of entity. Finally, we aggregate the radical-level and word-level
information into the character representations to predict the
named entity tags.

In summary, this paper makes the following contributions:
(1) We propose a novel lattice structure to incorporate character-
level, word-level and radical-level information of sentences for
Chinese NER. Our model can capture both the inherent infor-
mation and the rich context information for Chinese characters.
(2) We introduce radical-level information into Chinese NER
lattice model and design a text CNN module to exploit the radi-
cal-level features of characters from three different perspectives:
radical, structural and unique position features. In addition, we
apply an exp-SoftLexicon module to refine the relative position
information of characters in the candidate words to deal with the
challenge of increasing entity length. (3) Experimental results on
three public Chinese NER datasets show that our model achieves
better performance compared with the state-of-the-art methods.

II. BACKGROUND

In this section, we introduce some methods relevant to this
paper, including radical-level features, character pre-trained
methods and SoftLexicon module.

A. Radical-Level Features

Different from English, Chinese characters are pictographic,
and most of them still retain the original pictogram meaning. In
particular, the morphological information is mainly reflected in
the radical, structural and unique position features of the chara-
cters [11]. Furthermore, the radical is the basic constituent unit
of a Chinese character and contains both simplified and tradi-
tional forms, which is closely related to the meaning of the char-
acter. Structural features consist of the decomposition of a Chi-
nese character and have the meta-information of the characters.
The unique position contains the absolute position sequence of
each character in writing order. For a monoradical character, we
just use itself as its radical-level features. Fig. 2 shows the basic

information and meaning of the Chinese character “烫 (hot)”1.

The radical-level features of “烫 (hot)” include: (1) Radical fea-

ture: A simplified radical consisting of four strokes, which con-
tains semantic information about the character; (2) Structural

features: “烫 (hot)” is composed of three monoradical: “氵 (wa-

ter)”, “扬 (raise)” and “火 (fire)”, which cover the meta-infor-

mation of the character; (3) Unique position: The absolute posi-

tion sequence of the unique writing order of the character “烫

(hot)”, i.e. “汤 (soup)” and “火 (fire)”.

Fig. 2. Basic information about character “烫 (hot)”.

The fine-gained semantic information of “烫 (hot)” is ex-

trated by exploring the radical-level features. We did not con-
tinue to excavate the Wubi features of characters because radical
features are the smallest semantic units of Chinese characters
while Wubi features usually do not have obvious semantic infor-
mation [11].

B. Character Embedding

More and more works choose pre-trained model BERT [13]
instead of word2vec to server as the character encoder. BERT
fuses token embeddings, position embeddings and segment em-
beddings as input to obtain a better dynamic vector representa-
tion with a deep network and huge number of parameters. How-
ever, BERT only masks a single character in the Chinese se-
quence, which obviously loses part of the word-level semantic
information. BERT-wwm-ext [14] is built on BERT by using a
larger corpus to mask all the consecutive Chinese characters that
composed the words, so that the embeddings of characters have
the semantic information of the words.

C. SoftLexicon

For the input sentence 𝑠 = {𝑐1, 𝑐2, … , 𝑐𝑛}, an external gazet-
teer L is used to match the latent words corresponding to each
character 𝑐𝑖. Then, a specific SoftLexicon [8] set is constructed
for each character 𝑐𝑖: each word is assigned to the “BMES” word
sets according to the position of the character 𝑐𝑖 in the corre-
sponding latent word. Then the word-level representation of the
character can be obtained by integrating words information in
the SoftLexicon set.

Fig. 3. The whole architecture of SLRL-NER. The top right part represents

the exp-SoftLexicon set and ⨁ indicates the concatenation operation.

1 from the online Xinhua dictionary at http://tool.httpcn.com/Zi/.

330

III. APPROACH

In this work, we propose the SLRL-NER model, which
merges three types of information with different granularity:
word, character and radical-level features to make full use of the
semantic information in the input sequence and achieve excel-
lent experimental results. The architecture of our model is shown
in Fig. 3.

A. Radical-Level Representations Layer

The model input is a sentence 𝑠 = {𝑐1, 𝑐2, … , 𝑐𝑛}, and each

character 𝑐𝑖 = {𝑟1, 𝑟2, … , 𝑟𝑚} ∈ 𝑉𝑟 , where 𝑟𝑗 denotes the radical-

level features of the character. We use the radical-level lookup

table 𝑉𝑟 [11] which contains 4719 common Chinese characters.

Each radical-level features 𝑟𝑗 is represented by a dense vec-

tor 𝒚𝑗
𝑟 :

 𝒚𝑗
𝑟 = 𝑒𝑟(𝑟𝑗) , ()

where 𝑒𝑟 denotes the radical-level features embedding lookup

table. Then we can get the radical-level embedding matrix 𝑶 =
{𝒚1

𝑟 , 𝒚2
𝑟 , … , 𝒚𝑚

𝑟 } of the character 𝑐𝑖 . To enable parallelization,

the shape of radical-level embedding matrix 𝑶 is set to be the

form of 50 × 𝑘 where 𝑘 is a hyper-parameter. For characters

with more than 𝑘 radical-level features, we perform a squeeze

operation to take the top-k radical-level features, and for char-

acters with less than 𝑘 features, we proceed to random initiali-

zation to fill the feature matrix 𝑶 to the fixed dimension. After

obtaining the feature matrix 𝑶 = {𝒚1
𝑟 , 𝒚2

𝑟 , … , 𝒚𝑘
𝑟 }, the unsuper-

vised CNN is employed to extract the radical-level features of

the characters, as shown in Fig. 4.

Since the structural and unique position features of each

character 𝑐𝑖 mainly occur in pairs, the CNN apply filters 𝑯 ∈
ℝ50×2 with a window size of 2. After 𝑥 successive convolutions

of 𝑶, the radical-level features are extracted using maximum

pooling and then represented as a 50-dimensional vector 𝒚𝑟.

Fig. 4. Extracting radical-level features of characters in sequences using

Convolutional Neural Networks.

B. Character Representation Layer

The character 𝑐𝑖 in sentence is represented using a 768-di-

mensional dense vector 𝒙𝑖
𝑐:

 𝒙𝑖
𝑐 = 𝑒𝑐(𝑐𝑖) ()

Here, 𝑒𝑐 denotes the character embedding lookup table,

which is derived from BERT-wwm-ext [14]. BERT [13]

masked the characters in the sequence without fully preserving

the semantic information of the word. In BERT-wwm-ext, be-

sides a character that constitutes a word, other parts that belong

to the same word are masked, so that the pre-trained model is

endowed with the semantic information of the word. As shown

in Fig. 3, the final embedding representation of each character

consists of token embeddings, position embeddings, and seg-

ment embeddings. After training with the full word masking

strategy, the character embedding representation 𝒙𝑐 is obtained.

C. Word Representation Layer

We build an exp-SoftLexicon set for each character in the

sentence. Firstly, latent words are filtered by lexicon and clas-

sified into the six word sets “BM1M2MoES” according to the

position of the characters in the candidate words. The six word

sets are constructed as follows:

 𝐵(𝑐𝑖) = {𝑤𝑖,𝑘 | ∀𝑤𝑖,𝑘 ∈ 𝐿, 1 ≤ 𝑖 < 𝑘 ≤ 𝑛}

 𝑀1(𝑐𝑖) = {𝑤𝑗,𝑘 | ∀𝑤𝑗,𝑘 ∈ 𝐿, 2 ≤ 𝑗 + 1 = 𝑖 < 𝑘 ≤ 𝑛}

 𝑀2(𝑐𝑖) = {𝑤𝑗,𝑘 | ∀𝑤𝑗,𝑘 ∈ 𝐿, 3 ≤ 𝑗 + 2 = 𝑖 < 𝑘 ≤ 𝑛} (3)

 𝑀𝑜(𝑐𝑖) = {𝑤𝑗,𝑘 | ∀𝑤𝑗,𝑘 ∈ 𝐿, 3 ≤ 𝑗 + 2 < 𝑖 < 𝑘 ≤ 𝑛}

 𝐸(𝑐𝑖) = {𝑤𝑗,𝑖 | ∀𝑤𝑗,𝑖 ∈ 𝐿, 1 ≤ 𝑗 < 𝑖 ≤ 𝑛}

 𝑆(𝑐𝑖) = {𝑐𝑖 | ∃𝑐𝑖 ∈ 𝐿}

Here, 𝐿 denotes the lexicon we use in this work and 𝑤𝑖,𝑗 de-

notes the matched word starting from the i-th character and end-

ing at the j-th character. Additionally, if a word set is empty, a

special word “NONE” is added to the empty word set. An ex-

ample is shown in Fig. 3. By expanding the position of “Mid-

dle”, our model distinguishes the candidate words in different

positions in the “Middle” group more accurately, which reduces

the loss of relative position of the SoftLexicon method and im-

proves NER performance. After obtaining the expanded

“BM1M2MoES” word sets for each character, each word set is

then compressed into a vector with fixed dimension. We obtain

the representation of the word set 𝑊 by a weighted strategy,

then we concatenate all the six word sets representation to get

the exp-SoftLexicon embedding 𝑧𝑤:

 𝑣𝑤(𝑊) =
6

𝑍
∑ 𝑧(𝑤)𝑒𝑤(𝑤)

𝑤∈𝑊

, ()

 𝑍 = ∑ ∑ 𝑧(𝑤)

𝑤∈𝑊𝑊∈𝐵∪𝑀1∪𝑀2∪𝑀𝑜∪𝐸∪𝑆

, ()

𝑧𝑤 = [𝑣𝑤(𝐵); 𝑣𝑤(𝑀1); 𝑣𝑤(𝑀2); 𝑣𝑤(𝑀𝑜); 𝑣𝑤(𝐸); 𝑣𝑤(𝑆)], (6)

where 𝑣𝑤 denotes the weighting function, 𝑒𝑤(𝑤) denotes the

embedding vector of word 𝑤, 𝑧(𝑤) denotes the number of oc-

currences of lexical word 𝑤 in the statistical data, 𝑊 denotes

one of the “BM1M2MoES” word sets corresponding to character

𝑐𝑖, 𝑍 is the sum of occurrence of all matched words in the six

words sets, and 𝑧𝑤 denotes the exp-SoftLexicon embedding

vector corresponding to the character. In this work, the statistical

dataset is made up of training and validation data. In addition,

the frequency of 𝑤 does not increase if 𝑤 is covered by a subse-

quence of another matching lexical word. This avoids the prob-

lem that the frequency of a shorter word is always less than the

frequency of the longer word containing it.

D. Bi-LSTM Layer

After obtaining three different granularity features of the in-

put sequence, the next step is to preserve their individual

331

information as completely as possible and integrate them into

the character representation. We finally choose to concatenate

the representation vectors of the three, and the final representa-

tion of each character is obtained by:

 𝒙𝑐 ← [(𝒙𝑐; 𝒚𝑟; 𝒛𝑤)] ()

Then, the final representations of characters are fed into Bi-

LSTM. The definition of LSTM is as follows:

 [

𝒊𝑡

𝒇𝑡
𝒐𝑡

�̃�𝑡

] = [

𝜎
𝜎
𝜎

𝑡𝑎𝑛ℎ

] (𝑊 [
𝒙𝑡

𝑐

𝒉𝑡−1
] + 𝑏),

 𝒄𝑡 = �̃�𝑡⨀𝒊𝑡 + 𝒄𝑡−1⨀𝒇𝑡 , (8)

 𝒉𝑡 = 𝒐𝑡⨀tanh (𝒄𝑡).

where is the element-wise sigmoid function and ⨀ denotes

the product of elements, 𝑊 and 𝑏 are trainable parameters.

Memory unit c can be considered as long-term memory and

hidden state 𝒉 as short-term memory. The backward LSTM

shares the same definition as the forward LSTM, but models

sequences in the opposite order. The hidden states of the i-th

step of forward and backward LSTM are concatenated together

to form the context-dependent representation of 𝒄𝑖.

E. CRF Decoding Layer

Finally, to parse the dependencies between the continuous

labels, we use a standard Conditional Random Field (CRF) [15]

layer to perform sequence tagging. We use the following equa-

tion to calculate the score of the labels sequence: 𝑦 =
{𝑦1, 𝑦2, … , 𝑦𝑛}:

 𝑆𝑐𝑜𝑟𝑒(𝑋, 𝑌) = ∑ 𝑃𝑖,𝑦𝑖

𝑛

𝑖=1

+ ∑ 𝑇𝑦,𝑦𝑖+1
,

𝑛

𝑖=0

 (9)

where 𝑃 is the output of the Bi-LSTM, which represents the

emission score of the tag 𝑦𝑖 in the sentence, and the transition

matrix 𝑇 denotes the transition probability from tag 𝑦𝑖 to tag

 𝑦𝑖+1.

In this work, we use the sentence-level negative log-likeli-

hood loss function to train the model, and 𝐿2 regularization

with the parameter 𝜆 is used to alleviate overfitting:

 ℒ = 𝑆𝑐𝑜𝑟𝑒(𝑋, 𝑌) − log ∑ 𝑒𝑠(𝑥, 𝑦𝑖) +
𝜆

2
𝑦𝑖∈𝑌

‖𝜃‖2. (10)

IV. EXPERIMENT

A. Experimental Setup

Datasets. We evaluate the proposed model on three standard
Chinese NER datasets, including OntoNotes 4.0 [16], Weibo
[17-18], and Resume [4]. OntoNotes 4.0 is drawn from the
news domain and contains four types of named entity. Weibo is
built based on Chinese social media Sina Weibo, which contains
PER, ORG, GEP, and LOC for both named entity and nominal
mention. Resume is composed of resumes collected from Sina
Finance. It is annotated with 8 types of named entities. We use
the same dataset split and lexicon as the Simplified Lattice. The
lexicon consists of 5.7k single-character words, 291.5k two-
character words, 278.1k three-character words, and 129.1k other
words. As for the pre-trained word embeddings, we also use the
same one as the Simplified Lattice, which are pre-trained on Chi-
nese Giga-Word using Word2vec [19].

Implementation Detail. In this work, the model is trained
using stochastic gradient descent. The initial learning rate for
Weibo is 0.005 and the other datasets are 0.0015. We apply drop-
out [20] to embedding layer with rate of 0.5 in order to avoid
overfitting. Additionally, the hidden size of Bi-LSTM is set to
200 for small datasets Weibo and Resume, and 400 for larger
dataset OntoNotes 4.0.

B. Experimental Results

Table 1 display the experimental results on three datasets.
The character-based model gets performance boosted with the
addition of softword and bichar features, which demonstrates it
is critical to cooperate lexicon and character features in Chinese
NER task. Another notable observation is that models use BERT
encoder persistently outperform those without BERT. It indi-
cates pre-trained character embeddings with context awareness
are significant to this work. After replacing the encoder of Sim-
plified Lattice with BERT-wwm-ext, we observe no significant
change in performance, and even a decrease on the Resume da-
taset. This indicates that Simplified Lattice does not exploit the
full potential of BERT-wwm-ext. GLYNN [21] improved the
performance of Chinese NER by using a CNN encoder to inte-
grate glyph features from character images, indicating that Chi-
nese NER can benefit from the pictogram features. The SLRL-
NER model integrates lexicon, character, and radical-level fea-
tures leads to 0.47 and 0.25 increments of F1 score over the state
of-the-art model on OntoNotes 4.0 and Resume, respectively.

TABLE I MAIN RESULTS ON THE THREE DATASETS

Models
OntoNotes 4.0 Resume Weibo

F1 F1 NE NM F1
Char-based 64.30 93.48 46.11 55.29 52.77

+bichar+softword 71.89 94.41 50.55 60.11 56.75

Peng and Dredze – – 55.28 62.97 58.99

He and Sun – – 54.50 62.17 58.23

SLK-NER 80.20 95.80 – – 64.00

GLYNN+BERT – 95.66 – – 69.00

Lattice-LSTM 73.88 94.46 53.04 62.25 58.79

Simplified Lattice 75.64 95.53 59.08 62.22 61.42

Simplified Lattice+BERT 82.81 96.11 70.94 67.02 70.50

Simplified Lattice+BERT-wwm-ext 82.85 95.98 71.07 67.64 70.77

SLRL-NER 83.28 96.36 72.15 68.62 71.90

332

In the results on Weibo, NE, NM and Overall denote F1
scores for named entities, nominal entities (excluding named en-
tities) and both, respectively. Weibo is made up of short and in-
formal texts created by users, so it is difficult to identify. There-
fore, baseline models adopt multitask learning with character
embedding feature [22], semi-supervised learning, and cross-do-
main learning [23]. However, the architecture of the above mod-
els is complicated and may bring noise to the task, so these mod-
els only achieve limited improvement. In contrast, we use exp-
SoftLexicon module to fuse the information of multiple candi-
date words to efficiently reduce word boundary conflicts. Addi-
tionally, we fully consider the radical-level, character-level and
word-level semantic information in the sentence to alleviate the
data sparsity problem. The experimental results show that our
method is superior on social media domain compared with the
state-of-the-art methods, which has 1.40 F1 score improvement.

C. Robustness Research

We perform experiments to verify the robustness of SLRL-
NER. The results are shown in Fig. 5. The NER task becomes
more challenging as the length of the named entity increases.
The F1 scores on all three datasets suffers certain decrease. Spe-
cifically, the performance of both Simplified Lattice and Lattice-
LSTM showed a large degree of fluctuation and degradation.
SLRL-NER presents only a small decrease under different test-
ing environments. Compared with the Simplified Lattice and
Lattice-LSTM, our method is more robust. All the experiments
are conducted on a single GPU with Quadro RTX 8000.

Fig. 5. Model performance against entity lengths. Batch size = 8 for SLRL-
NER and Simplified Lattice models. Lattice-LSTM can only be trained with

batch size = 1 due to its DAG structure.

D. Ablation Study

To investigate the contribution of each component of our
method, we conducted ablation studies on all three datasets, the
results are reported in Table 2. We find that: (1) Without radical-
level features, F1 scores decrease 0.51, 1.36, and 0.46 on three
datasets respectively. Radical-level features brings significant
performance improvement. (2) After replacing the exp-SoftLex-
icon component with the standard SoftLexicon structure, the F1
score of SLRL-NER also decreases. It indicates the usefulness
of finer grained relative position information in the input se-
quence.

TABLE II ABLATION STUDY OF SLRL-NER

Models OntoNotes Weibo Resume

SLRL-NER 83.28 71.90 96.36

-radical-level features 82.77 70.54 95.90

- exp-Middle Group 82.89 71.16 96.21

V. CONCLUSION

In this work, we propose SLRL-NER, a noval lattice model
which incorporates radical-level, character-level, and word-level
information for Chinese NER. In order to leverage the radical-
level features of the characters, we design a text CNN module to
extract the radical-level information. The exp-SoftLexicon mod-
ule is used to precisely capture the relative position information
of characters in the potential words, which efficiently mitigates
the challenge caused by the increase of entity length. Experi-
ments on three Chinese NER datasets from different domains
demonstrate our approach is superior compared with the state-
of-the-art methods.

ACKNOWLEDGMENT

This work was supported by the National Key R&D Program
of China under Grant No. 2020YFB1710200.

REFERENCES

[1] Dennis Diefenbach, Vanessa Lopez, Kamal Deep Singh, and Pierre Maret.

Core techniques of question answering systems over knowledge bases: a
survey. Knowl. Inf. Syst., 55(3):529–569, 2018.

[2] LiYang LiuQiao, LiuYao DuanHong, et al. Knowledge graph
construction techniques. Journal of computer research and development,
53(3):582, 2016.

[3] Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. Event
extraction via dynamic multi-pooling convolutional neural networks. In
ACL, pages 167–176. The Association for Computer Linguistics, 2015.

[4] Yue Zhang and Jie Yang. Chinese NER using lattice LSTM. In ACL,
pages 1554–1564. Association for Computational Linguistics, 2018.

[5] Wei Liu, Tongge Xu, QingHua Xu, Jiayu Song, and Yueran Zu. An
encoding strategy based word-character LSTM for chinese NER. In
NAACL-HLT, pages 2379–2389. Association for Computational
Linguistics, 2019.

[6] Xiaonan Li, Hang Yan, Xipeng Qiu, and Xuanjing Huang. FLAT: chinese
NER using flat-lattice transformer. In ACL, pages 6836–6842.
Association for Computational Linguistics, 2020.

[7] Yuyang Nie, Yuanhe Tian, Xiang Wan, Yan Song, and Bo Dai. Named
entity recognition for social media texts with semantic augmentation. In
EMNLP, pages 1383–1391. Association for Computational Linguistics,
2020.

[8] Ruotian Ma, Minlong Peng, Qi Zhang, Zhongyu Wei, and Xuanjing
Huang. Simplify the usage of lexicon in chinese NER. In ACL, pages
5951–5960. Association for Computational Linguistics, 2020.

[9] Xinlei Shi, Junjie Zhai, Xudong Yang, Zehua Xie, and Chao Liu. Radical
embedding: Delving deeper to chinese radicals. In ACL, pages 594–598.
The Association for Computer Linguistics, 2015.

[10] Yanran Li, Wenjie Li, Fei Sun, and Sujian Li. Component-enhanced
chinese character embeddings. In EMNLP, pages 829–834. The
Association for Computational Linguistics, 2015.

[11] Chuanhai Dong, Jiajun Zhang, Chengqing Zong, Masanori Hattori, and
Hui Di. Character-based LSTM-CRF with radical-level features for
Chinese named entity recognition. In NLPCC/ICCPOL, volume 10102 of
Lecture Notes in Computer Science, pages 239–250. Springer, 2016

[12] Mengge Xue, Bowen Yu, Tingwen Liu, Yue Zhang, Erli Meng, and Bin
Wang. Porous lattice transformer encoder for chinese NER. In COLING,

333

pages 3831–3841. International Committee on Computational Linguistics,
2020.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language
understanding. In NAACL-HLT, pages 4171–4186. Association for
Computational Linguistics, 2019.

[14] Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin
Wang, and Guoping Hu. Pre-training with whole word masking for
chinese BERT.CoRR, abs/1906.08101, 2019.

[15] John D. Lafferty, Andrew McCallum, and FernandoC. N. Pereira.
Conditional random fields: Probabilistic models for segmenting and
labeling sequence data. In ICML, pages 282–289. Morgan Kaufmann,
2001.

[16] Ralph Weischedel, Sameer Pradhan, Lance Ramshaw, Martha Palmer,
Nianwen Xue, Mitchell Marcus, Ann Taylor, Craig Greenberg, Eduard
Hovy, Robert Belvin, et al. Ontonotes release 4.0. LDC2011T03,
Philadelphia, Penn.: Linguistic Data Consortium, 2011.

[17] Nanyun Peng and Mark Dredze. Named entity recognition for chinese
social media with jointly trained embeddings. In EMNLP, pages 548–554.
The Association for Computational Linguistics, 2015.

[18] Hangfeng He and Xu Sun. F-score driven max margin neural network for
named entity recognition in Chinese social media. In EACL (2), pages
713–718. Association for Computational Linguistics, 2017

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In ICLR (Workshop
Poster), 2013.

[20] Nitish Srivastava, Geoffrey E. Hinton, AlexKrizhevsky, Ilya Sutskever,
and Ruslan Salakhut-dinov. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res.,15(1):1929–1958, 2014.

[21] Chan Hee Song and Arijit Sehanobish. Using Chinese glyphs for named
entity recognition (student abstract). In AAAI, pages 13921–13922.
AAAI Press, 2020.

[22] Nanyun Peng and Mark Dredze. Improving named entity recognition for
chinese social media with word segmentation representation learning. In
ACL. The Association for Computer Linguistics, 2016.

[23] Hangfeng He and Xu Sun. A unified model for cross-domain and semi-
supervised named entity recognition in chinese social media. In AAAI,
pages 3216–3222. AAAI Press, 2017.

334

AESPrompt: Self-supervised Constraints for
Automated Essay Scoring with Prompt Tuning

Qiuyu Tao
Department of Computer Science

Chongqing University
Chongqing, China

TaoQiuyu@cqu.edu.cn

Jiang Zhong
Department of Computer Science

Chongqing University
Chongqing, China

zhongjiang@cqu.edu.cn

Rongzhen Li
Department of Computer Science

Chongqing University
Chongqing, China

lirongzhen@cqu.edu.cn

Abstract—Automated essay scoring(AES) aims to automati-
cally assign scores to essays based on the quality of writing.
Previous approaches have made many attempts with pre-trained
BERT for essay scoring and achieved the state-of-the-art. How-
ever, these approaches mainly rely on the high computation cost
and ignore the high similarity between text representations. In
this paper, we propose a lightweight prompt-tuning framework,
AESPrompt, to capture the significant semantic features of the
text efficiently. We construct one continuous prompt for each
layer of the frozen language model to help the language model
understand the essay scoring task. Specially, we design task-
related self-supervised constraints to capture discourse structure
in terms of coherence and cohesion further to enhance the gener-
alization and discourse awareness of the prompt. Experimental
results on the public dataset ASAP illustrate that our approach
performs competitively in the full data settings and outperforms
in one-shot data settings significantly compared with fine-tuning
BERT.

Index Terms—Automated Essay Scoring, BERT, Prompt Tun-
ing

I. INTRODUCTION

Automated essay scoring(AES) aims to assign a score
based on the essay quality, for essays written on a specific
topic. AES is a necessary task in educational applications
which can provide an efficient approach to score large-scale
text and reduce human efforts remarkably. Early works in
AES mainly leveraged the handcraft features such as such
as grammaticality, spelling errors, and the length of essays
[1]. Although AES systems based on feature engineering are
explainable, it is expensive to design scoring rubrics for the
new writing topics.

Existing works are mainly based on Convolution Neural
Network(CNN) and Recurrent Neural Network(RNN) to learn
text representations. The key challenge of neural-network-
based AES systems is to learn a better text representation that
can capture deep semantic features as much as possible. How-
ever, those neural networks requires more annotated essays for
training. Shallow neural networks trained on limited samples
show poor performance to capture deep semantics of texts
which may obstruct an AES system to further ensure correct
scoring.

DOI reference number: 10.18293/SEKE2022-095

In recent years, pre-trained language models(PLMs) such
as the BERT [2], have improved performance in many natural
language downstream tasks such as text classification and sen-
timent analysis, which shows its extraordinary representation
ability. The key component of the BERT model is the self-
attention mechanism [3], which can capture the relationship
between any words in the essay even the long text. Although
some prior approaches utilize methods to fine-tune BERT [4],
[5], these approaches are dependent on high computation costs
which tune all model parameters and need to store a full
copy of the model for each writing topic. Besides, previous
works ignore the significant gap between pre-training and
downstream tasks, which restricts BERT from reaching its full
potential.

The prompt-based tuning method is proposed to narrow
the gap between downstream and pre-train tasks [6]. Un-
like the traditional fine-tuning method, prompt-based tun-
ing reformulates natural language understanding (NLU) as
a masked language modeling task, as the fig 1(b) shows.
Formally, we make a template function xprompt = τ(x)
to concatenate the input with prompts and one answer
slot [Z]. For a masked language model, the slot [Z] is
fill with the [MASK] token. For instance, when it ap-
plies to AES, we can simply define a template τ(x) =
“[x] Assign the essay on a scale of 0 to 4.[MASK]”. By
feeding a supervised example {xprompt, y} into the masked
language model M, we can determine the essay score with
PLMs predicting ’1’ or ’2’ at the mask position. Prompt-based
tuning can help PLMs better understand the task, meanwhile
introducing no new parameters within PLMs and making it
easier to fine tune.

PLMs with the fine-tuning need to store all model parame-
ters for each downstream task. However, discrete prompts can
be sub-optimal for the continuous PLMs. A recent line of work
proposes the prompt-tuning paradigm [6]–[8] to adapt large
PLMs to downstream tasks cheaply. Prompt tuning freezes
all the parameters in PLMs but only tunes the prompts,
making the method more efficient. Also, the prompts are
initialized randomly and learned end-to-end, reducing the cost
of manually designing the template.

Motivated by the above observations, in this paper, we
propose AESPrompt, a novel prompt-tuning framework for

335

(a) Fine Tuning (b) Prompting

Fig. 1: Paradigms of fine-tuning(figure a) and Prompting(figure b) for automated essay scoring.

AES. We first construct a multi-layer prompt that prepends a
continuous embedding into the input sequence for each layer
of PLMs. Specifically, the prompts in different layers are inde-
pendent, bringing more tunable parameters than other prompt-
tuning methods. At the same time, it is still much smaller than
the full PLMs. To further inject essay scoring self-supervised
constraints into the prompt, we propose AES-related self-
supervised learning to constrain the prompt including the
“Discourse Indicator shuffle” and the “Paragraph Reordering
Detection”. Our main contributions can be summarized as
follows:
• We propose AESPrompt, a prompt-tuning framework for

the essay scoring task. To the best of our knowledge,
this is the first approach to incorporate a prompt-based
method for essay scoring.

• To better optimize the continuous prompts, we propose
AES-related self-supervised constraints, including dis-
course indicator and paragraph order.

• We conduct experiments on the ASAP dataset with the
BERTbase model. Experimental results not only illus-
trate the effectiveness of AESPrompt in full data settings
but also reinforce the stability in low-resource settings.

II. RELATED WORK

A. Automated Essay Scoring

Early studies about the AES task starts with feature engi-
neering. The systems use textual features designed by human
experts [1]. The latter type of researches use deep neural
networks to extract features automatically. Taghipour and Ng
[9] first propose a neural method based on CNN and LSTM
to learn essay representation for essay scoring. Many works
improve AES based on that [10]–[14] BERT has achieved
state-of-art results on many downstream NLP tasks. some
prior works find BERT sentence embedding is useful for
the ASAP data [5], [13], [15], [16]. TSLF [15] calculates
the semantic score, coherence score, and prompt-relevant
score during the first stage, and then concatenates handcraft
features for further training. While Nadeem et al. [13] finds
that token and sentence embedding from BERT makes no
significant improvement. Their work explores discourse-based
pre-training tasks and contextualized embedding and proposes

a discourse-aware neural framework. R2BERT [5] model is
proposed to solve the essay scoring task and essay ranking
task jointly. The model is fine-tuned by a multi-loss approach
which combines the scoring MSE loss and a ranking error loss
based on ListNet.

B. Prompt-based learning

Prompt-based methods are inspired by the birth of GPT-
3 [17], which reformulate downstream tasks to language
modeling tasks with textual templates and a verbalizer. The
prompting method is first applied as a knowledge probe [18].
However, handcraft prompts heavily depend on the experience
of designers, so some works explore automatically generating
discrete prompts via gradient-based search [7], [19]. Shin et
al. [8]propose an approach to generate prompts in vocabu-
lary automatically. Compared with the fine-tuning method,
the prompting method freezes all model parameters, which
may lead to the volatile performance of the model in many
cases. [20], [21]. Prompt tuning is proposed to only tune
the continuous prompts and outperforms prompting in many
tasks. Han et al. [22] propose prompt tuning with rules for
text classification, Chen et al. [23] applied prompt-tuning with
synergistic optimization on relation extraction. Recently, some
works focus on optimizing continuous prompts for every layer
of pre-trained model [24], [25]. In this paper, we propose a
novel Prompt Tuning framework for the AES task. Besides, we
inject AES-related self-supervised to constraint the prompt. To
our knowledge, we are the first to apply prompt-based method
to Automated essay scoring.

III. AESPROMPT

In this section, we introduce our AESPrompt framework as
shown in Fig 2.

A. Prompt Encoder

The overall framework involves a language model to learn
text representation, which is then used for essay scoring.
Following the deep prompt tuning approach as in P-Tuning-
v2 (PT2) [26] which is an NLU version of prefix-tuning [24].
PT2 keeps all pre-train language model parameters frozen and
only tunes the prompt parameters. We regard the AES task as
a regression task and predict the score via [CLS] token. First,

336

Fig. 2: Model architecture of AESPrompt. We design two self-supervised constraints for Prompt tuning including Discourse
Indicator Shuffle(DIS) and Paragraph Reordering Detection(PRD).

for a given sample essay x = {w1, w2, . . . , wn}, it is should be
tokenized into a new sequence x̃ = {[CLS], e1, e2, . . . , en},
where n is the number of words and [CLS] is a special
classification token. We conduct M to obtain the hidden
representations of the inputs h = M(x̃) ∈ R|x̃|×d, where |x̃| is
the sequence length. To reduce the objective gap between pre-
training and AES, PT2 prepends prompt for each layer of M
as additional keys KP ∈ RL×d and values V P ∈ RL×d to the
multi-head self-attention mechanism, where L is the prompt
length and d is the dimension of word embedding. The new
text representation is obtained through attention as the show
below:

Att(Q,K) = softmax(
Q[KP ,K]

T

√
d

) (1)

Vatt(Q,K, V) = Att(Q,K) · [V P , V] (2)

where [,] refers to the concatenation operation. Then, the
hidden representation is mapped to CLS token h[CLS]. Since
score ranges are different from each other, during training the
gold scores are normalized into the range of [0,1] first. Then
during the test process, map the predicted scores to the original
score ranges. We can thus conduct a linear layer with activation
function to project the h[CLS] to a scalar value as formula (3),
where W is weight matrix and b is a bias initialized by the
mean gold score of training data [9].

ý = Sigmoid
(
Wh[cls] + b

)
(3)

B. Prompt Tuning with self-supervised constraints
Simply random initializing prompts with continuous embed-

dings brings difficulties to optimization. Fortunately, neural
networks can utilize related tasks to improve performance
through pre-training. To inject essay scoring self-supervised
constraints into prompt, we design self-supervised learning
with discourse indicator shuffle and paragraph reordering to
pre-train our prompts. The self-supervised constraints further
enhance the prompt’s generalization and document structure
awareness. Instead of using additional data, we generate pre-
train data from the original data as shown in Fig 3. We
introduce the details in the following sections.

Fig. 3: Proposed self-supervised constraints which utilizing
coherent/cohesive and incoherent/incohesive texts for Prompt
Tuning

1) Discourse Indicator Shuffle: To strengthen the bidirec-
tional representation on the AES task, we construct the dis-
course indicator shuffle task. The discourse indicator refers to
the conjunction indicating the relationship between sentences
(e.g. “however”, ”else” and ”while”). Though DIs has a
somewhat empty meaning, without sufficient DIs in a piece of
writing, a text would lack logic and the connection between
different sentences and paragraphs will be unfluent. We design
a binary classification to detect whether discourse indicators
are shuffled or not. To simplify, for one DI token is chosen,
1) we replace the token with other DI randomly 60% with
the time. 2) delete the DI 20% with the time, 3) unchanged
the token 20% of the time. For example, “they use an online
catalog because it’s cheaper” is cohesive. “they use an online
catalog but it’s cheaper” and “they use an online catalog, it’s
cheaper” is incohesive.

2) Paragraph Reordering Detection: The AES task is based
on understanding not only the relationship between two sen-
tences but also paragraphs while the relationship between
paragraphs is not modeled directly when pre-training. With
the hypothesis that many student essays follow a logical
structure like, “introduction-body-conclusion”. We propose to
reorder paragraphs that divide the document into three parts
and each part consists of one or more complete sentences.

337

And then, we permute them into a certain permutation. Since
the permutations show great influence in representation learn-
ing, we choose the permutations with the maximal average
Hamming distance [27]. We use three possible permutations
P = {(1, 2, 3), (2, 3, 1), (3, 1, 2)} in our experiments. We label
the essay with permutation Pi = {(1, 2, 3)} as coherent and
label another two permutations as incoherent.

C. Training

a) The scoring Task: is treated as a regression task. We
use the Adam optimization algorithm to minimize the mean
squad error (MSE) function. Given a training essays of size N,
yi and ýi are the corresponding gold and predicted score for i-
th eassy, separately. The loss function is shown in Formula(4)
:

Ls(xi, yi) = MSE(yi, ýi) =
1

N

N∑
i=1

(yi − ýi)2 (4)

b) Self-supervised Constraints: We create the training
instances for self-supervised constraints as section 3.2 men-
tioned. Since the tasks are treated as binary classification tasks,
we use the cross-entropy loss function for self-supervised
constraints, respectively. Where ci and ći are the corresponding
gold and predicted label of the input essay x̃i. Note that ci
is automatically assigned in the corruption process where an
original essay has a label of 1 and an artificially corrupted
essay has a label of 0.

Ld(x̃i) = −
M∑
j=1

ci log(ći)− (1− ci) log(1− ći) (5)

IV. EXPERIMENTS

TABLE I: Details of ASAP Dataset.

Set Score Range Type of essay Mean length
1 2-12 persuasive 350
2 1-6 persuasive 350
3 0-3 source dependent response 150
4 0-3 source dependent responses 150
5 0-4 source dependent responses 150
6 0-4 source dependent responses 150
7 0-30 narrative 250
8 0-60 narrative 650

In this section, we first introduce the ASAP dataset and
evaluate metrics. And then we describe the experimental setup
and present the results.

A. Dataset and Metrics

The Automated Student Assessment Prize(ASAP) dataset
is provided by a Kaggle competition which contains eight
different essay sets written by students from grade 7 to grade
10. This dataset has become the most widely used in the field
of AES which is composed of 12976 labeled essays. More
details about the ASAP are summarized in Table I.

https://www.kaggle.com/c/asap-aes/data

We employ the quadratic weighted kappa(QWK) as the eval-
uation metric, which is the official evaluation metric adopted
by ASAP competition. Quadratic weight kappa measures the
agreement between gold scores and automated scores. The
QWK is calculated as follows, an N by N weight matrix is
calculated first according to formula (6):

Wi,j =
(i− j)2

(N − 1)2
(6)

where i refers to the gold score, j refers to the predicted score
(assigned by the AES model) and N is the total number of
essays. Second, we construct the confusion matrix O, that Oi,j

corresponds to the number of essays rated i by human rater and
rated j by AES model. Then, an expected matrix E is calculated
as the outer product between gold scores and predict scores.
The matrix E is normalized such that E and O have the same
sum. Finally, from the three matrices, the QWK is calculated
as formula (7):

k = 1−
∑

i,j Wi,jOi,j∑
i,j Wi,jEi,j

(7)

B. Experimental settings

We explore the following setups to train AESPrompt models
for ASAP essays :

1) Training using only ASAP essay data;
2) Pretraining with either DIS or PRD data, followed by

training with the essay data.
3) Pretraining with DIS and PRD data, followed by training

with essay data.
For all our experiments, we use the “BERT-base-uncased”
model as the base model, and the training is implemented
on PyTorch with an Nvidia A6000 GPU. In our work, the
linear learning rate policy is used to tune the parameters, and
the max learning rate is set to 1e-3. In full data experiments,
closely following the settings as [9], we conduct five-fold
cross-validation with a 3:1:1 split for training, validation, and
test to evaluate our method. We report the average QWK
across the five folds. For one-shot data experiments, we follow
Gao et. al [7], which assumes development data has the same
size as train data to select model and hyper-parameters. And
we repeat the sampling of one-shot labled data 5 times and
the average results are reported. Consistently, we set prompt
length to 40, as a result, the tunable parameters are only 80k,
compared with 110M parameters of BERT fine-tuning, our
method only needs to store additional 0.7% for each essay
set.

C. Main Results

We evaluate the performance on the ASAP dataset, the main
results are shown in Table II. To put our results in perspective,
we compare our method with several baseline models. En-
hanced AI Scoring Engine (EASE) is a statistical model based

https://github.com/huggingface/transformers
https://github.com/edx/ease

338

TABLE II: The performance (QWK) of all comparison methods on ASAP dataset. The best measures are in bold. * denotes
statistical model.

settings Models 1 2 3 4 5 6 7 8 avg

full-data
EASE(SVR)* 0.781 0.621 0.630 0.749 0.782 0.771 0.727 0.534 0.699
EASE(BLRR)* 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705
CNN+LSTM 0.821 0.688 0.694 0.805 0.807 0.819 0.808 0.644 0.761
LSTM-CNN-att 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764
SKIPFLOW 0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.765
BERT 0.809 0.661 0.692 0.808 0.800 0.801 0.834 0.720 0.765
P-Tuning-V2 0.781 0.640 0.677 0.758 0.794 0.798 0.825 0.717 0.749
AESPrompt(DIS) 0.802 0.680 0.680 0.765 0.807 0.801 0.825 0.722 0.760
AESPrompt(PRD) 0.788 0.650 0.670 0.784 0.793 0.803 0.826 0.727 0.755
AESPrompt(ALL) 0.808 0.689 0.685 0.790 0.803 0.806 0.833 0.724 0.767

one-shot
BERT 0.625 0.545 0.431 0.515 0.647 0.485 0.664 0.646 0.572
P-Tuning-V2 0.568 0.522 0.554 0.649 0.681 0.610 0.664 0.613 0.607
AESPrompt(DIS) 0.680 0.532 0.585 0.660 0.698 0.617 0.669 0.598 0.630
AESPrompt(PRD) 0.658 0.542 0.566 0.667 0.685 0.613 0.678 0.603 0.627
AESPrompt(ALL) 0.682 0.544 0.590 0.672 0.701 0.622 0.683 0.620 0.639

on hand-crafted features followed by support vector regression
(SVR) and bayesian linear ridge regression (BLRR) [28].
CNN+LSTM [9] is proposed to assemble CNN and LSTM
to predict the essay rating. CNN-LSTM-Att [12] introduces
hierarchical neural networks with attention mechanism to learn
the representation of essays. SKIPFLOW [14] considers the
coherence when learning text representations. BERT [2] is em-
ployed as an encoder for the AES task. P-Tuning-v2 [26] per-
forms deep prompt tuning, which prepends prefix prompts in
the input of model’s hidden layer. AESPrompt(DIS) employs
the discourse indicators shuffle constraint. AESPrompt(PRD)
only includes the paragraph reordering detection constraint.
AESPrompt(ALL) employs both two constraints. The BERT
fine-tuning and SKIPFLOW give a strong baseline, the average
QWK across eight sets is 0.765 in the full-data setting. LSTM-
CNN-att and SKIPFLOW both are hierarchical models which
explicitly capture the adjacent semantics in each essay. So
they perform better in set 1, 3, 4, 5 and 6. We can see that
the AESPrompt method slightly outperforms in a resource-
rich setting. AESPrompt shows obvious advantages on two
narrative essay sets(set 7 and 8). By incorporating the self-
supervised constraints, the proposed framework dramatically
improves the accuracy of PT2 at an average of 0.018 QWK.

To further evaluate the potential of our method, we con-
duct one-shot setting experiments on the ASAP dataset. We
compare our approach with BERT fine-tuning and P-Tuning-
v2. AESPrompt significantly outperforms the BERT fine-
tuning and P-tuning-v2 in one-shot settings, which shows
AESPrompt appears to be more beneficial in low-resource
settings. Specifically, AESPrompt can obtain grains of up to
11.7% improvement on average compared with BERT fine-
tuning. We can find out that AESPrompt outperforms in all
sets. What is more, We also observe that our results suffer
from high variance. The performance fluctuates up to 15%
QWK under different randomly sampled Dtrain and Ddev . In
one-shot settings, truncating text that exceeds the length may
have a great impact on AESPrompt. We will explore these
problems in the future.

TABLE III: Comparison of Runtime and Memory. TR means
the total training time on the train set and IPS means inference
runtime per each test sample. Parameters refer to the number
of tuned parameters.

Model TR IPS Parameters
BERT fine-tuning 256 0.067 110M
P-Tuning-v2 179 0.062 80k
AESPrompt 185 0.062 80k

D. Ablation Study

We explore the effects of the self-supervised constraints
for the AESPrompt, by removing each of them individually.
These self-supervised constraints include: discourse indicators
shuffle, and Paragraph reordering detection. As shown in
Table II, after removing one of them from AESPrompt, the per-
formance decrease a lot. These indicate that the self-supervised
constraints we proposed can enhance the prompts discourse
awareness from paragraph level and discourse indicator level.
In addition, the performance of AESPrompt(PRD) is worse
than AESPrompt(DIS) which indicates that using the RPD
constraint alone may fail to benefit the general regression
model.

E. Runtime and Memory

Our secondary evaluation is based on the runtime and
resource usage which means the total number of parameters. In
summary, we main compare BERT fine-tuning, P-Tuning-v2
and AESPrompt model as Table III shows. Firstly, we estimate
the total tuned parameters for the three models. Then, We take
essay set 1 as an example to compare the model runtime. Since
the prompt tuning needs more training epochs to converge than
BERT fine-tuning that we record the total training time for
each method. And we record the inference time on one sample
to compare the efficiency of inference. In our approach, we
freeze all parameters in the language model that reduce the
storage and computation consumption. It’s practical in real
educational scenarios that AESPrompt can reach a reasonable

339

performance on scoring task only needs to store additional 80k
parameters for a new essay scoring set.

V. CONCLUSION

In this work, we propose a lightweight prompt tuning
framework with self-supervised constraints, AESPrompt, for
automated essay scoring. Specifically, we propose two AES-
related self-supervised constraints to pre-train the prompt
which further reduces the intrinsic gap between the language
model distribution and the target data distribution. In this way,
both full-data and the one-shot performance can be boosted.
Compared with standard BERT fine-tuning, our method is
lightweight, which only tunes 80k parameters compared with
110M. Experimental results show that the proposed method
achieves significant improvement on one-shot AES and com-
petitive results on full-data AES. In this case, our approach
is meaningful for the practical of PLMs in automated essay
scoring. In the future, we plan to explore how to design unified
task formats and the corresponding auxiliary task on eight sets.

ACKNOWLEDGMENT

The authors acknowledge National Natural Science Foun-
dation of China (Grant No: 62176029), the Key Re-
search Program of Chongqing Science and Technology
Bureau (cstc2020jscx-msxmX0149), and Graduate Research
and Innovation Foundation of Chongqing, China (Grant
No.CYS21061). This work is also supported by the National
Natural Science Foundation of China under Grant 62102316,
in part by the NWPU Development Strategy Research Fund
Project Grant 2022FZY16.

REFERENCES

[1] H. Yannakoudakis, T. Briscoe, and B. Medlock, “A new dataset and
method for automatically grading esol texts,” in Proceedings of the 49th
annual meeting of the association for computational linguistics: human
language technologies, 2011, pp. 180–189.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” arXiv preprint
arXiv:1706.03762, 2017.

[4] E. Mayfield and A. W. Black, “Should You Fine-Tune BERT for
Automated Essay Scoring?” in Proceedings of the Fifteenth Workshop on
Innovative Use of NLP for Building Educational Applications. Seattle,
WA, USA → Online: Association for Computational Linguistics, 2020,
pp. 151–162.

[5] R. Yang, J. Cao, Z. Wen, Y. Wu, and X. He, “Enhancing Automated
Essay Scoring Performance via Fine-tuning Pre-trained Language Mod-
els with Combination of Regression and Ranking,” in Findings of the
Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, 2020, pp. 1560–1569.

[6] T. Schick and H. Schütze, “Exploiting Cloze Questions for Few Shot
Text Classification and Natural Language Inference,” arXiv preprint
arXiv:2001.07676, 2021.

[7] T. Gao, A. Fisch, and D. Chen, “Making pre-trained language models
better few-shot learners,” in ACL/IJCNLP (1), 2021.

[8] T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh,
“AutoPrompt: Eliciting Knowledge from Language Models with Auto-
matically Generated Prompts,” arXiv preprint arXiv:2010.15980, 2020.

[9] K. Taghipour and H. T. Ng, “A Neural Approach to Automated Essay
Scoring,” in Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing. Austin, Texas: Association for
Computational Linguistics, 2016, pp. 1882–1891.

[10] D. Alikaniotis, H. Yannakoudakis, and M. Rei, “Automatic Text Scoring
Using Neural Networks,” Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp.
715–725, 2016.

[11] M. Cozma, A. Butnaru, and R. T. Ionescu, “Automated essay scoring
with string kernels and word embeddings,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Melbourne, Australia: Association for
Computational Linguistics, 2018, pp. 503–509.

[12] F. Dong, Y. Zhang, and J. Yang, “Attention-based Recurrent Convolu-
tional Neural Network for Automatic Essay Scoring,” in Proceedings
of the 21st Conference on Computational Natural Language Learning
(CoNLL 2017). Vancouver, Canada: Association for Computational
Linguistics, 2017, pp. 153–162.

[13] F. Nadeem, H. Nguyen, Y. Liu, and M. Ostendorf, “Automated Essay
Scoring with Discourse-Aware Neural Models,” in Proceedings of the
Fourteenth Workshop on Innovative Use of NLP for Building Educa-
tional Applications. Florence, Italy: Association for Computational
Linguistics, 2019, pp. 484–493.

[14] Y. Tay, M. Phan, L. A. Tuan, and S. C. Hui, “Skipflow: Incorporating
neural coherence features for end-to-end automatic text scoring,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 32,
no. 1, 2018.

[15] J. Liu, Y. Xu, and Y. Zhu, “Automated Essay Scoring based on Two-
Stage Learning,” arXiv preprint arXiv:1901.07744, 2019.

[16] A. Sharma, A. Kabra, and R. Kapoor, “Feature enhanced capsule
networks for robust automatic essay scoring,” in Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases.
Springer, 2021, pp. 365–380.

[17] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[18] F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller,
and S. Riedel, “Language Models as Knowledge Bases?” arXiv preprint
arXiv:1909.01066, 2019.

[19] K. Hambardzumyan, H. Khachatrian, and J. May, “Warp: Word-level
adversarial reprogramming,” arXiv preprint arXiv:2101.00121, 2021.

[20] B. Lester, R. Al-Rfou, and N. Constant, “The Power of Scale for
Parameter-Efficient Prompt Tuning,” in Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing. Online
and Punta Cana, Dominican Republic: Association for Computational
Linguistics, 2021, pp. 3045–3059.

[21] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang, “Gpt
understands, too,” arXiv preprint arXiv:2103.10385, 2021.

[22] X. Han, W. Zhao, N. Ding, Z. Liu, and M. Sun, “PTR: Prompt Tuning
with Rules for Text Classification,” arXiv:2105.11259, 2021.

[23] X. Chen, N. Zhang, X. Xie, S. Deng, Y. Yao, C. Tan, F. Huang,
L. Si, and H. Chen, “Knowprompt: Knowledge-aware prompt-tuning
with synergistic optimization for relation extraction,” arXiv preprint
arXiv:2104.07650, 2021.

[24] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts
for generation,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Online: Association for Computational Linguistics, Aug. 2021,
pp. 4582–4597.

[25] G. Qin and J. Eisner, “Learning How to Ask: Querying LMs with
Mixtures of Soft Prompts,” arXiv preprint arXiv:2104.06599, 2021.

[26] X. Liu, K. Ji, Y. Fu, Z. Du, Z. Yang, and J. Tang, “P-Tuning v2: Prompt
Tuning Can Be Comparable to Fine-tuning Universally Across Scales
and Tasks,” arXiv preprint arXiv:2110.07602, 2021.

[27] Y. Cao, H. Jin, X. Wan, and Z. Yu, “Domain-adaptive neural automated
essay scoring,” in Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2020, pp. 1011–1020.

[28] P. Phandi, K. M. A. Chai, and H. T. Ng, “Flexible domain adaptation
for automated essay scoring using correlated linear regression,” in
Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, 2015, pp. 431–439.

340

Increasing Representative Ability for Topic
Representation

Rong Yan, Ailing Tang, Ziyi Zhang
College of Computer Science, Inner Mongolia University

Inner Mongolia Key Laboratory of Mongolian Information Processing Technology
National & Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian

Hohhot 010021, China
Email: csyanr@imu.edu.cn

Abstract—As for standard topic model, such as LDA (Latent
Dirichlet Allocation), each topic is generally depicted by a
weighted word set, where the high-ranked words are deemed
more representative. Meanwhile, the probability of each word is
considered as the ability to represent the semantic contribution
for the topic. However, few efforts are focused on enhancing the
representative ability of the topic to support fine grained topic
representation. In this paper, we propose a Word Topic Ware
(WTW) model to take word inherent diversity characteristic
into consideration, in order to screen out and enhance the
more representative words for topic representation. Experimental
results on three large datasets show that our proposed method
can increase the representative ability for topic representation.
In addition, our work will positively affect improving the quality
of topic content analysis.

Index Terms—Topic analysis, Text representation, Topic model,
Latent Dirichlet Allocation.

I. INTRODUCTION

Probabilistic topic model (PTM) family [1] offers a promis-
ing solution to discover and extract a mixture of latent topic set
that occur in a large document collection. Under the bag-of-
word assumption, topic modeling approaches, such as Latent
Dirichlet Allocation (LDA) [1], are implicitly capture the
document-level word co-occurrence patterns to reveal each
latent topic as a multinomial distribution over a weighted
word set through the statistical techniques [2]. Meanwhile,
a weighted topic set that supposed to be semantic or repre-
sentative is used to summarize and organize the semantic and
hidden structures of documents. Thus, each document is forced
to represent as the same specific combination of a topic set.
The probability value of the specific word in each topic reflects
its representative ability that we called semantic contribution
degree. Generally, the bigger probability value of the word
represents its bigger semantic capacity ability. Ideally, topics
discovered by standard PTMs should be independent from
each other under the assumption that the topic proportions are
randomly drawn from a Dirichlet distribution. In this paper,
we call it ‘topic independence’. Therefore, the explanation of
each topic should be single-minded and no ambiguity, that is to
say, the topic representation results should maintain the topic
reliability. Unfortunately, it is commonly seen that the same
word often appears in different topics simultaneously in the

real dataset. It makes this topic depiction manner unapparent.
Meanwhile, it is very difficult to keep ‘topic independence’.
But the truth is that the standard PTM is really difficult
to improve this scene. In summary, the reason lies in two
aspects, including word frequency and word inherent diversity
characteristic.

The word with high-frequency in the document collection
is bound to appearing in topic-word distribution with higher
rankings for most of the topics due to the ‘bag-of-word’
assumption. However, the semantic contribution degree of
this kind of words are not in accord with its representative
ability, but weaken topic independence. At the same time,
they are general and popular in topic description, which are
called the common words. However, as it will be seen later,
a topic distribution under which a large number of words
with higher probability is not always likely to be insignificant.
Though most of these words are filtered out in standard PTMs,
which are considered as common stop-words, there are still
majority of common words undertake the supported role for
the topic description, and it should be reserved for avoiding
the semantic loss [3]. And at this point, it is inseparable
from the word inherent diversity characteristic. In standard
PTMs, such as LDA, the top-ranked word set of the specific
topic is generally used to represent the topic description.
Thus, the word inherent diversity characteristic lies in the
semantic representative ability for the specific topic. As we all
known, the outward manifestation of word inherent diversity
characteristic lies in the probability of the word in each topic.
To that end, intensive efforts have been invested on finding the
appropriate method to discriminate the word inherent diversity
characteristic [4].

However, few previous studies consider this discrimination
from the real status of the same word in different topics,
even though it is exactly the common word. To overcome the
limitations of previously proposed methods, specifically, we
propose a Word Topic Ware (WTW) model for taking account
of word inherent diversity characteristic, in order to identify
and refine the quantification of the meaningful representative
words for topic representation. The main idea comes from the
answers of the following two questions extensive: (1) Is the
same word that in different topics represent the same semantic

DOI reference number:10.18293/SEKE2022-052
341

meaning? (Q1) (2) Is it correct that each latent topic with
single semantic? (Q2)

The contribution of this paper is as follows. This paper
proposed a WTW model to take word inherent diversity char-
acteristic into consideration, in order to screen out and enhance
the more representative words for topic representation. To the
best of our knowledge, this is the first time considering the
word inherent diversity characteristic for topic analysis.

The remainder of this paper is organized as follows. Section
2 reviews the related work on topic quality analysis. Section
3 analyses the incoherence and bias in PTMs. Section 4
presents our proposed method (WTW). Section 5 describes
our experiments. In Section 6, we make a conclusion.

II. RELATED WORK

In this paper we mainly discuss the topic quality problem of
PTM, so we review the related research effort in this section.
The current automated evaluations of PTM topical quality
research mainly focus on two aspects: topic groups quality
and individual topic quality.

Much effort has been devoted to automated evaluation
approach for topic groups quality, and the mainly metrics
include perplexity and topic coherence. The perplexity value
lies to estimate the generalization capability of the model
fit [5], and the lower value represents a higher performance
of the model. However, this metric pays less attention to the
semantic interpretability of the words composed a specific
topic [6]. The real fact is that the lower perplexity of topics
is not necessarily correlated to better coherence of topics,
even negatively with topic interpretability [6]. Thus, topic
coherence is considered as a supplement metric to evaluate
the topic groups quality emphasised on understandability and
interpretability [7]–[11]. Topic coherence can be estimated by
the semantic similarity of topic words [7], [10], [11] or topic
documents [11].

For the PTM family, the determination or selection the
number K of the most appropriate latent topics is extremely
critical and directly effects the quality of estimated topic set.
Up to now, it is still an open-ended problem in topic modeling.
While large topic number K means lower descriptor ability
of the topic model, as well as intensify the ‘forced topic’
problem [12]. For being avoid this selection dilemma, topic
significance emphasises on evaluating the individual topic
quality to serve for the topic groups quality. AlSumait et
al. [13] devoted to measuring the distances between three
categories ‘junk topics’ comprised of insignificant word group-
ings and the legitimate topics. Chang et al. [6] considered
the interpretability of a topic as a word intrusion task, and
designed topic significance to measure the topic quality in
terms of semantic interpretability of the words composed a
specific topic. Soon, Lau et al. [14] modified and automated
the work of Chang et al. [6] via an improved formulation of
Newman [7] based on normalized pointwise mutual informa-
tion (NPMI). Recently, Chi et al. [15] tried to reranking the
top-ranked word set in topic description in order to find the
more representative words in topics.

III. INCOHERENCE AND BIAS

In fact, the existing approaches about topic coherence as-
sumed that the topic coherence correlates with the coherence is
based on top-N highest ranked word set assigned to the topic,
and we let W denote the word set with N words as topic
description, W=(w1, w2, · · · , wN). As an example, Table. I
lists the same topic with the represented word set (20 and 200)
discovered by LDA on Reuters-101 dataset (category: interest)
with topic number K is set to 60.

For the first glance, from Table.I, we can intuitively see that
the two descriptions of the topic (top-20: W1, top-200: W2)
are very similar because of some top-ranked words, such as
‘credit, finance’, and we can easily give ‘Finance’ category
label to the topic. However, we find that this is not the case
through further observation. It is obvious that there are lots of
non-relevant words appeared in topic description with larger
word number being selected, such as in W2, which makes the
topic incoherent. With further investigation, we find that some
words are real relevant to the topic, such as ‘bonds, treasury’ in
W2. Nevertheless, they are generally considered low semantic
contribution for the topic representation due to the low-
ranking. Intuitively, we can conclude that the representative
ability in W2 works better. In fact, it will choose a small word
number to construct W in standard topic modeling, and we
find it is inappropriate. Based on these observations, we make
an assumption that whether we can promote the rankings of
these ‘real’ words so as to accomplish the representative ability
of the topic description, as well as alleviating the dilemma of
the word frequency. Furthermore, the subsequent experiments
confirm this assumption.

The fact is that not all topics are high coherent, the
incoherent topics will intensify the inexpressibility of topic
representability. However, in particular, we note that the rep-
resentative ability of topic becomes will be clarity when being
select a large-scale word set. Meanwhile, it will also increase
the risk of the redundancy of the word set. That is to say, the
word with low probability has representative ability instead
[3]. As for the general PTM, the selected word number N is
always set to be a constant, and it has been paid less attention
in relevant research.

Besides incoherence, we also note that a second problem
may play an important role. In particular, the semantic of
the topic may be biased towards the meaning of the top
ranked word set with high probability, which covering the
dominate semantic of the topic. Meanwhile, the low-ranking
word set actually acts as a supplement role because of the low
probability. In addition, the ambiguity of the word is another
influence factor.

From Table. I, we can observe that the topic description in
W2 has two distinct profiles: ‘finance’ and ‘politics’, and the
description words of them are intertwined in W2 even though
we know that finance and politics are always inseparable dis-
tinctly. However, the truth is that it will let the dominate profile
to assign the category of the specific topic [16], [17]. Just like

1http://kdd.ics.uci.edu/database/reuters21578/reuters21578.html

342

TABLE I: Topic description examples for the same topic on Reuters-10 (category: interest) (The first line (W1) is the original
top-20 word set, the second line (W2) is the original top-200 word set, and the third line (W3) is the new top-200 word set
which re-ranking W2 using our method).

W1 credit, rates, card, committee, six, finance, Canadian, group, limit, balances, trade, report, Imperial, subcommittee, Citicorp, transaction, legislation,
State, previously, American

W2 credit, finance, move, fee, group, state, It, banking, hopes, financial, committee, Visa, balance, Express, transaction, Citicorp, charges, statement,
ct, amount, reduce, responding, Service, subcommittee, OPTIMA, marketing, Chia, Hockin, quarterly, billing, yearly, market-related, allowed,
low, example, threatened, represented, stay, workers, returns, news, levels, sees, factor, pressures, Switzerland, Nova, suspended, important, Italys,
departments, aid, positions, nation-wide, association, speculated, curve, expenses, AXP, war, features, issuer, two-to-one, link, Braddock, individual,
ones, television, overriding, defend, dominant, cardholders, monthly, delighted, Dallas, Quebec, enaction, expired, touch, Taiwan, middle-class,
entitlement, recognised, deciding, resumed, talking, Japan, expected, cut,base, lending, rate, institutions, pct, part, recent, pact, major, industrial,
nations, Paris, Finance, Ministry, sources, said, based, revision, Trust, Fund, Bureau, Law, approved, parliament, March, abolishing, minimum,
interest, deposits, bureau, channels, funds, government, public, works, official, uses, bodies, Development, Bank, Peoples, Corp, corporations, local,
enterprises, usually, moves, tandem, long-term, prime, rates, However, impossible, follow, January, legally, set, ministry, abolish, introduce, resolve,
problem, stimulate, domestic, economy, Tuesday, bankers, record, effective, February, suggested, reached, agreement, depositors, postal, savings,
system, Posts, Telecommunications, welfare, annuity, Health, Welfare, ministries, trying, determine, market, considered, setting, bureaus, deposit,
Coupon, new, year, bonds, minus, percentage, points, likeliest, choice, added, Italian, treasury, annual, coupon, payable, two, issues, certificates,
CCTs, four, compared

W3 credit, finance, move, fee, group, state, transaction, banking, hopes, financial, committee, Visa, balances, Hockin, Express, Citicorp, charges,
statement, ct, amount, reduce, responding, Service, subcommittee, OPTIMA, marketing, Chia, quarterly, billing, It, yearly, market-related, allowed,
low, example, threatened, represented, stay, workers, returns, cardholders, news, levels, sees, factor, pressures, Nova, suspended, important,
departments, aid, welfare, annuity, positions, nation-wide, association, speculated, curve, expenses, AXP, war, features, issuer, link, Braddock,
individual, ones, television, overriding, defend, dominant, monthly, delighted, Quebec, expired, touch, Switzerland, middle-class, entitlement,
recognised, deciding, resumed, talking, expected, cut, base, lending, rate, institutions, pct, part, recent, pact, major, industrial, nations, Paris, Finance,
Ministry, sources, said, based, revision, Trust, Fund, Bureau, Law, approved, parliament, March, abolishing, minimum, interest, deposits, bureau,
channels, funds, government, public, works, official, uses, bodies, Development, Bank, Peoples, Corp, Taiwan, Italys, two-to-one,corporations, local,
enterprises, usually, moves, tandem, long-term, prime, rates, However, impossible, follow, January, legally, set, ministry, abolish, introduce, resolve,
problem, stimulate, domestic, economy, Tuesday, bankers, record, effective, February, suggested, reached, agreement, depositors, postal, savings,
system, Posts, Telecommunications, Health, Welfare, ministries, trying, determine, market, considered, setting, bureaus, deposit, Coupon, new, year,
bonds, minus, percentage, points, likeliest, Japan, choice, added, Italian, treasury, annual, coupon, payable, two, issues, certificates, CCTs, four,
compared

the topic in Table. I, the category will be assigned ‘Finance’.
In this paper, we take an assumption that each specific topic
estimated by PTM has a single sematic interpretation but with
multi-sematic aspects or profiles, and that is the motivation of
our work.

IV. METHODOLOGY

In this section, we explain the detail our methodology for
increasing representative ability of the topic. Furthermore, we
analyse the effects of incoherence or bias that standard PTMs
suffered. Once we determine which sematic profile is being
covered by each topic, we propose to promote and identify
‘good’ words within the topic description.

For a given topic description word set, the aim of this
paper is to re-rank the word set in order to obtain a better
topic representation. Inspired by the diversification scheme in
information retrieval research, we focus on selecting the words
that are both relevant to the topic and different from the words
already selected. The common principle of diversification is
to select as diverse results as possible from a given set of
retrieved documents [18]. In our case, we aim to select a
semantic representation word set to represent the topic with
less redundancy among them as much semantic expression
aspects as possible, as well as avoiding the ambiguity of the
word. We formulate our identification scheme as a re-ranking
task, which is similar to the work of [15]. But different from
the work of [15], we devote to identifying and refining the
quantification the meaningful representative words for topic
representation from the diversification point view for avoiding
semantic loss of the topic description.

In this section, we elaborate on a general-based WTW
(Word Topic Ware) method to identify the meaningful rep-
resentative word set for increasing representative ability to a
specific topic. Thus, we choose the classical implicit diversifi-
cation approach to realize. Our approach is based on a similar
principle to Maximal Marginal Relevance (MMR) [19], which
aim is to take both relevance and redundancy into account for
the selected documents.

In this paper, each topic is presented to a top-N most
probable word set W from the word-topic distribution Φ
to represent the topic t. In this paper, we elaborate MMR
algorithm to promote the representative ability of the specific
word in topic description, to remedy the semantic contribution
degree of the specific word for the topic. In the experiments,
we iteratively select and order top-ranked N words with new
weight scores by using MMR scheme.

The new semantic contribution degree of each word wi∈W
of the specific topic t is calculated by Eq.(1):

weight(wi, t)=λdegree(wi, t)−(1−λ) max
wj∈S

sim(wi, wj) (1)

where S is the selected set of words in W , degree(wi, t)
determines the original representative degree of each word wi

in topic t, and sim(wi, wj) determines the similarity between
two words pair. λ denotes the interpolation parameter which
controls the tradeoff between the relevance and the diversity.
In the experiments, we empirically set λ=0.5.

As for a fixed topic number K, we consider that for the
specific topic tm (m ∈ [1,K]), the representative degree value
of the word degree(wi,tm) should be with high marginal

343

probability in topic tm, as well as possessing low marginal
probability in other topics, which is calculated by Eq.(2):

degree(wi, tm) = φtm,i · log
φtm,i

K
√∏K

k=1 φk,i

(2)

where sim(wi,wj) denotes the similarity between each node
pair, and we use Word2vec 2 to accomplish it.

V. EXPERIMENTS

In this section, we present the evaluation results that we
obtained by applying our proposed framework WTW.

A. Datasets

In this section, we evaluate our topic representation scheme
on three large widely datasets: 20NG-bydate 3, Reuter-10 and
OHSUMED87-91 4. we do use offline topic model so that we
can easily extend our work on large collections and avoid the
challenge of choosing the topic number.
• 20NG-bydate: It is a widely used dataset for text classifi-

cation research. It is highly balanced since each category
has about 1000 texts. We use the bydate version of this
dataset with a total of 18,846 articles that are organized
into twenty different categories. This version has been di-
vided into training (60%) and test (40%) set, respectively,
and we follow this in the experiment. In addition, we keep
the text contained in Content field for topic modeling.

• Reuters-10: It is another benchmark dataset typically
used in the research field of text classification. It contains
21,578 documents in 135 categories. But this dataset is
very imbalanced and the variation of category size is quite
large. Hence, in the experiment, we left the documents
belonging to merely one category and use the 10 largest
categories in the dataset (Reuters-10) with a total of 7,285
documents. We use the standard split, 5,228 documents is
used as train set and 2,057 documents is used as test set,
respectively. In the experiment, we use the BODY field
for topic modeling.

• OHSUMED87-91: It is a widely used dataset for text
retrieval and text classification research. It contains five
years (1987-1991) relatively short abstracts of references
from medical journals in the MEDLINE database with
348,566 documents. In the experiment, we use the ab-
stract field for topic modeling and we manually eliminate
the invalid documents and left 233,445 documents in fact.
We select 119,828 documents used as test and the rest of
113,617 documents used as train set.

For all datasets, we removed HTML tags, stop words, rare
words and the word with length less than two or occur in
less than five documents. In addition, in 20NG-bydate, the
Content field of some documents are empty, and we cull these
documents manually in the experiment. Table. II gives the
detailed statistics information of three datasets.

2http://code.google.com/p/word2vec
3http://qwone.com/˜jason/20Newsgroups/
4http://mlr.cs.umass.edu/ml/machine-learning-databases/ohsumed/

TABLE II: Statistics of the datasets.

Dataset train word number test word number
20NG-bydate 49,446 34,913
Reuters-10 33,340 22,880
OHSUMED87-91 402,058 441,400

B. Experimental Setting

In order to evaluate our approach, we require a topic model.
We apply directly standard LDA to obtain the initial topic
description results from each dataset. In the experiments, we
use Gibbs sampler to generate the topic-word distributions Φ,
and the iteration number of Gibbs sampler adopt a fixed value
1000. During modeling training, the Dirichlet hyperparameters
α and β are set to 0.1 and 0.01, respectively. For each topic t
be denoted as a list with top-ranked N words, and the value
of N ranges from 10 to 400, step is set to 5.

C. Results and Analysis

Topic coherence metric is a popular automatical metric to
evaluate the coherence of the topics learnt by topic models.
However, it is unfit for our work due to the word-frequency
essential peculiarity of the language being used. In order
to analysis how effect of the topic representative ability is,
with the increasing of the topic representation word number
N being selected, we take the perplexity to evaluate the
performance of topic representation.

As shown in Fig. 1, we exhibit the lowest value of perplexity
comparisons (top-N 20 and top-N 200) on three datasets.

From Fig. 1, we can observe that the lowest value of
perplexity has fluctuation to some extent with the selected
word number increasing. Experimental results shows that the
topic representative ability is instable due to the scale of the
top-ranked word set. It is the proof of the influence of word
frequency on text modeling. Thus, we can conclude that it is
an objective existence phenomenon in general PTMs, and it is
also proved that the necessity and significance for increasing
the representative ability to topic representation.

In the third line of Table. I shows the new topic description
W3 for the same topic examples. For the first glance, the
description of W3 is similar to W2, that is to say, they indeed
depict the same semantic.

On the one hand, when we make a detailed observation, we
find that there are some words, such as ‘transaction, Hockin’,
appeared in W3 with higher rankings compared to W2, which
makes the semantic representative ability of W3 better than
W2.

On the other hand, we find that the word with high fre-
quency, such as the word ‘It’ in W2, descend the rankings, i.e,
its semantic contribution degree is descend because the little
relevance with the selected word set, as well as descending
the influence of its word frequency.

Furthermore, in the experiments, we find that with the value
of N ascending, the lower-ranked word set has little semantic
contribution for topic representation even though they are
ranked using our method, and the representative ability of

344

(a) Comparison on 20NG-bydate-Test (b) Comparison on 20NG-bydate-Train

(c) Comparison on Reuters-10-Test (d) Comparison on Reuters-10-Train

(e) Comparison on OHSUMED87-91-Test (f) Comparison on OHSUMED87-91-Train

Fig. 1: Examples of perplexity value comparisons on three datasets.

the topic will be confused sometimes. We also find that the
value of N is highly depend on the quality of the dataset. If
the category of the dataset is relatively distinct, the influence
of the N value for the topic representative ability is slight,
such as 20NG-bydate and Reuters-10. On the contrary, as
for OHSUMED, the influence of the N value for the topic
representative ability is volatile.

VI. CONCLUSION

In this paper, we focus on screening out the more repre-
sentative words for topic representation. We investigate a re-
ranking method WTW to evaluate the representative ability of

words over different topics. This work will enhance the ability
to support fine grained topics representation for text content
mining tasks.

ACKNOWLEDGMENT

This research is supported by the National Natural Science
Foundation of China (Grant No. 61866029).

REFERENCES

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, pp. 993–1022, mar 2003.

345

[2] W. Xuerui and M. Andrew, “Topics over time: A non-markov
continuous-time model of topical trends,” in Proceedings of the 12th
ACM International Conference on Knowledge Discovery and Data
Mining, ser. KDD’06. New York, NY, USA: Association for Computing
Machinery, 2006, pp. 424–433.

[3] R. Yan and G. Gao, “Topic analysis by exploring headline information,”
in Proceedings of 21st International Conference on Web Information
Systems Engineering, ser. WISE’20, H. Zhisheng, B. Wouter, W. Hua,
Z. Rui, and Z. Yanchun, Eds., vol. 12343. Chem: Springer, oct 2020,
pp. 129–142.

[4] Q. Chen, X. Guo, and H. Bai, “Semantic-based topic detection using
markov dcision processes,” Neurocomputing, vol. 242, pp. 40–50, jun
2017.

[5] W. H. M., M. Iain, S. Ruslan, and M. David, “Evaluation methods
for topic models,” ser. ICML’2009, vol. 382. New York, NY, USA:
Association for Computing Machinery, jan 2009, pp. 1105–1112.

[6] C. Jonathan, B.-G. Jordan, G. Sean, W. Chong, and B. D. M., “Reading
tea leaves: How humans interpret topic models,” in Proceedings of
the 22nd International Conference on Neural Information Processing
Systems, ser. NIPS’09. Red Hook, NY, USA: Curran Associates Inc.,
2009, pp. 288–296.

[7] D. Newman, J. H. Lau, K. Grieser, and T. Baldwin, “Automatic evalu-
ation of topic coherence,” in Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association
for Computational Linguistics, ser. HLT ’10. USA: Association for
Computational Linguistics, 2010, pp. 100–108.

[8] D. Newman, E. V. Bonilla, and W. Buntine, “Improving topic coherence
with regularized topic models,” in Proceedings of the 24th International
Conference on Neural Information Processing Systems, ser. NIPS’11.
Red Hook, NY, USA: Curran Associates Inc., 2011, pp. 496–504.

[9] M. David, W. H. M., T. Edmund, L. Miriam, and M. Andrew, “Op-
timizing semantic coherence in topic models,” in Proceedings of the
Conference on Empirical Methods in Natural Language Processing, ser.
EMNLP ’11. USA: Association for Computational Linguistics, 2011,
pp. 262–272.

[10] D. O’Callaghan, D. Greene, J. Carthy, and P. Cunningham, “An analysis
of the coherence of descriptors in topic modeling,” Expert Systems with
Applications, vol. 42, no. 13, pp. 5645–5657, 2015.

[11] D. Korenc̆ić, S. Ristov, and J. S̆najder, “Document-based topic coherence
measures for news media text,” Expert Systems with Applications, vol.
114, pp. 357–373, 2018.

[12] X. Li, J. Ouyang, Y. Lu, X. Zhou, and T. Tian, “Group topic model:
Organizing topics into groups,” Information Retrieval, vol. 18, no. 1, pp.
1–25, feb 2015.

[13] A. Loulwah, B. Daniel, G. James, and D. Carlotta, “Topic significance
ranking of lda generative models,” in Proceedings of Joint European
Conference on Machine Learning (ECML) European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD).
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 67–82.

[14] J. H. Lau, D. Newman, and T. Baldwin, “Machine reading tea leaves:
Automatically evaluating topic coherence and topic model quality,” in
Proceedings of the 14th Conference of the European Chapter of the
Association for Computational Linguistics, jan 2014, pp. 530–539.

[15] J. Chi, J. Ouyang, C. Li, X. Dong, X. Li, and X. Wang, “Topic
representation: Finding more representative words in topic models,”
Pattern Recognition Letters, vol. 123, pp. 53–60, 2019.

[16] R. Yan, Q. Chen, and G. Gao, “Dataless text classification with pseudo
topic representation,” in Proceedings of 32nd International Conference
on Tools with Artificial Intelligence, ser. ICTAI’20, nov 2020, pp. 1255–
1259.

[17] D. Zha and C. Li, “Multi-label dataless text classification with topic
modeling,” Knowledge and Information Systems, vol. 61, no. 1, pp. 137–
160, oct 2019.

[18] R. Santos, C. Macdonald, and I. Ounis, “Search result diversification,”
Foundations and Trends in Information Retrieval, vol. 9, no. 1, pp. 1–90,
mar 2015.

[19] J. Carbonell and J. Stewart, “The use of mmr, diversity-based reranking
for reordering documents and producing summaries,” in Proceedings of
the 21st International ACM Conference on Research and Development
in Information Retrieval, ser. SIGIR’98, Melbourne, Australia, aug 1998,
pp. 335–336.

346

Exploring MMSE Score Prediction Model Based on
Spontaneous Speech

Li Sun
School of Computer

Science and Technology
Donghua University

Shanghai, China

Jieyuan Zheng
School of Computer

Science and Technology
Donghua University

Shanghai, China
zjy123h@163.com

Jiyun Li
School of Computer

Science and Technology
Donghua University

Shanghai, China

Chen Qian
School of Computer

Science and Technology
Donghua University

Shanghai, China

Abstract—The Mini Mental State Examination, referred to as
MMSE, is a screening tool for cognitive dysfunction in the elderly,
and it is also one of the most influential screening tools for
cognitive impairment. It is usually managed by a well-trained
doctor, but this is time-consuming and expensive. An effective
method is to detect whether cognitive function has declined
through the conversation between them. From the perspective
of acoustics and linguistics, using 108 subjects provided by the
Alzheimer’s Dementia Recognition through Spontaneous Speech
(ADReSS) 2020 Challenge, using speech to predict the MMSE
score, the acoustic Root Mean Squared Error (RMSE) is 5.49.
The RMSE in linguistics is 4.51. Integrating the acoustic model
and the linguistic model, and assigning different weight ratios to
their final predicted scores, the RMSE is 4.18.

Index Terms—Alzheimer’s disease, acoustic features, linguistic
features, MMSE

I. INTRODUCTION

Alzheimer’s Disease (AD), also known as Alzheimer’s, is
a neurodegenerative disease. According to epidemiological
studies, the incidence of AD increases with age, about 5%
of people over 65 years old, and up to 20% of people over
85 years old. According to statistics from Western countries
[1], it is estimated that between 2000 and 2050, the population
over 65 will triple, which will undoubtedly greatly increase the
burden on families and the country. Because it is an irreversible
disease, drug treatment may temporarily change the symptoms
of the disease, but it cannot reverse its progress. For these
reasons, there is an increasing need for this additional, non-
invasive detection tool to enable preliminary identification of
AD at an early stage.

At present, the more popular detection methods are to
use Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI), but this is undoubtedly more expensive. In
the process of cognitive decline, the appearance of language
barriers [2] is an important sign, which includes naming [2],
difficulty in finding words, repetition, and improper use of
pronouns [3]. This makes it possible to use speech to evaluate
the AD process.

Cognitive assessments are often used for clinical validation,
such as the Mini-Mental Status Examination (MMSE) [4].
Although simple to administer MMSE, it is burdensome for
subjects and may also be influenced by various demographic

factors [5]. Preliminary evidence [6] shows that automated
methods can predict MMSE scores from open communication.
Based on this, the main contributions of this paper are as
follows. First, uses opensmile-3.0 to extract acoustic features,
including ComParE16, emobase, eGeMAPS and Is09-13, and
put the extracted features into the acoustic model. Second,
there are two types of linguistic features. The first is to
use BERT [7] to extract sentence vectors; the second is
to use n-grams to vectorize text, combine psycholinguistic
features, and put them into machine learning models. Third,
comprehensively consider the acoustic model and the linguistic
model, and fuse the models at the decision-making level.

II. RELATED WORK

In recent years, people have paid more and more attention
to speech and language disorders in AD. However, most of
the work is focused on dementia classification tasks [8, 9],
rather than more detailed prediction of MMSE scores [10].
Aparna Balagopalan [11] demonstrated the use of domain
knowledge-based methods to extract linguistic features from
text and acoustic features from corresponding audio files, and
combine two regression models, namely linear model and
ridge regression model. The RMSE obtained is 4.56. Morteza
Rohanian [12] and others used the LSTM with gating multi-
modal fusion model, combined with multi-modal features, and
the RMSE obtained was 4.54. Utkarsh Sarawgi [13] used
transfer learning and ensemble models and got an RMSE of
4.60.

Although the RMSE of these papers is lower than the
baseline, there is also a problem, that is, the impact of
acoustic and linguistic models on the final results is not fully
considered. Especially after the prediction results of the two
models are obtained, the respective influences on the final
results are comprehensively considered, and different weights
are given respectively when the decision-making layer is fused.

III. DATASET AND FEATURES

A. Overview of the Dataset

The data set of this paper comes from the ADReSS Chal-
lenge [6], the subjects provided are theft pictures, which are
provided by the Boston Diagnostic Aphasia Exam [14, 15].

DOI reference number: 10.18293/SEKE2022-062
347

During the recording process, the subject asked to describe the
content in the picture, there is no time limit (the interviewer
may stimulate the subject to add details). The provided .cha
file is a manual transcription of the audio, using the CHAT
encoding system [16], which contains non-verbal clues such
as adding false starts, pauses, discourse markers for word rep-
etition, and incomplete sentences. For the ADReSS Challenge,
the original speech is also divided into standardized segments
with a maximum length of ten seconds.

The ADReSS challenge data set is a balanced subset consist-
ing of 156 subjects. Each subject provides a speech. Between
AD and non-AD, age and gender are evenly distributed. The
following two tables (TABLE I and TABLE II) respectively
show the basic situation of the training set and test set.

TABLE I
ADRESS TRAINING SET: BASIC CHARACTERISTICS OF THE PATIENTS IN

EACH GROUP (M=MALE AND F=FEMALE)

AD Non-AD

Age M F MMSE M F MMSE
[50,55) 1 0 30.0 1 0 29.0
[55,60) 5 4 16.3 5 4 29.0
[60,65) 3 6 18.3 3 6 29.3
[65,70) 6 10 16.9 6 10 29.1
[70,75) 6 8 15.8 6 8 29.1
[75,80) 3 2 17.2 3 2 28.8
Total 24 30 17.0 24 30 29.1

TABLE II
CHARACTERISTICS OF THE ADRESS TEST SET

AD Non-AD

Age M F MMSE M F MMSE
[50,55) 1 0 23.0 1 0 28.0
[55,60) 2 2 18.7 2 2 28.5
[60,65) 1 3 14.7 1 3 28.7
[65,70) 3 4 23.2 3 4 29.4
[70,75) 3 3 17.3 3 3 28.0
[75,80) 1 1 21.5 1 1 30.0
Total 11 13 19.5 11 13 28.8

B. Acoustic Features

The ComParE16 feature set [17] is extracted using
opensmile-3.0. The feature set contains 6373 static features,
which are obtained by calculating various functions on LLD
(low-level descriptors, LLD). LLD includes logarithmic har-
monic noise ratio, voice quality characteristics, F0 Viterbi
smoothing, spectral harmonics and psychoacoustic spectral
sharpness. This feature set encodes human speech and has
been used as an important non-invasive marker for AD detec-
tion. We remove the mean and normalize the variance of the
obtained feature set. Standard deviation standardization makes
the processed data conform to the standard normal distribution,
that is, the mean is 0 and the standard deviation is 1. The
transformation function is as follows:

X∗ =
χ− µ

σ
(1)

Where µ is the mean of all sample data, and σ is the standard
deviation of all sample data.

In addition to ComParE16, features of emobase, eGeMAPS,
and Is09-13 are also extracted for comparison experiments.

C. Linguistic Features

The ADReSS data set provides a corresponding .cha file
for each subject, which contains the conversation between
the interviewer and the subject (beginning with *INV and
*PAR, respectively). First, extract the subject’s speech frag-
ments according to certain rules, and then use TF-IDF (term
frequency—inverse document frequency) for the text. The
calculation formula is as follows:

TFIDF = TF × 1

DF
(2)

Where TF is the term frequency in the text, and DF is the
number of documents containing the current term. In addition
to considering the frequency of a vocabulary in the text, it
also pays attention to the number of all texts that contain
this vocabulary. This can reduce the impact of high-frequency
meaningless vocabulary and dig out more meaningful features.

For psycholinguistic features, four classic psycholinguistic
attributes (age of acquisition, concreteness, familiarity, and
imageability) and emotion scores are considered. They are ob-
tained from the Medical Research Council (MRC) psychology
database and Natural Language Toolkit (NLTK) respectively.

Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding (BERT), this model mainly uses the
Encoder structure of Transformer, but the model structure is
deeper than Transformer. The Transformer Encoder contains
6 Encoder blocks, the BERT-base model contains 12 Encoder
blocks, and the BERT-large model contains 24 Encoder blocks.

Through the pre-training model BERT, the text of each
subject is converted into a 768-dimensional sentence vector,
and the obtained sentence vector is normalized.

IV. EXPERIMENT

A. Acoustic Model

Multilayer Perceptron (MLP) is a neural network with a
forward structure that maps a set of input vectors to a set
of output vectors. MLP can be regarded as a directed graph,
composed of multiple node layers, and each layer is fully
connected to the next layer. Except for the input node, each
node is a neuron with a nonlinear activation function. MLP is
the promotion of traditional perceptrons, which overcomes the
weakness that traditional perceptrons cannot recognize linearly
inseparable data.

For the acoustic model, as shown in Fig. 1, this article uses
opensmile-3.0 to extract ComParE16, emobase, eGeMAPS
and is09-13 features, and then put them into MLP, which
contains five fully connected layers, and uses L1 regularization
in the layer. Add the Dropout layer to the second layer and
the penultimate layer, randomly remove some neurons in the
network, thereby reducing the dependence on the weight of
w, so as to reduce the effect of fitting. The activation function

348

sigmoid is added to the fully connected layer, and the ReLu
activation function (max value = 30) is added to the output
layer to predict the MMSE score.

During the training process, we set epsilon to 1e-07,
learning-rate to 0.01, batch size to 16, epochs to 2000, and
loss and metrics to use Mean Square Error (MSE).

Fig. 1. Our proposed for acoustic model.

B. Linguistic Model

For the linguistic model, as shown in Fig. 2, there are
two types. The first is to use the pre-trained BERT model to
extract sentence vectors and standardize the obtained features.
Taking into account the large difference in MMSE scores, the
corresponding score of each subject is divided by 30, and then
standardized, combined with the machine learning model (due
to the low dimensionality of the feature, machine learning
is used), better results can be obtained on ridge regression.
During the training process using the ridge regression model,
we set alphas=numpy.linspace(1,0.05), store cv values=True.
The second is to use lexical features to combine emotional fac-
tors. First, use TfidVectorizer to extract syntactic features, and
then obtain emotional scores from NLTK (Natural Language
Toolkit). The obtained features are selected using random
forest regression algorithm. The processing of the MMSE
score is the same as above, and finally combined with the
SVR model to get a better result. In the process of using SVR
training, we set the kernel to poly, c to 100, gamma to scale,
degree to 3, epsilon to 0.01, and coef0 to 1.

Fig. 2. Our proposed for linguistic model.

C. Fusion of Acoustic and Linguistic Model

Considering the acoustic model and the linguistic model, the
results obtained by the acoustic model and the linguistic model
are combined. Considering that the effect of the linguistic
model is better than that of the acoustics, the weight of the
acoustic model is appropriately reduced. In the experiment, the
weights were evenly distributed first, and the results obtained
by the linguistic model and the acoustic model were multiplied
by a weight of 0.5, and then according to the weight of 0.1,
the weight of the results obtained by the linguistic model

was increased, and the weight of the results obtained by the
acoustic model was decreased.After many experiments, it is
found that multiplying the result obtained by the acoustic
model by a weight of 0.3 and the result obtained by the
linguistic model by 0.7, the optimal result of the combination
of the two models can be obtained.

D. Experimental Environment
The experiment proceeded from three different perspectives,

first using MLP to process the acoustic features, then using
machine learning to process the linguistic features, and finally
integrating the results obtained from the acoustic and linguistic
models, and comparing and analyzing with the baseline.

The environment used in this paper is python3.6, the deep
learning framework is tensorflow-based keras framework, the
machine learning library is scikit-learn, and the operating
system used is windows 10. The experiment set up a five-
fold crossover, and used the trained model to predict the test
set.

V. RESULTS AND ANALYSIS

In order to effectively evaluate the features extracted in this
article and the effectiveness of the models adopted, RMSE is
proposed as an evaluation index.

Root Mean Squard Error (RMSE) is the square root of the
ratio of the square of the deviation between the predicted value
and the true value to the number m of the test set. It is used to
measure the deviation between the predicted value and the true
value. The smaller the value, the better the prediction effect
of the model. The specific formula is as follows:√√√√ 1

m

m∑
i=1

(yi − ŷi)2 (3)

Among them, yi represents the predicted value, and ŷi repre-
sents the actual value.

In the baseline experiment, it has been proved that the
acoustic and linguistic features in spontaneous speech have a
certain correlation with the detection of cognitive impairment,
and the relevant results have been provided. For the test set,
the RMSE of acoustic features is 6.14, and the RMSE of
linguistics is 5.21.

This experiment sets up five-fold cross-validation. TABLE
III shows the results of acoustic features on the training set
and test set. It can be seen that using ComParE16+MLP has
the best effect on the test set. The RMSE is 5.49, which is 10%
lower than the acoustic baseline. TABLE IV shows the results
of linguistic features on the training set and test set. It can be
seen that using Lexical+sentiment+SVR performs best on the
test set, with an RMSE of 4.51, which is 13% lower than the
linguistic baseline. TABLE V shows that the results of acoustic
model and linguistic model are assigned weights of 0.3 and 0.7
respectively. It can be seen that the combination of acoustic
feature ComParE16 and linguistic feature Lexical+sentiment
results in the best result, and the RMSE is 4.18. It is 31.9%
lower than the acoustic baseline and 19.8% lower than the
linguistic baseline.

349

TABLE III
THE RESULTS OF ACOUSTIC MODEL ON THE TRAINING SET AND TEST SET

Features Model RMSE on train set RMSE on test set

baseline - 7.28 6.14
ComParE16 MLP 5.46 5.49

emobase MLP 4.73 5.82
eGeMAPS MLP 5.06 5.96

Is09-13 MLP 5.08 6.28

TABLE IV
THE RESULTS OF LINGUISTIC MODEL ON THE TRAINING SET AND TEST

SET

Features Model RMSE on train set RMSE on test set

baseline - 4.38 5.21
Bert embedding ridge 4.86 5.37

Lexical+sentiment SVR 4.01 4.51

VI. CONCLUSIONS

For the use of speech to predict MMSE scores, there
are relatively few research papers in this area. The paper
starts from acoustics and linguistics, combined with MLP
and machine learning models, and finds that linguistics can
provide more information such as pauses, word repetitions,
incomplete sentences and emotions, which provide us with
strong evidence for predicting MMSE scores.

In the follow-up work, on the one hand, we can also
start with linguistics to discover more meaningful features.
On the other hand, for acoustic features, we can extract
spectrograms such as Spectrongram (Spec), Melspectrongram
(Melspec), Mel-Frequency Cepstral Coefficients (MFCC), etc.,
and combine convolutional neural networks (CNN) to learn
two-dimensional features. For speech that cannot be tran-
scribed, the pre-training model wav2vec2.0 can also be used
to encode the speech information and modify the downstream
output terminal to obtain the expected result.

REFERENCES

[1] OMS, “Es mental health action plan 2013 - 2020,” 2013.
[2] J. Reilly, J. Troche, and M. Grossman, Language Pro-

cessing in Dementia. The Handbook of Alzheimer’s
Disease and Other Dementias, 2011.

[3] D. N. Ripich and B. Y. Terrell, “Patterns of discourse
cohesion and coherence in alzheimer’s disease.” J Speech
Hear Disord, vol. 53, no. 1, pp. 8–15, 1988.

[4] J. R. Cockrell and M. F. Folstein, “Mini-mental state ex-
amination (mmse).” australian journal of physiotherapy,
vol. 51, no. 3, pp. 689–92, 2005.

[5] R. N. Jones and J. J. Gallo, “Education and sex differ-
ences in the mini-mental state examination,” Journals of
Gerontology, no. 6, p. 6.

[6] S. Luz, F. Haider, S. de la Fuente, D. Fromm, and
B. MacWhinney, “Alzheimer’s dementia recognition
through spontaneous speech: The adress challenge,”
arXiv preprint arXiv:2004.06833, 2020.

TABLE V
THE RESULTS OF FUSION MODEL ON THE TEST SET

Features Model RMSE on test set

ComParE16+ Lexical+sentiment MLP+SVR 4.18
ComParE16+Bert embedding MLP+ridge 4.91

eGeMAPS+ Lexical+sentiment MLP+SVR 4.20
eGeMAPS +Bert embedding MLP+ridge 4.93
emobase+ Lexical+sentiment MLP+SVR 4.40

emobase+Bert embedding MLP+ridge 4.87
Is09-13+ Lexical+sentiment MLP+SVR 4.32

Is09-13+Bert embedding MLP+ridge 4.93

[7] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transformers for
language understanding,” 2018.

[8] K. C. Fraser, J. A. Meltzer, F. Rudzicz, and P. Garrard,
“Linguistic features identify alzheimer’s disease in nar-
rative speech,” Journal of Alzheimers̈ Disease, vol. 49,
no. 2, pp. 407–422, 2015.

[9] A. K?Nig, A. Satt, A. Sorin, R. Hoory, O. Toledo-
Ronen, A. Derreumaux, V. Manera, F. Verhey, P. Aalten,
and P. H. a. Robert, “Automatic speech analysis for the
assessment of patients with predementia and alzheimer’s
disease,” Alzheimer s Dementia Diagnosis Assessment
Disease Monitoring, vol. 1, no. 1, p. 112–124, 2015.

[10] M. Yancheva, K. Fraser, and F. Rudzicz, “Using lin-
guistic features longitudinally to predict clinical scores
for alzheimer’s disease and related dementias,” in Slpat:
Workshop on Speech Language Processing for Assistive
Technologies, 2015.

[11] A. Balagopalan, B. Eyre, F. Rudzicz, and J. Novikova,
“To bert or not to bert: Comparing speech and language-
based approaches for alzheimer’s disease detection,”
2020.

[12] M. Rohanian, J. Hough, and M. Purver, “Multi-modal
fusion with gating using audio, lexical and disfluency
features for alzheimer’s dementia recognition from spon-
taneous speech,” 2021.

[13] U. Sarawgi, W. Zulfikar, N. Soliman, and P. Maes,
“Multimodal inductive transfer learning for detection of
alzheimer’s dementia and its severity,” 2020.

[14] ASHAWeb, “Boston diagnostic aphasia examination-
third edition (bdae-3),” Asha, 2000.

[15] F. Boersma and J. A. Eefsting, “The natural history of
alzheimer’s disease,” Journal of the American Geriatrics
Society, vol. 44, no. 6, pp. 734–734, 1996.

[16] J. W. Oller and B. Macwhinney, “The childes project:
Tools for analyzing talk, 3rd edition, vol 1, transcrip-
tion format and programs,” Modern Language Journal,
vol. 86, no. 2, pp. 289–290, 2002.

[17] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Re-
cent developments in opensmile, the munich open-source
multimedia feature extractor,” in Proceedings of the 21st
ACM international conference on Multimedia, 2013.

350

NKind: a model checker for liveness property
verification on Lustre programs

Junjie Wei, Qin Li*
Shanghai Key Laboratory of Trustworthy Computing

East China Normal University, Shanghai, China

Abstract—Modeling and verification of real-time reactive sys-
tems is getting greater concern in industrial field, especially
in safety-critical applications. As a representative language for
modeling real-time reactive systems, Lustre has been extensively
used in the development of control systems in vehicles and
aircraft. Existing model checking tools for Lustre like Kind2
and JKind have good support for verifying safety properties,
but they lack explicit support for liveness properties. Thus we
present NKind, an SMT-based infinite-state model checker, which
accepts models and properties written in Lustre and is capable of
verifying both safety and liveness properties. NKind is inspired
by many existing model checker and adds liveness support based
on their common techniques, which provides more flexibility. It is
written in Java, providing good compatibility, and lays emphasis
on modularity and extensibility. The results and performance of
NKind on benchmark examples demonstrate that it is competitive
comparing to other existing tools.

Index Terms—Lustre, Model Checking, Liveness Property

I. INTRODUCTION

As one of the most important measures of ensuring that
software meets the expected requirements, model checking
is becoming increasingly important in the development of
modern systems, especially real-time reactive systems. Many
industrial standards like DO-178C, EN50128, ISO26262 etc.
require to use formal verification in software design and
development for high safety assurance, which demonstrate the
bright prospect of wide application of model checking tools
in industrial field. As a representative language for modelling
real-time reactive systems, Lustre [1] has been extensively
used in the development of safety-critical systems like avionic
systems and power plant monitoring systems.

Kind2 [2] and JKind [3] are two most popular model
checking tools for verifying Lustre programs. Kind2 is a
multi-engine model checker and lays emphasis on invariant
checking. It uses an extension to Lustre as modelling language,
and converts the given model into a state transition system. The
property is proved by checking that it holds in all reachable
states of the system. JKind provides similar functionalities.
It mainly focuses on post-processing and proposes features
like inductive validity cores (IVC) and smoothing. JKind and
Kind2 support different Lustre language features. For example,
JKind lacks the support for automaton structure.

It is worth mentioning that these tools are mostly concen-
trated on proving safety properties and ignore the liveness
properties. This leads to a gap in verifying liveness properties

*Corresponding author: Qin Li (qli@sei.ecnu.edu.cn)

for Lustre. nuXmv [4] is a model checker capable of both
finite-state and infinite-state systems. As the successor of
NuSmv, it reads models in SMV format extended with infinite-
state support. Although nuXmv support liveness property
checking, currently there is no available way to make it support
Lustre models directly.

The main contributions of the paper can be summarized as
follows:

• We present NKind, a model checker for Lustre supporting
the verification of liveness properties which existing tools
for Lustre do not support.

• When verifying liveness properties, the performance gap
between NKind and mainstream tools is not significant.

In this paper, we present NKind, an SMT-based infinite-
state model checking tool, which is mainly used for proving or
disproving properties of synchronous reactive system models
written in Lustre. NKind mainly relies on the powerful SMT-
solver Z3 [5] to validate or invalidate the properties. For
properties that are proved to be invalid, a counterexample
will be returned. NKind is inspired by several existing model
checkers for Lustre like Kind2 and JKind, and uses similar
architecture and techniques. In the mean time, it provides
enough extensibility and makes it rather easy to support
new features. NKind is written in Java, which offers better
multi-platform compatibility and is easy to be integrated to
a larger framework as a model checking service provider.
To fill the gap in liveness property checking in Lustre, in
addition to safety properties, NKind has the capability to
verify liveness properties which can have finite-time violations
but will finally hold forever. NKind is free to be used for
research and evaluation purposes and can be downloaded from
https://nkindmodelchecker.github.io.

The rest of the paper is organized as follows. Section II
briefly introduces some preliminary concepts involved in
NKind. Section III describes the design architecture of NKind
and introduces the main algorithms that are used for veri-
fication. Section IV provides the capabilities of NKind and
is emphasized on the liveness extension. Section V conducts
performance benchmarks for NKind and makes comparison
with other existing model checking tools Finally, conclusion
and future work is given in Section VI .

DOI reference number: 10.18293/SEKE2022-089
351

https://nkindmodelchecker.github.io

II. PRELIMINARIES

A. Lustre language

Real-time reactive systems refer to the systems that contin-
uously accept input and react to the environment in a timely
manner. Since the inputs are constantly changing and the
systems are expected to respond quickly to the inputs [6],
synchronous languages were designed to effectively describe
reactive systems. Lustre is a synchronous dataflow language
which is widely used in safety-critical control systems like
vehicles and aircraft.

Different from imperative languages, dataflow languages
focus on data and represent them as infinite sequences of
values, i.e. dataflows. This fits well with the usage scenario
of real-time reactive systems, which in many cases need to
read data from multiple sensors at a fixed frequency as inputs
and then calculate the outputs, and the dataflow model can
represent this behaviour well. Each dataflow is associated with
a clock, and the specific value of a dataflow at a clock time
can be uniquely determined by using the clock value as index.

Lustre use a node as a minimal functional module, which
has a finite group of inputs and outputs as interface and allows
local flow to save its internal state. Functionally speaking,
a Lustre node can be regarded as a mapping from an input
set to an output set [6], and the outputs are calculated from
the current and previous input/output or local flows according
to the flow definition. Readers can refer to [1] for detailed
grammar of Lustre language.

B. L2SIA-WFR

In comparison with safety properties which have coun-
terexamples of finite length, liveness properties often have
counterexamples of infinite length, making it more difficult to
verify liveness properties to a large extent. Algorithms like
liveness-to-safety [7] and k-Liveness [8] were proposed to
solve this problem, but these solutions were mainly restricted
in finite-state systems, which were not sufficient to work in
infinite-state systems like Lustre. Then an extended version
of liveness-to-safety called L2SIA-WFR [9] was presented to
handle the infinite state space.

A counterexample of liveness property in the form of
FG ¬p is often lasso-shaped, which consists of a path starting
from the initial state (i.e. stem) and a loop containing at least
one state satisfying p. So liveness-to-safety tries to prove the
absence of a lasso-shape counterexample as an invariant by
ensuring there is no loop paths violating the property. L2SIA-
WFR first extend the algorithm by using implicit abstraction. It
uses a set of assignments to the predicates to identify multiple
concrete states, therefore abstracting the infinite state space to
finite state space. Like the idea of CEGAR [10], if spurious
counterexamples are found, they will be used to refine the
abstraction for next iteration by adding extracted predicates
from counterexamples to the predicate set. In order to handle
the situations that an abstract loop can be executed finite times,
which will not violate the property but prevent the algorithm
from terminating, well-founded relations are calculated as a

termination proof. In the cases where well-founded relations
are available, these relations provides more information of the
model for better refining the abstraction and lead to a better
performance.

III. NKIND ARCHITECTURE

Fig. 1: NKind architecture

The overall architecture of NKind is shown in Fig. 1. It
consists of Lustre parser, simplifier, and a controller equipped
with several verification engines.

Since there are different dialects of Lustre with different
syntax, for scalability reasons, an improved version of visitor
pattern is used in the design which provides more flexibility
to handle syntactic structures of Lustre and therefore makes it
easy to extend functionality.

The traditional version of Lustre, namely Lustre v4, consist
of a set of elements which is basic enough and could be
considered as Core Lustre. Many features added in more recent
versions or dialects can be translated to Core Lustre. For
instance, automaton structure, which is available in Kind2 and
SCADE [11], introduces a concept similar to state machine
and provides the ability to change the behaviour pattern based
on external inputs or internal events, allowing a dataflow to
have multiple definition in different states. However, such
structure can be simulated by converting each state into
corresponding nodes without changing the semantics. With
this in mind, the Lustre simplifier is used to translate all
the complex structure in the given Lustre program before
it is converted to transition system and make it possible to
leave the process of making transition system unchanged when
adding support for new features. It is suitable for implementing
syntactic sugar like array iterator introduced in SCADE.

Like several existing model checking tools for Lustre which
rely on the expressivity and reasoning capabilities of modern
SMT solvers, NKind converts input Lustre program into a
transition system with the same semantics in the form of SMT
formula. As the core representation of the given model, the

352

transition system is then handed over to solving engines to
verify the properties.

NKind follows the practice of many model checkers and
uses a set of solving engines which run in parallel for veri-
fication. The solving engines of NKind are mainly composed
of Bounded Model Checking (BMC), k-Induction, Invariant
Generation and Property Directed Reachability (PDR, or IC3).

1) BMC [12] engine checks for counterexamples by un-
rolling transition relation T step by step. It also provides
the proof of base step for k-Induction engine in the mean
time.

2) k-Induction [13] is the enhanced form of normal in-
duction. It tries to find a value of k such that the
property p holds for all states reachable from initial
state I in first k steps (base step) and is preserved
by continuous transitions of length k (induction step),
i.e. ∀i ≤ k · I ∧ T0 ∧ T1 ∧ · · · ∧ Tk ⇒ pk and
∀n ≥ 0 · Tn ∧ pn ∧ Tn+1 ∧ pn+1 ∧ · · · ∧ Tn+k ⇒ pn+k.
If such k exists, it follows inductively that the property
holds in all reachable states.

3) Invariant Generation automatically generates some vali-
dated auxiliary invariants based on predefined invariant
templates [14] according to the given transition relations
and are proved by k-Induction. The generated invariants
are mainly used for helping the verification process of
k-Induction engine in case the given property is not k-
inductive.

4) PDR [15] is based on an idea similar to CEGAR to make
an over-approximation of the property and iteratively
strengthen the approximation until it becomes inductive
or meets a counterexample. The original PDR algorithm
is only capable of handling finite-state problem, and in
order to make it work in infinite-state system, implicit
abstraction proposed in [16] to abstract the states into
finite ones. The abstraction itself is refined by extracting
new predicates from the Craig interpolants of spurious
counterexamples.

Once a property is proved or disproved, other engines will
be informed to make use of the result. If the verification
process is interrupted or the backend SMT solver encounters
an error, the property will be marked unknown and returned
to user.

IV. MAIN FEATURES

A. Safety Property

One of the main functionalities of NKind is to verify safety
properties of reactive system modelled in Lustre language.
Like Kind2, JKind or other Lustre model checkers, NKind
attempts to prove that the given properties are invariants in
the given system with a set of model checking engines which
are described in the previous section, and tries to give a
counterexample in case of failure.

B. Liveness Property

Apart from the traditional safety property checking, NKind
also introduces some new techniques for liveness property

checking, which, to the best of our knowledge, makes NKind
the first model checker for Lustre that support liveness prop-
erties. In general, if we use Linear Temporal Logic (LTL)
to summarize the property that NKind is able to handle,
properties in form of G p are supported to enable traditional
safety property checking. In addition, properties in form of
FG p are also supported due to the liveness extension. In
other words, apart from checking properties that hold forever,
properties which have finite-time violations can be allowed as
long as the properties will finally holds forever.

1) Liveness Usage: With the liveness support, Lustre be-
comes more expressive when specifying property. For instance,

Fig. 2: Example Lustre program with liveness property

the lustre program shown in Fig. 2 mainly contains three
dataflow.

1) N is a constant flow with value 20.
2) x self-increases by 1 per cycle.
3) f indicates the property that either the value of x in the

previous cycle is less than 1 or greater than that of N .
It is clear that the property is violated when 1 ≤ i ≤ 20. By

specifying the property type using keyword ”Live”, NKind can
be informed to not simply use invariant proving techniques but
to encode the property first. As is mentioned in the previous
section, the encoded property is to prove the absence of a loop
continuously violating the original property. In this case, after
x is increased to 21, x will never be less than N and thus
proving the original property.

As a result, the constraints of traditional safety properties
can be loosen, and it will be easier to specify qualitative
property without giving an explicit value. For example, the
program listed in Fig. 3 describes a system where y will
finally catch up with x. If we use safety property to specify
this property, an explicit gap is needed and thus a counter is
introduced. However, we can write a more general property if
we use the liveness extension which is displayed in Fig. 4.

It will also be suitable for specifying the system that will
enter a stable state after several temporary transition caused
by input events from sensors, which is common in various
industrial control systems.

2) Liveness implementation: As is mentioned before, the
verification process of NKind revolves around the state transi-
tion system converted from the given Lustre program. L2SIA-
WFR algorithm [9] provides a method to encode liveness prop-
erties as safety properties at the level of state transition system.

353

Fig. 3: Specifying property with safety property

Fig. 4: Specifying property with liveness property

This commonality in structure makes it possible to introduce
support for liveness property in the original framework.

Fig. 5: Embedding liveness extension to PDR process

Since the method monotonically strengthens the original
transition system and is a good complement to PDR process
[9], the liveness extension in NKind is embedded in PDR
engine like Fig. 5 and mainly refers to ic3ia [17], an open-
source implementation of the L2SIA-WFR algorithm.

More specifically, a liveness property is first encoded as a
safety property using L2SIA algorithm and then put into PDR
process. If a counterexample is found and normal refinement
of the PDR process failed to make more precise abstraction,
Live Refiner will try more liveness-specific methods to make
refinement like proving the spuriousness of the counterexam-
ple by unrolling the transition relation or attempting to get
new ranking relations. Readers can refer to [9] for algorithm
details.

Since abstraction refinement in PDR process depends on
the calculation of Craig interpolation, an SMT solver which
supports such calculation is needed as the backend of the
algorithm. For example, JKind chooses to embed SMTInter-
pol [18], a solver which is devoted to produce interpolants.
However, as the input constraints becoming bigger and more
complex, this solver may encounter performance degradation.
This shortcoming becomes more significant in the liveness
extension because the transition system is strengthened mono-
tonically by adding more constraints due to the design of the
algorithm, which may lead to variable explosion. Taking the
simple Lustre program shown in Fig. 2 as an example, after
being translated into transition system, it contains 35 symbols.
But after the first liveness encoding, it grows to 284 symbols.
Such increment will obviously impose a greater burden on the
solver.

Due to the lack of SMT solvers supporting interpolation,
it is not easy to simply switch to another solver with higher
performance. However, we mentioned the fact that the de-
pendence on interpolation is limited to the part of abstract
refinement, which inspired us to use another efficient solver
in the main framework of PDR process. Referring to PDR
implementation proposed in [19], we use z3 [5] as the main
backend SMT solver, and leave the calculation to SMTInterpol
only when interpolation is needed by doing a bi-directional
conversion between the two solver.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate NKind with both safety and
liveness benchmarks. The experiments were all conducted on
a 64-bit Linux machine running Ubuntu 20.04 with a 20-core
Intel Core i9-10900K processor and 32GB of memory.

A. Safety Evaluation

We use a test suite containing 864 Lustre programs from
Kind [20], which was also used in the benchmark of Kind2.
Two existing and mature tools, Kind2 and JKind, were tested
together as a comparison group. The default options for each
tool were used and the timeout threshold was set to 300
seconds for each problem.

Fig. 6: Verification results on safety property benchmark

354

The benchmark result is shown in Fig. 6 and the numbers in
parentheses represent how many problems were solved in the
benchmark. Although there are about 20 programs that cannot
be proved or disproved within 5 minutes, the result shows
that NKind was capable of proving or invalidating most of the
problems in the test suite and had a similar performance to
JKind. Relatively speaking, although NKind takes more time
when verifying small problem due to the JVM start time, it
still has a competitive performance.

B. Liveness Evaluation

Since infinite-state liveness property checking is not as
widely supported as safety property is, we first turned to the
benchmarks provided together with ic3ia [9]. However, as we
have mentioned before, ic3ia accepts a more general form of
transition system written in its own vmt format, an extension
of the SMT-LIB language. That means not all problems in
that benchmark can be translated to a Lustre program with
the same semantic, thus making it difficult to accept Lustre
program. Due to the lack of effective tools to translate vmt
file into Lustre program, we therefore chose 20 tests from the
benchmark and converted them in to Lustre programs by hand.
Some parameters in the test file were modified to a bigger
value to demonstrate the performance of problems in a larger
state space.

In order to reflect the effectiveness of the optimizations
mentioned in the previous section, a version of NKind using
SmtInterpol as backend solver was tested together with the
z3 version. Since Kind2 and JKind do not support liveness
property, we used ic3ia as a comparison group. The default
option and a timeout limit of 300 seconds was used to run the
benchmark.

We present some representative test results in detail in
Table. I. From the test result, it is clear that the optimization
is effective and has a significant performance improvement on
most of the test case comparing to the SMTInterpol version.
We can see that ic3ia is still the fastest tool in this test, but
the gap between ic3ia and NKind is not very significant.

Test name ic3ia NKind-z3 NKind-SMTItp
any-down-live 35.77 1.59 25.51
parallel-live 51.68 11.24 32.09
binary-live 0.09 0.8 1.68

piecewise-live 0.11 1.33 2.32
count-nested-live 0.37 1.86 4.42

stabilize-live 5.16 6.57 13.21
count-down-live 1.05 3.81 7.61
swap-dec-live 1.53 3.89 39.37

count-up-to-sym-live 5.84 13.75 3.95
refine disj problem Timeout Timeout Timeout

TABLE I: Representative verification results on liveness prop-
erty benchmark

In order to test with more complex test cases that are closer
to the real industrial applications, we leveraged the cases of
Kind used as the safety benchmark by converting all the safety
properties into liveness properties. Due to the difficulties in

conversion from Lustre program to vmt format, we finally use
a set of 253 test cases as the benchmark. Fig. 7 shows the
benchmark result.

Fig. 7: Verification results on more complex liveness property
benchmark

From the benchmark result, NKind is effective in solving
liveness properties for Lustre and is able to determine majority
of the test cases whether the their properties are valid or not.

However, there is no denying that NKind still has a certain
gap compared with the performance of ic3ia. This problem
may be caused by the following reason:

1) Due to the use of Java, the JVM start up may consume
some time. Since static checking and the translation from
Lustre to transition system will be performed before the
verification, even small models has a rather long start-up
time.

Fig. 8: Lustre program ”count-up-to-sym-live”

2) Since the liveness extension is mainly based on implicit
abstraction version of PDR, we notice that the perfor-
mance is highly influenced by abstract model. Taking
”count-up-to-sym-live” in the previous benchmark as an
example, which is shown in Fig. 8. The model will be
verified quickly if the abstraction divide the state space
with predicate x ≥ 40, but will be rather slow if the
predicates are x ≤ 1, x ≤ 2, · · · , x ≤ 40. However, we
notice that currently the abstraction and the refinement
mainly depend on the counterexample returned by the

355

SMT solver, which is non-deterministic. This may also
be the reason why NKind solves less problems. A more
guided refinement may be helpful for the performance
which need further research.

In general, in spite of such overhead, NKind is capable of
handling regular safety properties as well as the liveness ones,
which is still believed to be competitive.

VI. CONCLUSION

In this paper, we presented NKind, an SMT-based model
checker for Lustre. Although there are a number of other tools
that solve infinite-state model checking problems, NKind inte-
grated their advantages and made the difference. We described
its design architecture and functionalities, and emphasized on
its extensibility and the support for liveness properties. As
far as we know, our liveness extension made NKind the first
model checker for Lustre that support both safety and liveness
properties, bridging the gap in liveness property checking in
Lustre. In the preliminary benchmarks, NKind is proved to be
suitable for property verification of industrial control systems,
and is rather competitive comparing to the existing model
checking tools. Future work includes performing more in-
depth optimizations for NKind and improve its performance
of model checking by using more guided techniques.

REFERENCES

[1] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
synchronous data flow programming language LUS-
TRE,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305–
1320, Sep. 1991, conference Name: Proceedings of the
IEEE.

[2] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli,
“The Kind 2 Model Checker,” in Computer Aided
Verification, ser. Lecture Notes in Computer Science,
S. Chaudhuri and A. Farzan, Eds. Cham: Springer
International Publishing, 2016, pp. 510–517.

[3] A. Gacek, J. Backes, M. Whalen, L. Wagner, and
E. Ghassabani, “The JKind Model Checker,” in Com-
puter Aided Verification, ser. Lecture Notes in Computer
Science, H. Chockler and G. Weissenbacher, Eds. Cham:
Springer International Publishing, 2018, pp. 20–27.

[4] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio,
A. Mariotti, A. Micheli, S. Mover, M. Roveri, and
S. Tonetta, “The nuXmv Symbolic Model Checker,”
in Proceedings of the 16th International Conference
on Computer Aided Verification - Volume 8559.
Berlin, Heidelberg: Springer-Verlag, Jul. 2014, pp.
334–342. [Online]. Available: https://doi.org/10.1007/
978-3-319-08867-9 22

[5] L. de Moura and N. Bjørner, “Z3: An Efficient SMT
Solver,” in Tools and Algorithms for the Construction
and Analysis of Systems, ser. Lecture Notes in Computer
Science, C. R. Ramakrishnan and J. Rehof, Eds. Berlin,
Heidelberg: Springer, 2008, pp. 337–340.

[6] G. E. Hagen, “Verifying safety properties of lustre pro-
grams: an smt-based approach,” phd, University of Iowa,
USA, 2008, aAI3347220 ISBN-13: 9781109024180.

[7] A. Biere, C. Artho, and V. Schuppan, “Liveness Checking
as Safety Checking,” Electronic Notes in Theoretical
Computer Science, vol. 66, pp. 160–177, Dec. 2002.

[8] K. Claessen and N. Sörensson, “A liveness checking
algorithm that counts,” in 2012 Formal Methods in
Computer-Aided Design (FMCAD), 2012, pp. 52–59.

[9] J. Daniel, A. Cimatti, A. Griggio, S. Tonetta, and
S. Mover, “Infinite-State Liveness-to-Safety via Implicit
Abstraction and Well-Founded Relations,” in Computer
Aided Verification, ser. Lecture Notes in Computer Sci-
ence, S. Chaudhuri and A. Farzan, Eds. Cham: Springer
International Publishing, 2016, pp. 271–291.

[10] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for sym-
bolic model checking,” J. ACM, vol. 50, pp. 752–794,
Sep. 2003.

[11] G. Berry, “SCADE: Synchronous Design and Validation
of Embedded Control Software,” in Next Generation
Design and Verification Methodologies for Distributed
Embedded Control Systems, S. Ramesh and P. Sampath,
Eds. Dordrecht: Springer Netherlands, 2007, pp. 19–33.

[12] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic
Model Checking without BDDs,” vol. 4144, Oct. 1999.

[13] M. Sheeran, S. Singh, and G. Stålmarck, “Checking
Safety Properties Using Induction and a SAT-Solver,”
vol. 1954, Nov. 2000, pp. 108–125.

[14] T. Kahsai, P.-L. Garoche, C. Tinelli, and M. Whalen,
“Incremental Verification with Mode Variable Invariants
in State Machines,” vol. 7226, Apr. 2012, pp. 388–402.

[15] A. R. Bradley, “SAT-Based Model Checking without
Unrolling,” in Verification, Model Checking, and Abstract
Interpretation, ser. Lecture Notes in Computer Science,
R. Jhala and D. Schmidt, Eds. Berlin, Heidelberg:
Springer, 2011, pp. 70–87.

[16] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta,
“Infinite-state invariant checking with IC3 and predicate
abstraction,” Formal Methods in System Design, vol. 49,
Dec. 2016.

[17] “IC3ia: IC3 Modulo Theories with Implicit
Abstraction.” [Online]. Available: https://es-static.fbk.
eu/people/griggio/ic3ia/index.html

[18] J. Christ, J. Hoenicke, and A. Nutz, “SMTInterpol: an
Interpolating SMT Solver,” Jul. 2012.

[19] N. Eén, A. Mishchenko, and R. Brayton, “Efficient
implementation of property directed reachability,” 2011
Formal Methods in Computer-Aided Design (FMCAD),
2011.

[20] G. Hagen and C. Tinelli, “Scaling Up the Formal Verifi-
cation of Lustre Programs with SMT-Based Techniques,”
in 2008 Formal Methods in Computer-Aided Design,
2008, pp. 1–9.

356

https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://es-static.fbk.eu/people/griggio/ic3ia/index.html
https://es-static.fbk.eu/people/griggio/ic3ia/index.html

Efficient LTL Model Checking of Deep Reinforcement Learning Systems
using Policy Extraction

Peng Jin, Yang Wang, Min Zhang
Shanghai Key Laboratory for Trustworthy Computing, East China Normal University

Shanghai Trusted Industry Internet Software Collaborative Innovation Center
E-mail: 51194501007@stu.ecnu.edu.cn, {ywang,zhangmin}@sei.ecnu.edu.cn

Abstract

Deep Reinforcement Learning (DRL) is a promising
technology for solving intractable control tasks. Its applica-
tions in safety-critical fields require high-reliability guaran-
tees. However, formal verification of DRL systems is chal-
lenging because deep neural networks (DNNs) embedded in
the applications are uninterpretable. In this paper, we pro-
pose a novel approach to linear temporal logic (LTL) model
checking of DRL systems by extracting interpretable poli-
cies from DNNs. The extracted policy can retain compara-
ble performance to the original DNN. More importantly, its
decision domain is finite and thus directly verifiable against
LTL properties using existing model checking techniques.
Experimental results on four classic control systems demon-
strate the effectiveness of our approach.

1. Introduction
Deep Reinforcement Learning is being utilized heavily

to solve diverse problems due to its strength in develop-
ing complex control systems [13, 19]. However, new risks
emerge with this trend. The reliability of such systems is
hard to guarantee because they cannot be formally verified
like conventional systems. It becomes one of the significant
obstacles to applying DRL in the real world [16, 17].

Three features make it a challenging problem to veri-
fying DRL systems. First, the state space of such control
systems is usually infinite and continuous, but most of the
model checking-based approaches can only handle finite-
state models [20]. Second, the system dynamics are gen-
erally nonlinear, which increases the complexity of formal
verification [4]. Lastly, DNNs embedded in the systems are
inexplicable, restricting the scalability of verification meth-
ods [9, 11]. Among them, the black-box nature of DNNs
is the crux in defining faithful formal models for DRL sys-
tems, which are prerequisites for subsequent verification.

In this paper, we propose a simple but effective method

DOI reference number: 10.18293/SEKE2022-029

to model checking LTL properties of DRL systems, which
bypasses the crux by extracting interpretable policies from
DNNs trained with popular DRL algorithms. Then systems
driven by the extracted policies can be formally verified us-
ing existing model checking techniques. The policy can
fulfill two essential requirements. One is that it can offer
competitive performance compared to the original DNN.
Besides, its decision domain is finite, where the decision-
making unit (DMU) is a set of adjacent concrete states. For
simplicity, we use DMU to represent the concrete states that
it contains. We first discretize the state space of systems into
finite DMUs and then determine the action adopted by each
DMU to generate the final policy.

Based on extracted policies, we devise an algorithm to
transform the DRL system into a finite-state transition sys-
tem that can be model-checked via off-the-shelf tools such
as Spot [7] against complex temporal properties. We ap-
ply our approach to verify four canonical control systems
formally. Experimental results indicate that control systems
driven by the extracted policies can be formally modeled
and efficiently verified against complex temporal properties.

In summary, this paper makes three major contributions:
1. A novel method for extracting interpretable policies

from trained DNNs.
2. An efficient model checking approach for verifying

control systems driven by the extracted policies.
3. Four case studies for model checking the temporal

properties of four control systems.
Paper organization. Section 2 introduces our policy extrac-
tion method. We present a model checking approach for
control systems based on the extracted policies in Section
3. Section 4 shows the experimental results. Section 5 dis-
cusses related works, and Section 6 concludes the paper.

2. Interpretable Policy Extraction
In this section, we explain the notion of decision-making

units (DMUs) used for policy extraction and present a state-
space discretization method for generating DMUs and a
process of determining corresponding actions for DMUs.

357

2.1. Decision-Making Unit

In DRL, policies encoded by DNNs map each concrete
state to an optimal action. Therefore, the decision-making
unit of such policies is infinite, making it difficult to build
formal models for verification. Motivated by the works [2],
we use finite axial bounding boxes to define the DMUs of
our policy. All DMUs have the same area, and their union
forms the state space. More importantly, they do not in-
tersect, which indicates an assumption that concrete states
within the DMU adopt the same action.

The assumption above to DMU is reasonable. Firstly,
trained DNNs should take the same action for two inputs
whose norm distance is close, which reflects the decision
robustness [10, 22]. Besides, DRL handles the control sys-
tems that require continuous decision-making. Even if the
chosen action is not optimal for all concrete states in the
DMU, subsequent actions can compensate for the overall
policy performance.

2.2. Generation of DMUs

We consider an n-dimensional state space S of the con-
trol system. Let Li and Ui be the lower and upper bounds
of the i-th dimension range of S , respectively. We intro-
duce the discretization vector D ∈ Rn to divide S into
DMUs, where D = [d1, . . . , dn]. For the i-th dimension
range, it will be discretized into mi (= bUi−Li+di

di
c) inter-

vals, i.e. [Li, Li + di), . . . , [Li + midi − di, Li + midi). Let
Ri = {Li, . . . , Li + midi − di} be the set of lower bounds of
divided intervals in the i-th dimension. Then any DMU
can be defined by a pair of two n-dimensional vectors
< [l1, . . . , ln], [d1, . . . , dn] >, and its corresponding range is
[l1, l1 + d1) × . . . × [ln, ln + dn), where li ∈ Ri.

2.3. Action Determination

The action determination process is based on the DNNs
trained by traditional DRL algorithms. The concrete state
originally adopts the action output by the trained DNN. We
aim to select the most frequently adopted action by con-
crete states in the DMU as its optimal action. However,
there are infinite concrete states in the DMU, so it is infea-
sible to calculate precisely the action taken by most con-
crete states. Motivated by randomized smoothing [6] that
uses Monte Carlo algorithms to evaluate the class that the
trained DNN is most likely to classify for the images close
to the input, we sample t concrete states in the DMU and
determine its action based on the actions adopted by these
concrete states. The sampled concrete state s is generated
from n independent uniform distributions, where si is sam-
pled from U[li, li + di).

Let Acta be the most frequently adopted action among t
actions. If Acta appears much more often than other actions,
it will be the optimal action for the corresponding DMU.
Otherwise, we repeat the sampling process until an explicit

Algorithm 1 Sampling-Based Action Determination
Input parameters: DMU s, action space AS .
Constant parameters: discretization vector D, sampling
count t and statistical significance α.

function determineAction(s, AS)
S tates← sample t concrete states from s
Actions← input S tates to the trained DNN
if Type(AS) is continuous then

return Average(Actions)
Acta, Actb ← top two indices in Actions
Cnta, Cntb ← Actions[Acta], Actions[Actb]
if BinomPValue(Cnta,Cnta + Cntb, 0.5) ≤ α then

return Acta
else

return determineAction(s, AS)

optimal action is obtained to avoid achieving a suboptimal
action. When the action space of systems is continuous, we
directly calculate the average of t actions as the final action
of the DMU. In such a case, the action is represented by a
vector of real numbers. The action vectors output by the
trained DNN are hardly equal, so the actions adopted by
sampled concrete states are always different.

Algorithm 1 depicts the whole of determining actions,
where s denotes a DMU. We first sample t concrete states
in the DMU and input them to the trained DNN to obtain
actions that will be stored in the Actions array. For contin-
uous action spaces, we directly take the average of actions.
Otherwise, we choose the first two actions with the high-
est occurrences. Following the practice in [6], the Binom-
PValue function returns the p-value of the hypothesis test,
where Cnta ∼ Binomial(Cnta + Cntb, 0.5). If the p-value is
less than or equal to the statistical significance α, Acta is the
action for the corresponding DMU. Namely, if Cnta is much
higher than Cntb, Acta will be returned. Otherwise, we will
repeat the action determination process.

2.4. Hyperparameter Setting

Algorithm 1 requires three hyperparameters: sampling
count t, statistical significance α, and discretization vector
D. Usually, we set t to 5, which experimentally shows a
good balance between sampling time cost and final policy
performance. Besides, α is used to calibrate the resampling
threshold. Its setting value is related to t. We set it to 0.2 so
that only when Acta appears 5 or 4 times can it be regarded
as the action of the DMU. The vector D determines the
granularity of generated DMUs. We can adjust it accord-
ing to the performance of the extracted policy. For instance,
if the extracted policy performs worse than the benchmark
DNN, we can decrease it to generate preciser DMUs. Other-
wise, we can increase it appropriately to reduce the number
of DMUs, which can reduce the verification time to some
extent.

358

3. Model Checking with Extracted Policies
The DMUs of extracted policies are finite and their union

covers the entire state space. They can be treated as states of
the transition system. Therefore, the system driven by the
extracted policy can first be transformed into a DMU-based
transition system (TS). Then existing model checking tech-
niques can be leveraged to verify its LTL properties [3].

Accordingly, we introduce the abstract and refinement
techniques to solve the problems encountered in construct-
ing transition systems. Then we combine these two oper-
ations into an algorithm to construct TS automatically. At
last, we discuss the process of LTL model checking based
on the constructed TS .

3.1. Abstraction and Refinement

3.1.1 Abstraction in Building Transition Relations

Since the concrete states contained in the DMU adopt the
same action, as demonstrated in Figure 1, we can treat them
as a whole to carry out a state transition based on system
dynamics. However, the generated area (pink part) may
be irregular due to the nonlinearity of system dynamics, so
it is hard to formally represent the reachable area, which
brings difficulties to the construction of transition relations
between DMUs.

Therefore, our goal is to abstract the generated region
into the form we can represent. We properly expand the
irregular area to fit multiple DMUs exactly. Formally, let
mini and maxi represent the minimum and maximum of the
irregular area on the i-th dimension, respectively. We use
[l1, u1) × . . . × [ln, un) to define the corresponding expanded
area. Then for each dimension, we can uniquely determine
li and ui based on the following constraints, where Ri is
mentioned in Section 2.2:

li ≤ mini, mini < li + di, li ∈ Ri

maxi < ui, ui − di ≤ maxi, di|(ui − li).

Let counti = (ui − li)/di. Obviously, the expanded area con-
tains Πn

i=1counti DMUs. In Figure 1, four successor DMUs
intersect the irregular area. As for the subsequent transi-
tion, we can decompose it into the transition of each DMU
that constitutes the expanded area, thus forming an iterative
construction procedure.

3.1.2 Property-Based Refinement of DMUs

The LTL property consists of atomic propositions. There-
fore, it is necessary to determine the atomic propositions
each state satisfies in the transition system. Otherwise, LTL
properties cannot be verified. However, treating DMUs as
states in the transition system may lead to ambiguity since
concrete states in the same DMU cannot be guaranteed to
all satisfy certain atomic proposition. For example, for the
atomic proposition b in Figure 2, partial concrete states in
the DMU satisfy b, and the others satisfy ¬b, which will

li

mini maxi

ui

Transition
Decomposition

Extracted
Policy

Action
DMU

Figure 1: Computing direct successors of the DMU in a 2-
dimensional control system.

{a, b} {a,¬b}RefineAPd : {a}
APn : {b}

successor

DMU

predecessor

Figure 2: Property-based refinement of the DMU, where the
red bounding box represents a nondeterministic DMU.

affect the verification of LTL properties like F[b]. We call
such DMUs and corresponding atomic propositions nonde-
terministic.

We refine the nondeterministic DMUs in the transition
system constructed in Section 3.1.1 to eliminate ambigu-
ity. In practice, we replace the nondeterministic DMU with
multiple DMUs. Except for satisfying atomic propositions,
the other properties of these substitute DMUs are the same
as the original one, including the area, direct predecessors,
and direct successors.

Formally, let APd define the set of propositions satisfied
by the original DMU and APn = {ϕ1, . . . , ϕm} represent the
set of nondeterministic propositions. In Figure 2, APd and
APn are {a} and {b}, respectively. Then we define the set
APsub = {ϕ1,¬ϕ1}× . . .×{ϕm,¬ϕm}. Accordingly, there will
be 2m substitute DMUs. The i-th one satisfies the atomic
propositions APd∪api, where api ∈ APsub. If APn is empty,
there will be only one substitute DMU that is exactly the
original one.

3.2. Construction of Transition Systems

We combine the above two operations into an algorithm
to construct the transition system, where the primary work-
flow is described in Algorithm 2.

We use s0 to denote the initial DMU and assume it is
deterministic. For each DMU s fetched from Queue, we
first determine its action based on Algorithm 1. Then we
sequentially calculate the extreme values in each dimension
of the irregular area generated by the state transition, i.e.,
mini and maxi in Line 7. The set {s1, . . . , sm} represents the

359

Algorithm 2 Abstraction-Based TS Construction
Input: initial DMU s0, action space AS , state transition
function f .
Output: transition system TS .

1: Queue← {s0}

2: TS .setInitialState(s0)
3: while Queue , ∅ do
4: Fetch s from Queue
5: action← determineAction(s, AS)
6: for i = 1, . . . , n do
7: [mini,maxi]← calExtremum(f , s, action, i)
8: {s1, . . . , sm} ← abstract([min1,max1] × . . . ×

[minn,maxn])
9: for i = 1, . . . ,m do

10: {si
1, . . . , s

i
k} ← refine(s

i)
11: for j = 1, . . . , k do
12: TS .addEdge(s→ si

j)
13: if si has not been traversed then
14: Push si

j into Queue

15: return TS

DMUs that constitute the expanded area. For each DMU
si that is transitioned from s, we replace it with multiple
deterministic states and add the edge from s to the substitute
DMUs into the transition system. Finally, if DMU si has not
been traversed, we will push all its substitute DMUs into
Queue to be visited, thus ensuring that they have the same
direct successors.

3.3. LTL Model Checking

The verification algorithm for LTL properties first con-
structs the product of the automata that is equivalent to the
negative form of the property and TS , then checks whether
there exists a path that can be accepted [3]. Namely, TS is
proved to satisfy the property if no violated path is found.

Since we preserve all original paths of the system and
solve problems by adding the reachable range, we can en-
sure the soundness of verification results. Soundness means
that the LTL properties verified on the constructed TS are
also true in the original control system.

Therefore, all that remains is to leverage existing model
checking tools after expressing the constructed TS in the
specified rules. We utilize Spot [7] to complete the subse-
quent verification work in practice.

4 Experiments and Evaluation
We intend to demonstrate three aspects of our approach

through experiments: (i) performance comparison with the
benchmark DNN, (ii) LTL verification results of four sys-
tems after TS construction, and (iii) method effectiveness
compared to relevant works.

All experiments are performed on a workstation running

Ubuntu 18.04 with a 32-core AMD CPU. We select two
control systems from Gym [5], plus Tora [12] and 4-Car
Platoon [23], as test systems. We introduce them below:

Mountain Car (MC) A car is positioned on a one-
dimensional track between two hills. It is expected to drive
up the right mountain where the position is 0.5.

Pendulum (PD) A pole can rotate around a fixed end-
point, where it is expected to swing up and remain upright.

Tora A cart fixed on the wall with springs can move
freely on a frictionless surface. The arm on the cart can
rotate freely around an axis. The controller is expected to
stabilize the system to an equilibrium state.

4-Car Platoon (4CP) Four cars are supposed to drive
in a platoon behind each other. An intuitive requirement is
that the four cars cannot collide.

4.1 Performance Comparison

We utilize a framework [21] to train benchmark neural
networks. Note that the action space is discrete in MC and
continuous in other systems, so we use DQN [15] to train
DNNs in MC and DDPG [18] to train DNNs in the others.
We use the default settings in the framework for all other
training hyperparameters, such as learning rate. Besides,
the discretization vector D set for policy extraction in each
system is listed in Table 1 (Column: Initial DMU).

We compare the performance of extracted policies and
original DNNs via the episode reward value. We test 500
episodes for both policies. As shown in Figure 3, we use
boxplots to depict the distribution of test results, where the
black dots are outliers.

We can see that the metrics describing the distribution of
episodic rewards, such as minimum and median, are close.
Significantly, the performance of extracted policies in MC
and Tora is marginally better than the DNNs. Therefore, we
can conclude that the policy extraction method is reasonable
and practical for these control systems.

4.2. LTL Verification Analysis

The LTL verification results of four systems driven by
extracted policies are listed in Table 1.

MC We set constraints for MC. Let p(s) and v(s) be
the position and velocity of the car at state s, respectively.
Property G[p(s) = 0.2 → v(s) > 0.01] states that the car’s
speed must be greater than 0.01 at position 0.2. The other
property is that the car’s position will eventually be greater
than 0.5, formulated by F[p(s) > 0.5].

Both properties can be verified under the initial state
space [−0.5,−0.4999)× [0, 10−4). Since the TS is the same
in both test cases, the verification times are also close.

PD We also set two LTL properties for PD. Firstly, we
set G[|θ(s)| < π

2], where θ(s) and ω(s) denote the angle
and angular velocity of the pole, respectively. The formula
describes that the pole’s angle must always be in (− π2 ,

π
2).

Besides, we expect that the angular velocity will eventually

360

Figure 3: Performance comparison between the extracted policies and the DNNs (horizontal axis: the episode reward).

Table 1: LTL verification results of four systems driven by extracted policies.

Case Initial DMU LTL Property Number All Verified Time(s)

MC < [−0.5, 0.0], [10−4, 10−4] >
G[p(s) = 0.2→ v(s) > 0.01] 1.2 × 106 X X 2687

F[p(s) > 0.5] 1.2 × 106 X X 2691

PD < [0, 0], [10−2, 10−2] >
G[|θ(s)| < π

2] 728 X X 5
G[θ(s) < 0→ F[ω(s) > 0]] 728 X % 6

Tora
< [0, 0, 0, 0], G[|s1 | < 2 ∧ |s2 | < 2

1.0 × 106 % X 2731
[10−2, 10−2, 10−2, 10−2] > ∧|s3 | < 2 ∧ |s4 | < 2]

4CP
< [0, 0, 0, 0, 0, 0, 0], G[d1(s) > 0∧

9721 X X 154
[10−2, 10−2, 10−2, 10−2, 10−2, 10−2, 10−2] > d2(s) > 0 ∧ d3(s) > 0]

Remark: the Number of DMUs in TS ; whether TS contains All reachable DMUs; whether the property is Verified, and the verification Time.

Figure 4: Traversal of DMUs over time steps in MC.

be greater than 0 if the angle is less than 0, i.e., G[θ(s) <
0→ F[ω(s) > 0]].

The second property fails to be verified because abstract
methods applied in building transition relations add paths
that violate the constraint.

Tora The equilibrium state for Tora is [0, 0, 0, 0], so we
expect the system can stay within (−2, 2)4, which can be
represented by G[|s1| < 2 ∧ |s2| < 2 ∧ |s3| < 2 ∧ |s4| < 2].

We limit the number of traversed DMUs to 106 to control
the verification time. Therefore, the expected property can
only be guaranteed within 24 time steps.

4CP We use di(s) to denote the distance between the i-
th car and (i + 1)-th car, the constraint can be formulated as
G[d1(s) > 0 ∧ d2(s) > 0 ∧ d3(s) > 0].

Although 4CP is a 7-dimensional system, reachable
DMUs are limited. The property can be verified among
around 104 DMUs.

Evaluation Since the time required to build the transi-
tion system is much more than the execution time of Spot,
the verification time is proportional to the number of tra-

Figure 5: Traversal of DMUs over time steps in PD.

Table 2: Performance comparison with ReachNN∗.

Case Neural Network Ours ReachNN∗

B1
Tanh(2 × 20) 389 Unknown
Tanh(2 × 100) 401 Unknown

B2
Sigmoid(2 × 20) 91 22
Sigmoid(2 × 100) 96 105

MC
Sigmoid(2 × 16) 2567 Unknown
Sigmoid(2 × 200) 2574 Unknown

versed DMUs. However, compared with the state space,
reachable DMUs are limited. For example, taking the center
concrete state in the DMU, we depict the traversal of DMUs
over time steps in MC and PD in Figure 4 and Figure 5,
respectively, where different colors indicate that DMUs are
traversed at different time steps. It can be seen that both sys-
tems operate in a fraction of the state space, which can make
our method immune to the state explosion problem. There-
fore, the combination of policy extraction and TS construc-
tion can ensure efficient verification of systems with limited
reachable ranges.

361

4.3 Method Comparison

To our best knowledge, few related methods can verify
properties other than safety and liveness, such as LTL in
this paper. Therefore, we only compare the verification of
liveness properties with ReachNN∗ [9].

For simplicity, we follow most of the experimental set-
tings in [11], including test systems and verification prop-
erties. Therefore, we only list the necessary parameters in
Table 2. There are two types of verification results: veri-
fication passes (verification time) or fails (Unknown). The
discretization vector values in B1 and B2 are [10−3, 10−3]
and [10−3, 10−4], respectively.

Our method outperforms ReachNN∗ in most cases. More
importantly, the scalability of reachability analysis methods
on which ReachNN∗ is based is limited by the structure and
scale of DNNs. However, the trained DNN is a black box
to our method via policy extraction, so the verification time
is independent of DNNs.

5 Related Work
There is a growing literature on formal verification of

DRL systems. Reachability analysis methods can calculate
reachable sets of systems at each time step. For instance,
Fan et al. approximated the DNN controller with Bern-
stein polynomials [9] while Ivanov et al. proposed a Taylor-
model-based reachability algorithm to improve the scalabil-
ity [11]. Besides, shielding can prevent DRL systems from
exhibiting unsafe behavior [1, 23]. However, these methods
can only verify the safety and liveness properties of DRL
systems, while our approach can verify more complex tem-
poral properties to guarantee applicability.

Works made by [8, 14] aim to model checking the DRL-
driven systems via techniques on formal verification of
DNNs. However, the scalability of their methods is limited
by the size of neural networks, so the length of counterex-
amples obtained in experiments is limited. In contrast, the
scalability of our method is DNN-independent.

6 Conclusion and Future Work
We proposed an LTL model checking approach to DRL

verification. Our approach relies on extracting interpretable
policies from trained DNNs and modeling DRL systems as
a finite-state transition system using the extracted policies.
It supports model checking of more complex temporal prop-
erties of DRL systems except for safety properties. We ap-
plied it to the DRL systems trained for four classic control
problems. The experimental results show the effectiveness
of our approach.

Our approach demonstrated the feasibility of extracting
interpretable policies to substitute for inexplicable neural
networks for formal verification. We plan to apply our ap-
proach to more complex DRL systems and devise more ef-
ficient model checking algorithms to improve scalability.

Acknowledgement
This work is supported by National Key Research Pro-

gram (2020AAA0107800), Shanghai Science and Technol-
ogy Commission (20DZ1100300), Shanghai Artificial In-
telligence Innovation and Development Fund (2020-RGZN-
02026), Shenzhen Institute of Artificial Intelligence and
Robotics for Society (AC01202005020), NSFC projects
(61872146, 62161146001). Yang Wang and Min Zhang are
the corresponding authors.

References
[1] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, et al. Safe

reinforcement learning via shielding. In AAAI, 2018.
[2] Edoardo Bacci and David Parker. Probabilistic guarantees for safe

deep reinforcement learning. In FORMATS, pages 231–248, 2020.
[3] Christel Baier and Joost-Pieter Katoen. Principles of model checking.

MIT press, 2008.
[4] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable

reinforcement learning via policy extraction. NIPS, 31, 2018.
[5] Greg Brockman et al. OpenAI Gym, 2016.
[6] Jeremy Cohen et al. Certified adversarial robustness via randomized

smoothing. In ICML, pages 1310–1320, 2019.
[7] Duret-Lutz et al. Spot 2.0—a framework for ltl and ω-automata ma-

nipulation. In ATVA. Springer, 2016.
[8] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael Schapira. Ver-

ifying learning-augmented systems. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, pages 305–318, 2021.

[9] Jiameng Fan et al. Reachnn*: A tool for reachability analysis of
neural-network controlled systems. In ATVA, pages 537–542, 2020.

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

[11] Radoslav Ivanov et al. Verisig 2.0: Verification of neural network
controllers using taylor model preconditioning. In International Con-
ference on Computer Aided Verification, 2021.

[12] Mrdjan Jankovic, Daniel Fontaine, and Petar V KokotoviC. Tora
example: cascade-and passivity-based control designs. IEEE Trans-
actions on Control Systems Technology, 4(3), 1996.

[13] Nathan Jay et al. Internet congestion control via deep reinforcement
learning. CoRR, abs/1810.03259, 2018.

[14] Yafim Kazak, Clark Barrett, Guy Katz, and Michael Schapira. Veri-
fying deep-rl-driven systems. In Proceedings of the 2019 Workshop
on Network Meets AI & ML, pages 83–89, 2019.

[15] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, et al. Con-
tinuous control with deep reinforcement learning. In ICLR’16, 2016.

[16] Yen-Chen Lin et al. Tactics of adversarial attack on deep reinforce-
ment learning agents. arXiv preprint arXiv:1703.06748, 2017.

[17] Björn Lütjens, Michael Everett, and Jonathan P How. Certified ad-
versarial robustness for deep reinforcement learning. In Conference
on Robot Learning, 2019.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. Playing
atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. Human-
level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[20] Pierre El Mqirmi, Francesco Belardinelli, and Borja G León. An
abstraction-based method to check multi-agent deep reinforcement-
learning behaviors. arXiv preprint arXiv:2102.01434, 2021.

[21] Kei Ota. TF2RL. https://github.com/keiohta/tf2rl/, 2020.
[22] Christian Szegedy et al. Intriguing properties of neural networks.

arXiv preprint arXiv:1312.6199, 2013.
[23] He Zhu et al. An inductive synthesis framework for verifiable rein-

forcement learning. In PLDI, pages 686–701, 2019.

362

Formal Verification of COCO Database
Framework Using CSP

Peimu Li, Jiaqi Yin, Huibiao Zhu*

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

Abstract—Nowadays, many applications are built on dis-
tributed databases for scalability and high availability. There-
fore, the architecture design of distributed databases needs to
satisfy some functional properties to ensure that the database
can perform transactions reliably and efficiently. COCO is a
distributed OLTP database that supports epoch-based commit
and replication and two variants of optimistic concurrency
control which use physical time or logical time. In this paper, we
first use process algebra CSP to model COCO’s architecture.
Then we use model checker PAT to verify seven properties,
including deadlockfree, consistency, availability, partition tol-
erance (CAP), and basically availability, soft state, eventual
consistency (BASE). The results show COCO’s commit and
replication protocol satisfy the CAP theorem, and two opti-
mistic concurrency control variants satisfy the BASE theorem.

Index Terms—Distributed OLTP Database, Process Algebra,
COCO, Modeling, Verification

I. INTRODUCTION

Many distributed OLTP databases use a shared-nothing
architecture for scale out and data partitioning to achieve the
scalability of data storage [1], [2]. When the data required by
a transaction belongs to multiple data partitions, the system
needs a protocol that can coordinate the collaborative work
of multiple partitions to ensure the normal execution of
the transaction, so a two-phase commit protocol (2PC) is
proposed [3]. It is well known that 2PC causes significant
performance degradation in distributed databases [4]. There
have been some improvements aimed at the defects of
2PC, but most of them require some assumptions which are
difficult to achieve, e.g., read/write sets of each transaction
has to be known before execution [5].

Lu et al. [6] proposed epoch-based commit and repli-
cation, which is an improved protocol based on 2PC, and
implemented it in distributed database COCO. The COCO
database also supports two variants of optimistic concur-
rency control: physical time and logical time OCC, which
can serialize transactions in physical or logical time [7].

The design of a distributed database architecture often
needs to satisfy many functional properties. Fox et al. [8]
put forward the CAP theory based on the characteristics
of distributed systems. This theory explains three properties
that restrict each other in the design of distributed system
architecture: consistency, availability, and partition tolerance.
Any framework can only satisfy two of them, but not all
of them. Pritchett [9] proposed BASE theory, which is a

*Corresponding author: hbzhu@sei.ecnu.edu.cn (H. Zhu).

compromise solution for the design of distributed systems
against limitations of CAP theory. It allows data inconsis-
tency for a period of time and satisfies three properties: basic
availability, soft state and eventually consistency.

At present, the mainstream method of detecting the per-
formance of the database are benchmark testing and load
testing. Benchmark testing refers to a test method that quan-
titatively compares certain specific performance indicators
in the system. Currently, the popular benchmarking tools
include Facebook’s LinkBench [10], Yahoo’s YCSB [11] and
BigDataBench [12]. Load testing is to test performance of
the tested object by continuously increasing the task volume
to the tested object until a certain index reaches or exceeds
the expectation or a certain resource is exhausted.

Actually, for the reason that the test workload and bench-
marks are artificially set, and the test results are directly
affected by the hardware performance, the test results still
can be improved. In order to solve these challenges, this
paper applies a formal method called CSP to verify prop-
erties of the database architecture. CSP [13] is an algebra
theory proposed by C. A. R. Hoare. It is an abstract language
designed to describe process communication in concurrent
systems. We use CSP to abstract the architecture and use
the model checker PAT [14] to check the properties of the
model. In this way, we can reduce the impact of hardware
on the verification process and ensure completeness.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce the epoch-based commit and
replication, two optimistic concurrency controls in COCO
and process algebra CSP. In Section III, we use CSP to
model the commit protocol and two types of concurrency
control in COCO. In Section IV, we implement the achieved
formed model of Section III in PAT, and give the definition
of the properties that need to be verified and the verification
results. Section V concludes the paper and provides some
future work.

II. BACKGROUND

In this section, we introduce the overall architecture of
COCO database and process algebra CSP.

A. Epoch-based Commit and Replication

Epoch-based commit and replication contains two proto-
cols: (1) a commit protocol and (2) a replication protocol.

The commit protocol is used to commit completed
transactions at the end of the current epoch, shown in Fig.

DOI reference number: 10.18293/SEKE2022-072

363

Fig. 1. Epoch-based commit

1. Epoch-based commit contains a prepare phase and a
commit phase. In the prepare phase, the coordinator node
first sends a preparation message to all other participant
nodes. When a participant node receives the preparation
message, it prepares to commit all transactions in the current
epoch by logging a durable prepared write record with all
the transaction IDs (TIDs) of ready-to-commit transactions
as well as the current epoch number. When a participant
node logs all the necessary write records, it then replies an
acknowledgement to the coordinator.

If any participant node fails to send an acknowledgement
message due to failures, all transactions in the current epoch
must be aborted. Otherwise the coordinator writes a durable
commit record with the global current epoch number, and
increases the global current epoch number. Then the coordi-
nator sends a commit message to all participant nodes. When
a participant node receives a commit message, it commits all
the ready-to-commit transactions in the last epoch. Note that
even if some transactions in the epoch are aborted due to
conflicts, they do not affect the commits of other transactions
in the epoch. At this point, the writes of all ready-to-commit
transactions in the last epoch are visible to all other users.
In the end, all participants send acknowledgement messages
to the coordinator, and then start to execute the transactions
of the next epoch.

The replication protocol is needed to guarantee consis-
tency and availability of the database. The most common
approach is the primary-backup replication. In COCO, atom-
icity and durability are satisfied at the end of the epoch, so
that COCO can perform the replication on backup databases
asynchronously. Therefore, after the data update on the
primary is completed, the primary can release all locks.

B. Physical Time and Logical Time OCC

Physical Time OCC (PT-OCC) and Logical Time OCC
(LT-OCC) are two distributed variants of OCC. In PT-OCC,
the transaction needs to lock the data items in the write set.
A lock request is only sent to the primary replica of each
record. If the data item has been locked by other transactions,
the transaction is directly aborted. If the record is in the
write and read sets of the transaction at the same time, the
transaction will verify whether the TID of the corresponding
record in the read set is consistent with that in the primary.
If the TID is inconsistent, it means that the record was

updated by other transactions during the execution phase,
so the transaction simply aborts.

When the transaction has locked the write set, it begins to
verify its read set. A read verification request is only sent to
the primary replica of each record. If a record in the primary
is locked by other transactions or the TID is inconsistent
with the record in the read set, then the transaction simply
aborts. At the same time, COCO generates a new TID for
the transaction. TID marks the order between transactions.

After successfully verifying the read set, the transaction
writes the result back to the database. A write request is
sent to the primary replica of each record. After the result
is written, the lock of the record in the primary replica is
released immediately, and then the result is written to other
replicas asynchronously.

In LT-OCC, a serialized transaction can read, write
and commit in the space of logical time. Each record
in the database is associated with two logical timestamps
[wts, rts]. Here, wts is the timestamp of the last modifica-
tion time of this record. rts represents the effective time of
this record, which means that it is valid to read this record
at any logical time ts that satisfies wts ≤ ts ≤ rts. The
control flow of the LT-OCC algorithm is basically the same
as that of PT-OCC. The difference is TID is used to identify
transactions in PT-OCC and [wts, rts] is used in LT-OCC.

C. CSP

CSP is a formal language which has an important impact
on the development of Golang. The following is some widely
used CSP syntax:
• SKIP denotes that a process terminates successfully.
• a→ P indicates the process executes action a first, and

then behaves like P .
• P�Q represents the general choice. It behaves like P

or Q, and the environment decides the selection.
• P ||Q stands for concurrent execution of P and Q. The

shared actions must be executed synchronously.
• P |||Q denotes that P interleaves Q.
• c?x → P indicates that a value is recieved through

channel c and process assigns it to variable x, and then
behaves like P .

• c!e → P denotes the process sends the value of
expression e through channel c first, and then behaves
like P .

• P ;Q represents sequential execution, process executes
P , then executes Q after P which first terminates.

• PCbBQ denotes the condition. If b is true, then process
behaves like P . Otherwise process behaves like Q.

III. MODELING COCO DATABASE FRAMEWORK

In this section, we use process algebra CSP to model
COCO architecture. First, we introduce the messages and
channels used in our model, and then we respectively
introduce the CSP models of COCO architecture. COCO ar-
chitecture includes epoch-based commit protocol, replication
protocol and two variants of optimistic concurrency control.

364

A. Messages and Channels

Before modeling the commit protocol and concurrency
control algorithm in COCO, we need to define the messages,
and channels used for modeling. We define multiple channels
for data interaction between various modules in the COCO
database system. Fig. 2 gives the channels of communication
in COCO:

(a) Channels of Epoch-based Commit

(b) Channels of Optimistic Concurrency Control and Replica-
tion

Fig. 2. Channels of COCO database

In order to define the message conveniently, we define
three message content sets: REQ, ACK and DATA, which
represent content of the request, confirmation and data
messages respectively. Based on the above definitions, we
design multiple types of messages for information exchange
between entities. These messages are defined as follows:

MSG =df MSGreq ∪ MSGack ∪ MSGdata

MSGreq =df {msgreq.C.P.Content | msgreq ∈ TY PE
,C∈Coordinator,P∈Participant,Content∈REQ,}

MSGack =df {msgack.P.C.Content | c ∈ Coordinator
, P ∈ Participant, Content ∈ ACK, }

MSGdata =df {msgdata.P.R.Content | P ∈ Primary,

R ∈ Replica, Content ∈ DATA, }.
In COCO framework, we define MSGreq to represent the

request messages, including six types of requests: prepare,
commit, abort, read, write, and lock. Six types of requests
are in TY PE set. MSGack represents confirmation of the
request message, and MSGdata represents data information
passed by the transaction in the read and write process.

B. Epoch-based Commit and Replication Modeling
The epoch-based commit protocol includes two types

of processes: coordinator and participants. The coordinator
process is modeled as follows:

Coordinator() =df (|||i : {1..N}@ComCorPar[i]!msgprep.

C.P.epoch num→ Skip); (|||i : {1..N}@ComParCor

[i]?msgack.P.C.R C TID → Check{if(msgack ==

No){hasNo = true}} → Skip); decide{if(hasNo ==

true){choice = ABORT}else{choice = COMMIT}}
→ CoordCommitPhase(choice)

CoordCommitPhase(choice) =df

if(choice == COMMIT){
writeCommitRecord→ increaseEpoch{epoch n

um = epoch num+ 1} → Skip;

(|||i : {1..N}@ComCorPar[i]!msgcommit.C.P.epo

ch num− 1→ Skip); (|||i : {1..N}@ComParCor

[i]?msgack.P.C.com TID → Skip);

releaseResults→ Coordinator()

}
else{

(|||i : {1..N}@ComCorPar[i]!msgabort.C.P.epo

ch num→ Skip);

(|||i : {1..N}@ComParCor[i]?msgack.P.C.abor

t TID → Skip);

abort→ Coordinator()

}

In the prepare phase, the coordinator first sends a
MSGprep to N numbers of participants, and then re-
ceives MSGack sent by participant nodes. If there are
participant nodes that cannot commit the transaction, the
choice is assigned to ABORT , otherwise it is assigned to
COMMIT . In the commit phase, if choice == ABORT ,
then the coordinator needs to send MSGabort to all
participant nodes to abort all transactions in this epoch.
After receiving MSGack from all participant nodes, it re-
executes all transactions in the current epoch. If choice ==
COMMIT , coordinator writes a durable commit record
with epoch num, and then increases epoch num. It also
sends MSGcommit to all participant nodes, and then
receives MSGack sent by participant nodes. After com-
pleting above tasks, the coordinator releases results to users
and then executes the commit of the next epoch.

The definition of the participant process is as follows:

Participant(i) =df ComParCor[i]?msgprep.C.P.epoch num

→

logWriteRecord→ ComParCor[i]!Y es.
P.C.R C TID → ParComPhase(i)

�
ComParCor[i]!No.P.C.R C TID

→ ParComPhase(i)

ParComPhase(i) =df ComCorPar[i]?msgreq.C.P.epoch num

→

ComParCor[i]!msgack.P.C.com TID

→ Participant(i)
C(msgreq == msgcommit)B

ComParCor[i]!msgack.P.C.abort TID
→ Participant(i)

In prepare phase, the participant first receives the

MSGprep sent by the coordinator, then if the participant
successfully writes the commit record, a Y es MSGack is
sent directly to the coordinator. Otherwise, the participant
sends No MSGack. In commit phase, the participant
first waits to receive MSGreq from the coordinator. If
MSGreq == MSGcommit, then the participant commits
the result and sends a commit message to the coordinator.
If MSGreq == MSGabort, the participant sends an abort

365

message. After that, participants and the coordinator
synchronize to enter the next epoch of transaction commit.

Based on the above modeling, an overall epoch-based
commit protocol is defined as follows:

Epoch commit() =df

Coordinator()||(|||i : {1...N}@Participant(i))

The epoch-based commit protocol consists of a
coordinator and several participants. The coordinator
and each participant execute concurrently, and freely
interleave execution between participant processes.

The replication protocol mainly includes two types
of processes, Primary replication and Replica. The
Primary replication is responsible for controlling and
coordinating entire replication execution on the primary
database. Replica is a process that runs on the replica
server and cooperates with the primary. The definitions are
as follows:

Primary replication(records) =df (|||i : {1..N}@ComP

RRE[i]!msgwrite.P.R.records→ ComREPR[i]?ms

gack.R.P.content→ Primary replication(records))

Replica(i) =df ComPRRE[i]?msgwrite.P.R.records→
WriteBack(i, records)→ ComREPR[i]!

msgack.R.P.Y es→ Replica(i)

WriteBack(i, records) =df
Skip

C(records == null)B write{replicai.record = record} →
WriteBack(i, records′)

C(replicai.record.tid < record.tid)B
WriteBack(i, records′)

The WriteBack first determines whether the records

is empty. If it is empty, the process terminates directly.
Otherwise, if the database record’s tid is greater than the
tid of records, it indicates that the record has been updated
by other transactions executed later, so the replica directly
skips this record. Otherwise, it updates the record, and
then calls WriteBack(i, records′). records′ contains all
records elements except the first record.

Replication(records) =df

Primary replication(records)||(|||i : {1...N}@Replica(i))

The overall protocol consists of a primary replication
and N replica processes. The modeling is shown above.

C. PT-OCC and LT-OCC Modeling

OCC can be roughly divided into three phases: (1) locking
the write set, (2) validating the read set, (3) writing back to
the database. However, there is a difference between PT-
OCC and LT-OCC in phase (2), and the other phases are
basically the same. Based on the above facts, we can perform
unified modeling on phases (1) and (3) of the two algorithms,
and model the phase (2) independently.

In the first phase, the transaction sends a MSGlock to the
primary of the record, and then receives the MSGack sent
by the primary. If content == Y es, then the transaction
continues to send the request for the next record, otherwise

the transaction releases locked records and aborts. The
definition of Trans lock and Releaselock are as follows:

Trans lock(i, write set) =df SkipC (write set == null)B
ComTSPR[i]!msglock.T.P.record→ ComPRTS[i]?

msgack.P.T.content→ Trans lock(i, write set′)
C(content == Y es)B

Releaselock(i, lockedRecords)→ Skip

Releaselock(i, records) =df SkipC (records == null)B

release{database.record.locked = false} →
Releaselock(i, records′)

The definition of primary in the first phase is as follows:

Primary lock() =df |||i : {1...N}@ComTSPR[i]?msglock.

T.P.record→ find{if(record /∈ read set){record.tid
= database.record.tid}} →
Locking{database.record.locked = True} →

ComPRTS[i]!msgack.P.T.Y es→ Primary lock()
C(database.record.locked == false∧
record.tid == database.record.tid)B

ComPRTS[i]!msgack.P.T.No→ Primary lock()

If record /∈ read set, primary reads database.record.tid

as the tid of record. If the record is not occupied by others
and record.tid == database.record.tid, the primary can
lock and send Y es to the transaction, otherwise send No.

Next, the algorithm verifies whether the records in the
read set are still valid. We use Primary valid to describe
the behavior of the primary in the validation phase, and its
definition is as follows:

Primary valid() =df |||i : {1...N}@(ComTSPR[i]?

msgvalid.T.P.record→ ComPRTS[i]!msgdata.

P.T.database record→ Primary valid())

Transactions in the verification phase have different be-
haviors under different concurrency control. The verification
phase of the transaction in PT-OCC and LT-OCC are defined
as follows:

Trans valid PT (i, read set) =df SkipC (read set == null)

B

ComTSPR[i]!msgvalid.T.P.record→ ComPRT

S[i]?msgdata.P.T.content→ validate→ Trans valid PT (i, read set′)
C(content.locked == false∧

record.tid == content.record.tid)B
Releaselock(i, lockedRecords)→ Stop

Trans valid LT (i, read set) =df SkipC (read set == null)

B

ComTSPR[i]!msgvalid.T.P.record→ ComPRT
S[i]?msgdata.P.T.content→

validate→ Trans valid LT (i, read set′)
C(record.wts == content.wts∧

(content.rts ≥ record.tid∨
content.locked == false))B

Releaselock(i, lockedRecords)→ Stop

The main difference between the transaction in LT-OCC

and PT-OCC is the condition for judging whether the record
is successfully verified. In LT-OCC, the wts of the record
in the read set of the transaction must be the same as the
wts of the corresponding record in the database. For the
case where the rts of the record is less than the tid of the
transaction, as long as the record has not been locked by

366

other transactions, the transaction also considers the record
to be valid and the verification is successful.

After verifying all records in read set, the transaction
writes the records in write set into the primary database.
The transaction definition in the write phase is as follows:

Trans write(i, write set) =df

SkipC (write set == null)B ComTSPR[i]!msgwrite.T.P.record→ ComPRT
S[i]?msgack.P.T.content→ ComTSPR[i]!
msgrelease.T.P.write set→ Trans write(

i, write set′)

The transaction first checks whether there are any records in
write set. If not, the write is complete and the transaction
can be terminated at this point. Otherwise, the transaction
sends a write request MSGwrite to the primary, and then
receives the MSGack from the primary. After that, the
transaction sends a request MSGrelease to release the record
lock to the primary, and then tries to write the next record.
The primary definition in write phase is as follows:

Primary write() =df |||i : {1...N}@(ComTSPR[i]?

msgwrite.T.P.record→ write{database.record =

record} → ComPRTS[i]!msgack.P.T.Y es→
ComTSPR[i]?msgrelease.T.P.write set→ Rele

ase(i, record)→ Primary replication(record))

The primary receives the write request MSGwrite from
the transaction, and then writes the record. After success-
fully writing the record, the primary sends a confirmation
message MSGack to the transaction. After receiving the
release request from the transaction, the primary calls the
Release function to release the lock of the record, and then
enters the replication phase.

The overall definition of concurrency control algorithm
includes three parts: transaction, primary and replica. The
definition of Primary is as follows:

Primary() =df Primary lock()|||Primary valid()|||
Primary write()

The definition of Transaction PT in PT-OCC is as
follows. Transaction LT in LT-OCC differs only in the
second phase.

Transaction PT (i, read seti, write seti) =df (Transactio

n lock(i, write seti);Transaction valid PT (i, read

seti);Transaction write(i, write seti))

The definitions of PT-OCC and LT-OCC are as follows:

PT OCC() =df (|||i : {1...N}@Transaction PT (i, rea

d seti, write seti))||Primary()||(|||i : {1...N}@Re

plica(i))

LT OCC() =df (|||i : {1...N}@Transaction LT (i, rea

d seti, write seti))||Primary()||(|||i : {1...N}@Re

plica(i))

Both PT − OCC and LT − OCC are composed of
concurrent execution of multiple transaction, a Primary
and multiple Replica processes.

IV. IMPLEMENTATION AND VERIFICATION

In this section, based on the achieved formed model in
Section III, now we conduct verification of the properties
abstracted from the specification.

A. Properties

a) Deadlockfree: This property refers to the situation
in which processes are never deadlocked. PAT provides
atomic statements to verify deadlockfree.

b) Consistency: This property asserts during the exe-
cution of a transaction, data can only be converted from one
consistency state to another consistency state.

#define Consistency (∧i : {1...N}recordi == last rec

ord) ∨ (∧i : {1...N}recordi == cur record)

#assert Epoch commitl() | = Consistency

c) Availability: It means every request in a distributed
system can be responded to.

#define Availability (hasNo == True ∧ finished ==

True)

#assert Epoch commit() | = Availability

d) Partition Tolerance: It means that when a node or
network partition in a distributed system fails, the entire
system can still provide external services that satisfy con-
sistency and availability.

#define PartitionTolerance finished == True

#assert Epoch commit() | = PartitionTolerance

e) Basically Availability: This property means that
when some requests failure or unpredictable failures occur
in the system, the system can still guarantee the normal
execution of most transactions.

#define BasicallyAvailability (existCrash == True)∧
(available == True)

#assert PT OCC() | = BasicallyAvailability

#assert LT OCC() | = BasicallyAvailability

f) Soft State: This property refers to allowing the data
in the system to have an intermediate state, and this state
does not affect the overall availability of the system.

#define SoftState (∨i : {1...N}recordi! = last rec

ord) ∧ (∨i : {1...N}recordi! = cur record)

#assert PT OCC() | = SoftState

#assert LT OCC() | = SoftState

g) Eventually Consistency: It refers to the fact that all
data copies in the system can finally reach a consistent state
after a period of synchronization without the guarantee of
strong consistency of system data.

#define EventuallyConsistency EG((∧i : {1...N}recor
di == last record) ∨ (∧i : {1...N}recordi == cur

record))

367

#assert PT OCC() | = EventuallyConsistency

#assert LT OCC() | = EventuallyConsistency

B. Results

We use the model checker PAT to verify the main
frameworks of COCO distributed database such as epoch-
based commit and replication, PT-OCC and LT-OCC. The
verification results are shown in Fig. 3 and Fig. 4. The

Fig. 3. The Verification Results of COCO Database Framework

Fig. 4. The Details of the Partial Verification Results

epoch-based commit protocol executed at the end of the
epoch satisfies the consistency and availability but does
not satisfy the partition tolerance(i.e. the 4th property in
Fig. 3), which is in line with the CAP theory. During an
epoch, the two types of concurrency control satisfy basically
availability, soft state and eventually consistency, which meet
the BASE theory. From the analysis of the above results,
the COCO distributed database guarantees basic availability

within an epoch and at the same time can satisfy strong
consistency at the end of the epoch.

V. CONCLUSION AND FUTURE WORK

COCO is a distributed database that regards the epoch as
the unit of transaction commit and uses optimistic concur-
rency control. This paper used process algebra CSP to model
COCO’s epoch-based commit and replication, physical time
OCC and logical time OCC, and implemented these models
in the model checker PAT. The CAP and BASE theories
put forward the properties that the distributed system ar-
chitecture needs to satisfy, and we verified the properties
of COCO in an epoch cycle. It has been verified that (1)
epoch-based commit and replication satisfy consistency and
availability but not partition tolerance, and (2) PT-OCC and
LT-OCC satisfy basic availability, soft state, and eventually
consistency. This shows that COCO can guarantee high
availability during an epoch cycle, and can also guarantee
consistency at the end of the epoch. In the future, we will
verify the isolation of COCO and sequential consistency of
concurrency control.

VI. ACKNOWLEDGEMENTS

This work was partly supported by the National Key
Research and Development Program of China (Grant No.
2018YFB2101300), the National Natural Science Founda-
tion of China (Grant Nos. 61872145, 62032024), Shanghai
Trusted Industry Internet Software Collaborative Innovation
Center, and the Dean’s Fund of Shanghai Key Laboratory of
Trustworthy Computing (East China Normal University).

REFERENCES

[1] Shute J, Vingralek R, Samwel B, et al. F1: A Distributed SQL
Database That Scales. PVLDB, 2013, 6(11): 1068–1079.

[2] Verbitski A, Gupta A, Saha D, et al. Amazon Aurora: Design Con-
siderations for High Throughput Cloud-Native Relational Databases.
SIGMOD, 2017: 1041–1052.

[3] Mohan C, Lindsay B, and Obermarck R. Transaction Management
in the R* Distributed Database Management System. TODS, 1986,
11(4): 378–396.

[4] Bailis P, Fekete A, Franklin M, Ghodsi A, Hellerstein J, and Stoica
I. Coordination Avoidance in Database Systems. PVLDB, 2014, 8(3):
185–196.

[5] Lin Q, Chang P, Chen G, Ooi B C, Tan K, and Wang Z. Towards a
Non-2PC Transaction Management in Distributed Database Systems.
SIGMOD, 2016: 1659–1674.

[6] Lu, et al. Epoch-based Commit and Replication in Distributed OLTP
Databases. PVLDB, 2021, 14(5): 743-756.

[7] Kung H T and Robinson J T. On Optimistic Methods for Concurrency
Control. TODS, 1981, 6(2): 213–226.

[8] Fox A, Brewer E A. Harvest, Yield, and Scalable Tolerant Systems.
IEEE, 1999: 174-178.

[9] Pritchett D. BASE: An Acid Alternative: In Partitioned Databases,
Trading some Consistency for Availability can Lead to Dramatic
Improvements in Scalability. Queue, 2008, 6(3): 48-55.

[10] Timothy A, et al. LinkBench: a Database Benchmark Based on the
Facebook Social Graph. SIGMOD, 2013: 1185-1196.

[11] Cooper B F, Silberstein A, Tam E, et al. Benchmarking Cloud Serving
Systems with YCSB. SOCC, 2010: 143-154.

[12] Liang F, Feng C, Lu X, et al. Performance Benefits of DataMPI: A
Case Study with BigDataBench. BPOE, 2014: 111-123.

[13] Hoare C A R. Communicating Sequential Processes. Communications
of the ACM, 1978, 21(8): 666-677.

[14] Si Y, Sun J, Liu Y, et al. Model Checking With Fairness Assumptions
using PAT. Frontiers of Computer Science, 2014, 8(1): 1-16.

368

Formal Verification and Analysis of Time-Sensitive
Software-Defined Network Architecture

Weiyu Xu1, Xi Wu2, Yongxin Zhao1∗, and Yongjian Li3
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

2 The University of Sydney, Australia
3 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract—Safety-critical traffic in Industrial Internet of Things
(IIoT) requires real-time communications with high fault toler-
ance, bounded latency and low jitter. Time-Sensitive Software-
Defined Network (TSSDN), which combines the deterministic
transmission of Time-Sensitive Networking (TSN) with the cen-
tralized management of Software-Defined Networking (SDN),
was recently proposed to support the real-time requirement in
IIoT. The research on TSSDN has been receiving increasing
interests, however, the existing work has limitations including
1) the functional safety of TSSDN cannot be guaranteed; and 2)
the effect of the separation of data plane and control plane on
the time-sensitivity of TSSDN has not been evaluated. Therefore,
in this paper, we employ the timed model checker UPPAAL to
formalize the TSSDN architecture. Firstly, we use the build-in
checker in UPPAAL to verify deadlock-free property, functional
safety property and starvation-free property of our model. Then,
the total latency of frames forwarding and scheduling within a
single switch is measured based on the model. We focus on the
latency overhead of frames requesting processing rules from the
controller, which is on average an additioanl 180µs latency in the
worst case, but the impact of this delay on the time-sensitivity
of TSSDN is tolerable. As far as we know, this is the first paper
providing a formal verification and analysis approach for TSSDN
architecture, which could benefit for both TSSDN designers as
well as the researchers.

Index Terms—TSSDN Architecture, Real-Time Communica-
tion, Formalization, Verification, Timing Analysis

I. INTRODUCTION

The fourth industrial revolution (i.e., industry 4.0) focuses
on the integration of physical objects, humans and smart digital
echnology in a sophisticated information network, which is
also known as the Industrial Internet of Things (IIoT) [1].
With the rapid development of the IIoT, its safety-critical
applications increasingly request both the real-time communi-
cation and run-time flexibility, which, however, cannot be both
supported in the existing networking (e.g., Real-Time Ether-
net) [2]. In 2016, Nayak et al. proposed the Time-Sensitive
Software-Defined Network (TSSDN) [3], which integrates the
deterministic and reliability of Time-Sensitive Networking
(TSN) with the flexibility, heterogeneity and reconfigurability
of Software-Defined Networking (SDN), to support the above
requirements in the IIoT.

Recently, the research on TSSDN has been receiving in-
creasing interests, which mainly focus on architecture design
[4]–[6], control strategy [7]–[9] and latency analysis [10], [11].

*Corresponding author: yxzhao@sei.ecnu.edu.cn
DOI reference number: 10.18293/SEKE2022-094

Various solutions on how to combine TSN and SDN to form
the TSSDN architecture have been discussed, among which
our work is based on the one proposed by Böhm et al. [5].
Specifically, TSN and SDN utilize a unified control plane,
therefore all network devices are managed by a centralized
TSSDN controller. Based on the timing analysis evaluation,
Nayak et al. [10] showed that TSSDN provided deterministic
end-to-end latencies with low and bounded jitter for the time-
triggered traffic on a specific benchmark topology. However,
there are few work on the formalization of the TSSDN ar-
chitecture, especially lacking the verification on its properties
(e.g., safety and time-sensitivity) and formal analysis about
how the separation of data plane and control plane affects the
time-sensitivity of TSSDN.

In this paper, we use the model checker UPPAAL to for-
mally verify and analyze the TSSDN architecture. We formal-
ize the TSSDN controller and the switch as timed automata.
Then, we verify the deadlock-free property, functional safety
properties and the starvation-free property in our model via
the UPPAAL build-in checker. Finally, we measure the total
latency of frames forwarding and scheduling within a switch,
and assess the additional latency of the frames requesting
processing rules from the controller in the worst case. Our
formal verification results illustrate that the TSSDN properties
in the model are satisfied, and our timing analysis shows that
the transmission over the TSSDN architecture is still time-
sensitive to some extent. To the best of our knowledge, this
is the first work on the formal verification and analysis of the
TSSDN architecture.

The main contributions of this paper are:

1) Formal Modeling. We present a formal model of TSSDN
architecture via timed automata in UPPAAL. Properties
(e.g., functional safety property) can then be verified
within the model. This approach can facilitate both re-
searchers and designers to assess the time performance
and validity of TSSDN architecture before deployment.

2) Timing Analysis. Our timing analysis mainly focuses on
how the latency overhead caused by the separation of
data panel and control panel affects the time-sensitivity
in TSSDN. It is the first work on TSSDN architecture
combining formal verification with analysis approaches.

The remainder of this paper is structed as follows. A brief
introduction of the TSSDN architecture and model checker

369

UPPAAL has been given in Section II. In Section III, we
present the formal model of the TSSDN architecture in UP-
PAAL. Section IV presents an experimental implementation
with formal verification and timing analysis. Finally, Section
V concludes this paper and presents the future work.

II. PRELIMINARIES

A. TSSDN Architecture

As specified by the Open Network Foundation (ONF) [12],
TSSDN architecture is divided into three layers, including
the application plane, the control plane and the data plane,
which can be found in Fig. 1. The application plane provides a

Fig. 1. TSSDN Architecture

programmable platform to users, which calls different services
provided by the control plane through the northbound REST
API. The control plane interacts with all network devices in
the data plane to be aware of a global view of the network.
According to the global state of the network, the centralized
TSSDN controller can dynamically generate and distribute
network configuration and control information to the data
plane through the southbound API (e.g., Forces and OpenFlow
[13]). The data plane consists of all network devices (i.e.,
bridges and switches). Its main responsibility is forwarding
frames according to the rules in the flow table provided by
the control plane.

Flow table is a finite set of flow table entries, which is
used to control the forwarding of flows (i.e., sequences of
frames with the same destination). According to the OpenFlow
V1.0 [14], each flow table entry consists of header fields,
counters and actions. The head of each frame processed by
the switch is compared against the header fields of flow
table entries. If a matching entry is found, any actions for
that entry will be performed on the frame (e.g., forward to a
specified port, deliver to controller or drop). The controller is
responsible for determining how to handle frames delivered
from the switch. At the egress ports of network devices, the
transmission order of different traffic will be determined based
on different scheduling mechanisms to guarantee the QoS.

B. UPPAAL

UPPAAL [15], [16] is a well-known model checker, widely
used in modeling, simulation and verification of Cyber Phys-
ical Systems (CPS), aerospace systems, real-time scheduling
systems and other areas. In UPPAAL, a real-time system is
modeled as a collection of timed automata with real-valued
clocks. A timed automaton can be represented by a six tuple
Mst = (L,C,Σ, E, I, Io), where

1) L is a set of locations;
2) C is the set of clocks;
3) Σ is a set of actions over edges, which could change the

value of variables or clocks;
4) E ⊆ L × β(C) × Σ × 2C × L is a set of edges, where

β(C) is the set of conjunctions over simple conditions of
clock constraints and 2C is the set of clocks to be reset;

5) I : L → β(C) is a mapping of invariant on locations;
6) I0 is the initial location.

TABLE I
CTL OPERATORS

Operator Meaning Operator Meaning

Logical && conjunction ∥ disjunction
! negation → implication

Temporal [] always <> eventually
X next U until

Path A all E exist

UPPAAL has a simulator for quantitative analysis and a
verifier for model checking. The simulator validates the model
via system execution, whereas the verifier checks properties
such as safety and liveness described by Computational Tree
Logic (CTL) via on-the-fly traversing the entire state space.
As shown in TABLE I, logical, temporal and path operators
in CTL can be used to formally describe system properties.

III. MODELING OF THE TSSDN ARCHITECTURE

The overview model of TSSDN architecture, which can
be found in Fig. 2, consists of generator model, flow table
model, controller model and scheduler model. The formal
models mentioned above are represented in UPPAAL as timed
automata templates which are then instantiated as one or more
processes as necessary, shown as follows:

system Generator_Process,
Flow_Table_Process,
Scheduler_Process,
Controller_Process;

The generator process is used to simulate the frames that
have entered the switch and wait for matching with the
flow table. The flow table process and scheduler process,
respectively, represent forwarding and scheduling within a
single switch. The controller process communicates with the
flow table process and handles frames that request processing
rules.

370

Fig. 2. An Overview Model of the TSSDN Architecture

Fig. 3. Timed Automata of Generator Model

A. Generator Model

IEEE 802.1Qbv divides data frames into Control Data
Traffic (CDT), Audio/Video Traffic (AVB A and AVB B) and
Best Effort Traffic (BE) [17]. The frames of the above four
classes will be generated and delivered to the flow table model
on a regular basis in the generator model.

Definition 1 (Frame). A frame is represented by a
quadruple (flowID, class, transT ime, timeStamp), where

1) flowID identifies the flow to which the frame belongs,
that is, the abstraction of the destination (e.g., MAC
address, IP address, or VLAN ID);

2) class defines the class of the frame, i.e., CDT, AVB A,
AVB B and BE;

3) transT ime represents the duration of the frame passing
through ports. On the premise of a constant port transmis-
sion rate, it usually depends on the length of the frame;

4) timeStamp stands for the generation time instant of the
frame, which can be used for latency analysis.

We formalize the generator as a timed automata template
in UPPAAL shown in Fig. 3. The automaton consists of five

states: initial, ready, generated, finished and suspended.
The variable timer is a timer used for generating frames on
a regular basis and the variable globalClock is a global clock
used for the synchronization of all processes in the system.
The variable packetOut will be explained in the controller
model. Other variables and functions are defined as follows:

1) flowID should be specified when instantiating a gener-
ator process because flowID of the frames generated by
each generator is presumed to be the same;

2) class stands for the traffic to which the frame to be gen-
erated belongs, and TRAFFIC_NUM specifies the number
of traffic classes;

3) totalCount represents the total number of frames to be
generated;

4) count is used to record the number of frames that have
been generated;

5) frameGenerate is a synchronization channel used to
notify the flow table process to start matching the deliv-
ered frame with the flow table;

6) intervals[...] denotes the generation intervals of different
classes of frames;

7) isSuspend[...] indicates whether the generator needs to
be paused;

8) isGenFinished[...] indicates whether all frames have
been generated and delivered;

9) generateFrame(...) is a function used to generate a new
frame which will be stored in newFrame;

10) deliverFrame(...) is a function, which is responsible for
delivering a frame to the flow table model.

The generator process is initially in the initial state. When
startime equals globalclock, it enters the ready state and
begins generating the first frame. After that, the process alter-
nates between ready state and generated state to periodically
generate and deliver frames. When the value of isSuspend[...]
is true, the process will switch to the suspended state and
suspend working. This is typically caused by frames delivered
by this generator waiting for processing rules from the con-
troller. The generator process will migrate to the finished
state when count == totalcount, indicating that all frames
have been generated and delivered.

B. Flow Table Model

In the flow table model, frames arriving at the switch will
be matched with entries in a pre-configured flow table, which
is defined as follows:
Definition 2 (FlowTable). A flow table is composed of

multiple flow table entries, each of which consists of a triple
(header field, counter, action), where

1) header field is used to match the flowID of the frame;
2) counter records the number of times a flow entry

matches successfully;
3) action ∈ {CONTROLLER,DROP,PORT_A,PORT_B, ...}

indicates the action that the matched frame should take.
The timed automata template of the flow table model can be

found in Fig. 4, which will be instantiated into a unique flow

371

Fig. 4. Timed Automata of Flow Table Model

table process. After receiving the default flow table issued by
the controller, the flow table process will move from initial
state to working state. Whenever the process receives the
synchronization signal frameGenerated sent from genera-
tors, the delivered frame inFrame will be matched with the
flow table, then the process shifts to matchedF inished state.
According to the action of the matched entry, the process
will move to forward state, deliverController state or
dropFrame state. The forwarded frames will be placed in the
matching egress port’s buffer frame queues. Particularly, if the
action of the matched entry is CONTROLLER, inFrame will
be temporarily stored in tempFrame. Then the switch will
notify the generator of the frame to suspend working and send
a packetIn message to the controller model requesting how to
handle the frame. After receiving the packetout message from
the controller, tempFrame will be discarded or forwarded to
the specified egress port depending on the proResult carried
in packetout. Other variables and functions are defined as
follows:

1) tableMatch(...) is a function matching inFrame with
the flow table;

2) isQueueFull(...) is a function checking the frame queue
of a specific traffic in the port buffer is full. If the queue
is full, the process will enter bufferFull state;

3) enQueue(...) is a function, responsible for enqueuing
frames to the buffer queue of a specified port.

C. TSSDN Controller Model

The timed automata template of TSSDN controller can
be found in Fig. 5. During the system initialization, in-
stantiated controller process will send a default flow table
to the switch and move to working state. After receiv-
ing a packetIn message from a switch, the controller will
spend maxProcessT ime on calculating and generating a
processing rule via function processRule(...) for the re-
quested frame based on the real-time global network state.
The function can be defined by designers and the addi-
tional latency in the worst case can be measured based on
maxProcessT ime. Then the process will send a packetOut
message back to the switch to handle the frame waiting for

the processing rule. It takes PACKET_IN_TRANS_TIME and
PACKET_OUT_TRANS_TIME for packetIn and packetOut
messages to pass through a port respectively. Here we assume
that inFrame is always included in these two messages.
Therefore, the transmission time of these two messages de-
pends on the maximum length of frames.

Fig. 5. Timed Automata of Controller Model

After scheduler process and all generator processes reach
finished state, controller process will move to terminated
state, indicating that the system has been ended. The remaining
variables and functions are defined as follows:

1) maxProcessT ime represents the maximum processing
time to calculate and generate processing rules, which is
specified when instantiating the controller process;

2) defaultConf is a synchronization channel used to active
the flow table process;

3) defaultConfigurate(...) is a function initializing sys-
tem global variables and issuing the flow table.

D. Scheduler Model

According to IEEE 802.1Qbv, a scheduling period is divided
into protected windows and unprotected windows. A guard
band is introduced to prevent a new transmission of the non-
time-critical traffic (i.e., AVB and BE traffic).

The timed automata template of the scheduler is shown in
Fig. 6. A scheduler process will be employed to schedule
frames according to different scheduling mechanisms for the
frame queues at each egress port of the switch. The variables
and functions are defined as follows:

1) slots[...] is an array of time slots, whose values depend
on the length of unprotected windows and protected
windows;

2) portID indicates the port associated with the scheduler;
3) schClock is the clock of the scheduler, whose value is

updated by function updateClock(...);

372

Fig. 6. Timed Automata of Scheduler Model

4) schF inished[...] indicates whether all frames in the port
buffer have been scheduled;

5) selectFrame(...) is a key function used to schedule
a frame from queues according to different scheduling
mechanisms. CDT traffic is scheduled according to FIFO
mechanism, whereas AVB traffic and BE traffic are
scheduled based on credit-based shaping (CBS) mech-
anism, whose details are introduced in the Forwarding
and Queuing enhancements for Time-Sensitive Streams
(FQTSS) [18];

6) adjCreditIdle is a function to update credits in CBS
when no frame transmitted, while adjCreditInTrans is
to do so after a frame is transmitted;

7) transitFrame(...) is a function used to calculate the
latency of frames and to transmit frames through the
egress ports of the switch;

8) isSchedule(...) is a function to check whether scheduling
a frame is allowed according to CBS mechanism.

When slotT imer equals to startT ime, the scheduler pro-
cess transits from initial state to working state. Then the
process enters three windows (i.e., unprotected, guard band,
protected) in turn. CDT traffic can only be scheduled in
protected windows, whereas AVB and BE traffic can be
scheduled in unprotected windows. Once the process enters
the guard band, it is not allowed to start the transmission of
any frame. When all of the slots are exhausted, the process will
return to the working state and start a new cycle. Particularly,
when all frames in the port buffer have been scheduled, the
process will move to finished state and stop scheduling.

IV. FORMAL VERIFICATION AND TIMING ANALYSIS

In this section, we perform the formal verification and
timing analysis over the formal model given in section III.

A. Experimental Configuration

We mainly focus on the transmission of four classes of
data frames: CDT, AVB A, AVB B, and BE. The parameters

of traffic classes are shown in Table II. For simplicity, the
frame of each class is generated and delivered to the switch
at a fixed interval and the transmission rate of the port is
100 Mbps in our experiment. In the table, transT ime, which
depends on the size of frame and the transmission rate of ports,
indicates the transmission time of the frame through a switch
port. β+and β− denote the increasing rate and the decreasing
rate of credits in CBS mechanism, respectively.

TABLE II
PARAMETERS OF TRAFFIC CLASSES

Class CDT AVB A AVB B BE
Length 300B 425B 275B 325B

transTime 18µs 34µs 22µs 26µs
Interval 100µs 30µs 40µs 40µs
Priority 4 3 2 1
β+ - 3 4 -
β− - 4 3 -

In view of IEEE 802.1 TSN [19], [20], TSSDN period is
set to 500µs in our experiment, which is divided into two
unprotected windows and two protected windows. Note that
the last 34 µs of each unprotected window is configured as
a guard band, which is equal to the transmission time of the
frame with maximum length.

In our experiment, four instantiated generator processes are
employed to simulate four flows waiting to be processed by the
switch. We instantiate a flow table process and two schedulers
to simulate a switch with two egress ports (i.e., PORT_1 and
PORT_2). The flow table of the switch is shown in Table
III. One controller process communicates with the flow table
process and handles frames that request processing rules.

In particular, each frame of FLOW_D will be included
in the packetIn message to request processing rule from
the controller. In order to minimize the average latency of
FLOW_D, the controller process always decides to forward the
frames of FLOW_D to the egress port with the fewest frames.
Additionally, the length of packetIn and packetOut messages

373

TABLE III
FLOW TABLE OF THE SWITCH

Header Field Counters Action
FLOW A 0 PORT 1
FLOW B 0 PORT 2
FLOW C 0 DROP
FLOW D 0 CONTROLLER

is set as 450 bytes to accommodate the frame with maximum
length, resulting in a transmission time of 36µs for both.

B. Formal Verification and Analysis

1) Formal Verification. We employ ten assertions to verify
the model satisfies the following four properties.

Property 1: Deadlock-free Property
A[] not deadlock
This property asserts that the system will never progress

into a deadlock situation, which is satisfied in our model.
Property 2: Starvation-free Property
A <> scheduler.selectedFrame.class == CDT
A <> scheduler.selectedFrame.class == AVB_A
A <> scheduler.selectedFrame.class == AVB_B
A <> scheduler.selectedFrame.class == BE
These assertions claim that frames of all classes will even-

tually be scheduled, whose results can be found in Fig. 7.
Property 3: Window Exclusive
A[] scheduler.transmitting imply

scheduler.selectedFrame.class! = CDT
A[] scheduler.transmittingCDT imply

scheduler.selectedFrame.class == CDT
The above assertions verify that CDT can only be scheduled

in protected windows, which are satisfied in our model.
Property 4: Validity of Flow Table Matching
A[] switch .dropFrame imply

(action == DROP || proResult == DROP)
A[] switch .deliverController imply

flowTable[matchedIndex][ACTION]
== CONTROLLER)

A[] switch .forward imply (action == proResult
|| action == flowTable[matchedIndex][ACTION])

These assertions claim that the switch always handles
frames correctly according to the matched flow table entry. The
variable matchedIndex indicates the index of the matched
flow table entry.

2) Timing Analysis. The latency of a frame within a switch,
to be precise, is the time elapsed from the frame beginning to
match the flow table entries to the last bit of the frame being
transmitted from the egress port of the switch. We measure the
latency of frames of three flows (i.e., FLOW_A, FLOW_B and
FLOW_D) within the switch, whose results can be found in
Fig. 8. Note that, frames of FLOW_C are not considered here
because they will be discarded according to the flow table.

We can see from the figure that the latency of BE and AVB
frames in the three flows is basically stable, and the latency of
traffic with higher priority is lower overall. The latency of most
BE and AVB frames in FLOW_D is higher than that in FLOW_A

Fig. 7. Verification Results

TABLE IV
AVERAGE LATENCY OF FRAMES

Traffic\Flows FLOW A FLOW B FLOW C FLOW D
BE 205.2µs 219.4µs - 330.8µs

AVB B 128.6µs 137.5µs - 329.4µs
AVB A 128.8µs 103.5µs - 340µs

CDT 626.3µs 820µs - 447µs
Overall

(exclude CDT) 154.2µs 153.6µs - 333.4µs

and FLOW_B. However, the latency of CDT frames is much
higher than that of frames of other traffic, and the latency of
subsequent CDT frames continues to increase. Actually, this
issue is caused by the division of time windows: there are only
two protected windows in a scheduling cycle (i.e, a TSSDN
period), and each protected window can only transmit one
CDT frame. In other words, at most two CDT frames can be
scheduled every 500µs, implying that a large number of CDT
frames will be accumulated in the queue, resulting in a sharp
increase in the latency of subsequent CDT frames.

Since our experiment mainly focuses on the additional
latency of those frames that request the processing rules from
the controller, CDT frames are excluded when calculating the
overall average latency of the flows, which has little impact
on our evaluation results. Table IV shows the average latency
of various classes of frames in different flows, from which we
find that the frames requesting the processing rule from the
controller will incur an average of 180µs additional latency in
the worst case.

V. CONCLUSION AND OUTLOOK

In this paper, we used the model checker UPPAAL to
formally model and verify the TSSDN architecture. The re-
sults of verification demonstrate that the properties of the

374

Fig. 8. Latency of Frames

TSSDN architecture are satisfied. Based on the model, we
also performed a timing analysis and found that the frames
requesting processing rules from the controller incurred an
average of 180µs additional latency in the worst case, which
shows that the transmission over the TSSDN architecture still
retains time-sensitivity to some extent. By using our approach,
both designers and researchers can conveniently verify the
functional safety of the TSSDN architecture and assess the
effect caused by the separation of data panel and control panel
on time-sensitivity of TSSDN.

Limited by the size of the state space, our current model
did not consider the process of frames entering the switch.
State explosion is always a problem but can be mitigated by
using abstraction and optimisation techniques (i.e. partial order
reductions). [21] In the future, we would like to integrate the
Per-Stream Filtering and Policing (PSFP) protocol into the
model to capture the process by which frames are policed and
filtered at ingress ports of the switch. Our future research will
also focus on using various optimization techniques to enable
scalability of the model.

ACKNOWLEDGEMENTS

This work is supported by Shanghai Science and Technol-
ogy Commission Program under Grant 20511106002, Shang-
hai Trusted Industry Internet Software Collaborative Inno-
vation Center and the Fundamental Research Funds for the
Central Universities.

REFERENCES

[1] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE industrial electronics magazine, vol. 11, no. 1,
pp. 17–27, 2017.

[2] L. Silva, P. Pedreiras, P. Fonseca, and L. Almeida, “On the adequacy
of sdn and tsn for industry 4.0,” in 2019 IEEE 22nd International
Symposium on Real-Time Distributed Computing (ISORC). IEEE, 2019,
pp. 43–51.

[3] N. G. Nayak, F. Dürr, and K. Rothermel, “Software-defined environment
for reconfigurable manufacturing systems,” in 2015 5th International
Conference on the Internet of Things (IOT). IEEE, 2015, pp. 122–129.

[4] M. Bhm, J. Ohms, O. Gebauer, and D. Wermser, “Architectural de-
sign of a tsn to sdn gateway in the context of industry 4.0,” in 23.
ITG-Fachtagung ”Mobile Communications”, ISBN: 978-3-8007-4577-
7, 2018.

[5] M. Böhm, J. Ohms, M. Kumar, O. Gebauer, and D. Wermser, “Time-
sensitive software-defined networking: a unified control-plane for tsn
and sdn,” in Mobile Communication-Technologies and Applications; 24.
ITG-Symposium. VDE, 2019, pp. 1–6.

[6] T. I. ul Huque, K. Yego, C. Sioutis, M. Nobakht, E. Sitnikova, and F. den
Hartog, “A system architecture for time-sensitive heterogeneous wireless
distributed software-defined networks,” in 2019 Military Communica-
tions and Information Systems Conference (MilCIS). IEEE, 2019, pp.
1–6.

[7] V. Balasubramanian, M. Aloqaily, and M. Reisslein, “An sdn architecture
for time sensitive industrial iot,” Computer Networks, vol. 186, p.
107739, 2021.

[8] T. Gerhard, T. Kobzan, I. Blöcher, and M. Hendel, “Software-defined
flow reservation: Configuring ieee 802.1 q time-sensitive networks by the
use of software-defined networking,” in 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2019, pp. 216–223.

[9] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software-defined networks,” IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 5, pp. 2066–2075, 2017.

[10] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive software-
defined network (tssdn) for real-time applications,” in International
Conference, 2016, pp. 193–202.

[11] D. Thiele and R. Ernst, “Formal analysis based evaluation of software
defined networking for time-sensitive ethernet,” in 2016 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 31–36.

[12] O. N. Foundation. ”sdn architecture”. Tech. Rep. Issue 1, TR-502,
2014. [Online]. Available: https://www.opennetworking.org/wp-content/
uploads/2013/02/TR SDN ARCH 1.0 06062014.pdf/

[13] N. K. Haur and T. S. Chin, “Challenges and future direction of time-
sensitive software-defined networking (tssdn) in automation industry,”
in International Conference on Security, Privacy and Anonymity in
Computation, Communication and Storage. Springer, 2019, pp. 309–
324.

[14] O. S. Consortium et al., “Openflow switch specification ver-
sion 1.0.0,” http://www.openflowswitch.org/documents/openflow-spec-
v1.0.0.pdf, 2009.

[15] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in
Formal methods for the design of real-time systems. Springer, 2004,
pp. 200–236.

[16] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Up-
paal—a tool suite for automatic verification of real-time systems,” in
International hybrid systems workshop. Springer, 1995, pp. 232–243.

[17] J. Lv, Y. Zhao, X. Wu, Y. Li, and Q. Wang, “Formal analysis of
tsn scheduler for real-time communications,” IEEE Transactions on
Reliability, vol. 70, no. 3, pp. 1286–1294, 2020.

[18] I. S. Association et al., “Ieee standard for local and metropolitan
area networks—virtual bridged local area networks amendment 12
forwarding and queuing enhancements for time-sensitive streams,” IEEE
Standard, vol. 802, pp. 10 016–5997, 2009.

[19] “Ieee standard for local and metropolitan area networks–bridges and
bridged networks,” IEEE Std 802.1Q-2014 (Revision of IEEE Std
802.1Q-2011), pp. 1–1832, 2014.

[20] S. Thangamuthu, N. Concer, P. J. Cuijpers, and J. J. Lukkien, “Analysis
of ethernet-switch traffic shapers for in-vehicle networking applications,”
in 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2015, pp. 55–60.

[21] V. Klimis, G. Parisis, and B. Reus, “Towards model checking real-world
software-defined networks,” in International Conference on Computer
Aided Verification. Springer, 2020, pp. 126–148.

375

Metaheuristic Algorithms for Proof Searching in
HOL4

M. Saqib Nawaz1, M. Zohaib Nawaz2, Osman Hasan3 and Philippe Fournier-Viger1
1School of Computer Science and Software Engineering, Shenzhen University, China

2Department of Computer Science and IT, University of Sargodha, Sargodha, Pakistan
3School of Electrical Engineering and Computer Science, National University of Sciences and Technology

(NUST), Islamabad, Pakistan
msaqibnawaz@szu.edu.cn, zohaib.nawaz@uos.edu.pk, osman.hasan@seecs.edu.pk, philfv@szu.edu.cn

Abstract—User guided proof development in interactive theo-
rem proving is a manual and time consuming activity. For au-
tomating proof searching and optimization in a higher-order logic
proof assistant, we provide two metaheuristic algorithms that are
based on Fitness Dependent Optimizer (FDO) and Bat Algorithm
(BA). In both metaheuristic algorithms, random proof sequences
are first created from a population of frequently occurring
proof steps that are discovered using pattern mining techniques.
Created proof sequences are then evolved till their fitness matches
the fitness of the original (or target) proof sequences. Experiments
are performed to investigate the performance of the proposed
algorithms on different HOL4 theories. Moreover, the proposed
FDO and BA-based proof searching approaches are compared
with Simulated Annealing (SA) and Genetic Algorithm (GA)-
based methods. Results show that BA performs best, followed by
FDO and SA for proof finding and optimization in HOL4.

Index Terms—Proof Searching, HOL4, Fitness Dependent Op-
timizer, Bat Algorithm, Simulated Annealing, Genetic Algorithm

I. INTRODUCTION

Interactive theorem provers (ITPs) are used not only for
the formalization of mathematical theorems and substantial
parts of theoretical computer science, but also to model and
verify complex software and hardware systems [2]. In ITPs,
the systems that need to be analyzed are first modeled using
an appropriate mathematical logic. Important (and sometimes
critical) system properties are then proved using theorem
provers [6]. ITPs are generally based on higher-order logic
(HOL). The rich logical formalisms offered by HOL enable
ITPs to define and reason about complex systems. However,
due to the undecidability in HOL, the reasoning process cannot
be made fully automated and human guidance is always
required in the process of proof searching and development
[11]. Due to this, ITPs are also called proof assistants. Some
widely used proof assistants are HOL4 [19], Isabelle/HOL
[16], Coq [3] and PVS [17].

The user driven proof development process makes the proof
guidance and automation as well as automatic proof searching
some extremely desirable features for ITPs. Evolutionary and
heuristic algorithms, also indicated in [7], [9], [20], can be

DOI reference number: 10.18293/SEKE2022-103

used to efficiently search for the proofs of theorems/lemmas
because of their ability and suitableness to handle black-box
search and optimization problems. Thus for the HOL4 proof
assistant, we proposed an evolutionary approach [15], where a
Genetic Algorithm (GA) was used for proof searching and op-
timization. Moreover, a simulated annealing (SA)-based proof
searching approach was developed [13], which outperformed
the GA-based method.

Both proof searching approaches [13], [15] were found to be
quite efficient in evolving random proofs. However, alternative
proof searching approaches could be developed as a plethora of
evolutionary/heuristic techniques are present in the literature.
Thus, we further investigate the applicability of evolution-
ary/heuristic techniques in the HOL4 proof assistant. This
paper extends prior works [13], [15] by proposing two more
metaheuristic-based approaches, where Fitness Dependent Op-
timizer (FDO) [1] and Bat Algorithm (BA) [21] are used for
proof searching and optimization in HOL4. The performance
of FDO and BA are compared with that of GA [15] and SA
[13] for various parameter values. Through experiments on
proof sequences of formalized theorems/lemmas in different
HOL4 theories, it is found that BA performs better than the
other three algorithms, followed by FDO and SA. Whereas,
different versions of GA perform poorly for proof finding and
optimization.

II. RELATED WORK

Some work has been done in the past where evolutionary
algorithms were used in ITPs. For example, a GA was used
to automatically find the formal proofs of theorems/lemmas
in the Coq proof assistant [7], [20]. But a major limitation
of this approach is that even though it can find small proofs
for theorems that contain a few proof steps, a user is still
required to interact with Coq to guide the proof process for
large theorems/lemmas that contain more proof steps. The
work [9] briefly discussed how evolutionary computation can
be used to improve the heuristics of automatic proof search
in Isabelle/HOL. The objective is to find heuristics that can
select the most promising PSL [10] (proof strategy language

376

for Isabelle/HOL) strategy from various available hand written
strategies when applied to a given proof goal.

Another work [4] used genetic programming [8] and a
pairwise combination (that focused only on crossover-based
approach) to evolve frequent proofs patterns in the Isabelle
proof assistant into compound tactics. However, a linearized
tree structure was used to represent Isabelle’s proofs. The lin-
earization sometimes leads to the loss of important connections
(information) among different branches in the proof trees. Due
to this, the evolution process may not find interesting patterns
and tactics in those trees.

The proposed proof searching approaches, presented in this
paper, overcome the aforementioned limitations as they can
handle proof goals of various lengths. Moreover, the dataset
of proof sequences has all the important information that is
needed for the determination of frequent proof steps, through
which an initial population is generated. Lastly, the proposed
approaches do not require any sort of human guidance in the
evolution process for random proof sequences.

III. PROPOSED PROOF SEARCHING APPROACHES

HOL4 follows the interactive proof development process
using the lambda calculus proof representation. Formal proofs
in HOL4 can be constructed with an interactive goal stack
that are then put together using the ML function prove. A
user of HOL4 interacts with the proof assistant to guide the
proof process by providing necessary tactics, definitions, and
already verified theorems. HOL4 also offers automatic proof
procedures that help the user in directing the proof.

To use evolutionary/heuristic algorithms for proof searching
and optimization, the data available in HOL4 proof files is first
converted to a proper computational format. Moreover, the
redundant information (related to HOL4) that plays no part in
proof searching and evolution is removed from the proof files.
Now, the complete proof for a theorem/lemma is a sequence
of HPS (HOL4 proof step).

Let PS = {HPS1, HPS2, . . ., HPSm} denote
the set of HPS. PSS, a proof step set, is a set
of HPS, i.e., PSS ⊆ PS. For example, consider
that PS = {DISCH TAC, REPEAT GEN TAC, RW,
FULL SIMP TAC, PROVE TAC, REWRITE TAC}. The set
{FULL SIMP TAC,RW,DISCH TAC,REWRITE TAC} is a proof
step set that contains four HPS. A proof sequence is
a list of PSS’s, i.e., S = ⟨PSS1, PSS2, ..., PSSn⟩,
such that PSSi ⊆ PSS (1 ≤ i ≤ n). For
example, ⟨{FULL SIMP TAC, PROVE TAC}, {DISCH TAC,
REPEAT GEN TAC, REWRITE TAC}, {RW}⟩ is a proof
sequence containing three PSS and six HPS.

A proof dataset PD is a list of proof sequences, i.e., PD =
⟨S1, S2, ..., Sp⟩. Each sequence in the PD has an identifier
(ID) denoted as p. For example, Table I shows a PD that has
five proof sequences.

A. Proposed FDO

The Fitness dependant optimizer (FDO) [1] is motivated
by the swarming behavior of bees during reproduction when

Table I
A SAMPLE PROOF DATASET

ID Proof Sequence
1 ⟨{GEN TAC, Q TAC, SUFF TAC}⟩
2 ⟨{Q TAC, SRW TAC, HO MATCH MP TAC}⟩
3 ⟨{RW, AP TERM TAC, MAP EVERYTHING TAC, CONJ TAC,

PROVE TAC}⟩
4 ⟨{CASES TAC, DISCH TAC, SUBGOAL THEN, CASES ON, BETA TAC,

AP TERM TAC, GEN TAC}⟩
5 ⟨{SRW TAC, Q.SUBGOAL THEN, SUBST1 TAC, RW TAC, Q.EXISTS TAC,

FULL SIMP TAC}⟩

they explore and look for new hives. FDO consists of two
processes: (1) The scout bee searching process, and (2) The
scout bee movement process. In the first process, the scout
bees search for a suitable solution. In the second process, a
random walk and a fitness weight is used to move a scout
bee towards a new position that indicates a potentially better
solution.

Algorithm 1 shows the pseudocode of the proposed FDO for
proof finding and optimization in the HOL4 theories. FDO first
creates an initial population (Pop) from frequent HPS (FHPS)
that are discovered with sequential pattern mining (SPM)
techniques [5]. From the initial population, a random scout
bee (SB) is generated. The fitness of the solution, a target
proof sequence (P), and SB is calculated with the fitness
procedure listed in Algorithm 2. The fitness values guide the
FDO towards the best solution(s) (proof sequences). Fitness
evaluates the closeness (or similarity) of a given solution (SB)
with the best solution (the target solution). The fitness value
in this work denotes the total number of those positions in SB
and P where HPS are same.

In FDO, the general equation to calculate the movement of
a scout bee is:

xi,t+1 = xi,t + pace (1)

where xi,t represents the current scout bee at iteration (t) and
the movement rate is denoted by pace that sets the scout bee
direction. The fitness value (fw) manages the pace:

fw =

∣∣∣∣∣x∗
i,t,f

xi,t,f

∣∣∣∣∣× wf (2)

where x∗i,t,f and xi,t,f denote the best global fitness of the
solution, and the current fitness of the scout bee and wf is a
weight factor that can be either 0 or 1. In our case, the best
global fitness is the fitness of the target proof sequence (P)
and the current fitness is the fitness of the current scout bee
(SB). Moreover, wf is set to 1 as FDO was unable to evolve
random scout bees to target proof sequences when wf = 0.

FDO considers some scenarios for fw to provide a random
mechanism for the pace. For example, if fw = 1 or 0, and
xi,t,f = 0, FDO uses Equation (3) to find the pace randomly.
On the other hand, if 0 < fw < 1, then FDO generates a
random number r, in the range [-1, 1], to make sure that the
scout bee searches in every direction. For different values of
r, the pace is calculated using equation (4):

pace = (xi,t × r) if((fw = 1 ∧ 0) ∧ xi,t,f = 0) (3)

377

Algorithm 1 FDO proof finding
Input: FHPS: Frequent HOL4 proof steps, PD: proof sequences database
Output: Generated proof sequences

1: Pop ← FHPS
2: for each P ∈ PD do
3: gb ← Fitness(P, P)
4: SB ← randomseq(Pop, length(P))
5: pb ← Fitness(SB,P)
6: FS ← ()
7: if pb = gb then
8: return SB
9: end if

10: while (pb < gb) do
11: for i in range(length(SB)) do
12: if SB[i] = P [i] then
13: FS.append[i]
14: end if
15: end for
16: Calculate movement with pace using Equation (5)
17: NS ← update position(SB, pace, FS)
18: NF ← Fitness(NS,P)
19: if NF = gb then
20: return NS
21: end if
22: if NF > pb then
23: SB ← NS
24: pb ← NF
25: end if
26: end while
27: return SB
28: end for

pace =

{
(xi,t − x∗i,t)fw(−1) if 0 < fw < 1 ∨ r < 0

(xi,t − x∗i,t)fw if 0 < fw < 1 ∨ r ≥ 0

(4)

Algorithm 2 Fitness
Input: Pseq: A proof sequence, P: The current target proof sequence
Output: Integer that represents the fitness of a proof sequence (Pseq)

1: procedure FITNESS(Pseq, P)
2: i, f ← 0
3: while (i ≤ length(Pseq) - 1) do
4: if (Pseq[i] = P[i]) then
5: f ← f + 1
6: end if
7: i← i+ 1
8: end while
9: return f

10: end procedure

According to the nature of our problem, the movement
in Equation (1) is adapted to be an integer number. Thus,
Equation (1) is modified as:

xi,t+1 = xi,t + ⌊pace⌋ (5)

where ⌊pace⌋ returns the integer that is less than or equal to
pace.

Equation (5) for updating the movement basically indicates
how many positions are required to be changed in a random
proof sequence (SB) so that it reaches the next position. In

the position update process, randomly selected position values
in a scout bee are changed from their original values.

Algorithm 3 Update Position
Input: PS: A proof sequence, UP : updated position, and FS: fixedSlots
array
Output: Updated Sequence

1: procedure UPDATE POSITION(PS,UP, FS)
2: for i in range(0, UP) do
3: rp← randomint(1, length(PS))
4: if (rp /∈ FS) then
5: alter ← randomsample(Pop, 1)▷ (1 HPS form Pop)
6: PS[rp]← alter ▷ (PS[rp] ̸= alter)
7: end if
8: end for
9: return PS

10: end procedure

We use an array called fixedSlots(FS) to further enhance
the searching process in FDO. This array keeps track of each
position in SB that has matched its value with the P . During
the update of SB positions, it is checked whether each position
in SB that is to be replaced with a random HPS, is already
present in FS or not. If the position is present in FS, then
another random number is generated for a different position.
If the position is not present, then that particular position is
updated with a random HPS from Pop. Algorithm 3 is the
procedure for updating the position.

B. Proposed BA

Bat Algorithm (BA) [21] is inspired by the echolocation
behavior of microbats, with varying pulse rates of emission
and loudness. The three main steps of BA are: (1) Esti-
mating the optimal distance of bats towards the solution(s)
using the phenomena of echolocation, (2) Bats moving in
the search space with distinct velocity and fixed frequency.
The wavelength and loudness can vary according to bats
distance between solution(s) and the bat current position,
and (3) Linearly decreasing the loudness and increasing the
emission factor of bats when they are near to the solution(s).
Algorithm 4 shows the pseudocode of the proposed BA for
proof searching and optimization in HOL4 theories.

BA also creates an initial population (Pop) first from FHPS.
A random proof sequence, that represents a bat (B), is then
generated from the population. In general, the BA uses the
following equations to calculate the frequency, velocity, and
position of a bat, respectively:

fi = fmin + (fmax − fmin)β (6)

vt+1
i = vti + (xt

i −X∗)fi (7)

xt+1
i = xt

i + vt+1
i (8)

where fi is the frequency of the i-th bat, fmax and fmin

represent the maximum and minimum frequencies of the sound
waves released by bats, and β is a random number in the range
[0, 1]. Moreover, vti and vt+1

i represent the velocities of the
i-th bat at iterations t and t + 1, respectively, xt

i and xt+1
i

378

Algorithm 4 BA proof finding
Input: FHPS: Frequent HOL4 proof steps, PD: proof sequences database
Output: Generated proof sequences

1: Pop ← FHPS
2: for each P ∈ PD do
3: gbest ← Fitness(P, P)
4: B ← randomseq(Pop, length(P))
5: pbest ← Fitness(B,P)
6: FS ← ()
7: if pbest = gbest then
8: return B
9: end if

10: while (pbest < gbest) do
11: for i in range(length(B)) do
12: if B[i] = P [i] then
13: FS.append[i]
14: end if
15: end for
16: Calculate updated velocity (vt+1

i) using Equation (11)
17: NS1← update position(B, vt+1

i , FS)
18: Calculate yt+1

i using Equation (12)
19: ran1← rand(0, 1)
20: if ran1 < yt+1

i then
21: NS ← Neighbor(NS1)
22: else
23: NS ← NS1
24: end if
25: NF ← Fitness(NS,P)
26: if NF = gbest then
27: return NS
28: end if
29: if NF > pbest then
30: B ← NS
31: pbest ← NF
32: end if
33: end while
34: return B
35: end for

represent the locations of the i-th bat at iterations t and t
+ 1, respectively, and X∗ represents the current optimal best
location. In this work, X∗ is equal to the total number of HPS
in the target proof sequence.

While approaching towards the prey (target proof sequence
in this work), a bat increases its pulse emission rate and
decreases its loudness. These phenomena are simulated using
the following equations:

At+1
i = αAt

i (9)

rt+1
i = r0i (1 + exp(γt)) (10)

where At
i and At+1

i represent the loudness at iterations t and t
+ 1, respectively, r0i represents the initial pulse emission rate,
rt+1
i represents the pulse emission rate at iteration t + 1 and
0 < α < 1 and γ > 0 are constants.

For proof searching and optimization, a random bat (B)
updates its velocity, location, loudness, and pulse emission
rates repeatedly, until the target proof sequence (P) is reached.

Similar to movement update for FDO, the velocity update
Equation (7) for BA is rewritten as:

vt+1
i = vti +

⌊
(gBest− xt

i)fi
⌋

(11)

where gBest is equal to X∗ in Equation (11) and
⌊(gBest− xt

i)fi⌋ returns the integer that is less than or equal
to (gBest− xt

i).
Equation (11) for updating the velocity in BA indicates how

many positions are required to be changed in a random proof
sequence (B) so that it reaches the next position. Algorithm
3 is also used in BA to update the velocity position.

Equations (9) and (10) are used to calculate the loudness
and pulse emission of a bat (B). Here, we combine these two
equations together as follows:

yt+1
i = At+1

i + rt+1
i (12)

Using the BA idea, if a random number ran1 is less than
yt+1
i , then one position value is changed in bat B. Algorithm

5 lists the procedure for changing one position in B. The
randomly selected location value (HPS) is changed from its
original value using the Neighbor procedure in Algorithm 5.

Algorithm 5 Neighbor
Input: P1: A proof sequence
Output: The neighbor proof sequence

1: procedure NEIGHBOR(P1)
2: ind← randomint(1, length(P1))
3: alter ← randomsample(Pop, 1) ▷ (1-HPS form Pop)
4: P1[ind]← alter ▷ (P1[ind] ̸= alter)
5: return P1

6: end procedure

IV. RESULTS AND DISCUSSION

The proposed FDO and BA are implemented in Python1. To
evaluate the proposed approaches, experiments were carried on
a computer equipped with a fifth generation Core i5 processor
and 4 GB of RAM. For FDO, the weight factor wf is set to
1. For BA, fmin and fmax are set to 0 and 10, respectively.
Whereas, r0i , the initial loudness (A0

i), α and γ are set to 0.2,
1, 0.8 and 0.9, respectively.

Table II
A SAMPLE OF THEOREMS / LEMMAS IN SOME HOL4 THEORIES

HOL Theory No. HOL4 Theorems / Lemmas
L1 ⊢ ∀x. 0<=x∧x <= inv(2) ==> exp(x) <= 1+2*x

Transcendental T1 ⊢ ∀ x. (\n. (∧exp_ser) n*(x pow n)) sums exp(x)
T2 ⊢ ∀ x. 0 < x∧ x < 2 ==> 0 < sin (x)

Arithmetic T3 ⊢ ∀n a b. 0 < n ==>((SUC a MOD n = SUC b MOD n)
= (a MOD n = b MOD n))

RichList T4 ⊢ ∀m n. ((l:’a list). ((m + n)=(LENGTH l))==>
(APPEND (FIRSTN n l) (LASTN m l) = l)

T5 ⊢ ∀n m. (m <= n ==> (iSUB T n m = n - m)) ∧
Number (m < n ==> (iSUB F n m = n - SUC m))

T6 ⊢ ∀ n a. 0 < onecount n a ∧ 0 < n ==>
(n = 2 EXP (onecount n a - a) - 1)

Sort T7 ⊢(PERM L[x]<==>(L= [x])∧(PERM [x] L <==>(L = [x])
T8 ⊢ PERM = PERM_SINGLE_SWAP
T9 ⊢ ∀ x y. abs_rat (frac_add (rep_rat (

Rational abs_rat x)) y) = abs_rat (frac_add x y)
T10 ⊢ ∀ r1 r3. rat_les r1 r3 ==> ?r2. rat_res r1 r2

∧ rat_les r2 r3

1Code available at: https://github.com/saqibdola/BAFDO-HOL4

379

We examined the performance of proposed FDO and BA in
finding the correct proofs of theorems/lemmas in 14 different
HOL4 theories available in its library. These theories are:
Transcendental, Arithmetic, RichList, Number, Sort, Rational,
Bool, FiniteMap, InductionType, BinaryWords, Encode, Coder,
Decode and Combinator. From each theory, five to twenty
theorems/lemmas were randomly selected. The PD contains
300 proof sequences in total and 93 distinct HPS. Some
important theorems/lemmas from aforementioned theories are
listed in Table II. Table III shows the performance of the FDO
and BA on theorems/lemmas that are listed in Table II.

Recently, we used a GA [15] with various crossover and
mutation operators and a SA [13] for proof searching and
optimization in HOL4. Just like FDO and BA, an initial pop-
ulation for GA and SA was first created using the SPM-based
learning approach [14]. Crossover and mutation operators
were used in GA and annealing process in SA to evolve the
random proof sequences towards the original (target) proofs. In
GA, three crossover operators (single point crossover (SPC),
multi point crossover (MPC) and uniform Crossover (UCO))
and two mutation operators (standard mutation (SM) and
modified pairwise interchange mutation (MPIM)) were used.
The main reason to use different versions of crossover and
mutation operators was to compare their effect on the overall
performance of GAs in proof searching.

We run the algorithms for GA and SA on PD to compare its
performance with FDO and BA. The comparison of FDO, BA
with SA and GA for the theorem (T2) is shown in Table III.
For T2, BA performed better (8,017 generations) than others,
followed by FDO (16,767 generations) and SA (30,346). For
GA, we found that using different crossover operators has no
major effect on its overall performance. However, MPIM was
faster to find the target proof sequences than SM.

Table III
RESULTS FOR FDO, BA AND COMPARISON WITH GA, SA

T/L Algorithm Fitness Generations Time (s)
L1 54 10,027 0.362
T1 58 10,809 0.385
T2 81 16,767 0.793
T3 66 11,887 0.475
T4 19 4,073 0.062
T5 23 4,858 0.071
T6 FDO 20 3,880 0.069
T7 17 3,186 0.0417
T8 42 6,959 0.166
T9 23 4,594 0.062

T10 23 4,436 0.060
L1 54 5,885 0.251
T1 58 6,124 0.273
T2 81 8,017 0.506
T3 66 6,414 0.272
T4 19 1,974 0.052
T5 23 2,335 0.075
T6 BA 20 2,921 0.080
T7 17 1,758 0.019
T8 42 4,487 0.098
T9 23 3,012 0.078

T10 23 2,894 0.082
T2 SA 81 30,346 0.858
T2 GA(SPC/SM) 81 2,231,664 58.56
T2 GA(MPC/SM) 81 2,713,867 69.84
T2 GA(UC/SM) 81 2,905,410 75.63
T2 GA(SPC/MPIM) 81 500,500 14.89
T2 GA(MPC/MPIM 81 524,272 16.14
T2 GA(UC/MPIM) 81 589,292 17.15

The average number of generations for the four algorithms

to reach the target proof sequences in the whole dataset are
shown in Table IV. BA performed better than other algorithms,
followed by FDO, SA and GA. The possible reason for this
is that the fixedSlots array in FDO and BA ensures that no
changes are made in those positions where the HPS in both
random solutions (bee in FDO and bat in BA) and the target
solution (original proof sequence) match. This prevents the
mismatching of HPS at already matched positions in both
solutions. The reason for BA performing better than FDO is
that besides the update velocity function, the random bat in BA
also goes through the Neighbor procedure that allows more
diversity. GA with different crossover and MPIM operators
is approximately fourteen times faster (generation wise) than
GA with different crossover operators and SM. This is due
to the fact that the SM changes the HPS at a single location
in the sequence, whereas MPIM changes two locations. Thus,
MPIM explores a more diverse solution as compared to SM.
On the other hand, SA is six times faster than GA with
MPIM and different crossover operators. Whereas, FDO is
approximately one and seven times faster than SA, and BA is
approximately twice faster than FDO. Moreover, the memory
used by proof searching approaches while searching for proofs
of formalized theorems/lemma in PD is also listed in Table IV.
All the algorithms require approximately the same memory
with negligible difference.

Table IV
AVERAGE TOTAL GENERATION COUNT FOR FDO, BA, SA AND GA

Avg. Generation Count Total Time Memory
FDO 779,819 14.15 s 3521 Mb
BA 375,044 9.09 s 3454 Mb
SA 1,319,745 19.54 s 3459 Mb

GA(SPC/SM) 123,513,780 1844.50 s 3545 Mb
GA(MPC/SM) 120,580,649 1697.47 s 3463 Mb
GA(UC/SM) 119,633,993 1569.69 s 3507 Mb

GA(SPC/MPIM) 8,833,888 194.25 s 3550 Mb
GA(MPC/MPIM) 9,141,943 208.34 s 3702 Mb
GA(UC/MPIM) 8,704,233 190.491 s 3682 Mb

The longest proof in the PD is for theorem T2 (positive
value of sine) and it consists of 81 HPS. Here we call this
theorem PVoS. We checked how much time the four algorithms
take generation wise and also how many correct HPS in
PVoS are found in different generations by the algorithms.
The lines in Figure 1 represent the time for algorithms and
the bars represent the fitness achieved by the algorithms.
BA reached the maximum fitness of 81 within approximately
8,000 generations. As generation increases, the performance of
algorithms tend to decrease for fitness. This means that with
more generations, algorithms were slow in finding the correct
HPS for a proof sequence as compared to earlier generations.
An interesting behavior for GA is that it tends to decrease the
fitness values (found HPS) in some generations. For exam-
ple, GA(MPC/MPIM) and GA(MPC/SM) found less HPS at
11,000 and 13,000, respectively, compared to correctly found
HPS at earlier locations (10,000 and 12,000 respectively). The
other algorithms do not exhibit such behavior.

Lastly, the four algorithms are compared in terms of conver-
gence speed to examine how fast the algorithms were able to

380

0

10

20

30

40

50

60

70

80

90

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

0 5000 10000 15000 20000
Iterations

F
it

n
es

s
V

a
lu

e

T
im

e
(S

)
Fitness (GA(MPC/SM)) Fitness (GA(MPC/MPIM))

Fitness (SA) Fitness (FDO)

Fitness (BA) Time (GA(MPC/SM))

Time (GA(MPC/MPIM)) Time (SA)

Time (FDO) Time (BA)

Figure 1. Time and fitness in different generations

converge towards the optimal solution. For the first 20,000
generations, the convergence speed of the four algorithms
for PVoS is shown in Figure 2. BA converges very fast and
found the correct HPS in approximately 8,000 generations.
The performance of GA(MPC/MPIM) and SA was same
compared to BA at the start. However, after 5,000 generations,
GA(MPC/MPIM) and SA took more generations in finding the
remaining correct HPS. The performance of SA after 13,000
generations tends to get low. Whereas, FDO performance
was linear and fast from the beginning. On the other hand,
GA(MPC/SM) convergence speed is slow from the start. At
20,000 generations, GA(MPC/MPIM) finds approximately 64
correct HPS, GA(MPC/SM) finds approximately 5 correct
HPS, whereas SA finds 76 correct HPS.

0

9

18

27

36

45

54

63

72

81

0 2500 5000 7500 10000 12500 15000 17500 20000

Fi
tn
e
ss

Iterations

GA(MPC/SM)

GA(MPC/MPIM)

SA

FDO

BA

Figure 2. Convergence performance

In summary, it was observed through experiments that
the proposed FDO-based and BA-based proof searching ap-
proaches can quickly optimize and automatically find the cor-
rect proofs for formalized theorems/lemmas in HOL4 theories.
The proof searching approaches in this work and in [12],
[13], [15] are not limited to HOL4 and can be used in proof
assistants such as Isabelle/HOL [16], Coq [3], and PVS [17].

V. CONCLUSION

Despite huge developments in the last two decades, ITPs
still depend on user interaction to manually guide proof assis-
tants in finding the proof for a conjecture (unproved theorem or
lemma). This interaction makes the proof development process

quite complicated and a time consuming activity for the
users. This paper introduced two proof searching approaches
based on FDO and BA for optimizing and finding the correct
proofs in various HOL4 theories. Additionally, a performance
comparison of the two approaches with SA and GA showed
that both FDO and BA performed better than them.

In future, we are interested in exploiting the Curry-Howard
correspondence in sequent calculus [18] that offers a rela-
tionship between programming and mathematical proofs. This
will allow us to use evolutionary/heuristic techniques to write
programs (proofs) and use HOL4 proof assistant to simplify
and verify by computationally evaluating the programs.

REFERENCES

[1] J. M. Abdullah and T. Ahmed. Fitness dependent optimizer: Inspired by
the bee swarming reproductive process. IEEE Access, 7:43473–43486,
2019.

[2] J. Avigad, J. C. Blanchette, G. Klein, L. C. Paulson, A. Popescu, and
G. Snelting. Introduction to milestones in interactive theorem proving.
Journal of Automated Reasoning, 61(1-4):1–8, 2018.

[3] Y. Bertot and P. Casteran. Interactive theorem proving and program
development: Coq‘Art: The calculus of inductive construction. Springer,
2003.

[4] H. Duncan. The use of data-mining for the automatic formation of
tactics. PhD thesis, University of Edinburgh, UK, 2007.

[5] P. Fournier-Viger, J. C. W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas.
A survey of sequential pattern mining. Data Science and Pattern
Recognition, 1(1):54–77, 2017.

[6] O. Hasan and S. Tahar. Formal verification methods. In Encyclopedia of
Information Science & Technology, 3rd edition, pages 7162–7170. IGI
Global, 2015.

[7] S. Y. Huang and Y. P. Chen. Proving theorems by using evolutionary
search with human involvement. In Proceedings of CEC 2017, pages
1495–1502. IEEE, 2017.

[8] J. R. Koza. Genetic programming - On the programming of computers
by means of natural selection. MIT Press, 1993.

[9] Y. Nagashima. Towards evolutionary theorem proving for Isabelle/HOL.
In Proceedings of GECCO (Poster) 2019, pages 419–420. ACM, 2019.

[10] Y. Nagashima and R. Kumar. A proof strategy language and proof script
generation for Isabelle/HOL. In Proceedings of CADE 2019, volume
10395 of LNCS, pages 528–545. Springer, 2017.

[11] M. S. Nawaz, M. Malik, Y. Li, M. Sun, and M. I. U. Lali. A survey on
theorem provers in formal methods. CoRR, abs/1912.03028, 2019.

[12] M. S. Nawaz, M. Z. Nawaz, O. Hasan, P. Fournier-Viger, and M. Sun. An
evolutionary/heuristic-based proof searching framework for interactive
theorem prover. Applied Soft Computing, 104:107200, 2021.

[13] M. S. Nawaz, M. Z. Nawaz, O. Hasan, P. Fournier-Viger, and M. Sun.
Proof searching and prediction in HOL4 with evolutionary/heuristic and
deep learning techniques. Applied Intelligence, 51(3):1580–1601, 2021.

[14] M. S. Nawaz, M. Sun, and P. Fournier-Viger. Proof guidance in PVS
with sequential pattern mining. In Proceedings of FSEN 2019, volume
11761 of LNCS, pages 45–60. Springer, 2019.

[15] M. Z. Nawaz, O. Hasan, M. S. Nawaz, P. Fournier-Viger, and M. Sun.
Proof searching in HOL4 with genetic algorithm. In Proceedings of
SAC 2020, pages 513–520. ACM, 2020.

[16] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A proof
assistant for higher-Order logic. Springer, 2002.

[17] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
system guide, PVS prover guide, PVS language reference. Technical
report, SRI International, November 2001.

[18] J. E. Santo. Curry-howard for sequent calculus at last! In Proceedings
of TLCA 2015, volume 38 of LIPIcs, pages 165–179, 2015.

[19] K. Slind and M. Norrish. A brief overview of HOL4. In Proceedings
of TPHOL 2008, volume 5170 of LNCS, pages 28–32. Springer, 2008.

[20] L. A. Yang, J. P. Liu, C. H. Chen, and Y. P. Chen. Automatically
proving mathematical theorems with evolutionary algorithms and proof
assistants. In Proceddings of CEC 2016, pages 4421–4428. IEEE, 2016.

[21] X. Yang. A new metaheuristic bat-inspired algorithm. In Nature Inspired
Cooperative Strategies for Optimization (NICSO), pages 65–74, 2010.

381

Formal specification and model checking
of Saber lattice-based key encapsulation mechanism in Maude

Duong Dinh Tran∗, Kazuhiro Ogata∗, Santiago Escobar†, Sedat Akleylek‡ and Ayoub Otmani§
∗Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan

Email: {duongtd, ogata}@jaist.ac.jp
†VRAIN, Universitat Politècnica de València, Valencia, Spain

Email: sescobar@upv.es
‡Ondokuz Mayis University, Samsun, Turkey

Email: sedat.akleylek@bil.omu.edu.tr
§University of Rouen Normandie, France

Email: ayoub.otmani@univ-rouen.fr

Abstract—The security of most public-key cryptosystems
currently in use today is threatened by advances in quantum
computing. That is the reason why recently many researchers
and industrial companies have spent lots of effort on con-
structing post-quantum cryptosystems, which are resistant to
quantum attackers. A large number of post-quantum key
encapsulation mechanisms (KEMs) have been proposed to
provide secure key establishment - one of the most impor-
tant building blocks in asymmetric cryptography. This paper
presents a formal security analysis of Saber lattice-based KEM.
We first formally specify the mechanism in Maude, a rewriting
logic-based specification/programming language equipped with
many functionalities, such as a reachability analyzer (or the
search command) that can be used as an invariant model
checker, and then conduct invariant model checking with the
Maude search command, finding an attack.

Keywords-KEM; Maude; post-quantum cryptography;
lattice-based cryptography; model checking.

I. INTRODUCTION

The most popular asymmetric (or public-key) primitives
used today will become insecure under sufficient strong
quantum computers running Shor’s algorithm [1]. This is
because the hard mathematical problems on which asym-
metric primitives rely are hard only under conventional
computers, but can be efficiently solved by a sufficient large-
scale quantum computer. As a response to the quantum attack
threat, there is extensive research to find new schemes which
are secure even in the presence of quantum adversaries. In the
past few years, many post-quantum asymmetric primitives

D. D. Tran and K. Ogata have been supported by JST SICORP Grant
Number JPMJSC20C2, Japan.

S. Akleylek has been partially supported by TUBITAK under Grant
No.121R006.

S. Escobar has been partially supported by the grant RTI2018-094403-
B-C32 funded by MCIN/AEI/10.13039/501100011033 and ERDF A
way of making Europe, by the grant PROMETEO/2019/098 funded by
Generalitat Valenciana, and by the grant PCI2020-120708-2 funded by
MICIN/AEI/10.13039/501100011033 and by the European Union NextGen-
erationEU/PRTR.

DOI reference number: 10.18293/SEKE2022-097

have been proposed as replacements for those traditional
ones currently in use. The National Institute of Standards and
Technology of USA (NIST) also started the Post-Quantum
Cryptography Project in 2017, calling for proposals of post-
quantum cryptographic protocols that are secure against
both conventional and quantum computers1. There were
82 submissions to this standardization project, implying
the importance of this problem. Among these submissions,
there are large numbers of proposals for post-quantum key
encapsulation mechanisms (KEMs), which aim to securely
establish a symmetric key between two parties. This is
understandable because the key exchange algorithm can be
said to be the most important building block of cryptosystems.

Security analysis of cryptographic primitives and/or pro-
tocols can be fundamentally divided into two approaches:
computational security and symbolic security. Proof in
the computational model requires a definition of secure
cryptographic construction (primitive, protocol), and some
assumptions about the computationally hard problem. The
proof can be regarded as a mathematical reduction, such
that it makes sure that the only chance to violate the
security of such a construction is to solve the infeasible
problem. However, computational proofs are often not easy
to understand for non-experts in cryptography. On the other
hand, symbolic analysis is easier to understand, computer-
verified, and suitable for automation. Our approach presented
in this paper belongs to the latter.

We formally specify and model check Saber KEM [2]. In
addition, Kyber [3] (precisely CRYSTALS-Kyber) and SK-
MLWR [4] (the KEM proposed in [4] is called SK-MLWR
in the present paper) are also tackled, but because of space
limitation, they are not presented in this paper. We provide
the specifications of them at https://github.com/duongtd23/
kems-mc. Saber is a KEM whose security is based on the
hardness of the Module Learning With Rounding (MLWR)

1https://csrc.nist.gov/projects/post-quantum-cryptography

382

https://github.com/duongtd23/kems-mc
https://github.com/duongtd23/kems-mc
https://csrc.nist.gov/projects/post-quantum-cryptography

problem, which belongs to lattice-based cryptography. We
use Maude [5], a programming/specification language based
on rewriting logic, to first formally specify the Dolev-Yao
generic intruder [6] as well as these KEMs. By employing
the Maude search command, a Man-In-The-Middle (MITM)
attack is found. Although this kind of attack is not a novel
attack for KEMs, the formal specifications in Maude and
the model checking experiments are worth reporting. Our
ultimate goal is to come up with a new security analysis/ver-
ification technique for post-quantum cryptographic protocols,
which use quantum secure primitives, such as Saber. Formally
specifying such primitives is necessary for analyzing the
security later on. What is described in the paper is our initial
step toward the goal.

Related work. In 2012, Blanchet [7] has surveyed various
approaches to security protocol verification in both symbolic
model and computational model. In the symbolic model,
there is a large number of tools existing for verifying
cryptosystems, such as ProVerif [8], Maude-NPA [9], and
Tamarin [10]. The symbolic protocol verifier ProVerif, which
was developed by Blanchet, can automatically prove security
properties of cryptographic protocol specifications. ProVerif
is based on an abstract representation of the protocol by a
set of Horn clauses, and it determines whether the desired
security properties hold by resolution on these clauses. The
practicability of ProVerif has been demonstrated through
case studies, such as [11]. ProVerif can handle an unbounded
number of sessions (executions) of protocols, but termination
is not guaranteed in general because the resolution algorithm
may not terminate. To mitigate this challenge, Escobar et
al. [12] proposed some techniques to reduce the size of
the search space in Maude-NPA, such as generating formal
grammars representing terms (states information) unreachable
from initial states and using super lazy intruder to delay the
generation of substitution instances as much as possible. Even
though, the termination of the tool is not always guaranteed.
Among many case studies that demonstrated the capabilities
of Maude-NPA, [13] presented one case study with Diffie-
Hellman key agreement protocol. Tamarin [10] is another tool
for symbolic security verification of cryptographic protocols.
Tamarin provides two ways of constructing proofs: fully
automated mode and interactive mode. The tool may not
terminate in the fully automated mode. In the interactive
mode, the tool allows users to provide lemmas that must be
proved.

In the computational security approach, game-based model
is known as a standard model for proving security. Security
for cryptographic primitives or protocols is defined as an
attack game played between an adversary and some benign
entity, which is called the challenger. The security proof
typically leads to a proof that any supposed adversary can
get an advantage over the challenger if and only if he/she
is able to solve some computationally hard problem (e.g.,

discrete logarithm, integer factorization). CryptoVerif [14] is
a tool for mechanizing proof in the computational model. It
can generate proofs by sequences of games automatically or
with little user interaction. Alwen et al. [15] have employed
CryptoVerif to analyze the security of the Hybrid Public Key
Encryption (HPKE), which is a candidate for a new public
key encryption standard.

II. SABER KEY ENCAPSULATION MECHANISM

A. Key encapsulation mechanism

A key encapsulation mechanism is a tuple of algorithms
(KeyGen, Encaps, Decaps) along with a finite keyspace K:
• KeyGen()→ (pk, sk): A probabilistic key generation

algorithm that outputs a public key pk and a secret key
sk.

• Encaps(pk) → (c, k): A probabilistic encapsulation
algorithm that takes as input a public key pk, and outputs
a ciphertext (or encapsulated message) c and a key
k ∈ K.

• Decaps(c, sk) → k: A (usually deterministic) decapsu-
lation algorithm that takes as input a ciphertext c and a
secret key sk, and outputs a key k ∈ K.

A KEM is ε-correct if for all (pk, sk)← KeyGen() and
(c, k)← Encaps(pk), it holds that Pr[Decaps(c, sk) 6= k] ≤
ε. We say it is correct if ε = 0.

B. Saber

Let Zq denote the ring of integers modulo q. Let R
and Rq denote the polynomial ring Z[X]/(Xn + 1) and
the quotient polynomial ring Zq[X]/(Xn + 1), respectively.
Single polynomials are written without markup, bold lower-
case letters represent vectors with coefficients in R or Rq , and
bold upper-case letters denote matrices. If X is a probability
distribution over a set S, then x ← X denotes sampling
x ∈ S according to X . U denotes the uniform distribution
and βµ is a centered binomial distribution with parameter µ
(the samples are in [−µ/2, µ/2]). � and � are bitwise shift
operations, and when they are used with polynomials and
matrices, they are applied to each coefficient. F ,G,H are
hash functions that are used in Saber. gen is a function that
generates a pseudorandom matrix A ∈ Rl×lq from a seed
seedA.

Fig. 1 describes the three algorithms (KeyGen, Encaps,
Decaps) of Saber.KEM. It employs the three algorithms
(KeyGen, Enc, Dec) of Saber.PKE, which are shown in
Fig. 2. Note that h, h1, and h2 are constants; while εq,
εp, εT , and µ receive different values on different security
levels. The possible values for all of them can be found
in [2]. Let us suppose that Alice performs KEM.KeyGen
step and sends a public key pk to Bob. Upon receiving pk,
Bob randomly chooses a m, performs KEM.Enc step, and
sends back to Alice a ciphertext c. Upon receiving c, Alice
performs KEM.Dec step, and computes the value of c′. With
a very high probability c′ is equal to c, implying that m′ on

383

Alice’s side equals m on Bob’s side with an overwhelming
probability. After that, they can derive the same key K.

KEM.KeyGen()
(seedA,b, s) = PKE.KeyGen()
pk = (seedA,b)
pkh = F(pk)
z = U({0, 1}256)
sk = (z, pkh, pk, s)

return (pk, sk)
pk−−→

KEM.Dec(c, sk)
c←−−

m′ = PKE.Dec(s, c)
(K̂′, r′) = G(pkh,m′)
c′ = PKE.Enc(pk,m′; r′)
if c = c′ then

return K = H(K̂′, c)
else return K = H(z, c)

KEM.Enc(pk)
m← U({0, 1}256)
(K̂, r) = G(F(pk),m)
c = PKE.Enc(pk,m; r)
K = H(K̂, c)
return (c,K)

Figure 1. Saber.KEM

PKE.KeyGen()
seedA ← U({0, 1}256)
A = gen(seedA) ∈ Rl×lq

r = U({0, 1}256)
s = βµ(R

l×1
q ; r)

b = ((AT s+ h) mod q)� (εq − εp) ∈ Rl×1
p

return (pk := (seedA,b), s)

PKE.Enc(pk = (seedA,b),m; r)
A = gen(seedA) ∈ Rl×lq

s′ = βµ(R
l×1
q ; r)

b′ = ((As′ + h) mod q)� (εq − εp) ∈ Rl×1
p

v′ = bT (s′ mod p) ∈ Rp
cm = (v′ + h1 − 2εp−1m mod p)� (εp − εT) ∈ RT
return c := (cm,b

′)

PKE.Dec(s, c = (cm,b
′))

v = b′
T
(s mod p) ∈ Rp

m′ = ((v − 2εp−εT cm + h2) mod p)� (εp − 1) ∈ R2

return m′

Figure 2. Saber.PKE

III. FORMAL SPECIFICATION OF SABER

A. Formalization of polynomials, vectors, and matrices

We first introduce sort Poly that represents polynomials:
sort Poly . subsort Int < Poly .
op _p+_ : Poly Poly -> Poly [ctor assoc comm prec 33] .
op _p*_ : Poly Poly -> Poly [ctor assoc comm prec 31] .
op _md_ : Poly Nat -> Poly [ctor prec 32] .
op _p-_ : Poly Poly -> Poly [prec 33] .
op neg_ : Poly -> Poly [ctor] .

where Int and Nat are sorts of integers and natural numbers,
respectively. The notation subsort Int < Poly indicates
that any integer is also a polynomial. p+, p*, and p- denote
the addition, multiplication, and subtraction, respectively,
between two polynomials. neg denotes the negation of
a polynomial, while md denotes the modulo operation.

assoc comm indicates that _p+_ and _p*_ are declared to
be associative and commutative. prec 33 attached with
p+ and _p-_ indicates that these operators have the same
precedence 33, which is lower precedence than that of _p*_
(i.e., 31). Let P1, P2, and P3 be Maude variables of Poly.
We define some properties of the operators as follows:
eq P1 p+ 0 = P1 . eq P1 p* 0 = 0 . eq P1 p* 1 = P1 .
eq P1 p* (P2 p+ P3) = (P1 p* P2) p+ (P1 p* P3) .
eq P1 p+ neg(P1) = 0 . eq neg(neg(P1)) = P1 .
eq P1 p- P2 = P1 p+ neg(P2) .
eq neg(P1 p+ P2) = neg(P1) p+ neg(P2) .
eq neg(P1 md K) = neg(P1) md K .

In a similar way, we introduce sorts Vector and Matrix
representing polynomial vectors and matrices, respectively;
operators v+, dot, and m* representing the addition & inner
product of two polynomial vectors, and multiplication of a
polynomial matrix and a vector, respectively. Let V1, V2, and
V3 be Maude variables of Vector. The declarations of the
three operators and the distributive property of vectors are
specified as follows:
op _v+_ : Vector Vector -> Vector [assoc comm prec 33].
op _dot_ : Vector Vector -> Poly [prec 31] .
op _m*_ : Matrix Vector -> Vector [prec 31] .
eq (V1 v+ V2) dot V3 = (V1 dot V3) p+ (V2 dot V3) .
eq V3 dot (V1 v+ V2) = (V3 dot V1) p+ (V3 dot V2) .

B. Formalization of honest parties
Two constructors for the two kinds of messages used in

Saber are as follows:
op msg1 : Prin Prin Prin PVPair MState -> Msg [ctor] .
op msg2 : Prin Prin Prin PVPair MState -> Msg [ctor] .

where Prin and Msg are sorts denoting principals and
messages, respectively. PVPair is the sort of polynomial
and vector pairs. MState is the sort representing message
states, receiving one of the following three values: sent -
the message was sent, replied - the message was sent and
the receiver replied with another message, and intercepted
- the message was intercepted by the intruder. The first,
second, and third arguments of each of msg1 and msg2 are
the actual creator, the seeming sender, and the receiver of
the corresponding message. The first and last arguments
are meta-information that is only available to the outside
observer, while the remaining arguments can be seen by
every principal.

We model the network as an AC-collection of messages
that can be used by the intruder as his/her storage. Conse-
quently, the empty network (i.e., the empty collection) means
that no messages have been sent. The intruder can fully
control the network, that is he/she can intercept any message,
glean information from it, and fake a new message to any
honest party. In this paper, a state is expressed as an AC-
collection of name-value pairs called observable components.
To formally specify Saber in Maude, we use the following
observable components:
• (nw : msgs) - msgs is the AC-collection of messages

in the network;

384

• (keys[p] : keys) - keys is an AC-collection of the
computed shared keys of principal p. Each entry of
keys is in form of key(K,q), where K is the shared key
and q is the principal whom p believes that he/she has
communicated with;

• (prins : ps) - ps is the collection of all principals
participating in the mechanism;

• (seed[p] : sd) - sd is the random seed seedA (used in
Fig. 2) of principal p;

• (r[p] : r0) - r0 is the random seed r (used in Fig. 2)
of principal p;

• (m[p] : m0) - m0 is the random seed m (shown in
Fig. 1) of principal p;

• (rd-seed : rds) - rds is a list of available values as
the random seed seedA (we use list, but not set, to
reduce the state space for searching). Each time when a
principal queries for a random value of seedA, the top
value in rds is removed and returned to the principal;

• (rd-r : rdrs) - rdrs is a list of the available values as
random seed r;

• (rd-m : rdms) - rdms is a list of the available values
as random seed m;

• (glean-keys : gkeys) - gkeys is the AC-collection of
shared keys gleaned by the intruder;

• (seeds : sds) - sds is the collection of the random
seeds seedA used by the intruder;

• (rs : rs) - rs is the collection of the random seeds r
used by the intruder;

• (ms : ms) - ms is the collection of random seeds m
used by the intruder;

Each state in SSaber is expressed as {obs}, where obs
is an AC-collection of those observable components. We
suppose that there are two honest principals alice and bob
together with a malicious one, namely eve, participating in
Saber.KEM. The initial state init of ISaber is defined as
follows:
{(nw: empty) (keys[alice]: empty) (keys[bob]: empty)
(prins: (alice ; bob ; eve)) (rd-seed: (seed1, seed2))
(rd-r: (r1, r2)) (rd-m: (m1, m2)) (glean-keys: empty)
(seed[alice]: 0) (seed[bob]: 0) (m[alice]: 0)
(m[bob]: 0) (seeds: empty) (rs: empty) (ms: empty)}

With the honest parties, we specify three transitions:
keygen, encaps, and decaps, which correspond to the three
steps of the mechanism. We declare Maude constants esp,
esq, esT, p, q, h1, and h to denote εp, εq , εT , p, q, h1, and
h, respectively. Let OCs be a Maude variable of observable
component collections, A, B, and C be Maude variables of
principals (possibly intruder), and PS be a Maude variable
of principal collections. Let SD, R, P1, P2, and M, be Maude
variables of polynomials; PL and PL2 be Maude variables of
polynomial lists. Let G, F, and H denote the hash functions
G, F , and H, respectively. Let MS be a Maude variable of
networks. The rewrite rule keygen is defined as follows:
crl [keygen] : {(rd-seed: (SD, PL)) (rd-r: (R, PL2))

(seed[A]: P1) (r[A]: P2) (prins: (A ; B ; PS))
(nw: MS) OCs}
=> {(rd-seed: PL) (rd-r: PL2)
(seed[A]: SD) (r[A]: R) (prins: (A ; B ; PS))
(nw: (MS ; msg1(A,A,B, pvPair(SD, VB), sent))) OCs}
if MA := gen-A(SD) /\ S := gen-s(R) /\
VB := shiftRV((tp(MA) m* S v+ h) mdv q, esq - esp) .

where MA and VB are Maude variables of polynomial matrices
and vectors. tp, shiftRV, and mdv denote matrix transpose,
vector bitwise right shift, and vector modulo operations.
gen-A and gen-s denote the function gen and the sampling
procedures, outputting the matrix A and the vector s,
respectively. The rewrite rule says that when there exist
a polynomial SD in rd-seed and a polynomial R in rd-r, A
picks it as a random seed r, builds a message msg1 exactly
following the KeyGen step, and sends it to B. seed[A] and
r[A] are set to SD and R, respectively, and the two values
are removed from rd-seed and rd-r.

The rewrite rule encap is defined as follows:
crl [encaps] : {(rd-m: (M, PL)) (m[B]: P1) (keys[B]: KS)
(nw: (msg1(C,A,B, pvPair(SD,VB), sent) ; MS)) OCs}
=> {(keys[B]: (KS ; key(H(1st(Kr), CB) , A)))
(nw: (msg1(C,A,B, pvPair(SD, VB), replied) ;
msg2(B,B,A, CB, sent) ; MS)) (rd-m: PL) (m[B]: M) OCs}
if Kr := G(F(pvPair(SD,VB)), M) /\

CB := enc(SD,VB,M,2nd(Kr)) .

where KS is a Maude variable representing a collection
of shared keys, Kr is a Maude variable denoting a pair
of polynomials, in which 1st and 2nd are its projection
operators. Following the PKE.Enc(pk,m; r) in Fig. 2, enc
is defined as follows:
ceq enc(SD, VB, M, R) = pvPair(CM, VB’)
if MA := gen-A(SD) /\ S’ := gen-s(R) /\
VB’ := shiftRV((MA m* S’ v+ h) mdv q, esq - esp) /\
V’ := tpV(VB) dot S’ /\
CM := shiftR(((V’ p+ h1) p- (2 ˆ (esp - 1)) p* M) md p,

esp - esT) .

where tpV(VB) denotes the transpose vector of VB and
shiftR denotes the polynomial bitwise right shift. The
rewrite rule encaps says that when there exists a message
msg1 sent from A to B in the network, B builds a message
msg2 exactly following the Encaps step, and sends it back
to A. B also computes the shared key with A, and the state
of the message msg1 is updated to replied.

The rewrite rule decaps can be defined likewise. Note
that we only consider the overwhelming case, i.e., Alice
successfully recovers m in Decaps step. We assume that
the error tolerance gaps made by error components always
be silent, making m′ equal m. To this end, we need to
define some properties of the bitwise shift operation and
polynomials. The first property is as follows: (2εp−εT cm �
(εp − εT)) ≈ cm. It is specified by the following equation:
ceq 2PT p* shiftR(CM, PT) = CM
if PT := esp - esT /\ 2PT := 2 ˆ PT .

where PT and 2PT are variables of integers.
If all coefficients of s and s′ are small in comparison with p

and q, then we have the second property as follows: (((As′+

385

h) mod q)� (εq−εp))T s ≈ (((AT s+h) mod q)� (εq−
εp))s

′. The property is specified by the following equation:
ceq tpV(shiftRV((MA m* S’ v+ h) mdv q, esq - esp))
dot S p+ neg(tpV(shiftRV((tp(MA) m* S v+ h) mdv q,
esq - esp)) dot S’) = 0
if isSmall?(S) and isSmall?(S’) .

where isSmall? is a predicate, returning true if all co-
efficients of S (or S’) are small in comparison with
q. Note that the result of gen-s is always defined to
be “small,” which is done by the following equation:
eq isSmall?(gen-s(R)) = true .

Finally, to specify the property ((h2 − h1 +
2εp−1m) mod p) � (εp − 1) ≈ m, we introduce the
following equation:
ceq shiftR((h2 p+ neg(h1) p+ 2P1 p* M) md p, esp - 1)
= M if 2P1 := 2 ˆ (esp - 1) .

C. Formalization of intruders

We suppose that there is one intruder, namely eve,
participating in the mechanism. When there exists a message
msg1 sent from A to B in the network, the intruder can
intercept that message, fake a new message, and send it
to the receiver. This behavior is specified by the following
rewrite rule:
crl [keygen-eve] : {(seeds: (SD ; PC1)) (rs: (R ; PC2))
(nw: (msg1(A,A,B, pvPair(SD-A,VB-A), sent) ; MS)) OCs}
=> {(seeds: (SD ; PC1)) (rs: (R ; PC2))
(nw: (msg1(A,A,B, pvPair(SD-A,VB-A), intercepted) ;
msg1(eve,A,B, pvPair(SD, VB), sent) ; MS)) OCs}
if MA := gen-A(SD) /\ S := gen-s(R) /\
VB := shiftRV((tp(MA) m* S v+ h) mdv q, esq - esp) .

where PC1 and PC2 are Maude variables of polynomial
collections. The intercepted message must have state sent at
the beginning, which means that the message has not reached
the receiver. eve then constructs a new faking message from
available values SD and R for the random seeds seedA and r.
These two kinds of random values cannot be gleaned from
the network, but eve can only construct them by randomly
choosing a new value as the rewrite rule build-ds as follows:
rl [build-sds] : {(rd-seed: (SD, PL)) (seeds: PC1) OCs}
=> {(rd-seed: PL) (seeds: (SD ; PC1)) OCs} .
rl [build-rs] : {(rd-r: (R, PL)) (rs: PC2) OCs}
=> {(rd-r: PL) (rs: (R ; PC2)) OCs} .

There are two more rewrite rules encaps-eve and
decaps-eve to specify the intruder’s behavior. encaps-eve
says that when eve has intercepted a message msg1 sent
from A to B, eve fakes a new message msg2, sends it to A,
and computes a shared secret key with A. decaps-eve says
that when eve has faked a new message msg1, sent it to B,
and B on his/her belief that the message truly comes from A
has replied to A a message msg2, eve intercepts the message
msg2, and computes a shared secret key with B.

IV. MODEL CHECKING AND
MAN-IN-THE-MIDDLE-ATTACK

We introduce the following search command:

Alice.Step-1
(seedA,b, s) = PKE.KeyGen()
pk = (seedA,b)
pkh = F(pk)
return (pk, sk := (phk, pk, s))

Eve.Step-2(pk = (seedA,b))
(seedAe,be, se) = PKE.KeyGen()
pke = (seedAe,be)
pkhe = F(pke)
return (pke, ske := (phke, pke, se))

Bob.Step-3(pke = (seedAe,be))
m← U({0, 1}256)
(K̂, r) = G(F(pke),m)
c = PKE.Enc(pke,m; r)
return (c,Kb := H(K̂, c))

Eve.Step-4(pk = (seedA,b))
me ← U({0, 1}256)
(K̂e, re) = G(F(pk),me)
ce = PKE.Enc(pk,me; re)
return (ce,Ka := H(K̂e, ce))

Alice.Step-5(ce, sk := (phk, pk, s))
m′ = PKE.Dec(s, ce)
(K̂′, r′) = G(pkh,m′)
c′ = PKE.Enc(pk,m′; r′)
if c′ = ce then return Ka := H(K̂′, c′)

Eve.Step-6(c, ske := (phke, pke, se))
m′e = PKE.Dec(se, c)
(K̂′e, r

′
e) = G(pkhe,m′e)

c′e = PKE.Enc(pke,m
′
e; r
′
e)

if c = c′e then return Kb := H(K̂′e, c)

Figure 3. A counterexample found by Maude

search [1] in Saber : init =>*
{(keys[alice]: key(K1,bob)) (keys[bob]: key(K2,alice))
(glean-keys: (key(K1,alice) key(K2,bob) KS)) OCs} .

where K1 and K2 are Maude variables that denote arbitrary
shared keys. K1 may or may not equal K2. The command
tries to find a state reachable from init such that: alice
in her belief obtains the shared key K1 with bob, bob in
his belief obtains the shared key K2 with alice, and eve
owns both K1 and K2. Maude found a counterexample, and
this kind of vulnerability belongs to MITM attacks. Fig. 3
shows how this attack happens on Saber, which is visualized
from the path leading to the counterexample Maude returned.
There are mainly six steps as follows:
Step-1: Alice wants to construct a shared key with Bob. She
starts by performing KEM.KeyGen, generating a public key
pk and a secret key sk. She keeps sk, and send pk to Bob.
Step-2: Eve intercepts the first message sent from Alice to
Bob. She follows the KEM.KeyGen step to generate a pair
(pke, ske), impersonating Alice to send pke to Bob.
Step-3: Bob receives pke thinking it is from Alice. As a
response, he takes a random m, performs KEM.Enc with
the input pke, and obtains a ciphertext c and a shared key
Kb. He sends the ciphertext c back to Alice, and keeps the

386

key Kb, which he believes that it is the shared key obtained
by him and Alice.
Step-4: Eve intercepts the replied message which contains
the ciphertext c sent from Bob to Alice. Then, she takes
a random me, performs PKE.Enc with inputs pk and me,
and obtains a ciphertext ce and a shared key Ka. She sends
the ciphertext ce back to Alice as a response for the first
message.
Step-5: Alice receives the ciphertext ce thinking it is from
Bob. She performs KEM.Dec with inputs ce and sk, obtains
the shared key Ka. She believes that Ka is the shared key
obtained by her and Bob.
Step-6: Eve performs KEM.Dec with inputs c and ske, and
obtains the shared key Kb.

The reachable state space in the experiment is fi-
nite. Indeed, if we try to run the following command:
search in SABER : init =>* {OCs} ., the number of
returned solutions is finite, implying that the state space is
finite. This can be understandable. The key point is that the
numbers of possible values that each observable component
(i.e., a name-value pair) can receive are finite.
Remark. Readers may argue that this kind of attack is not
a novel attack because Saber KEM does not go along with
any solution for authentication. We agree on it. The paper
instead illustrates one symbolic approach for reasoning KEMs
rather than focusing on this kind of attack. Our ultimate
goal is to come up with a new security analysis/verification
technique for post-quantum cryptographic protocols, such
as quantum-resistant TLS. Such protocols use post-quantum
cryptographic primitives, such as KEMs. Formally specifying
such primitives is necessary to analyze the security. What is
described in the paper is our initial step toward the goal.

V. CONCLUSION

The paper has presented an approach to security analysis
of Saber.KEM in the symbolic model. We first used Maude as
a specification language to formally specify the mechanism.
After that, by employing Maude search command, an MITM
attack was found. The occurrence of the attack is basically
because a KEM alone does not come with an authentication
solution.

Amazon Web Service team has proposed a post-quantum
TLS protocol [16] that uses a hybrid key exchange method:
a traditional key exchange algorithm together with a post-
quantum KEM. The reason why a post-quantum KEM is
required is clear. However, why do we still need to employ a
traditional key exchange algorithm? One reason is that most
post-quantum KEMs are not studied/analyzed deeply, and
thus, nothing guarantees that there is not any potential flaw in
them. Thus, deep security analysis of such KEMs in particular
and other post-quantum cryptographic primitives/protocols
is an important challenge to guarantee their reliability. One
piece of our future work is to formally verify the security
of the post-quantum TLS protocol against both classical and

quantum computers. To this end, the most important task
is to come up with a new intruder model because intruders
will be able to utilize quantum computers on which quantum
algorithms, such as Shor’s one [1], run in the post-quantum
era.

REFERENCES

[1] P. Shor, “Algorithms for quantum computation: discrete loga-
rithms and factoring,” in Proceedings 35th Annual Symposium
on Foundations of Computer Science, 1994, pp. 124–134.

[2] J.-P. D’Anvers, A. Karmakar, S. Sinha Roy, and F. Vercauteren,
“Saber: Module-LWR Based Key Exchange, CPA-Secure
Encryption and CCA-Secure KEM,” in AFRICACRYPT 2018,
2018, pp. 282–305.

[3] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYS-
TALS - kyber: A CCA-Secure Module-Lattice-Based KEM,”
in 2018 IEEE EuroS&P, 2018, pp. 353–367.

[4] S. Akleylek and K. Seyhan, “Module learning with rounding
based key agreement scheme with modified reconciliation,”
Computer Standards & Interfaces, vol. 79, p. 103549, 2022.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. L. Talcott, Eds., All About Maude, 2007,
vol. 4350.

[6] D. Dolev and A. C. Yao, “On the security of public key
protocols,” IEEE Trans. Inf. Theory, vol. 29, no. 2, pp. 198–
207, 1983.

[7] B. Blanchet, “Security protocol verification: Symbolic and
computational models,” in POST 2012, ETAPS 2012, vol. 7215.
Springer, 2012, pp. 3–29.

[8] ——, “Automatic Verification of Security Protocols in the
Symbolic Model: The Verifier ProVerif,” in FOSAD 2012/2013
Tutorial Lectures, vol. 8604, 2013, pp. 54–87.

[9] S. Escobar, C. Meadows, and J. Meseguer, “A Rewriting-
Based Inference System for the NRL Protocol Analyzer and
Its Meta-Logical Properties,” Theor. Comput. Sci., vol. 367,
no. 1, p. 162–202, Nov. 2006.

[10] B. Schmidt, S. Meier, C. Cremers, and D. A. Basin, “Auto-
mated Analysis of Diffie-Hellman Protocols and Advanced
Security Properties,” in IEEE CSF 2012, 2012, pp. 78–94.

[11] R. Küsters and T. Truderung, “Using ProVerif to Analyze
Protocols with Diffie-Hellman Exponentiation,” in IEEE CSF
2009, 2009, pp. 157–171.

[12] S. Escobar, C. A. Meadows, and J. Meseguer, “State Space
Reduction in the Maude-NRL Protocol Analyzer,” in ESORICS
2008, vol. 5283, 2008, pp. 548–562.

[13] S. Escobar, J. Hendrix, C. A. Meadows, and J. Meseguer,
“Diffie-Hellman Cryptographic Reasoning in the Maude-NRL
Protocol Analyzer,” in Proceeding 2nd International Workshop
on Security and Rewriting Techniques, 2006.

[14] B. Blanchet, “A computationally sound mechanized prover for
security protocols,” IEEE Trans. Dependable Secur. Comput.,
vol. 5, no. 4, pp. 193–207, 2008.

[15] J. Alwen, B. Blanchet, E. Hauck, E. Kiltz, B. Lipp, and
D. Riepel, “Analysing the HPKE standard,” in EUROCRYPT
2021, vol. 12696, 2021, pp. 87–116.

[16] M. Campagna and E. Crockett, “Hybrid Post-Quantum Key
Encapsulation Methods (PQ KEM) for Transport Layer
Security 1.2 (TLS),” RFC Editor, RFC, 09 2021.

387

A divide & conquer approach to until and until
stable model checking
Canh Minh Do, Yati Phyo, and Kazuhiro Ogata

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

Nomi, Ishikawa 923-1211 Japan
{canhdominh,yatiphyo,ogata}@jaist.ac.jp

Abstract—The paper describes a technique to mitigate the
notorious state space explosion in model checking. The technique
is called a divide & conquer approach to until and until stable
model checking. As indicated by the name, the technique is
dedicated to until and until stable properties that are expressed
as φ1 U φ2 and φ1 U □φ2, respectively, where φ1, φ2 are
state propositions. For real-time system analysis, some interesting
systems requirements are expressed as until and until stable
properties. For example, a clock is running and shows a correct
time until a certain time has passed or until the clock stops due to
an empty battery or other failures. Therefore, it is worth focusing
on the properties. For each property, we prove a theorem that
the proposed technique is correct and design an algorithm based
on the theorem to support the technique.

Index Terms—until properties, until stable properties, linear
temporal logic (LTL), model checking.

I. INTRODUCTION

Model checking [1] is an automatic verification technique
for verifying finite-state hardware and software systems. It has
proven to be a tremendously successful technique to verify
requirements for a variety of systems. However, there are still
some challenges to tackle in model checking, one of them
is the state space explosion, the most annoying one. Many
techniques are devised to mitigate the problem, such as ordered
binary decision diagrams [2], partial order reduction [3], and
abstraction [4]–[6]. Such techniques mitigate the problem to
some extent, but the problem still remains and often prevents
some model checking experiments from being carried out.

To address the problem, our research group came up with
a divide & conquer approach to model checking leads-to
properties [7] expressed as φ1 ⇝ φ2, conditional stable
properties [8] expressed as φ1 ⇝ □φ2, and eventual (or even-
tually) properties [9] expressed as ♢φ, where φ,φ1, φ2 are
state propositions. Although leads-to properties, conditional
stable properties, and eventual properties can be expressed
in LTL, it is necessary to individually prove the correctness
of each of the three divide & conquer approaches to leads-
to, eventual, and conditional stable model checking, come up
with each algorithm. This is because it is not straightforward
to uniformly deal with the three different properties so as
to mitigate the state space explosion. Likewise, it is not

This research was partially supported by JSPS KAKENHI Grant Number
JP19H04082.

DOI reference number: 10.18293/SEKE2022-058

straightforward to deal with until and until stable properties
that are expressed φ1 U φ2 and φ1 U □φ2, respectively, where
φ1, φ2 are state propositions. Hence, it is meaningful to prove
the correctness of the divide & conquer approach to until and
until stable model checking and design each algorithm for each
property so as to mitigate the state space explosion.

Real-Time Maude (RT-Maude) [10] is a language and tool
supporting the formal specification and analysis of real-time
and hybrid systems where time information is taken into
account. RT-Maude is implemented in Maude [11] as an
extension of Full Maude [12]. RT-Maude specifications are
executable and simulate the progress in systems under analysis
by timed rewriting. Tick rules are used to formalize the time
advance in systems in which the time increment is given in
the form of either a concrete value or a variable. The former is
called time-deterministic and is used in discrete time domains,
while the latter is called time-nondeterministic because the
time increment is an arbitrary number that will be decided
based on the time sampling strategy (time mode) specified
by users among some time sampling strategies supported by
RT-Maude, and is used in dense time domains. RT-Maude
supports time-bounded linear temporal logic model checking
that can analyze all behaviors of a system from a given
initial state up to a certain duration. By restricting model
checking up to a certain duration, the set of reachable states
is a finite set so that model checking experiments can be
carried out. RT-Maude usually uses some properties specified
in LTL to express systems requirements among which until and
until stable properties are used [10], [13]. Besides, RT-Maude
supports dedicated commands to check for until and until
stable properties, meaning that until and until stable properties
are interesting properties in real-time systems. Furthermore,
the reachable state space of a real-time system is often
huge because the behavior of the system changes over time.
Therefore, it is worth focusing on mitigating the state space
explosion in until and until stable model checking.

This paper describes an ongoing work that extends the
divide & conquer approach so as to handle until and until
stable properties expressed as φ1 U φ2 and φ1 U □φ2, respec-
tively, where φ1, φ2 are state propositions. Until properties
informally say that the first argument is true until its second
argument is true, which is required to happen. Until stable
properties informally say that the first argument is true until

388

its second argument is true and continues to be true (stable)
subsequently, which is required to happen. We can see that
if until stable properties hold, then until properties also hold.
In this paper, for each property, we prove a theorem that the
proposed technique is correct and design an algorithm based
on the theorem to support the technique. A basic idea of the
technique is that the reachable state space from each initial
state is split into multiple layers, generating multiple sub-state
spaces, and conducting model checking experiments for each
sub-state space. If the size of each sub-state space is much
smaller than the one of the original reachable state space, it
is feasible to conduct model checking experiments with the
approach even though it is infeasible to do so for the original
reachable state space due to the state space explosion. That
is the key to mitigating the state space explosion in model
checking with the technique.

The rest of the paper is organized as follows. Sect. II
mentions some preliminaries. Sect. III proves a theorem for
the divide & conquer approach to until model checking.
Sect. IV describes an algorithm that is constructed based on the
theorem. Sect. V proves a theorem for the divide & conquer
approach to until stable model checking. Sect. VI describes an
algorithm that is constructed based on the theorem. Sect. VII
mentions some existing related work. Sect. VIII finally con-
cludes the paper together with some future directions.

II. PRELIMINARIES

Definition 1 (Kripke structures). A Kripke structure K ≜
⟨S, I,T ,A,L⟩ consists of a set S of states, a set I ⊆ S
of initial states, a left-total binary relation T ⊆ S × S over
states, a set A of atomic propositions and a labeling function
L whose type is S → 2A. An element (s, s′) ∈ T is called a
(state) transition from s to s′ and may be written as s→K s′.

An infinite sequence s0, s1, . . . , si, si+1, . . . of states is
called a path of K iff for any natural number i, (si, si+1) ∈ T .
Let π be s0, s1, . . . , si, si+1, . . . and some notations on π
are defined as follows: π(i) is si; πi is si, si+1, . . .; πi is
s0, s1, . . . , si, si, si, . . .; π(i,j) is si, si+1, . . . , sj , sj , sj , . . . if
i ≤ j and si, si, si, . . . otherwise; π(i,∞) is πi, where i, j are
natural numbers. A path π of K is called a computation of K
iff π(0) ∈ I . Let PK be the set of all paths of K. Let P (K,s)

be {π | π ∈ PK , π(0) = s}, where s ∈ S. Let P b
(K,s) be

{πb | π ∈ P (K,s)}, where s ∈ S and b is a natural number.
Note that P∞

(K,s) is P (K,s).

Definition 2 (Syntax of LTL). The syntax of linear temporal
logic (LTL) is as follows: φ ::= a | ⊤ | ¬φ | φ ∨ φ | ⃝
φ | φ U φ, where a ∈ A.

Definition 3 (Semantics of LTL). For any Kripke structure
K, any path π of K and any LTL formula φ, K, π |= φ is
inductively defined as follows:

• K, π |= a iff a ∈ L(π(0))
• K, π |= ⊤
• K, π |= ¬φ1 iff K, π ̸|= φ1

• K, π |= φ1 ∨ φ2 iff K, π |= φ1 and/or K, π |= φ2

• K, π |=⃝φ1 iff K, π1 |= φ1

• K, π |= φ1 U φ2 iff there exists a natural number i such
that K, πi |= φ2 and for each natural number j < i,
K, πj |= φ1

where φ1 and φ2 are LTL formulas. Then, K |= φ iff K, π |=
φ for all computations π of K. Let True denote K, π |= ⊤,
which always holds.

⊥ ≜ ¬⊤ and some other connectives are defined as follows:
φ1 ∧ φ2 ≜ ¬((¬φ1) ∨ (¬φ2)), φ1 ⇒ φ2 ≜ (¬φ1) ∨ φ2,
φ1 ⇔ φ2 ≜ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1), ♢φ1 ≜ ⊤ U φ1,
□φ1 ≜ ¬(♢¬φ1) and φ1 ⇝ φ2 ≜ □(φ1 ⇒ ♢φ2). ⃝, U , ♢,
□ and⇝ are called next, until, eventually, always and leads-to
temporal connectives, respectively. State propositions are LTL
formulas such that they do not have any temporal connectives.
Until stable properties can be expressed as φ1 U □φ2, where
φ1, φ2 are state propositions. Although it is unnecessary to
define the semantics for φ1 U □φ2, we define it as follows:

• K, π |= φ1 U □φ2 iff there exists a natural number i
such that K, πi |= □φ2 and for each natural number
j < i, K, πj |= φ1.

III. MULTIPLE LAYER DIVISION OF UNTIL MODEL
CHECKING

Proposition 1. Let K be any Kripke structure. If φ is any
state proposition, then (K, π |= φ) ⇔ (K, π′ |= φ) for any
paths π & π′ of K such that π(0) = π′(0).

Proof. The first state π(0) decides if K, π |= φ holds.

Lemma 1. Let φ1, φ2 be any state propositions of K. Let k be
any natural number. Then, (K, πk |= φ1 U φ2) ⇒ (K, π |=
φ1 U φ2).

Proof. If K, πk |= φ1 U φ2, then there exists i ≤ k such
that K, πi

k |= φ2, which is equivalent to K, πi |= φ2 from
Proposition 1, and for each j < i,K, πj

k |= φ1, which is
equivalent to K, πj |= φ1 from Proposition 1. Hence, K, π |=
φ1 U φ2.

Lemma 2. Let φ1, φ2 be any state propositions of K. Let k
be any natural number. Then, (K, πk |= □φ1) ∧ (K, πk |=
φ1 U φ2)⇒ (K, π |= φ1 U φ2).

Proof. If K, πk |= □φ1, then for each i′ ≤ k,K, πi′

k |= φ1,
which is equivalent to K, πi′ |= φ1 from Proposition 1 (1). If
K, πk |= φ1 U φ2 then there exists i ≥ k such that K, πi |=
φ2 and for each j such that k ≤ j < i,K, πj |= φ1 (2). From
(1) and (2), we have K, π |= φ1 U φ2.

Lemma 3 (Two layer division of φ1 U φ2). Let φ1, φ2 be any
state propositions of K. Let k be any natural number. Then,

(K, π |= φ1 U φ2)
⇔ [(K, πk |= φ1 U φ2)⇒ True] ∧

[(K, πk ̸|= φ1 U φ2)⇒ (K, πk |= □φ1) ∧
(K, πk |= φ1 U φ2)]

Proof. (1) Case “only if” (⇒): The case is split into two cases:
(1.1) K, πk |= φ1 U φ2 and (1.2) K, πk ̸|= φ1 U φ2. In

389

(1.1), it is obvious. In (1.2), from the assumption, there exists
i such that K, πi |= φ2 and for each j < i, K, πj |= φ1.
Because K, πk ̸|= φ1 U φ2, then k < i. Hence, (K, πk |=
□φ1) ∧ (K, πk |= φ1 U φ2).

(2) Case “if” (⇐): The case is split into two cases: (2.1)
K, πk |= φ1 U φ2 and (2.2) K, πk ̸|= φ1 U φ2. In (2.1),
K, π |= φ1 U φ2 from Lemma 1. In (2.2), K, π |= φ1 U φ2

from Lemma 2.

Definition 4 (UntilL). Let L be any non-zero natural number,
k be any natural number and d be any function such that d(0)
is 0, d(x) is a natural number for x = 1, . . . , L and d(L+1)
is ∞.

1) 0 ≤ k < L− 1

UntilL(K, π, φ1, φ2, k)

≜ [(K, π(d(k),d(k+1)) |= φ1 U φ2)⇒ True] ∧
[(K, π(d(k),d(k+1)) ̸|= φ1 U φ2)
⇒ (K, π(d(k),d(k+1)) |= □φ1) ∧

UntilL(K, π, φ1, φ2, k + 1)]

2) k = L− 1

UntilL(K, π, φ1, φ2, k)

≜ [(K, π(d(k),d(k+1)) |= φ1 U φ2)⇒ True] ∧
[(K, π(d(k),d(k+1)) ̸|= φ1 U φ2)
⇒ (K, π(d(k),d(k+1)) |= □φ1) ∧

(K, π(d(k+1),d(k+2)) |= φ1 U φ2)]

Theorem 1 (L+ 1 layer division of φ1 U φ2). Let L be any
non-zero natural number. Let d(0) be 0, d(x) be any natural
number for x = 1, . . . , L and d(L + 1) be ∞. Let φ1, φ2 be
any state propositions of K. Then,

(K, π |= φ1 U φ2)⇔ UntilL(K, π, φ1, φ2, 0)

Proof. By induction on L.
• Base case (L = 1): It follows from Lemma 3.
• Induction case (L = l + 1): We prove the following:

(K, π |= φ1 U φ2)⇔ Untill+1(K, π, φ1, φ2, 0)

Let dl+1 be d used in Untill+1(K, π, φ1, φ2, 0) such that
dl+1(0) = 0, dl+1(i) is an arbitrary natural number for
i = 1, . . . , l + 1 and dl+1(l + 2) = ∞. The induction
hypothesis is as follows:

(K, π |= φ1 U φ2)⇔ Untill(K, π, φ1, φ2, 0)

Let dl be d used in Untill(K, π, φ1, φ2, 0) such that
dl(0) = 0, dl(i) is an arbitrary natural number for
i = 1, . . . , l and dl(l + 1) = ∞. Because dl+1(i) is
an arbitrary natural number for i = 1, . . . , l + 1, we
suppose that dl+1(1) = dl(1) and dl+1(i + 1) = dl(i)
for i = 1, . . . , l. Because π is any path of K, π can be
replaced with πdl(1). If so, we have the following as an
instance of the induction hypothesis:

(K, πdl(1) |= φ1 U φ2)⇔ Untill(K, πdl(1), φ1, φ2, 0)

From Definition 4, Untill(K, πdl(1), φ1, φ2, 0) is
Untill+1(K, π, φ1, φ2, 1) because dl(0) = dl+1(0) = 0,
dl(1) = dl+1(1) and dl(i) = dl+1(i+ 1) for i = 1, . . . , l
and dl(l + 1) = dl+1(l + 2) = ∞. Therefore, the
induction hypothesis instance can be rephrased as
follows:

(K, πdl+1(1) |= φ1 U φ2)⇔ Untill+1(K, π, φ1, φ2, 1)

From Definition 4, Untill+1(K, π, φ1, φ2, 0) is

[(K, π(dl+1(0),dl+1(1)) |= φ1 U φ2)⇒ True] ∧
[(K, π(dl+1(0),dl+1(1)) ̸|= φ1 U φ2)
⇒ (K, π(dl+1(0),dl+1(1)) |= □φ1) ∧

Untill+1(K, π, φ1, φ2, 1)]

which is

[(K, π(dl+1(0),dl+1(1)) |= φ1 U φ2)⇒ True] ∧
[(K, π(dl+1(0),dl+1(1)) ̸|= φ1 U φ2)
⇒ (K, π(dl+1(0),dl+1(1)) |= □φ1)∧

(K, πdl+1(1) |= φ1 U φ2)]

because of the induction hypothesis instance. From
Lemma 3, this is equivalent to K, π |= φ1 U φ2.

IV. A DIVIDE & CONQUER APPROACH TO UNTIL MODEL
CHECKING ALGORITHM

An algorithm can be constructed based on Theorem 1,
which is shown as Algorithm 1. For each initial state s0 ∈ I ,
unfolding s0 by using T such that each node except for s0 has
exactly one incoming edge, an infinite tree whose root is s0
is made. The infinite tree may have multiple copies of some
states. Such an infinite tree can be divided into L+ 1 layers,
generating multiple sub-state spaces, and conducting model
checking experiments for each sub-state space. If the set of
reachable states is finite, the number of different states in each
layer and each sub-state space is finite. Theorem 1 makes it
possible to check K |= φ1 U φ2 in a stratified way in that for
each layer l ∈ {1, . . . , L + 1}, we can check K, s, d(l) |= φ

for each s ∈ {π(d(l − 1)) | π ∈ P
d(l−1)
(K,s0)

}, where d(0) is 0,
d(x) is a non-zero natural number for x = 1, . . . , L, d(L+1)
is ∞, and φ is φ1 U φ2 or □φ1.
US and US′ are variables to which sets of states are set.

Initially, US contains all initial states in I at line 1. For each
layer l = 0, 1, . . . , L in the first forall loop, we need to do as
follows. Firstly, US′ that is used to collect states at each layer
is set to an empty set at line 3. Secondly, the code fragment
at lines 4 – 10 checks φ1 U φ2 for each path that starts with
each state in US. If the path satisfies the formula, we do
not need to take the path into account. Otherwise, we check
whether the path satisfies □φ1 at line 7. If so, the last state of
the path is then added to US′ at line 8. Otherwise, the path
is a counterexample and Algorithm 1 returns Failure. Finally,
US′ is assigned to US for the next layer at line 11.

Just after the first forall loop in Algorithm 1, US contains
the set of states located at bottom of the Lth layer by checking
φ1 U φ2 and □φ2 for some paths obtained from intermediate

390

Algorithm 1: A divide & conquer approach to until
model checking
input : K – a Kripke structure

φ1, φ2 – state propositions
L – a non-zero natural number
d – a function such that d(x) is a non-zero
natural number for x = 1, . . . , L

output: Success (K |= φ1 U φ2) or Failure
(K ̸|= φ1 U φ2)

1 US ← I
2 forall l ∈ {1, . . . , L} do
3 US′ ← {}
4 forall s ∈ US do
5 forall π ∈ P

d(l)
(K,s) do

6 if K, π ̸|= φ1 U φ2 then
7 if K, π |= □φ1 then
8 US′ ← US′ ∪ {π(d(l))}
9 else

10 return Failure
11 US ← US′

12 forall s ∈ US do
13 forall π ∈ P (K,s) do
14 if K, π ̸|= φ1 U φ2 then
15 return Failure
16 return Success

layers (1st to Lth layers). For the final layer L+1, we check
φ1 U φ2 for each path that starts with each state in US in the
code fragment at lines 12 – 15. If there is a path that does not
satisfy the formula, Algorithm 1 returns Failure. Otherwise,
Algorithm 1 returns Success at the end.

V. MULTIPLE LAYER DIVISION OF UNTIL STABLE MODEL
CHECKING

Lemma 4. Let φ be any state proposition of K. Let k be any
natural number. Then, (K, π |= □φ) ⇔ (K, πk |= □φ) ∧
(K, πk |= □φ).

Proof. Because φ is a state proposition, whether it holds only
depends on the first state of a given path. If (K, π |= □φ),
then φ holds for π(i) for all i, and vice versa. If K, πk |= □φ
and K, πk |= □φ, then φ holds for π(i) for i = 0, . . . , k and
φ holds for π(i) for i = k, . . ., respectively, and therefore φ
holds for π(i) for all i, and vice versa.

Lemma 5. Let φ1, φ2 be any state propositions of K.
(K, π |= □φ2)⇒ (K, π |= φ1 U □φ2).

Proof. From the assumption, K, π0 |= □φ2.

Lemma 6. Let φ1, φ2 be any state propositions of K. Let k
be any natural number. Then, (K, πk |= □φ1) ∧ (K, πk |=
φ1 U □φ2)⇒ (K, π |= φ1 U □φ2).

Proof. If (K, πk |= □φ1), then for each i′ ≤ k,K, πi′

k |= φ1,
which is equivalent to K, πi′ |= φ1 from Proposition 1 (1).

If K, πk |= φ1 U □φ2, then there exists i ≥ k such that
K, πi |= □φ2 and for each j such that k ≤ j < i, K, πj |= φ1

(2). From (1) and (2), we have K, π |= φ1 U □φ2.

Lemma 7. Let φ1, φ2 be any state propositions of K. Let k be
any natural number. Then, (K, πk |= φ1 U □φ2)∧ (K, πk |=
□φ2)⇒ (K, π |= φ1 U □φ2).

Proof. If K, πk |= φ1 U □φ2, then there exists i ≤ k such
that K, πi

k |= □φ2, which is equivalent to K, πi′

k |= φ2 for
each i′ ≥ i (note that πi′

k = πk
k if i′ ≥ k), which implies

K, πi′ |= φ2 for k ≥ i′ ≥ i from proposition 1, and for
each j < i,K, πj

k |= φ1, which is equivalent to K, πj |= φ1

from Proposition 1 (1). If (K, πk |= □φ2), then K, πi |=
φ2 for each i ≥ k (2). From (1) and (2), we have K, π |=
φ1 U □φ2.

Lemma 8 (Two layer division of φ1 U □φ2). Let φ1, φ2 be
any state propositions of K. Let k be any natural number.
Then,

(K, π |= φ1 U □φ2)
⇔ [(K, πk |= □φ1)⇒ (K, πk |= φ1 U □φ2)] ∧

[(K, πk ̸|= □φ1)⇒ (K, πk |= φ1 U □φ2) ∧
(K, πk |= □φ2)]

Proof. (1) Case “only if” (⇒): The case is split into two
cases: (1.1) K, πk |= □φ1 and (1.2) K, πk ̸|= □φ1. From
the assumption, there exists i such that K, πi |= □φ2 and
for each j < i, K, πj |= φ1. In (1.1), if k < i, then
K, πk |= φ1 U □φ2. Otherwise, if k ≥ i,K, πk |= □φ2

from lemma 4. Hence, K, πk |= φ1 U □φ2 from lemma 5.
In (1.2), from the assumption, k ≥ i. K, πk |= □φ2 from
lemma 4. We also have K, πk |= φ1 U □φ2 because there
exists such i in the assumption.

(2) Case “if” (⇐): The case is split into two cases: (2.1)
K, πk |= □φ1 and (2.2) K, πk ̸|= □φ1. In (2.1), K, π |=
φ1 U φ2 from Lemma 6. In (2.2), K, π |= φ1 U φ2 from
Lemma 7.

Definition 5 (UStableL). Let L be any non-zero natural
number, k be any natural number and d be any function such
that d(0) is 0, d(x) is a natural number for x = 1, . . . , L and
d(L+ 1) is ∞.

1) 0 ≤ k < L− 1

UStableL(K, π, φ1, φ2, k)

≜ [(K, π(d(k),d(k+1)) |= □φ1)
⇒ UStableL(K, π, φ1, φ2, k + 1)] ∧

[(K, π(d(k),d(k+1)) ̸|= □φ1)
⇒ (K, π(d(k),d(k+1)) |= φ1 U □φ2) ∧

(K, πd(k+1) |= □φ2)]

2) k = L− 1

UStableL(K, π, φ1, φ2, k)

≜ [(K, π(d(k),d(k+1)) |= □φ1)
⇒ (K, π(d(k+1),d(k+2)) |= φ1 U □φ2)] ∧

[(K, π(d(k),d(k+1)) ̸|= □φ1)
⇒ (K, π(d(k),d(k+1)) |= φ1 U □φ2) ∧

(K, πd(k+1) |= □φ2)]

391

Theorem 2 (L+1 layer division of φ1 U □φ2). Let L be any
non-zero natural number. Let d(0) be 0, d(x) be any natural
number for x = 1, . . . , L and d(L + 1) be ∞. Let φ1, φ2 be
any state propositions of K. Then,

(K, π |= φ1 U □φ2)⇔ UStableL(K, π, φ1, φ2, 0)

Proof. By induction on L.
• Base case (L = 1): It follows from Lemma 8.
• Induction case (L = l + 1): We prove the following:

(K, π |= φ1 U □φ2)⇔ UStablel+1(K, π, φ1, φ2, 0)

Let dl+1 be d used in UStablel+1(K, π, φ1, φ2, 0) such
that dl+1(0) = 0, dl+1(i) is an arbitrary natural number
for i = 1, . . . , l+ 1 and dl+1(l+ 2) =∞. The induction
hypothesis is as follows:

(K, π |= φ1 U □φ2)⇔ UStablel(K, π, φ1, φ2, 0)

Let dl be d used in UStablel(K, π, φ1, φ2, 0) such that
dl(0) = 0, dl(i) is an arbitrary natural number for
i = 1, . . . , l and dl(l + 1) = ∞. Because dl+1(i) is
an arbitrary natural number for i = 1, . . . , l + 1, we
suppose that dl+1(1) = dl(1) and dl+1(i + 1) = dl(i)
for i = 1, . . . , l. Because π is any path of K, π can be
replaced with πdl(1). If so, we have the following as an
instance of the induction hypothesis:

(K, πdl(1) |= φ1 U □φ2) ⇔ UStablel(K, πdl(1), φ1, φ2, 0)

From Definition 5, UStablel(K, πdl(1), φ1, φ2, 0) is
UStablel+1(K, π, φ1, φ2, 1) because dl(0) = dl+1(0) =
0, dl(1) = dl+1(1), and dl(i) = dl+1(i + 1) for
i = 1, . . . , l, and dl(l+1) = dl+1(l+2) =∞. Therefore,
the induction hypothesis instance can be rephrased as
follows:

(K, πdl+1(1) |= φ1 U □φ2) ⇔ UStablel+1(K, π, φ1, φ2, 1)

From Definition 5, UStablel+1(K, π, φ1, φ2, 0) is

[(K, π(dl+1(0),dl+1(1)) |= □φ1)
⇒ UStablel+1(K, π, φ1, φ2, 1)] ∧

[(K, π(dl+1(0),dl+1(1)) ̸|= □φ1)
⇒ (K, π(dl+1(0),dl+1(1) |= φ1 U □φ2) ∧

(K, πdl+1(1) |= □φ2)]

which is

[(K, π(dl+1(0),dl+1(1)) |= φ1 U □φ2)
⇒ (K, πdl+1(1) |= φ1 U □φ2)] ∧

[(K, π(dl+1(0),dl+1(1)) ̸|= φ1 U □φ2)
⇒ (K, π(dl+1(0),dl+1(1)) |= φ1 U □φ2) ∧

(K, πdl+1(1) |= □φ2)]

because of the induction hypothesis instance. From
Lemma 8, this is equivalent to K, π |= φ1 U □φ2.

VI. A DIVIDE & CONQUER APPROACH TO UNTIL STABLE
MODEL CHECKING ALGORITHM

An algorithm can be constructed based on Theorem 2,
which is shown as Algorithm 2. For each initial state s0 ∈ I ,
the reachable state space from s0 is divided into L+1 layers,
generating multiple sub-state spaces, and conducting model
checking experiments for each sub-state space. Theorem 2
makes it possible to check K |= φ1 U □φ2 in a stratified
way in that for each layer l ∈ {1, . . . , L + 1}, we can check
K, s, d(l) |= φ for each s ∈ {π(d(l − 1)) | π ∈ P

d(l−1)
(K,s0)

},
where d(0) is 0, d(x) is a non-zero natural number for
x = 1, . . . , L, d(L + 1) is ∞, and φ is □φ1, or □φ2, or
φ1 U □φ2.
CxS, CxS′, NCxS, and NCxS′ are variables to which

sets of states are set. Initially, CxS contains all initial states
in I at line 1 while NCxS is set to an empty set at line
2. For each layer l = 0, 1, . . . , L in the first forall loop, we
need to do as follows. Firstly, CxS′ and NCxS′ that are
used to collect states at each layer are set to an empty set
at lines 4 and 5, respectively. Secondly, the code fragment at
lines 6 – 14 checks □φ1 for each path that starts with each
state in CxS. If the path satisfies the formula, the last state
of the path is added to CxS′ at line 9. Otherwise, we check
whether the path satisfies φ1 U □φ2 at line 11. If so, the last
state of the path is added to NCxS′ at line 12. Otherwise,
the path is a counterexample and Algorithm 2 returns Failure
at line 14. Thirdly, the code fragment at lines 15 – 20 checks
□φ2 for each path that starts with each state in NCxS. If the
path satisfies the formula, the last state of the path is added to
NCxS′ at line 18. Otherwise, the path is a counterexample
and Algorithm 2 returns Failure at line 20. Finally, CxS′ and
NCxS′ are assigned to CxS and NCxS for the next layer
at lines 21 and 22, respectively.

Just after the first forall loop in Algorithm 2, CxS and
NCxS contains the sets of states located at bottom of the
Lth layer by checking □φ1, φ1 U φ2, and □φ2 for some paths
obtained from intermediate layers (1st to Lth layers). For the
final layer L+1, we check φ1 U □φ2 for each path that starts
with each state in CxS in the code fragment at lines 23 –
26. Meanwhile, we check □φ2 for each path that starts with
each state in NCxS in the code fragment at lines 27 – 30.
If there is a path that does not satisfy the formula concerned,
Algorithm 2 returns Failure. Otherwise, Algorithm 2 returns
Success at the end.

VII. RELATED WORK

SAT/SMT-based bounded model checking (BMC) is an ef-
fective technique to mitigate the state space explosion problem
in model checking. BMC can find a flaw located within
some reasonably shallow depth k for each initial state by
formalizing the verification problem into an equisatisfiable
conjunctive normal form (CNF) formula that can be analyzed
by a SAT/SMT solver. An extension of SAT/SMT-based BMC
to model check concurrent programs is Lazy Sequentialization
(Lazy-CSeq) [14]. Given a concurrent program P together

392

Algorithm 2: A divide & conquer approach to until
stable model checking
input : K – a Kripke structure

φ1, φ2 – state propositions
L – a non-zero natural number
d – a function such that d(x) is a non-zero
natural number for x = 1, . . . , L

output: Success (K |= φ1 U □φ2) or Failure
(K ̸|= φ1 U □φ2)

1 CxS ← I
2 NCxS ← ∅
3 forall l ∈ {1, . . . , L} do
4 CxS′ ← {}
5 NCxS′ ← {}
6 forall s ∈ CxS do
7 forall π ∈ P

d(l)
(K,s) do

8 if K, π |= □φ1 then
9 CxS′ ← CxS′ ∪ {π(d(l))}

10 else
11 if K, π |= φ1 U □φ2 then
12 NCxS′ ←NCxS′ ∪ {π(d(l))}
13 else
14 return Failure
15 forall s ∈NCxS do
16 forall π ∈ P

d(l)
(K,s) do

17 if K, π |= □φ2 then
18 NCxS′ ←NCxS′ ∪ {π(d(l))}
19 else
20 return Failure
21 CxS ← CxS′

22 NCxS ←NCxS′

23 forall s ∈ CxS do
24 forall π ∈ P (K,s) do
25 if K, π ̸|= φ1 U □φ2 then
26 return Failure
27 forall s ∈NCxS do
28 forall π ∈ P (K,s) do
29 if K, π ̸|= □φ2 then
30 return Failure
31 return Success

with two parameters u and r that are the loop unwinding
bound and the number of round-robin schedules, respectively,
they first generate an intermediate bounded program Pu by
unwinding all loops and inlining all function calls in P with
u as a bound except for those used for creating threads.
Pu then is transformed into a sequential program Qu,r that
simulates all behaviors of Pu within r round-robin schedules.
Qu,r is then transformed into a propositional formula that
can be analyzed by a SAT/SMT solver. When the size of the
system under test is large, the propositional formula becomes
complex and the performance of the SAT/SMT solver is
degraded or the model checking may become infeasible. To

make it possible to conduct model checking experiments. They
decompose the set of execution traces of concurrent programs
into symbolic subsets [15] so that the single formula is divided
into multiple smaller propositional sub-formulas, which then
are possibly analyzed by the SAT/SMT solver independently.
Their technique is able to deal with safety properties, while our
technique is able to deal with until and until stable properties,
a class of liveness properties.

VIII. CONCLUSION

We have described the divide & conquer approach to until
and until stable model checking in which for each property, we
have proved a theorem that the proposed technique is correct
and designed an algorithm based on the theorem to support the
technique. As one piece of our future work, we will build a tool
supporting the proposed technique and conduct case studies in
real-time systems, particularly with RT-Maude, demonstrating
that the proposed technique and tool are useful.

REFERENCES

[1] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds.,
Handbook of Model Checking. Berlin, Heidelberg: Springer, 2018.
[Online]. Available: https://doi.org/10.1007/978-3-319-10575-8

[2] R. E. Bryant and C. Meinel, Ordered Binary Decision Diagrams.
Boston, MA: Springer US, 2002, pp. 285–307. [Online]. Available:
https://doi.org/10.1007/978-1-4615-0817-5 11

[3] E. M. Clarke, O. Grumberg, M. Minea, and D. A. Peled, “State space
reduction using partial order techniques,” Int. J. Softw. Tools Technol.
Transf., vol. 2, no. 3, pp. 279–287, 1999.

[4] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and
abstraction,” ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1512–
1542, 1994.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for symbolic model
checking,” J. ACM, vol. 50, no. 5, pp. 752–794, 2003.

[6] J. Meseguer, M. Palomino, and N. Martı́-Oliet, “Equational abstrac-
tions,” Theor. Comput. Sci., vol. 403, no. 2-3, pp. 239–264, 2008.

[7] Y. Phyo, C. M. Do, and K. Ogata, “A divide & conquer approach
to leads-to model checking,” The Computer Journal, 2021. [Online].
Available: https://doi.org/10.1093/comjnl/bxaa183

[8] ——, “A divide & conquer approach to conditional stable model
checking,” in 18th ICTAC, 2021, pp. 105–111. [Online]. Available:
https://doi.org/10.1007/978-3-030-85315-0 7

[9] M. N. Aung, Y. Phyo, C. M. Do, and K. Ogata, “A divide & conquer
approach to eventual checking,” Mathematics, vol. 9, p. 368, 2021.
[Online]. Available: https://doi.org/10.3390/math9040368

[10] P. C. Ölveczky, “Real-time maude and its applications,” in Rewriting
Logic and Its Applications, S. Escobar, Ed. Cham: Springer Interna-
tional Publishing, 2014, pp. 42–79.

[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. L. Talcott, Eds., All About Maude, ser. LNCS. Springer, 2007,
vol. 4350.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott, “Full maude: Extending core maude,” 01 2007, pp. 559–
597.

[13] P. C. Ölveczky, M. Keaton, J. Meseguer, C. L. Talcott, and S. Zabele,
“Specification and analysis of the aer/nca active network protocol suite
in real-time maude,” in Proceedings of the 4th International Conference
on Fundamental Approaches to Software Engineering, ser. FASE ’01.
Berlin, Heidelberg: Springer-Verlag, 2001, p. 333–348.

[14] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato,
“Bounded verification of multi-threaded programs via lazy sequential-
ization,” ACM Trans. Program. Lang. Syst., vol. 44, no. 1, dec 2021.

[15] O. Inverso and C. Trubiani, “Parallel and distributed bounded model
checking of multi-threaded programs,” in Proceedings of the 25th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 202–216.

393

https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-1-4615-0817-5_11
https://doi.org/10.1093/comjnl/bxaa183
https://doi.org/10.1007/978-3-030-85315-0_7
https://doi.org/10.3390/math9040368

Managing Risks in Agile Methods: a Systematic
Literature Mapping

Fernando Vedoin Garcia
Department of Informatics and Statistics

Federal University of Santa Catarina
Florianópolis, Brazil

fevedoingarcia@gmail.com

Jean Carlo R. Hauck
Department of Informatics and Statistics

Federal University of Santa Catarina
Florianópolis, Brazil
jean.hauck@ufsc.br

Fernanda N. Rizzo Hahn
Department of Informatics and Statistics

Federal University of Santa Catarina
Florianópolis, Brazil

fernandanrizzo@gmail.com

Abstract—Agile software development methods have been
around since at least 2001. They accommodate changing require-
ments with the flexibility to deal with cost and scope and have
increasingly been used. However, explicit risk management is
often ignored as agile methods deal with risk intrinsically and
focus on rapid value delivery. In certain contexts, explicit risk
management practices are needed to complement agile methods.
Thus, this paper presents a systematic literature mapping aiming
to discover how do software organizations integrate explicit risk
management practices into agile methods. As a result we found
23 primary studies that, in majority, applied case studies in the
industry, using agile methods such as Scrum, and adapting agile
practices such as Daily Meeting and Iteration Planning Meeting
to manage risks related to schedule and communication, for
example. The selected primary studies raise evidence that the
introduction of explicit risk management practices bring benefits
to agile methods.

Index Terms—software, risk management, agile methods, agile
practices

I. INTRODUCTION

Agile software development methods [1] have been widely
used in software organizations due to their ability to accom-
modate changing requirements and flexibility to handle cost,
scope and software quality according to customer needs [2].
One of the main advantages of adopting agile methods is
their ability to reduce risks [3], which leads to successful and
timely software development and deployment. Projects that
apply agile methods usually make use of frequent reviews
in each development cycle and cross-functional project teams
to accelerate knowledge sharing and ensure that risks are
understood and implicitly managed [4]. The implicit ability
to reduce risks has also been one of the main reasons for
adopting agile methods in software organizations [5].

However, despite its importance, risk management is often
overlooked in agile software development methods as its focus
is on rapid value delivery [6]. Even with the adoption of agile
methods and investments in software development, failure of
software projects is still frequent, increasing the importance
of the software development risk management [7].

The explicit application of risk management consists of
inserting principles and practices of risk management in the

DOI reference number: 10.18293/SEKE2022-123

already used practices of lifecycle management [7], thus risks
can be identified, analyzed and managed during each software
development iteration [4].

Complementing agile methods with explicit risk manage-
ment practices, has attracted recent interest. Esteki et al. [8],
integrates Scrum with the PRINCE2 delivery layer; Schön
et al. [9] standardizes risk increasing transparency in the
context of multidisciplinary projects; Hayat et al. [10] estimate
the impact of risk and convert it into risk detection and
control actions. Risk management in software projects has
even attracted the application of Machine Learning (ML)
aiming to identify or predict risks before project development
starts [11].

However, the existing Software Engineering literature lacks
insights into the extent to which the combination of agile
methods and risk management processes is being applied [6].
Thus, this paper presents a Systematic Literature Mapping
(SLM) [12] to answer the research question “How do software
organizations integrate explicit risk management practices into
agile methods?”.

The main contributions of this work are twofold: (i) for Soft-
ware Engineering researchers we present an extensive survey,
to the best of our knowledge, of the state of the art of risk
management practices in agile methods; (ii) for practitioners
that are seeking to include explicit risk management practices
in agile methods we present the most used risk management
practices and typical managed risks.

II. RELATED WORKS

As primary studies have reported the integration of explicit
risk management practices into agile methods, some secondary
studies have analyzed this phenomenon from different perspec-
tives.

Vieira, Hauck, and Matalonga [13] conducted an SLM in
order to understand how explicit risk management is being
integrated into agile software development methods. With 18
selected papers, authors found that the results of integrating
explicit risk management with agile methods are positive. The
secondary study, however, is not focused on empirical primary
studies and not addresses which risk management practices
have been applied empirically in real environments.

394

Chadli and Idri [14] identified risk mitigation strategies
that target Global Software Development (GSD) through a
Systematic Literature Review (SLR). The analysis of the 24
selected primary studies resulted in 39 risk factors and 58
mitigation strategies. The strategies were classified by areas
such as task-actor, task-structure, and task-technology. The
secondary study, however, do not analyze risk management
practices nor the specific context of use.

Podari et al. [15] conducted an SLR selecting 52 papers that
identify the risks and challenges that affect globally distributed
projects and how agile methods can be useful in managing
these barriers. The selected primary studies are only focused
on GSD, not covering other types of projects.

Thus, it was not possible to find so far in the literature
a comprehensive analysis of the introduction of explicit risk
management practices in agile methods and the specific prac-
tices adopted.

III. METHODS

In order to analyze the state of the art of the integration
of explicit risk practices in agile methods, we undertook a
Systematic Literature Mapping (SLM) following the proce-
dures defined by Petersen, Vakkalanka, and Kuzniarz [12],
Petersen et al. [16], and Wohlin [17]. Based on the identified
research need, the general research question was defined
as: “How do software organizations integrate explicit risk
management practices into agile methods?”. Thus, we derived
the main research question in four detailed analysis questions,
as presented in Table I.

TABLE I
RESEARCH QUESTIONS

Description
Q1 What are the studies that deal with the integration of risk manage-

ment practices in agile methods?
Q2 What is the context of use of risk management practices in agile

methods?
Q3 What risk management practices are introduced in agile methods?
Q4 What types of risks are managed?

A. Search strategy

The search string was defined following [18], using the most
used agile methods [5] and well known terms as synonyms for
“agile methods”. The search string was then tested and refined
by the authors, using previously known primary studies as a
reference, resulting in the following search string:

“risk” AND (“agile” OR “scrum” OR “xp” OR “extreme
programming” OR “lean” OR “kanban” OR “scrumban”
OR “fdd” OR “feature driven development” OR “crystal”
OR “iterative development”) AND “software”
The search string was applied to the following digital

libraries: IEEEXplore, ACM Digital Library, and Scopus, due
to their relevance to the software engineering area [19]. The
search string was adapted to the specific syntax of each library
and applied to title and abstracts fields. The Snowballing

technique [17] was also performed using the selected papers
from the automated search as input.

Based on the main research question, the following inclu-
sion criteria (IC) and exclusion (EC) criteria were defined:
(IC1) Peer reviewed primary studies; (IC2) Written in English;
(IC3) Full papers with at least 4 pages; (EC1) Theoreti-
cal work/proposal not empirically applied; (EC2) Duplicate
studies; (EC3) No full text available; (EC4) Not focused on
software development.

B. Study Selection
The selection of studies was performed from July to De-

cember of 2021 in four cycles, as presented in Fig. 1.

Fig. 1. Number of primary studies by cycle.

In the Cycle 1 the search string was applied to the digital
libraries. The resulting list of 2815 primary studies was then
divided between the first and third authors, who separately
applied the inclusion and exclusion criteria to all paper titles,
peer reviewing the results. This initial selection was reviewed
by the second author, resulting in 194 selected papers. In Cycle
2, the initial list of papers was filtered by the first and third
authors applying the inclusion and exclusion criteria to the
papers’ summaries, resulting in 92 selected papers, once again
reviewed by the second author. In Cycle 3 we merged the lists
of papers and filtered the studies on a full-text basis using
the inclusion and exclusion criteria, resulting in 17 selected
papers after the second author reviewing. Finally, in Cycle 4
the Backward Snowballing technique [17] was applied by the
first author using as input the 17 selected papers, resulting in
six more papers being selected. After each cycle a meeting
was performed with the three authors resolving any possible
discordance or inconsistencies. The number of studies for each
digital library and cycle is presented in Table II.

TABLE II
RESULTS PER DIGITAL LIBRARY AND CYCLE

Digital library Total Cycle 1 Cycle 2 Cycle 3
ACM 971 42 15 5

IEEEXplore 957 79 39 5
Scopus 887 73 38 7

IV. DATA COLLECTION AND ANALYSIS

The 23 selected primary studies are distributed between the
years 2000 and 2020. The concentration of works (12) between
2017 and 2020, and the exponential trend line, shown in Fig.
2, indicate the growing relevance of this topic in recent years.

Next, data collected from selected primary studies are
presented and analyzed according to each predefined Analysis
Question. Extracted raw data is available at: bit.ly/36i7Wby.

395

Fig. 2. Distribution of the selected papers per year.

Q1. What are the studies that deal with the integration of
risk management practices in agile methods?

The selected primary studies are presented in Table III.

TABLE III
SELECTED STUDIES

Title Ref
S1 Reference Framework and Model for Integration of Risk

Management in Agile Systems Engineering Lifecycle of
the Defense Acquisition Management Framework.

[20]

S2 A risk management framework for distributed scrum using
PRINCE2 methodology.

[8]

S3 A Risk Management Tool for Agile Software Development [21]
S4 Improving Risk Management in a Scaled Agile Environ-

ment
[9]

S5 Risk Assessment Forum [22]
S6 Agile risk management using software agents [23]
S7 A risk poker based testing model for scrum [24]
S8 Agile approach with Kanban in information security risk

management
[25]

S9 Integrating Risk Management in Scrum Framework [26]
S10 Prioritizing and optimizing risk factors in agile software

development
[27]

S11 Value-Risk Trade-off Analysis for Iteration Planning in
Extreme Programming

[28]

S12 A case study for the implementation of an agile risk
management process in multiple projects environments

[29]

S13 A SYSML-Based Approach for Requirements Risk Man-
agement and Change Control

[10]

S14 Risk Management for Agile Projects in Offshore Vietnam [30]
S15 An industrial case study of implementing software risk

management
[31]

S16 Characterization of risky projects based on project man-
agers’ evaluation

[32]

S17 Characterization and prediction of issue-related risks in
software projects

[33]

S18 Outlining a Model Integrating Risk Management and
Agile Software Development

[34]

S19 Lightweight Risk Management in Agile Projects [35]
S20 A risk management framework for distributed agile

projects
[36]

S21 Implementation of Risk Management with SCRUM to
Achieve CMMI Requirements

[37]

S22 A New Project Risk Management Model based on Scrum
Framework and Prince2 Methodology

[38]

S23 Risks to Effective Knowledge Sharing in Agile Software
Teams: A Model for Assessing and Mitigating Risks

[39]

Q2. What is the context of use of risk management
practices in agile methods?

We define the context of use as: (Q2.1) the type of applica-
tion environment, (Q2.2) agile method adopted, (Q2.3) type of
empirical study and (2.4) number of organizations involved.

The context-related data is summarized in Table IV.
The selected studies were applied in two different envi-

ronments (Q2.1): software industry or academia. 18 (78%)
studies were applied in software development organizations
and 5 studies (22%) in an academic environment.

Regarding the agile methods adopted (Q2.2), 14 (61%)
adopted Scrum, 3 (13%) adopted XP, 2 (9%) cited Kanban,
and only 1 (4%) mentioned the Dynamic System Development
Method (DSDM), whereas it is not explicit in the search string.
Among the selected studies, 7 (30%) did not mention any
specific agile method. The total is greater than 100%, as some
studies used more than one agile method.

In the industry environment, the agile methods that appeared
the most were Scrum (10 - 43%) and XP (3 - 13%). In
academia, the predominant method was also Scrum (4 - 17%).
Study S3 was the only study applied in academy environment
that did not mention any specific agile method.

As for the type of empirical study (Q2.3), 17 (74%) applied
case studies, 2 (9%) applied experiments, 3 (13%) applied
surveys, and only S8 (4%) applied a proof of concept. It
is possible to observe that in the industry most applications
were case studies, while in academia there was a balance. The
approach proposed in S6 was validated with two case studies.

Most (15 - 65%) of the studies were applied in only 1
organization (Q2.4). Study S17, in turn, was applied in 5
organizations with projects that differ significantly in size,
complexity, development process, and community size.

TABLE IV
CONTEXT OF USE

Question Extracted data
Q2.1 - Context Industry S1, S2, S4, S5, S8, S10,

S11, S12, S13, S14, S15,
S16, S17, S18, S20, S21,
S22, S23

Academy S3, S6, S7, S9, S19
Q2.2 - Agile method Scrum S2, S5, S6, S7, S9, S10,

S12, S14, S18, S19, S20,
S21, S22, S23

XP S10, S11, S14
Kanban S8, S14
DSDM S10
Undefined S1, S3, S4, S13, S15, S16,

S17
Q2.3 - Type Case study S1, S2, S4, S5, S6, S7,

S10, S11, S12, S13, S14,
S15, S16, S17, S18, S19,
S20

Experiment S3, S9
Concept proof S8
Survey S21, S22, S23

Q2.4 - Instances Exactly 1 S1, S2, S4, S5, S6, S7, S8,
S11, S12, S13, S14, S15,
S16, S18, S19

Between 2 and 10 S10, S17, S20, S23
Undefined S3, S9, S21, S22

Q3. What risk management practices are introduced in
agile methods?

Two different strategies were adopted by the studies to
integrate risk management into agile methods: using existing
agile practices or introduce new risk management practices.

396

Studies S3 and S9 adopted the first strategy. The most com-
monly used practices are Brainstorming, Pair Programming,
Daily Meetings, Incremental Deliveries and Prototyping.

Adopting the second strategy, the other primary studies have
created new agile practices or introduced adapted traditional
practices into agile methods to improve risk management.
Table V presents the introduced risk management practices,
grouped by the existing agile practice impacted (when appli-
cable). Some examples of practices are described below.

TABLE V
PROPOSED PRACTICES

Impacted agile practice # Proposed practice
Initial sprint planning S22 Define obligations of individuals
Sprints S22 Link processes to sprints
Release S22 Progress report
Sprint planning meeting S9 Brainstorming

S14 Risk register
S18 Identify the responsibilities of in-

dividuals
Daily meeting S5 Risk Assessment Forum

S6 Automatic agents
S12 Impediment matrix
S19 Automatic agents
S20 Risk ranking
S23 Risk list

Sprint review meeting S6 Automatic agents
S9 Brainstorming

S19 Automatic agents
Sprint retrospective meeting S21 Risk register

S23 Risk list
Planning meeting S23 Risk list
User stories S6 Automatic agents
Continuous integration S20 Risk ranking
Pair programming
Face to face communication
Flexible design
Customer software demos
Backlog management
Iteration planning meeting S7 Risk Poker

S11 User stories repository
S14 Risk register

Risk management meeting S14 Qualitative risk analysis matrix
Risk decomposition structure
Risk cards

Kanban board S8 Risk distribution
S14 Risk closing

Work planning (Kanban) S14 Risk register
Qualitative risk analysis matrix
Risk decomposition structure
Risk cards

– S1 Feedback loop
S2 Identify responsibilities
S3 Practice recommending tool
S4 Initial meeting

S10 AR Rank
S13 Model-driven requirements
S15 Risks checklist

Brainstorming
Analysis charts
Forms

S16 Quiz
S17 Predictive risk identification

In S5, the Risk Assessment Forum (RAF) is proposed to be
applied weekly in daily meetings. Thus, the development team
and the Scrum Master can increase the identified risks and
manage them. Study S9, inserted two brainstorming sessions,

after the Sprint planning meeting to identify potential risks
and in the Sprint review meeting to risks documentation. The
practices proposed in S23 provide heuristics that facilitate
risk analysis, prioritizing resolutions, and linking them into
an overall plan. The proposed risk management process also
involves team members in several informal knowledge-sharing
exercises assisting decision-making and forming a risk list with
their respective resolutions.

The Risk Analysis practice, proposed in S12, is defined
for the XP method to reduce risks of user story overload
by providing several alternative plans to improve negotiations
between different stakeholders, promoting a deeper under-
standing and helping to choose a development plan with the
greatest chance of being implemented on time.

In S8, authors propose an intervention in the Kanban
workflow. In this new practice, identified risks are distributed
to team members with defined roles. This provides a clear view
of each person’s tasks and responsibilities regarding risks.
Using selected risk factors, study S17 developed models to
predict whether a risk will cause a delay. If so, the model also
determines the risk impact and the probability of occurrence.
Q4. What types of risks are managed?

The selected primary studies identify a total of 230 risks.
Due to this large number of risks described in different ways,
we decided to group them using a well known risks taxonomy
[40], [41], [42] that provides three risk classes, its elements and
attributes. We have collected all risks reported in the selected
primary studies, classified according to the taxonomy, and
summarized in Table VI. The complete list of risks, its sources
and our chosen classifications is available at: bit.ly/36i7Wby.

The primary studies that reported the highest number of
risks were [S2], [S20], and [S23]. Studies [S2] and [S20] were
the works that have more risks classified in different attributes
(25), followed by [S23], with risks classified in 19 attributes.

The attribute with the most risks occurrences was Schedule,
with occurrences in 9 primary studies (39%), followed by other
attributes from Budget and Staff (6 - 26%). The element with
most risks occurrences was Requirements, with occurrences
in 11 primary studies (48%). The class with the greatest
number of occurrences was Development Environment, with
occurrences in 13 primary studies (57%).

V. DISCUSSION

The results of this secondary study summarize information
on the application of explicit risk management practices in
agile software development methods.

As the wide majority of the selected studies were applied
in industry with reported benefits, this raises evidence of
the adequacy of explicit risk management practices in agile
methods. All selected primary studies report positive impacts
of introducing explicit risk management practices, with 10
studies (43%) [S1, S2, S3, S6, S12, S14, S15, S18, S19, S21]
reporting positive impacts without compromising the “agility”
of the agile methods.

The vast majority (61%) of the studies applied Scrum,
confirming its global trend as the main agile method used

397

TABLE VI
CLASSIFICATION OF IDENTIFIED RISKS

Class Element Attribute Studies
Product En-
gineering

Requirements Stability S2, S10, S17, S20,
S21

Completeness S23
Clarity S2, S10, S20, S21,

S23
Validity S16, S23
Feasibility S1
Precedence S2, S10, S17, S20,

S23
Scale S6, S9, S14

Design Functionality S13
Performance S13
Testability S2, S10, S20
Hardware Con-
straints

S9

Code and Feasibility S21, S23
Unit Test Testing S2, S10, S20
Integration Environment S1, S14
and Test Product S2, S9, S10, S17, S20

System S2, S20
Engineering Maintainability S6, S14
Specialties Security S9, S13, S21

Specifications S9, S16
Development Development Suitability S2, S10, S20
Environment Process Process

Control
S2, S10, S12, S17,
S20

Familiarity S15, S23
Product control S2, S14, S20

Development Capacity S2, S20
System Reliability S9, S17

Familiarity S6, S9, S15, S23
Deliverability S17

Management
Process

Planning S2, S10, S20, S21,
S23

Project Organi-
zation

S6, S16

Management
Experience

S23

Program Inter-
faces

S2, S10, S14, S20,
S23

Management
Methods

Personnel
Management

S1, S2, S6, S23

Quality Assur-
ance

S12, S14

Configuration
Management

S20, S23

Work
Environment

Quality
Attitude

S20

Cooperation S2, S6, S10, S17, S20
Communication S2, S6, S15, S20, S23
Morale S2, S6, S14, S23

Program
Constraints

Resources Schedule S2, S6, S9, S10, S12,
S16, S17, S20, S23

Budget S2, S10, S14, S16,
S20, S23

Staff S2, S9, S14, S16,
S20, S23

Contract Type of Con-
tract

S2, S20

Dependencies S2, S14, S20, S23
Program Customer S2, S6, S14, S20, S23
Interfaces Corporate

Management
S2, S10, S20

Vendors S2, S20
Politics S2, S14, S23

[5]. In contrast, only one study (4%) implemented DSDM,
possibly indicating a tendency to disuse of this method.

The existent agile practices most affected by explicit risk
management processes were the Daily Meeting and Iteration
Planning Meeting, raising evidence that the incorporation of
risk management practices especially affects the identification
and monitoring of risks, corroborating other results reported
in the literature [13].

In addition to the practices, we also have extracted and
classified the managed risks. Most studies reported risks
related to requirements and communication. The highlight the
“delay”, which affects 39% (9) of the selected studies.

A. Threats to validity

We have identified potential threats and applied mitigation
strategies to minimize impacts on the outcomes following [43].

To reduce the risk of incomplete searches, we have selected,
reviewed and tested search terms and also applied the Snow-
balling technique, which resulted in additional studies.

The number of studies, trend of publishing positive results,
and empirical quality of most studies may affect the validity
of the conclusions, as we decided to include studies with low
empirical evidence to spot trends of topics being worked [12].

VI. CONCLUSION

Considering the lack of risk management processes in
agile methods, this paper presents a Systematic Literature
Mapping on how software organizations integrate explicit risk
management practices into agile methods. We selected 23
primary studies following a defined research protocol.

The data collected indicate that the most used research
method is case study. Selected primary studies are mostly
applied in the industry using Scrum. The more frequently
adapted agile practices are Daily Meeting and Iteration Plan-
ning Meeting with the introduction of specific risk manage-
ment practices such as Risk Poker, Risk Ranking and Risk
Register. The risks most frequently identified by studies are
related to schedule and communication.

According to the results, explicit risk management practices
provided benefits to the agile projects such as the increase in
the number of identified risks and the choice of more effective
corrective actions, improving team communication and the
visibility of impediments, in addition to anticipating problems.

Therefore, the explicit inclusion of risk management prac-
tices can help the management of risks in agile projects
without hurting the principles of agility, reducing its negative
impact, and increasing the chances of success of the projects.

REFERENCES

[1] P. Bourque and R. E. Fairley, Eds., SWEBOK: Guide to the Software
Engineering Body of Knowledge, version 3.0 ed. IEEE Computer
Society, 2014. [Online]. Available: http://www.swebok.org/

[2] F. Hayat, A. U. Rehman, K. S. Arif, K. Wahab, and M. Abbas, “The
influence of agile methodology (scrum) on software project manage-
ment,” in 2019 20th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), 2019, pp. 145–149.

[3] A. Albadarneh, I. Albadarneh, and A. Qusef, “Risk management in agile
software development: A comparative study,” in 2015 IEEE Jordan Con-
ference on Applied Electrical Engineering and Computing Technologies
(AEECT), 2015, pp. 1–6.

398

[4] Project Management Institute, A Guide to the Project Management Body
of Knowledge (PMBOK® Guide), 6th ed. Project Management Institute,
2017.

[5] Digital.ai, 15th annual state of agile report. Digital.ai, 2021.
[6] M. Hammad, I. Inayat, and M. Zahid, “Risk management in agile

software development: A survey,” in 2019 International Conference on
Frontiers of Information Technology (FIT), 2019, pp. 162–1624.

[7] L. Xiaosong, L. Shushi, C. Wenjun, and F. Songjiang, “The application
of risk matrix to software project risk management,” in 2009 Interna-
tional Forum on Information Technology and Applications, vol. 2, 2009,
pp. 480–483.

[8] M. Esteki, T. J. Gandomani, and H. K. Farsani, “A risk management
framework for distributed scrum using prince2 methodology,” Bulletin
of Electrical Engineering and Informatics, vol. 9, no. 3, pp. 1299–1310,
2020.

[9] E.-M. Schön, D. Radtke, and C. Jordan, “Improving risk management in
a scaled agile environment,” in Agile Processes in Software Engineering
and Extreme Programming. Cham: Springer International Publishing,
2020, pp. 132–141.

[10] F. Hayat, M. W. Anwar, F. Azam, and A. Kiran, “A sysml-based
approach for requirements risk management and change control,” in
Proceedings of the 2019 11th International Conference on Information
Management and Engineering, ser. ICIME 2019, 2019, p. 20–24.

[11] A. Sousa, J. P. Faria, and J. Mendes-Moreira, “An analysis of the
state of the art of machine learning for risk assessment in software
projects,” in Proceedings of the 33rd International Conference on
Software Engineering and Knowledge Engineering, SEKE, 2021, pp.
1–10.

[12] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conduct-
ing systematic mapping studies in software engineering: An update,”
Information and Software Technology, vol. 64, pp. 1–18, 2015.

[13] M. Vieira, J. C. R. Hauck, and S. Matalonga, “How explicit risk
management is being integrated into agile methods: Results from a
systematic literature mapping,” in 19th Brazilian Symposium on Software
Quality, ser. SBQS’20, 2020.

[14] S. Y. Chadli and A. Idri, “Identifying and mitigating risks of software
project management in global software development,” in Proceedings of
the 27th International Workshop on Software Measurement and 12th In-
ternational Conference on Software Process and Product Measurement,
2017, p. 12–22.

[15] Z. Podari, A. F. Arbain, N. Ibrahim, D. N. Abang Jawawi, W. M.
Nasir Wan Kadir, and A. M. Fahmi, “Systematic literature review on
global software development risks in agile methodology,” in 2020 8th
International Conference on Information Technology and Multimedia
(ICIMU), 2020, pp. 231–236.

[16] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in Proceedings of the 12th
International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE’08. Swindon, GBR: BCS Learning amp;
Development Ltd., 2008, p. 68–77.

[17] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE ’14, 2014.

[18] S. M. Al-Saleem and H. Ullah, “A comparative analysis and evaluation
of different agile software development methodologies,” in International
Journal of Computer Science and Network Security, vol. 15, no. 7, 2015,
pp. 39–45.

[19] M. Turner, “Digital libraries and search engines for software engineering
research: An overview,” Keele University, UK, 2010.

[20] P. Crowe, A. Mostashari, M. Mansouri, and R. Cloutier, “9.2.1 reference
framework and model for integration of risk management in agile
systems engineering lifecycle of the defense acquisition management
framework,” INCOSE International Symposium, vol. 19, no. 1, pp. 1391–
1405, 2009.

[21] B. G. Tavares, M. Keil, C. E. Sanches da Silva, and A. D. de Souza,
“A risk management tool for agile software development,” Journal of
Computer Information Systems, vol. 61, no. 6, pp. 561–570, 2020.

[22] J. M. P. Carvallo, H. Oktaba, and E. R. Hernández, “Risk assessment
forum,” in 2018 6th International Conference in Software Engineering
Research and Innovation (CONISOFT), 2018, pp. 160–164.

[23] E. Odzaly, D. Greer, and D. Stewart, “Agile risk management using
software agents,” Journal of Ambient Intelligence and Humanized Com-
puting, vol. 9, p. 823–841, 2018.

[24] S. Ghazali, S. Salirti, I. Inayat, and S. h. Ab hamid, “A risk poker based
testing model for scrum,” Computer Systems Science and Engineering,
vol. 33, pp. 169–185, 05 2018.

[25] V. Dorca, R. Munteanu, S. Popescu, A. Chioreanu, and C. Peleskei,
“Agile approach with kanban in information security risk management,”
in 2016 IEEE International Conference on Automation, Quality and
Testing, Robotics (AQTR), 2016, pp. 1–6.

[26] M. Hammad and I. Inayat, “Integrating risk management in scrum frame-
work,” in 2018 International Conference on Frontiers of Information
Technology (FIT), 2018, pp. 158–163.

[27] R. Agrawal, D. Singh, and A. Sharma, “Prioritizing and optimizing
risk factors in agile software development,” in 2016 Ninth International
Conference on Contemporary Computing (IC3), 2016, pp. 1–7.

[28] X. Dong, Q.-S. Yang, Q. Wang, J. Zhai, and G. Ruhe, “Value-risk trade-
off analysis for iteration planning in extreme programming,” in 2011
18th Asia-Pacific Software Engineering Conference, 2011, pp. 397–404.

[29] L. Ribeiro, C. Gusmao, W. Feijo, and V. Bezerra, “A case study for
the implementation of an agile risk management process in multiple
projects environments,” in PICMET ’09 - 2009 Portland International
Conference on Management of Engineering Technology, 2009, pp. 1396–
1404.

[30] L. G. Cuong, P. D. Hung, N. L. Bach, and T. D. Tung, “Risk management
for agile projects in offshore vietnam,” in Proceedings of the Tenth In-
ternational Symposium on Information and Communication Technology,
ser. SoICT 2019, 2019, p. 377–384.

[31] B. Freimut, S. Hartkopf, P. Kaiser, J. Kontio, and W. Kobitzsch, “An
industrial case study of implementing software risk management,” in
Proceedings of the 8th European Software Engineering Conference
Held Jointly with 9th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2001, p. 277–287.

[32] O. Mizuno, T. Kikuno, Y. Takagi, and K. Sakamoto, “Characterization of
risky projects based on project managers’ evaluation,” in Proceedings of
the 22nd International Conference on Software Engineering, ser. ICSE
’00, 2000, p. 387–395.

[33] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Characterization
and prediction of issue-related risks in software projects,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories,
2015, pp. 280–291.

[34] J. Nyfjord and M. Kajko-Mattsson, “Outlining a model integrating risk
management and agile software development,” in 2008 34th Euromicro
Conference Software Engineering and Advanced Applications, 2008, pp.
476–483.

[35] E. Odzaly, D. Greer, and D. Stewart, “Lightweight risk management
in agile projects,” in Proceedings of the 26th International Conference
on Software Engineering and Knowledge Engineering, SEKE, 2014, pp.
576–581.

[36] S. V. Shrivastava and U. Rathod, “A risk management framework for
distributed agile projects,” Information and Software Technology, vol. 85,
pp. 1–15, 2017.

[37] E. Alharbi and M. R. Qureshi, “Implementation of risk management
with scrum to achieve cmmi requirements,” International Journal of
Computer Network and Information Security (IJCNIS), vol. 6, pp. 20–
25, 09 2014.

[38] M. Mousaei and T. J. Gandomani, “A new project risk management
model based on scrum framework and prince2 methodology,” Interna-
tional Journal of Advanced Computer Science and Applications, vol. 9,
no. 4, 01 2018.

[39] S. Ghobadi and L. Mathiassen, “Risks to effective knowledge sharing
in agile software teams: A model for assessing and mitigating risks,”
Information Systems Journal, vol. 27, no. 6, pp. 699–731, 2017.

[40] M. Carr, S. Konda, I. Monarch, C. Walker, and F. Ulrich, “Taxonomy-
based risk identification,” Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA, Tech. Rep., 1993.

[41] S. Sundararajan, M. Bhasi, and P. Vijayaraghavan, “Variation of risk
profile across software life cycle in is outsourcing,” Software Quality
Journal, vol. 27, p. 1563–1582, 12 2019.

[42] H. A. Abdulbaqi, A. S. A. Jabar, and Z. S. A. Jabar, “Integrated software
project risks method based on pdf-ann techniques,” International Journal
of Civil Engineering and Technology (IJCIET), p. 1094–1102, 2018.

[43] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang, “A map of threats to
validity of systematic literature reviews in software engineering,” in 2016
23rd Asia-Pacific Software Engineering Conference (APSEC), 2016, pp.
153–160.

399

1

LSTMcon: A Novel System of Portfolio
Management Based on Feedback LSTM with

Confidence
Xinjia Xie1,?, Shun Gai1,?, Yunxiao Guo2,?, Boyang Wang1,?, Han Long2,†

1 College of Computer Science, National University of Defence Technology, Changsha, China
2 College of Liberal Arts and Sciences, National University of Defence Technology, Changsha, China

Email Address: {xinjiaxie@yeah.net; shun12581@nudt.edu.cn; guoyunxiao.nudt@hotmail.com;
wangboyang16@nudt.edu.cn; longhan@nudt.edu.cn}

Abstract—Trading carries a substantial amount of risk and
making adequately informed decisions cannot be overempha-
sized. In order to propose a more reasonable strategy on portfolio
arrangement, we design LSTMcon, a two-stage system that
consists of a assets price prediction model and a decision-
making strategy based on ensemble rules. As for next-day
price prediction, we implement an LSTM model with feedback
mechanism and devise a series of training settings. The feedback
mechanism uses the deviation between predicted price and actual
price to correct the prediction result from LSTM. To decrease
the transaction cost, we design a three-day trading period and
adopt an iterative prediction approach. Our model achieves the
accuracy of 98.5% on GOLD and 98.8% on BTC finally. In
addition, we devise a decision-making system after getting the
predicted data. We modify the predicted price by giving everyone
a certain confidence level based on three approaches (reward
and punishment mechanism, sequential days rules, historical
price relying). We combine these rules and give a comprehensive
confidence level to weigh the predicted price. Subsequently, we
summarize the transactions into 8 trading operations, input
the modified price and automatically compare the hypothetical
return of these eight operations. Then, output the operation with
largest return as today’s decision. We compare the returns and
transaction costs of comparative systems, and demonstrate our
strategy with effectiveness.

Index Terms—Price Prediction, Decision-making, LSTM, Port-
folio Management, Knowledge Engineering

I. INTRODUCTION

Market traders buy and sell volatile assets frequently, with a
goal to maximize their total return. Nowadays, it is not difficult
for us to find trading strategies suitable for our preferences
in many academic articles or forums [1]. However, it is still
a problem of how to distinguish the good and bad of these
strategies and avoid making some common mistakes, such as
survivorship bias, look-ahead bias, and trading cost [2].

With the popularity of Internet resource search, quantitative
trading emerges as the times require [3]. It refers to using
advanced mathematical models to replace human subjective
judgment, and selecting a variety of high probability events
that bring excess returns from huge historical data to formulate

? Equal Contribution
† Corresponding Author
DOI reference number: 10.18293/SEKE2022-160

strategies. For example, in some simple quantitative analysis
[4], some statistical tests are carried out on the close price of
financial instruments. More complex systems consider more
information to improve the accuracy of price prediction [5].

In this paper, we deliver a novel system of portfolio man-
agement based on a two-stage model consisting of a financial
assets price prediction model and decision-making strategy
based on ensemble rules (Fig. 1). We apply a LSTM with
Feedback Mechanism for prediction and set aside a period of
half a year used to train a preliminary LSTM which constantly
carries out training with real assets price of the days we have
predicted and modifies its parameters. It can be generalized
to other asset datasets in addition to gold and bitcoin. As
for decision-making, we introduce several rules to modify
the predicted assets price by giving everyone a certain con-
fidence level in order to propose a more reasonable strategy.
The remainder of this paper is organized as follows: After
concluding related work in Sec. II, Sec. III discusses details
of our portfolio management system. Experiment settings and
results analysis are revealed in Sec. IV and we summarize this
paper with future work discussed finally.

II. RELATED WORK

There are some traditional time series models applied to
portfolio management based on typical methods in math-
ematics. These methods include multivariate analysis [6],
dependence learning [7] and transitional models [8]. In spite of
their widely use in scientific experiments, they were proposed
early and incapable of modeling the aforementioned huge data
and complex features.

Recently, researchers apply more deep learning models for
time series prediction tasks, such as recurrent neural networks
(RNN) based method with a dual-stage attention [9] to select
relevant driving series, and convolution neural network (CNN)
based method like TCN [10] to capture effective historical
data of price fluctuation. They are regarded as good trials on
assets price prediction. Related work also pays attention to
improve the accuracy by utilizing external information which
may influence the market and effect assets price [5]. Clearly,
a deep learning model does show a better performance on big
data and take more factors into consideration.

400

2

Cleaning

Strategy
prediction

Feedback
Machenism

Trading Rules

Enhance Measures

Decision-making SystemOutput

Data

Decision to buy or sell

Initial
Predictor

Source
Initial Data

Modify

Prediction Model

(a)

Predicted
LSTM

Predicted
price

Actual price
of 3 days

Actual price

Deviate
LSTM

Predicted
deviation

Deviation
DEVIA

Training
Set

Increasing Increasing

Actual deviation
of 3 days

Final predicted
price

Ensemble

(b)

Fig. 1: The framework of our system: (a) Quantitative trading process we simulate in this paper: data flows in the prediction
model and decision-making strategy; (b) The detail process of our financial assets price prediction model: LSTM with Feedback
Mechanism and utilised datasets.

We conclude with these SOTA models from both computer
scientists and economists in real-world investment, but they
are difficult to be directly formed as a strategy. Among them,
RNN[11], [12], [13] is one of the most powerful models.
Compared with other neural network, results of each layer in
RNN are not independent, but relate to results of the previous
layer and current input. However, computational complexity
would increase exponentially, resulting in a significant increase
of model training consumption. Due to the assumption that
cash from selling gold or bitcoin could be used to buy assets
on the same day, there is no necessity to consider multi-step
prediction. In this paper, we start with the variant of RNN:
Long Short-Term Memory (LSTM) [14] and some measures
are taken on the single LSTM for improvements.

III. METHOD

A. Financial Assets Price Prediction System

1) LSTM with feedback mechanism: LSTM is specially de-
signed to solve the long-term dependence problem of general
RNN, thus it helps with prediction of sequential data, of which
a good example is constituted by daily price of financial assets.

We set the training rules as follows:
• Considering the transaction cost, we design a three-

day trading period, that the trader buys or sells assets
using data of every three days. Therefore, we choose
the iterative prediction approach. Our model predicts the
daily rise or fall of three days at a time and we make
one trading decision based on these data (the reason for
choosing 3 is in Sec. IV-E with experiments).

• Due to prediction based on data up to that day, we cannot
use the later data to train our model. We set aside a stable
period of half a year. For example, we use data from
September 2016 to February 2017 to preliminarily train
an LSTM but the training set size increases day by day.

• The maximum return may be closely related to the exact
predicted price. Therefore, we device Feedback Mecha-
nism to modify our model. After comparing the predicted
value with the real value, we return the deviation to
LSTM by Feedback Mechanism, and modify parameters.

The final structure of our prediction model is shown in Fig. 1
(b). Feedback Mechanism is actually a deviate LSTM. Based

on the predicted LSTM, we add it to return the deviation
between predicted price and actual price. First, we train a
preliminary LSTM for predicting future prices from six-month
data for iterative prediction. Its training set is increasing day
by day, and it constantly carries out training, that is, modifying
parameters to improve the prediction performance. Next, we
accumulate the deviation between the predicted price and the
actual price to form a training set named DEVIA. DEVIA is
used to train the deviate LSTM to input the deviation of several
days and obtain the deviation of the next day, which is used
to correct the prediction result of the predicted LSTM. The
outputs of the two models are added together, i.e. predicted
price + predicted deviation, as our final predicted value.

B. Decision-making Strategy Based on Ensemble Rules

1) Predicted Price Modification: In order to reduce poten-
tial risks of prediction models, we consider how much confi-
dence is given to predicted results. To evaluate the confidence,
we introduce several approaches which help filter opportunities
with low winning rate, which is very difficult for machines.

Since we have adjusted the predictor by Feedback, the
results are actually reliable and we set the lowest confidence as
0.94 (the reason for choosing 0.94 is in Sec. IV-E with exper-
iments). with the maximum confidence of 1. Each evaluation
method gives a confidence to predicted results. We combine
these confidences to give a comprehensive one to weigh the
results for next decision-making. Confidence of different days
would continuously change in [0.94, 1].

(a) Reward and Punishment
We study the process of real neural networks generating

strategies through neural circuits. After animals successfully
hunts with a certain method, they would incline to use this
method in the next hunt, and abandon the failed one. It mainly
depends on the reward and punishment mechanism.

We manage to set Reward and Punishment in our model,
which rewards and punishes the confidence of predicted price.
At the beginning, confidence is relatively low. As the number
of correct predictions increases, it would rise linearly; other-
wise, reduce it appropriately.

(b) Transaction rules

401

3

TABLE I: Model Comparsion

Technique RP Mechanism Sequential Days Historical Price
Range [0,2000] [1000,2000] [0,2000]

Initial Value 0 2000 2000
Change per day ±100 ±100 ±100

From the perspective of economics, we directly incorporate
some summarized laws into our system, such as the two
famous economic principles in the follows [15]:

• People make decisions after comparing costs and benefits.
When costs and benefits change, people’s decisions also
change. So they respond to incentives, which can be either
artificial or the result of natural change.

• The market fluctuates and the fluctuation has a direction.
Although there are differences between strong and weak
fluctuations, fluctuations is cyclical in a long term.

As for the first principle, we believe that the trader’s mentality
of buying, holding, or selling his assets is in a dynamic process
of days, even if the change ratio is the same. When the
price rises (falls) for several Consecutive Days, traders are
more likely to sell (buy) than on the first day, which is a
right way to invest. We suppose the predicted price is rising
continuously for several days. On the first day, we give almost
full confidence, because it is a normal fluctuation. Confidence
would decrease with days passing, since it is difficult to
imagine that an asset will rise for ten days or more.

For next principle, we adjust confidence according to His-
torical Price since the fluctuation is cyclical. If the price falls
to historical bottom (all-time low), we tend to think that it
would rise. Stay alert to consider whether we sell the assets
or hold on when the predicted price is close to historical peak.

(c) The combination
We write a scoring program with three indicators that

we proposed: Reward and Punishment (RP), Conservative
Days and Historical Price. The rules are shown in Table I and
these parameters are the best determined by repeated tests in
subsequent experiments.

As for RP, the initial value is 0 and it increases by 100
every time the prediction is correct, and decrease when false.
For Consecutive Days, experimental results give it a large
minimum value, which means we rely on it very much. On
the first day of rising, it is 2000 but decreases by 100. For
Historical Data, when it is between historical maximum and
minimum, we give it 2000. Every time it falls outside the
range, 100 points are deducted.

The total score is within [1000, 6000]. We map them to
[0.94, 1] to obtain a confidence in [0.94, 1]. Let RP be the
score given by RP, Seq be the score of Consecutive Days
and His of Historical Data. The mapping relationship is:

Conf = (His+ Seq +RP − 1000)/50000 + 0.94 (1)

Experiments show that the composition of the confidence
is very reasonable. At the initial stage of prediction, the
proportion of scores given by constructive days is the highest
because of the lack of samples, on which RP mechanism and

historical data bases. In the medium term, the proportion of RP
mechanism rises quickly. When predicting the final data, the
score of confidence is almost determined by historical price.

2) Decision Tree: We summarize the transactions in each
day into 8 trading operations as follows:

• B → G , sell bitcoin and buy gold
• G → B , sell gold and buy bitcoin
• B↓ , G↓ , all sold
• B— , G— , no operations
• B↑ , G— , buy bitcoin, no operations on gold
• B— , G↑ , no operations on bitcoin, buy gold
• B↓ , G— , sell bitcoin, no operations on gold
• B— , G↓ , no operations on bitcoin, sell gold
We simulate these eight trading operations, as shown in

the following formulas. On the left of the equation is the
hypothetical return. In each case, the whole return from the
operation is subtracted from the cost of the corresponding
operation (transaction cost and income that can be obtained
if the operation is not carried out), and then the hypothetical
return are obtained. After getting the predicted price of the next
day, our algorithm automatically compares the hypothetical
return of these eight operations. Then, output the operation
with largest return as today’s decision.

• B1 = (PGd+3
−RGd

) ∗ (TBd
− 0.02 ∗TBd

− 0.01 ∗ 0.98 ∗
TBd

)/RGd
− (0.02 ∗TBd

+0.01 ∗ 0.98 ∗TBd
+(PBd+3

−
RBd

) ∗HB) + (PGd+3
−RGd

) ∗HG

• B2 = (PBd+3
−RBd

) ∗ (TGd
− 0.01 ∗TGd

− 0.02 ∗ 0.99 ∗
TGd

)/RBd
− (0.01 ∗TGd

+0.02 ∗ 0.99 ∗TGd
+(PGd+3

−
RGd

) ∗HG) + (PBd+3
−RBd

) ∗HB

• B3 = −1 ∗ (TGd
∗ 0.01 + TBd

∗ 0.02)
• B4 = (PBd

−RBd
) ∗HB + (PGd

−RBd
) ∗HG

• B5 = (PBd+3
−RBd

)∗0.98∗HD/RBd
+(PBd+3

−RBd
)∗

HB + (PGd+3
−RGd

) ∗HG

• B6 = (PGd+3
−RGd

)∗0.99∗HD/RGd
+(PBd+3

−RBd
)∗

HB + (PGd+3
−RGd

) ∗HG

2017/1/1
2017/6/1

2018/1/1
2018/6/1

2019/1/1
2019/6/1

2020/1/1
2020/6/1

2021/1/1
2021/6/1

1200

1400

1600

1800

2000

G
ol

d
Pr

ic
e(

$)

2017/1/1
2017/6/1

2018/1/1
2018/6/1

2019/1/1
2019/6/1

2020/1/1
2020/6/1

2021/1/1
2021/6/1

0.04

0.02

0.00

0.02

0.04

Lo
ga

rit
hm

ic
 re

tu
rn

 ra
tio

Fig. 2: A example: the price fluctuation curve of Gold and the
corresponding Logarithmic return ratio of each day.

Fig. 3: Assets Worth Finally on three systems.

402

4

2017/1/1 2018/1/1 2019/1/1 2020/1/1 2021/1/1

1.2

1.4

1.6

1.8

2.0
G

ol
d

R
ea

l P
ric

e(
K

$)
Gold Real Price(K$)

1.2

1.4

1.6

1.8

2.0

Pr
ic

e
Pr

ed
ic

te
d

by
 L

ST
M

(K
$)

Price Predicted by LSTM(K$)

(a)

2017/1/1 2018/1/1 2019/1/1 2020/1/1 2021/1/1
0

10

20

30

40

50

60

B
TC

 R
ea

l P
ric

e(
K

$)

BTC Real Price(K$)

0

10

20

30

40

50

Pr
ic

e
Pr

ed
ic

te
d

by
 G

R
U

(K
$)

Price Predicted by GRU(K$)

(b)

Fig. 4: Predicted price fluctuation curves of (a) LSTM with feedback on GOLD, (b) LSTM with feedback on BTC.

2017/1/1
2017/6/1

2018/1/1
2018/6/1

2019/1/1
2019/6/1

2020/1/1
2020/6/1

2021/1/1
2021/6/1

0

20000

40000

60000

80000

100000

B
tc

Btc

0

200

400

600

800

1000

1200

G
ol

d

Gold

(a)

2017/1/1
2017/6/1

2018/1/1
2018/6/1

2019/1/1
2019/6/1

2020/1/1
2020/6/1

2021/1/1
2021/6/1

0

20000

40000

60000

80000

100000

D
ol

la
r

(b)

Fig. 5: In the random system, (a) amount of gold and bitcoin we hold in a timeline; (b) assets worth in a timeline

• B7 = (PGd+3
−RGd

) ∗HG − 0.02 ∗ TBd

• B8 = (PBd+3
−RBd

) ∗HB − 0.01 ∗ TGd

Take Branch8 as an example which represents no operations
on bitcoin and selling gold. The final predicted return (assum-
ing no operations on holding assets and all surplus cash to buy
gold in the next three days) is equal to the three-day return
on buying gold, and holding gold and bitcoin.

Suppose the situation: the assets price falls next day with
the decline just greater than transaction cost, but it rises
immediately the day after. In these cases, the decision from
models directly using predicted price causes repeated jump and
consumption, and our model effectively avoids the problem.

C. Comparative Systems
Although we already devise a decision-making strategy, we

think it necessary to design two other simple decision-making
systems for comparison. After leveraging existing predictor,
we get a set of price fluctuation prediction results. We put
these results into these systems and calculate the income.

The first is Random System that we devise based on our
prediction model. We design a random algorithm as follows:
after we gain the prediction results, we input them into the
algorithm and get a random value, the asset value we decide
to buy or sell. We aim to make money and would not trade
against price fluctuation, but are eager to get a return under
random circumstances. In the experiment below, we run the
program 1000 times to obtain the random mean return.

Next comes a simple Automatic System. This system is
hardly added with any decision-making strategy. As long as

the predicted decline next day exceeds transaction cost, we
sell the assets, and vice versa. Unless both assets fall, we do
not keep cash in wallets. If both assets rise or other complex
conditions, we would allocate the percentage of each asset
according to rules in Sec. III-B2.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: In this paper, we only take two assets: gold
and bitcoin as examples. To predict the price based on data
up to that day, we collected the price of gold and bitcoin
during a five-year trading period from September 11, 2016 to
September 10, 2021, and name them as GOLD and BTC. We
supplement the default data of GOLD to improve the accuracy
of subsequent prediction, and calculate the specific fluctuation
ratio of assets price each day.

To gain a more intuitive understanding of price changes,
we create a column that indicates the Logarithmic return
ratio of each day. The price fluctuation follows a log-normal
distribution with a more stationary characteristic [16].

2) Index: Based on the two comparative systems mentioned
in Sec. III-C, we mainly use two indexes as follows.

Return: Assume that we have $1000 in the beginning as
the initial capital, and we calculate how much our assets is
worth after five-year prediction and decision-making.

Accuracy: Since the exact changing range is difficult to
predict, the accuracy in this paper refers to whether we
correctly predict it rises or falls.

403

5

TABLE II: Model Modify

Models Accuracy GOLD (%) Training MSEGOLD Test MSEGOLD

LSTM 98.2 1373.836482 1378.41921
LSTM with Feed Back 98.5 1321.472946 1299.382565

Models Accuracy BTC (%) TrainingMSEBTC TestMSEBTC

LSTM 98.5 7132.357321 31232.64239
LSTM with Feed Back 98.8 7037.683933 29475.83646

B. Assets Price Prediction

We assume that the real data has a certain law, and believe
that LSTM learns some laws from the training set, but previous
experiments indicate that there are some deviations between
the laws contained in real data and learned by LSTM. Accord-
ingly, we speculate that the gap between prediction results and
real data also forms a certain law. Therefore, we add Feedback
Mechanism (deviate LSTM in Sec. III-A) for predicting the
gap to correct the predicted price.

As shown in Fig. 4, LSTM with Feedback simulates the
whole price fluctuation almost perfectly even on BTC with ex-
aggerated fluctuations. Table II better shows the performance
of LSTM with Feedback and it behaves very improvement on
all metrics compared to a single LSTM. Our model achieves
the accuracy of 98.5% on GOLD and 98.8% on BTC, which
demonstrate Feedback mechanism with highly effectiveness.

C. Three Decision-making Systems and Who is the Best

In general, we calculate how much our assets is worth
finally. According to the prediction, Random System achieves
$0.0006 billion in five years, which is too little to show on
the Fig. 3. Automatic System which makes decisions only
based on the relationship between prediction and transaction
cost shows a good performance of $2.17 billion.

However, the market is difficult to predict and untenable
to directly rely on computer models. Therefore, we introduce
mature market rules in our decision-making model to modify
the predicted price, and finally get $2.78 billion.

1) The random system: The performance of Random
System is worth mentioning (Fig. 5 in a timeline). After
experimental data of 1000 random trials are averaged, the solid
line is obtained. The shaded part indicates the fluctuation range
of 1000 randomized trials. The assets value almost completely
follows bitcoin. We guess the reason is the price of bitcoin
fluctuates more suddenly and steeply than that of gold. Bitcoin
has risen greatly in recent years, so the results are better.
However, there are also great disadvantages. When bitcoin
plummeted, our total assets decreased sharply. It shows that
blind investment is problematic even with a correct prediction.

2) Our strategy: Fig. 6 shows the performance of our
strategy with assets worth and different assets’ ratio in a
timeline. Since the effect of the other two models is relatively
weak, we mainly compare our model with Automatic System.

The final assets value of our strategy is 28.1% higher than
that of Automatic System, which fully shows the effectiveness
of the laws we designed from different disciplines. As is shown
in Fig. 6, the overall worth is rising almost consistently and
the ratio of different assets is relatively uniform. Each color
lasts a certain distance that indicates the ratio is relatively

TABLE III: The transaction cost and ratio of two models.

Models Transaction cost Return Ratio (%)
Decision-making system 1.68 2.78 60.43

Automatic system 1.78 2.17 82.04

stable. There is no problem of frequent buying and selling of
Automatic System, which leads to a large amount of handling
charge.

In addition, with the addition of well-designed decision-
making methods, we can well avoid the characteristic that
the value follows bitcoin in the random system. We discover
that the value of assets has been rising over time without any
decline, which shows our strategy the most stable one. Unlike
the random system that always invests in bitcoin, when the
predicted price of bitcoin falls, our strategy will buy a lot of
gold to ensure that assets value are not lost.

D. Influence of Transaction Cost
In this part, we compare our model mainly with Automatic

System. We get the transaction cost through programming,
and calculate the ratio between it and the actual return of the
model. Table III below includes these information.

In this table, Automated System spends more on transac-
tion fees during the investment period, meaning more daring
actions. After introducting market rules, we spent less fees
and achieved 27% higher profits than the automatic system.
We conclude that machines tend to short-term benefits, while
decision-making systems pay more attention to long-term
benefits, which is also what economic principles tell us. It
indicates that decision-making is significantly effective in
portfolio management.

E. Parameters chosen
Fig. 7 (a) shows how much the assets worth finally under

different lower confidence limits. In Sec. III-B, based on the
predicted results of LSTM with a feedback mechanism, we set
a confidence level for the predicted price by combining some
economic principles and other methods. Confidence levels
would inevitably effect the final results, so we need to find the
most appropriate value. Experimental results show that when
the confidence level is 0.94, the final assets price maximized.

For portfolio management, we make decisions with refer-
ence to predicted prices. In reality, there are often frequent
changes in prices in a short term, which leads to unnecessary
trading operations and increases the transaction cost. The
problem can be effectively avoided by predicting prices of
several days in the future, but it leads to inaccurate prediction
when we predict prices for too many days. We conduct
repeated experiments and finally discover in Fig. 7 (b) that
predicting the price of next three days brings the best results.

404

2017/1/1
2017/6/1

2018/1/1
2018/6/1

2019/1/1
2019/6/1

2020/1/1
2020/6/1

2021/1/1
2021/6/1

0.0

0.5

1.0

1.5

2.0

2.5
B

ill
io

n
D

ol
la

rs

(a)

2019/6/1
2020/1/1

2020/6/1
2021/1/1

2021/6/1
0.0

0.5

1.0

1.5

2.0

2.5

B
ill

io
n

D
ol

la
rs

Gold
BitCoin
Dollar

(b)

Fig. 6: In our strategy, (a) red line indicates how much is our assets worth in a timeline of five years; (b) ratio of different
assets in our portfolio management during the same time.

0.84 0.86 0.88 0.90 0.92 0.94 0.96
0

5

10

15

20

25

B
ill

io
n

D
ol

la
r

(a)

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

B
ill

io
n

D
ol

la
r

(b)

Fig. 7: Our assets worth under different parameters: (a) different lower confidence limits range in [0.84, 0.96]; (b) different
number of days of which we predict assets prices and train iteratively.

V. CONCLUSION

For better portfolio arrangement, we established a novel
system which contains a price prediction model and a decision-
making model. We applied an LSTM model with Feed-
back Mechanism and achieved an excellent accuracy on two
datasets. As for decision-making, we devised an ensemble
method based on three approaches (reward and punishment
mechanism, sequential days rules, historical price relying).
to modify the predicted price by giving a confidence level.
We summarized transactions into 8 trading operations and
designed an algorithm to automatically output the operation
with largest return. We calculate the returns and transaction
costs of comparative systems, to demonstrate that our strategy
is more reasonable. For future work, we can further combine
external information, such as policies to enhance the system.

REFERENCES

[1] Y. Fang, K. Ren, W. Liu, D. Zhou, and T. Y. Liu, “Universal trading for
order execution with oracle policy distillation,” 2021.

[2] A. A. Obizhaeva and J. Wang, “Optimal trading strategy and sup-
ply/demand dynamics,” Journal of Financial Markets, vol. 16, no. 1,
pp. 1–32, 2013.

[3] E. P. Chan, Quantitative trading: how to build your own algorithmic
trading business. John Wiley & Sons, 2021.

[4] S. Bai, J. Z. Kolter, and V. Koltun, “Trellis networks for sequence
modeling,” 2018.

[5] R. Wang, H. Wei, B. An, Z. Feng, and J. Yao, “Commission fee is not
enough: A hierarchical reinforced framework for portfolio management,”
2020.

[6] M. H. Chen, J. G. Ibrahim, and Q. M. Shao, “Maximum likelihood
inference for the cox regression model with applications to missing
covariates,” Journal of Multivariate Analysis, vol. 100, no. 9, pp. 2018–
2030, 2009.

[7] J. Durbin, S. J. Koopman, and O. U. P. (OUP), Time Series Analysis by
State Space Methods. Time series analysis by state space methods /,
2012.

[8] A. Beber and M. W. Brandt, “Resolving macroeconomic uncertainty in
stock and bond markets,” NBER Working Papers, vol. 13, no. 1, pp.
1–45, 2006.

[9] Song, H. Chen, G. Jiang, and Y. Qin, “Dual stage attention based
recurrent neural network for time series prediction,” 2018.

[10] H. Wang, H. Ahluwalia, R. A. Aliaga-Diaz, and J. H. Davis, “The best
of both worlds: Forecasting us equity market returns using a hybrid
machine learning – time series approach,” Social Science Electronic
Publishing.

[11] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[12] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and
long short-term memory (lstm) network,” Physica D: Nonlinear Phe-
nomena, vol. 404, p. 132306, 2020.

[13] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep
captioning with multimodal recurrent neural networks (m-rnn),” arXiv
preprint arXiv:1412.6632, 2014.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[15] N. G. Mankiw, Principles of economics. Cengage Learning, 2014.
[16] R. S. Hudson and A. Gregoriou, “Calculating and comparing security

returns is harder than you think: A comparison between logarithmic and
simple returns,” International Review of Financial Analysis, vol. 38, pp.
151–162, 2015.

405

Research on Identification and Refactoring Approach

of Event-driven Architecture Based on Ontology

Li WANG1,2

1School of Computer

Science and Engineering

Southeast University

Nanjing, China
2Jiangsu Automation

Research Institute

Lianyungang, China

wangli1218@seu.edu.cn

Xiang-long KONG
School of Computer

Science and Engineering

Southeast University

Nanjing , China

xlkong@seu.edu.cn

Xiao-fei WANG
NARI Group corporation

Nanjing, China

wangxiaofei@sgepri.sgcc.c

om.cn

Bi-xin LI‡
School of Computer

Science and Engineering

Southeast University

Nanjing , China

bx.li@seu.edu.cn

Abstract—Event-driven architecture is one of the common

software architecture patterns. In the process of software

evolution, the deviation and corrosion often occur to architecture,

which leads to larger deviation between actual software

architecture and design architecture. Therefore, it is of great

significance to study the approach of software architecture

identification and refactoring. To solve this problem, we propose

an identification and refactoring approach of event-driven based

on ontology, i.e., IRABO. We evaluated IRABO on 50 open-source

projects and the results show that it performs effectively and

efficiently.

Keywords-Event-driven Architecture; Architecture

Identification; Architecture Refactoring

I. INTRODUCTION

Appropriate pattern can solve the design problem of software
architecture[1]. Event-driven architecture is a very popular
architecture pattern at present, which is usually used in systems
that require high agility and quickly response[2]. The event-
driven architecture can fulfill that requirement quite well. But,
in the process of software evolution, many factors may make the
software architecture deviate from the original design, such as
the change of requirements, the improvement of functions, et al.
So, it is necessary to refactor the architecture. Architecture
patterns provide a good direction for refactoring [3].

In this paper, we propose identification and refactoring
approach of event-driven architecture based on ontology, i.e.,
IRABO, which consists of two parts. We firstly extract the
dependency information from source code to build the program
dependency graph. Then we convert the program dependency
graph into RDF (The Resource Description Framework) triples
to build the ontology of instance layer. Finally, we use the event-
driven architecture usage specification to locate the refactoring
point in the identification result, and refactor the software
architecture.

To evaluate the effectiveness accuracy and efficiency of
IRABO, we conduct experiments on 50 open-sourced projects
with manual analysis approach. The results show that IRABO
performs much better in terms of accuracy and effectiveness

efficiency in our experiments. In summary, our paper makes the
following novel contributions:

We put forward the ontology-based event-driven
architecture pattern identification approach and the architecture
refactoring approach based on event-driven architecture.

We build the experiment for ontology-based event-driven
architecture identification and refactoring to verify the ontology-
based event-driven pattern identification and refactoring
approach.

II. APPROACH

In this section, we present the details of the identification and
refactoring approach of event-driven based on ontology, i.e.,
IRABO. The technique comprises two main steps, identification
approach of event-driven architecture based on ontology,
refactoring approach of event-driven architecture based on
ontology.

A. Identifying Event-driven Architecture Based on Ontology

Event-driven architecture identification based on ontology is
essentially a process of abstract matching between source code
and event-driven architecture. As presented in Fig.1, First, we
use the source code analysis tool to extract the dependency
information. Second, we use ontology to descript the
dependency information to construct instance layer ontology;
meanwhile, we use ontology to describe the structural behavior
characteristics of event-driven architecture to construct concept
layer ontology. The instance layer ontology and concept layer
ontology form the Ontology Knowledgebase. We use ontology
inference engine to process the Ontology knowledgebase to
obtain the instance of event-driven architecture. Compared with
other semi-automatic or manual approaches, IRABO can
improve the accuracy and automation of event-driven
architecture identification.

1) Construction instance layer ontology:
 In this paper, the object of identification is Java projects.

We choose JDT to enerate an Abstract Syntax Tree, i.e., AST.

‡ Corresponding author

* Project supported by the National Natural Science Foundation

of China (No. 61872078)

DOI:10.18293/SEKE2022-013
406

mailto:xlkong@seu.edu.cn
mailto:xlkong@seu.edu.cn
mailto:bx.li@seu.edu.cn

Instance layer

ontology

Knowledge base

Ontology

inference engine
Concept layer

ontology

Regulation

Extended

knowledge base

Event-driven

mode instance

Dependent

information

source

code
parsing

Describe with

 ontology

Reasoning Querying

Figure 1. Event-driven architecture identification based on ontology

We extract the dependency information by traversing the ADT

to build a dependency graph. As shown in Fig 2, the node

represents the program entities, and the directed edge represents

the dependency between program entities. We convert the nodes

and directed edges into RDF triples set.

A

C

B

D E

inheritance

composition

invocation

Figure 2. RDF triple set

2) Construction concept layer ontology:

 In this paper, we choose the common ontology building Jena
to build ontology of the event-driven architecture. First, we use
ontology to describe the observer pattern and its specific
application in event-driven architecture, thus indirectly
describing the behavior characteristics of event-driven
architecture. Second, we use ontology to describe the component
reuse behavior of the event-driven system to the event-driven
framework. riven architecture usage specification to locate the
refactoring point in the identification result, and refactor the
software architecture.

The event-driven architecture has three components: event,
listener and event source. The listener acts as the observer, and
the event source acts as the observed[3][4] [5]. The behavior
characteristics of the event-driven architecture are shown in Fig
3.

Event Source

ListenerEvent

Registration/monitoring
Generating

 Component reuse

 Handling

Component reuse

Component reuse

Observer mode

Event-driven

mechanism

framework

Figure 3. Behavior characteristics of event-driven architecture

An important behavioral feature of event-driven architecture
is the component reuse behavior of event-driven framework, as
shown in Fig 4. When programmers develop event-driven
systems under the framework of event-driven mechanism, they
only need to define the listeners through the listener interface,

and inherit the sensible operating components under the
framework to define their own event sources and the event
classes under the framework to define their own events[6]. We
describe the event-driven architecture indirectly by describing
observer pattern and event-driven framework. We build
ontology to describe the component reuse behavior of the event-
driven framework on the ontology building platform.

EventDrivenSystem

User_Listener User_EventSource User_Event

EventDrivenFrame

frame_Listener frame_EventSource frame_Event

implements/extends extends extends

Figure 4. Event-driven pattern framework reuses behavior

3) Reasoning and inquiry

We reason and query based on ontology to match between the

target system and the event-driven architecture, so as to obtain

the event-driven architecture instance. We reason and query the

model defined by Jena[7][8]. We use the ontology query

function to obtain the instance of event-driven architecture in the

extended ontology knowledgebase.

B. Refactor event-driven architecture

In this section, we refactor architecture based on event-
driven architecture identification. As shown in Fig 5, we use the
event-driven architecture violate specification to locate the
refactoring points. Then we choose the corresponding
refactoring scheme to eliminate or reduce the violation of the
event-driven architecture, so as to obtain a new architecture.
Repeat the steps until there is no violation of event-driven
architecture in the target system.

Step 1: We locate the refactoring point in the identification
result of event-driven architecture. Refactoring point is the
violate specification of event-driven architecture. The event-
driven architecture is a distributed processing pattern composed
of highly decoupled event listeners with single responsibility.
Therefore, the most important usage specifications of the event-
driven architecture are the single responsibility of the listener
specification and the distributed processing specification. The
single responsibility of the listener specification requires a
listener to handle only one type of events. If a listener class
handles multiple types of events, the change of one event

407

Current

version

refactored

version

Event-driven

architecture pattern

identification

Positioning

refactoring

point

Implement the

refactoring

scheme

Figure 5. Refactoring process of event-driven architecture

handling method may weaken the handling ability of other
events[9]. The distributed processing specification requires that
the events are generated and processed in different classes. If a
class is both an event source and a listener, it violates the
distributed processing specification[5].

Step 2: we implement the scheme for the refactoring points.
The appropriate refactoring scheme should specify the
refactoring operation according to different refactoring points.
In this paper, we propose two refactoring schemes, i.e., RS, for
the refactoring points located by the single specification of
listener responsibility and the distributed processing.

RS 1: The refactoring scheme for the single responsibility of
the listener specification.

The refactoring scheme is proposed to eliminate the violation
of the single responsibility of the listener specification. In this
kind of violation, a listener class handles more than one type of
events. The refactoring scheme is to split the listener class into
several classes and let each class handle one type of events. As
shown in Fig 6, we define a new empty listener class, and
transfer the one of the events to the new class. At the same time,
the corresponding dependencies are transferred.

MultiListener

Handling

Event1

Event2

Handling

MultiListener

Handling Event1

Event2Handling

MultiListener1

Method migration/

dependency transfer
Splitting

Class

Figure 6. Split listener classes that handle various types of events.

RS 2: The refactoring scheme for distributed processing
specification

The refactoring scheme is proposed to eliminate the violation
of the regulations of the distributed processing specification. In
this kind of violation, the class is both an event source and a
listener. The refactoring scheme is to split the class into two
classes, one class is listener and the other is event source.

MultiComp

Generating/Handling

event

MultiComp

Handling

Event

listener1

Method migration/

dependency transfer
Generating

Figure 7. Splitting classes that are both event sources and listeners

 As shown in Fig 7, we define a new empty listener class, and
transfer the events handling to the new class. At the same time,
the corresponding dependencies are transferred. The original
class acts as an event source and the new class acts as a listener.

III. EXPERIMENT AND RESULTS

The identification and refactoring approach of event-driven
architecture can identification and refactoring event-driven
architecture based on ontology accuracy and efficiency, which
can help developers understand and maintain software projects.
In this section, we aim to answer the following research
questions:

RQ1: How about the accuracy of the software architecture
identification technique?

RQ2: How about the accuracy of the software architecture
refactoring technique?

RQ3: How about the efficiency of the software architecture
refactoring technique?

A. Experimental Setup

1) Subject projects
To answer the above research questions, we select 50 Java

projects from GitHub and SourceForge according to the
popularity of Java projects. These projects are more popularity
with the key words, such as game, game engine, Java awt, Java
swing and event-driven. We analysis the documents and source
codes of these 50 projects manually to obtain the ground-truth
architecture. We select freecol and shiro to analyze their
refactoring points.

2) Measurement
We use Precision, Recall and Accuracy to measure the

accuracy of software architecture identification technique. It is
defined by the following formulas

TP
P

TP FP
=

+
 (1)

TP
R

TP FN
=

+
 (2)

TP TN
A

TP FP

+
=

+
 (3)

Where P indicates Precision, R indicates Recall, A indicates
Accuracy, TP, FN, FP and TN indicate four numerical values in
the confusion matrix of identification results.

408

TABLE I. CONFUSION MATRIX OF IDENTIFICATION RESULTS

Manual analysis results
Identification result

Yes No

Yes TP FN

No FP TN

We use Accuracy, CostRate and Effectiveness to measure
the efficiency of the software architecture refactoring technique.

The Accuracy of refactoring point location is the proportion
of correctly located refactoring points in all the refactoring
points located by this technique.

The CostRate is the proportion of the number of classes to
be refactored to the total number of classes in the object.

The Effectiveness is the proportion of eliminated refactoring
points in all the refactoring points located by this technique.

3) Experimental steps
For each studied subject, we performed the following steps:

Step1: We collect 50 Java projects from GitHub and
SourceForge with the key words.

Step2: For each selected project, we identify their
architecture pattern manually to confirm wither they are event-
driven architecture project.

Step3: For freecol and shiro, we obtain their ground-truth
architecture manually to build the comparative experiments.

Step4: For freecol and shiro, we refactor their architecture
base on ontology, and we collect all the results to analyze the
accuracy and effectiveness.

Step5: For each event-driven architecture project, we obtain
the refactoring points and process the refactoring schemes by
manual analysis as reference, the effectiveness of the refactoring
method based on event-driven architecture identification is
evaluated through the accuracy of refactoring point positioning

and refactoring cost rate.

In the experiments, we use computer with 64-bit Windows
10 and 8G memory. We use JDK1.8, Eclipse Neon 4.6.0, and
MySql 5.6. The ontology inference engine witch we use is Jena
3.10.0.

B. Results analysis

RQ1: The accuracy of the software architecture identification

technique
To evaluate accuracy of the event-driven architecture

identification-based ontology, we apply the IRABO, and manual
analysis work on the 50 projects. The manual analysis work of
clone, freecol, jmonkeyengine, Jadventure, libgdx, AndEngine,
overlap2d, GameHelper and Shiro is based on the source code
and documents. The other 41 projects can only be analyzed
according to the source code because of missing documents.

Table II presents the results, “√” means the project is event-

driven architecture, “×” means the project isn’ t event-

driven architecture.

From Table III, we can find that there are 13 projects with
event-driven architecture by manual analysis. There are 12
projects with event-driven architecture by IRABO identification.
There are 8 projects whose manual analysis and RABO
identification results are both event-driven architectures. The
Precision, recall and accuracy of IRABO are 66.6%, 61.54% and
82%. There are 18% identification error rate of IRABO.

The reason of identification error rate of IRABO is false
negative and false positive. The reason of false negative is as
follows:

IRABO only considers the typical event-driven architecture
when identifying the architecture, but it fails to identify the
project with atypical event-driven architecture.

IRABO only considers the mainstream event-driven
framework when identifying the architecture, but it fails to
identify the non-mainstream event-driven framework.

TABLE II. IDENTIFICATION RESULTS

Project IRABO Manual analysis Project IRABO Manual analysis Project IRABO Manual analysis

clone √ √ Terasology × × blog × ×

openbbs × × pixel-dungeon × × jnativehook × ×

MyBlog × × FunGameRefresh × × jmonkeyengine √ √

freecol √ √ WorldEdit × × Jadventure × √

terrier × × JustWeEngine × √ jadx × ×

lionengine √ √ overlap2d √ × JHotDraw × ×

junit4 × × StormPlane × × libgdx × √

la4j √ × OpenRTS √ √ AndEngine × √

okhttp × × PretendYoureXyzzy √ × HikariCP × ×

mybatis × × Essentials × × arthas × ×

vert.x × × GameHelper × × Mosby × ×

beautyeye √ × druid × × latexdraw × ×

symphony × × SSH-master × × MARIO × ×

mockito × × ssm-master × × log4j × ×

junit5 × × Examination_System × × FXGL × ×

litiengine √ √ shiro √ √ JabRef × ×

inxedu × × realm × ×

409

IRABO describes the event-driven architecture by
describing the structural behavior characteristics of the observer
pattern and its application. Therefore, the false identification of
the observer pattern will lead to the false identification of the
event-driven architecture.

TABLE III. EXPERIMENTAL RESULTS

Manual analysis
IRABO

Yes No Total

Yes 8 5 13

No 4 33 37

Total 12 38 50

Precision 66.67%

Recall 61.54%

Accuracy 82%

The reason of false positives is as follows:

Architecture is the overall design of software. When the
project partially implements the event-driven mechanism,
IRABO would identify it as an event-driven architecture project.

We obtain the ground-truth architecture by manual analysis,
and the false of manual analysis results will lead to false
positives.

RQ2: The accuracy of the software architecture refactoring
technique

We choose two typical event-driven architecture projects,
freecol and shiro. We use IRABO to obtain the event-driven
architecture instances of two projects compare with manual
analysis results. The accuracy of IRABO is measured by
Precision and Recall, as shown in Table IV.

TABLE IV. THE ACCURACY OF IRABO

Project Component Precision Recall

freecol

audio monitor 75.45% 65.76%

event 54.23% 44.54%

Event source 58.51% 41.71%

shiro

audio monitor 83.35% 66.23%

event 57.68% 46.54%

Event source 65.43% 58.92%

Average value 65.78% 53.95%

From Table IV, we can find that the average Precision and
Recall of IRABO are 65.78% and 53.95%. The false positives
and false negatives in the event-driven architecture identification
results are caused by event-driven architecture variants and false
manual analysis result.

RQ3: The efficiency of the software architecture refactoring
technique

a) Eliminate the single responsibility of listener
specification violation

We positioned refactoring points that violate the single
specification of listener responsibilities in all the event-driven
architecture. We fined refactoring points in clone, freecol,
lionengine and litiengine by IRABO and manual analysis. The
Refactoring points positioned by IRABO and manual analysis
work are shown in Table V. In clone, freecol, lionengine and
litiengine, the Accuracy of IRABO is 50%, 39.1%, 46.2% and

60.2%, and the CostRate of IRABO is 0.035, 0.153, 0.172 and
0.272.

TABLE V. REFACTORING POINTS

Project Classes

Refactoring

points

 (IRABO)

Refactoring

points

(Manual)

Classes needing

refactoring

clone 115 2 1 4

freecol 1224 192 75 188

lionengine 843 132 61 145

litiengine 445 88 53 121

We choose a refactoring point CanvasMouseListener in
freecol, which violates the single specification of the listener
specification. Then we refactor CanvasMouseListener by RS 1
to eliminate the single responsibility of listener specification
violation.

b) Eliminate the distributed processing specification
verification

We positioned refactoring points that violate the distributed
processing specification in all the event-driven architecture. We
fined refactoring points in reecol, lionengine and litiengine by
IRABO and manual analysis. The Refactoring points positioned
by IRABO and manual analysis work are shown in Table VI. In
reecol, lionengine and litiengine, the Accuracy of IRABO is
75%, 65.2% and 77.3%, and the CostRate of IRABO is 0.009,
0.018 and 0.038.

TABLE VI. REFACTORING POINTS

Project Classes

Refactoring

points

(IRABO)

Refactoring

points

(Manual)

Classes

needing

refactoring

freecol 1224 12 9 11

lionengine 843 23 15 15

litiengine 445 22 17 17

We choose a refactoring point BuildingPanel in freecol,
which violates the distributed processing specification. Then we
refactor BuildingPanel by RS 2 to eliminate the distributed
processing specification verification.

IV. THREATS TO VALIDITY

Threats to external validity. The ground-truth architecture
obtained by manual analysis is used to verify the accuracy of the
architecture obtained by IRABO. Influenced by the ability of
analysts or the complexity and scale of the project, the
architecture obtained by manual analysis is subjective to some
extent. That may threaten the accuracy of the software
architecture identification and refactoring technique. To reduce
this threat, we will select more excellent open-source projects of
event-driven architectures; conduct a more comprehensive
analysis to obtain ground-truth architecture more accurately.

Threats to internal validity. IRABO only considers the
typical event-driven architecture when identifying the
architecture. For the projects with atypical event-driven
architecture, false negative and false positive may occur. To
reduce this threat, we will consider more variants of event-driven
architecture to build a more complete ontology knowledge base
of event-driven architecture.

410

Limited by manpower and time, the projects selected in this
paper are small-scale, which cannot verify the accuracy and
effectiveness of this technique in large-scale projects. In the
future work, we will repeat the experiments with more large-
scale projects to reduce this threat.

V. RELATED WORK

In the aspect of pattern identification and description of
architecture, Mavridou Anastasia points out that architecture can
be represented by logic and architecture style can be described
by configuration[9]. Cortella Essav and others proposed to use
logical predicates to model anti-patterns, and build an engine
based on these logical predicates to detect anti-patterns in the
target system[10]. Rabiaz et al. proposed a method of knowledge
retrieval to identify instances of architecture patterns in software
systems.[11]. The powerful ability of ontology description is
exactly what is needed to describe the very high level of
abstraction such as architectural patterns.[12]. Velasco-Elizondo
P and others put forward an automatic analysis architecture
model based on knowledge representation and information
extraction, and then reconstructed the system according to the
analysis results.[13]. The main problem of the existing
architecture pattern identification and refactoring methods is the
lack of a special method for event-driven architecture
identification and refactoring. Therefore, this paper proposes an
ontology-based pattern identification and refactoring method for
event-driven architectures.

VI. CONCLUSION

In this paper, we present an approach of identification and
refactoring approach of event-driven architecture based on
ontology, i.e., IRABO. We identifying event-driven architecture
based on ontology. We refactor event-driven architecture
according to the usage specification of event-driven architecture.
Experiments verify the accuracy of pattern identification based
on ontology-based event-driven architecture and the
effectiveness of the refactoring scheme. We evaluate IRABO by
conducting experiments on 50 projects and compare with
manual analysis work. The results show that IRABO perform
efficiency and effectively. And there is still space for
improvement of architecture recovery effectiveness. The follow-
up work can start with the method of identification more variants

of event-driven architecture to further improve the accuracy and
effectiveness of software architecture recovery.

REFERENCES

[1] Ta’id Holmes, and U. Zdun . Refactoring Architecture Models for
Compliance with Custom Requirements[C]. ACM/IEEE 21st
International Conference on Model Driven Engineering Languages and
Systems ACM, 2018.

[2] Elish K O , Alshayeb M . Using Software Quality Attributes to Classify
Refactoring to Patterns[J]. Journal of Software, 2012, 7(2):p.408-419.

[3] Overbeek S , Janssen M , Bommel P V . Designing, formalizing, and
evaluating a flexible architecture for integrated service delivery:
combining event-driven and service-oriented architectures[J]. Service
Oriented Computing&Applications, 2012, 6(3):167-188.

[4] Tragatschnig S , Stevanetic S , Zdun U .Supporting the evolution of event-
driven service-oriented architectures using change patterns[J].
Information and Software Technology, (2018):133-146.

[5] Woodside M . Performance Models of Event-Driven Architectures[C].
CPE '21: ACM/SPEC International Conference on Performance
Engineering ACM, 2021.

[6] Abel Gómez, Iglesias-Urkia M , Urbieta A , et al. A model-based
approach for developing event-driven architectures with
AsyncAPI[C].MODELS '20: ACM/IEEE 23rd International Conference
on Model Driven Engineering Languages and Systems. ACM, 2020.

[7] Yu Lei, Ma Hui, Wang Cheng. Research on equipment PHM knowledge
ontology construction and semantic reasoning method[J]. ournal of
Ordnance Equipment Engineering, 2019,40(S1):126-130.

[8] Lerlertvanich R, Vatanawood W. Facade Layer for Apache JENA[J].

Arpn Journal of Systems & Software, 2012, 2(11).

[9] A. Mavridou, E. Baranov, S. Bliudze, et al. Configuration logics:

Modeling architecture styles[J]. Journal of Logical and Algebraic

Methods in Programming, 2017, 86(1): 2-29.

[10] V. Cortellessa, A. D. Marco, C. Trubiani. An approach for modeling and

detecting software performance antipatterns based on first-order logics[J].

Software & Systems Modeling, 2014, 13(1): 391-432.

[11] Rabinia Z , Moaven S , Habibi J . Towards a knowledge-based approach

for creating software architecture patterns ontology[C].International

Conference on Engineering & Mis. IEEE, 2016.

[12] Guessi M, Moreira D A, Abdalla G, et al. OntolAD: a Formal Ontology

for Architectural Descriptions[C].ACM SAC 2015. ACM, 2015.

[13] Velasco-Elizondo P, Marín-Piña R, Vazquez-Reyes S, et al. Knowledge

representation and information extraction for analysing architectural

patterns[J]. Science of Computer Programming, 2016, 121: 176-189.

411

Designing Microservice-Oriented Application
Frameworks

Yunhyeok Lee
Dept. of Computer & Information Science

University of Massachusetts Dartmouth
Dartmouth, Massachusetts, U.S.A.

ylee7@umassd.edu

Yi Liu
Dept. of Computer & Information Science

University of Massachusetts Dartmouth
Dartmouth, Massachusetts, U.S.A.

yliu11@umassd.edu

Abstract—An application framework is a reusable “skele-
ton” application that can be specialized to develop custom
applications. As microservices become more popular in the
software industry, the importance of methodologies for designing
microservices-oriented frameworks is increasing. However, the
existing methodologies for designing application frameworks,
which were developed for the monolithic environment, do not
fit the microservice architecture well. To address this issue, this
study extends Schmid’s systematic generalization approach to en-
able the design of microservice-oriented application frameworks.
The methodology introduces communication spots, which define
the execution orders among services, and communication styles,
which define the communication relationship among services,
to capture the communication characteristics in microservice
environments. The methodology also proposes the strategies
in microservice generalization and the usage of integration
patterns in transforming a microservice-oriented application into
a microservice-oriented framework. The new methodology can
facilitate a developer to systematically design a microservice-
oriented application framework by generalizing from a microser-
vice application. A case study is used to demonstrate how to
apply the proposed methodology to design a microservice fraud-
detection framework.

Keywords—software frameworks, microservice-oriented, de-
sign methodology

I. INTRODUCTION

An application framework is ”a generic application that
allows different applications to be created from a family
of applications.” [18] Application frameworks facilitate the
developers to reuse the framework’s software artifacts to effi-
ciently construct customized applications in particular business
domains. An application framework contains the common
aspects (frozen spots) that all family members have and
variable aspects (hot spots) that vary among the application
in the family [18]. The hot spots allow the framework to be
customized to a specific member of the family.

The design of an application framework can be much more
complicated than the design of a single application because the
framework needs to address both common aspects and variable
aspects in the application domain. Thus, the framework design
requires a systematic approach.

Schmid[18] proposed a methodology of designing applica-
tion frameworks using systematic generalization. The method-

DOI reference number: 10.18293/SEKE2022-163

ology examines the design of an existing application, identifies
the frozen spots and hot spots in the family, and generalizes
the application structure to construct a framework [6]. Built
on the assumption of using the monolithic environment (single
code-base and one-time deployment), the methodology is well
suitable for designing object-oriented monolithic frameworks
in which the components are designed to communicate based
on the class relationships, such as inheritance, polymorphism,
and composition. Microservice architecture [8] distinguishes
itself from monolithic architectures by characteristics, such as
modularity, fine grained services and communication mecha-
nisms. In a microservice-oriented application, each service has
its own process, which serves a single purpose and commu-
nicates with other services through lightweight mechanisms,
such as APIs. As microservices are increasingly used in the
development world, microservice-oriented application frame-
works will be beneficial for the development of microservice-
oriented applications in the particular business domains that
the frameworks are constructed for. However, few study has
been published on the methodology of designing microservice-
oriented application frameworks. Schmid’s approach is appli-
cable for generalizing the hot spots and frozen spots within
a microservice, but it is not sufficient to address the inter-
microservices communications.

This research aims to propose a methodology for design-
ing microservice-oriented application frameworks. The pro-
posed approach is built on Schmid’s systematic generalization
methodology and extends it to fit into the microservices
environment.

The rest of the paper is organized as follows. Section
II briefly introduces the microservice architecture, Schmid’s
application framework design methodology and microservices
integration patterns. Section III presents a methodology for
designing microservice-oriented application frameworks. Sec-
tion IV uses a case study to present how to apply the proposed
methodology in designing a microservice fraud detection
framework. Section V discusses related works similar to our
approach, and Section VI concludes the work.

II. BACKGROUND

This section provides a brief introduction to the microser-
vices architecture and microservices integration patterns as

412

well as an overview of Schmid’s systematic framework design
from which our study extends.

A. Microservices Architecture

Martin Fowler defined the term ”Microservices” [8] as a
method to build a software application with a set of small
services. Each service has its own process, which serves a
single purpose and communicates with other services through
application programming interfaces (API) [8]. Modularity,
fine-grained services, and simple communication mechanism
are the three key characteristics of microservices.

A microservice-oriented application contains a suite of
independent modules in a system. Each of thoese modules,
also called a microservice, encapsulates its domain logic and
contributes to the overall functionality of its system, unlike
the monolith which puts all the functionalities in a single
process [8]. This modularity improves the flexibility of the
development and the deployment of each service and increases
the overall comprehensibility of the system.

The size of each microservice is comparatively small. Each
service should focus on a single business capability to support
low coupling within the system. The independent fine-grained
services allow for a low cost of system maintenance and
evolution into the future.

The microservices architecture focuses on lightweight com-
munication mechanisms instead of hiding complexities in the
communications. The HTTP request-response with resource
APIs and lightweight messaging are commonly used in mi-
croservices to provide “dumb pipes” [8]. A simple communi-
cation approach enables changes in services without modifying
the central service communication bus and offers the system
better scalability to the overall system [3].

B. Microservice Integration Patterns

Microservices must be properly composed for any given
system to function. There could be a large number of services
in a system. In addition, a service may be reused within differ-
ent scopes, which will increase the complexity of that service’s
composition. Service integration is crucial and challenging in
the field of microservices architecture.

The case study of this research adopts the general service
integration patterns [19], which are based on the interservice
communication mechanisms within microservices. These pat-
terns are Synchronous Messaging, Asynchronous Messaging,
and Hybrid Messaging.

1) Synchronous Messaging Pattern: The communication
between microservices is synchronous if microservice A sends
microservice B a request that requires a response and A is
blocked while waiting for said response [16]. The Synchronous
Messaging pattern is designed to integrate microservices when
they communicate via synchronous messaging.

2) Asynchronous Messaging Pattern: The communication
is asynchronous if microservice A sends a request but is not
blocked while waiting for a response if there is any [16].
The Asynchronous Messaging pattern is designed to integrate
microservices that communicate via asynchronous messaging.

3) Hybrid Messaging Pattern: To realize a business need,
a combination of synchronous and asynchronous messaging
is typically required within a system. The Hybrid Messaging
pattern provides a solution by combining aspects of the Syn-
chronous Messaging pattern and the Asynchronous Messaging
pattern.

C. Systematic Framework Design

Schmid’s methodology of the systematic construction of an
application framework consists of four steps [18]:

1) Creation of a Fixed Application Model: Schmid’s ap-
proach starts by constructing a fixed application model with
an object-oriented design for a specific application within the
family.

2) Hot Spot Analysis and Specification: Once a complete
model exists, the framework designer analyzes the model and
domain to discover and specify potential hot spots.

3) Hot Spot High-Level Design: The features of any hot
spots are accessed through the common interface of the
abstract class. However, the design of the hot spot subsystem
enables different concrete subclasses of the base class to be
used to provide variant behaviors.

4) Generalization Transformation: The approach seeks to
generalize the design around these hot spots by applying
systematic transformations of the design that are driven by
the analysis of the hot spot.

III. METHODOLOGY

The proposed methodology uses Schmid’s approach as a
basis and extends it to fit into the microservice-oriented envi-
ronment. The methodology consists of six steps as described
below.

A. Step 1. Develop a Solid Microservice-Oriented Application

Just like Schmid’s approach, the proposed methodology
starts with the construction of a representative application in
the framework family. However, this application should be
microservice-oriented, unlike the object-oriented, monolithic
application in Schmid’s approach.

B. Step 2. Identify Hot Spots and Frozen Spots

Aspects that vary among application family members are
hot spots [18]. The different implementations to the hot spots
result in different applications within the family. A framework
is customized to a specific application with the specific im-
plementations to the hot spots. The aspects that are common
to all the application family members are called frozen spots
[18]. These frozen spots are the basis of designing the overall
structure of the framework and are fixed and reusable for all
the applications within the family.

When designing a microservice-oriented framework, any hot
spots and frozen spots should be identified for each service.
Commonality and variability analysis approaches [5, 12] are
beneficial for identifying the hot spots and frozen spots.

413

C. Step 3. Analyze and Specify Hot Spots

We adopt the Schmid’s approach in analyzing the high-
level hot spots and specifying the details [18]. All identified
hot spots from the domain are collected and evaluated. Each
hot spot is specified by a short description of its purpose,
its common responsibility, the kinds of variability and the
multiplicity.

D. Step 4. Design Hot Spot Subsystems

A hot spot is captured within the scope of a microservice
and implemented by a hot spot subsystem. Schmid’s strategy
of designing hot spot subsystems is adopted for this phase. A
hot spot subsystem consists of an (abstract) interface defining
the common responsibilities, concrete implementations (for
addressing variability) to the interface, and additional classes
and relationships [18]. Design patterns [17] are beneficial
for determining the structures of the hot spot subsystems on
capturing the abstract interface and concrete implementations
and their relations.

E. Step 5. Identify Communication Spots and Communication
Styles

In a monolithic object-oriented application, communications
among the components are typically conducted through the
procedure calls via inheritance, polymorphism, or composi-
tion. Such communication is applicable for the components
within a microservice, but would not work between the mi-
croservices.

We use communication spots and communication styles to
specify how the microservices communicate within a system.
We define a communication spot as the execution order
between two services. For example, microservice A executes
prior to microservice B.

A communication style is defined as the procedure between
the server and client to communicate when there is a request
from the client side and the server side is expected to respond
to the client’s request. We use communication styles to de-
scribe the communications between microserivces or between
clients and microservices.

The communication styles are categorized as synchronous
and asynchronous, where the synchronous method is that a
client side sends a request to a server-side service and waits
for its response, and the synchronous method is that a client-
side keeps sending requests to the server-side service without
waiting for the acknowledgment of the previous response [11].

We use the notation A(C, S) to describe that client-side
C communicates with server-side service S through the
asynchronous style. We use S(C, S) to describe that client-
side C communicates with server-side service S through the
synchronous style.

This stage produces two descriptions: the communication
spot description that consists of a list of the execution order of
each pair of services, and the communication style description
that contains a list of each pair of client-side and server-side
service’s communication style.

F. Step 6. Transform into a Microservice-Oriented Framework

Schmid’s generalization transformation strategy uses the
object-oriented techniques, such as inheritance, polymorphism,
and composition, to generalize the design around the hot
spots for constructing the final framework structure. Such
transformation strategy is applicable within each microservice.
Beyond the structure of each service, a microservice-oriented
framework also needs to reflect the microservice generalization
and service communications.

We propose two options in generalizing the microservices.
The first option, as shown in Fig. 1, captures the abstract
interface and concrete implementations to the interface within
a microservice; while the second option, as shown in Fig. 2,
captures the abstract microservices in the framework only.

Fig. 1. Microservice Generalization - Option 1

Fig. 2. Microservice Generalization - Option 2

The microservices should be integrated properly in the
framework. The identified communication spots and commu-
nication styles determine the final integration transformation.
The three integration patterns (Synchronous Messaging, Asyn-
chronous Messaging, and Hybrid Messaging), described in
Section II.B, can facilitate the integration process.

IV. CASE STUDY

In this section, the design of a fraud detection application
framework is used to illustrate how the proposed approach can
be applied.

A. Overview of a Fraud Detection Application

Inspired by the fraud detection analysis on fraudulent credit
card transactions [15], we have developed a prototype mi-
croservice application that uses machine-learning techniques
to predict fraudulent credit card transactions. The application
consists of four microservices, which are described below:

• Dataset Uploading service is for users to upload a dataset
to the application. The CSV file format is accepted by
default; however, the service converts a non-CSV files
(such as XLSX) to CSV format.

• Preprocessing service normalizes data and selects impor-
tant features for further analysis.

414

• Fraud Detection service applies the machine learning
algorithms, such as Random Forest [21], Support Vector
Machine [22], and Logistic Regression [4], etc., to detect
fraud cases in the dataset.

• Evaluation service presents the results from Fraud detec-
tion as tables and heatmaps.

Figure 3(a) shows the user interface of the prototype appli-
cation, while 3(b) and (c) illustrate the results by applying the
Random Forest algorithm in a heatmap and a table.

(a)

(b)

(c)

Fig. 3. Prototype Fraud Detection System

In this research, the scope of the fraud detection application
family is constrained to analyze only stationary datasets on
classical computers using CPUs.

B. Design of Fraud Detection Framework

In order to allow the developers to design their own user in-
terfaces (UIs), the fraud detection framework does not include
UI components, but provides interfaces to connect to UIs.

Since a specific microservice application has already been
built, the design of the fraud detection framework begins with
step 2 of the design approach.

1) Identification of Frozen Spots and Hot Spots: By ana-
lyzing the design decisions and the scope of the application
family, we choose the following frozen spots:

• Frozen Spot 1. The data input and analysis order is fixed,
that it, dataset upload, data preprocessing, fraud analysis
and detection, and presentation of results.

• Frozen Spot 2. A dataset is uploaded one at a time and
then converted to CSV format.

• Frozen Spot 3. Machine learning algorithms are used in
the Fraud Detection service.

• Frozen Spot 4. Users should be able to upload a dataset,
choose machine learning algorithms and view the results.

After examining the scope and the prototype application, we
identify the following aspects that vary among applications in
the fraud detection family, thus define them as hot spots:

• Hot Spot 1. Variability in the file formats of datasets
uploaded by users in the Dataset Uploading service. In
addition to the default CSV format, other file formats
should also be supported, such as XLXS, mat, txt, etc.

• Hot Spot 2. Variability in the data normalization tech-
niques in the Preprocessing service.
Data normalization can be done using various methods,
such as decimal scaling, min-max normalization, etc.
Some text-based datasets may need natural language
processing [13] before further analysis.

• Hot Spot 3. Variability in the feature selection techniques
in the Preprocessing service.
Various methods can be applied to select the impor-
tant features such as Recursive Feature Elimination [2],
LASSO [7], etc.

• Hot Spot 4. Variability in the machine learning algorithms
applied to analyze a dataset in Fraud Detection service.
Various machine learning algorithms is applied to analyze
a dataset. These algorithms include supervised learning
(e.g. Random Forest) and semi-supervised learning (e.g.
Convolutional Neural Network [1]).

• Hot Spot 5. Variability in the result presentation in the
Evaluation service.
In addition to the heatmap and table presentation imple-
mented in the prototype, other data visualization tech-
niques can be added, such as AUROC curve [14].

2) Hot Spot High-Level Specification and Design: This
stage of the design involves the detailed specification of each
identified hot spot and the design of the hot spot subsystems.

Due to the page limit of this paper, we only present the
specification of hot spot 4, and its hot spot subsystem design.

Hot Spot 4: Variability in the machine learning algorithms
applied to analyze a dataset in Fraud Detection service.

• Description: To allow a variety of machine learning
algorithms.

• Common responsibility is to perform fraud detection on
a dataset.

• The kinds of variability required are the algorithms in the
categories of unsupervised learning, supervised learning,
and semi-supervised learning.

415

• The multiplicity is one since one machine learning algo-
rithm is used at a time.

The various machine learning algorithms are considered to
be interchangeable in the fraud detection. The subsystem of
hot spot 4 should allow new algorithms to be added and exist-
ing algorithms to be modified or removed without impacting
the remaining parts of the system. In addition, a convenient
way to access each algorithm should be provided. The Strategy
design pattern defines ”a family of algorithms, encapsulates
each one, and makes them interchangeable; Strategy lets the
algorithm vary independently from clients that use it.” [9]
This pattern is the best fit for organizing and managing the
independent machine learning algorithms.

Fig. 4. Hot Spot Subsystem of Fraud Detection

As illustrated in Fig. 4, the interface AbstractAlgorithm
defines the methods that are common in the machine learning
algorithms which are supported in this application family; A
machine learning algorithm, such as Random Forest, Support
Vector Machine, Logistic Regression, etc., is implemented as a
concrete class to the AbstractAlgorithm interface; The Context
maintains a reference to each machine learning algorithm
object and forwards the requests from its clients to the machine
learning algorithm objects.

3) Identification of Communication Spots and Communica-
tion Styles: The execution order of a pair of services that com-
municate with one another is identified as a communication
spot. By examining the framework’s scope, we can capture the
following communication spots:

• Communication Spot 1: The Dataset Uploading service
executes prior to the Preprocessing service.

• Communication Spot 2: The Preprocessing service exe-
cutes prior to the Fraud Detection service.

• Communication Spot 3: The Fraud Detection service
executes prior to the Evaluation service.

The Dataset Uploading service communicates with a client
through the synchronous communication method. A client
sends a synchronous request to the Dataset Uploading service.

We analyze the communication styles by inspecting how
each serve-side service responds to a client-side’s request. The
identified communication styles are summarized below:

• S(client, Dataset Uploading): A client sends a syn-
chronous request to the Dataset Uploading service. Only
a single file can be uploaded at a time.

• S(client, Preprocessing): A client sends a synchronous
request to the Preprocessing service. One a single dataset
is preprocessed at a time.

• A(Preprocessing, Fraud Detection): A client-side Prepro-
cessing sends asynchronous requests to server-side Fraud
Detection service. Multiple machine learning algorithms
can be run concurrently.

• S(client, Evaluation): A client sends a synchronous re-
quest to Evaluation service. The result of one dataset is
presented at a time.

4) Transformation to a Microservice-Oriented Framework:
We adopt the first component organization approach (Fig. 1)
to plug in the hot spot subsystems to the framework. For
example, the Fraud Detection strategy (Fig. 4) along with
its concrete implementations (Random Forest, Support Vector
Machine, Logistic Regression, etc. are wrapped in the Fraud
Detection service.

The identified communication styles indicate that the ser-
vices use a mix of synchronous and asynchronous methods,
thus, the Hybrid Messaging pattern is the best to be applied
to integrate the services. With the help of the identified
communication spots for the communication orders of the
services, the high-level integration structure of the Fraud
Detection framework is designed as shown in Fig. 5.

Fig. 5. Applying Hybrid Messaging Pattern to Integrate Services in Fraud
Detection Framework

V. DISCUSSION

Schmid’s approach is object-oriented, generalizing the class
structure of an application when designing application frame-
works. There are also alternative systematic approaches that
are not constrained to the object-oriented paradigm. Functional
generalization is an example [6]. The function generalization
approach generalizes the functional structure of an executable
specification to produce an application framework. Hot spots
are introduced to the design by replacing concrete operations
with general abstract operations. These abstract operations
become parameters of the generalized functions. Our pro-
posed methodology can adopt such an alternative systematic

416

approach by modifying step 4 and 6 to generalize functions
instead of dealing with classes.

This study uses three integration patterns in the case study.
There are also other alternative integration patterns that can
be used in the transformation step. For example, Microsoft
Azure proposed nine patterns [20] for integrating microser-
vices in applications. Each pattern serves as a solution for a
fine-grained integration problem. To construct a system with
microservices, it is necessary to utilize most of these patterns
simultaneously. Gupta [10] introduced six patterns to provide
multiple integration approaches from varying perspectives.

VI. CONCLUSION

Microservice-oriented application frameworks will be ben-
eficial for the development of microservice-oriented appli-
cations in the particular business domains that the frame-
works are constructed for. The existing design approaches
for application framework design are limited to a monolithic
environment that does not fit into the microservice archi-
tecture. This research proposes a methodology that extends
Schmid’s systematic generalization methodology by introduc-
ing communication spots and transformation strategies that
fit in the microservice architecture. A case study is used
to demonstrate the usage of the proposed methodology in
designing a microservice-oriented fraud detection framework.
Future work will be focused on two directions. One direction
is to enhance the fraud detection framework by introducing
the support for time series, unsupervised learning algorithms,
and the usage of quantum computing. The other direction is to
examine the impact of the different computing environments
(classical vs. quantum) on the framework design thus enhance
the methodology. The enhancement from the first direction
will set a practical basis for the study of the second direction.

REFERENCES

[1] S. Albawi, T. A. Mohammed, and S. Al-Zawi. “Under-
standing of a Convolutional Neural Network”. In: 2017
International Conference on Engineering and Technol-
ogy (ICET) (2017), pp. 1–6.

[2] Brandon D. Butcher and Brian J. Smith. “Feature
Engineering and Selection: A Practical Approach for
Predictive Models”. In: The American Statistician 74
(2020), pp. 308–309.

[3] T. Cerný, M. J. Donahoo, and J. Pechanec. “Dis-
ambiguation and Comparison of SOA, Microservices
and Self-Contained Systems”. In: Proceedings of the
International Conference on Research in Adaptive and
Convergent Systems (2017).

[4] Wenlin Chen et al. “Density-Based Logistic Regres-
sion”. In: Proceedings of the 19th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining (2013).

[5] James O. Coplien, Daniel Hoffman, and David M.
Weiss. “Commonality and Variability in Software En-
gineering”. In: IEEE Softw. 15 (1998), pp. 37–45.

[6] H. Conrad Cunningham, Yi Liu, and Pallavi Tadepalli.
“Framework design using function generalization: a
binary tree traversal case study”. In: ACM-SE 44. 2006.

[7] Valeria Francesca Fonti and Eduard N. Belitser. “Fea-
ture Selection using LASSO”. In: VU Amsterdam Re-
search Paper in Business Analytics 30 (2017), pp. 1–25.

[8] M. Fowler. Microservices: a Definition of This New
Architectural Term. 2014. URL: https : / / martinfowler.
com/articles/microservices.html.

[9] Erich Gamma et al. “Design patterns: elements of
reuseable object-oriented software”. In: 1994.

[10] A. Gupta. Microservice Design Patterns. 2015. URL:
https : / / uberconf . com / blog / arun gupta / 2015 / 04 /
microservice design patterns.

[11] Mingyu Lim. “Directly and Indirectly Synchronous
Communication Mechanisms for Client-Server Sys-
tems Using Event-Based Asynchronous Communication
Framework”. In: IEEE Access 7 (2019), pp. 81969–
81982.

[12] R AL-msie’Deen et al. “Detecting commonality and
variability in use-case diagram variants”. In: ArXiv
abs/2203.00312 (2022).

[13] P. M. Nadkarni, L. Ohno-Machado, and W. W. Chap-
man. “Natural language processing: an introduction”.
In: Journal of the American Medical Informatics Asso-
ciation : JAMIA 18 (2011), pp. 544–51.

[14] S. Narkhede. Understanding AUC - ROC Curve. 2018.
URL: https : / / towardsdatascience . com / understanding -
auc-roc-curve-68b2303cc9c5.

[15] R. Polantizer. Fraud Detection in Python; Predict
Fraudulent Credit Card Transactions. 2021. URL: https:
/ / medium . com / @polanitzer / fraud - detection - in -
python - predict - fraudulent - credit - card - transactions -
73992335dd90.

[16] C. Richardson and F. Smith. Microservices from design
to deployment. NGINX, Inc., 2016.

[17] H. A. Schmid. “Design Patterns for Constructing the
Hot Spots of a Manufacturing Framework”. In: Journal
Object Oriented Programming 9 (1996), pp. 25–37.

[18] H. A. Schmid. “Systematic framework design by gen-
eralization”. In: Communication of ACM 40 (1997),
pp. 48–51.

[19] M. Wang. “Service Integration Design Patterns in Mi-
croservices”. MA thesis. South Dakota State University,
2018.

[20] M. Wasson. Microservices: a Definition of This New
Architectural Term. 2017. URL: https://azure.microsoft.
com/en-us/blog/design-patterns-for-microservices/.

[21] Q. Wu et al. “ForesTexter: an Efficient Random Forest
Algorithm for Imbalanced Text Categorization”. In:
Knowledge-Based Systems 67 (2014), pp. 105–116.

[22] Yue Zhang and Zhimeng Feng. “A SVM Method for
Continuous Blood Pressure Estimation from a PPG
Signal”. In: Proceedings of the 9th International Con-
ference on Machine Learning and Computing (2017).

417

Collaborative Web Service Quality Prediction via
Network Biased Matrix Factorization

Wenhao Zhong, Yugen Du∗, Chuang Shan, Hanting Wang, Fan Chen
Shanghai Key Laboratory of Trustworthy Computing

Software Engineering Institute, East China Normal University
Shanghai, China

ygdu@sei.ecnu.edu.cn

Abstract—Facing a large number of candidate Web service
with the same function, user wishes to get the most appropriate
one. Quality-of-Service (QoS) which represents non-functional
attributes of Web services, has become a major concern for choos-
ing service. But it is time-consuming and resource-consuming to
assess all the QoS values by invoking candidate services one
by one. Thus, QoS prediction is considered an effective method
to obtain QoS information. Although most of QoS prediction
methods claim be able to capture the interaction between users
and services, few of them take account non-interaction factors,
especially the factors arising from the network environment.
In this paper, the non-interaction factors from the network
environment are referred as network bias, and a network
biased matrix factorization (NBMF) method is proposed for
QoS prediction. The method packages network bias into a
linear regression model and puts the user-service interaction
into a matrix factorization model, which is more sophisticated
in adapting diversified circumstance, particularly in complex
network environment. In addition, extensive experiments are
conduct on real-world QoS dataset, and the result prove that the
NBMF method achieves better performance than other state-of-
the-art methods.

Index Terms—Web services, QoS prediction, matrix factoriza-
tion, network bias

I. INTRODUCTION

The statistics published by ProgrammableWeb1 indicate
rapid growth in the number of published Web services over the
past few years. The popularity of Web services allows different
service-oriented applications and systems to be built to meet
the increasingly complex business requirements [1].

To ensure the performance of service-oriented applications
and systems, the quality of their component Web services
needs to be assured. The quality of Web services can be
described by their functional and non-functional attributes.
Quality-of-Service (QoS) represents non-functional attributes
of Web services, such as response time, throughput, availabil-
ity, and reliability [2]. Since there are many Web services with
similar functions on the network, investigating non-functional
QoS attributes becomes a major concern for service selection
[3], [4]. In practice, it is not easy to obtain the QoS values
of all candidate services. First, the QoS values observed by
users depend heavily on the invocation environment, and the

1https://www.programmableweb.com/
DOI reference number: 10.18293/SEKE2022-113

quality of the same web service observed by different users
may be very different [5]. Second, it is time-consuming and
resource-consuming to assess all the QoS values by invoking
candidate services one by one, due to a large number of users
and services [6], [7]. Therefore, QoS prediction has attracted
the attention of many researchers over the past few years and
is considered an effective way to obtain QoS information.

Matrix factorization (MF) is arguably the most popular
model-based collaborative filtering technique for QoS predic-
tion [8], [9]. MF attempts to capture the interaction between
users and services [10], [11], which factorizes the high-rank
user-service matrix into two low-rank feature matrices [1], [3],
and the inner product of the feature matrices represents the
predicted QoS values of services observed by users. In addition
to the user-service interaction, there are many factors unrelated
to the interaction in the real-world prediciton. Although Zhu et
al. [10] propose using user bias and service bias to capture the
non-interaction from users and services, they do not take into
account the non-interaction from the network environment.
In the case of response time, the user-perceived response
time must include network latency [12], which can vary
significantly depending on the network path.

In this paper, we refer to the non-interaction factors from
the network environment as network bias, and propose a
network biased matrix factorization (NBMF) method for QoS
prediction. Our method considers both interaction and non-
interaction between users and services. Among the factors
related to the non-interaction, we focus on the influence of
network bias on QoS prediction. Specifically, our method
packages network bias into a linear regression model, while
putting the user-service interaction into a matrix factorization
model, which makes our method adaptable to complex net-
work environment.

In summary, the main contributions of this paper include:
• We propose a network biased matrix factorization method

for QoS prediction. Our method considers both inter-
action and non-interaction between users and services,
which makes our method adaptable to complex network
environment.

• We conduct extensive experiments on a real-world QoS
dataset to evaluate the performance of our method. The
result demonstrates that our method can achieve better
performance than the state-of-the-art baseline methods.

418

The remainder of this paper is organized as follows. In
Section II, we explain the motivation of this work. In Section
III, we introduce the proposed method. In Section IV, we
conduct experiments on a real-world dataset to illustrate the
effectiveness of the proposed method. In Section V, we review
work related to our method. Finally, we conclude our work
with future directions in Section VI.

II. MOTIVATION

The traditional MF may not produce personalized QoS
prediction, because it ignores the non-interaction bias between
users and services, especially the non-interaction bias from
the network environment. To explain this problem in detail,
this section first introduces MF-based QoS prediction and then
gives an example to illustrate the influence of network bias on
MF-based QoS prediction.

A. Matrix Factorization

MF uses a factor model to fit the historical invocation
matrix for prediction, which factorizes the user-service matrix
into two low-rank feature matrices [1], [3]. The low-rank
feature matrix attempts to explain the QoS data by describing
the values on various latent features (e.g., system structure,
hardware composition, software configuration). Each row of
the user feature matrix represents the latent feature of a
user, each row of the service feature matrix represents the
latent feature of a Web service, and the dot product of them
represents the user-service interaction, that is, the QoS value
of the service observed by the user. Thus, the general objective
function for the MF-based QoS prediction method can be
derived as:

Q̂ij = UiW
T
j (1)

Where U ∈ Rm×d denotes the user latent feature matrix,
and W ∈ Rn×d denotes the service latent feature matrix. The
vector Ui(1 ≤ i ≤ m) denotes the latent feature vector of user
i, and the vector Wj(1 ≤ j ≤ n) denotes the latent feature
vector of service j. The number of latent features in our model
is d. The predicted QoS value of Web service j observed by
user i is Q̂ij .

B. Motivating Example

To explain the influence of network bias on MF-based QoS
prediction, a straight-away example is given in Fig. 1(a). In
this example, we need to predict the QoS values of services
w1, w2, w

′
1, w

′
2 observed by users u1, u2. We assume that

u1, u2 are located in region R1, w1, w2 are located in region
R2, and w′

1, w
′
2 are located in region R3. Where services

w1, w2 have the same performance as services w′
1, w

′
2, the

average response time between R1 and R2 is 1s, and the
average response time between R1 and R2 is 2s.

The QoS prediction of traditional matrix factorization is
shown in Fig. 1(b), we assume that the QoS value of the ser-
vice observed by the user is determined by two latent features,
which are hardware composition and software configuration.
In the following, we will focus on user u1 and services w1, w

′
1.

The user-perceived hardware composition feature to u1 is 0.6,
and the user-perceived software configuration feature to u1 is
0.4. The service-provided hardware composition feature to w1

is 1.0, and the service-provided software configuration feature
to w1 is 0.5. The dot product of u1 and w1 is 0.8, which
represents the QoS value of w1 observed by u1. Since the
performance of services w1 and w′

1 are exactly the same, they
have the same degree of latent features, the QoS value of w′

1

observed by u1 is also 0.8.
However, the traditional matrix factorization ignores the

non-interaction bias between users and services, especially the
non-interaction bias from the network environment. In Fig.
1(a), although the performance of services w1 and w′

1 are the
same, they belong to different regions (w1 is located in R2, w′

1

is located in R3), and their QoS values observed by u1 should
be very different. In this case, the QoS prediction made by
previous work is not accurate.

III. METHOD

Since the non-interaction bias from the network environ-
ment accounts for a large proportion of the observed QoS
values, it is crucial to model this bias accurately. To achieve
this goal, we propose a network biased matrix factorization
(NBMF) method for QoS prediction. In this section, we first
introduce the proposed NBMF method, then give an example
to illustrate the improved prediction, and finally describe the
model training and parameter optimization process.

A. Network Biased Matrix Factorization

If we consider the network bias to be continuous rather
than discrete, then linear regression can be used to predict
the network bias between users and services. Following the
above idea, we propose a network biased matrix factorization
method. Our method packages network bias into a linear
regression model, while putting the user-service interaction
into a matrix factorization model. Thus, the general objective
function for NBMF-based QoS prediction method can be
derived as:

Q̂ij = α(µxy + bi + pj) + (1− α)UiW
T
j (2)

The first term α(µxy + bi + pj) of the objective function
is a linear regression model used to predict the network bias
between user i and service j. Where, x is the network of
user i, y is the network of service j, and µxy is the average
QoS value between network x and network y. bi(1 ≤ i ≤ m)
denotes the bias between the QoS observed by user i and other
users in the same network. pj(1 ≤ j ≤ n) denotes the bias
between the QoS provided by service j and other services in
the same network.

The second term (1 − α)UiW
T
j of the objective function

is a matrix factorization model used to capture the interaction
between user i and service j , where Ui(1 ≤ i ≤ m) denotes
the latent feature vector of user i, Wj(1 ≤ j ≤ n) denotes the
latent feature vector of service j, and their dot product UiW

T
j

represents the interaction between user i and service j.

419

Fig. 1. An example to explain the influence of network bias on MF-based QoS prediction: (a) A real-world Web service invocation scenario; (b) MF-based
QoS prediction; (c) NBMF-based QoS prediction.

The weight α(0 ≤ α ≤ 1) measures the degree of network
bias in our prediction model. α is an adjustable parameter. If α
is set to 0, our prediction model does not consider network bias
and only uses matrix factorization for prediction. If α is set
to 1, our prediction model does not consider the user-service
interaction and only uses linear regression for prediction. In
order to investigate the impact of α on our model and find an
optimal model, the value of α will be evaluated in Section IV.

B. Method Example

The improved QoS prediction is shown in Fig. 1(c). In the
case of user u1 invoking services w1, w

′
1, the average QoS

µR1,R2 between region R1 and region R2 is 1, and the average
QoS µR1,R3 between region R1 and region R3 is 2. We assume
the bias b1 between u1 and other users in R1 is 0, the bias
p1 between w1 and other services in R2 is 0.1, the bias p′

1

between w′
1 and other services in R3 is 0.2. Then the network

bias between u1 and w1 is 1.1, and the network bias between
u1 and w′

1 is 2.2. The next part of the QoS prediction is
the user-service interaction, and the detailed procedure can
be found in Section II-B.

The parameter α is set to 0.5 by default. After weighted
sum of the network bias and the interaction, we can get the
predicted QoS value of w1 observed by u1 is 0.9, and the
predicted QoS value of w′

1 observed by u1 is 1.5.
Although the performance of services w1 and w′

1 are the
same, they belong to different regions, and their QoS values
observed by u1 are different. It can be seen that our method
is adaptable to complex network environment.

C. Model Training

The latent feature matrices and the bias vectors in Eq. (2)
can be constructed by statistical learning theory. To estimate

the values of matrices U,W and vectors b,p , we approximate
the original matrix Q with the following objective function,
and the minimization formula is as follows:

L = minU,W,b,p
1

2

m∑
i=1

n∑
j=1

Iij(Qij − Q̂ij)
2 (3)

Where Iij is the indicator function that returns 1 if user i
has invoked service j, and 0 otherwise. Q̂ij is the prediction
function as in Eq. (2). To avoid overfitting in approximating
the original matrix, we add four regular terms related to U,W
and b,p.

L = minU,W,b,p
1

2

m∑
i=1

n∑
j=1

Iij(Qij − Q̂ij)
2

+
λ

2
(∥U∥2F + ∥W∥2F + ∥b∥2F + ∥p∥2F)

(4)

Where ∥ · ∥ denotes the Frobenius norm [13], the parameter
λ controls the degree of regularization. The objective function
based on L2-norm as in Eq. (4) is not convex, it is unrealistic to
design an algorithm to find the global minimum [14]. Instead,
the stochastic gradient descent technique [15] can be employed
to find the approximate optimal solution. For each QoS record
observed when user i invokes service j, we have the following
update rules:

U ′
i = Ui − η

∂L

∂Ui
(5)

W ′
j = Wj − η

∂L

∂Wj
(6)

420

b′
i = bi − η

∂L

∂bi
(7)

p′
j = pj − η

∂L

∂pj
(8)

where η > 0 represents the learning rate of updating the
feature matrices and bias vectors, and

∂L

∂Ui
= λUi − (Qij − Q̂ij)(1− α)Wj (9)

∂L

∂Wj
= λWj − (Qij − Q̂ij)(1− α)Ui (10)

∂L

∂bi
= λbi − (Qij − Q̂ij)α (11)

∂L

∂pj
= λpj − (Qij − Q̂ij)α (12)

The overall optimization procedure of our method is given
in Algorithm 1. Let r denote the number of iterations to
achieve convergence, let s denote the number of valid invo-
cation records in the original matrix Q, and let d denote the
dimensions of the user latent feature matrix and the service
latent feature matrix. The main time cost of Algorithm 1 lies
in the updating of matrices U,W and vectors b,p. In each
iteration, updating U,W takes O(sd) time and updating b,p
takes O(s) time. Thus, the overall time complexity of our
method is O(rsd).

Algorithm 1 Optimization procedure of NBMF
Input: Q ∈ Rm×n, α, d, λ, η;
Output: U ∈ Rm×d,W ∈ Rn×d,b ∈ Rm,p ∈ Rn

1: Randomly initialize U and W ;
2: Initialize b and p with zero;
3: repeat
4: for each record (i, j, Qij) observed in Q do
5: Update Ui according to Eq. (5);
6: Update Wj according to Eq. (6);
7: Update bi according to Eq. (7);
8: Update pj according to Eq. (8);
9: end for

10: until Convergence
11: return U,W,b,p;

IV. EXPERIMENT

In this section, we conduct extensive experiments on a real-
world QoS dataset to evaluate the performance of NBMF. The
experiments are designed to address the following questions:
(1) How does NBMF method compare with other state-of-the-
art baseline methods? (2) How does the matrix density affect
the prediction accuracy? (3) How does the weight α of the
network bias affect the prediction accuracy? (4) How does the
dimension d of the latent feature matrix affect the prediction
accuracy? We implement our method and all baseline methods
in Python 3.7, and all experiments were performed on a Linux

server with Intel i5-10400 2.9GHz CPU and 16GB RAM
running 64-bit Ubuntu 16.04.

A. Dataset

We conduct all experiments on a publicly real-world QoS
dataset named WS-DREAM2. The dataset includes 1,974,675
QoS records, which were collected from 339 users in 30
regions on 5825 Web services in 73 regions. There is a QoS
record between each user and each service, and we focus on
the response time (RT) in the QoS attribute. Also, the dataset
collects the IP, region and other information of these users and
services. More details about this dataset can be found in [16].

B. Evaluation Metrics

Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) metrics are used to measure the accuracy of predic-
tion by calculating the difference between the predicted QoS
value and the actual QoS value.

MAE is defined as:

MAE =
1

N

∑
i,j

|Qij − Q̂ij | (13)

RMSE is defined as:

RMSE =

√√√√ 1

N

∑
i,j

(Qij − Q̂ij)2 (14)

Where Qij and Q̂ij represent the actual and predicted QoS
value of the user i invoking service j, and N denotes the
number of predicted QoS values. It can be observed from the
formula that RMSE is more sensitive to large errors. MAE and
RMSE range from 0 to ∞, and their smaller values indicate
better performance of the prediction method.

C. Accuracy Comparison

To demonstrate the prediction accuracy of our method, we
reproduce the 6 most representative QoS prediction methods
and compare the NBMF with them.

• UMEAN: This method employs the average QoS value
of a user to predict the unknown QoS value.

• IMEAN: This method employs the average QoS value of
a server to predict the unknown QoS value.

• UIPCC [17]: This method is user-based and service-based
CF, which employs similar users and similar services for
QoS prediction.

• PMF [18]: This method is probability-based MF, which
factorizes the matrix into two low-rank latent feature
matrices for QoS prediction.

• HMF [7]: This method improves the MF with location
clustering.

• AMF [10]: This method improves the MF with user bias
and service bias.

• NBMF: This method improves the MF with network bias.

2https://github.com/wsdream/wsdream-dataset

421

TABLE I
QOS PREDICTION ACCURACY (SMALLER MRE AND RMSE INDICATE BETTER ACCURACY)

Methods
MAE RMSE

D = 15% D = 20% D = 25% D = 30% Improve D = 15% D = 20% D = 25% D = 30% Improve

UMEAN 0.8739 0.8738 0.8737 0.8735 47.95% 1.8569 1.8568 1.8564 1.8576 36.60%
IMEAN 0.6821 0.6805 0.6789 0.6781 33.11% 1.5366 1.5305 1.5280 1.5267 23.08%
UIPCC 0.5861 0.5768 0.5725 0.5714 21.14% 1.4464 1.4322 1.4262 1.4247 17.81%
PMF 0.5236 0.5015 0.4904 0.4652 8.16% 1.2556 1.2303 1.2185 1.1949 3.88%
AMF 0.5024 0.4836 0.4589 0.4444 3.72% 1.244 1.2196 1.1977 1.1772 2.68%
HMF 0.4994 0.4713 0.4545 0.4438 2.67% 1.2354 1.2162 1.1819 1.1582 1.73%

NBMF 0.4847 0.4579 0.4459 0.4306 - 1.2232 1.1843 1.1627 1.1388 -

In the real world, the user-service matrix is very sparse, as
users usually invoke only a small number of Web services. In
this paper, to simulate the matrix environment with different
densites, we randomly remove a certain number of QoS values
from the dataset to generate the user-service matrix with
densities of 15%, 20%, 25%, 30%. The removed QoS values
are used as expected values to evaluate the prediction accuracy
achieved by different methods. For example, a matrix density
of 15% means that we randomly select 15% QoS values in
the original matrix to predict the remaining 85% QoS values.

In the experiments, the parameters of the baseline methods
are initialized according to the corresponding papers for op-
timal performance, and the parameters of our NBMF method
are set to α = 0.6, d = 6, λ = 0.02, η = 0.003, the maximum
number of iterations in the model training is set to 300. In
addition, we perform an early stopping strategy during the
model training, where we stop training if the evaluation metric
on the testing set increases five times in a row.

Table I provides the prediction accuracies of different
methods at 15% to 30% matrix density. We can observe that
NBMF achieves an improvement of 2.67∼47.95% in MAE
and 1.73∼36.6% in RMSE compared with other classical
prediction methods, and NBMF has the smallest MAE and
RMSE regardless of matrix density, which indicates that our
method has the best prediction accuracy. Compared with the
AMF method, NBMF method achieves 3.72% and 2.68%
improvement in MAE and RMSE. Because the real-world
network environment is very complex, it is more suitable to
consider network bias than user bias and service bias for real
QoS prediction systems. Compared with the HMF method,
NBMF method achieves 2.67% and 1.73% improvement in
MAE and RMSE. Because the HMF method clusters based on
regions, while the NBMF method clusters based on network
paths, which is more adaptable to complex network envi-
ronments. The prediction accuracy of all methods improved
significantly as the matrix density increased from 15% to 30%,
suggesting that more QoS information can contribute to higher
prediction accuracy.

D. Impact of Parameter α

The parameter α measures the degree of network bias in our
prediction model. If α is set to 0, our prediction model does

Fig. 2. Impact of Parameter α

Fig. 3. Impact of Dimension d

not consider network bias, in which case NBMF is equivalent
to PMF. If α is set to 1, our prediction model does not consider
the user-service interaction and only uses linear regression for
prediction. To evaluate the impact of α and find an optimal
model, we set the dimension d to 6 and set the density D to
15% and 30%.

Fig. 2 shows us the changes in MAE and RMSE when
α is adjusted from 0 to 1. Before the prediction accuracy
reaches the best, the values of MAE and RMSE decrease as the
value of α increases, indicating that the prediction accuracy
is improved. However, when the value of α exceeds a certain
threshold, the values of MAE and RMSE increase instead,
indicating a decrease in prediction accuracy. We observe that
the thresholds for both MAE and RMSE are around α = 0.6
for all densities of the matrix environment. The existence of
the thresholds confirm our intuition that the best prediction
performance can be achieved by a proper combination of MF
and network bias. In addition, we find that our NBMF method
is quite stable, as it maintains similar trends for different
criteria in all configurations.

422

E. Impact of Dimension d

In our proposed method, d denotes the dimension of the
low-rank latent feature matrix, i.e., the number of latent
features in matrix factorization. If d is small, only a few key
latent features determine the QoS value. If d is large, many
latent features jointly determine the QoS value. To investigate
the impact of the dimension d on prediction results, we set the
parameter α to 0.6 and set the density D to 25% and 30%.

Fig. 3 presents the changes in MAE and RMSE when the
dimension d is adjusted from 2 to 12. As the dimension
increases, the values of MAE and RMSE decrease rapidly at
first, indicating that only a few latent features cannot achieve
good prediction results. However, when the dimension exceeds
a certain threshold, the values of MAE and RMSE gradually
increase. Because higher dimension leads to overfitting prob-
lems, which reduces the prediction performance.

V. RELATED WORK

In recent years, collaborative filtering (CF) has been widely
used for QoS prediction [8], [9]. Existing CF-based prediction
methods can be classified into two types: memory-based CF
and model-based CF. Memory-based CF first finds similar
users or services by Pearson correlation coefficient (PCC),
and then uses the QoS values of similar users or services to
predict the missing values [5], [17]. However, a user may have
invoked only few services in the real world, which reduces
the accuracy of calculating similarity using PCC [1]. Model-
based CF trains a global model to make predictions based on
observed historical invocation records, and it performs well
when dealing with sparse user-service matrix [3].

Matrix factorization (MF) is arguably the most popular
model-based CF technique [8], [9], which attempts to cap-
ture the interaction between users and services [10], [11].
He et al. [7] introduced a hierarchical MF method based
on location grouping, they assumed that local invocations
reflect more interaction than global ones. Zhang et al. [2]
proposed a neighborhood-integrated MF method, which uses
PCC to calculate the similarity between users. Tang et al.
[19] employed the IP addresses and Ryu et al. [20] employed
the location information to improve the calculation of similar
users, they assumed that similar users have similar interaction
with services. In addition to the user-service interaction, there
are many factors unrelated to the interaction in the real-world
prediciton. Although Zhu et al. [10] propose using user bias
and service bias to capture the non-interaction from users and
services, they do not take into account the non-interaction from
the network environment.

VI. CONCLUSION

We propose a network biased matrix factorization method
for QoS prediction. Our method considers both interaction
and non-interaction between users and services, which makes
our method adaptable to complex network environment. We
conduct extensive experiments on a real-world QoS dataset.
The result demonstrates that our method can achieve better
performance than the state-of-the-art baseline methods.

In the future, we intend to improve the current work as
follows: First, we will conduct experiments to evaluate the
prediction performance of NBMF on other QoS attributes.
Second, considering the dynamic nature of Web services, we
will try to implement real-time QoS prediction with weighing
factor based on time preference.

REFERENCES

[1] Y. Zhang, K. Wang, Q. He, F. Chen, S. Deng, Z. Zheng, and Y. Yang,
“Covering-based web service quality prediction via neighborhood-aware
matrix factorization,” IEEE Transactions on Services Computing, 2019.

[2] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Collaborative web service
qos prediction via neighborhood integrated matrix factorization,” IEEE
Transactions on Services Computing, vol. 6, no. 3, pp. 289–299, 2012.

[3] F. Ye, Z. Lin, C. Chen, Z. Zheng, and H. Huang, “Outlier-resilient web
service qos prediction,” in Proceedings of the Web Conference 2021,
2021, pp. 3099–3110.

[4] J. El Hadad, M. Manouvrier, and M. Rukoz, “Tqos: Transactional and
qos-aware selection algorithm for automatic web service composition,”
IEEE Transactions on Services Computing, vol. 3, no. 1, pp. 73–85,
2010.

[5] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei, “Personalized
qos prediction forweb services via collaborative filtering,” in Ieee
international conference on web services (icws 2007). IEEE, 2007,
pp. 439–446.

[6] C. Wu, W. Qiu, Z. Zheng, X. Wang, and X. Yang, “Qos prediction
of web services based on two-phase k-means clustering,” in 2015 ieee
international conference on web services. IEEE, 2015, pp. 161–168.

[7] P. He, J. Zhu, Z. Zheng, J. Xu, and M. R. Lyu, “Location-based
hierarchical matrix factorization for web service recommendation,” in
2014 IEEE international conference on web services. IEEE, 2014, pp.
297–304.

[8] S. H. Ghafouri, S. M. Hashemi, and P. C. Hung, “A survey on
web service qos prediction methods,” IEEE Transactions on Services
Computing, 2020.

[9] Z. Zheng, L. Xiaoli, M. Tang, F. Xie, and M. R. Lyu, “Web service qos
prediction via collaborative filtering: A survey,” IEEE Transactions on
Services Computing, 2020.

[10] J. Zhu, P. He, Z. Zheng, and M. R. Lyu, “Online qos prediction for
runtime service adaptation via adaptive matrix factorization,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 10, pp.
2911–2924, 2017.

[11] W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu, “Collaborative web service
qos prediction with location-based regularization,” in 2012 IEEE 19th
international conference on web services. IEEE, 2012, pp. 464–471.

[12] A. Klein, F. Ishikawa, and S. Honiden, “Towards network-aware service
composition in the cloud,” in Proceedings of the 21st international
conference on World Wide Web, 2012, pp. 959–968.

[13] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization,”
SIAM review, vol. 52, no. 3, pp. 471–501, 2010.

[14] Y. Koren, “Factor in the neighbors: Scalable and accurate collabora-
tive filtering,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 4, no. 1, pp. 1–24, 2010.

[15] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[16] Z. Zheng, Y. Zhang, and M. R. Lyu, “Distributed qos evaluation for
real-world web services,” in 2010 IEEE International Conference on
Web Services. IEEE, 2010, pp. 83–90.

[17] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Wsrec: A collaborative
filtering based web service recommender system,” in 2009 IEEE Inter-
national Conference on Web Services. IEEE, 2009, pp. 437–444.

[18] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,”
Advances in neural information processing systems, vol. 20, 2007.

[19] M. Tang, Z. Zheng, G. Kang, J. Liu, Y. Yang, and T. Zhang, “Collabo-
rative web service quality prediction via exploiting matrix factorization
and network map,” IEEE Transactions on Network and Service Man-
agement, vol. 13, no. 1, pp. 126–137, 2016.

[20] D. Ryu, K. Lee, and J. Baik, “Location-based web service qos predic-
tion via preference propagation to address cold start problem,” IEEE
Transactions on Services Computing, 2018.

423

A Model Based Approach for Generating Modular

Manufacturing Control Systems Software

Mahmoud El Hamlaoui

ENSIAS, Mohammed V University in Rabat

Rabat, Morocco

Youness Laghouaouta

National Institute of Posts and Telecommunications

Rabat, Morocco

Yassine Qamsane

Siemens Technology, Automation Engineering Software

Charlotte, NC 28273, USA

Anant Mishra

Siemens Technology, Automation Engineering Software

Charlotte, NC 28273, USA

Abstract—Digitalization is transforming manufacturing systems to

become more agile and smart thanks to the integration of sensors

and connection technologies that help capture data at all phases of

a product’s life cycle. Digitalization promises to improve

manufacturing flexibility, quality, productivity, and reliability.

However, there is still a significant need of effective methods to

develop models that could enhance the capabilities of

manufacturing systems. Formal methods and tools are becoming

essential to achieve this objective. Within this context, this paper

introduces a formal software solution for the automatic generation

of modular manufacturing control systems software. The

proposed solution leverages software Model-Based Design (MBD)

techniques to reduce development effort, time, and human error

by automating several manual steps.

Keywords-component; Industry 4.0; Cyber-Physical

Manufacturing; Formal methods; MDE; DSL; Grafcet

I. INTRODUCTION

The world is in the midst of a new industrial revolution,
referred to as Industry 4.0 or Smart Manufacturing (SM), driven
by the rapid advancement in Information Communication
Technologies (ICT) in terms of speed, power, autonomy, and
mobility. The proliferation of ICT in the manufacturing domain
has brought about Cyber-Physical Manufacturing Systems
(CPMS), that combine physical production components (e.g.,
robots, machines, conveyors, and parts to be processed) with
cyber components (e.g., logic controllers, networks, and data
management infrastructures). CPMS gain their intelligence
thanks to their connectivity to the Industrial Internet of Things
(IIoT), which is an information network of physical objects (e.g.,
sensors and machines) that allows interaction and cooperation of
these objects to reach common goals [1][2]. CPMS enable more
flexibility, reactivity, proactivity, and adaptability to the
dynamic global market shifts and fast changing customer
requirements.

For manufacturers to remain competitive, CPMS are
required to strategically adapt to factory changes associated with
the responsiveness to the rapid changes in customer
requirements and market conditions over time. In such agile
environments, defining the interaction between the

manufacturing control system and the physical manufacturing
units using conventional development processes, which are
characterized by an overhead of manual work, is effort and time-
consuming and would have negative impacts on finances. Thus,
to address uncertain and emerging situations, the manufacturing
control system should be highly flexible, adaptable, and
reconfigurable.

In previous work [3][4][5[6], we introduced a formal
approach to automatically synthesize modular / distributed
supervisory control for CPMS. The approach divides the overall
control problem into local and global controls. Local Controllers
(LCs) are developed for individual subsystems, then global
interactions are added to the LCs to cooperatively execute the
overall control actions. This approach ensures the flexibility
required in CPMS to adapt to rapid changing conditions. For
instance, in case of redesign or system extension, the practitioner
would modify only the LCs for the impacted production modules
and extend the global specifications with the new requirements,
then automatically synthesize the new control logic. In contrast
to a centralized controller approach where the entire control
system needs to be rebuilt, the proposed approach requires to
update only the affected manufacturing units. This approach
enables the manufacturing units to be versatile and reusable in
different environments.

The contribution of this paper is to derive a systematic
software solution that is based on the previously proposed
formal approach to support CPMS control designers in
automatically generating control systems. The software solution
leverages Model-Based Design (MBD) techniques to reduce
development effort, time, and human error by automating
several manual steps.

The rest of this paper is organized as follows. Section II
recalls the theoretical proposition. Section III details the design
and development of the proposed software solution. Finally,
Section IV summarizes the contributions of this paper and
presents some future research avenues for this work.

DOI reference number: 10.18293/SEKE2022-151

424

II. PROPOSED THEORETICAL APPROACH

The workflow shown in Fig. 1 displays the different steps of
the supervisory controller synthesis process.

First, the discrete operation physically realizable by the
system is modeled using discrete automata models in a local
modular way according to its mechanical and functional
characteristics (e.g., sensors and actuators). A Local Controller
(LC) is derived for each local plant component from its
automaton model. Second, to enable the overall system
coordination, global specifications over the local components
are defined and formalized as logical Boolean expressions.
Then, the LC are aggregated to enable applying the logical
Boolean expressions to the automata models. The aggregation
procedure is carried out such that the states reached by
controllable (actuator) events (σ∈Σc) are merged into macro-
states that are interconnected with uncontrollable (sensor) events
(σ∈Σuc) as explained in Section III. The output of this
endogenous transformation is saved as an ALC (Aggregated
Local Controller).

The Global synthesis activity consists of applying the formal
global specifications to the corresponding ALC models, which
allows the local components to coordinate among each other to

reach the global control objective. At the output of this activity
is the DC (Distributed Controller) models that implement both
the local and coordination controls. A single DC is generated for
each local manufacturing unit in the system. The last activity
transforms the DCs into Grafcet specification in order to exploit
the resulting model in the PLC (Programmable Logic
Controller). The implemented transformation produces a JSON
model visualized as Grafcet into GoJS [7]. The latter is a
JavaScript library for creating and manipulating diagrams,
charts, and graphs.

III. PROOF OF CONCEPT

According to the activity diagram of Fig. 1, after defining the
system and control specification models, the proposed tool
consists of four automated steps. First, the designer defines the
system using UML Statechart models. Our statechart models are
defined using PlantText [8], which is an Open-source tool, based
on PlantUML [9], that uses a textual DSL to create graphical
UML diagrams. Thus, our proposal is generic and not oriented
for a particular software vendor (e.g., MagicDraw, Rational
Software Modeler, Modelio, Visual Paradigm, etc.). In order to
have a fully integrated MDE approach [10], we have proposed

Figure 2. Proposed grammar for PlantText

Figure 1. Activity diagram for the synthesis of distributed supervisory control

425

an alternative to the online PlantText editor. For this, we propose
a textual editor based on Xtext. Figure. 2 shows the implemented
grammar of the textual editor. Second, the aim of the “Parse”
activity is to take the UML Statechart model established by the
designer and automatically produce a LC model (Fig. 3) that is
conform to a General Controller Metamodel.

The transformation is expressed as graph transformation unit
implemented using Henshin [11]. Henshin is a transformation
language and tool environment based on graph transformation
concepts and operating on EMF models [11]. It provides features
needed to express complex transformation such as negative
application conditions (NACs), which specify the non-existence
of model patterns in certain contexts and transformation units to
control the rules application sequence. We have to notice that the
rule declaration in the Henshin formalism does not explicit the
description of the left- and right-hand sides. Instead, it is based
on the following stereotypes to depict the rule application
semantic: preserve, create, require, and forbid

Third, the “Aggregation” activity is an endogenous
transformation that takes as input the LC model and produces
the corresponding ALC model. The aim of this transformation is
to apply corresponding control specifications to the latter. The
ALC is produced through a graph transformation implemented
with Henshin. Figure. 4 shows the rules being used to aggregate
states respectively according to Inh and Ord. Transformations
consist of removing the controllable evolutions from the LC
model, and joining them into macro-states as follows: if the
controllable event is associated with a rising edge, then the order

is authorized and belongs to the set 𝑂𝑟𝑑(𝐷𝐶) ; otherwise, the

order is inhibited and belongs to the set 𝐼𝑛ℎ(𝐷𝐶). Figure. 5 shows
the resulted ALC model.

The basic data structure of a global constraint is a Boolean
expression of the following form:

If (Condition) Then (Action)

Formally, the set of global constraints is defined by the pair

𝑆𝑝𝑒𝑐 = (𝐶(𝑠𝑝𝑒𝑐), 𝐴𝑐𝑡(𝑠𝑝𝑒𝑐)) , where 𝐶(𝑠𝑝𝑒𝑐) is the set of

conditions; and Act(spec) = {Ord(spec), Inh(spec)} is the set of

activation/deactivation actions. Due to space limit, we choose to
not present the textual editor grammar as it is based on the same
idea of Fig. 2.

Example global constraints to be applied to the LC of Fig. 3
are stipulated as presented in Fig. 6. The global constraints are
added to the ALC as follows. Check all the constraints for each
ALC state. If an authorized (resp., inhibited) order of an ALC
state is similar to that authorized (resp., inhibited) within a global
constraint, then the constraint's condition should be associated
with the actual state to condition the authorization (resp., the
inhibition) of the corresponding order. The resulting controller
is a DC model (conforms to the General Controller Metamodel).
To avoid any confusion between the LC and ALC metamodels,
the values regarding the conditions Ord_If and Inh_If are only
represented in the DC model.

The rules implied in the transformation unit that takes as
input the ALC and constraint models and produces the DC
model as output (Fig. 7) have been implemented using Henshin.
Dedicated rules have been expressed in order to retrieve Inh and
Ord nodes from the constraint models and set the adequate
values of Inh_If and Ord_If attributes.

The purpose of the last activity is to create a Grafcet model
to be used in a running system (the PLC). To do so, we have used
the metamodel proposed in [12]. It defines the steps and the
different transitions between them.

To avoid defining a concrete representation for the Grafcet
model, we decide to visualize the output into GoJS [5]. For that,
the transformation is defined to a JSON model. For the sake of
brevity, we don’t explicit the transformation rules in this paper.
Figure. 8 presents the visual model being generated for the LC
of Fig. 3.

Figure 3. Local Controller (LC) model example

Figure 6. Aggregation transformation rule

Figure 5. Aggregated Local Controller ALC model example

Figure 4. Aggregation transformation rule in Henshin

426

IV. CONCLUSION & PERSPECTIVES

This paper presents a tool for automating the process of
generating distributed supervisory control interpreted as Grafcet
specification (IEC 60848 [13]) for CPMS. The tool framework
decreases the state space explosion problem inherent to formal
supervisory control theory methods by using a
modular/distributed structure that avoids the synchronous
composition of subsystem models. It also increases the
flexibility required in manufacturing systems through
distributed control models that enable a simple and adaptive
control strategy, i.e., in the case of a redesign, only a small
amount of data related to the corresponding subsystem
controllers will be updated.

The founding framework of the tool uses model-checking
technique for the verification of absence of deadlocks and
making sure that the system safety and liveness requirements are
met before the Grafcet implementation of the distributed control
models. Model-checking technique allows tracing the sequences
altering the system behavior, which enables easy update of the
distributed control models. After the verification phase,
simulation is used to validate the distributed control behavior.

We believe that additional investigations of the
verification/validation process are of significant importance and
would bring improvements to our software tool.

Extensions of this work would introduce a linkage between
our software tool and model-checking technique. Another
avenue of research is the introduction of time-domain to the
framework of this paper to evaluate quantitative control
problems and measure system performance.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial
internet of things: Challenges, opportunities, and directions,” IEEE
transactions on industrial informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[2] Y. Qamsane, E. C. Balta, J. Moyne, D. Tilbury, and K. Barton, “Dynamic
rerouting of cyber-physical production systems in response to disruptions
based on sdc framework,” in 2019 American Control Conference (ACC).
IEEE, 2019, pp. 3650–3657.

[3] Y. Qamsane, A. Tajer, and A. Philippot, “A synthesis approach to
distributed supervisory control design for manufacturing systems with
grafcet implementation,” International Journal of Production Research,
vol. 55, no. 15, pp. 4283–4303, 2017.

[4] Y. Qamsane, M. E. Hamlaoui, A. Tajer, and A. Philippot, “A tool support
to distributed control synthesis and grafcet implementation for discrete
event manufacturing systems,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
5806–5811, 2017.

[5] Y. Qamsane, M. E. Hamlaoui, A. Tajer, and A. Philippot. “A model-based
transformation method to design PLC-based control of discrete automated
manufacturing systems.” 4th International Conference on Automation,
Control Engineering and Computer Science (ACECS-2017). Vol. 19.
2017.

[6] Y. Qamsane, A. Tajer, and A. Philippot. “Towards an approach of
synthesis, validation and implementation of distributed control for AMS
by using events ordering relations.” International Journal of Production
Research 55.21 (2017): 6235-6253.

[7] N. Software, “Gojs, a javascript library for html diagrams,” 2019.

[8] P. U. editor, “Uml editor - an online tool that generates images from text,”
https://www.planttext.com/, 2008.

[9] A. Roques, “Plantuml: Open-source tool that uses simple textual
descriptions to draw uml diagrams,” 2015.

[10] M. E. Hamlaoui, S. Bennani, M. Nassar, S. Ebersold, and B. Coulette,
“Heterogeneous design models alignment: from matching to consistency
management,” in 33rd ACM/SIGAPP Symposium On Applied
Computing (SAC 2018). ACM Digital Library, 2018, pp. 1695–1697.

[11] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin:
advanced concepts and tools for in-place emf model transformations,” in
International Conference on Model Driven Engineering Languages and
Systems. Springer, 2010, pp. 121–135.

[12] P. Guyard, “Atl transformation example : Bridging grafcet, petri net, pnml
and xml,” 2005.

[13] IEC-60848, “Grafcet specification language for sequential function
charts,” 2013.

Figure 7. Resulting DC model example

Figure 8. The generated Grafcet

427

Revealing Agile Mindset Using LEGO® SERIOUS PLAY®: Experience from an
Online Agile Training Project

Ilenia Fronza Xiaofeng Wang

Free University of Bozen/Bolzano, Italy
{ilenia.fronza, xiaofeng.wang}@unibz.it

Abstract

LEGO® SERIOUS PLAY® (LSP) is an effective method-
ology to enable the representation of abstract concepts and
has been applied to teach several Software Engineering top-
ics. However, there is limited evidence on how LSP can
be used in training on agile mindset, which is the core and
central element of agile methods. This paper demonstrates
how LSP can be utilized in agile training to reveal the ag-
ile mindset of participants. We describe our experience of
utilising LSP in an agile training project for local software
companies. Since the project was run during the COVID-19
pandemic, we adapted the LSP methodology for online set-
tings, which was not straightforward because face-to-face
interactions and tangible objects are key characteristics of
LSP. In this experience report, we describe the design of
the online LSP workshops and explain how to analyze LSP
models to reveal the agile mindset of the participants and
to tailor the training accordingly. We also provide evidence
of the effectiveness of the LSP methodology in our training
project. Drawing upon our experience, we synthesize a set
of lessons learned and sketch recommendations for educa-
tors who intend to apply LSP in their future endeavours.

1 Introduction
LEGO bricks are usually associated with constructing

concrete structures such as buildings or cars, but the dy-
namic nature of LEGO also allows it to represent more ab-
stract concepts: LEGO® SERIOUS PLAY® (LSP) is a facil-
itated workshop where participants build three-dimensional
models using a special mix of LEGO bricks designed to in-
spire the use of metaphors and story-making [1].

One specific Software Engineering (SE) subject that is
frequently taught using LEGO is agile methods (e.g., [2, 3]).
It is commonly understood that agile methods are not just
about processes, practices, and tools but, more crucially,
an agile mindset, including customer focus, iterative and

DOI reference number: 10.18293/SEKE2022-117

incremental way of working, fast feedback loop, and con-
tinuous learning and improvement [4]. Due to the abstract
nature of the agile mindset, it is not surprising to observe
that there are limited studies on explicit training for it. The
potential of LSP working with abstract concepts could be
exploited for this purpose. The objective of this experience
report is to demonstrate how to utilize the LSP methodol-
ogy in agile training that has the agile mindset as a core
element, especially how it helps to reveal the participants’
agile mindset. We describe our experience of utilizing LSP
in an agile training project we run for local software com-
panies. Since the training project has been carried out dur-
ing the COVID-19 pandemic, we adapted the standard LSP
methodology for online settings. It rendered as a challenge
because face-to-face (F2F) interactions are key characteris-
tics of the LSP methodology, but limited alternative solu-
tions have been proposed. Thus, our experience report also
shows a feasible implementation of LSP in online settings.

The rest of the paper is organised as follows. Section 2
provides more details on LSP and defines the agile mindset.
Section 3 is the core of this experience report. After out-
lining the agile training project as the context, it elaborates
on the configuration and online adaptation of the two LSP
workshops and explains how to analyze the resulting LSP
models to reveal the agile mindset of the participants and to
tailor the training. The evidence on the effectiveness of the
LSP methodology in our training project is also provided
in the same section. In Section 4, we synthesize a set of
lessons learned and sketch recommendations for educators
who intend to apply LSP in their future endeavours. Future
work is outlined in the conclusion section.

2 Background and related work
The idea behind LSP is that building external models that

can be examined, shared, and discussed makes it easier to
construct internal mental maps [1].Other key theories be-
hind LSP are the importance of play as a way to learn [5]
through exploration and storytelling; the hand-mind con-
nection as a new path for creative and expressive thinking;
and the role of the different kinds of imagination [6]. To

428

be considered as such, LSP workshops must follow the LSP
Core Process, which is based on four essential steps: 1) The
facilitator poses a challenge having no obvious/correct solu-
tion (e.g., “What’s your worst nightmare for this design out-
sourcing initiative?” [1]); 2) Participants build their answers
by assigning a meaning to bricks and develop a story cover-
ing the meaning; 3) Participants share their stories; and 4)
Participants reflect on what has been shared. A workshop
typically takes from half a day to a couple of days. The first
part serves to familiarize with the core process; then, each
workshop combines a selection of seven techniques (see [6]
for details). LSP efficacy has been observed in maintaining
student energy, engagement, and concentration [7]. Hence,
LSP has been successfully applied in multiple education ar-
eas [8], such as information systems management [9], cre-
ative arts [10], HCI design [11], civil engineering [12], and
industrial engineering [13].

LSP in SE training and education. According to a sep-
arate systematic literature analysis we conducted (details
are given in Appendix), many studies used LEGO bricks in
SE training but only six papers used the LSP core process.
The small number seems to contrast with the great success
of LSP: more than 10,000 LSP facilitators [14] write white
papers/blogs, and dedicated events exist. LPS has been ap-
plied to teach the following SE topics: constructing organi-
zational identity [15], requirements engineering and dimen-
sion and dependability [8, 16], cross-domain stakeholder-
alignment [17], development of a shared vision of the prod-
uct [18], and team building [19]. However, there is lim-
ited evidence on how LSP can be used in training on ag-
ile mindset. Moreover, none of the papers proposed online
LSP workshops; during the pandemic, limited anecdotes
were reported in blogs (e.g., [20]) and validation experi-
ments were suspended (e.g., [17]).

Training on agile mindset. Agile mindset is considered
at the core of agile methods and their successful applica-
tions, so crucial to the point that Denning (2016) claims:
“Agile is primarily a mindset” [21]. It affects all organisa-
tional levels and thus needs to be aligned across the whole
organisation [21]. Despite of its importance, there is a
lack of shared understanding of what agile mindset is. It
is an ambiguous term and prone to misinterpretation [4].
Several recent studies aspired to provide a common def-
inition of agile mindset. An opinion survey of 52 agile
practitioners [22] evaluated 70 unique agile mindset ele-
ments of an effective team. The evaluation results in the
top 5 evaluated agile mindset elements for effective team-
work, including searching for a solution to the problem in-
stead of finding the guilty, being motivated, helping each
other, mutual listening, and focus on achieving common
goal. Based on a systematic review of scientific and grey
literature, and semi-structured and unstructured interviews
with agile practitioners, Mordi and Schoop [4] consolidate

192 agile mindset elements into 27 final characteristics, and
create a definition of agile mindset that comprises the fol-
lowing elements: (AM1) Trust; (AM2) Responsibility and
ownership; (AM3) Continuous improvement; (AM4) Will-
ingness to learn; (AM5) Openness and willingness to con-
tinually adapt and grow; (AM6) Specific personal attributes,
including intent, integrity, honesty, transparency, courage,
authenticity, empathy, proactivity, creativity and problem-
orientation; (AM7) Enabling environment; (AM8) Auton-
omy of people and teams; (AM9) Managing uncertainty;
and (AM10) Focus on customer value.

The reviewed studies demonstrate that agile mindset is a
broad concept and the constituting and interwoven elements
cover personality traits, teams, culture, environments, lead-
ership and management, which are all crucial for under-
standing agile mindset appropriately. Together with the in-
visible and intangible nature of mindset, it is difficult to pro-
vide effective training on agile mindset. This is evidenced
by the abundant literature on training either students or pro-
fessionals for specific agile methods and practices but sig-
nificantly less literature on training for agile mindset. Many
agile training programs have agile mindset training as an
implicit rather than an explicit element. For example, Hof et
al. [23] use a gamification approach in a multi-week scrum
simulation project in an undergraduate software engineer-
ing course. Agile values and collaboration are taught to the
students implicitly through playing the Scrum Paper City
simulation. Often, various agile mindset elements may be
considered soft skills and covered by the programs that fo-
cus on training professionals on soft skills (e.g., [24]). The
power of agile mindset is somehow downplayed when its
elements are treated as soft skills, as mindsets are responsi-
ble for our behavioral, physiological and psychological re-
sponses [25]. LSP provides a unique opportunity for more
explicit and holistic treatment of agile mindset in a train-
ing program. It inspires workshop participants to create
metaphors and make stories with three-dimensional LEGO
models that could surface their agile mindsets, which could
then help trainers to understand where to focus on for an ef-
fective training. As far as the authors are aware of, there are
no previous studies that investigated how LSP can be uti-
lized in agile mindset training, let alone in online settings.
Our report can be seen as one of the first attempts in this di-
rection, drawing upon our own experiece in offering online
training related to agile mindset.

3 Revealing Agile Mindset Using LSP
In this section, first, we outline the training project from

which we draw the experience report. Against this back-
drop, we describe the configuration and implementation of
the two online LSP workshops and our analysis of the LSP
models in terms of agile mindset. Finally, we demonstrate
the effectiveness of the LSP methodology.

429

3.1 The Online Agile Training Project

The project provided agile training to 31 participants (28
M, 3 F) from four software companies having the follow-
ing missions: solutions for the integration of IT system and
business process (2 participants); solutions to support ev-
eryday digital life and complex business processes (7); web
solutions for spatial data management (2); business intelli-
gence, ERP, CRM, cyber security solutions (20). Accord-
ing to our survey (26 respondents), most of the participants
(38.5 %) had 10-15 years of working experience, 7.7% 1-5
years, 19.2% 5-10 years, 34.6% more than 15 years. 28.0%
never used agile methods, and 12.0% used them for less
than one year. Most of them (48%) used agile methods for
1-5 years, mainly at the team level (60.9%).

The project participants were divided into four groups
based on their roles in the companies: project managers (8,
2 F), program and middle managers (6), software engineers
(14, 1 F), and other roles (e.g., marketing, CEO, human re-
sources) (2). The central part of the training included differ-
ent topics for each group (e.g., Advanced SE Techniques for
software engineers), while beginning and ending segments
were the same for all the groups. The beginning segment fo-
cused on fundamental agile concepts, principles, and prac-
tices. The goal was to provide the participants with a com-
mon knowledge foundation that could be applied across dif-
ferent contexts regardless of their roles and responsibili-
ties. Understanding fundamental agile values and principles
was also crucial for the participants to take part in the final
part of the training (i.e., scaling agile/agile transformation),
which allowed them to understand the agile/lean approach
from a broader organizational perspective, and understand
the challenges and success factors to scale agile methods to
the whole organization. A retrospective session followed
the training: all participants of the same company (who
were previously in different groups) confronted what they
learned and consolidated the acquired knowledge.

3.2 Online LSP Workshop Implementation

We conducted two four-hour LSP workshops, WS1 in
the first part (during the agile fundamentals and mindset
session) and WS2 at the end of the training, seven months
later. The detailed description of how the agile mindset was
taught is out of scope in this article, which focuses on how
we used the core LSP process to collect data on agile mind-
set (Figure 1). Each LSP workshop was repeated for the
four groups; in total, participants were 25 in WS1 and 22 in
WS2. The time used for building, sharing, and discussing
respected the indications of the LSP methodology and, as
expected, varied by group depending, for example, on fa-
miliarity with LEGO bricks and the length of discussions.

The facilitator (one of the authors is a certified facili-
tator for LSP) faced the main challenge of recreating the
LSP mood and learning experience (based on “thinking in

1.1 Build a tower
1.2 Build a model following the instructions
1.3 Adapt your model to show what makes you happy at
work
1.4 Build the nightmare client

1. Skills
building

2.1 Build what comes to mind when you think of
agile/lean (individual model)

2.2 Extend the model to show how you feel about this
concept (individual model)

2. Assess
participants
entry-level

WS1

1.1 Build the longest bridge possible, under which you
can pass a hand, with a mini figure in the middle

1.
Reconnection

2.1 Build what comes to mind when you think of
agile/lean (individual model)

2.2 Place the models into a formation with one super
story that encompasses all the individual models, and
everybody is happy with the story

2. Assess
participants
final-level

WS2

Figure 1: Goals and activities of WS1 and WS2.

3D” [10]) in the online environment (using Zoom as video
conference software). We encouraged and motivated [26]
camera and mic constant usage to facilitate communication
and to hear the “sound of bricks”. To guarantee the same
learning experience, we distributed the same official LEGO
LSP starter kit to each participant.

Group work is a key component of F2F LSP, for exam-
ple, for building shared models. In the online workshops,
we created super stories that encompassed the individual
models, which could be achieved by using the available
bricks and did not require having one single builder. The
participants uploaded to a shared document the pictures of
individual models. Then, to create the super story, they or-
ganized the pictures in the document. During story sharing,
the facilitator annotated each model in a visual booklet to
record how the participants interpreted the elements of their
LSP models, and observed the participants’ reactions and
perceptions. These notes, together with the LSP models,
are the input for the analysis of the agile mindset of the par-
ticipants, which is explained in the following sub-section.

3.3 Utilizing LSP Models to Reveal Agile Mindset

The authors reviewed all the collected materials to sur-
face the agile mindset of the participants by mapping the
LSP models and their interpretations to the Agile Mindset
(AM) elements. Table 1 shows the mapping of the four ex-
amples shown in Figure 2. The story of Model 1 was “agile
means reaching the goal by taking decisions to adjust the
sails to the wind”, which shows Willingness to adapt (AM5)
and Autonomy of people and team (AM8).

To obtain an overall picture of the participants’ AM, we
thought to create a dashboard to supervise the learning pro-
cess of a group of learners [27] through an effective and
intuitive means [28] to visually display levels of presence

430

Table 1: Models in Figure 2 mapped to agile mindset ele-
ments.

Agile mindset elements
Model 1 2 3 4 5 6 7 8 9 10

1 x x
2 x x x x
3 x x x x x
4 x

1

2

3 4

Figure 2: LSP models created by the participants to answer
the question “what is agile?”.

of different AM elements revealed by the LSP models. As
a first step, we used a heatmap for visualization. Figure
3 exemplifies our approach. Lines and columns represent
the two LSP workshops and the AM elements, respectively.
Each square represents the percentage of participants who
mentioned an AM element in the LSP model, with larger
values represented by darker squares. This way, the two
lines of the heatmap reveal the AM in the group of partici-
pants of the two LSP workshops.

Figure 3: Agile mindset revealed by the LSP workshops.

The proposed visualization would help the trainer to fo-
cus on the training on the critical agile mindset elements. A
closer examination of the heatmap of LSP WS1 helped us
to understand where the presence of AM elements is weaker
or even not present, so that we could tailor our training plan
to focus more on those elements. For example, as shown in
Figure 3, in comparison to other agile mindset elements in
the WS1 line, Trust (AM1), Responsibility and ownership
(AM2), and Enabling environment (AM7) are least shown
in the LSP models from the first workshop. This indicated
that we should focus more on these elements in our train-
ing. Instead, relatively less attention could be paid to Open-
ness and willingness to continually adapt and grow (AM5),

Autonomy of people and teams (AM8), Managing uncer-
tainty (AM9) and Focus on customer value (AM10). In ad-
dition, the comparison of the two heatmap lines in Figure 3
helped us to understand whether the participants’ AM was
enhanced through the training project and which elements
were enhanced. Most squares in the WS2 line are darker
than the counterparts in the WS1 line, which shows stronger
presence of those AM elements in the models built in the
second LSP workshop. We interpret this as the enhance-
ment of the AM elements. It is reassuring for us to observe
that no element in the WS2 line shows reduced presence,
which can be interpreted that our training regarding agile
mindset did not produce any counter effect, even though we
could also see that two elements, Trust (AM1) and Willing-
ness to learn (AM4), did not show improvement.

3.4 The Effectiveness of LSP to Review Agile Mindset

The LSP models allowed us to compare the participants’
AM in the beginning and at the end of the training project.
Our experience is that they are more effective in revealing
AM than traditional text input. During the project kick-off
meeting, we divided all project participants into pairs, and
asked them to write down their answer to the question “what
agile means to you?” and to discuss their answers with their
pairs. This provided us a good opportunity to compare the
expressiveness of text versus LSP models in terms of re-
vealing the participants’ AM. Indeed, most of these partic-
ipants participated in LSP WS1, and there was no training
session in between the kick-off meeting and the first LSP
workshop; thus, the AM of the participants were suppos-
edly not changed, and there is sufficient time lapse between
these two sessions so any potential influence of pair discus-
sion in the kick-off meeting on the LSP model building in
WS1 was minimised. We analysed the text input against
the ten AM elements, in the same manner as we annotated
the LSP models. A heatmap similar to Figure 3 was gen-
erated that compares the revealed AM items between text
input and the models from WS1, as shown in Figure 4.

AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10
TEXT

LSP WS1

Figure 4: Agile mindset revealed by text input and by the
models from LSP WS1.

For the same group of participants, the LSP models pro-
duced by them revealed stronger presence of most AM ele-
ments (except AM1, AM2 and AM7), especially for AM8,
AM9 and AM10 where sharper contrasts can be observed.
Figure 4 is a good illustration that LSP models can help ed-
ucators better surface the invisible AM of the participants.

It is also worth noting the intangible results of the LSP
workshops. Based on facilitator’s notes on participants’ re-
actions and perceptions, the LSP method helped to keep the

431

participants engaged, which was an issue in the online set-
ting, and the participants of both workshops were eager to
build their models. Of course, some participants were less
enthusiastic than others; we did not push them hard, and
left them enough freedom and ease to build their own mod-
els as they wished. During the workshops, an open atmo-
sphere was created and the LSP methodology helped the
team building task. Our experience confirmed what was
observed in [18]: even though team building was not the
primary goal of the LSP workshops, the camaraderie effect
was pronounced. Finally, and perhaps most crucially, the
participants had fun.

4 Lessons Learned and Recommendations
Drawing upon the experience reported in Section 3, we

summarize a set of lessons learned and corresponding rec-
ommendations of utilizing the LSP methodology, especially
in online settings. We hope they could be useful for other
educators for using LSP in.
Running LSP workshops.

• LSP workshops require considerably more time than
traditional text-based surveys; however, LSP can better
surface participants’ invisible agile mindset.

• LSP facilitators need to be aware of the difficulties that
the audience might have with building. For example,
we had a color-blind participant who had difficulty fol-
lowing the building instructions in WS1. We explained
to the participant that instructions were needed only
in that specific activity and allowed as much time as
needed to complete the construction. We recommend
collecting the necessary information about the partici-
pants to plan the workshop carefully.

• We recommend gathering participants’ feedback to
collect tips for replication elsewhere [16].

Running LSP workshops in online settings.

• To ease the workshop execution, we recommend pro-
viding each participant with the same LEGO set (as in
F2F workshops). However, we recognize that this may
be difficult in the case of global participant groups.

• We recommend asking participants to keep cameras
and mics on to obtain spontaneous interactions and
more realistic environments. We could observe that
the show-and-tell nature of the exercises with LEGO
bricks facilitated this request.

• The time needed for each online activity depends on
several factors (e.g., familiarity with LEGO bricks and
the length of the discussions). We recommend having
backup activities to keep the fastest builders engaged
as, in our case, they tended to disengage quickly (e.g.,
switching windows to read emails).

• We recommend keeping the 12 participants limit per
facilitator as in F2F workshops: if the group is larger
the LSP Core Process takes too long and it is hard to
keep everyone in flow.

Running LSP workshops when training for agile mind-
set.

• LSP methodology is effective in training for abstract
and complex concepts such as the agile mindset. It
is helpful to have a concrete definition of the abstract
concept, and build a mapping between LEGO pieces
and the components of that concept before running
LSP workshops. This could greatly help the educa-
tors to better grasp the participants’ understanding of
the concept.

• We demonstrated how to surface the presence of an ag-
ile mindset in a participant group. To enable more per-
sonalized training, we recommend to keep the map-
ping between participants and the LSP models they
build in different workshop sessions in order to com-
pare their initial and final mindset.

5 Conclusion
LSP is an effective methodology to enable the represen-

tation of abstract concepts. In this experience report, we
described our adaptation of the LSP methodology for an on-
line agile training with local software companies during the
COVID-19 pandemic time. We focused on how the LSP
methodology could help to reveal the agile mindset of the
participants. We also explained how the models produced in
LSP workshops could be analysed to provide more focused
and targeted training to participants and better understand-
ing of the training effect. The approach presented in our
experience report can help educators in agile training for
organizations, because it shows a concrete means to under-
stand the presence and level of agile mindset in the orga-
nization. Drawing upon our experience, we summarized a
set of Lessons learned and recommendations that could help
other educators utilize the LSP methodology in a meaning-
ful manner in their training.

Through our experience, we demonstrated the effective-
ness of LSP models to reveal the agile mindset of people.
However, to establish the effectiveness of the LSP method-
ology in training for agile mindset, more rigorously de-
signed studies are needed. For example, as in the papers
[8, 16], controlled experiments can be used to compare the
learning outcome of one group (treatment group) using the
LSP methodology and another group (control group) using
conventional approaches such as pair/group discussion or
questionnaires. Potential interesting aspects to explore in-
clude the usage of show-and-tell activities (e.g., LSP) as
a potential solution to let people keep camera on during

432

online sessions, how LSP works for different backgrounds
(disciplinary, gender, etc.), which would be important be-
cause agile mindset is relevant to all the roles in an organi-
zation, and whether/how LSP could be used in training for
other types of mindsets or abstract concepts as well as con-
crete skills or knowledge. A follow-up study could examine
whether the participants implemented the studied principles
in real-life. Finally, the proposed approach could be com-
pared with other approaches to judge the extent to which
agile mindset has been developed.

Appendix
In the systematic mapping study we conducted, we re-

trieved existing works on LSP in software engineering
training and education in November 2021 by using the fol-
lowing search strings in all metadata: (lego OR brick OR
LSP OR “lego serious play”) AND (“software engineering”
OR agile)). We found 186 works from three digital libraries:
IEEE Xplore (126), ACM DL (25) and Scopus (35). Af-
ter duplicates removal, based on title/abstract we excluded:
1) Studies dealing with programming/robotics; 2) Studies
with no focus on SE education; 3) Studies not presented in
English; 4) Summaries of conferences/editorials; 5) Stud-
ies not accessible in full-text; 6) Replications; 7) Books.
We excluded one of the six remaining papers after full-text
reading because it did not use the LSP core process. One
paper was then added through backward snowballing [29].

References
[1] R. Rasmussen, “When you build in the world, you build in your

mind,” Design Management Review, vol. 17, no. 3, pp. 56–63, 2006.

[2] M. Paasivaara, V. Heikkilä, C. Lassenius, and T. Toivola, “Teaching
students scrum using lego blocks.” ACM, 2014, p. 382–391.

[3] J.-P. Steghöfer, E. Knauss, E. Alégroth, I. Hammouda, H. Bur-
den, and M. Ericsson, “Teaching agile - addressing the conflict be-
tween project delivery and application of agile methods,” in 2016
IEEE/ACM 38th Int. Conf. on Software Engineering Companion
(ICSE-C), 2016, pp. 303–312.

[4] M. Mordi, Azuka; Schoop, “Making It Tangible - Creating a Defini-
tion of Agile Mindset,” Twenty-Eigth European Conference on Infor-
mation Systems (ECIS2020), no. June, 2020.

[5] I. Fronza, N. E. Ioini, and L. Corral, “Teaching computational think-
ing using agile software engineering methods: A framework for mid-
dle schools,” ACM Transactions on Computing Education (TOCE),
vol. 17, no. 4, pp. 1–28, 2017.

[6] E. Frick, S. Tardini, and L. Cantoni, “White paper on lego serious
play: A state of the art of its applications in europe, 1–26,” Switzer-
land: Università della Svizzera Italiana, 2013.

[7] D. López-Fernández, A. Gordillo, F. Ortega, A. Yagüe, and E. To-
var, “Lego©serious play in software engineering education,” IEEE
Access, vol. 9, pp. 103 120–103 131, 2021.

[8] S. Kurkovsky, “Teaching software engineering with lego serious
play,” in Proc. of the 2015 ACM Conference on Innovation and Tech-
nology in Computer Science Education. ACM, 2015, p. 213–218.

[9] B. Oberer, “Integrating creative learning elements in higher educa-
tion shown in the example of a management information systems
courses,” Education, vol. 3, no. 6, pp. 319–324, 2013.

[10] A. R. James, “Lego serious play: a three-dimensional approach to
learning development,” J. of Learning Development in Higher Edu-
cation, no. 6, 2013.

[11] L. Cantoni, L. Botturi, M. Faré, and D. Bolchini, “Playful holistic
support to hci requirements using lego bricks,” in International Con-
ference on Human Centered Design. Springer, 2009, pp. 844–853.

[12] L. Bulmer, “The use of lego® serious play in the engineering design
classroom,” Proc. of the Canadian Engineering Education Associa-
tion (CEEA), 2009.

[13] P. K. Hansen and R. O’Connor, “Innovation and learning facilitated
by play,” Encyc. of the Sciences of Learning, pp. 1569–1570, 2012.

[14] D. Lyons, “Why Have Our Offices Become Like Touchy-Feely
Kindergartens?” https://forge.medium.com/, 2018, accessed: Mar.
2022.

[15] D. David and D. J. Roos, “Constructing organizational identity,”
Academy of Management Annual Meeting, NewOrleans, US, 2004.

[16] S. Kurkovsky, S. Ludi, and L. Clark, “Active learning with lego for
software requirements,” in Proc. of the 50th ACM Technical Sympo-
sium on Computer Science Education, ser. SIGCSE ’19. New York,
NY, USA: ACM, 2019, p. 218–224.

[17] J. Köhlke, S. Hanna, and J. Schütz, “Cross-domain stakeholder-
alignment in collaborative sos – lego©serious play©as a boundary
object,” in 2021 16th International Conference of System of Systems
Engineering (SoSE), 2021, pp. 108–113.

[18] D. Pichlis, S. Hofemann, M. Raatikainen, J. Sorvettula, and C. Sten-
holm, “Empower a team’s product vision with lego©serious play©,”
Lecture Notes in Computer Science, vol. 9459, pp. 210–216, 2015.

[19] B. A. Scharlau, “Games for teaching software development,” in Proc.
of the 18th ACM Conference on Innovation and Technology in Com-
puter Science Education. ACM, 2013, p. 303–308.

[20] E. Conches, “Case study lego©serious play©shared model online,”
2020, last accessed: Mar. 2022.

[21] S. Denning, “How to make the whole organization “Agile”,” Strategy
and Leadership, vol. 44, no. 4, pp. 10–17, jan 2016.

[22] J. Miler and P. Gaida, “On the agile mindset of an effective team -
An industrial opinion survey,” Porc. of the 2019 Federated Confer-
ence on Computer Science and Information Systems, FedCSIS 2019,
vol. 18, no. 2, pp. 841–849, 2019.

[23] S. Hof, M. Kropp, and M. Landolt, “Use of gamification to teach ag-
ile values and collaboration: A multi-week scrum simulation project
in an undergraduate software engineering course,” in Proc. of the
2017 ACM Conf. on Innovation and Technology in Computer Science
Education. New York, NY, USA: ACM, 2017, p. 323–328.

[24] P. Kontodiakou and A. Sotiropoulou, “Training of ict professionals
in soft skills: The case of sending,” in 24th Pan-Hellenic Conference
on Informatics, ser. PCI 2020. ACM, 2020, p. 354–358.

[25] A. J. Crum, K. A. Leibowitz, and A. Verghese, “Making mindset
matter,” BMJ (Online), vol. 356, no. February, pp. 1–4, 2017.

[26] F. R. Castelli and M. A. Sarvary, “Why students do not turn on their
video cameras during online classes and an equitable and inclusive
plan to encourage them to do so,” Ecology and Evolution, vol. 11,
no. 8, pp. 3565–3576, 2021.

[27] I. Fronza and C. Pahl, “Envisioning a computational thinking assess-
ment tool,” in CEUR Workshop Proceeding, vol. 2190, 2018.

[28] S. Few, Information Dashboard Design: Displaying data for at-a-
glance monitoring. Analytics Press Burlingame, CA, 2013, vol. 5.

[29] C. Wohlin, “Guidelines for snowballing in systematic literature stud-
ies and a replication in software engineering,” in Proc. of the 18th
international conference on evaluation and assessment in software
engineering, 2014, pp. 1–10.

433

Quantum Software Models: Software Density Matrix
is a Perfect Direct Sum of Module Matrices

Iaakov Exman and Alexey Nechaev
Software Engineering

The Jerusalem College of Engineering, JCE, Azrieli
Jerusalem, Israel

iaakov@jce.ac.il, alosha82@gmail.com

Abstract— Quantum Software Models is a theoretical framework
to systematically design and analyze any software system – be it
quantum, classical or hybrid – representing it by a design Density
Matrix. Recently, we have demonstrated a top-down approach, to
decompose a whole software system Density Matrix into modules,
using basis vector projectors of the Matrix. However, it would
be even more natural to have a systematic bottom-up procedure,
to compose a whole software system Density Matrix, given a set
of well-designed software module matrices, taken as sub-systems.
This is exactly the paper’s purpose. The result obtained: the
whole software system Density Matrix is a perfect Direct Sum of
module density matrices. This result yields clear software design
benefits: it is bidirectional, one can traverse the software system
hierarchy top-down or bottom-up, in particular, gradually
building up the whole system from verified correct modules,
assured by spectral decoupling techniques. The claim is formally
validated and is illustrated by software system studies.1

Keywords— Software Design; Software Density Matrix;
Modularity; Direct Sum; Module Density Matrix; Quantum
Software.

I. INTRODUCTION

Quantum Software Models is a theory of software system
design, consisting of a surprising synthesis of two apparently
unrelated knowledge frames, both based upon linear algebra.

The 1st knowledge frame, Linear Software Models [6], [7],
a linear algebraic software design theory, where vectors stand
for software concepts, combined into software system matrices,
such as the Laplacian [24]. Matrices enable software systems
decomposing into modules by spectral methods [8].

The unexpected synthesis starts with Frederick Brooks’
original idea: “Conceptual Integrity is the most important
consideration for software system design” [4]. Linear Software
Models express Brooks’ underlying conceptual principles in
algebra: Propriety – use only absolutely necessary concepts to
describe software and no more – implying vectors’ linear
independence. Orthogonality – concepts should be totally
independent of one another – a stronger demand than linear
independence. Propriety and Orthogonality lead to modularity.

The 2nd knowledge frame, Quantum theory is a generic
frame, explaining “whole systems in terms of their parts”. It is

1 DOI: 10.18293/SEKE2022-158

applicable to a wide variety of physical systems and their parts,
e.g. crystals, molecules, atoms, and particles.

Quantum Software Models (QSM) were inspired by
Quantum Computing, originally proposed by the physicist
Feynman [11] to perform challenging computations simulating
physical systems composed of particles. The QSM novelty is
the application to whole software systems in terms of modules.

A. From Software Modules to a Whole
Software System and Back

A Schematic Transition Diagram outlining a path from
separate module Density Matrices, through a Direct Sum, to a
whole software system Density Matrix, and back, is in Fig. 1.

Figure 1. Schematic Transition – from separate module Density Matrices
to a whole Software System Density Matrix, and back, with the intermediate
modules Direct Sum. Composition is from left to right (blue arrows).
Decomposition is from right to left (orange arrows). (Figures online in color).

The direct sum is formally defined for a few mathematical

objects. This work only refers to matrices and subspaces2*.
A matrix direct sum [20] – with symbol ⨁ – of n square

matrices (M1, M2,…,Mn) with possibly different sizes,
constructs (see Fig. 2) a block diagonal matrix as follows

⨁j Mj = diag(M1, M2,…,Mn)
(1)

* Direct sums are also defined for mathematical “modules”, which are
different entities from this paper’s software modules.

434

Figure 2. Matrices Direct Sum – constructs an enclosing block-diagonal Matrix.

A subspaces direct sum refers to subspaces having only the
zero vector in common. As Density Matrices act in Hilbert
spaces (e.g. [17] page 66), their direct sums, for software
matrices and their sub-spaces, are effectively equivalent.

B. Paper Organization

The remaining of the paper is organized as follows. Section
II reviews the basics of software system algebraic
representation. Section III illustrates the Direct Sum
composition of modules into a Classical Software System, then
formulates the software modules’ direct sum procedure.
Section IV illustrates the procedure for a Quantum Software
System. Section V validates the direct sum procedure from a
few viewpoints. Section VI is a concise review of related
works. Section VII concludes the paper with a discussion.

II. THE BASICS OF SOFTWARE SYSTEM ALGEBRAIC

REPRESENTATION

A. From Bipartite Graph through Laplacian to

Density Matrix

Software system algebraic design refers to 3 entities:
 Structors are generalizations of classes in Object

Oriented Design (OOD).
 Functionals generalize OOD class methods.
 Concepts impart meaning to software systems’

Structors and Functionals.
The relations between Structors labelled by (S1, S2,…,Si),

and respective provided Functional declarations labelled by
(F1, F2,…,Fk) are depicted in bipartite graphs [23] as in Fig. 3.

Figure 3. Bipartite Graph of a Command Design Pattern – It has 12 vertices, 6
Structors (Si), 6 Functionals (Fk), decomposable into 3 modules (Mj) (blue
background). For instance, Structor S6 provides Functionals F5, F6 as shown
by arrows. See section III-A for the conceptual meanings of the Command
Design Pattern Structors and Functionals.

The Laplacian Matrix L is defined upon a graph as follows:

L = D - A

(2)

D is the diagonal Degree matrix with Dii the vertex i degree,
and A is the Adjacency matrix with negative 1-valued Aij if
vertex j is a neighbor of vertex i, and zero-valued otherwise.

Von Neumann’s ([22], pages 194, 214) Density Matrix –
the cornerstone of our Quantum Software Models, representing
software systems – is easily obtained from a Laplacian,

(Braunstein et al. [2]), by normalizing the Laplacian Matrix by
its Trace (sum of diagonal degrees) Tr(L):

 = L / Tr(L)

(3)

B. Software Modules Represented by Density
Matrices

A Density Matrix may represent whole software systems
or their modules. For example, the rightmost module M3 in
Fig. 3, is shown again in Fig. 4, beside its Density Matrix. The
Density Matrix – by eq. (3) – is the Laplacian Matrix (within
parentheses) normalized by the factor 1/6.

A Density Matrix, as a normalized Laplacian, preserves all
Laplacian properties, such as rows/columns summing zero,
positive diagonal, and so on.

Bipartite Graph Density Matrix of Module M3

Figure 4. Bipartite Graph and Density Matrix of module M3 – The left panel
bipartite graph shows 4 vertices, 2 Structors labelled (S5, S6) and 2 Functionals
labelled (F5, F6) as in Fig. 3. The right panel shows the Laplacian (within
parentheses) {by eq. (2)}. The 4 columns and 4 rows have the same vertex
order (light orange). The Degree matrix D is the diagonal (green circles). The
Adjacency matrix A (hatched blue) is in the upper-right and lower-left
quadrants. The Density Matrix is the Laplacian normalized by the factor 1/6
{eq. (3)} since the sum of degrees of the Diagonal D equals 6.

III. FROM MODULES TO SOFTWARE SYSTEM: BACK &

FORTH

This section, after an introductory classical software
system, describes procedural tasks for composing a set of
well-designed software modules, taken as sub-systems of a
whole software system. The outcome is a formal procedure
with an intermediate direct sum of modules.

A. Introductory Classical Software System:
Command Pattern

Design Patterns are canonical software sub-systems to be
used and re-used. Four authors, known as the Gang-of-Four,
collected patterns in the “GoF” book [13].

The Command Pattern is an example, whose basic ideas
are: a- it is an abstraction applicable to any common command
– copy, paste, delete, save, etc. b- it has four generic concepts:
an invoker, e.g. a menu-item or a button; a chosen command,
one of the previously mentioned, e.g. copy; a receiver of the
command application, e.g. a file or a document; a history
mechanism, enabling undo/redo of commands perhaps
invoked by mistake. These concepts, Structors & Functionals
of this software system, assign conceptual meanings to the Si
and Fk labels of Fig. 3. Command Pattern Structors &
Functionals are shown together with their modules, in Fig. 5.

435

Figure 5. Command Design Pattern: Structors & Functionals – It has 3
modules: Command, Invoker, Receiver. Compare with bipartite graph in Fig.
3. Structors’ names with an “I” are Interfaces inherited by Concrete classes.

Next are transition stages from modules (Fig. 6), through
a Direct Sum (Fig. 7) to System Density Matrix (Fig. 8).

Figure 6. Command Design Pattern: Separate Modules – One sees 3 separate
module Density Matrices (within red rectangles), and different normalizations:
M1 has a factor 1/10, M2 has a factor ½ and M3 has a factor 1/6.

Figure 7. Command Design Pattern: Direct Sum of Module Density Matrices
– The single big matrix has 3 block-diagonal modules within red rectangles.

Figure 8. Command Design Pattern: Renormalized whole Software System
Density Matrix – The diagonal Degree Matrix D (green circles) keeps the
Direct Sum values, reordered due to repositioned Functionals and Structors.
The Adjacency Matrix A (hatched blue) keeps values as each module carries
the same Direct Sum columns and rows. Modules order is preserved.

Underlying the Transition from modules to the whole
software system 3 tasks were performed:

1- Reordering Structors & Functionals – composition
collects Structors together and Functionals together;
decomposition separates them by modules;

2- Preserving modules order – the stage from Direct
Sum to whole System Density Matrix, and vice-versa,
keeps the same modules order;

3- Renormalization – transition through direct sum needs
renormalization of density matrices in both directions.

B. Composition Procedure by Direct Sum of
Modules

Here the Composition Procedure from modules to a whole
software system is formulated in pseudo-code.

The reverse Decomposition Procedure from the whole
system Density Matrix back to modules’ Density Matrices is
easily inferred from the above Composition Procedure.

IV. QUANTUM SOFTWARE SYSTEM AND OTHER SYSTEMS

Having illustrated the classical Design Pattern, here we
describe a quantum software system, viz. Grover Search. In
addition, we concisely mention other systems.

Composition Procedure 1– by Direct Sum of Modules
Given: Density Matrices of all Modules needed;
Obtain: Density Matrix of the whole Software System.

 Preparation Phase
1. Modules Choice – Choose desired modules;
2. Normalization factors – Delete from matrices: they

are not needed for composition;

Direct Sum Phase
1. Modules’ order Choice – Decide the modules order,

to be preserved in the Transition Phase;
2. Prepare Direct Sum – in block-diagonal format, in

the decided modules’ order;

Transition to Whole System Density Matrix
1. Prepare labels list – first Functionals, then Structors;
2. Prepare empty system Density Matrix – with size

equal the sum of modules’ Density Matrices’ sizes;
3. Loop on list of modules, preserving their order;

For each module Density Matrix do:
 Add upper-right Adjacency matrix square module

(including its zeros) to the system Density matrix
according to the module respective row and
column labels, keeping the block diagonal format
of the upper-right quadrant;

 Add diagonal degrees in the same labelled rows,
such that the row values sum to zero;

 Reflect the Adjacency matrix module, around the
diagonal, to the lower-left quadrant;

 Fill-in remaining empty system matrix elements of
the whole system density matrix with zeros.

4. Renormalize the system Density Matrix
5. Output system Density Matrix

436

A. Quantum Software System: Grover Search

Quantum Software systems design starts getting Structors
& Functionals from Quantum Circuits ([17] page 22), i.e.
sequential circuits with time increasing from left to right.

The Grover quantum Algorithm [14] searches unsorted
databases with quadratic speedup relative to classical
algorithms. Grover search begins with equal probability qubits
superposition by the Hadamard operator H to the tensor power
of n, ending with measurement. Next are quantum circuit, its
Direct Sum, and system Density Matrix (in Figs. 9, 10, 11).

Figure 9. Grover Search Quantum Circuit – It has four (green) “boxes”, the
system Structors {S1,S2,S3,S4}. Each Structor contains one or more
Functionals {F1,F2,F3,F4}. The Amplification Structor S3 has two
Functionals F2 and F3. Modules {M1,M2,M3} (in red rectangles) contain one
or more Structors. The Grover Iteration module is a loop executed alternating
the Functionals inside the Oracle S2 and Amplification S3 Structors. Check
Amplification F3 decides when the loop ends, passing results to Measurement.

The Inversion Operator F2 of the Grover Iterator (Fig. 9) is
used in both Iterator Structors. F2 has the form I - 2*|x⟩⟨x|
([17] page 251) with x the correct searched item value in the
Oracle S2, or any item in the Amplification S3, where F2 is
multiplied by a minus sign. This is a typical inheritance case
between Structors, similar to classical software inheritance.

Figure 10. Grover Search Direct Sum of Modules’ Density Matrices –
modules are block-diagonal, enclosed by red rectangles.

Figure 11. Grover Search whole software system Density Matrix.

Let us compare the Command Design Pattern – the
classical software system – with the Grover Search – the
quantum software system.

The diagrams serving as information source for the whole
system and its modules, are different:

 UML class diagrams for classical systems;
 high-level quantum circuits, such as Fig. 9, for

quantum systems.

However, once one has the list of Structors & Functionals,
from then on, the procedure is identical, and totally
independent of the conceptual meanings of the system.

This observation reinforces the plausibility of the idea that
the same design approach should be applied to whatever kind
of software system, classical, quantum or hybrid.

B. Hybrid and Simulation Systems

We have performed studies of other systems, which due to
space limitations are not shown here. They will appear in a
longer paper to be published. Other studies include: a) hybrid
systems containing classical and quantum sub-systems; b)
software systems whose purpose is not to compute specific
numerical/logical results; the ultimate purpose of these
software systems is to simulate real-world systems, to enable
verification of the correctness of their control mechanisms,
e.g. elevator systems.

V. VALIDATION

This paper’s claim, the Software Density Matrix is a Perfect
Direct Sum of Modules’ Density Matrices, and its implications
are formally validated here, from three complementary
viewpoints:

 The meaning of Perfect Direct Sum;
 Density Matrix as a complete information source

of the Software System;
 Software Conceptual Integrity from Modularity.

A. Meaning of Perfect Direct Sum

We first provide a definition of a well-designed software
system, in terms of algebraic Conceptual Integrity, in the next
text-box.

Definition 1 – Well-designed Software System
A Density Matrix software system, well-designed in
algebraic Conceptual Integrity terms, obeys the following
Adjacency Matrix conditions, within the Density Matrix:

 Linear Independences – all its Structors are
mutually linearly independent and all its
Functionals are mutually linearly independent;

 Square Adjacency Matrix – each quadrant of the
Adjacency Matrix, within the Density Matrix is
square, a linear algebraic consequence of the
previous Linear Independences’ condition [6];

 Orthogonality – all modules in both quadrants of
the Adjacency Matrix, are block diagonal.

437

The meaning of the Perfect Direct Sum of the modules
composing a software system is formulated in the next
theorem.

Proof:

Item a- all vectors within each module are linearly independent
by the assumption (a) of well-designed modules; modules
block-diagonality follows from their matrix elements being in
disjoint differently labelled columns and rows; the overall
modules constitute a square, since their number of columns
equals their number of rows;
Item b- 1. The degrees diagonal matrix elements are generated
for all rows of each module, the same rows of the Direct Sum;
they are reordered, since the columns/rows are repositioned;
Item b- 2. Exactly the same matrix elements in the same
modules’ order is determined by assumption (b) the
Composition Procedure 1;
Item b- 3. The normalization factors’ denominators are the
sum-of-degrees of the respective Density Matrix. By the Item
b- 1 the degrees’ of the whole system Density Matrix are
exactly all the Direct Sum diagonal elements. Thus the whole
Density Matrix denominator is the sum of the modules sum-of-
degrees. ⧠

B. Density Matrix: Complete Source of
Software System Information

Here we regard the whole software Density Matrix as an
information source about the software system, and inquire
about its information completeness.

Composing the software system from modules, through the
modules’ Direct Sum, two information aspects need analysis:
 Completeness about each module – Theorem 1 is a full

positive answer: no information is lost in the process from
separate modules, through Direct Sum, to a whole system.

 Completeness beyond individual modules – the software
representation of Procedure 1 is a Density Matrix for all
purposes. The 1st quantum computing axiom, in von
Neumann’s Density Operator version ([17] page 102) is a
full positive answer: “the system is completely described
by its density matrix acting on the system state space”.

C. Software Conceptual Integrity from
Modularity

Modularity is an essential contribution to Conceptual
Integrity of the whole system Density Matrix, obtained by
Composition Procedure 1. This follows from assumption (a) of
the Perfect Direct Sum Theorem 1.

Definition 1, on well-designed software systems, the basis
of the referred assumption (a), explicitly incorporates the linear
algebraic expressions of Frederick Brooks’ underlying
principles of Conceptual Integrity, viz. Propriety and
Orthogonality [4].

VI. RELATED WORKS

This section offers a very concise review of related works.
We start with algebraic approaches to modularity. Within

Linear Software Models, two spectral approaches to modularity
were developed: one used the Modularity Matrix [7] and
another used the Laplacian Matrix [8]. In both cases, modules
were extracted from matrix eigenvectors. Within Quantum
Software Models, Exman andrefer Shmilovich modularized
software system Density Matrices [10] based upon disjoint
projectors of the Matrix subspaces.

Non-algebraic alternatives have been often based upon a
DSM (Design Structure Matrix) [21]. Some of them [5], were
justified by economic arguments (Baldwin & Clark [1]).
Another alternative, to extend UML to quantum circuits [18], is
certainly interesting and accumulated large experience, but still
lacks a rigorous and self-consistent theory. See also Rodriguez
on OpenUP [19] and its bibliography.

Next, we refer to Quantum Computing (QC) (e.g. [17])
issues. This paper’s Introduction states that QC is a foundation
of Quantum Software Models. A QC modularity issue
addressed by these models is human understanding and reuse
of quantum circuits or parts thereof, as opposed to emphasis on
efficient runtime implementation. An example [12] refers to
alternative Grover iteration optimizations, with this respect.

Finally, we highlight the concepts’ importance to software
design. Conceptual Integrity notions and underlying principles
were introduced in the well-known books by Frederick Brooks,
The Mythical Man-Month [3] and The Design of Design [4]. A
recent contribution to the software design field, is the book by
Daniel Jackson “The Essence of Software”, in which he
explains why concepts matter for great design [15].

This, and our previous papers, claim that an algebraic
approach is essential for software design, as discussed next.

Theorem 1 – Perfect Direct Sum of Software System
Modules’ Density Matrices
Assuming:
(a) each module Density Matrix of a chosen set of

modules is well-designed,
and:
(b) The whole software system Density Matrix, composed

of the chosen set of modules, is obtained from the
Direct Sum of the modules’ Density Matrices by the
Composition Procedure 1;

Then:
a- The composed whole software system Density Matrix is

well-designed;
b- The composed whole software system Density Matrix

perfectly contains all the information of the Direct Sum,
no less and no more, in the following sense:

1. The degrees’ diagonal of the whole system Density
Matrix has exactly the same matrix elements of the
Direct Sum diagonal, only reordered;

2. The modules in the upper-right quadrant of the
whole system Density Matrix have exactly the same
matrix elements of the Direct Sum modules, in
exactly the same modules’ order;

3. The renormalization factor of the whole system
Density Matrix – the inverse of the sum-of-degrees
– is the inverse of the sum of denominators of the
normalization factors of the Direct Sum modules.

438

VII. DISCUSSION

A. Density Matrix Choice for Software Design

The first and foremost consideration for the Density Matrix
choice for software design, is the Quantum theory in which it is
embedded. It offers invaluable benefits: it is rigorous, self-
consistent, and triggers otherwise unthinkable questions.
Furthermore, the Density Matrix affords utmost generality
relative to software systems’ pure or mixed states.

Practical benefits of the algebraic design are:
a) Agile-Design-Rules –Brook’s Conceptual Integrity

[3][4], implemented by a Laplacian or a Density Matrix, is a
theory behind Agile-Design-Rules, conforming to accepted
best practices’ wisdom (see [9] and its bibliography);

b) Input modules a priori correctness – the correctness of
Direct Sum input modules, is assured by algebraic spectral
modularization and its specialized decoupling techniques [8].

c) Format uniformity & Software generality – the core
asset of the algebraic software design, is an extremely simple
and uniform Density Matrix format, stimulating general
applicability to software systems of any kind, size, or module
numbers.

B. Direct Sum, Direct Product and Tensor
Product

We use Direct Sum and not Direct Product because a
direct sum element is nonzero only for a finite number of
entries, and our Density Matrices act on finite vector spaces.
Direct product elements may have an infinite number of
nonzero entries [20]; as Lang notes for abelian groups ([16],
page 36), the direct sum is a direct product subset.

The Tensor Product is applicable to Density Matrices. But
its relation to Direct Sum, in the software design context, is out
of the scope of this paper, and will be discussed elsewhere.

C. Future work

Two topics are the subject of future work:
1st- Outliers’ Presence – the Direct Sum has been applied to

modules’ Density Matrix in the Composition Procedure 1,
assuming absence of outliers coupling modules. Outliers will
be pre-processed by module decoupling techniques [8].

2nd- Overlapping concepts – a Natural Language post-
processing function will be developed, to check the existence,
and to streamline semantically overlapping concepts, occurring
in different modules composed by Procedure 1.

D. Main Contribution of this Paper

This paper’s main theoretical contribution is the Module
Matrices’ Direct Sum as a perfect composition of the whole
software system Density Matrix. Practical benefits are design
flexibility, enabling whole system gradual build-up from
verified correct modules, assured by the theoretical framework.

REFERENCES

[1] Carliss Y. Baldwin and Kim B. Clark, Design Rules, Vol. I. The Power

of Modularity, MIT Press, MA, USA, 2000.

[2] Samuel L. Braunstein, Sibasish Ghosh and Simone Severini, “The
Laplacian of a graph as a density matrix: a basic combinatorial approach

to separability of mixed states”, https://arxiv.org/abs/quant-ph/0406165
Oct 2006.

[3] Frederick P. Brooks Jr., The Mythical Man-Month – Essays on Software
Engineering – Anniversary Edition, Addison-Wesley, Boston, MA,
USA, 1995.

[4] Frederick P. Brooks Jr., The Design of Design: Essays from a Computer
Scientist, Addison-Wesley, Boston, MA, USA, 2010.

[5] Yuanfang Cai and Kevin J. Sullivan, “Modularity Analysis of Logical
Design Models”, in Proc. 21st IEEE/ACM Int. Conf. Automated Software
Eng. ASE’06, pp. 91-102, Tokyo, Japan, 2006.

[6] Iaakov Exman, “Linear Software Models: Standard Modularity
Highlights Residual Coupling”, Int. Journal on Software Engineering
and Knowledge Engineering, vol. 24, pp. 183-210, March 2014. DOI:
10.1142/S0218194014500089

[7] Iaakov Exman, “Linear Software Models: Decoupled Modules from
Modularity Matrix Eigenvectors”, Int. Journal on Software Engineering
and Knowledge Engineering, vol. 25, pp. 1395-1426, October 2015.
DOI: 10.1142/S0218194015500308

[8] Iaakov Exman and Rawi Sakhnini, “Linear Software Models: Bipartite
Isomorphism between Laplacian Eigenvectors and Modularity Matrix
Eigenvectors”, Int. Journal of Software Engineering and Knowledge
Engineering, Vol. 28, No 7, pp. 897-935, 2018. DOI:
http://dx.doi.org/10.1142/S0218194018400107

[9] Iaakov Exman, “Conceptual Software: The Theory Behind Agile-
Design-Rules”, in Proc. SEKE’2018 30th Int. Conf. on Software
Engineering and Knowledge Engineering, Redwood City, CA, USA, pp.
110-115, July 2018. DOI: 10.18293/SEKE2018-182.

[10] Iaakov Exman and Alon Tsalik Shmilovich, “Quantum Software
Models: The Density Matrix for Classical and Quantum Software
Systems Design”, (2021) https://arxiv.org/abs/2103.13755

[11] Richard P. Feynman, “Simulating Physics with Computers”, Int. J.
Theor. Phys., 21:467, 1982.

[12] Caroline Figgatt, Dmitri Maslov, Kevin A. Landsman, Norbert M.
Linke, Shantanu Debnath and Christofer Monroe, “Complete 3-Qubit
Grover Search on a programmable quantum computer”, Nature
Communications, 8: 1918, 2018. DOI: https://doi.org/10.1038/s41467-
017-01904-7

[13] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, Boston, MA, 1995.

[14] Lov K. Grover, “Quantum Computers can search arbitrarily large
databases by a single query”, Phys. Rev. Lett. 79(23): 4709-4712, 1997.

[15] Daniel Jackson, The Essence of Software, Princeton University Press,
Princeton, NJ, USA, 2021.

[16] Serge Lang, Algebra, Revised 3rd edition, Springer-Verlag, Berlin, 2002.

[17] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, Cambridge, UK,
2000.

[18] Ricardo Perez-Castillo, Luis Jimenez-Navajas and Mario Piattini,
“Modelling Quantum Circuits with UML”, in Proc. QSE’2021 Quantum
Software Engineering Workshop. https://arxiv.org/abs/2103.16169.

[19] Andres Rodriguez, “Extending OpenUP to Conform with the ISO
Usability Maturity Model”, in Sauer et al. (eds.) Human-Centered
Software Engineering, HCSE 2014, LNCS, vol. 8742, Springer, Berlin,
pp. 90-107, (2014). https://doi.org/10.1007/978-3-662-44811-3_6

[20] Todd Rowland and Eric W. Weisstein, “Direct Sum”,
https://mathworld.wolfram.com/DirectSum.html, 2022.

[21] Neeraj Sangal, Ev Jordan, Vineet Sinha and Daniel Jackson,
"Dependency Models to Manage Complex Software Architecture", Proc.
OOPSLA'05, pp. 167-176, October 2005.
https://doi.org/10.1145/1094811.1094824

[22] John von Neumann, Mathematical Foundations of Quantum Mechanics,
New Edition, Princeton University Press, Princeton, NJ, USA, 2018.

[23] Eric W. Weisstein, Bipartite graph (2022),
http://mathworld.wolfram.com/Bipartite-Graph.html

[24] Eric W. Weisstein, Laplacian (2022),
http://mathworld.wolfram.com/LaplacianMatrix.html

439

SCMA: A Lightweight Tool to Analyze Swift
Projects

Fazle Rabbi
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

bsse0725@iit.du.ac.bd

Syeda Sumbul Hossain
Department of Software Engineering

Daffodil International University
Dhaka, Bangladesh

syeda.swe@diu.edu.bd

Mir Mohammad Samsul Arefin
Information Engineering

Chalmers University of Technology
Gothenburg, Sweden
s.arefin@outlook.com

Abstract—In global software engineering, practitioners use
code metrics analyzers to measure code quality to detect code
smells or any technical debt early at the development phase.
Different tools exist to evaluate these metrics to ensure the
maintainability and reliability of any codebase. This paper
presents a tool SCMA (Swift Code Metrics Analyzer) which
analyzes swift code considering ten code metrics for analyzing
software architecture to ensure code quality. We have used the
native swift parser to implement this tool. This tool suggests
refactoring the codebase by giving a final score averaging the
score of all ten metrics. We have validated the accuracy of each
metric measured by this tool by analyzing the codebase manually.
This tool can help the developers to inspect the swift modules of
iOS projects and give an insight into the improvement area of
each project.

Index Terms—Code metrics, Code Metrics Analyzer, Swift
Language, Code Quality, Code Smell

I. INTRODUCTION

Nowadays, software companies are evaluating their projects
in terms of different software metrics. These metrics are
categorized into three different types- Process metrics, Project
metrics, and Product metrics [3]. These metrics are evolving
to measure the software development processes to enhance
the development models. Numerous studies further have been
done on these metrics. A systematic mapping study [4] has
been done on software process metrics where process metrics
had categorized into three different types. Software Product
metrics are also studied over time which is stated in another
mapping study [1]. Among those metrics, product metrics
define product quality. Source code metrics are one of the
product metrics that helps to measure the code quality of any
codebase [8]. There are around 300 code metrics found [8] in
different literature.

Clean architecture becomes a buzzword among the software
engineering practitioners motivated by R. Martin (uncle Bob)
[7]. To ensure the code quality, architectural analysis of the
codebase is crucial to avoid code smells or any other technical
debts. There are different types of code smells are stated in
different literature. These code smells tends to code refactoring
[2].

This paper presents a tool SCMA (Swift Code Metrics
Analyzer) which analyzes swift code considering ten code

metrics for analyzing software architecture to ensure code
quality.

The rest of the paper is organized in accordance: Back-
ground Study at Section II followed by Tool Description and
Discussion at Section III and Section IV respectively. We
have reviewed the validity of our study in Section V. Finally
Section VI furnishes our contribution.

II. BACKGROUND STUDY

A. Technical Debt (TD)

Technical debts are short-term benefits that occurred by
the software engineers unintentionally throughout the software
development processes. There are different types of technical
debts stated in studies. A systematic mapping study [6] had
been done on 94 studies where technical debt is classified
into 10 different types as Requirements TD, Architectural TD,
Design TD, Code TD, Test TD, Build TD, Documentation TD,
Infrastructure TD, Versioning TD, Defect TD. This paper also
stated that Code TD had studied most.

B. Code Metrics

Code metrics are being used to get the insight of source code
written by the developers in terms of some measurement units.
As these metrics reveal the code health of any codebase at the
development phase, practitioners can easily get the idea of
improvement areas of their codebase. Considering the nature
of projects and processes in global software development,
practitioners are using different code metrics. Kitchenham, B.
[5] had conducted a preliminary mapping study on software
metrics. A systematic mapping study [8] has been done on
software code metrics where a total of 226 studies have
been gone through to map almost 300 code metrics of 13
different programming languages (Java, AspectJ, C++, C, C#,
Jak, Ada, Cobol, Javascript, Pharo, PHP, Python, and Ruby).
This study also summarizes 41 different software metrics
tools into two categories: commercial tools which are free
or paid tools and others that are developed by the authors.
Another systematic mapping study [9] had been performed on
dynamic software code metrics which illustrated that coupling,
cohesion, complexity, method invocation, memory allocation
and usages were mostly focused research topics.

DOI reference number: 10.18293/SEKE2022-006

440

C. Tool used within our organization

In our organization we are using our own tool, to measure
the different code metrics associated with their organization.
This tool summarizes a score using the code metrics of
LOC (Line of Code), Global Variables, Predefined processors,
Cyclomatic Complexity, Duplicate Code, and Modular Circu-
lar Dependency. This tool supports projects with languages
like Java, C, C++, C# excluding iOS supported languages,
especially swift. To be aligned with the organization’s coding
culture, we are motivated to develop a code metrics analyzer
that supports swift language.

D. Code Metrics Tools for Swift

Swift language has evolved later in 2014 and becomes more
popular for iOS development. Clean Swift 1, a set of rules, is
introduced with XCode for maintaining better architecture for
swift projects. As per the best of our language, there are a
few software code metrics tools that exist for swift language
which measures some basic code metrics. SonarSource 2 is a
static analyzer that checks 119 predefined rules for swift lan-
guage which covers unique rules to find Bugs, Vulnerabilities,
Security Hotspots, and Code Smells in SWIFT code. It also
supports other 26 languages and has specific rule sets based
on the languages.

Code Climate 3 is a repository-based metric analyzer for
swift language that checks duplication, cognitive and cyclo-
matic complexity and some others basic checks.

Swift Code Metrics is another tool for swift projects 4 by
which some basic code metrics (the overall number of concrete
classes and interfaces, the instability and abstractness of the
framework, the distance from the main sequence, LOC (Lines
Of Code), NOC (Numbers Of Comments), POC (Percentage
Of Comments), NOM (Number of Methods), Number of
concretes (Number of classes and structs), NOT (Number Of
Tests), NOI (Number Of Imports), and Frameworks depen-
dency graph (number of internal and external dependencies))
can be analyzed.

Taylor 5 is another tool for analyzing swift code which
considers the code metrics Excessive Class Length, Excessive
Method Length, Too Many Methods, Cyclomatic Complexity,
Nested Block Depth, N-Path Complexity, and Excessive Pa-
rameter List. SwiftLint 6 checks over 200 rules, including 12
code metrics for swift languages.

III. TOOL DESCRIPTION

In this section, we presented the overall activities of our
tool from parsing source codes to generating html reports. The
score calculation method from metrics is also shared.

1https://clean-swift.com/
2https://rules.sonarsource.com/
3https://codeclimate.com
4https://github.com/matsoftware/swift-code-metrics
5https://github.com/yopeso/Taylor
6https://github.com/realm/SwiftLint

A. SOURCE CODE PARSING

At the very beginning, the source code files with .swift
extensions are selected from a project. The contents are read
one by one and converted into Abstract Syntax Trees (AST).
To parse these files and AST preparation, SwiftSyntax 7 is
used as a parser. Each of the AST contains a class, methods
under the class, global variables and variables under methods,
and other elements from a source code file as branches in
hierarchy order. Figure 1 illustrates the parsing procedure of
source codes.

Fig. 1. Source Code Parsing

B. METRICS DETAILS

After ASTs are generated from source code files, infor-
mation such as class names, lines of codes, method names,
variables names are collected from the ASTs. From that
information, a call graph matrix is prepared for a project where
every node (methods, variables) is linked to other nodes with
whom they have a connection. Each of the properties as well
as each of the relations in a project is considered to calculate
metrics. After this step, the following metrics are captures.
For every metric, a violation count is considered. To keep
the project well managed and keep the score good, violations
must be avoided. The metrics to be considered with their brief
details in SCMA tool are as follows:

1) Line of Code by Classes (LOCC): Total line of code
without comments in a class are considered the first
information to be used as a metric. More lines in a class
hampers the maintaining activities and we considered it
as a negative impact to our score calculation.

2) Weighed Method Count by Classes (WMCC): Sum-
mation of Cyclometic complexities of all methods in a
class. Classes with high Weighted Method Count have
less readability.

3) Number of Methods by Classes (NOMC: Count of
methods in a class. More methods in a class increases
the complexity in a class. The number of methods should
be kept low.

4) Number of Global Variables by Classes (NOGC):
Count of global variables in a class. Number of Global
Variables must be kept as low as possible to make a
good score by the tool.

7https://github.com/apple/swift-syntax

DOI reference number: 10.18293/SEKE2022-0076 441

5) Number of Couplings by Classes (NOCC): A Cou-
pling is considered when two classes have at least
one mutual connection in any direction. This metrics
represents the number of total couplings in a project.
To maintain a good readability, couplings should not be
presented very high between classes. Low number of
couplings will help to make a good score.

6) Number of Accessed Methods by Variables (NOAV):
Total number of accessible global variables inside a
method. More usage of global variables by methods
increases the cohesion and contributes to the score.

7) Line of Code by Functions (LOCF): Total line of code
in a method body. As like LOC for classes, LOC for
function also should be kept as low as possible.

8) Cyclomatic Complexity by Functions (CCF): The
quantitative measure of the number of linearly indepen-
dent paths through a program’s source code. To keep
good readabilities, cyclometic complexity must be small
in number.

9) Number of parameters by Functions (NOPF): Num-
ber of total parameters in a method signature. It should
be kept as low as possible.

10) Duplicate Code (DC): Same lines of code between two
or more methods/class/blocks introduces code duplicacy.
Duplicate codes are generated by copying and pasting
codes and they introduce bugs while editing the codes
later. In our tool we use lizard8 to count the duplicate
blocks of codes.

The overall procedure of this step is shown in Figure 2

Fig. 2. Metrics Calculation

C. SCORE CALCULATION

In this section, the score calculation from metrics is de-
scribed briefly. Table III-C illustrates the details of violations
and formula we used for score calculation. From each of the
metrics we get a score ranging from 0 to 5. Using all of these
scores, a final score is calculated by averaging the values of
these scores. Alike the individual scores from metrics, the final
score is also remains from 0 to 5. Score close to 5 represents
the project as good conditioned close to 0 means the project
contains smells which needs to be refactored.

D. REPORT GENERATION

At the final step after metrics calculation, a report needs to
be generated. To generate a report, an HTML page is generated

8https://github.com/terryyin/lizard

TABLE I
SCORE CALCULATION FROM METRICS

Metrics Violation Score

Line of Code
by Classes

over
500
lines

Score = 1000
maxLOC+1500

Weighed
Method
Count by
Classes

over
200
count

R = maxWMC∗violations
totalWMC ;

Score = 2
R+0.4

Number of
Methods by
Classes

N/A Score = 500
maxmethodsinaclass+75

Number
of Global
Variables by
Classes

N/A Score = 500
maxGlobalsinaclass+75

Number of
Couplings by
Classes

N/A Score = 1000
maxcoupling+150

Number of
Accessed
Methods by
Variables

N/A Score = 2
methods/globals+0.4

Line of Code
by Functions

N/A Score = 2000
maxLOC+300

Cyclomatic
Complexity
by Functions

over
20
count

R = maxCC∗violations
totalCC ; Score
= 2

R+0.4

Number of
parameters by
Functions

over
10
params

R = maxParm∗violations
totalParms ;

Score = 2
R+0.4

Duplicate
Code

over
10
lines

R = duplicatedlines∗totallines
totalParms ;

Score = 2
R+0.4

through a python server. In that report, the summary of every
metrics is illustrated. Users can also get the details from a CSV
file for the corresponding metric. From each of the metrics
(See Figure 3), a score (0 to 5) is calculated from the violation
count for few metrics.

After that, an overall score is calculated using the average
value from all of the metrics scores. Figure 4 illustrates an
output of the overall score.

IV. DISCUSSION

The proposed tool (SCMA) is developed considering the
standard of global SW engineering tools, internal organiza-

DOI reference number: 10.18293/SEKE2022-0076 442

Fig. 3. Individual Metrics Score

Fig. 4. Final Score

tion’s guildlines and expert opinions. There is some resem-
blance and dis-resemblance exit among the metrics calculated
by different tools. Modular Circular Dependency (MCD) and
Predefined Preprocessor Metrics are not considered in this
tool as they are not compatible with swift. Table II illustrates
SCMA tool specification.

TABLE II
SCMA TOOL

Key SCMA
Language Swift
Scoring 0-5
Build Dependency No
Report CSV, HTML

V. THREATS TO VALIDITY

a) Internal Validity: We have built this tool based on the
code metrics that are being considered within our company.

b) External Validity: For analyzing the result of our tool,
we have not considered any other open-source projects as we
could not trace the changes in metric scores.

c) Construct Validity: We considered the scoring formula
and threshold values used as standards of global software
engineering and our company. After having the scores from

every sections, we calculate the overall score by averaging the
individual scores of all of the metrics.

d) Reliability: We have run our tool on 11 iOS based
software projects. All the applications are from real-life
projects available on the app store. After the first run, we
have run this tool several times after refactoring the code as
per the suggestions provided by our SCMA tool.

VI. CONCLUSION

In this paper, we proposed a tool named SCMA to au-
tomatically score a swift project using ten software code
metrics. We run this tool on swift-based software projects
of our company and manually validated the result for some
cases. To our knowledge, this tool provides valid output. The
violation counts used here are chosen from the global code
smell standards, our internal organization’s guidelines and
expert opinions. Currently, we are working with other metrics
and we will adapt those in our future work.

REFERENCES

[1] Colakoglu, F.N., Yazici, A., Mishra, A.: Software product quality metrics:
A systematic mapping study. IEEE Access (2021)

[2] Fowler, M.: Refactoring: improving the design of existing code. Addison-
Wesley Professional (2018)

[3] Honglei, T., Wei, S., Yanan, Z.: The research on software metrics and
software complexity metrics. In: 2009 International Forum on Computer
Science-Technology and Applications. vol. 1, pp. 131–136. IEEE (2009)

[4] Hossain, S.S., Ahmed, P., Arafat, Y.: Software process metrics in agile
software development: A systematic mapping study. In: International
Conference on Computational Science and Its Applications. pp. 15–26.
Springer (2021)

[5] Kitchenham, B.: What’s up with software metrics?–a preliminary map-
ping study. Journal of systems and software 83(1), 37–51 (2010)

[6] Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical
debt and its management. Journal of Systems and Software 101, 193–220
(2015)

[7] Martin, R.C.: Clean architecture: a craftsman’s guide to software structure
and design. Prentice Hall (2018)

[8] Nuñez-Varela, A.S., Pérez-Gonzalez, H.G., Martı́nez-Perez, F.E.,
Soubervielle-Montalvo, C.: Source code metrics: A systematic mapping
study. Journal of Systems and Software 128, 164–197 (2017)

[9] Tahir, A., MacDonell, S.G.: A systematic mapping study on dynamic
metrics and software quality. In: 2012 28th IEEE International Conference
on Software Maintenance (ICSM). pp. 326–335. IEEE (2012)

DOI reference number: 10.18293/SEKE2022-0076 443

Anomaly Detection in Spot Welding Machines in the Automotive Industry for
Maintenance Prioritization

Laislla C. P. Brandão 1

lcpb@ecomp.poli.br
Aldonso Martins-Jr 1

amoj2@ecomp.poli.br
Gabriel A. Kopte 1

gak@ecomp.poli.br

Edson Filho 1

jeaf@ecomp.poli.br
Alexandre M. A. Maciel 1

amam@ecomp.poli.br
1 Department of Computer Engineering

School of Engineering, Universidade de Pernambuco
Recife, Brazil

Abstract

Based on the need of prioritization of maintenance ac-
tivities in a BOSCH Spot Welding process in the automo-
tive industry, this work aims to develop anomalous equip-
ment selection methodologies for assisting it. The first one
is proposed based on data exploration by checking every
possible set of alarms of the machines. A second one is
created using multiple data clustering models in order to
identify machines that behave differently from the others for
certain time periods. Bayesian networks were also applied
to assist the identification of cause-and-effect relationships
between the warning and error logs. The clustering method
proved effective in identifying anomalies, which were later
inspected on the shop floor.

Keywords: data mining, maintenance, spot welding, au-
tomotive industry, anomalies.

1 Introduction
The Automotive Industry are in constant process of

transformation and, in order to thrive in the era of Industry
4.0, automakers need to quickly adapt in order to continu-
ously achieve their goals and overcome challenges, increas-
ing the lifespan of their assets and productivity through the
use of technologies such as Big Data Analytics, enabling
intelligent manufacturing [1].

Having in mind that maintenance activities must make
the best possible use of scheduled downtime and resources
to minimize its losses, it is always necessary to select which
activities should be performed. In many cases, traditional
maintenance policies can be satisfactory, but when mainte-
nance and failure costs are high [2], managing maintenance
using data analysis becomes a better choice.

By analyzing the data generated by the welding ma-
chines and using data mining techniques, this study plans to
develop methodologies that assist in the detection of anoma-
lous behavior patterns, to support the reduction of unsched-
uled stops, maintenance time and repair costs and provide a
rise in the efficiency and quality of the welding process.

2 Background
2.1 Spot Welding

The industrial process of manufacturing an automobile
has four major workshops. The one of interest for this work
is the Body-in-White Shop, responsible for the construction
of the car bodies by joining its metal parts.

A common process to all body-in-white shops globally is
the joining of metal sheets using a technique known as Spot
Welding. The equipment used, called welding gun, uses two
metallic copper electrodes to apply a force of union between
metallic plates creating welding spots by passing high level
electrical current through them and the metal worksheets
in between [3]. The heat generated by the passage of high
electric current through the small section of the electrodes
melts the metals of the two plates, providing the union of
the parts when the material solidifies again.

Figure 1: Example of welding guns (left) The union of two
pieces of metal through spot weld (right)

A body-in-white shop contains thousands of welding
guns and every machine stores information about the weld
application, configuration parameters and measurements of
each spot weld in a standard SQL Server database. It is
available on the local manufacturing machine on the same
industrial network as other welding equipment and robots.

2.2 Anomaly Detection

Cluster analysis is one of the most important research
fields in data mining. Clustering belongs to the category of
unsupervised learning as it does not depend on training sam-
ples, this is why they are the straightforward technique for

DOI reference number: 10.18293/SEKE2022-118

444

SEKE2014
Underline

anomaly detection. For these algorithms, given a number of
clusters k as an initial parameter, the set of data objects is
divided into k categories, or groups.

An example of this type of algorithm is K-Means. One
can use several sets of different starting centers for various
iterative calculations and choose the best one as the final re-
sult, but one cannot guarantee that this result is the optimal
solution, while several iterations consume a lot of time, a
lot of uncertainty, so it is very important to select the ones
suitable starting group centers [4].

Another algorithm, DBSCAN (Density-Based Spatial
Clustering), is a pioneering density-based algorithm. It
can discover clusters of any arbitrary shape and size in
databases that contain even noise and outliers, although
it has some problems, such as being subject to dilemmas
when deciding meaningful clusters from datasets with vary-
ing densities [5].

When the algorithm is able to minimize an error func-
tion, it is often called C-Means where c is the number of
clusters, and if the classes used are using the Fuzzy tech-
nique, then it is known as Fuzzy C-Means (FCM) [6]. Its
benefit is the formation of new clusters from data points that
have membership values close to existing classes. Fuzzy C-
Means has the advantage of being very good for problems
of many dimensions.

The most popular model of association patterns between
groups of items uses item set frequencies to quantify associ-
ation level, but there are also the Bayesian, that use Bayes’
theorem to represent knowledge. In simple cases, the struc-
ture of Bayesian networks can be defined by an expert and
used to make inferences about a given problem. In other
more complex applications the structure and parameters of
the network can be learned [7] [8].

2.3 Related Work

Many works found propose a prioritization approach
from a maintenance perspective, with data-oriented ap-
proaches and aiming at the preventive diagnosis of prob-
lems. Several methods have been developed to identify per-
formance bottlenecks related to maintenance activities in
production systems [9]. The underlying logic behind all of
them lies in analyzing the machines’ event log data [10].

Data mining techniques are used to detect bottlenecks
in production systems, although several methods proposed
focus on analytical logs referring to the process, these data
do not provide diagnostic information explaining what the
root causes of incidents are [11].

In one of the approaches, Bayesian networks and at-
tribute relevance analysis are used to process a dataset of
failure records of industrial machinery components, with
the purpose of using the conditional probabilities generated
by the networks, as well as the relevance of the rankings of
criteria for creating a decision-making model [12].

At the same time, some works specifically related to spot
welding technology and case studies applied to BOSCH
were also identified. Due to the great variety and diver-
sity of data collected in the welding process and which are
relevant for monitoring product quality, the work of Sve-
tashova et al. [13] reports that they find significant chal-
lenges for the modeling of machine learning algorithms and
these challenges are presented in conjunction with the pre-
dictive quality monitoring model.

3 Materials and Methods
3.1 Database Description

The CRISP-DM methodology was used for providing a
framework for carrying out data mining projects, regardless
of the industry sector and the technology used.

As said, this database automatically stores spot welding
information in specific datasets for each purpose. The Ex-
tError RDS V dataset contains records of important events
that occurs in one of the welding controllers in the process,
which may have warning codes or errors. This dataset has
13 columns and the existing fields are shown in Table 1.

For this work, the focus was given to one single produc-
tion line, the bottleneck line, thus the most important one,
and all its welding machines. The data considered was the
gathering of a month of production.

Table 1: Dataset ExtError RDS V Data Description

COLUMN DESCRIPTION
date Event registration date
line Record of the production line where the robot is located

protRecord ID Single consecutive number (automatic value)
dateTime Timestamp record of the moment of occurrence of the event

timerName Unique identification of the registered event source welding machine
errorCode1 Warning or Error code event source

errorCode1 txt Warning or Error event source - Text in selected language
errorCode2 Secondary error code

errorCode2 txt Secondary error code - Text in selected language
isError Flag to identify if the event is a Warning or Error

isError txt Literal text Warning or Error
servodynDVState Servo status code

servodynDVState txt Servo Status - Text in selected language
tablename Address of the folder on the computer where the ExtError tables are located

3.2 Data Preprocessing

The data was loaded into a NoSQL database in the
Google Cloud Computing (GCP) cloud called BigQuery
and the approach chosen was firstly the adaptation of the
fact tables of the database in an OLAP (Online Analytical
Processing) architecture, since it allows greater flexibility
and performance in data analysis. Data was transformed
from categorical columns into non-categorical columns
from the beginning, the primary keys with ID for the dates
and machines were stored separately in the Dimension ta-
bles and the new columns id date and id machine were used

DOI reference number: 10.18293/SEKE2022-118 445

instead of date and timerName.
White spaces at the end of the text were removed, espe-

cially in error description columns, and a mapping of the
missing data in the database was carried out, these values
being later filled with a symbolic value of (-1) not to impact
the operation of subsequent algorithms.

In order to make possible a more in-depth analysis re-
garding each of the alarms present in the database, the
columns errorCode1 txt and errorCode2 txt were concate-
nated creating a new column, errorCode txt. This brings a
second level of detail for each error.

After that, a new table was created, pivoting and group-
ing the data of ExtError RDS V by dates and machines
and presenting the number of occurrences of each of the
alarms of errorCode txt arranged in separate columns, one
for each alarm. The new table, called ExtError group, has
40 columns, two of which are the date and machine ID and
the others represent each of the possible alarms in the weld-
ing guns, encompassing both warnings and errors.

3.3 Exploratory Data Analysis

The analysis were initiated by looking at the distinct
values for each column of the original ExtError RDS V
database and creating histograms based on their categories.
At first, a focus was given to the errorCode1 txt column
in order to identify the unique descriptions of the existing
alarms (errors and warnings), and after that, an analysis of
occurrences of each possible alarm was performed in the
new concatenated column errorCode txt to verify the types
of alarms most common in the whole dataset.

From the new dataset, ExtError group, it is possible to
analyze separately the influence that each one of the alarms
has on the behavior of the machines. For instance, the er-
ror “welding error” with the sub-description “cancellation
by pliers movement” considering all machines from the per-
spective of each date is shown in Fig. 2.

Figure 2: Variation of the error “welding error - cancella-
tion by pliers movement” for each date id (left) and for each
machine id (right).

When analyzing this same error from the perspective of
each machines, a very important information is acquired.

By looking at the boxplots, the machine id=11 stands out
when compared to the others in terms of data variance,
which shows that there may be an opportunity associated
with this machine.

3.4 Modeling

Two approaches were used to prepare the data for
the models, one using the original data from the ExtEr-
ror group dataset and the other using the normalized data
through the StandardScaler method.

K-Means, DBSCAN and Fuzzy C-Means clustering al-
gorithms were the techniques used for the anomaly detec-
tion. The K-Means and Fuzzy C-Means methods require the
number of clusters as an initial parameter, while DBSCAN
requires an agglutination radius and the minimum number
of records to form a cluster. To determine these parame-
ters, a search using the two approaches for each method and
dataset was performed: Maximum Silhouette score and El-
bow Curve (Inertia).

Therefore, a total of 12 models were analyzed in
search of machines of interest: Three Methods (K-Means,
DBSCAN and Fuzzy C-Means) × Two Datasets (Non-
standardized and Standardized) × Two Approaches (Maxi-
mum Silhouette and Elbow Curve, using Silhouette for DB-
SCAN and Inertia for the others two methods.

Bayesian networks were used to find causality in the
error and warning logs, trying to relate apparently non-
relevant errors and warnings with errors related to critical
failures for the machines of interest. The structure was
trained using the Hill Climbing Search algorithm.

4 Evaluation and Results
4.1 Results

For the first of the 12 models, the result of the Inertia
metric in the search for parameters (number of clusters) for
the K-Means method and Non-standardized data is the point
where a discontinuity occurs (the elbow). Here it was pos-
sible to see that the ideal number of groups that best rep-
resents the data from ExtError group is four for the Elbow
Curve method, showed in Fig. 3(a).

Figure 3: Result of Elbow Method Inertia vs. number of
clusters (a) and Result of Silhouette Score vs. number of
clusters (b).

This parameter is used to train the K-Means algorithm
and then apply the model to the data to obtain an association

DOI reference number: 10.18293/SEKE2022-118 446

of each of the records in the database to one of the four
clusters. This model had an overall Silhouette Score of 0.38
and an average Euclidean distance of 48.9.

Fig. 4(a) shows the number of day-machine pairs
grouped in each cluster for the K-Means model with four
clusters and the approach using Elbow Curve Inertia with
Non-standardized data. It is observed that 28 events were
isolated in group number 2, clearly different from the oth-
ers grouped in large clusters. Minority groups tend to show
rare and/or unusual events that may indicate good oppor-
tunities for preventive maintenance plans by characterizing
machines that behaved anomalously in a small set of days.

Figure 4: Distribution of clusters for K-Means model with
four clusters (a) and three clusters (b) and Non-standardized
data.

By looking at the records of each machine distributed
among the four clusters, it was verified that the 28 events of
interest occurred on the same machine, id=5. This machine
was then declared a machine of interest, as it may be as-
sociated with anomalous functioning, and this information
should be compared with the shop floor and the information
held by the stakeholder, the welding specialist.

The Max Silhouette approach was used to select the
number of clusters for training the second K-means algo-
rithm, also applied to Non-standardized data, showed in Fig.
3(b). Three clusters were selected for this model and it was
trained, obtaining the association between records and clus-
ters. This model had an overall Silhouette Score of 0.38 and
an average Euclidean distance of 41.4.

Fig. 4(b) shows the amounts of day-machine pairs
grouped in each cluster of the second model, with K-Means
with three clusters and the approach using Max Silhouette,
and Non-standard data. It is seen that 30 events were iso-
lated in group number 2, another notably minority group.
As discussed earlier, this can characterize a set of machines
with anomalous behavior.

Once again, observing the records of each machine dis-
tributed among the clusters, it was seen that the 30 events
of interest in cluster number 2 are from the same machine
id=5, reinforcing that this machine is a machine of interest
for maintenance prioritization.

The Bayesian network was created to the machine with
id=5 (the anomaly data from cluster number 2, the minority
class). The resulting network was analyzed and filtered with
the help of the stakeholder. Three relationships of interest

were identified. Relationships 1 and 2 indicate a lack of
current error related to a maximum lag warning. It refers
to the phase shift of current with respect to voltage in the
welding process. Relation 3, on the other hand, indicates a
current oscillation problem. The main possible causes for
the errors presented in 1, 2 and 3 are the same: abrasion of
the welding electrode, measuring circuit or auxiliary cables;
interference from other processes on the same network; and
weld transformer problems (insufficient capacity).

Table 2 summarizes the result of the same methodology
applied to these and the other 10 models created, and Table
3 summarizes the total occurrences of machines of interest
identified by each of the models that were applied.

Table 2: Summary of algorithms, parameter selection meth-
ods, applied parameters, metrics (Silhouette Score - Dis-
tance) and the identified machines of interest.

ALGORITHM
AND GROUPS

STANDARD
DATA

METHOD SELECTION
OF NUMBER OF GROUPS

S. SCORE
AND DIST.

ID MACHINES
OF INTEREST

K-Means-3 No Max Silhouette score 0.38 - 48.9 5
K-Means-2 Yes Max Silhouette score 0.43 - 13.0 Not identified
K-Means-4 No Elbow Method (Inertia) 0.38 - 41.4 5
K-Means-4 Yes Elbow Method (Inertia) 0.32 - 10.1 17, 18

DBSCAN-2a No Max Silhouette score 0.47 - none 2, 4, 17
DBSCAN-2b Yes Max Silhouette score 0.15 none 2, 3, 4, 13, 17, 18
DBSCAN-4a No Elbow Method (Silhouette) 0.33 - none 5, 7, 17, 18, 26
DBSCAN-4c Yes Elbow Method (Silhouette) 0.16 - none 2, 4, 13, 17, 33
FC-Means-2 No Max Silhouette score 0.37 - 51.6 23, 33, 34
FC-Means-2 Yes Max Silhouette score 0.43 - 13.0 Not identified
FC-Means-4 No Elbow Method (Inertia) 0.31 - 39.2 Not identified
FC-Means-4 Yes Elbow Method (Inertia) 0.32 - 10.1 17, 18

aResult of eps=19 and min samp=10.
bResult of eps=18 and min samp=7. cResult of eps=10 and min samp=3.

Table 3: Summary of the total occurrences of machines of
interest identified by the various models.

ID MACHINES 17 18 2 4 5 33 13 7 3 34 23 26
OCCURRENCES 6 4 3 3 3 2 2 1 1 1 1 1

4.2 Discussion

For each cluster found, it is necessary to map the inherent
characteristics that isolate one from the others. The impli-
cations of each group and latent opportunities in this anal-
ysis are under continuous discussion with the stakeholders.
In general, it is expected that most clusters are associated
with groupings of only warnings and a mix of warnings and
alarms events, both cases in proportions that are common
to the process. Minority classes are the ones likely to have
anomalous events that must be analyzed with greater care.

Following Lima et al.[12], The Bayesian network anal-
ysis identified that there may be a failure in the process re-
garding the quality of energy in the weld on the machine

DOI reference number: 10.18293/SEKE2022-118 447

id=5. The root cause is believed to be associated with a
failure in the milling process of the welding electrodes, or
in the cables and measurement and power circuits of this
machine. There is also the possibility that the welding con-
troller is not able to supply the power and energy required
for the application of the spot, either due to a wear event
(gaps, contact faults), mechanical conditions of alignment
and orthogonality or due to electrical defects in electronic
components of the welding controller itself.

The machines shown in Table 3 gave rise to greater op-
portunities for maintenance intervention. Some were not
even in the radar of prioritization and these results turned
out to be of great importance. A great emphasis was given
to the machines id=17 and id=18, as they appear in sev-
eral models as machines of interest. The machines were
inspected on the shop floor and issues such as the early
abrasion of the welding electrodes were raised and treated,
restoring their base conditions.

5 Conclusions
5.1 Conclusion

One of the main goals of this work was to explore the
data in search of anomalies that could lead to latent opportu-
nities for the priorization of activities in specific machines.
Data was migrated from the on-premises SQL database to
the cloud, where it was consumed for processing and analy-
sis. A data preprocessing was carried out in order to prepare
and model them to obtain the necessary information for the
purpose of finding anomalous patterns in the data.

The types of alarms are very unbalanced due to the nor-
mal operation of the welding process. Most of the data
is composed of Warnings, which do not necessarily imply
losses in the production process. Some warnings may sim-
ply mean records of the normal functioning of the process,
such as records of milled electrodes or signaling that these
need to be milled, although in some cases, prealarms, they
may be indicative of errors that may occur later.

From the results obtained with the work, the authors
came with the definition of two methodologies to identify
machines of interest. The first one consists of scanning all
types of machine failures still in the data exploration stage.
When finding a machine with a variance above the others, it
is considered a machine of interest for inspections and close
attention of the Maintenance team. The second methodol-
ogy, associated with the result of the Unsupervised Cluster-
ing algorithm, consists of classifying the events organized
by day and machine, in which the database columns are
composed of each possible warning or error in the process,
with the values being the amount of event occurrences for
the machine-data pair. It was possible to apply several dif-
ferent models to this data and identify the records grouped
into minority classes as machines of interest.

5.2 Future Work

Other datasets, such as the spot welding process param-
eters and measurements ExtMeasuresProt V, are likely to
be used in the future to improve the findings produced with
this work, to improve analysis and associate failure modes
in more detail. Also, the use of this dataset might help to
identify new priorities that also benefit quality control, not
exclusively the maintainability of the welding process.

Acknowledgment
This study was financed in part by the Coordenação

de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

References
[1] R. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman, “Intelligent

manufacturing in the context of industry 4.0: A review,”
Engineering, vol. 3, no. 5, pp. 616–630, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2095809917307130

[2] A. Parida and U. Kumar, “Maintenance productivity and perfor-
mance measurement,” in Handbook of maintenance management and
engineering. Springer, 2009, pp. 17–41.

[3] B. Zhou, Y. Svetashova, S. Byeon, T. Pychynski, R. Mikut, and
E. Kharlamov, “Predicting quality of automated welding with ma-
chine learning and semantics: a bosch case study,” in Proceedings
of the 29th ACM International Conference on Information & Knowl-
edge Management, 2020, pp. 2933–2940.

[4] H. Zou, “Clustering algorithm and its application in data mining,”
Wireless Personal Communications, vol. 110, no. 1, pp. 21–30, 2020.

[5] K. Khan, S. U. Rehman, K. Aziz, S. Fong, and S. Sarasvady, “Db-
scan: Past, present and future,” in The fifth international confer-
ence on the applications of digital information and web technologies
(ICADIWT 2014). IEEE, 2014, pp. 232–238.

[6] J. Nayak, B. Naik, and H. Behera, “Fuzzy c-means (fcm) cluster-
ing algorithm: a decade review from 2000 to 2014,” Computational
intelligence in data mining-volume 2, pp. 133–149, 2015.

[7] K. B. Korb and A. E. Nicholson, Bayesian artificial intelligence.
CRC press, 2010.

[8] J. Pearl, “Bayesian networks,” 2011.

[9] M. Subramaniyan, A. Skoogh, A. S. Muhammad, J. Bokrantz,
B. Johansson, and C. Roser, “A data-driven approach to diagnosing
throughput bottlenecks from a maintenance perspective,” Computers
& Industrial Engineering, vol. 150, p. 106851, 2020.

[10] C. Roser, M. Nakano, and M. Tanaka, “Comparison of bottleneck de-
tection methods for agv systems,” in Winter Simulation Conference,
vol. 2, 2003, pp. 1192–1198.

[11] C. Yu and A. Matta, “A statistical framework of data-driven bottle-
neck identification in manufacturing systems,” International Journal
of Production Research, vol. 54, no. 21, pp. 6317–6332, 2016.

[12] E. Lima, E. Gorski, E. F. Loures, E. A. P. Santos, and F. Deschamps,
“Applying machine learning to ahp multicriteria decision making
method to assets prioritization in the context of industrial mainte-
nance 4.0,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 2152–2157,
2019.

[13] Y. Svetashova, B. Zhou, T. Pychynski, S. Schmidt, Y. Sure-Vetter,
R. Mikut, and E. Kharlamov, “Ontology-enhanced machine learning:
a bosch use case of welding quality monitoring,” in International
Semantic Web Conference. Springer, 2020, pp. 531–550.

DOI reference number: 10.18293/SEKE2022-118 448

The Maintenance of Top Frameworks and Libraries
Hosted on GitHub: An Empirical Study

Yi Huang, Xinjun Mao, Zhang Zhang
National University of Defense Technology, Changsha, China

{huangyi20, xjmao, zhangzhang14}@nudt.edu.cn

Abstract—The number of repositories on GitHub is huge and
growing rapidly. However, most repositories are inactive, while
active maintenance is essential in choosing a project. In this
paper, we study the maintenance of top (i.e., most starred)
frameworks and libraries hosted on GitHub, for they can be
widely reused and in critical positions in the dependency network,
so their maintenance status is significant. Furthermore, their
maintenance practices may inspire other projects to thrive on the
collaborative development platform. By investigating their adop-
tion of recommended Open Source Software (OSS) maintenance
practices and recent maintenance activities, and the association
between maintenance status and usage, we find that: (1) more
than 20% of the top frameworks and libraries have no commit for
more than one year; (2) Some maintenance practices (e.g., codes
of conduct) have relatively low adoption rates, while continuous
integration has a high adoption rate of around 80%; (3) the
maintenance status may have an effect on the usage frequency.
Index Terms—software maintenance, open source guide, software
dependency

I. INTRODUCTION

Software maintenance is critical and lasts the longest in the
software life cycle. Also, it is an essential factor for developers
to consider when choosing software [1]. Over the years, with
the rise of open source and the emergence of code hosting
platforms, more and more companies and developers maintain
their projects on code hosting platforms, especially on GitHub.
As the world’s largest code hosting platform, GitHub has
hundreds of millions of repositories and tens of millions of
users, and the number is still proliferating. However, according
to research [2], though the total number of repositories is
vast, most of the repositories hosted on GitHub are inactive.
The finding inspired us to think: are the top (e.g., most
starred) projects hosted on GitHub active? Furthermore, how
well are they maintained? Especially the top frameworks and
libraries—while they are just the tip of the iceberg, they can be
critical—they rank high, attract considerable attention, and are
more likely to be reused by other projects to save development
costs and increase efficiency. Therefore, their maintenance
status can significantly affect related projects. Additionally,
their practical experience in development and maintenance
may inspire and guide other projects to thrive on GitHub.

This paper conducts an empirical study of the top frame-
works and libraries in GitHub to investigate their adoption of

DOI reference number: 10.18293/SEKE2022-092

recommended OSS maintenance practices, recent maintenance
activities, and the association between maintenance status
and usage. We believe that on the collaborative development
platform GitHub, the maintenance complexity is greater than
the maintenance complexity of individual or single team
development. Attracting and retaining contributors and the
interaction between developers are critical. Besides, the inter-
action between developers is not limited to maintaining code
but also includes documentation maintenance, issue resolution,
and project discussion. These aspects reflect the maintenance
of the project and are worthy of in-depth exploration. In this
paper, we address the following three research questions:
RQ1. (Maintenance Practices Adoption) How well do the
top frameworks and libraries follow the recommended OSS
maintenance practices? The purpose of the question is to
investigate the adoption of some recommended maintenance
practices by top frameworks and libraries. These practices
are important factors for contributors to decide whether to
contribute to the project [3].
RQ2. (Maintenance Activity) What is the level of recent
activity present in the top frameworks and libraries? While
these frameworks and libraries received many stars, they may
be dormant, decayed, or even deprecated. Once developers use
the deprecated libraries or frameworks, this can be a potential
risk to their projects. Therefore, it is necessary to investigate
their recent maintenance activities.
RQ3. (Usage) How often are the top frameworks and
libraries used by other projects in GitHub? The goal of the
question is to investigate the usage of top frameworks and
libraries, and the association between maintenance status and
usage.
Paper Organization. The rest of the paper is organized
as follows. The information about our dataset is present in
Section II. Our research methods and results are presented in
Section III for RQ1, Section IV for RQ2, and Section V for
RQ3. In Section VI, we provide an overview of related work.
Section VII concludes our work.

II. DATASET

First, we referred to the previous work [4] and took 5,000 as
the threshold to select the top-5,000 most starred repositories
hosted on GitHub (In November 2021). Then referring to the
classification criteria and results of the existing paper [5], we

449

manually selected frameworks and libraries repositories from
the top-5,000 repositories, and we used the following strategies
to select them: first, we selected the repositories that have
keywords such as framework and library in their descriptions
or README files; second, we selected the repositories that
can be found in package managers (e.g., Maven, PyPI);
after the above procedures, we then manually checked the
repositories to assure the correctness of the selection.

Finally, we got 2,092 repositories. We collected the ba-
sic information (e.g., the number of stars, forks, commits,
contributors). Besides, we collected events of issues, pulls,
and commits for the repositories for the recent year between
November 2020 and October 2021 through GitHub REST API.
To investigate the usage of top frameworks and libraries by
other repositories hosted on GitHub, we further selected repos-
itories with more than 500 stars and had at least one commit
in the past three months (for quality assurance), resulting in
an initial set of 24,605 repositories. Then we selected the
repositories with manifest files from the initial set, and we
ended up with 14,666 repositories as potential client projects.
We used libraries.io1 to gather their dependency information.
The more detailed data for analysis and its extraction process
will be elaborated in the following methodology subsections.
The data and scripts for the replication of this study are
available2.

TABLE I: Data Basic Statistics

Metric Min 25% Median 75% Max Average

Star 5,319 6,667 8,955 13,501 189,629 12,593
Fork 2 712 1,291 2,290 85,709 2,229

Age (weeks) 12 276 372 475 717 376
Commit 3 449 1,158 2,862 121,196 3,292

Contributor 1 34 85 181 4,377 163

Table I shows statistics on the number of stars, number of
forks, age, number of commits, and number of contributors
for the repositories in our dataset.

III. RQ1: MAINTENANCE PRACTICES ADOPTION

A. Methodology

TABLE II: Studied Maintenance Practices

Dimension Practices Rationale

Documentation

contribution guidelines To guide contributors do good work

codes of conduct To define community standards to facilitate
healthy community behavior

template To provide guidance for opening issues or
pull requests

good first issues To highlight opportunities for people to con-
tribute

homepage To show all kinds of information related to
the project

Community discussion To provide a collaborative communication
forum to talk about the project

chat platform Similar to the discussion

Automation continuous integration To improve the productivity of the project
team

1https://libraries.io/
210.6084/m9.figshare.18665744

Table II shows the recommended OSS maintenance practices
studied in our paper. Some practices are recommended by
GitHub, and some are recommended by previous work [6], [3],
[4]. We divided them into three dimensions: documentation,
community and automation.
Documentation Dimension. In this dimension, we con-
sidered five practices: adoption of contribution guidelines,
codes of conduct, template, good first issues and homepage.
These are practices recommended by GitHub to set projects
for healthy contributions. To investigate their adoption, we
searched for the relevant files (e.g., CONTRIBUTING.md,
CODE OF CONDUCT.md, ISSUE TEMPLATE.md) from
the repositories’ directories and checked the issue labels.
Community Dimension. In this dimension, we considered the
usage of discussion and chat platform. The discussion refers
to the new feature—GitHub Discussions. As for the usage of
chat platform, we investigated whether the frameworks and
libraries repositories have adopted Slack, Discord, or Gitter.
Automation Dimension. In this dimension, we considered the
usage of continuous integration, and we investigated whether
the top frameworks and libraries repositories have adopted
Travis CI, GitHub Actions, or CircleCI.

First, we classified the collected repositories into five
groups: the top group, which refers to the collection of top-
500 repositories by the number of stars; the bottom group;
the active group, which refers to the collection of repositories
with at least one commit in the past month (the count is 1,034,
49.43%); the inactive group, which refers to the collection of
repositories with no commits in the past year (the count is
448, 21.24%); the all group, which refers to the collection of
all repositories in our dataset. The purpose of this grouping
is to present the statistical differences between the top and
bottom repositories, active and less active repositories, and
the overall statistical characteristics of all collected reposito-
ries. Then, according to the classification of the groups, we
calculated and analyzed the corresponding adoption rates of
the above practices. The grouping shows that although these
top frameworks and libraries received many stars and ranked
high, more than 20% of them have not committed for more
than one year.

B. Results

Table III shows the adoption rate of each practice by each
group. Regardless of the group, the most followed practices is
continuous integration. For continuous integration, the inactive
group has the lowest adoption rate at 58.48%, while the active
group has the highest adoption rate at 88.88%. Nevertheless,
the adoption rates of codes of conduct, good first issues,
discussion and chat platform are relatively low, not exceeding
50% in each group. Moreover, for each practice, the inactive
group has the lowest adoption rate; and the adoption rates of
codes of conduct, template, good first issues and discussion in
inactive group are significantly low, which are 1/6, 1/4, 1/4
and 1/34 of the highest adoption rates.

Figure 1 shows the frequency distribution of the number
of practices adopted by each group, where the y-axis repre-

450

https://libraries.io/
10.6084/m9.figshare.18665744

TABLE III: Percentage of Repositories Following Recommended Maintenance Practices

Practice Active Inactive Top Bottom All

contribution guidelines 65.57% 31.70% 71.20% 39.60% 53.11%
codes of conduct 34.43% 6.03% 36.00% 16.60% 23.57%

template 71.18% 17.19% 73.00% 37.60% 51.77%
good first issues 36.94% 9.15% 32.60% 23.80% 26.86%

homepage 76.11% 54.24% 80.60% 58.00% 67.97%
discussion 40.14% 1.79% 36.40% 17.20% 24.81%

chat platform 38.39% 15.83% 40.60% 20.40% 29.78%
continuous integration 88.88% 58.48% 88.40% 73.20% 79.73%

Fig. 1: Frequency Distribution of The Number of Practices
Adopted by Different Groups

sents the number of practices and the x-axis represents the
frequency. For the inactive group, the number of practices
adopted mainly (84%) falls into the range 0 to 3. For the
active and top groups, the top-3 number of practices adopted
are in the range of 4 to 6. Few frameworks and libraries have
adopted all the above practices though they are in active status.
For active group, only 39 (3.77%) of the 1,034 repositories
have adopted all eight studied practices.

IV. RQ2: MAINTENANCE ACTIVITY

A. Methodology

TABLE IV: The Metrics of Maintenance Activities

Dimension Metric Description

Commit commit count The number of commits
Release release count The number of releases

Issue

issue count The number of issues
issue closed average time The average time of closing an issue

issue closed ratio The ratio of closed issues
issue replied ratio The ratio of replied issues

issue replied average time The average time of replying to an issue

Pull Request

pull count The number of pull requests
pull closed ratio The ratio of closed pull requests

pull closed average time The average time of closing a pull request
pull merged ratio The ratio of merged pull requests

pull merged average time The average time of merging a pull request
pull replied ratio The ratio of replied pull requests

pull replied average time The average time of replying to a pull
request

As shown in Table IV, we investigated the maintenance
activities of the top frameworks and libraries repositories in the
past year (from November 2020 to October 2021) from four
dimensions: commit, release, issue, and pull request. And we
used the groups introduced in RQ1.

B. Results

TABLE V: Maintenance Activities of active, inactive, top,
bottom, and all Groups.

Metric Active Inactive Top Bottom All

commit count 475 0 416 181 248
release count 25 0 17 6 13
issue count 314 14 376 91 178

issue closed ratio 63.92% 15.20% 58.09% 41.50% 47.62%
issue closed average time 172.34h 257.65h 165.40h 218.91h 215.23h

issue replied ratio 76.58% 31.95% 72.48% 57.83% 62.97%
issue replied average time 48.10h 472.99h 84.29h 245.95h 180.07h

pull count 346 4 389 100 183
pull closed ratio 89.29% 11.37% 74.53% 57.80% 64.78%

pull closed average time 108.38h 412.90h 165.24h 228.00h 246.49h
pull merged ratio 66.72% 0.09% 50.17% 39.47% 44.55%

pull merged average time 100.04h 183.55h 137.26h 205.19h 171.50h
pull replied ratio 60.09% 15.67% 56.63% 41.00% 47.26%

pull replied average time 69.76h 508.34h 159.89h 216.09h 234.37h

The results in Table V show that the active group outperforms
the other groups in most metrics while the inactive group
lags behind the other groups in most metrics. For the average
number of commits and releases, the active group has the
maximum values, 475 and 25, respectively, while the inactive
group has the minimum values, both zero. For the average
number of issues and pull requests, the top group has the
maximum values of 376 and 389, while the inactive group
has the minimum values of 14 and 4, respectively. Besides,
the active group has the highest ratios of closed issues,
replied issues, closed pull requests, merged pull requests, and
replied pull requests, which are 63.92%, 76.58%, 89.29%,
66.72%, and 60.09%, respectively, while the inactive group
has the lowest which are 15.20%, 31.95%, 11.37%, 0.09%,
and 15.67% respectively.

Interestingly, we found that: in inactive group, the average
time of replying to an issue is longer than the average time
of closing an issue; the average time of replying to a pull
request is longer than the average time of closing or merging a
pull request; however, the above situation is reversed in active
group.

V. RQ3: USAGE

451

A. Methodology

In this section, as for the usage of top frameworks and
libraries, we investigate their usage frequency and outdated
usage. We used libraries.io to extract the dependencies of each
potential client project. The libraries.io has organized all the
manifest files (e.g., pom.xml, package.json) for the project.
Finally, we extracted 216,504 dependencies.

B. Results

TABLE VI: Statistics on the usage frequency and outdated
usage ratio

Metric Min 25% Median 75% Max Average

Usage Frequency 0 0 4 33 13,069 102
Outdated Usage Ratio 0 9.22% 49.77% 80.00% 100.00% 47.10%

Table VI shows statistics on the usage frequency and
outdated usage ratio. We define the outdated usage ratio
as the number of outdated uses of a framework or library
divided by its total uses. Of the 2,092 studied top frameworks
and libraries, 1,362 are used at least once, only 285 do not
have outdated usage, and 146 projects are wholly used with
outdated versions.

We applied the Mann-Whitney U test to analyze the statis-
tical significance of the difference between the top-100 most
used frameworks and libraries and the unused frameworks
and libraries in the metrics mentioned in RQ2, and we used
Cliff’s delta [7] to show the effect size of the difference. We
found a statistically significant difference between them in all
metrics, and all 14 metrics have large effect sizes. Further,
We calculated the median and the mean of the 14 metrics of
the top-100 most used and unused projects and found that the
former outperforms the latter in all metrics. For example, the
median number of commits in the past year of the former is 74
while the latter is 12, and the issue closed ratio of the former is
70.14% while the latter is 35.15%. Therefore, the maintenance
status may have an effect on the usage frequency. Then, we
used the same methods above to analyze the projects that do
not have outdated usage and projects that are wholly used
with outdated versions. We found a statistically significant
difference between them in all metrics, and 10 of 14 metrics
have large effect sizes, while the other metrics have medium
effect sizes. Further, we found that the latter outperforms the
former in 13 metrics (except the issue closed average time).

VI. RELATED WORK

Much work has been done studying software maintenance.
There is some work [8], [9] focused on investigating or
measuring the maintenance status of projects; some work [10]
focused on the barriers faced by contributors (e.g., peripheral
contributors); some work [4], [6], [11], [3] focused on the
recommended OSS maintenance practices that may guide or
automate the maintenance and contribution process. Coelho
et al. [8] proposed a machine learning model to identify
unmaintained GitHub projects and defined a metric to measure
the level of maintenance activity of GitHub projects. Lee et

al. [10] conducted an online survey to investigate the barriers
one-time code contributors faced when contributing to FLOSS
projects and highlighted the significance of timely feedback
and guidance through the patch submission process. Hilton
et al. [6] studied the usage, costs, and benefits of continuous
integration in open source projects. They found that the overall
percentage of projects using CI continues to grow, and CI
helps projects release more frequently and accept pull requests
faster. Alderliesten et al. [11] initially explored the ”good
first issues” label and found that though they are effective at
developer onboarding and considered useful, their types need
to be refined to match the types of initial contributions.

VII. CONCLUSION
In this paper, we conducted an empirical study to investigate
the maintenance of top frameworks and libraries hosted on
GitHub. We found that some OSS recommended maintenance
practices are not widely adopted even in the top frameworks
and libraries. For example, the adoption rates of codes of
conduct and good first issues are 23.57% and 26.86%. Further,
we used quantity, proportion, and response time as metrics to
analyze the recent maintenance activities of the top frame-
works and libraries. Moreover, we found that the maintenance
status may have an effect on the usage frequency. In future
work, we plan to propose a unified measure of open source
project maintenance status.

REFERENCES

[1] E. Larios Vargas, M. Aniche, C. Treude, M. Bruntink, and G. Gousios,
Selecting Third-Party Libraries: The Practitioners’ Perspective. New
York, NY, USA: Association for Computing Machinery, 2020, p.
245–256. [Online]. Available: https://doi.org/10.1145/3368089.3409711

[2] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. German, and
D. Damian, “The promises and perils of mining github,” 06 2014.

[3] D. Sholler, I. Steinmacher, D. Ford Robinson, M. Averick, M. Hoye,
and G. Wilson, “Ten simple rules for helping newcomers become
contributors to open projects,” PLoS Computational Biology, vol. 15,
September 2019.

[4] J. Coelho and M. Valente, “Why modern open source projects fail,” 08
2017, pp. 186–196.

[5] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that
impact the popularity of github repositories,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2016, pp.
334–344.

[6] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2016, pp. 426–437.

[7] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, “Cliff’s delta
calculator: A non-parametric effect size program for two groups of
observations,” Universitas Psychologica, vol. 10, no. 2, pp. 545–555,
2011.

[8] J. Coelho, M. Valente, L. Milen, and L. Silva, “Is this github project
maintained? measuring the level of maintenance activity of open-source
projects,” Information and Software Technology, 02 2020.

[9] G. Avelino, E. Constantinou, M. Valente, and A. Serebrenik, “On
the abandonment and survival of open source projects: An empirical
investigation,” 09 2019, pp. 1–12.

[10] A. Lee, J. C. Carver, and A. Bosu, “Understanding the impressions, mo-
tivations, and barriers of one time code contributors to floss projects: A
survey,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), 2017, pp. 187–197.

[11] J. W. D. Alderliesten and A. Zaidman, “An initial exploration of the
“good first issue” label for newcomer developers,” in 2021 IEEE/ACM
13th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), 2021.

452

https://doi.org/10.1145/3368089.3409711

*Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.
This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the
views of the U.S. Department of Energy or the United States Government. SAND2021-7711 C.

DOI reference number: 10.18293/SEKE2022-154.

Evaluating the Sustainability of Computational Science
and Engineering Software: Empirical Observations

James M. Willenbring
Software Engineering & Research Department

Sandia National Laboratories*
Albuquerque, New Mexico

jmwille@sandia.gov

Gursimran Singh Walia
School of Computer and Cyber Sciences

Augusta University
Augusta, Georgia

 gwalia@augusta.edu

Abstract— Software sustainability is critical for
Computational Science and Engineering (CSE) software.
It is also challenging due to factors ranging from funding
models to the typical lifecycle of a research code to the
inherent challenges of running fast on the newest
architectures. Furthermore, measuring sustainability is
challenging because sustainability consists of many
complex attributes. To identify useful metrics for
measuring CSE software sustainability, we gathered data
from multiple freely available sources, including GitHub,
SLOCCount, and Metrix++. This paper discusses the
challenges practitioners face when measuring the
sustainability of CSE software. We present an analysis of
data with associated observations and future directions to
better understand CSE software sustainability and how
this work can be used to support decisions and improve
sustainability by observing trends in metrics over time.

I. INTRODUCTION

Software sustainability is a key issue in the Computational
Science and Engineering (CSE) domain. CSE software projects
often begin as a research activity. Software engineering concerns
are secondary to the research objectives driving the project [4].
While some research activities fail (as is consistent with research),
successful projects often result in software with a very long useful
life. So while there is a risk that investing early on in sustainability
may prove to be a wasted effort in a sense if the research activity
fails, the penalty for not investing in sustainability for initially
successful projects is high. Projects developed without
sustainability in mind eventually become fragile. For example,
poor designs limit extensibility and evolvability, and insufficient
testing leads to a lack of maintainability. Other factors (e.g.,
funding models, developer training, staffing challenges, etc.) can
also contribute to a lack of sustainability [2].

Research and practice indicate that sustaining CSE software is
inherently complex, as discussed herewith. CSE software utilizes
cutting-edge algorithms and language features to promote
performance on the world's largest supercomputers, particularly

on new architectures. Codes are often significant - hundreds of
thousands or millions of code lines, and commonly use several
third-party software packages (many of which are open source).
While these challenges are not new, they have grown in recent
years. One of the author’s previous work offered some simple
ways to improve the quality of CSE software [4]. Our suggestions
included the use of source code management, issue tracking,
documented processes, source-centric documentation, pair
programming, continuous process improvement, and other
software practices. While the principles remain relevant,
developers' environment has evolved to be much more complex.

Prior work lists several sustainability attributes: extensibility,
interoperability, maintainability, portability, reusability,
scalability, and usability [10]. Motivated by an array of literature
on sustainability attributes, this work analyzes the most critical
aspects of software sustainability in the context of CSE software.
Several groups have gathered, analyzed, and/or defined metrics
with a focus towards software sustainability or an attribute of
software sustainability [15] [7] [5] [9] [8] [1]. However, previous
efforts have not closely examined metrics in the context of CSE
software sustainability. Furthermore, prior literature lacks tool
support for researchers in gathering more advanced metrics, such
as those in [7] for highly complicated (C++) codebases.

This research aims to charazterize better and identify barriers to
CSE software sustainability, as well as reduce those barriers by
identifying tools and techniques to support decision making
focused on improving software quality.

II. APPROACH

We analyzed CSE software projects openly available on GitHub,
GitLab, and Bitbucket. Although not all of the repositories go
back to the beginning of the projects (some first used another
version control system and snapshotted the code into git), all of
the repositories have substantial history to examine. Additionally,
due to scientific software community involvement, we have
access to the contributors to many of the projects being analyzed.

Our strategy for measuring sustainability focuses on the
various component attributes before embarking on a more

453

holistic analysis. An initial broad set of representative CSE
software projects was carefully selected for the study. We
started by considering software that comprises the Extreme-
scale Scientific Software Development Kit (xSDK). The
xSDK [14] project was created to improve the
interoperability and sustainability of scientific libraries that
are common dependencies for scientific software.

Next, we chose packages that represented both large and
small source code bases and development teams and a variety
of primary development institutions (four US national
laboratories and two universities). We also wanted projects
with lengthy histories, which would allow us to go back and
look at changes over time. Six out of the seven projects
chosen are also currently funded in part under Math Libraries
within the Exascale Computing Project's (ECP) Software
Technologies (ST) thrust [3]. A group of experts initially
chose this software group to be part of ECP based on each
software package's current and potential value to high-
performance computing. Further, ECP ST is very interested
in improving the sustainability of this software. Below is a
brief description of the seven software projects chosen for our
metric collection activity. The names of the projects have
been changed to guard against unintended conclusions being
drawn about the sustainability of any specific project.

Project 1 includes linear and non-linear solvers as well as
preconditioners for partial differential equation-based
systems of equations. Project 2 is a collection of solvers and
enabling technologies used for large-scale, complex multi-
physics engineering and scientific problems. Project 3 is a
distributed memory direct LU solver for non-symmetric
sparse linear systems of equations. Project 4 provides
algebraic multigrid sparse preconditioners and solvers.
Project 5 is a dense linear algebra library that provides linear,
least squares, eigen, and S.V.D. solvers. Project 6 is a finite
element and adaptive mesh refinement code. Project 7 is a
sparse linear and nonlinear eigenvalue solver package.

TABLE 1: Language, SLOC, Contributors & Commits

Package Language SLOC Contribs Commits
Project 1 C 83% 796123 198 82663
Project 2 C++ 82% 4179781 250 95384
Project 3 C 96% 80752 14 645
Project 4 C 81% 441057 37 11587
Project 5 C++ 45% 317082 51 8086
Project 6 C++ 100% 293062 114 14668
Project 7 C 91% 109559 26 9045

The purpose of gathering these metrics is to analyze the
correlation of the metrics with aspects of sustainability.
Because no single metric fully reflects the sustainability of a
software project, we look at several metrics, including some
directly related to the source code, such as complexity and
lines of code, and others that are not directly related to the
code itself, such as a number of commits and contributors.
Additionally, we also analyzed metric trends over time.
Researchers and practitioners can utilize trends to better
understand if a codebase is becoming more or less sustainable

(e.g. observing an increasing or decreasing number of
contributors, cyclomatic complexity, or maintenance index).

III. DATA ANALYSIS AND RESULTS

Our approach involved gathering metrics from accessible
sources and tools. The first set of results consists of metrics
gathered from development snapshots of the seven codes we
chose from May 2021. The second set of results includes
metrics collected from five snapshots in time for each of the
seven codes from May 2017-2021 (once per year). We
describe each of these sets of metrics below.

The first set of results obtained information about the number
of contributors and the number of commits from GitHub and
Gitlab, and from the git command line (as Bitbucket does not
supply this information). We also gathered metrics involving
the use of the tool SLOCCount [11] to obtain the primary
programming language for each project, along with the
percentage of lines in the project of the primary language and
the total number of source lines of code (SLOC).

The second set of metrics was collected using Metrix++
version 1.7.0 [6]. To capture yearly snapshots, git commands
of the form git checkout `git rev-list -n 1 --first-parent --
before="2019-05-24 00:00" <primary_branch_name> were
used. The metrics included in this set are:
 Maximum Complexity: The maximum cyclomatic

complexity found in the code.
 Average Complexity: The average cyclomatic

complexity found in all regions of the code.
 Lines of code: The total number of lines of code. Note

Metrix++ considers only C, C++, and Java code (not
Fortran, Python, or scripts).

 Maintenance Index: A measure of maintainability
computed from cyclomatic complexity and lines of code.
A lower value indicates a higher level of maintainability.

TABLE 2: Max Cyclomatic Compexity

Package 2017 2018 2019 2020 2021
Project 1 1786 1788 2319 540 540
Project 2 648 648 648 547 547
Project 3 202 204 301 301 301
Project 4 649 765 815 877 913
Project 5 261 261 261 261 261
Project 6 114 114 137 134 238
Project 7 86 86 86 86 83

TABLE 3: Average Cyclomatic Compexity

Package 2017 2018 2019 2020 2021
Project 1 4.63 4.69 4.88 4.69 4.58
Project 2 2.59 2.47 2.46 2.39 2.30
Project 3 12.50 11.97 10.62 10.31 10.36
Project 4 7.14 6.65 6.50 6.48 6.33
Project 5 5.45 5.40 5.27 5.30 5.33
Project 6 2.34 2.33 2.14 2.48 2.49
Project 7 3.95 3.97 4.14 4.11 4.10

454

TABLE 4: Lines of Code (in 1,000’s)

Package 2017 2018 2019 2020 2021
Project 1 483 525 584 613 657
Project 2 2682 3082 3076 3279 3414
Project 3 55 58 79 81 86
Project 4 410 359 365 390 405
Project 5 128 131 136 137 138
Project 6 107 122 154 216 284
Project 7 71 79 84 89 95

TABLE 5: Maintenance index computed by Metrix++
using complexity and lines of code data

Package 2017 2018 2019 2020 2021
Project 1 1.40 1.41 1.43 1.42 1.41
Project 2 1.21 1.18 1.18 1.19 1.18
Project 3 2.35 2.29 2.08 2.05 2.08
Project 4 1.81 1.78 1.77 1.79 1.79
Project 5 1.76 1.71 1.70 1.70 1.71
Project 6 1.21 1.21 1.19 1.24 1.24
Project 7 1.31 1.32 1.33 1.33 1.33

IV. DISCUSSION OF RESULTS

We discuss significant results concerning metrics reported
in the previous section focused around key themes and
contributions to understanding CSE software sustainability.

SLOC and Contributors: - Poor software design, for
example, poor understandability, has a greater than linear
impact as SLOC increases in terms of maintainability and
evolvability. Code size metrics such as SLOC can be useful
to measure over time. For example, SLOC growth in excess
of feature set growth may indicate the need to refactor.

A very low number of contributors can be a sustainability risk
in that the knowledge of the code is owned by a small group
of people. The number of contributors to the seven codes
varies by more than an order of magnitude. Further, the ratio
of SLOC to contributors may speak to maintainability. Less
code per contributor means fewer lines that each contributor
needs to maintain. Projects 2 and 4 have significantly higher
SLOC to contributor ratios than the other five codes.

Complexity: A lower average complexity should enhance
readability and maintainability, all else equal. Interestingly,
the average complexity of Project 3 is nearly twice the
average complexity of the next highest sample code.

TABLE 6: SLOC and Contributors

Package SLOC contributors SLOC/contrib
Project 1 796123 198 4021
Project 2 4179781 250 16719
Project 3 80752 14 5768
Project 4 441057 37 11920
Project 5 317082 51 6217
Project 6 293062 114 2571
Project 7 109559 26 4214

While cyclomatic complexity does not capture all aspects of
maintainability, by definition, it does reflect the number of

paths through the code. If this value is growing over time, it
can increase the maintenance burden. The Max complexity
data gathered in Table 2 is interesting in that for three codes
the value grew between 2017 and 2021, for two the value fell,
and for two it remained nearly or exactly the same. Metrix++
has a "hotspot" feature that allows a person to identify regions
with a complexity greater than a given threshold, which can
be used to support a targeted refactoring effort.

Maintenance Index: The Maintenance index data in Table 5
does not change dramatically for any packages over time.
This is again not surprising because these are large,
established code bases, and in any given year, large portions
of the codebase do not change. The most significant change
in the codes' value comes from Project 3 between 2018 and
2019, with the Maintenance index falling from 2.29 to 2.08.
We note that in the same period, Table 4 shows that the Lines
of code increased substantially from 58,034 to 79,069. It is
reasonable that a 36% increase in the size of the codebase
would cause a noticeable decrease in the maintainability
index if the new code was written more maintainably.

Similar to the previous observations for complexity, we feel
that looking at changes in the maintenance index both over
time and addressing maintenance "hotspots" could improve
the maintainability and sustainability of codes. In addition,
these checks can be automated in continuous integration or
nightly processes and tracked over time to identify trends.

Metrix++ Hotspot Feature: As mentioned above, the
hotspot feature in Metrix++ is a useful tool that allows
regions of code to be identified that exhibit a metric value
above a user-specified threshold. The tool is both simple to
use and powerful. For example, the below command
identified five regions of code in Project 4 with cyclomatic
complexity equal to or greater than 500: metrix++ limit --db-
file=proj4.2019.lines.complex.maint.db --max-
limit=std.code.complexity:cyclomatic:500

The tool supports more advanced features that allow it to be
used in an automated testing environment. The return code of
the limit function is equal to the number of instances in the
code where the metric threshold specified is exceeded.
Therefore, automated, pre-push testing can prevent complex
code from being added by checking this return code.
Alternatively, automated metrics can be gathered and
provided to code reviewers to use in their analysis.

While finding all areas of high complexity might be useful in
some contexts, often it is preferable to consider only new or
modified (the term Metrix++ uses for this option is
“touched”) code. For those cases, specify a previous version
of a database file (using --db-file-prev) to compare against:
metrix++ limit --db-file=proj4.2019.lines.complex.maint.db --db-
file-prev=../2018-05-24/proj4.2018.lines.complex.maint.db --max-
limit=std.code.complexity:cyclomatic:500 --warn-mode=touched

In our example, three of the five regions were touched.
Finally, because refactoring all code that is touch may not be
practical, Metrix++ supports a “trend” feature (using --warn-
mode=trend, rather than touched) that only identifies code

455

for which the metric in question has gotten worse since the
previous state. In our example, two of the three touched
regions exhibited a negative trend.

In summary, the hotspot feature in Metrix++ allows a team
to not only identify regions of their code of concern (for
example, due to high complexity or maintenance index), but
also allows the team to automate the tracking and even
prevention of additional regions of concern. This feature can
be used to support maintainability and sustainability.

V. CONCLUSION AND RELEVANCE TO INDUSTRY

While it is never appropriate to make broad conclusions
based on a single metric, the metrics we studied provide
quantitative data that can be used to support decisions. We
caution, for example, against using any simple metrics to
claim that one code is more sustainable than another. That
said, a developer performing a code review can benefit from
using the Metrix++ hotspot feature by considering changes in
maintenance index or max or average complexity metrics in
the broader context of the proposed changes.

By sampling multiple metrics for a single code base over
time, practitioners can glean whether it is becoming more or
less sustainable. Such information may help assess the
effectiveness of changing development practices or tools. For
example, a decreasing maintenance index for a code base
following the adoption of a new development practice
supports the hypothesis that the new practice is beneficial.

A similar approach could be used in evaluating the impact of
a refactoring effort. For example, before refactoring a large
chunk of code, one might gather average and maximum
complexity as well as lines of code and maintenance index
metrics. Then, the areas of complexity higher than a given
threshold could be identified as candidates for refactoring.
After the refactoring step, the metrics can be taken again to
help quantify the impact of the refactoring, and metrics could
be sampled periodically to understand the effects of
development practices on the sustainability of the codebase.

In the future, we plan to explore sustainability factors not
addressed by source code metrics, such as sustainability of
dependencies, and how the sustainability of CSE software is
impacted by the sustainability of the CSE software ecosystem
as a whole [12]. For example, consider how common
interfaces could improve software sustainability.

Another area of future work would be to consider smaller
logical subsets of codebases and "hotspots" identified using
Metrix++. We could also study other metrics such as
contributors at a more granular level. Specifically, we could
compare the number of frequent and recent contributors and
total contributors to functionality in the code that is
effectively orphaned (no currently assigned developers) to
functionality that is more actively supported.

In an effort to help code teams and project leadership gather
and effectively utilize metrics and related tools in their
scientific software development efforts, we are also forming

a Software Development Kit (SDK) community in the area
of Tools for Code Mining and Data Analysis [13].

This research effort can make significant contributions to the
understanding of the sustainability of relevant components of
the CSE software stack. We analyzed the seven code projects
part of the xSDK, six of which are part of the US DOE
Exascale Computing Project. This allows us to base our
findings on industrial representative CSE software,
increasing the generalizability of our results.

Perhaps most importantly, a better understanding of software
sustainability can help to identify how to design from the
onset for sustainability, which has the potential to save
significant developer time (and money) and prevent a lot of
frustration dealing with unsustainable code.

Bibliography
[1] Bouwers, E., van Deursen, A., & Visser, J. (2013). Evaluating
Usefulness of Software Metrics: An Industrial Experience Report. Proc. Int’l
Conf. Software Eng. (ICSE 13), IEEE, 921-930.
[2] Heroux, M. A., & Allen, G. (2016, Sept). Computational Science
and Engineering Software Sustainability and Productivity (CSESSP)
Challenges Workshop Report. Networking and Information Technology
Research and Development (NITRD) Program.
[3] Heroux, M. A., Carter, J., Thakur, R., McInnes, L., Ahrens, J.,
Munson, T., & Neeley, J. R. (2020, February 1). ECP Software Technology
Capability Assessment Report. 10.2172/1606665
[4] Heroux, M. A., & Willenbring, J. M. (2009). Barely sufficient
software engineering: 10 practices to improve your CSE software. 2009
ICSE Workshop on Software Engineering for Computational Science and
Engineering, 15-21. 10.1109/SECSE.2009.5069157
[5] Koziolek, H. (2011). Sustainability evaluation of software
architectures: A systematic review. Proceedings of the Joint ACM SIGSOFT
Conference - QoSA and ACM SIGSOFT Symposium - ISARCS on Quality of
Software Architectures - QoSA and Architecting Critical Systems - ISARCS
QoSA-ISARCS '11, 3-12.
[6] Metrix++ Web Page. (n.d.).
https://metrixplusplus.github.io/metrixplusplus/
[7] Sarkar, S., Kak, A., & Rama, G. (2008). Metrics for Measuring
the Quality of Modularization of Large-Scale Object-Oriented Software.
IEEE Transactions on Software Engineering, 34(5), 700-720.
[8] Sarkar, S., Rama, G. M., & Kak, A. C. (2007). API-Based and
Information-Theoretic Metrics for Measuring the Quality of Software
Modularization. IEEE Trans. Software Eng., 33(1), 14-32.
[9] Sehestedt, S., Cheng, C.-H., & Bouwers, E. (2014). Towards
quantitative metrics for architecture models. In Proceedings of the WICSA
2014 Companion Volume (WICSA '14 Companion). ACM, Article 5, 4 pages.
http://dx.doi.org/10.1145/2578128.2578226
[10] Venters, C. C., Lau, L., Griffiths, M. K., Holmes, V., Ward, R.
R., Jay, C., & J, X. (2014). The Blind Men and the Elephant: Towards an
Empirical Evaluation Framework for Software Sustainability. Journal of
Open Research Software, 2(1)(8). http://doi.org/10.5334/jors.ao
[11] Wheeler, D. A. (n.d.). SLOCCount.
https://dwheeler.com/sloccount/
[12] Willenbring, J. M. (2019). The Layers of CSE Software
Sustainability. 2019 Collegeville Workshop on Sustainable Scientific
Software (CW3S19). https://collegeville.github.io/CW3S19/
WorkshopResources/WhitePapers/CSEswSustainabilityLayers.pdf
[13] Willenbring, J. M. & Shende S. (2022). Impacting Software Quality and
Process Through the Extreme-Scale Scientific Software Stack (E4S) and
Software Development Kit (SDK) Projects.
[14] xSDK Web Page. (n.d.). xSDK: Extreme-scale Scientific
Software Development Kit. Retrieved 12 01, 2020, from http://xsdk.info
[15] Zhao, Y., Yang, Y., Lu, H., Zhou, Y., Song, Q., & Xu, B. (2015).
An empirical analysis of package-modularization metrics: Implications for
software fault-proneness. Information and Software Technology, 57, 186-
203. 10.1016/j.infsof.2014.09.006

456

Decisions in Continuous Integration and Delivery:
An Exploratory Study

Yajing Luo†, Peng Liang†∗, Mojtaba Shahin‡, Zengyang Li§, Chen Yang¶
†School of Computer Science, Wuhan University, Wuhan, China

‡School of Computing Technologies, RMIT University, Melbourne, Australia
§School of Computer Science & Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning,

Central China Normal University, Wuhan, China
¶School of Artificial Intelligence, Shenzhen Polytechnic, Shenzhen, China

{luoyajing, liangp}whu.edu.cn, mojtaba.shahin@rmit.edu.au, zengyangli@ccnu.edu.cn, yangchen@szpt.edu.cn

Abstract—In recent years, Continuous Integration (CI) and
Continuous Delivery (CD) has been heatedly discussed and widely
used in part or all of the software development life cycle as
the practices and pipeline to deliver software products in an
efficient way. There are many tools, such as Travis CI, that offer
various features to support the CI/CD pipeline, but there is a
lack of understanding about what decisions are frequently made
in CI/CD. In this work, we explored one popular open-source
project on GitHub, Budibase, to provide insights on the types
of decisions made in CI/CD from a practitioners’ perspective.
We first explored the GitHub Trending page, conducted a pilot
repository extraction, and identified the Budibase repository as
the case for our study. We then crawled all the closed issues
from the repository and got 1,168 closed issues. Irrelevant issues
were filtered out based on certain criteria, and 370 candidate
issues that contain decisions were obtained for data extraction.
We analyzed the issues using a hybrid approach combining pre-
defined types and the Constant Comparison method to get the
categories of decisions. The results show that the major type of
decisions in the Budibase closed issues is Functional Requirement
Decision (67.6%), followed by Architecture Decision (11.1%). Our
findings encourage developers to put more effort on the issues
and making decisions related to CI/CD, and provide researchers
with a reference of decision classification made in CI/CD.

Keywords—Decision, Continuous Integration and Delivery,
CI/CD, Budibase, Empirical Study

I. INTRODUCTION

The Software Development Life Cycle (SDLC) of an infor-
mation system goes through the steps of planning, creation,
testing, and deployment. In the past, organizations needed to
provision, operate, and maintain the build job creation, pro-
cessing, and reporting themselves [1]. In recent years, DevOps,
a set of practices (e.g., cloud-based continuous integration, and
automated deployment) that combine software development
and IT operations, enables organizations to deliver changes
into production as quickly as possible, without compromising
software quality [2]. In this study, we focus on Continuous
Integration and Delivery (CI/CD), the key enabler of DevOps.
CI systems automate the compilation, building, and testing

This work is supported by National Key R&D Program of China with
No. 2018YFB1402800, NSFC with No. 62172311, Hubei Provincial Natural
Science Foundation of China with No. 2021CFB577, and Research Foundation
of Shenzhen Polytechnic with No. 6022312043K.

DOI reference number: 10.18293/SEKE2022-171

of software [3]. A typical CI service is composed of three
types of nodes. First, build job creation nodes queue up new
build jobs when configured build events occur. Next, a set
of build job processing nodes process build jobs from the
queue, adding job results to another queue. Finally, build job
reporting nodes process job results, updating team members
of the build status [1]. CD aims at ensuring an application
is always at production-ready state after successfully passing
automated tests and quality checks [4].

Nowadays, there are many tools that have been available
to support the CI/CD pipeline, such as Jenkins1, Travis CI2,
Circle CI3, and GitHub Actions4, offering various CI/CD fea-
tures. Among them, GitHub Actions is a CI/CD platform that
allows developers to automate their build, test, and deployment
pipeline. It was launched in 2018 and supported CI/CD from
November 13, 2019. With GitHub Actions, practitioners can
create workflows that build and test every pull request to their
repository, or deploy merged pull requests to production.

Although many studies have been conducted in a CI/CD
context [1] [5], very few of them have explored decisions made
in CI/CD, how the decisions made in CI/CD differ from those
made in traditional software development, and what types
of decisions are made in CI/CD. We selected the Budibase
repository as the case for this study due to: (1) it uses GitHub
Actions to support CI/CD, (2) it is a trending repository on
GitHub in the recent three months, (3) it is active in the recent
three months, and (4) the number of its closed issues exceeds
1000. In short, we selected the Budibase repository as the
study project and collected data from its closed issues. We
then identified and extracted decisions from the dataset, and
classified them using a hybrid approach.

The contributions of this paper: (1) we provide an
exploratory study on the decisions made in CI/CD; (2) we
classify the decisions made in CI/CD; and (3) we compare the
decisions made in CI/CD with the decisions made in traditional
development.

1https://www.jenkins.io/
2https://travis-ci.org/
3https://circleci.com/
4https://github.com/features/actions

457

https://www.jenkins.io/
https://travis-ci.org/
https://circleci.com/
https://github.com/features/actions

The rest of the paper is organized as follows: Section II
discusses related work to our study. Section III describes the
research question and its rationale, the data collection, filtering,
extraction, and analysis process. Section IV provides the
results of the research question. Section V explains the results
with their implications and comparison with the existing work.
Section VI presents the threats to the validity of this study.
Section VII concludes this work with further directions.

II. RELATED WORK

A. Continuous Integration and Delivery

CI is an established software quality assurance practice and
has been the focus of much prior research with a diverse range
of methods and populations [6]. CD has been adopted by many
software organizations to develop and deliver quality software
more frequently and reliably [5].

Gallaba et al. [1] set out to study how CI features are
being used and misused in 9,312 open source systems that
use Travis CI. Widder et al. [6] reviewed the CI literature of
37 papers from the perspective of pain points to adoption and
usage, and performed a mixed-methods conceptual replication
of previously observed findings. Zhao et al. [2] studied the
adaptation and evolution of code writing and submission, issue
and pull request closing, and testing practices on hundreds
of established projects on GitHub adopting Travis CI. Hilton
et al. [3] used three complementary methods to study the
usage of CI in open-source projects. As for CD, Shahin
et al. [5] conducted a mixed-methods empirical study and
presented a conceptual framework to support the process of
(re-)architecting for CD.

To the best of our knowledge, there are no studies that
explore the decisions made in CI/CD, how they differ from
those in traditional software development, and what types of
decisions are frequently made. In our study, we intended to
explore the decisions made in CI/CD using an open source
project (Budibase) that employs GitHub Actions.

B. Decisions in Software Engineering

Developing and maintaining a software system involves
making numerous important decisions by stakeholders [7].
These decisions cover the life cycle of software development,
including requirements [8], architecture design [9], project
management [10], etc. [11], and each decision is typically
influenced by other decisions and involves trade-offs in sys-
tem properties [12]. Design decisions directly impact system
quality [12], and high-quality decisions are critical to the
success of projects [13]. Many researchers focus on exploring
how to make high-quality and appropriate decisions that meet
project objectives and maximize system benefits, analyzing the
rationale behind decisions, and understanding their effects on
the system.

Tang et al. [14] proposed a systematic approach to software
design decision-making. They broke decision-making down
into nine principles that can be taught, learned, and practiced,
and each principle addresses one decision-making aspect that
focuses on a specific type of information used in making and

evaluating decisions. Shahbazian et al. [12] posed the problem
of making complex, interacting design decisions relatively
early in the project’s lifecycle and outlined a search-based
and simulation-based approach for helping architects make
these decisions and understand their effects. Li et al. [11]
tried to identify decisions discussed in the Hibernate devel-
oper mailing list and explore decision-making from several
aspects (i.e., description, classification, underlying rationale,
supporting approaches, related artifacts, and trend). Sharma
et al. [15] explored the rationale behind ‘how’ the decisions
are made, and made a methodological contribution by present-
ing a heuristics-based rationale extraction system employing
multiple heuristics, and following a data-driven, bottom-up
approach to infer the rationale behind specific decisions. Liu
et al. [16] intended to understand how decisions are made
in requirements engineering through the student projects in a
requirements engineering course.

Different from the above works, we studied the decisions
made in CI/CD by analyzing the closed issues in the Budibase
repository and focusing on the types of decisions.

III. RESEARCH DESIGN

We set the goal of this study based on the Goal-Question-
Metric approach [17], which is to analyze the decisions in
CI/CD for the purpose of characterizing with respect to the
types of decisions made in CI/CD from the point of view of
practitioners in the context of CI/CD of open source software.
To archive this goal, we address the following key Research
Question (RQ):

• RQ: What types of decisions are made in CI/CD?
Rationale: Various types of decisions made in traditional
software development have been discussed in literature
(e.g., [11]). This RQ aims to provide a classification of
the decisions made in projects using CI/CD and compare
these decisions with those made in traditional software
development, so that we can see the difference between
CI/CD and traditional development from a decision per-
spective.

In the following subsections, we detail the research process
(see Figure 1) used to answer this RQ.

A. Data Collection

To answer the RQ, we need to identify and collect deci-
sions from the projects using CI/CD. GitHub is a popular
and most frequently used code hosting platform for version
control and collaboration. After exploring several artifacts
(i.e., Github Discussions, Github Issues, Slack, Gitter, and
Microsoft teams), we intended to select a suitable GitHub
project that employs CI/CD practices for our study, and use
GitHub Issues (developer discussions) as the data source, since
closed issues include a wide range of decisions made in
development. We searched for the candidate GitHub project
based on the following criteria:

• A repository running a GitHub Actions workflow
Given that we needed to select a project applying CI/CD.
GitHub provides a CI/CD tool named GitHub Actions to

458

Fig. 1: Overview of the research process

allow developers to build, test, and deploy their software
automatically. Github Actions provided by Github started
to support CI/CD in 2019 and does not require migration
from Circle CI, Jenkins, or Travis CI. We believe that
there should be many projects on Github applying Github
Actions in the last 2 years. Hence, we decided to look for
a repository on GitHub that uses the feature of GitHub
Actions.

• A hot topic in GitHub in the last three months
A GitHub Trending page is available on GitHub where
trending repositories are listed based on the number of
times they have been starred by users every day, week,
or month. This trending page provides a view of the open-
source projects which the community is most excited
about. We decided to trace the hot topics in GitHub in
the last three months and select an appropriate repository
for our study.

• An active repository
We decided to choose a repository that is currently active
and frequently updated (e.g., usually make changes to a
file and push them to GitHub as commits, often open
and merge a pull request, and have heated discussion in
GitHub Issues).

• The number of closed issues exceeds 1000
Since issues are the data source of this study, and the
number of issues of a project is an indicator of the project
size, which is an important factor to get enough data for
an empirical study. We decided to look for a repository
with more than 1000 closed issues.

After exploring the repositories listed on the GitHub Trend-
ing page for the past three months, we picked out several
repositories (including Budibase, Rails, and Tabby), which
met the above criteria. We then conducted a pilot repository
selection. The first author randomly selected 50 issues from the
closed issues of the candidate repositories. The purpose was to
verify whether the repositories we picked out were appropriate
and whether the data item (type of decision) can be extracted
from the issues (see the criteria in Section III-B). Next, the
first author extracted the data item from these 50 issues and
then discussed the extraction results with the second author
to see if the extraction results were correct. After the pilot
repository selection, we finally chose Budibase5.

Budibase is an all-in-one low-code platform for building,
designing, and automating business apps with which building

5https://github.com/Budibase/budibase

business apps in minutes. We crawled all the URLs of the
closed issues of Budibase into an Excel sheet on January, 2022,
and got 1,168 links.

B. Data Filtering, Extraction and Analysis

1) Filter candidate issues: The criteria for filtering issues
are defined as follows:

• If an issue contains the data item (i.e., type of decision)
to be extracted, we include it.

• If an issue does not contain the data item to be
extracted or cannot be understood, we exclude it.

This step was conducted by the first author, and the issues
that the first author could not decide were discussed among
the authors to reach a consensus. After excluding the irrelevant
issues, we finally got 370 issues out of the 1,168 closed issues
from Budibase.

2) Extract and analyze the data item: First of all, for
answering the RQ, the first author extracted the data item (type
of decision) from each relevant issue. After data extraction,
the first author classified the decisions extracted based on
the decision types provided by Li et al. [11]. Then the first
author discussed the classification results (i.e., by following
the pre-defined types in [11]) with the second author and
adjusted the classification by taking into account both the
content of the extracted decisions and the labels of the issues
using the Constant Comparison method [18]. We refer to this
combination of the pre-defined classification and the Constant
Comparison method as a hybrid approach. We obtained the
final classification of decisions using the hybrid approach. We
have also provided the dataset and the classification results of
decisions online [19].

IV. RESULTS

We applied the hybrid approach and classified the decisions
into several types as shown in Table I, which provides the
types (categories and subcategories) with their descriptions,
examples, and percentages.

We got six categories of decisions made in CI/CD, namely
Requirement Decision, Architecture Decision, Management
Decision, Build Decision, Testing Decision, and Deployment
Decision. We also got 11 subcategories of these major cate-
gories except Architecture Decision, which does not have any
subcategories. The major type of decisions in the Budibase
closed issues is Functional Requirement Decision (67.6%),
followed by Architecture Decision (11.1%). The rest types of
decisions are all below 10%. 5.4% of the decisions belong

459

https://github.com/Budibase/budibase

TABLE I: A classification of decisions made in the Budibase closed issues

Type Description Example Percentage

Functional
Requirement
Decision

A description of the decisions on services that a software
system is supposed to accomplish involving calculations,
technical details, data manipulation and processing, and
other specific functionality.

As a user, I want to be able to configure more advanced
searching capabilities on the search component, so that
I can find what I am looking for with a higher degree of
accuracy.

67.6%

Requirement
Decision

Non-functional
Requirement
Decision

A description of the quality attributes of a software
system, judging the software system based on non-functional
standards that are critical to the success of the software
system.

When I’m setting up a relationship in budibase, the
current relationship configuration UI is confusing and
difficult to remember how to use, I want to have a
simpler and more consistent experience with internal
relationships so it’s easier to set up.

5.4%

Architecture Decision

A description of the decisions with regard to architectural
additions, subtractions, and modifications to the software
architecture, the rationale, and the design rules, design
constraints, and additional requirements that (partially)
realize one or more requirements on a given architecture [20].

Replace AppImage with Snap and RPM installations for
linux. 11.1%

Version
Control
Decision

A description of the decisions on tracking and managing
changes to source code in version control systems.

I noticed in the input component that it was still using
the old css vars, these need to be updated. 1.6%

Management
Decision Documentation

Decision

A description of the decisions related to documentation,
e.g., changes to README files, docs, and GitHub discussions,
etc.

Stage 1 Going to add code documentation of all functions,
in core, server and builder. Stage 2 (maybe a future
issue) Use document code to produce markdown files, and
publish to GitBook @ apidocs.budibase.com (does not exist
yet).

3.2%

Source Code
Decision

A description of the decisions on making changes to source
code.

Create a new Options type in the backend/constants file.
Remove the Categories values list from the string type in
CreateEditColumn. Account for the new options field
everywhere that we are checking for
field.constraints.inclusion.

2.2%

Build
Decision

Continuous
Integration
Decision

A description of the decisions concerning the compilation
and building in CI pipeline supported development.

Have a rollback mechanism on that CI job, so that we can
roll back to the previous release, or a pre-specified
version.

0.3%

Bug Fixing
Decision

A description of the decisions made to fix the problem when
a bug is generated.

This fix for this is simply parsing the data in data
providers for any datetime fields and building the lucene
query with ISO strings like before.

4.6%

Traditional
Testing
Decision

A description of the decisions on examining the artifacts
and the behavior of a software system under test by
validation and verification.

When testing automations on the platform, I want to be
able to see the data flow from one block to the other so
that I can identify the inputs/outputs of each block and
debug with more ease.

4.3%

Testing
Decision

Continuous
Integration
Testing
Decision

A description of the decisions with respect to the testing
in CI pipeline supported development.

Individual unit tests for each automation block. Ability
to test automation integration, i.e., provide automation
schema and make sure it runs successfully.

0.3%

Traditional
Deployment
Decision

A description of the decisions regarding all the activities
that make a software system available for use [21].

When a user deploys a budibase application, we need to
update data correctly in our dynamoDB database so that
users deployment quotas are managed correctly, and that
deployments will fail if they are going to go over the
current quota for a particular account.

4.3%

Deployment
Decision

Continuous
Deployment
Decision

A description of the decisions made when code changes are
automatically deployed to a production environment through
a pipeline as soon as they are ready, without human
intervention [22].

Automated CI pipeline to deploy the latest helm chart to
the pre-prod environment. 1.4%

to Non-functional Requirement Decision while 4.6% of the
decisions are Bug Fixing Decision. The percentages of Tra-
ditional Testing Decision (4.3%) and Traditional Deployment
Decision (4.3%) are the same. The percentages of Continu-
ous Integration Decision (0.3%) and Continuous Integration
Testing Decision (0.3%) are the least. Note that, since one
issue may contain multiple types of decisions, the sum of the
percentages of all types of decisions is greater than 100%.

V. DISCUSSION

We first explain the results of this study and discuss their
implications for practitioners and researchers. We then com-
pare the study results, i.e., decisions made in CI/CD, with the
decisions made in traditional open source development without
using CI/CD.

A. Types of Decisions Made in CI/CD

1) Interpretations: The Software Development Life Cycle
(SDLC) simply outlines the tasks required to put together a
software application. In the planning phase, requirements are

defined to determine what the application is supposed to do
and what quality attributes need to be met. Therefore, it can
be seen from the statistics that, 67.6% of the decisions are
for functional requirements and 5.4% are for non-functional
requirements, which is reasonable that functional requirements
are the major part to make a decision in requirements analysis.
Then the creation phase models the way a software application
will work. Architecture design is part of the outcome of this
phase, and our result shows that 11.1% of the issues con-
tain architecture decisions. Based on the architecture design,
developers start the actual implementation of the application.
Usually, an open source project is implemented by a virtual
team and the implementation tasks can be broken down into
jobs for each developer, and consequently a source code
management tool is used to help developers track changes to
the code. We found that 1.6% of the issues contain version
control decisions. During the coding process, developers do
not just code, they also write instructions and explanations
about the code and developed application. Documentation,

460

such as user guides, is written to give users a quick tour of
the application’s basic features, while comments in the source
code provide further information about the code for other
developers. In our study, we found that 3.2% of the decisions
are related to documentation. Before making an application
available to users, it is critical to test it, and 4.3% of the
traditional testing decisions are identified in the result. When
an error occurs, we need to decide how to fix it, and we
can see 4.6% of the decisions belonging to bug fixing. In
the deployment phase, the application is made available in
the user or production environment. 4.3% of the issues are
relevant to traditional deployment decisions. In the CI/CD
pipeline, one advantage is that some tasks in SDLC, especially
integration and deployment, can be automated. Our statistical
result shows that 0.3% of the issues belong to continuous
integration decisions, 0.3% of the issues contain continuous
integration testing decisions, and 1.4% of the decisions are
about continuous deployment.

As we can observe from the results, a large percentage of
decisions are made during the planning and creation phase
of software development, followed by bug fixing and testing
phrase. Given that the subject of the study (the selected project
Budibase) is a CI/CD pipeline supported development project,
we only got a small number of CI/CD-related decisions (e.g.,
Continuous Deployment Decision and Continuous Integration
Decision). The possible reasons of this finding are that de-
velopers in CI/CD still focus on the traditional decision types
and CI/CD only provides support to the project (e.g., by CI/CD
pipeline tools) without the necessity of making many CI/CD-
related decisions, or CI/CD-related decisions are not discussed
and made in GitHub Issues, but in GitHub Actions, which
requires further investigation.

2) Implications: For practitioners, our result suggests that
they should pay more attention to the management, build,
testing, and deployment decisions as they are as equally
important as requirements and architecture decision in CI/CD.
Practitioners should also put more effort on the issues and
making decisions related to CI/CD, such as Continuous Inte-
gration Decision, which are fundamental decisions to facilitate
the CI/CD pipeline.

For researchers, we provide a dataset of various types of
decisions made in CI/CD, which can help to further explore
decision-making in CI/CD, as well as the difference compared
to decision making in traditional software development [11].
It is also interesting to further explore other data sources that
communicate and make decisions in CI/CD and may partially
answer the question why there are not many CI/CD-related
decisions in issues.

B. Differences from Traditional Software Development

We further compared our results (i.e., decision types made
in CI/CD) with the study results by Li et al. in our previous
work [11] (i.e., decision types made in traditional open source
development without using CI/CD) in this section.

From the perspective of decision categories, although there
are differences in descriptions between our major decision

categories and the classification of decisions in the Hibernate
developer mailing list, they are similar in meaning and both
basically cover the entire life cycle of development. The
decision types we got in this work are more complete with
one more category (i.e, Deployment Decision). In the decision
subcategories, we did not identify Model Decision, Pattern
Decision, Development Criteria Decision, Implementation De-
cision, and Annotation Decision, but we got four more decision
subcategories: Continuous Integration Decision, Continuous
Integration Testing Decision, Traditional Deployment Deci-
sion, and Continuous Deployment Decision, which are largely
related to CI/CD.

In terms of the percentages of various types of decisions,
the largest proportion of decision type in traditional software
development [11] is Design Decision (42.6%), followed by
Requirement Decision (31.6%). The percentages of Manage-
ment Decision (10.1%) and Construction Decision (9.8%)
are roughly the same, and the percentage of Test Decision
(5.9%) is the least. However, the largest share of decision
type in CI/CD is Requirement Decision which accounts for
73.0%, followed by Architecture Decision (11.1%) and Testing
Decision (9.2%). For the remaining three decision types, each
accounts for less than 6.0%.

Although these two studies used different data sources
(i.e., issues in this work and developer mailing lists in [11],
respectively) to investigate the decisions made, Requirement
Decision and Design (Architecture) Decision are dominant in
both studies, and the percentages of Management Decision and
Construction Decision in traditional development are higher
than Management Decision and Build Decision in CI/CD,
which is reasonable since the CI/CD pipeline handles most
of management and build (construction) issues. Deployment
Decision only exists in CI/CD which is implied in the name
of continuous deployment.

VI. THREATS TO VALIDITY

We discuss the potential threats to the validity of our results
below by following the guideline in [23]. Internal validity is
not discussed because this aspect of validity is of concern
when casual relationships are examined [23], and we did not
investigate any causal relationships in our study.

Construct validity concerns generating the results of the
study using the concept or theory behind the study [23]. In
our study, one potential threat to this validity comes from
manual extraction and analysis of data. To migrate this threat,
we randomly selected 50 issues from the dataset and discussed
the criteria for data filtering, extraction, and analysis. Before
the formal data extraction and analysis, the first and second
authors had agreed on the criteria, and any uncertainty was
discussed among the author to reach a consensus and eliminate
personal bias. Another threat is that we did not consider
whether the project is born with a CI/CD pipeline, and the
statistics on the percentage of CI/CD decisions may be affected
by the selection of the project that started using CI/CD late in
the project life cycle.

461

External validity is concerned with to what extent it is
possible to generalize the findings, and to what extent the
findings are of interest to other people outside the investi-
gated case [23]. In this study, we analyzed the closed issues
coming from a popular repository on GitHub, Budibase, which
employs GitHub Actions to support CI/CD. One threat stems
from the selection of the project and data source (issues), since
it is possible that some other projects using other CI/CD tools
(e.g., Travis CI) may also have relevant decisions in other
data sources (e.g., pull requests). So our selected repository
and data source may not be representative to all the CI/CD
projects and data sources. To partially mitigate this threat, we
conducted pilot project search with a set of criteria, and we
also plan to include projects supported by other CI/CD tools
with diverse data sources in our next step. Another threat is
caused by the fact that we targeted one project only, and we
will cover more repositories to migrate this threat.

Reliability is concerned with to what extent the data and
the analysis are dependent on the specific researchers [23].
One threat could be that the first author completed all the
data extraction and analysis, and discussed the uncertain data
with the second author to reach an agreement, which may lead
to bias during data extraction and analysis. To alleviate this
threat, we detailed the research process in Section III, and the
dataset and analysis results from the study have been made
available online [19]. With the measures stated above, we are
confident that the study results are relatively reliable.

VII. CONCLUSIONS AND FUTURE WORK

As a set of established software quality assurance and
development practices, continuous integration and continuous
delivery are of interest to many researchers and practitioners,
while the decisions made in CI/CD are not well understood.
We conducted an exploratory study to obtain the types of
decisions made in CI/CD using the closed issues (1,168) of
Budibase as our dataset. After data filtering and extraction, we
got 370 issues that contain decisions out of the 1,168 issues for
further analysis. The findings of this study are the following:
(1) We got 6 main categories and 11 subcategories of decisions
made in CI/CD, in which Requirement Decision has the high-
est percentage (67.6%), with only a small amount of decisions
(e.g., Continuous Deployment Decision) related to CI/CD. (2)
The types of decisions made in CI/CD we obtained in this
study have certain common points with the types of decisions
made in traditional software development, while Deployment
Decision only exists in CI/CD. (3) Practitioners are encouraged
to put more effort on the issues and making decisions related
to CI/CD, and researchers can extend the dataset and decision
types got from this study by exploring projects employing
other CI/CD tools and diverse data resources.

In the next step, we plan to extend this work on studying
decisions made in CI/CD with a larger dataset from more
repositories and diverse sources, and using complementary
research methods (e.g., questionnaire, interview, and focus
group). We also intend to take a deeper look at various
aspects of decisions in CI/CD, including: (1) software artifacts

involved in CI/CD-related decisions; (2) the rationale behind
CI/CD decision-making; and (3) the impact of CI/CD-related
decisions in development.

REFERENCES

[1] K. Gallaba and S. McIntosh, “Use and misuse of continuous integration
features: An empirical study of projects that (mis)use Travis CI,” IEEE
Transactions on Software Engineering, vol. 46, no. 1, pp. 33–50, 2020.

[2] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The im-
pact of continuous integration on other software development practices:
A large-scale empirical study,” in Proceedings of the 32nd ASE. IEEE,
2017, pp. 60—-71.

[3] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in
Proceedings of the 31st ASE. ACM, 2016, pp. 426––437.

[4] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous integration, delivery
and deployment: A systematic review on approaches, tools, challenges
and practices,” IEEE Access, vol. 5, pp. 3909–3943, 2017.

[5] M. Shahin, M. Zahedi, M. A. Babar, and L. Zhu, “An empirical study
of architecting for continuous delivery and deployment,” Empirical
Software Engineering, vol. 24, pp. 1061––1108, 2019.

[6] D. G. Widder, M. Hilton, C. Kästner, and B. Vasilescu, “A conceptual
replication of continuous integration pain points in the context of Travis
CI,” in Proceedings of the 27th ESEC/FSE. ACM, 2019, pp. 647—-658.

[7] A. Shahbazian, Y. Kyu Lee, D. Le, Y. Brun, and N. Medvidovic,
“Recovering architectural design decisions,” in Proceedings of the 15th
ICSA. IEEE, 2018, pp. 95–104.

[8] T. Olsson, K. Wnuk, and T. Gorschek, “An empirical study on decision
making for quality requirements,” Journal of Systems and Software, vol.
149, pp. 217–233, 2019.

[9] M. Shahin, P. Liang, and M. R. Khayyambashi, “Architectural design
decision: Existing models and tools,” in Proceedings of the Joint
WICSA/ECSA. IEEE, 2009, pp. 293–296.

[10] M. L. Drury-Grogan, “Performance on agile teams: Relating iteration
objectives and critical decisions to project management success factors,”
Information and Software Technology, vol. 56, no. 5, pp. 506–515, 2014.

[11] X. Li, P. Liang, and T. Liu, “Decisions and their making in OSS de-
velopment: An exploratory study using the hibernate developer mailing
list,” in Proceedings of the 26th APSEC. IEEE, 2019, pp. 323–330.

[12] A. Shahbazian, Y. K. Lee, Y. Brun, and N. Medvidovic, “Making well-
informed software design decisions,” in Proceedings of the 40th ICSE
Companion. ACM, 2018, pp. 262—-263.

[13] PMI, “Capturing the Value of Project Management through Decision
Making,” 2015.

[14] A. Tang and R. Kazman, “Decision-making principles for better software
design decisions,” IEEE Software, vol. 38, no. 6, pp. 98–102, 2021.

[15] P. N. Sharma, B. T. R. Savarimuthu, and N. Stanger, “Extracting
rationale for open source software development decisions: A study of
python email archives,” in Proceedings of the 43rd ICSE. IEEE, 2021,
pp. 1008–1019.

[16] T. Liu, P. Liang, C. Yang, Z. Xiong, C. Wang, and R. Li, “Understanding
the decision-making of students in requirements engineering course
projects.” in Proceedings of the 2nd SEED. CEUR-WS, 2019, pp.
1–8.

[17] V. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric
approach,” Encyclopedia of Software Engineering, pp. 528–532, 1994.

[18] B. G. Glaser, “The constant comparative method of qualitative analysis,”
Social Problems, vol. 12, no. 4, pp. 436–445, 1965.

[19] Y. Luo, P. Liang, M. Shahin, Z. Li, and C. Yang, “Dataset of
the Paper “Decisions in Continuous Integration and Delivery: An
Exploratory Study”,” 2022. [Online]. Available: https://doi.org/10.5281/
zenodo.6360830

[20] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in Proceedings of the 5th WICSA. IEEE, 2005, pp.
109–120.

[21] S. P. Roger and R. M. Bruce, Software Engineering: A Practitioner’s
Approach. McGraw-Hill Education, 2015.

[22] C. O. Matthew Skelton, Continuous Delivery with Windows and .NET.
O’Reilly Media, Inc., 2016.

[23] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer
Science & Business Media, 2012.

462

https://doi.org/10.5281/zenodo.6360830
https://doi.org/10.5281/zenodo.6360830

A THG Performance Case Study in the world of E-Commerce

Philip Wilson, Rehman Arshad, James Creedy, Adam Dad, Eloise Slater, Hannah Cusworth

philip.wilson, rehman.arshad, adam.dad, eloise.slater, hannah.cusworth @thehutgroup.com

The Hut Group
Chicago Ave, Voyager House, Manchester, UK

Abstract
THG's in-house e-commerce platform includes a micro-

service aggregator and server-side template renderer (that
we call THG Aggregator for this paper) that handles hun-
dreds of THG websites. It is not uncommon in e-commerce
to entertain thousands of requests per minute and THG
Aggregator uses extensive in-memory (on JVM) caching
to support the performance requirements. This case study
revolves around analysing the performance of this in-house
system on current JDK version (JDK 8) it is running on
and the latest LTS (long term support) version (JDK 11)
to decide the LTS version configurations before migrating
THG Aggregator to that. We analysed parameters like heap
utilisation, GC (garbage collector) pause time and process
usage under different configurations of JDK 8 and 11.
Based on this analysis, we showed different options and
configurations of JVM that can enhance or decrease the
performance of THG Aggregator. We have also conducted
extensive analysis of all these variations on Arm VS Intel to
extract the best combination of instruction set architecture
and JDK variation in terms of the response time of user
requests.
Key Words —E-Commerce, JDK, JVM 1

I. Introduction
THG Aggregator is the heart of THG's e-commerce

operation (Fig. 1). THG Aggregator handles hundreds of
THG websites and act as a major caching and aggregating
entity between the outside world and the internal resources.
This case study revolves around analysing the performance
of THG Aggregator on current JDK version (JDK 8) it is
running on and the latest LTS (long term support) version
(JDK 11) to decide the LTS version configurations before

1DOI reference number: 10.18293/SEKE2022-067

migrating THG Aggregator to that. We have defined a
framework of analysis that can show variations in the
values of parameters like heap usage, total duration of
GC (garbage collector) pauses, app usage etc. based on
different configurations of JVM. Configuration parameters
include parallel GC threads (-XX:ParallelGCThreads), type
of garbage collector, maximum heap size and Stringdedu-
plication etc.

In order to make sure that the patterns of the findings
hold for different number of requests, we have conducted
analysis based on 1, 10, and 100 and n number of requests
whereas, n is the number of requests set via load testing.
Table I shows different configurations used in the analysis,
ranges from v0-v8. The configuration v4 is currently being
used in THG with Java 8. We have compared v0-v4
via our framework of analysis between Java 8 and 11
to show the performance enhancements by hitting the
running configurations of THG Aggregator. From v5-v8,
the configurations were only run against Java 11 to analyse
if these configurations can provide better performance as
compared to v4. Few parameters can also show some
variation based on the current usage and specifications
of a machine therefore, we have conducted each type of
request on multiple machines and use the average values
in our framework of analysis. All the virtual and physical
machines used in this analysis had the same specifications
to rule out any inconsistency in data.

The instances of THG Aggregator used in this research
are not set-up with load balancers and are based on a single
proxy server therefore, actual values of defined parameters
for system in production are way more optimised however,
the test bed created for this analysis is enough to compare
and contrast the different configurations and load testing
for the required analysis.

The remainder of this paper is organised as follows:

463

GC Configurations
v0 Default Configurations of a JDK Version
v1 -Xmx10240M -Xms10240M
v2 -Xmx10240M -Xms10240M -XX:+UseG1GC
v3 -Xmx10240M -Xms10240M -XX:+UseG1GC -XX:+UseStringDeduplication
v4 -Xmx10240M -Xms10240M -XX:+UseG1GC -XX:+UseStringDeduplication -XX:InitiatingHeapOccupancyPercent=60
v5 -Xmx10240M -Xms10240M -XX:+UseG1GC -XX:+UseStringDeduplication -XX:InitiatingHeapOccupancyPercent=70
v6 v4 + -XX:ParallelGCThreads=16 -XX:ConcGCThreads=4
v7 v4 + -XX:G1MixedGCLiveThresholdPercent=75
v8 v5 + -XX:ParallelGCThreads=16 -XX:ConcGCThreads=4 -XX:G1MixedGCLiveThresholdPercent=75

TABLE I: GC Configurations for THG Aggregator

Mothership
Data Aggregation and Foramtting

Template Rendering
 Caching

THG Aggregator Edge Data Center Cloud

THG Data Center

AccountsSearch Content

Checkout
Handover

Central APIs
and

Databases

Fig. 1: THG Aggregator

Section II defines the framework of analysis used for
comparing the performance of THG Aggregator. Section
III discusses the findings and the analysis. This section
shows multiple tables and graphs to compare and contrast
the running configurations on Java 8 and 11. Section IV
includes the related work which is confined to similar
studies and case reports. Section V is the last section and
it includes conclusion and future work.

This paper can be used as a reference in the world
of e-commerce to conduct performance based analysis of
different versions of JVMs under different configurations.
Some pre-planned analysis like this can ensure the benefits
of migration under different set of configurations to latest
LTS version of Java.
II. Framework of Analysis

Based on the configurations defined in Table. I, we have
divided our analysis framework into two main parts.
• First part is about analysing the important JVM pa-

rameters. Table. II is showing parameters of part 1 of
analysis framework, and they are defined as follows:

– GC Young Config. refers to the garbage collector
used for young generation e.g., in JDK 8, default
one is parallel scavenger whereas, in JDK 11,
default garbage collector is G1 New.

– GC Old Config. refers to the garbage collector used
for old space.

– GC Time Ratio. refers to the ratio between the time
spent in GC and the time spent outside of GC.

– Max. Allocated Heap. refers to the amount of heap
set as the maximum value (-Xmx).

– Max. Young generation size. refers to the size
allocated to young generation.

– Max. heap used. refers to the maximum heap
consumed by a specific configuration on specific
JDK version.

– Max. heap value post GC. refers to the heap
memory a specific configuration holds after a major
GC.

– Total duration of GC pauses. refers to the sum of
all the GC pauses that take place during n number
of requests under specific configurations and JDK
version.

– Longest Pause. refers to the longest pause value
out of all the pauses GC takes under specific
configurations and JDK version.

– CPU Usage: Machine. refers to total utilisation of
the machine's CPU while running an instance of
THG Aggregator under specific configurations and
JDK version.

– CPU Usage: JVM + App. refers to the percentage
of CPU utilisation takes by THG Aggregator and
JVM out of the total percentage of machine usage
e.g., if machine usage is 89.2% and JVM+App
usage is 24.38% then THG Aggregator is taking
27.33% of the usage under that configuration.

• Second part (Part 2) is related to load testing i.e., the
number of requests a specific configuration of THG
Aggregator can handle under defined time. We ran n
number of requests directed to running instances of
THG Aggregator for m number of users and compare

464

Fig. 2: Machine and JVM+App Usage: THG Aggregator 100 requests using JDK 11

the results handled by different configurations of
JVM to analyse the impact of these configurations on
performance of THG Aggregator. The performance
will be elaborated via tables and graphs in section
III-B.

100 Requests (no-cache) v1 Avg.
JDK 8 JDK 11

GC Young Config. Parallel Scavenger G1 New
GC Old Config. Parallel Old G1 Old
GC Time Ratio 99% 12%

Max. allocated heap 10 GB 10 GB
Max. Young generation size 3.33 GB 1.3mb

Max. heap used 3.18 GB 1.56 GB
Max. Heap value post GC 478mb 451.5mb

Total duration of GC Pauses 2828.18ms 885.73ms
Longest Pause 1298ms 281.49ms

Max CPU Usage: Machine 89.2% 84.4%
Max CPU Usage: JVM+App 24.38% 24.3%

TABLE II: THG Aggregator on JDK 8 VS JDK 11: Avg.
of 100 Requests based on 2 different machines using v1

100 Requests (no-cache) v2 Avg.
JDK 8 JDK 11

GC Young Config. G1 New G1 New
GC Old Config. G1 Old G1 Old
GC Time Ratio 9% 12%

Max. allocated heap 10 GB 10 GB
Max. Young generation size 1.3mb 1.3mb

Max. heap used 2.08 GB 1.71 GB
Max. Heap value post GC 572mb 557.5mb

Total duration of GC Pauses 1210.19ms 1076ms
Longest Pause 251.11ms 332.59ms

Max CPU Usage: Machine 90.2% 73.7%
Max CPU Usage: JVM+App 38.5% 36.45%

TABLE III: THG Aggregator on JDK 8 VS JDK 11: Avg.
of 100 Requests based on 2 different machines using v2

Overall, first part of the analysis was conducted with
variable number of requests directed to running instances
of THG Aggregator with defined configurations of specific
JDK version. The final values of the defined parameters are
the averages taken from running the same configurations
on multiple machines under same load. Same set of re-
quests was used for all the combinations in order to be
consistent across different JDKs and configurations. The
second part of the analysis was conducted against various
sets of n requests with m users spawn up every second to

100 Requests (no-cache) v3 Avg.
JDK 8 JDK 11

GC Young Config. G1 New G1 New
GC Old Config. G1 Old G1 Old
GC Time Ratio 9% 12%

Max. allocated heap 10 GB 10 GB
Max. Young generation size 1.3mb 1.3mb

Max. heap used 1.91 GB 1.97 GB
Max. Heap value post GC 602.5mb 513.5mb

Total duration of GC Pauses 1501ms 759ms
Longest Pause 380.28ms 212.37ms

Max CPU Usage: Machine 89.3% 64.7%
Max CPU Usage: JVM+App 14.9% 18.5%

TABLE IV: THG Aggregator on JDK 8 VS JDK 11: Avg.
of 100 Requests based on 2 different machines using v3

100 Requests (no-cache) v4 Avg.
JDK 8 JDK 11

GC Young Config. G1 New G1 New
GC Old Config. G1 Old G1 Old
GC Time Ratio 9% 12%

Max. allocated heap 10 GB 10 GB
Max. Young generation size 1.3mbGB 1.3mb

Max. heap used 3.31 GB 1.62 GB
Max. Heap value post GC 611.5mb 522mb

Total duration of GC Pauses 1243.68ms 706.70ms
Longest Pause 459.2ms 190.5ms

Max CPU Usage: Machine 76.5% 69.75%
Max CPU Usage: JVM+App 40.7% 25.45%

TABLE V: THG Aggregator on JDK 8 VS JDK 11: Avg.
of 100 Requests based on 2 different machines using v4

see how JVM based optimisations can impact the end user
experience by offering better performance.

III. Findings and Discussion
A. Analysis of JVM Parameters

For part 1 of the analysis and configuration v1, Table.
II is showing 100 requests directed to running instances
of THG Aggregator on JDK 8 and 11 respectively. In the
stated table, default configurations of these JDK versions
were used i..e., JDK 8 runs on parallel scavenger and
parallel old GC configurations VS G1 New and G1 Old
GC configurations of JDK 11. For both JDKs, maximum
allocated heap was 10 GB. JDK 11 used way less heap
than JDK 8 which is due to better heap management in
JDK 11. Overall, JDK 11 performed considerably better

465

THG Aggregator 100 Requests (no-cache) JDK 11 Based on Avg. of Two Machines
V4 V5 V6 V7 V8

GC Young Config. G1 New G1 New G1 New G1 New G1 New
GC Old Config. G1 Old G1 Old G1 Old G1 Old G1 Old
GC Time Ratio 12% 12% 12% 12% 12%

Max. allocated heap 10 GB 10 GB 10 GB 10 GB 10 GB
Max. Young generation size 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb

Max. heap used 1.62 GB 1.32 GB 1.54 GB 1.48 GB 3.41 GB
Max. Heap value post GC 522mb 514.5mb 356.5mb 552mb 530.5mb

Total duration of GC Pauses 706.70ms 1271.56ms 512.38ms 1374ms 2690.27ms
Longest Pause 190.5ms 356.24ms 242ms 398.5ms 1512.2ms

Max CPU Usage: Machine 69.75% 71.1% 68.2% 90% 78%
Max CPU Usage: JVM+App 25.45% 48.15% 51.45% 50.95% 38.35%

TABLE VI: THG Aggregator on JDK 11: 100 Requests based on different GC Configurations

in heap management, pause times and usage VS JDK 8.
For the configuration v2 (both JDK 8 and 11 were using

G1 in v2) Table. III showed that JDK 11 was still better
in GC total pause duration however, JVM+App utilisation
was 42.68% (i.e., 38.5 is 42.68% of 90.2 which is total
CPU usage in this case) of the machine usage in JDK
8 VS 49.45% in JDK 11 (for 100 requests) i.e., much
improvement was seen in JDK 8 with G1 though overall,
JDK 11 still performed better. All this data was recorded
and profiled via flight recorder and async profiler. Table.
IV showed that the gap between JDK 8 and 11 further
narrowed down in terms of the stated parameters e.g., for
100 requests, JVM+App utilisation was 16.68% in JDK 8
VS 28.59% in JDK 11 i.e., 8 performed better than 11.
Heap utilisation is also neck-to-neck (heap utilisation is
slightly better with JDK 8 100 requests with v3). The only
major difference left between JDK 11 and 8 is the total
duration of GC pauses (759ms VS 1501ms in 100 requests)
that is still far apart in 8 and 11.

For the configuration v4 (Table. I), it was observed that
JVM+App usage was better in JDK 8 (difference of 14%)
with 10 requests but as Table. V showed, JDK 11 took the
considerable lead of more than 16% in 100 requests. Better
heap utilisation and GC pause times validated that running
THG Aggregator on the configuration v4 with JDK 11 is
better than the current running configurations (v4 with JDK
8). From v1-v4, trend is pretty consistent in favour of JDK
11 and overall, JDK 11 always performed better than JDK
8.

It is pretty evident from the analysis so far that JDK 11
is pretty consistent in performing better than JDK 8 except
few occurrences where JDK 8 performed slightly better in
CPU utilisation therefore, we defined configurations v5-
v8 to find out if these configurations can perform better

than the configuration v4 on JDK 11. Table. VI is showing
our analysis for configurations v4-v8 on JDK 11 for 100
user requests directed to running instance of THG Ag-
gregator with stated configurations. These configurations
were selected by combining the JVM flags that can help
in reducing pause time, better heap utilisation and better
machine usage.

According to Table. VI, configuration v6 showed best
GC pause duration value of 512.38ms VS 706.70ms of v4.
V6 also showed minimum value for the longest pause. The
heap utilisation of v6 is slightly higher than v5 and v7. v6's
JVM+App utilisation is 75.43% of the machine utilisation
VS 36.48% in v4 which is the minimum value in the stated
configurations. V6 is set up with 16 ParallelGcThreads and
4 ConcGCThreads as compared to 8 ParallelGcThreads
and 2 ConcGCThreads in v4 therefore, v6 is utilising more
CPU and a little bit more heap but producing the best
results in terms of GC pause duration that can be really
useful in case of thousands of requests at the price of
higher machine utilisation that demands better hardware
overall. V8 was the worst performer (v8 is the aggregation
of all the GC flags from other configurations) with highest
GC pause time, 49.16% of machine utilisation and 3.41
GB of heap utilisation. These results clearly stated that
from GC perspective, v6 is the best configuration at the
price of higher CPU utilisation and v4 has better machine
utilisation at the expense of higher values for GC pause
duration and heap utilisation. Overall, JDK 11 always
performed better with v4 as compared to JDK 8 in terms
of heap utilisation and GC total pause duration.

We went one step further and also analysed and com-
pared 100 requests on running instances of THG Aggre-
gator on Arm and Intel. For that purpose, we used amazon
linux2 on both instances with centos 7. One instance was

466

THG Aggregator 100 Requests (no-cache) JDK 11 AWS Graviton VS Intel
V0 V1 V2 V3 V4 V5 V6 V7 V8

Arm Intel Arm Intel Arm Intel Arm Intel Arm Intel Arm Intel Arm Intel Arm Intel Arm Intel
GC Young Config. G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New

GC Old Config. G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old
GC Time Ratio 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12%

Max. allocated heap 3.89 GB 3.89 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB
Max. Young generation size 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb

Max. heap used 998mb 877mb 1.73GB 1.43GB 1.46 GB 3.11GB 2.56 GB 1.45GB 1.54 GB 1.49GB 2.07 GB 1.51GB 2.55 GB 2.05 GB 3.79 GB 1.26 GB 2.35 GB 1.57 GB
Max. Heap value post GC 614mb 622mb 562mb 594mb 606mb 568mb 560mb 626mb 562mb 602mb 595mb 615mb 625mb 584mb 572mb 616mb 484mb 607mb

Total duration of GC Pauses 742.70ms 1187.77ms 722.76ms 1264.38ms 800.50ms 1030ns 796.70ms 1319.17ms 865.89ms 1095.06% 901.35ms 1260.59ms 922.78ms 1356.65ms 686.55ms 1294.8ms 989.95ms 1292.47ms
Longest Pause 80.63ms 95.49ms 153.55ms 201,02ms 179.43ms 254.93ms 242.12ms 259.72ms 240.76ms 222.30ms 208.28ms 304.54ms 283.64ms 260.95ms 177.28ms 195.47ms 265.26ms 259.50ms

Max CPU Usage: JVM + App 84.3% 92.7% 84.7% 94% 86.6% 93.8% 86.1% 91.3% 86.2% 93% 89.1% 95.8% 85.4% 94% 86.6% 99.3% 84% 96.3%

TABLE VII: THG Aggregator 100 Requests: JDK 11 (V0-V8) AWS Graviton VS Intel

running on Arm Graviton and the other one was on intel
X86 architecture. Both instances spinned up with 4 vcpus
and 16GB RAM. No other service was running on these
instances during the profiling i.e., THG Aggregator was
the only source of machine usage other than some basic
OS services. Table. VII is showing the summary of this
analysis. Overall, in all the configurations from v0-v8,
machine utilisation was always higher in Intel as compared
to Arm. Intel showed better readings for heap utilisation
e.g., in v4, v6, v7 and v8 but this parameter alone cannot
compensate the huge difference in total duration of GC
pauses. In case of v6, the difference is 922.78ms(Arm) VS
1356.65ms(Intel) therefore, Arm in general and Arm v6 in
particular still came out as the best overall configuration
for THG Aggregator.

The parameters stated above are important in identify-
ing the performance of a configuration but in the world of
e-commerce, one important parameter of performance is
the ability to entertain specific number of requests under
defined time frame therefore, next section will evaluate
THG Aggregator on v6 and v4 (on Arm based machines)
to analyse how these parameters will be translated into
actual performance of an e-commerce system.

B. Performance Analysis Via Load Test

THG Aggregator Load Test (Arm)
v4 v5 v6 v7 v8 v6 Intel

Time 10 mins 10 mins 10 mins 10 mins 10 mins 10 mins
Total Reqs. 52589 52235 53458 53008 52219 28335
Max. RPS 162 165.6 184.4 170.5 197.9 104.2
Avg. RPS 87.6 86.9 88.9 88.2 86.9 47.2

TABLE VIII: THG Aggregator Load Test: Max. 800 Users

For the load testing, the requests were ranging from
simple user GET end points to the requests related to
checkout basket etc. For all configurations, load test was
conducted for 10 minutes, starting from zero users, spawn-
ing 10 users each second with maximum user limit to 800.
We used THGs Graviton(in-house load tester) and Locust
[10] for running the load test and getting the required data.
Table. VIII is showing the results of our load test.

In the stated table, Time shows total duration for which
we ran the load test, Total Reqs. shows number of requests
entertained in defined time by a specific configuration,
Max. RPS is showing maximum requests per second

during the defined time and Avg. RPS is showing average
requests per second during the load test. We ran the load
test for configurations v4-v8 and as the table shows, v6
is a better performer i.e., better JVM metrics of v6 also
translated into actual performance. V6 entertained 53458
requests with 184.4 Max. RPS and 88.9 Avg. RPS. Second
closest candidate was v7 in terms of total requests but its
average and maximum requests per second were lower than
the v6. V8 is showing better value for Max. RPS but it
cannot compete with v6 on other parameters and v8 was
also one of the worst performers in JVM analysis.

The results were a little different with increasing num-
ber of users though e.g., when load testing was conducted
for 1200 maximum users instead of 800, v4 showed
slightly better results than v6 (52094 total requests on
v4 VS 51870 on v6, 86.5 Avg. RPS on v4 VS 86.2 on
v6). With 1500 maximum users, same trend between v4
and v6 still persisted as v6 has higher number of parallel
and concurrent threads therefore, the slight decline in the
values indicate the bottleneck in CPU usage in the running
instance of THG Aggregator.

For comparison, we also ran Intel v6 to compare it with
Arm v6 and the difference in the outcome is huge. Intel
v6 only entertained 28335 requests against 53458 in Arm
v6. Max. RPS and Avg. RPS of Intel v6 are also quite
poor as compared to the Arm v6 therefore, Arm v6 seems
to be the best configuration in our load test. Same trend
was seen between Arm and Intel after changing user range
multiple times between 400-1500. The user-range beyond
1500 was not realistic as in e-commerce, load balancers
and orchestration tools are used to redirect load to different
instances therefore, ceiling of 1500 was realistic for one
running instance of an e-commerce platform.
IV. Related Work

There are various studies on JVM that analyse and
propose options for fine tuning and optimisation. Our
point of interest revolves around those approaches that
investigate the performance tuning at JVM level in the
domain of web-services in general and e-commerce in
particular e.g., [8] investigates performance overhead of
JVM in data parallel systems, [3] conducts a study to
investigate ageing of JVM from memory depletion point
of view and [4] looks into JVM enhancements for server-
specific performance.

467

Few approaches are not the case studies but language
oriented e.g., [5] discusses JVM from JIT (Just-In-Time)
point of view to analyse JIT compiler abstraction manage-
ment.

In the domain of e-commerce and micro-services, there
are many case studies that include the performance en-
hancements and performance engineering of Java systems
at JVM or framework level and these are the approaches
that are closest to our approach e.g., [9] discusses the
performance engineering of e-commerce systems but this
approach proposes enhancement at the level of framework
(EJB [2]), not at the level of JVM. [6] looks into per-
formance enhancement of garbage collector in java based
web-services. [1] proposes a simulation model to test and
diagnose issues in production systems and [11] discusses
the enhancements to reduce the run time overheads of JIT
compiler to address the busy traffic at Alibaba.

Other than the optimisations based on JIT and over-
heads, few approaches try to tackle scalability issues via
distributed JVMs. One such approach is JESSICA2 DJVM
[7] that tries to cluster and scale the web application
servers with distributed JVMs. CHAOSMACHINE [12] is
another approach that does not tweak JVM itself but injects
perturbations to JVM via try-catch blocks in order to
extract an analysis of exception handling capabilities of
a code base.

Our approach does not discuss any framework like EJB.
The novelty lies in the fact that our approach involves three
dimensions i.e., JVM, e-commerce and micro-services
whereas, the approaches stated above involve one or two
dimensions out of these three. Our approach also went one
step further and analysed the implications of JVM tweaks
in terms of e-commerce traffic i.e., number of requests
handle by THG Aggregator under defined time frame with
different configurations.

V. Conclusion and Future Work
In this paper, we presented the detailed analysis of an

e-commrece system via our defined framework of analysis.
The results identified the best configuration and concluded
that Arm is the overall better performer under defined
configurations to run THG Aggregator. As a part of the
analysis framework, a comprehensive series of load tests
showed how JVM configurations translated into actual
performance of an e-commerce system.

After running and analysing THG Aggregator under
different configurations, future work involves the analysis
at code level to find out low-performant parts of the code
base. In other words, code-based profiling should be con-
ducted to extract call-graphs and heap dumps. Such a fine-
tuning at code-level along with the JVM-based tuning will
be really valuable in making an e-commerce system more
robust with enhanced performance. Another dimension of
future work revolves around the cost estimation of running

the e-commerce operations. New Arm processors claim to
be more energy efficient and as our results stated, per-
formed better with THG aggregator. Further research can
quantify the difference in running cost against the cost of
replacing the existing hardware and further decisions can
be made regarding future purchases and code optimisations
against a specific hardware.

References

[1] Alberto Avritzer and Elaine J Weyuker. The role of model-
ing in the performance testing of e-commerce applications.
IEEE Transactions on Software Engineering, 30(12):1072–
1083, 2004.

[2] Bill Burke and Richard Monson-Haefel. Enterprise Jav-
aBeans 3.0. ” O’Reilly Media, Inc.”, 2006.

[3] Domenico Cotroneo, Salvatore Orlando, Roberto Pietran-
tuono, and Stefano Russo. A measurement-based ageing
analysis of the jvm. Software Testing, Verification and
Reliability, 23(3):199–239, 2013.

[4] Robert Dimpsey, Rajiv Arora, and Kean Kuiper. Java server
performance: A case study of building efficient, scalable
jvms. IBM Systems Journal, 39(1):151–174, 2000.

[5] Malin Källén and Tobias Wrigstad. Performance of an oo
compute kernel on the jvm: revisiting java as a language
for scientific computing applications. In Proceedings of the
16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes, pages 144–156,
2019.

[6] Hai-Shuan Lam, GSVRK Rao, Chikkanan Eswaran, and
Kok-Seong Ng. Performance comparison of various garbage
collectors on jvm for web services. In 2006 International
Symposium on Communications and Information Technolo-
gies, pages 711–715. IEEE, 2006.

[7] King Tin Lam, Yang Luo, and Cho-Li Wang. A perfor-
mance study of clustering web application servers with dis-
tributed jvm. In 2008 14th IEEE International Conference
on Parallel and Distributed Systems, pages 328–335. IEEE,
2008.

[8] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang,
Nikola Grcevski, and Ding Yuan. Don’t get caught in
the cold, warm-up your {JVM}: Understand and eliminate
{JVM} warm-up overhead in data-parallel systems. In 12th
{USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pages 383–400, 2016.

[9] T-K Liu, Santhosh Kumaran, and J-Y Chung. Performance
engineering of a java-based e-commerce system. In IEEE
International Conference on e-Technology, e-Commerce and
e-Service, 2004. EEE’04. 2004, pages 33–37. IEEE, 2004.

[10] S Pradeep and Yogesh Kumar Sharma. A pragmatic
evaluation of stress and performance testing technologies
for web based applications. In 2019 Amity International
Conference on Artificial Intelligence (AICAI), pages 399–
403. IEEE, 2019.

[11] Fangxi Yin, Denghui Dong, Sanhong Li, Jianmei Guo, and
Kingsum Chow. Java performance troubleshooting and op-
timization at alibaba. In 2018 IEEE/ACM 40th International
Conference on Software Engineering: Software Engineering
in Practice Track (ICSE-SEIP), pages 11–12. IEEE, 2018.

[12] Long Zhang, Brice Morin, Philipp Haller, Benoit Baudry,
and Martin Monperrus. A chaos engineering system for live
analysis and falsification of exception-handling in the jvm.
IEEE Transactions on Software Engineering, 2019.

468

EARS2TF: A Tool for Automated Planning Test
from Semi-formalized Requirements

Hui Liu†, Yunfang Li†, Zhi Li†∗
†School of Computer Science and Engineering, Guangxi Normal University, Guilin, Guangxi, P. R. China

Email: huiliu729@gmail.com, zhili@gxnu.edu.cn

Abstract—Software testing is critical to the integrity of the
software implementation. The test engineers must design tests
under the premise of ensuring the conformance of software sys-
tem with respect to stakeholder requirements. Generally, require-
ments documents are large and requirements specifications are
represented by NL(natural language) which can be error-prone,
so test plans tend to consume more time and effort. In this paper,
we propose a tool, EARS2TF, which supports test framework
generation from NL requirements specifications. Requirements
specifications are represented by a requirements template EARS
(Easy Approach to Requirements Syntax), which is easy to use
and capable of representing stakeholder requirements with less
ambiguity. To save testing costs, we provide a technique and tool
that allows requirements to be written, edited, and checked for
conformance to existing requirements and EARS syntax, while
allowing test engineers to test directly without validating the
requirements specification. A demo video of this tool is available
at https://youtu.be/fmk4xSRh40k.

Index Terms—test plan, EARS, natural language requirements,
requirements engineering

I. INTRODUCTION

Software testing is the process of review of software require-
ments analysis, design specifications and coding throughout
the whole software development lifecycle, as well as verifying
the quality of the software by measuring and evaluating the
quality of the software to meet stakeholder requirements [1]
[2]. The test plan serves as a blueprint for testing, describing
information needed to perform software product testing such
as the test strategy, objectives, etc. and can help determine
the information and work needed to verify the quality of the
system under test.

The creation of a test plan requires a number of tasks
that are currently mostly done manually and require a lot
of time and effort. Test engineers need to fully understand
and extract test-related information from requirements, most of
which are written in natural language (NL) [3] [4] [5]. Natural
language contains the inherent characteristic of ambiguity
and requirements are often cumbersome, especially in large
software projects, and requirements elicitation is challenging
as they become complex [6]. The complexity and lack of
precision of the requirements causes test planning to become
a time-consuming and error-prone process, and the lack of
automation in the process also leads to additional maintenance
costs.

*corresponding author: zhili@gxnu.edu.cn
DOI reference number: 10.18293/SEKE2022-179

The expression of requirements has a significant impact on
the creation of the testing process. Requirements that are not
formally described are usually imprecise and vague, which can
hinder the testing process. Creating requirements according to
requirements templates, also known as Constrained Natural
Language (CNL), can reduce such problems, and EARS [5]
is one of the more popular templates in terms of their use in
industry and their availability to practitioners [7]. The template
specializes the generic requirements syntax into five types to
describe requirements, is concise and clear, and demonstrates
its usability with industrial examples.

In this paper, we use EARS to describe requirements to
ensure their accuracy, and then automatically generate a test
framework from EARS requirements to reduce the cost of
testing while ensuring consistency between requirements and
tests, and to provide the following tool: EARS2TF. This paper
is presented as follows: Section II describes the features of
EARS2TF. Section III shows the evaluation results of three
cases. Section IV discusses related work. We conclude the
paper in Section V.

II. TOOL FEATURES

Fig. 1. EARS2TF tool architecture. Grey boxes show third-party components,
while white boxes denote EARS2TF components

A. Tool Overview

EARS2TF is a testing aid tool based on Eclipse Xtext,
which consists of three main parts: requirements editor, re-
quirements parser, and test framework generator. Fig. 1 shows

469

the tool architecture. We design our own EARS syntax rules,
requirements conforming to EARS syntax rules can be im-
ported from existing files with the .ears suffix or obtained
by using out requirements editor. EARS requirements can be
parsed by the requirements parser to obtain data useful for
testing, and then the test framework generator generates a test
framework corresponding to the requirements based on the
obtained data.

B. Requirements Editor

In general, requirements are often written with some er-
rors that can lead to testing errors. To make requirements
descriptions more accurate, EASR2TF provides a requirements
editor that describes the syntactic structure of EARS using the
Xtext framework. Our requirements editor enables the written
requirements to conform to the EARS syntax and provides a
more convenient use experience.

C. From Requirements to Test Framework

We designed the test framework by referring to some testing
standards, such as ISO/IEC 29119 [8], UTP (UML Testing
profile) [9], etc. A test framework is a plan for the testing
process, which contains the test object, test architecture, etc.
In order to narrow the gap between requirements and tests, also
to avoid incomplete understanding of requirements leading
to missing tests, EARS2TF can convert EARS requirements
into test frameworks by designing algorithms to read key
information of EARS requirements and then parse them into
corresponding test information, and finally the test framework
can be displayed in the form of text. Testers can then start
testing directly from the test framework, avoiding spending
too much time on requirements and missing test information.

III. EVALUATION

We evaluated EARS2TF by using two examples from a
dataset of public requirements document-PURE [10], which
containing 44, 192 requirement statements, respectively. We
checked and analyzed the results, and almost all of the gener-
ated test plan messages are correct except for 13 messages. The
reason for these error messages is that there are 6 requirement
statements that are untestable assumptions or semantically
incorrect.

IV. RELATED WORK

A lot of existing research has been devoted to automated
testing, such as automatic generation of test cases, test scripts,
etc from NL requirements or restricted requirements [11] [12]
[13] [14]. However, none of these tasks can guarantee correct
results, and some require manual addition of files or manual
intervention to get the correct results. Some approaches focus
on generating test model or test plan. Fischbach et al [6]
generate test model from semi-structured requirements by
extracting Cause-Effect-Graphs. Lukose et al [15] proposed
a tool for guiding a software tester in generating test plans.
All these approaches either do not automatically generate test
plans or the results obtained cannot plan test. To the best,

EARS2TF is the only approach that automates the test planing
from requirements comply with template, and also allows
requirements editing.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a automated planning test tool
from EARS requirements, which includes a requirements
editor allowing requirements editing, writing and checking.
Future work includes the extension of our tool to check the
semantic of requirements and generate test case.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China (61862009), Guangxi Natural
Science Foundation (2018GXNSFAA281314, Guangxi “Bagui
Scholar” Teams for Innovation and Research, the Project of
the Guangxi Key Lab of Multi-source Information Mining
Security (Director’s grant 19-A-01-02), Innovation Project of
GuangXi Graduate Education(JXXYYJSCXXM-2021-005).

REFERENCES

[1] J. A. Whittaker, “What is software testing? and why is it so hard?” IEEE
software, vol. 17, no. 1, pp. 70–79, 2000.

[2] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[3] C. Ribeiro and D. Berry, “The prevalence and severity of persistent
ambiguity in software requirements specifications: Is a special effort
needed to find them?” Science of Computer Programming, vol. 195, p.
102472, 2020.

[4] M. Luisa, F. Mariangela, and N. I. Pierluigi, “Market research for
requirements analysis using linguistic tools,” Requirements Engineering,
vol. 9, no. 1, pp. 40–56, 2004.

[5] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach to
requirements syntax (ears),” in 2009 17th IEEE International Require-
ments Engineering Conference. IEEE, 2009, pp. 317–322.

[6] J. Fischbach, M. Junker, A. Vogelsang, and D. Freudenstein, “Automated
generation of test models from semi-structured requirements,” in 2019
IEEE 27th International Requirements Engineering Conference Work-
shops (REW). IEEE, 2019, pp. 263–269.

[7] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated check-
ing of conformance to requirements templates using natural language
processing,” IEEE transactions on Software Engineering, vol. 41, no. 10,
pp. 944–968, 2015.

[8] ISO, “Ieee/iso/iec 29119-1-2021,” 2021.
[9] OMG, “Uml testing profile, version 2.1,” 2019.

[10] A. Ferrari, G. O. Spagnolo, and S. Gnesi, “Pure: A dataset of public re-
quirements documents,” in 2017 IEEE 25th International Requirements
Engineering Conference (RE). IEEE, 2017, pp. 502–505.

[11] C. Wang, F. Pastore, A. Goknil, and L. C. Briand, “Automatic generation
of acceptance test cases from use case specifications: an nlp-based
approach,” IEEE Transactions on Software Engineering, vol. 48, no. 2,
pp. 585–616, 2022.

[12] T. Yue, S. Ali, and M. Zhang, “RTCM: A natural language based, auto-
mated, and practical test case generation framework,” 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015 - Proceedings,
pp. 397–408, 2015.

[13] J. Fischbach, J. Frattini, A. Vogelsang, D. Mendez, M. Unterkalm-
steiner, A. Wehrle, P. R. Henao, P. Yousefi, T. Juricic, J. Radduenz
et al., “Automatic creation of acceptance tests by extracting condition-
als from requirements: Nlp approach and case study,” arXiv preprint
arXiv:2202.00932, 2022.

[14] D. Flemström, T. Gustafsson, and A. Kobetski, “Saga toolbox: In-
teractive testing of guarded assertions,” in 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST).
IEEE, 2017, pp. 516–523.

[15] K. Lukose, S. Agarwal, V. N. Rao, and J. Sreevalsan-Nair, “Design study
for creating pathfinder: A visualization tool for generating software test
plans using model based testing.” in VISIGRAPP (3: IVAPP), 2018, pp.
289–300.

470

A Simplified Method for Automatic Verification of
Java Programs

1st Zhi Li
School of Computer Science and Engineering

Guangxi Normal University
Guilin, China

zhili@gxnu.edu.cn

2nd Ling Xie
School of Computer Science and Engineering

Guangxi Normal University
Guilin, China

lingxiehy@outlook.com

3rd Yilong Yang∗
School of Software
Beihang University

Beijing, China
yilongyang@buaa.edu.cn

Abstract—Current KeY verification tool for Java programs
provides limited capability for verifying Java programs. In order
to solve this problem, we provide a method for simplifying
complex Java programs into a format that is compatible with the
KeY. A set of simplification rules based on abstract syntax tree
(AST) are proposed. These rules can keep the logic and semantics
of the original Java programs mostly unchanged, while meeting
the requirements of KeY verification tool. The paper concludes
with a bank ATM example to demonstrate the feasibility of our
work.

Index Terms—Program verification, KeY verification tool,
abstract syntax tree (AST), Java program simplification

I. INTRODUCTION

Program verification is an important part of software devel-
opment, which can detect some errors in the program. Current
program verification methods or techniques are only applica-
ble to program fragments or simple programs. Therefore, a
program simplification method is urgently needed to extend
the capability of existing program verifiers so that complex
programs can be dealt with constructively. In this paper, we
provide a simplification method to enable the KeY tool[4]to
verify those Java programs with moderate complexities.

The Java simplification work in this paper uses the abstract
syntax tree (AST) to parse, traverse, and re-factor code.
Inspired by the work of [1,2,3], AST is used to parse the
variables, types and functions of the source code and then
traverse and re-factor the object code, thus simplifying the
Java program while keeping most of the logic and semantics
unchanged.

The ultimate goal of simplifying complex Java programs
is to be verifiable in the KeY tool. The KeY is a formal
program tool for Java programs, with both fully automated and
interactive verification. It converts the Java program as input
to Java dynamic logic (JavaDL), and then verifies the JavaDL
step by step applying the corresponding taclet. Finally, the
verification results are presented in the form of a proof tree[4].
As a continuously improved tool, KeY supports and verifies
invariant specifications. The specification and verification of
invariant allows us to conveniently specify and verify strong
data integrity properties for Solidity smart contracts[5].

*corresponding author: yilongyang@buaa.edu.cn
DOI reference number:10.18293/SEKE2022-180

II. METHOD AND IMPLEMENTATION

A. Overview of the methods

To enable the KeY tool to verify complex Java programs,
this paper presents 7 simplified rules.Details are as follows:

1) New AST Rule

New AST Rule
Content

CompilationUnit

Take the source program (Content) as a parameter of the
createAST method to generate an AST CompilationUnit.

2) Get Type Rule

Get Type Rule
CompilationUnit

TypeDeclaration

With the AST as the head node, the children node is called
step by step. The type of this rule includes the class name and
the content of all methods, and is the header of all modification
nodes.

3) Modify Data Type Rule

Modify Data Type Rule
float

int

Modify the data type after the node location is found, then
the method is called to replace the previous data type with the
new data type.

4) Delete Rule

Delete Rule
Object

ϕ

The Delete rule includes deleting comments, deleting vari-
ables, deleting statements, etc. The node where the deleted
object is located in the AST is found, and the remove or delete
method is called to delete it.

5) Substitution Rule

Substitution Rule
getPasswordV alidated()

passwordV alidated

Substitution rule here refers to the get and set methods that
replace new variables. The node that calls the get and set
methods in AST is found, and new variables are generated by
creating new methods, and a function is called to replace the

471

left and right sides of the get and set method expressions, and
the value of the operator is kept unchanged.

6) Add Rule

Add Rule
ϕ

Object

Add Rule finds the node position of the variable or method
call to be added, and after generating a new expression,
insert it into the corresponding node position to complete the
operation of adding.

7) Simplify For Loop Rule

Simplify For Loop Rule
EnhancedForStatement

ForStatement

This rule refers to replacing the enhanced for loop with a
generic for loop. Find the enhancement for loop and delete it,
create a general for loop, and insert the new for loop into the
node location where the original enhancement loop is located.

B. Method implementation

The implementation of simplified methods is based on the
eclipse JDT plug-in, the specific method implementation is
divided into the following steps:

1) Environment preparation: Since you are using the
JDT plug-in, the first step is to install the JDT plug-in in
Eclipse,the second is to configure an environment suitable for
the org.eclipse.jdt.core.dom* class, that is, to download the
corresponding JAR package to use when the configuration
program runs.

2) Parsing the AST: Firstly, use ASTParser parsert =
ASTParser.newParser(AST. JLS3) statement to create a parser.
Secondly, the Java source program to be parsed is generated
as a string-typed parameter of the parser source code in AST.
Finally, use the parser to create and return the AST context
result CompilationUnit as the root node.

3) Modifying the AST:

a.Modify the data type: modify float into int.
b.Delete function implementation:delete variables, com-

ments, statements,etc.
c.Substitution function implementation: Variable substitu-

tion get or set method.
d.Add function implementation: Add a variable or method

call.
e.Simplified for loops: Rewrite the enhanced for loop as a

general for loop.
4) AST convert into Java program: The file output stream

(FileOutputStream) parses the modified string, and finally
converts the string into a Java file and outputs it to the specified
location.

III. EXPERIMENT

This section presents an example of a bank ATM withdrawal
that shows how to simplify the source Java program by using
AST and then verify the correctness with the KeY tool. Figure
at github(https://github.com/1713022804/ATMexample) shows

the simplification process of the bank ATM withdrawal, rep-
resented in AST, in which those on the left of the dashed line
represents the original complex Java program, while the right
side represents the simplified Java program.

Determine the format that Java programs verify in KeY,
and then make specific simplifications according to the 7
rules provided in Section A of II. In this example, we mainly
simplify the seven functions of the source Java program. The
following are two examples showing how our rules are applied:

(1)In the depositFunds function, the Modify Data Type
Rule is used to modify the parameter Float type into the
Int type. The Delete Rule is applied to remove unnecessary
comments and variables for verification of the method. Then
the Substitution Rule is used to the getPasswordValidated()
method, which is replaced by the PasswordValidated variable.

(2)In the inputCard function, the enhanced For Loop is
simplified into the general For Loop by using the Simplify
For Loop Rule, and Add Rule is applied to add variable C of
BankCard data type to the method, then the Delete Rule is used
to Delete comments, variables or statements in the methods.
Finally, The GetCardIDValidated() method is replaced by the
CardIDValidated variable, following the Substitution Rule.

IV. CONCLUSIONS

This paper presents seven rules you can use when simpli-
fying your source Java programs into a format that the KeY
can verify. Based on the AST, the simplified rules are derived,
which are illustrated by using corresponding examples, and
the simplified Java programs are verified based on the Java
program-oriented verification tool KeY. In the future, we will
continue to improve the simplification work based on AST
and try to use empirical methods to evaluate our simplification
rules.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China (61862009).

REFERENCES

[1] S. Horwitz. Identifying the semantic and textual differences between
two versions of a program. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), pages 234–245, June 1990.

[2] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis
Mutandis: Safe and flexible dynamic software updating. In Proceedings
of the ACM SIGPLAN/SIGACT Conference on Principles of Program-
ming Languages (POPL), pages 183–194, January 2005.

[3] Neamtiu I, Foster J S, Hicks M. Understanding source code evolution
using abstract syntax tree matching[C]//Proceedings of the 2005 inter-
national workshop on Mining software repositories. 2005: 1-5.

[4] Ahrendt W, Beckert B, Bubel R, et al. Deductive Software Verification-
The KeY Book[J]. Lecture notes in computer science, 2016, 10001.

[5] Ahrendt W, Bubel R. Functional verification of smart contracts via strong
data integrity[C]//International Symposium on Leveraging Applications
of Formal Methods. Springer, Cham, 2020: 9-24.

472

Trace4PF: A tool for Automated Decomposition of
Problem Diagrams with Traceability

Yajun Deng†, Zhi Li†∗, Hongbin Xiao†
†School of Computer Science and Engineering, Guangxi Normal University, Guilin, China

Email: dengyajun@stu.gxun.edu.cn, zhili@gxnu.edu.cn, hongbinx1997@foxmail.com

Abstract—This paper provides a support tool for Jackson’s
Problem Frames approach – named Trace4PF for decomposing
a global problem diagram into sub-problem diagrams. The tool
provides a web browser interface with features such as drawing,
editing and performing syntactical checking, and highlighting
the trace of causal chain. A video demonstration of the tool is
available at https : //youtu.be/XSUV GGqEKkw.

Index Terms—Cyber-Physical Systems, Problem Frames, Re-
quirements Engineering, Decomposition and Traceability

I. INTRODUCTION

Cyber-Physical Systems (CPS) play a crucial role in various
fields and contain various elements (networks, sensors, actua-
tors, displays, etc.) compared to the previous common systems
[1]. Since CPS operate in an open, dynamic and diverse
environment, their close interactions with the environment and
users lead to many challenging problems. We argue, in this
paper, that the most important challenge among these problems
is a lack of an automated method or technique to reduce model
complexity of such systems, and we provide a tool support
for automatically decomposing a global problem diagram into
sub-problem diagrams, once a traceability analysis is com-
pleted based on causal relationships elicited from stakeholders.

It is observed that Jackson’s Problem Frames (PF) approach
[2] is better suited for modeling, verifying and validating the
complex contextual environments in relation to requirements
of such systems. However, when faced with very complex
CPS, the PF approach and existing tool support for modeling
and analyzing the requirements in contexts usually encounter
an overly large and global problem diagram, and fail to
provide a traceability analysis based on causal reasoning, when
decomposing the global problem into sub-problems.

This pape provides a support tool named Trace4PF for
decomposing a global problem diagram into sub-problem
diagrams, after syntactical checking, highlighting the trace of
causal chains. The Trace4PF is a problem diagram tool that
provides various editing and checking features for problem de-
scriptions, which are prerequisites for problem decomposition
with traceability analysis.

II. TOOL FEATURES

A. Problem Diagram Modeling

The GUI of Trace4PF is shown in Fig. 1. It is an online
modeling tool for Problem Frames, in which stakeholders can

*corresponding author: zhili@gxnu.edu.cn
DOI reference number: 10.18293/SEKE2022-181

draw their copies of problem diagrams using most mainstream
web browsers. Trace4PF consists of three parts: (a) a canvas
for the user to draw and edit; (b) predefined model elements
for the user to draw and drop onto the canvas; (c) a toolbar that
allows users to zoom the diagram to fit the current window,
modify edge shape, upload or export files.

B. Syntactical Checking of Problem Diagrams

Once the diagram is completed by the user, a verification
module is provided to help the user check the diagram for two
types of syntactical errors.

Firstly, Syntax errors in labeling the phenomena and domain
property. According to the grammars in PF [2], the format
of the phenomena should be DomainName!{phe1,phe2}, so
both DomainName!{phe1phe2} and !{phe1,phe2} are wrong,
which must be corrected. The correct syntax of phenomena
should follow the regular expression regDP below:

regDP = /ˆDomainName!{(phe′*|phe)*}$/ (1)

phe = /ˆ[a-zA-Z](\w)*$/ (2)

phe′ = /ˆphe,$/ (3)

In regDP, DomainName should be a name of a domain which
is connected to the edge, and both phe and phe’ are regular
expressions as well. The domain property is defined using a
regular expression named regProp as well as regDP:

regProp = /ˆ(phePhe′*|phePhe)*$/ (4)

phePhe = /ˆphe->phe$/ (5)

phePhe′ = /ˆphe;$/ (6)

If a domain or an edge has a syntax error, then the tool will
show the domain or the edge and tell the user by highlighting
the error in red.

Secondly, syntactical errors in circular causal relationships.
In order to prevent circular causal relationships from reduc-
ing search efficiency. For example, in Fig. 1, phenomenon
pumpCmd can indirectly evoke phenomenon sugarUp, and if
sugarUp can directly or indirectly evoke pumpCmd at the same
time (Suppose domain Sensor controls pumpCmd and Sensor
has the property sugarUp→pumpCmd), then the tool would
warn user that a loop exist in the diagram and show the loop.

473

https://youtu.be/XSUVGGqEKkw

Fig. 1. The insulin control problem diagram modelled using our Trace4PF tool [3]

C. Decomposing Problem Diagrams with traceability

After the above syntactical checking is passed, the user can
use and experience the core function of the tool – problem
diagram decomposing with traceability. The current version
of the tool provides the following three search options based
on elicited causal relationships.

• Heuristic search. This method allows the tool user to ex-
plore all possible causal chains with traceable permissible
paths (for reasons of space, this feature can be shown in
the tool demo video).

• End-to-end search. This method shows all the permissible
paths from a starting domain Pump to an ending domain
Sensor, as shown in Fig. 1.

• Closed loop search. This method shows all the permis-
sible paths starting from and ending at the Machine
domain1.

The tool can display all the permissible paths in both
graphically and textually, as shown in Fig. 1.

III. RELATED WORK

In recent years, a number of scholars have researched and
developed problem framing tools. Some examples are as fol-
lows: Chen et. al. proposed DPtool [4], a tool to guide problem
decomposition through scenario projection. Unlike our work,
their tool has not yet implemented automated decomposition
of problem diagrams with traceability. In this paper, we have
extended the applicability of the current tool sets available to
deal with more complex requirements inherent in CPS, with
a web-based interface for ease of use.

1this is the only case where circular causal relationship is allowed starting
from and ending at the Machine domain

IV. CONCLUSION

This paper presents the Trace4PF tool for automated de-
composition of problem diagrams with traceability. The tool
can be used through a web browser. The implementation
of this tool uses AntV’s open diagram editing engine X6
2 – JavaScript Diagramming Library. In the future, we will
continue developing this tool to provide more features, such as
measuring the complexity of problem diagrams and automated
test case generation.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China (61862009), Guangxi “Bagui
Scholar” Teams for Innovation and Research.

REFERENCES

[1] Z. Jin, X. Chen, Z. Li, and Y. Yu, “RE4CPS: requirements engineering
for cyber-physical systems,” in 27th IEEE International Requirements
Engineering Conference, RE 2019, Jeju Island, Korea (South), September
23-27, 2019, D. E. Damian, A. Perini, and S. Lee, Eds. IEEE, 2019,
pp. 496–497. [Online]. Available: https://doi.org/10.1109/RE.2019.00072

[2] M. Jackson, Problem frames: analysing and structuring software devel-
opment problems. Addison-Wesley, 2001.

[3] G. Liu, Z. Li, and Z. Ouyang, “CARE: A computer-aided requirements
engineering tool for problem-oriented software development,” in The 27th
International Conference on Software Engineering and Knowledge Engi-
neering, SEKE 2015, Wyndham Pittsburgh University Center, Pittsburgh,
PA, USA, July 6-8, 2015, H. Xu, Ed. KSI Research Inc. and Knowledge
Systems Institute Graduate School, 2015, pp. 727–729.

[4] X. Chen, B. Yin, and Z. Jin, “Dptool: A tool for supporting
the problem description and projection,” in RE 2010, 18th IEEE
International Requirements Engineering Conference, Sydney, New
South Wales, Australia, September 27 - October 1, 2010. IEEE
Computer Society, 2010, pp. 401–402. [Online]. Available: https:
//doi.org/10.1109/RE.2010.58

2https://x6.antv.vision/zh

474

https://doi.org/10.1109/RE.2019.00072
https://doi.org/10.1109/RE.2010.58
https://doi.org/10.1109/RE.2010.58

Access-Pattern-Aware Personalized Buffer
Management for Database Systems

Yigui Yuan, Zhaole Chu, Peiquan Jin, Shouhong Wan
1School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

2Key Lab. of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei, China
jpq@ustc.edu.cn

Abstract—Buffer management is an essential technology for
database management systems. Traditional buffer management
employs an empirical approach based on access recency or
frequency which fails to adapt to access-pattern changes in
various database applications. In this paper, we present a new
access-pattern-aware buffer manager called PBM (Personalized
Buffer Manager), which can detect the access patterns for each
database file and use a specific buffering policy for each database
file. In particular, we propose a workload classifier to detect the
access pattern of a database file. Then, we partition the buffer into
various zones, set different sizes for each zone, and select the most
suitable buffering scheme for each zone. With such a mechanism,
each zone is responsible for caching a specific database file,
and we can realize a personalized buffer manager for different
database files, which can improve the buffer efficiency and reduce
the page I/Os of the buffer manager. We compare PBM with three
existing buffering algorithms, including LRU, LFU, and LeCaR,
on two workloads, namely a regular workload and a shifting
workload, which are composed of different access patterns. The
results show that PBM outperforms the three competitors in
terms of hit ratio and page I/Os. As a consequence, PBM achieves
1.66x, 2.03x, and 1.39x hit-ratio improvements compared to LRU,
LFU, and LeCaR, respectively, on the regular workload. While
on the shifting workload, PBM achieves 1.90x, 1.55x, and 1.49x
higher hit ratios than LRU, LFU, and LeCaR, respectively.

Keywords—Access pattern, Buffer management, Personalized
buffer manager, Classification

I. INTRODUCTION

Buffer management is a key module in database systems to
improve query performance [1]. The optimal buffer manager
can always maintain the pages that will be requested in the
future in the buffer so that future requests can hit in the
buffer. Generally, as the buffer size is usually limited, we
need to use a replacement algorithm to evict some pages out
of the buffer when the buffer is full. Therefore, most of the
previous works on buffer management focus on the study
of buffer replacement schemes, which highly determine the
performance of buffer management in database management
systems (DBMSs).

A buffer replacement policy aims to evict the most useless
pages out of the buffer by predicting the future usage of
pages. As future accesses are hard to be predicted, traditional
DBMSs employ some empirical algorithms to perform buffer
replacement. The most well-known algorithm is LRU (Least

DOI reference number: 10.18293/SEKE2022-141

Recently Used) [1]. It assumes that the least recently used
page is least likely to be requested in the future. Thus, it
always selects the least recently used page for a replacement.
In one word, traditional buffer replacement algorithms use an
empirical way to select the victim for replacement. However,
a critical problem of such a mechanism is that they cannot
adapt to workload changes. As a result, they may perform well
under some kinds of workloads but show poor performance
under other workloads. For example, the LRU policy works
well under the workloads with high time locality, but has
poor performance when the workload involves periodical scans
(known as the scan nonresistance problem of LRU). Although
a few works studied the adaptivity of LRU, such as AD-
LRU [2] and LeCaR [3], their performance relies on the
empirical setting of parameters, which are still empirical
solutions.

This paper proposes a new idea to improve the efficiency
of buffer management in database systems. Differing from the
traditional empirical approaches, we present an access-pattern-
aware personalized buffer manager called PBM (Personalized
Buffer Manager). The main contributions of PBM can be
summarized as follows.

(1) PBM proposes to use multiple sub-buffers (called
zones), each of which is responsible for caching a specific
database file. Such a design enables us to use different
buffering policies for different database files. As a result, PBM
is equipped with multiple buffering policies rather than a single
policy in traditional buffer management.

(2) PBM can detect the access pattern of each database
file according to the access sequence. A workload classifier is
proposed for the detection of the access pattern. Based on the
detected pattern, PBM sets different zone sizes and enables
different buffering policies for database files.

(3) We compare PBM with three existing buffering algo-
rithms, including LRU, LFU, and LeCaR, on two workloads,
namely a regular workload and a shifting workload, which are
composed of five access patterns. The results show that PBM
outperforms the three competitors in terms of hit ratio and
page I/Os.

The remainder of the paper is structured as follows. Sec-
tion II summarizes the related work. Section III details the
structure and key technologies of PBM. Section IV reports
the experimental results, and finally, Section V concludes the
whole paper.

475

II. RELATED WORK

In the past two decades, many well-known buffering policies
have been proposed, e.g., LRU [1], LFU [1], ARC [4], 2Q [5],
and LeCaR [3]. Most of these algorithms have been well
explained in textbooks. The literature [1] presents a good
survey on traditional buffer management policies.

LRU (Least Recently Used) [1] always evicts the least-
recently-used page from an LRU queue used to organize
the buffer pages, which are ordered by time of their last
reference. It always selects as a victim the page found at
the LRU position. The most important advantage of LRU is
its constant runtime complexity. Furthermore, LRU is known
for its good performance on workloads having high temporal
locality. However, LRU does not exploit the frequency of
references. Also, LRU is not scan-resistant.

LFU (Least Frequently Used) [1] removes the least fre-
quently used page whenever the buffer is overflowed. The
simplest method to employ an LFU algorithm is to assign
a counter to every page that is loaded into the buffer. Each
time a reference is made to that page, the counter is increased
by one. When the buffer reaches the maximum capacity and
a new page is waiting to be inserted, the buffer will search
for the page with the lowest counter and remove it from the
buffer.

ARC (Adaptive Replacement Cache) [4] is an adaptive
caching algorithm that is designed to recognize both recency
and frequency of access. ARC divides the cache into two
LRU lists, T1 and T2. T1 holds items accessed once while T2
keeps items accessed more than once since admission. Since
ARC uses an LRU list for T2, it is unable to capture the
full frequency distribution of the workload and perform well
for LFU-friendly workloads. For a scan workload, new items
go through T1, protecting frequent items previously inserted
into T2. However, for churn workloads, ARC’s inability to
distinguish between items that are equally important leads to
continuous cache replacement.

The recent LeCaR algorithm [3] is an outstanding cache
replacement algorithm that is based on reinforcement learning
and regret minimization. The algorithm accepts a stream of
requests for memory pages and decides which page to evict
from a cache when a new item is to be stored in the cache
following a “cache miss”. LeCaR has been shown to be
among the best performing cache replacement algorithms in
practice [3]. Experiments have shown that it is competitive
with the best cache replacement algorithms for large cache
sizes and is significantly better than its nearest competitor for
small cache sizes like ARC [4].

III. PBM: PERSONALIZED BUFFER MANAGER

In this section, we detail the design of PBM. We first
analyze the different access patterns and demonstrate that
different buffering schemes are suitable for different access
patterns, which motivates this study. Then, in Section III-B
we present the workload classifier. Finally, in Section III-C
we discuss the architecture and algorithms of PBM.

A. Analysis of Access Patterns

In the literature [6], the Turing Prize Winner, Michael Stone-
braker, has summarized four types of common workloads:
sequential accesses to blocks that are not seen nor re-visited,
sequential accesses to blocks repeatedly visited, random ac-
cesses to blocks not seen nor re-visited, and random accesses
to blocks where some blocks have a non-zero probability of
reference. However, this definition of types is not quite fit for
the purpose of choosing a replacement policy. For example,
it makes no difference for LRU or LFU if the accesses are
sequential or random. Therefore, in this paper, based on Stone-
braker’s definition, we define five access patterns, including
random, scan, skewed, cyclic, and vary. The random pattern
corresponds to the third type in Stonebraker’s definition, where
all pages in the file follow uniform distribution. The scan
pattern corresponds to the first type. In the skewed pattern,
some pages are accessed with a larger probability than the
others, and in the cyclic patterns, a certain set of pages are
cyclically accessed. The last pattern is a supplement to the
former four patterns. It represents the access pattern where
the hot region of the file varies over time.

We first generate workloads following the five access pat-
terns and test the performance of several existing buffering
policies on these access patterns. The results are shown in
Fig. 1. We can see that no buffering scheme can maintain the
highest hit ratio on all workloads. Also, different algorithms
are suitable for different patterns. For example, LFU achieves
the best hit ratio on the cyclic pattern but gets the worst
performance on the vary workload. Therefore, a better way
is to choose the best policy for a specific access pattern.
Moreover, as the objects within a database may have different
access patterns, it is better to use different policies for different
database objects, which motivates the design of PBM.

B. Workload Classifier

We use two statistical features to distinguish the access
pattern, namely Correlation List and Page Coverage. Both
features are calculated based on the frequency histogram of
the access. Let H = {a1, a2, ..., an} be an access sequence,
where ak is an access, and F = {p1, p2, ..., pm} is the file it
accesses. We first cut the sequence into segments, each with
length S. Then, we calculate the frequency histogram for each
segment. The frequency histogram is an m-length vector. The
ith element of the vector is the frequency of page pi in the
segment. This vector conveys the page distribution information
of the access. The reason why we segment the sequence is to
recognize the change of distribution. Type A and B have stable
distribution, while Type C’s distribution varies.

(1) Correlation List. By comparing between segment his-
togram, we can figure out if the distribution has changed or
not. This brings out our first feature: Correlation List. We use
cosine correlation as the metric of the similarity between seg-
ments. Suppose the sequence has been cut into subsequences
{s1, s2, ..., st}, where si is a segment, and {h1, h2, ..., ht}
is the corresponding histogram list. Then the correlation list
is {corr(h1, h2), corr(h2, h3), ..., corr(hn−1, hn)}. Figure 2

476

Fig. 1. The Performance Varying of Different Buffering Schemes on Various Access Patterns

shows the correlation list of the five access patterns. We
can see that the correlation lists of cyclic and skewed are
close to 1, showing that strong consistency exists between
adjacent segments. Though the random and the scan pattern
has a constant distribution, their correlation lists are close to
or even below 0. For the vary pattern, the case is a little
more complicated. Figure 2 shows when the segment length
is 2000 and the phase changing period for vary is 5000, the
correlation between two adjacent segments drops sharply every
five segments.

Fig. 2. The Correlation of the Five Access Patterns

(2) Page Coverage. For a segment of the workload, the Page
Coverage is calculated as:

#pages visited twice or more

#pages visited once or more

The access in vary is concentrated on hot pages, while a
random access is dispersed. Thus, there would be much more
pages visited in random than in vary. However, most pages
visited in vary will be visited twice or more. In random, on
the contrary, only a small fraction of pages will be visited
more than once. Suppose we have a file of size F , and
two workloads with the random pattern and the vary pattern,
respectively. The vary workload has a hot zone of size αF ,
and the probability of visiting its hot zone is β. If we pick a
segment length larger than 2αF but smaller than F , then the
average visiting number of the pages in the hot zone of vary
is:

average visiting number of the hot zone

#pages in the hot zone
≥ 2β,

while the average visiting number of the pages in random is:

#visits in the segment

#pages in the file
≤ 1.

Fig. 3. The Structure of PBM.

As a result, the workload classifier based on Correlation
List and Page Coverage is shown in Algorithm 1.

Algorithm 1: Workload Classifier
Input : seg len: the segment length; ϵ: the threshold for

correlation; γ: the threshold for page coverage; k:
the threshold for number of correlations below the
threshold; H: the access sequence to be classified;

Output: the type of H

1 segment list = segment(H, seg len);
2 page coverage = the average page-coverage of all segments;
3 count = 0;
4 for si in segment list do
5 if correlation(si, si+1) < ϵ then
6 count += 1;
7 end
8 end
9 if count > k then

10 if page coverage > γ then
11 return C;
12 else
13 return A;
14 end
15 else
16 return B;
17 end

C. Architecture and Algorithms of PBM

Figure 3 shows the architecture of PBM. First, we divide
the buffer into zones. Each zone is responsible for a database
file in the disk and is governed by its own buffer replacement
policy. The choice of a replacement policy depends on the

477

access pattern of the file. During the run time, the size
allocated to each zone is variable. We group the five access
patterns into three types. Type A includes random and scan.
Type B consists of cyclic and skewed. Type C contains only
the vary pattern. For a database file with Type A, since it will
not contribute to the hit ratio under any policy, we shrink the
size of its buffer zone. Thus, it will not pollute the buffer zone
for other files. In our implementation, we make the zones for
Type B managed by LFU and the Type C zones governed by
ARC. The size of zones with Type B and C is dynamic. We
use an evicting queue for each file to assess the buffer size it
needs. The detailed PBM algorithm is as in Algorithm 2.

Algorithm 2: PBM
Input: B: the buffer; p: a page request;

1 adding zone = B.find zone(p);
2 if p ̸∈ adding zone then
3 if p ∈ adding zone.evict list then
4 if adding zone is not Type A then
5 adding zone.evict list.remove(p);
6 adjust size = True;
7 end
8 end
9 if B is full then

10 if adding zone is full then
11 adding zone.evict();
12 else
13 evicting zone = find full zone();
14 evicting zone.evict();
15 end
16 end
17 end
18 adding zone.request(p);
19 if adjust size then
20 B.adjust size(adding zone);
21 end

Each zone with Type B or C has an evict list and a weight.
The evict list keeps the metadata of the page evicted from
the zone, and the total number of pages contained in the zone
and its evict list is the total buffer size. At lines 11 and 14
of Algorithm 2, the evict() function evicts the page from the
zone, records it at the head of the evict list, and evicts the
tail element in the evict list if the total size exceeds the upper
bound. When a missing page is in the evict list, we increase
the weight of the zone, thus increasing its size. This is a better
way to allocate space than only considering the file size or the
number of visits. Because even though a file is large and more
frequently accessed, the working set of it may be small, which
means it requires less buffer space. But finding the missing
page in the evict list shows that it is possible for the added
space to be used for working set. Also, when we generate a
new size allocation, we simply reset the size of each zone but
do not make eviction immediately. When a miss occurs, and
the buffer is full, we find a zone that is full or has overflowed to
make eviction. The function findfullzone returns a zone with
Type A first. The AdjustSize function invoked by Algorithm 2
is shown in Algorithm 3.

Algorithm 3: AdjustSize
Input: B: the buffer; fk: the size of file k; F : the total size

of the database; wk: the weight of the zone k; S: the
available size for zones of Type B and C; sk: the size
of zone k; i: the id of the adding zone;

1 for every zone k with Type B or C do
2 wk *=

∑
wj /(

∑
wj + 1);

3 end
4 wi +=

∑
wk/(

∑
wk + 1);

5 for every zone k of Type B or C and k ̸=i do
6 sk = (wk * S) /

∑
wk;

7 end
8 si = S -

∑
sk(k ̸=i);

IV. PERFORMANCE EVALUATION

In this section, we compare PBM to several replacement
policies, including LRU, LFU, and LeCaR. We mainly focus
on two metrics: hit ratios and page I/Os.

A. Setting

We run all experiments on a database consisting of ten
files, each of which contains pages whose page number ranges
from 0 to 100,000 (100k). Therefore, the database consists of
100k pages totally. To simulate the different access patterns
of the files, we manually make each file have different access
patterns. Each file contains 5k or 15k pages. Table I shows
the details of each file used in the experiment. Note that
each access pattern is associated with two files, with one file
containing 15k pages and another file containing 5k pages.
The default buffer size is set to 1,024 pages.

We generate 2500k page accesses for all the files. Further,
we prepare two workloads based on the 2500k requests,
namely a regular workload and a shifting workload.

(1) Regular Workload. In this workload, we distribute the
page accesses to each file uniformly, i.e., each file receives
250k page requests. The requests to each file follow the access
pattern of the file. For example, the 250k requests to file 1
satisfy the cyclic access pattern.

(2) Shifting Workload. In this workload, the page accesses to
each file are skewed. To be more specific, we first participate
the total 250k page requests into two parts, each of which
contains 125k requests. Then, we let the 80% of the first half
accesses focus on files 1 to 5 and the remaining 20% on files
6 to 10. Thus, in the first half requests, files 1 to 5 will be
heavily accessed, but files 6 to 10 are not. For the second half
125k requests, we use the opposite setting, which is to make
the 80% of the second half accesses focus on files 6 to 10 and
the remaining 20% on files 1 to 5.

B. Performance on the Regular Workload

In this experiment, we compare the proposed PBM with
existing buffering policies on the regular workload. Figure 4(a)
shows the comparison of the hit ratios of PBM and other
three existing buffering algorithms, including LRU, LFU, and
LeCaR. Figure 4(b) shows the I/O comparison among all the

478

TABLE I
DESCRIPTION OF THE SYNTHETIC WORKLOAD.

Page-ID Range File Size (pages) Access Pattern
File 1 0-15k 15k cyclic
File 2 15k-20k 5k cyclic
File 3 20k-35K 15k scan
File 4 35k-40k 5k scan
File 5 40k-55k 15k skewed
File 6 55k-60k 5k skewed
File 7 60k-75k 15k random
File 8 75k-80k 5k random
File 9 80k-95k 15k vary
File 10 95k-100k 5k vary

Fig. 4. Performance Comparison on the Regular Workload

compared buffering schemes. We can see that our proposed
PBM achieves the highest hit ratio and the lowest page I/Os,
owing to its dynamical algorithm selection according to access
patterns. Particularly, PBM achieves 1.66x, 2.03x, and 1.39x
hit-ratio improvements compared to LRU, LFU, and LeCaR,
respectively. In addition, PBM reduces up to 11% page I/Os
compared to its competitors. Note that LeCaR also shows good
performance because it can adapt to access patterns. However,
it only considers the recency and frequency of accesses and
cannot detect other access patterns like cyclic and vary.

C. Performance on the Shifting Workload

In this experiment, we compare the proposed PBM with ex-
isting buffering policies on the shifting workload. Figure 5(a)
shows the comparison of the hit ratios of PBM and other three
buffering algorithms. Figure 5(b) shows the I/O comparison
among all the compared buffering schemes. Compared with
the experimental results on the regular workload, we can see
that PBM achieves much more improvements over the three
existing schemes. In particular, PBM achieves 1.90x, 1.55x,
and 1.49x hit-ratio improvements compared to LRU, LFU,

Fig. 5. Performance Comparison on the Shifting Workload

Fig. 6. The Change of the Buffered Pages When the Workload Shifts.

and LeCaR, respectively. Also, PBM reduces up to 14% page
I/Os compared to its competitors. The higher performance of
PBM on the shifting workload than on the regular workload is
owing to its adaptivity, which can change the buffering scheme
of each file according to the workload change.

To demonstrate the adaptivity of PBM more clearly, we
calculate the average number of buffered pages for each file
when performing the 250k page requests. As the first 125k
requests in the shifting workload are focused on files 1 to 5,
we expect that PBM can cache more pages of files 1 to 5
in the buffer. On the other hand, when running the second
125k requests that are focused on files 6 to 10, we expect that
PBM can quickly adapt to the change of the access pattern
and maintain more pages of files 6 to 10 in the buffer. As
shown in Fig. 6, we can see that PBM can always keep more
hot pages in the buffer when the workload changes with time.

D. Impact of the Segment Length

Segment length is a very important parameter for the classi-
fier. The longer the segment is, the closer the histogram vector
is to the distribution of the workload. However, a long segment
can be bad for detecting the vary pattern, because when we
calculate the histogram of several phases, the frequency of the
hot zone is amortized, and the overall distribution resembles
the random pattern. In this experiment, we test the influence of
the segment length on the classifier. As shown in Fig 7, when
we choose a long segment length, the gap between Type A
and Type B is widened, meaning that the histogram of a long
segment length can reflect the distribution better. In addition,
a long segment length does not impede the separation of Type
C, because both the vary pattern and the random pattern have
a small correlation.

E. Comparison of Similarity Measures

The page classifier used in PBM employs the correlation-
based approach. In this experiment, we consider other possible

479

Fig. 7. The Impact of the Segment Length

Fig. 8. Comparison of Different Similarity Measures

classifying metrics, aiming to show the superiority of the
correlation-based classifier.

In addition to the correlation approach, we implement other
three methods, which as listed as follows:

(1) 1-Norm Distance. This refers to the distance based on
the 1-norm in a linear space.

(2) Euclidean Distance. This is the Euclidean distance
between two vectors.

(3) Intersection. Given two vectors, the intersection between
the vectors is defined as the sum of the smaller value for each
element in the vectors, as shown in Equation 1.

Intersection(h1, h2) =

n∑
i

min(h1i, h2i) (1)

Figure 8 shows the similarity of each metric when used for
classifying the five access patterns. We can see that the 1-
Norm Distance, Euclidean Distance, and Intersection all fail
to classify the five access patterns clearly. Compared to the
Correlation method, all the three methods cannot distinguish
the cyclic from the other four patterns, which shows the
superiority of the correlation approach proposed in PBM.

V. CONCLUSIONS

In this paper, we presented a new access-pattern-aware
buffer manager called PBM (Personalized Buffer Manager).
PBM can detect the access patterns for each database file
and use different buffering policies for database files. We
proposed a workload classifier to detect the access pattern and
partitioned the buffer into different zones for different files.
Each zone uses its own buffering policy for a database file,
yielding a personalized buffer manager. We implemented PBM
and compared it with three existing buffering algorithms on

two workloads, including LRU, LFU, and LeCaR. The results
suggested the efficiency of PBM.

In the future, we will investigate personalized buffer man-
agement for flash memory [7], [8] and use machine learning
models to optimize the buffer management [9], [10].

ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion of China (62072419). Peiquan Jin is the corresponding
author.

REFERENCES

[1] W. Effelsberg and T. Härder, “Principles of database buffer manage-
ment,” ACM Transactions on Database Systems, vol. 9, no. 4, pp. 560–
595, 1984.

[2] P. Jin, Y. Ou, T. Härder, and Z. Li, “AD-LRU: an efficient buffer
replacement algorithm for flash-based databases,” Data & Knowledge
Engineering, vol. 72, pp. 83–102, 2012.

[3] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-
gaswami, M. Zhao, and G. Narasimhan, “Driving cache replacement
with ML-based LeCaR,” in HotStorage, 2018.

[4] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in FAST, 2003.

[5] T. Johnson and D. E. Shasha, “2q: A low overhead high performance
buffer management replacement algorithm,” in Proceedings of VLDB,
1994, pp. 439–450.

[6] M. Stonebraker, “Operating system support for database management,”
Communications of ACM, vol. 24, no. 7, pp. 412–418, 1981.

[7] Y. Ou, T. Härder, and P. Jin, “CFDC: a flash-aware replacement policy
for database buffer management,” in DaMoN, 2009, pp. 15–20.

[8] Z. Li, P. Jin, X. Su, K. Cui, and L. Yue, “CCF-LRU: a new buffer
replacement algorithm for flash memory,” IEEE Trans. Consumer Elec-
tron., vol. 55, no. 3, pp. 1351–1359, 2009.

[9] S. Sethumurugan, J. Yin, and J. Sartori, “Designing a cost-effective
cache replacement policy using machine learning,” in HPCA, 2021, pp.
291–303.

[10] Y. Yuan and P. Jin, “Learned buffer management: a new frontier: work-
in-progress,” in CODES/ISSS, 2021, pp. 25–26.

480

DDMin versus QuickXplain – An Experimental
Comparison of two Algorithms for Minimizing

Collections
Oliver A. Tazl

Institute of Software Technology
Graz University of Technology, Austria

Graz, Austria
oliver.tazl@ist.tugraz.at

Christopher Tafeit
Institute of Software Technology
Graz University of Technology

Graz, Austria
christopher.tafeit@gmail.com

Franz Wotawa
Institute of Software Technology
Graz University of Technology

Graz, Austria
wotawa@ist.tugraz.at

Alexander Felfernig
Institute of Software Technology
Graz University of Technology

Graz, Austria
alexander.felfernig@ist.tugraz.at

Abstract—About two decades ago, two algorithms, i.e., DDMin
and QuickXPlain, for minimizing collections, were independently
proposed and gained attention in the two research areas of
Software Engineering and Artificial Intelligence, respectively.
Whereas DDMin was developed for reducing a given test case,
QuickXPlain was intended to be used for obtaining minimal
conflicts efficiently. In this paper, we compare the performance of
both algorithms with respect to their capabilities of minimizing
collections. We found out that one algorithm outperforms the
other under given prerequisites and vice versa. These findings
help to select the suitable algorithm for a given task.

Index Terms—test case minimization, conflict minimization,
software testing, application to diagnosis and configuration

I. INTRODUCTION

There are many important tasks in different areas of
Software Engineering (SE) and Artificial Intelligence (AI)
requiring minimizing collections. In SE, localizing faults may
require reducing inputs that lead to crashes or other unexpected
behavior. For example, if a compiler crashes due to a given
input program, fault localization becomes way more easy when
knowing only those parts of the textual input that reveal the
bug. In AI and there, for example, in Model-based Diagnosis
(MBD) [1], [2] we rely on minimal conflicts used to compute
minimal diagnoses. In any case, we have to deal with obtaining
a – at least smaller – sub-collection that still fulfills the same
criteria (or properties) as the original collection.

In SE and AI independently, two algorithms for minimizing
a test case and a conflict were introduced about 20 years ago,
substantially influencing in their respective research fields. In
SE, Zeller and Hildebrandt [3] described the Delta Debugging
algorithm DDMin and its use for simplifying failure-inducing
inputs. In AI, Junker [4] suggested QuickXPlain for minimiz-
ing conflicts. Both algorithms rely on the general divide and

DOI reference number: 10.18293/SEKE2022-172

conquer approach for minimization. Both algorithms aim at
providing a smaller collection but come – at least partially
– with limited guarantees regarding finding a smaller or even
minimal solution. This is due to the fact that the computational
complexity required would be exponential in the size of the
collection.

Interestingly, these algorithms have not been considered in
the respected research field of the other algorithm. Moreover
– to our knowledge – nobody has ever compared these
algorithms with respect to execution time and their capabilities
of minimizing original collections. In this paper, we want to
close this gap and provide an experimental evaluation where
we compare DDMin with QuickXPlain on the same input
collections and properties. The properties have been designed
in a way allowing to make conclusions regarding in which
cases one or the other algorithm behaves superior. Such an
analysis has an impact to both SE as well as AI allowing
to decide which algorithm to use under which circumstances.
More concrete questions we want to answer in this paper
are whether we can use DDMin for minimizing conflicts like
QuickXPlain, or to use QuickXPlain for minimizing a test case
instead of DDMin.

In summary, the content of this paper provides the following
contributions: (i) it comes up with a framework allowing to
compare DDMin and QuickXPlain directly (although they
have been originally designed to fit different purposes), and
(ii) it experimentally compares two different algorithms using
a parametric set of inputs aiming at providing more insights
regarding superiority of an algorithm in a particular application
context.

We organize the remainder of the paper as follows: In
Section II, we introduce the basic foundation of DDMin
and QuickXPlain. Afterwards in Section III, we outline the
underlying implementation and the experimental evaluation

481

procedure. Furthermore, we discuss the obtained evaluation
results and derive some concluding remarks regarding the
comparison between DDMin and QuickXPlain. Finally, we
give an overview of related research and conclude the paper.

II. BASIC FOUNDATIONS

To be self-contained, we outline the underlying foundations
and the two algorithms DDMin and QuickXPlain. We start
defining the underlying minimization problem to be solved.
For this purpose, we assume that we have: (i) a collection of
elements C = {e1, . . . , en} where each element e ∈ C is from
a domain D, and (ii) a function test that takes a collection of
elements as input and returns either

√
or ×, which is defined

as follows:

test(x) =

{
× if x fulfills the given criteria or properties√

otherwise

Note that we assume test(C) returns × for the original
collection of elements. Furthermore, in the original definition
of Zeller and Hildebrandt [3] test(x), with x ̸= C may also
return ? in case there is an unexpected behavior of x but which
diverges from the behavior of C. However, in DDMin ? and√

are treated equivalently so there is no need to distinguish
these two cases.

The problem of minimization of C with respect to a given
test function is to find an ideally smaller C ′ ⊆ C (if it exists)
for which test(C ′) = ×. If we want to have a really minimal
C ′, we may come up with two corresponding definitions:
subset minimal: A collection C ′ ⊆ C is called subset

minimal if and only if there is no C ′′ ⊂ C ′ where
test(C ′′) = × holds. There might be more than one
subset minimal solution. In the context of delta debugging
[3] this type of minimum is referred to as local minimum.

cardinality minimal: Alternatively, a collection C ′ ⊆ C
is cardinality minimal if and only if there exists no
smaller C ′′, i.e., |C ′| > |C ′′| where test(C ′′) holds. In
delta debugging, cardinality minimums are called global
minimums.

Obviously, finding either subset minimal or cardinality
minimal solutions is exponential in the size of the input
collection C because we have to check all subsets of C.
Hence, in practice, we may be more interested in finding a
smaller solution if such a solution exists instead of a minimal
one. It is worth noting in this context that DDMin only
guarantees to return a solution with one element less, if such
a solution exists. However, the evaluation indicates that in
practice DDMin is way more efficient in removing unnec-
essary parts of a collection. Instead, QuickXPlain guarantees
subset minimality but not cardinality minimality. Hence, when
evaluating both algorithms, we are interested in how far away
provided solutions are from the minimal one.

In the following, we describe the algorithms. Note that the
used pseudo-code is adapted from the original one for allowing
to use the collection C as well as the test function as input

directly. However, we did neither improve the algorithms nor
change their originally stated behavior.

We first define helper functions that are used in the algo-
rithms, namely split and complement.
split: split is able to divide a given collection of elements C

into n parts leading to new collections C1...Cn. Functions
split returns collections that are pairwise disjoint (C1 ∩
C2 = ∅), completely represent all elements of the original
collection, i.e., C1 ∪ C2... ∪ Cn = C. Moreover, all the
sub-collection have approximately the same size, i.e., For
all i, and j: |Ci| = |Cj |+ x with x ∈ {0, 1}.

complement: The complement of a sub-collection C1 is a
collection comprising all elements of the original collec-
tion C that are not in C1. I.e., complement is defined as
follows: complement(C1) = {x | x ∈ C ∧ x /∈ C1}.

In Algorithm 1, we depict the pseudo-code of the Delta De-
bugging (DD) algorithm DDMin of Zeller and Hildebrandt [3],
which reduces the input collection using a divide and conquer
strategy. The algorithm uses to some extent ideas from binary
search for trilling down the failure inducing input system-
atically. The overall process implemented by DDMin has
four steps: reduce to subset, reduce to complement, increase
granularity and done. These steps split the input into smaller
parts and combine them if needed to narrow down the faulty
input. Correct parts were cut off to focus on the remaining
faulty ones in order to produce a smaller input that triggers
the faulty behaviour.

QuickXPlain (QXP) as shown in Algorithm 2, was intro-
duced by [4] to solve over-constrained problems by provid-
ing explanations. Those are also calculated by a divide and
conquer approach. The input is a problem instance which
comprises an analysed set/collection (A) and a background
set/collection (B). For our experiments we assume B to be
empty. The function test is then used to determine the necessity
of executing the algorithm. In the trivial case of a correct or
not dividable input, the execution is stopped before entering
the recursion. Next, the recursion is started. The procedure
starts by partitioning the analyzed set into two, in our case
equal-sized, subsets and analyze these subsets recursively until
a minimal solution can be provided.

III. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

In this section, we present the prerequisites behind the
experimental evaluation in order to assure that results can be
reproduced.

A. Prerequisites

The prerequisites comprise implementation details, the input
collections used for the evaluation, and the execution environ-
ment. The objective behind the experimental evaluation was
to answer the following 2 research questions:
RQ1 ”Does QuickXPlain behave superior compared to

DDMin with respect to the execution time or vice-versa?”
RQ2 ”Do both algorithms DDMin and QuickXPlain deliver

minimal solutions?”

482

Algorithm 1 DDMin [3]

Input: A collection cf where test(cf) = ×
Output: A potentially smaller sub-collection of cf where test

returns ×.
1: procedure DDMIN(cf)
2: if test(cf) = × then
3: ddmin2(cf , 2)
4: end if
5: return cf
6: end procedure
7: procedure DDMIN2(cf , n)
8: if |cf | = 1 then
9: return

10: end if

11: ∆1, ...,∆n ← split(cf , n)

12: while i = 1...n do ▷ reduce to subset
13: if test(∆i) = × then
14: ddmin2(∆i, 2)
15: return
16: end if
17: end while

18: ∇1, ...,∇n ← complement(cf ,∆1, ...,∆n)

19: while i = 1...n do ▷ reduce to complement
20: if test(∇i) = × then
21: ddmin2(∇i,max(n− 1, 2))
22: return
23: end if
24: end while

25: if n < |cf | then ▷ increase granularity
26: ddmin2(cf ,min(|cf |, 2 ∗ n))
27: return
28: end if

29: return cf ▷ done
30: end procedure

In order to answer these research questions we implemented
both algorithms, i.e., DDMin and QuickXPlain, using the
programming language Java 17 using libraries for logging data
as a foundation. As stated we implemented the algorithms
without manual optimisations for improving the execution
time. Hence, we relied on the pseudo-code and description
provided by the respective originators of the algorithms.

To implement the test function required, we implemented
a configurable test oracle, which uses JSON files to load
and store input configurations. These configurations store the
given collection of elements e1, . . . , en of cardinality n, where
each element ei is marked as either neutral or failure-inducing
element. The test oracle now implements the function test as

Algorithm 2 QuickXPlain [4], [5]

Input: a pair ⟨A,B⟩ where A is the analyzed set and B is
the background, which we assume to be the empty set in
the context of this paper.

Output: a minimal set wrt. ⟨A,B⟩, if existent; pass, otherwise
1: procedure QXP(⟨A,B⟩)
2: if test(A ∪ B) =

√
then

3: return pass
4: else if |A| = ∅ then
5: return ∅
6: else
7: return QXP’(B, ⟨A,B⟩)
8: end if
9: end procedure

10: procedure QXP´(C, ⟨A,B⟩)
11: if C ̸= ∅ and test(B) = × then
12: return ∅
13: end if
14: if |A| = 1 then
15: return A
16: end if
17: A1,A2 ← split(A, 2)
18: X2 ← QXP’(A1, ⟨A2, B ∪ A1⟩)
19: X1 ← QXP’(X2, ⟨A1,B ∪X2⟩)
20: return X1 ∪X2

21: end procedure

follows: The test oracle fails on a particular not necessarily
strict subset C of the collection e1, . . . , en, if C contains all
failure-inducing elements of in e1, . . . , en. In this case the test
oracle returns × and otherwise

√
.

We use the configurations for coming up with different
test inputs for DDMin and QuickXPlain. For this purpose,
we created the configurations automatically using a program
comprising the size n of the collection, and the number of
failure-inducing elements (fail elements for short) k as inputs.
For the experiments, we generated two types of inputs. The
first type comprises tests where clusters of k fail elements
arrange at the beginning of the collection, after k elements,
after 2·k elements, etc. until reaching the end of the collection.
In this type, which we refer as cluster test input, we only have
one cluster of fail elements in each collection. In the second
type of inputs, which we refer to as random test input, we
generate collections of size n and randomly select k elements
in this collection to be fail elements.

For the experiments, we created 3 sets of cluster test
inputs of size 10,000 with 50, 500, and 1,000 fail elements
respectively. For each of these sets we moved the cluster
from the beginning to the end to obtain all cluster test inputs.
For the random cluster with also relied on collections of size
n = 10, 000 considering 50, 500, and 1,000 randomly selected
fail elements. For the random cluster, we generated 300 of
such different configurations. In total, we executed about 400
different configurations. It is worth noting that we selected

483

collections of size 10,000 because of obtaining reasonable
execution times ranging from milliseconds to less than 1 hour.

We published the implementation of the algorithms, the
used configurations for the experimental analysis, the batch
programs for running the experiments, as well as all data
obtained is on Github to be used for further research.

B. Results

In order to answer the two research questions, we carried out
the experiments, where we executed each input configuration
ten times. Reported results are averaged to reduce the side
effects of the execution environment on the results. In the
following, we report execution time in milliseconds (ms) or
seconds (s). The Java implementation of the algorithms was
executed using the OpenJDK 17.0.1 Hotspot JVM using a
computer with the following configuration: AMD Ryzen 9
3900x 12-Core 3.8 GHz processor and 64 GB RAM running
Windows 11. Note also that the experimental evaluation is
automated allowing to re-execute it on demand.

To answer RQ1, we measured the execution time required
for minimizing the different input configurations. As already
said we used two different types of configuration, i.e., the
cluster test input and the random test input. In Figure 1, we
display the result of the cluster test input where we combined
a collection of 10,000 elements with 50, 100, and 1,000 fail
elements respectively. All fail elements are in the same cluster,
which we move from the left to the right of the collection for
obtaining different input collections. Note when using a block
of 1,000 fail elements, we obtain input collections, where the
fail element cluster comprises elements 0-999, 1,000-1,999,
etc.

The results for the cluster test input allow us to derive
the following differences in the behavior of DDMin and
QuickXPlain. First, DDMin comes with an almost constant
execution time behavior with the exception of a cluster of
fail elements in the middle. In this case, depending on the
number of fail elements, the behavior of DDMin may even be
worst when compared to QuickXPlain. This behavior might be
due to the fact that DDMin requires to increase cardinality as
well as to compute complements in order to find the cluster.
QuickXPlain, however, has a more or less linear execution
time behavior with respect to the position of the fail element
cluster. Fail elements at the beginning (i.e., at the left side of
the collection) lead to an execution time similarly to DDMin,
whereas DDMin is superior when the fail element cluster is
located on the right side of the collection.

In Figure 2, we summarize the results of the random test
input configurations containing 10,000 elements and 50, 100
and 1,000 random distributed fail elements within. We see
that QuickXPlain performs exceptionally well in this case
compared to DDMin. In all cases, QuickXPlain outperforms
DDMin.

Research question RQ1 can now be answered as follows.
QuickXPlain does not necessarily outperform DDMin when

Link not given to fulfill given double-blind review requirements

2 4 6 8 10

0

50

100

150

200

250

2.2 3.554.955.05 5.2

248.75

3.95 5.4 6.4 6.5 6.151.35
16.65

32.5
47.75

63.4
82.2573.7

93.25
109.25

125.9
140.6

50 fail elements

av
g

tim
e

in
m

s

DD
QXP

2 4 6 8 10

0

100

200

300

400

500

5.6510.510.2512.812.55

262

8.1 12.312.8514.714.455.05

60

110

164

217

274 271

332

380

437

489

500 fail elements

av
g

tim
e

in
m

s

DD
QXP

2 4 6 8 10
0

10

20

30

40

50

2.293.04
3.972.492.342.362.343.06

3.972.522.362.65

7.57

12.76

17.85

22.81
25.63

28.22

33.38

38.44

43.66

48.44

1,000 fail elements

av
g

tim
e

in
s

DD
QXP

Fig. 1: Execution time results obtained using the cluster test inputs
comprising 10,000 elements in combination with 50, 100 and 1000
fail elements respectively.

484

50 100 1000

2,786

9,245

3.55 · 106

356

1,195

72,748

#fail elements

DDMin
QXP

Fig. 2: Execution time results obtained using the random test inputs
comprising 10,000 elements, and randomly selected 50, 100, and
1,000 fail elements. The depicted execution time is the average
execution time in milliseconds.

considering execution time. In case of a single cluster of
fail elements within a given collection DDMin seems to be
superior, but execution time depends on the position of the
cluster in the collection as well as on the number of the fail
elements. If the number is larger, DDMin seems to be a better
choice. However, in case of many clusters (like in the case
of the random test input), QuickXPlain is faster than DDMin.
Hence, depending on the given input arguments either QuickX-
Plain or DDMin should be chosen. For test case minimization
(especially when considering inputs of a compiler), where
there is most likely one cluster of interest, DDMin seems
to be more appropriate. For conflict minimization, where
there are many different randomly distributed small clusters,
QuickXPlain seems to to be the algorithm of choice. However,
further experimental evaluations are required considering real-
world test inputs instead of synthetically generated example
inputs as we used in our experimental evaluation.

To answer research question RQ2, we further compared
the output, i.e., the minimized collection, of DDMin and
QuickXPlain obtained for all the different test inputs with
the optimal solution, i.e., the fail elements in the respective
collection. For all test inputs, both algorithms returned the
optimal solution as outcome. Hence, for the given test inputs,
we can answer RQ2 with yes. However, this result seems
not to be conclusive and further experiments are required,
considering real-world test inputs as well as more sophisticated
synthetic examples.

C. Threads to Validity

Like for all experimental evaluations, there are different
threats to internal and external validity, which we discuss.
Regarding internal validity, we have to mention the compu-
tational environment comprising hardware and software used.
This includes the operating systems as well as the as the pro-
gramming language used. In particular, when relying on Java

and its virtual machine, we know mechanisms like garbage
collection and just in time optimization that we are not able
to control, but influencing measured execution time. We try to
mitigate those effects by repeating the tests and averaging the
obtained time results. Moreover, it is worth mentioning that
we implemented both algorithms in the same language making
use of the same libraries not using any optimizations. Hence,
we do not expect any bias in the measured execution time that
originates from an implementation.

Regarding external validity, we have to mention that the
evaluation is based on solely two different test input categories
namely the cluster and the random test input. For the random
case, the outcome was always identifying QuickXPlain as the
fastest algorithm. For the cluster, DDMin can be said to be
superior in most of the cases. Although, these results allow to
state superiority on average in some more specific cases, such
results may not be generally valid in all contexts including
considering real-world example inputs. However, at least for
those examples close to the synthetic one, we would expect a
similar outcome.

IV. RELATED RESEARCH

The overall goal of this paper is to compare two algorithms
that support the minimization of conflicts. Basic related min-
imality properties are subset minimality and minimal cardi-
nality where the latter is more restrictive, i.e., also takes into
account the criteria of subset minimality. Which criteria should
be applied depends on the corresponding application context.
Subset minimality is useful, for example, if a preference rela-
tionship can be defined over the given set of conflict candidates
(e.g., given component failure probabilities or user preferences
with regard to a set of product properties) [6], whereas minimal
cardinality is useful in the case of non-available preference
relationships (e.g., when searching failure-inducing inputs in
the context of software testing) [3]. Especially in real-time
scenarios, minimality criteria have to be relaxed to find a trade-
off between conflict identification costs (time efforts) and costs
for conflict resolution [7].

The algorithms discussed in this paper can be regarded
as specific instances of so-called explanation algorithms [8].
DDMin [3] as well as QuickXPlain [4] support the determi-
nation of minimal conflict sets (fulfilling the criteria of subset
minimality) which are also denoted as minimal unsatisfiable
subsets (MUS) [9] or minimal unsatisfiable cores (MUC)
[10]. Minimal conflict sets are well-suited for supporting
the identification of minimizing collections in the context of
test case minimization but as well in explorative interactive
settings such as knowledge-based configuration [11] where
users should be better supported in understanding relationships
between different product properties.

In other scenarios, we are more interested in explanations
that help to restore consistency, for example, [12], [6] focus
on consistency restoration of inconsistent knowledge bases. In
such scenarios, conflict sets are used as input for a hitting set
algorithm [1] that helps to determine minimal diagnoses which
are also denoted as minimal correction subset (MCS) [9]. In

485

contrast to hitting set based conflict resolution (diagnosis),
direct diagnosis helps to determine hitting sets without the
need of predetermining minimal conflicts sets. An example
algorithm is FastDiag [13] which follows a divide-and-conquer
based approach for identifying minimal hitting sets.

There is also a natural relationship between minimal conflict
sets and minimal diagnoses in terms of a duality property
[14]: for a given set CS of minimal conflicts we are able
to determine a corresponding set DS of minimal diagnoses
using a HSDAG based approach [1]. Vice-versa, we are able
to derive exactly CS if we construct a HSDAG for DS.

Finally, the complement of a minimal hitting set, i.e., a
minimal correction subset (MCS), is a so-called maximal sat-
isfiable subset (MSS) [9]. Whereas MCSs ∆ are characterized
by the property that no subset of ∆ fulfills the property that
all conflicts can be resolved, MSSs Γ are characterized by the
property that no extension of Γ remains satisfiable.

Summarizing, the two algorithms analyzed in this paper
help to determine minimal conflicts sets which can then
be exploited to determine corresponding minimal correction
subsets as well as maximal satisfiable subsets.

In the context of software engineering and in particu-
lar testing, the minimization of collections is an important
task. Besides minimizing a particular test case using Delta
Debugging, the optimization of test suites (see, e.g., [15])
is of interest. There have been several algorithms proposed
including Greedy algorithms [16] adopting solutions for the
well-known set covering problem. In any of these cases, there
is more information available than only a collection and a
test function. For test suite minimization, we usually know
the influence of each test to the execution of a program, i.e.,
the statements that are executed. In the case of minimizing one
test case, such knowledge is usually not available. Therefore,
we focused solely on Delta Debugging for comparing it with
QuickXPlain.

V. CONCLUSIONS

In this paper, we presented the outcome of an experimental
evaluation of two algorithms for minimizing collections, i.e.,
QuickXPlain and DDMin, which originated from the different
research areas of Artificial Intelligence and Software Engi-
neering. In order to allow algorithm comparison, we provided
a framework that takes a collection and a test function as
input, and calls the algorithms for computing a sub-collection
that still returns the same test function result. The underlying
objective behind the research was to clarify whether one of
the algorithms is superior with respect to execution time or
the obtained minimization output.

To answer this question, we came up with different test
examples generated automatically based on certain parameters.
Based on our experiments, we were able to come up with
the following results: (i) in cases where minimization has to
deal with one cluster, i.e., a set of elements in the collection,
which are in close proximity, DDMin provides an almost
constant execution time behavior outperforming QuickXPlain.
(ii) in case of random distribution of elements to be selected

in a collection, QuickXPlain is superior with respect to its
execution time. (iii) both algorithms always returned the
smallest possible sub-collection. Hence, it seems that both
algorithms were well designed for their particular area of
use, i.e., minimizing a test case (DDMin), and minimizing
conflicts (QuickXPlain). However, it is required to carry out
further experiments considering real-world examples from the
application domains of test case and conflict minimization,
as well as more different generated examples for identifying
additional parameters influencing the execution time behavior
as well as the capabilities of finding a minimal solution.

ACKNOWLEDGEMENT

The research was supported by ECSEL JU under the
project H2020 826060 AI4DI - Artificial Intelligence for
Digitising Industry. AI4DI is funded by the Austrian Federal
Ministry of Transport, Innovation and Technology (BMVIT)
under the program ”ICT of the Future” between May 2019
and April 2022. More information can be retrieved from
https://iktderzukunft.at/en/ .

REFERENCES

[1] R. Reiter, “A theory of diagnosis from first principles,” Artificial
Intelligence, vol. 32, no. 1, pp. 57–95, 1987.

[2] J. de Kleer and B. C. Williams, “Diagnosing multiple faults,” Artificial
Intelligence, vol. 32, no. 1, pp. 97–130, 1987.

[3] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, feb
2002.

[4] U. Junker, “Quickxplain: Preferred explanations and relaxations for over-
constrained problems,” in Proceedings of the 19th National Conference
on Artifical Intelligence, ser. AAAI’04. AAAI Press, 2004, p. 167–172.

[5] P. Rodler, “Understanding the quickxplain algorithm: Simple explanation
and formal proof,” CoRR, vol. abs/2001.01835, 2020. [Online].
Available: http://arxiv.org/abs/2001.01835

[6] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner, “Consistency-
based diagnosis of configuration knowledge bases,” Artificial Intelli-
gence, vol. 152, no. 2, pp. 213 – 234, 2004.

[7] A. Felfernig, R. Walter, J. Galindo, D. Benavides, M. Atas, S. Polat-
Erdeniz, and S. Reiterer, “Anytime diagnosis for reconfiguration,” Jour-
nal of Intelligent Information Systems, vol. 51, pp. 161–182, 2018.

[8] S. Gupta, B. Genc, and B. O’Sullivan, “Explanation in constraint satis-
faction: A survey,” in 13th International Joint Conference on Artificial
Intelligence, IJCAI-21, 2021, pp. 4400–4407.

[9] M. H. Liffiton and K. A. Sakallah, “Algorithms for computing minimal
unsatisfiable subsets of constraints,” Journal of Automated Reasoning,
vol. 40, pp. 1–33, 2008.

[10] I. Lynce and J. P. M. Silva, “On computing minimum unsatisfiable
cores,” in 7th International Conference on Theory and Applications of
Satisfiability Testing, Vancouver, BC, Canada, 2004.

[11] U. Junker, “Configuration,” in Handbook of Constraint Programming,
F. Rossi, P. van Beek, and T. Walsh, Eds. Elsevier, 2006, pp. 837–873.

[12] R. Bakker, F. Dikker, F. Tempelman, and P. Wogmim, “Diagnosing and
solving over-determined constraint satisfaction problems,” in IJCAI’93.
Morgan Kaufmann, 1993, pp. 276–281.

[13] A. Felfernig, M. Schubert, and C. Zehentner, “An efficient diagnosis
algorithm for inconsistent constraint sets,” AI for Engineering Design,
Analysis, and Manufacturing (AIEDAM), vol. 26, no. 1, pp. 53–62, 2012.

[14] R. Stern, M. Kalech, A. Feldman, and G. Provan, “Exploring the duality
in conflict-directed model-based diagnosis,” in AAAI’12. AAAI, 2012,
pp. 828–834.

[15] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[16] L. Zheng, M. Harman, and R. Hierons, “Search algorithms for
regression test case prioritization,” IEEE Trans. Softw. Eng., vol. 33,
no. 4, p. 225–237, Apr. 2007. [Online]. Available: https://doi.org/10.
1109/TSE.2007.38

486

https://iktderzukunft.at/en/
http://arxiv.org/abs/2001.01835
https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1109/TSE.2007.38

Supporting Data Selection for Decision Support
Systems:

Towards a Decision-Making Data Value Taxonomy
1st Mathieu Lega

Namur Digital Institute (NaDI)
University of Namur

Namur, Belgium
0000-0003-1682-4920

2nd Christian Colot
Namur Digital Institute (NaDI)

University of Namur
Namur, Belgium

0000-0002-0520-7364

3rd Corentin Burnay
Namur Digital Institute (NaDI)

University of Namur
Namur, Belgium

0000-0002-0325-1732

4th Isabelle Linden
Namur Digital Institute (NaDI)

University of Namur
Namur, Belgium

0000-0001-8034-1857

Abstract—Data are ubiquitous and generate unprecedented
opportunities to help making decisions within organizations. This
has led so-called data-driven Decision Support Systems (DSS) to
become critical, if not vital, systems for most companies. The
design of such DSS raises important methodological challenges,
since data-driven DSS should expose only useful information to
decision makers, but data available in a company’s database
are numerous and not equally supportive. Failing to provide the
right data to the right decision-maker may reduce the usefulness
of a DSS, and can lead to lower quality decision outputs.
This is particularly striking in the case of Self-Service Business
Intelligence (SSBI) where users build DSS outputs themselves.
In this paper, we elaborate on this idea of data profusion and
propose a data selection criterion, namely the decision-making
data value. To do this, we discuss the concept of value and
its application to data and decision making, we review existing
literature and propose a taxonomy of the dimensions of data
value in the context of decision making. We also validate this
taxonomy with semi-direct interviews and discuss the future
research we plan to conduct as a way to apply this approach
for the specification of high-value data-driven DSS.

Index Terms—Data value, Data quality, Data utility, Decision
making, Data selection, Decision Support System

I. INTRODUCTION

The profusion of data available in organizations is clearly
established and objectified. In 2020, an estimated 47 zettabytes
(a thousand billions of gigabytes) of data has been produced
all over the world [24]. By contrast, in 2010, that amount was
only about 2 zettabytes. This exponential growth is expected to
continue in the next 15 years to reach 2000 zettabytes in 2035
[24]. This inflation of accessible data has numerous – positive
and negative – effects on many activities within an organisation

This work was initiated in collaboration with the company Loth-Info and
is partially financed by the Fonds Spécial de Recherche (FSR).
DOI: 10.18293/SEKE2022-104

[3]. This includes the process of supporting decision making,
on which we focus our attention in this paper.

Every modern organisation likely generates significant
quantity of data, needs to support decision makers who face
more and more complex decision settings and dynamic envi-
ronments, yet often struggles to provide them with timely and
relevant decision-making support and notably data reporting.
In practice, it is not uncommon for decision makers to face
data sets that are too complex to be helpful, that have too
many quality problems (missing values, encoding errors, etc.)
to be useful, that are too isolated from other piece of data
to generate real insight, etc. [11]. The purpose of so-called
data-driven Decision Support Systems (DSS in the rest of this
paper) is to mitigate those risks and provide smooth decision
support to members of a company [22].

The proposition developed in this paper emerges in the
context of Self-Service Business Intelligence (SSBI), a type
of DSS where end-users have to select the pieces of data and
visuals by themselves [1]. SSBI empowers end-users with the
responsibility to produce dashboards by themselves, thereby
reducing the time-to-delivery while improving alignment with
business requirements. The question of selecting pieces of
data to expose to the business users is central in DSS, and
becomes even more critical in the case of SSBI [2]. Business-
users indeed have little technical knowledge and little to no
understanding of databases underlying a business application.
As a result, the need to provide guidance and to help business
users find what they really need in order to produce their own
dashboards is significant.

This guidance is even more important considering three
risks related to SSBI [17]; (i) dashboards may be overloading
due to the presence of too much data, (ii) sub-optimal selection
criteria may be applied to data by users, which may result
in the omission of useful pieces of data or the inclusion of

487

irrelevant ones and (iii) bad quality data may be incorporated
in the dashboard, resulting in reduced insights. All these risks
involve spending resource and time on the implementation of
unsupportive dashboards.

To address this problem, there is a need to find a criterion
to select the most important pieces of data in the best possible
way, in order to facilitate the process of designing SSBI
dashboards and more globally DSS. This selection criterion
should be understandable by business-users (it should not
be too technical) yet incorporate important technical aspects
whenever those aspects impact decision support. To the best
of our knowledge, such data selection criterion has never been
formalized in the literature on information management. As an
answer, we advance our definition of a Decision-Making Data
Value, or simply DMDV, criterion. This raises the following
research questions:

1) What is DMDV in the context of data-driven Decision
Support Systems and SSBI?

2) What are the different dimensions that compose our
DMDV criterion?

In the remainder of this paper, we expand on these two
questions. In section II, we position the concept of DMDV in
the literature on software engineering in general. section III
details our methodology to develop a taxonomy of relevant,
distinct, measurable and comprehensive dimensions influenc-
ing DMDV. In section IV, we present this DMDV taxonomy.
section V presents the future works. We conclude and present
the limitations of this work in section VI.

II. RELATED WORKS

In this section, we review papers around three main topics:
the concept of value in general, data quality and data value.
We highlight some important observations to guide the reader.

A. Concept of Value

Before discussing the notion data value, it seems important
to clarify our understanding of the notion of value since
different definitions may be used depending on the situation
[8], [20]. In [20], four main value situations are presented;
(i) the exchange value that represents the amount of money
needed to get a product, (ii) the esteem value that represents
the price a customer is ready to pay for prestige or appearance,
(iii) the use value that measures the functionalities of a product
and (iv) the other value situations that group more particular
situations such as the aesthetic value, the judicial value, the
moral value or the religious value.

These definitions help us clarify what is meant by DMDV
in the context of SSBI. Data is by definition a product, i.e.
something that is produced. As a reminder, we focus in this
paper on the value of data in the context of decision making
within a company. We thus exclude operating or acquisition
costs; for instance, we do not take into account the cost of
purchasing the data from an external provider, neither do
we account for the selling price of a data item. Similarly,
we do not include in our DMDV the cost of collecting and
recording the data, of maintaining a database or of using the

data in a SSBI solution. Our goal is to support the selection
of already available data for reporting purposes, not to help
in determining if the use of a given piece of data is profitable
for the company, i.e. if it generates more revenues than it
generates costs. Our conceptualisation of value is thus not an
exchange value. Neither the concept of “esteem value”, nor
the value situations (aesthetic, judicial, moral and religious)
do relate to data aimed for internal decision making. However,
the remaining concept (the use value) seems to be adequate
to describe DMDV.

The concept of use value has been defined by Karl Marx in
[19] when speaking about commodities. As defined by Marx,
a commodity is “an object outside us, a thing that by its
properties satisfies human wants of some sort or another”.
Based on this, he defines the use value of a commodity (citing
[18]) as the “fitness to supply the necessities, or serve the
conveniencies of human life”. In [8], the use value is defined
as “the specific qualities of the product perceived by customers
in relation to their needs”.

Based on these definitions, we can say that the decision-
making value of data is a use value. Indeed, data may be seen
as a thing that satisfies human wants, i.e. help for decision
making. This brings us to define the decision-making value of
a data item as: its fitness to help decision making. This brings
us to the following observation:

Observation 1 - A data item is valuable if its use
allows the decision maker to improve its decision-
making.

B. Concept of Data Quality

The quality of a product or service likely influences its
value. It is a commonsense observation in our daily lives, and
this also applies in the specific context of data. Data quality
has been discussed in the literature for a long time now, with
many researchers trying to understand what data quality really
represents and how it can be decomposed and/or measured. We
can distinguish two important topics of research about data
quality.

A first line of research is the identification of the dimensions
that should be taken into account to decompose quality of
data [6], [13], [15], [21], [26]. This issue has been found
to be quite challenging and no standard emerged. A review
of a large number of propositions has been conducted by
[6]. It emphasized that some dimensions were more discussed
than others in the literature, namely: accuracy, completeness,
consistency, timeliness and currency. Moreover, the number
of dimensions taken into account by authors varies quite a
lot. While some authors derive only 5 dimensions from data
quality, others decompose it into more than 15 dimensions.

Observation 2 - There is no strong agreement on the
dimensions that influence the quality of data.

Another line of research proposes a set of metrics that may
be used in order to assess the quality of data [6], [13], [15],
i.e., to operationalize data quality. Various propositions have
been made but no standard emerged. In [6], the authors also

488

include this second aspect in their review of several papers
about data quality. While most dimensions have different
propositions of metrics, some of these propositions are more
used than others [6]. For example, accuracy, completeness and
consistency all have one specific proposition of metric that is
significantly more discussed than the other propositions for
the same dimension. This is not the case for timeliness and
currency.

Observation 3 - Some dimensions have metrics
suggested in the literature, others not.

C. Concept of Data Value
The concept of data value is more recent in the literature

than data quality. The works presented below typically address
data value in different ways.

In [12], the authors define the concept of intrinsic value of
data to support data quality assessment. Based on the idea that
quality assessment must be contextual, this value is measured
starting from the records of the data. Each record receives
a specific value depending on its frequency of use. More
concretely, most accessed records receive a high value while
less used records get a low value. These records values are
then translated into weights to compute data quality metrics
such as completeness or accuracy. The idea is that all records
do not deserve the same attention from a data quality point
of view. Most used records are more critical than less used
records to assess data quality for a specific organisation. This
approach offers a first step to take into account the value of
the data. However, it does not discriminate this value across
features of the same dataset. Hence, this approach might lead
to focus on curating potential redundant and noisy features if
their data quality is low for frequently used records. Another
work [23] considers data value to optimize data management.
For this purpose, the authors define the concept of disparity
of data value and suggest ways to measure it. The value of a
record in a dataset is attributed based on the context.

Observation 4 - Data value is context-dependent.
A specific line of research proposes general methodologies

to derive the value of data. These methodologies can be based
on human input [3], [10], [16], data processing [4], [7] or both
[5]. This ability to materialize the value of data in concrete
numbers is all the more important as it is a crucial ingredient
for a sound data governance and more generally for any
decision supported by data [3], [9]. What stands out in the
literature is the fact that there is no unique and non overlapping
definition of the constituents of data value [3], [16]. However,
based on these methodologies, four observations may be
derived for the selection of the constituents of data value:

Observation 5 - The selected dimensions should
impact data value in the context of use [3].
Observation 6 - Redundancy among dimensions
should be minimized [6].
Observation 7 - The selected dimensions should be
measurable [3].
Observation 8 - The selected dimensions should take
a maximum of data value aspects into account [7].

III. METHODOLOGY

Our DMDV taxonomy was built on a 4-steps methodology.
The first step consisted in gathering the dimensions of data

value already identified in the literature. The aim here was
not to conduct a systematic literature review but to gather
the most discussed dimensions of data value. We searched for
articles on the search engine Scopus using the following query
(”data value dimensions” OR ”data value assessment”) with
the search being performed on the title, abstract and keywords
of the articles. We also included the literature review of [6] on
the dimensions of data quality to the analyzed articles because
data quality is highly related to data value. We then extracted
the dimensions of the retrieved articles.

The aim of the second step was to create a taxonomy of all
the retrieved data value dimensions that are applicable to the
context of databases. In order to realize this, we first dropped
the dimensions that were out of this scope. Then, we used an
open card sorting approach performed by the 4 authors of the
paper [28]. We shuffled all the retrieved dimensions randomly
and each author classified the dimensions individually. We
then discussed our results together to obtain a final data value
taxonomy. The card sorting was performed by the authors
because it required to understand each dimension in the
context of data value and thus to have knowledge about the
literature.

The third step was the selection of the dimensions to include
in our DMDV taxonomy based on the global data value taxon-
omy. The observations 5, 6, 7 and 8 that have been identified
in the previous section allowed us to guide this selection. In
the remaining of this article, we respectively refer to these
observations as: relevance criterion, distinctiveness criterion,
measurability criterion and comprehensiveness criterion. First,
the lowest-level classes of the data value taxonomy were
screened for their relevance for decision making. Then, for
each selected class, we only kept the dimensions that are
measurable, i.e. the dimensions that already have measures
proposed in the literature. Finally, we applied our comprehen-
siveness criterion by selecting the dimension that was assessed
by the four authors as the most representative for each class
based on a discussion and a vote. In other words, we kept the
dimension that represents the broadest concept. This allowed
us to select a global dimension that takes into account the
information of the whole class. In this methodology, 3 of our
criteria are explicitly used i.e. relevance, measurability and
comprehensiveness, while the remaining criterion is implicit.
Indeed, the distinctiveness criterion is also part of the method
as we selected only one dimension by class. It is important
to note that the comprehensiveness criterion is also taken into
account at the beginning of the process as we started from all
the dimensions retrieved from the literature.

In the final step, we validated our DMDV taxonomy with
data experts, from both the scientific and the business worlds.
The criterion to choose them was that they must have at least 5
years of experience in the field of data processing and notably
reporting. We presented them our taxonomy during semi-

489

structured interviews and asked them to review this taxonomy
according to three axes: (i) the identification of potential
missing or superfluous dimensions; (ii) the identification of
potential missing or superfluous classes and (iii) the identifi-
cation of potential misclassified dimensions.

IV. RESULTS

We now detail the application of our methodology to derive
and validate a DMDV taxonomy from the literature.

A. Identification of the dimensions of data value

The dimensions retrieved in step 1 are presented in table
I. An expected observation is that some dimensions are not
applicable to the context of a database. For example, site
access is a dimension directly related to the context of data
available on a website and is thus not applicable to a database.
We thus dropped these dimensions for step 2.

B. Data value taxonomy

The result of step 2 is presented in figures 1 and 2. The
dimensions with an asterisk next to their name have a measure
proposed in the reviewed literature (this will be used in the
next subsection). We separate the data value taxonomy in two
figures for clarity purpose. Our data value taxonomy classifies
the retrieved dimensions in two main classes: data quality
and data utility. Data quality encompasses the dimensions
about the data itself and the way it is encoded (such as
completeness or correctness) and is divided into 4 subclasses:
completeness, correctness, technical aspect and time aspect.
Data utility encompasses the dimensions about the use of
the data (such as ease of operation and relevance) and is
divided into 5 subclasses: ease of use, legal aspect, monetary
aspect, uniqueness and usability. For clarification purposes, the
subclass ”ease of use” encompasses the dimensions about the
extent to which data may be used in an easy manner while the
subclass ”usability” is about the goals that may be achieved
with the data.

C. DMDV taxonomy

Our step 3 was applied in turn to data quality and data
utility. The 4 subclasses of data quality dimensions displayed
in figure 1 were thus assessed for their potential impact on
decision making. As the subclass “technical aspects” does not
directly relate to this purpose, it was consequently rejected.
Then, following our step 2, only the dimensions having
measures proposed in the literature were kept. Finally, the
broadest dimension was selected for each subclass, leading to
the selection of the 3 following dimensions, that we define in
the context of decision-making: (i) Completeness: the extent to
which the available data is complete, are there enough values
or is the data empty? (ii) Correctness: the extent to which the
available data contains errors, can we believe what is encoded?
(iii) Timeliness: the extent to which the available data is up-
to-date, are the values still valid?

Turning now to the utility factor, the relevance of subclasses
for internal decision making was checked. Monetary aspect

and legal aspect do no contribute to this goal and they were
accordingly discarded. Indeed, these 2 subclasses impact the
ease to get and to use data but, in this work, we focus on data
already available and usable for the organisation. For the 3
remaining subclasses, we kept the following dimensions that
are assessed as measurable by the literature and having the
broadest scope of their subclass, and we define them in the
context of decision-making: (i) Interpretability: the extent to
which the available data may be interpreted, do we understand
what is encoded? (ii) Uniqueness: the extent to which the
information embedded in the available data is unique, as
several data items may contain the same information, do we
already possess this information? (iii) Usability: the extent
to which the available data contains useful information for
decision making (this takes into account the current usage of
data and the future objectives that could impact how this data
is used), is the data used for decision making?

Integrating the results of this double application of the
dimension selection process on both data quality and data
utility, our DMDV taxonomy is presented in figure 3.

D. Validation of the DMDV taxonomy

In order to validate our DMDV taxonomy, we realized
interviews until we reached a saturation threshold in the an-
swers. This led us to conduct 7 interviews of both researchers
and practitioners (3 researchers in the field of information
management, 3 IT consultants and 1 data manager).

For the first axis, “identification of potential missing or
superfluous dimensions”, the respondents identified 3 potential
missing dimensions: granularity (cited four times), the abil-
ity to be visualized (cited three times) and quantity (cited
one time). One respondent also suggested a division of in-
terpretability into format and meaning. Granularity and the
ability to be visualized are in fact encompassed respectively
in our dimensions usability and interpretability. Indeed, the
granularity of the data directly impacts its possible usages and
the ease to visualize the data impacts its interpretability. We
thus revise our definitions of usability and interpretability to
better express these aspects. Usability is “the extent to which
the available data contains useful information and has the
right level of granularity to be used for decision making”.
Interpretability is “the extent to which the available data
may be interpreted and notably visualized”. Quantity is not
identified in the literature as a data value dimension and we
argue that it is more an element that determines the need to
find a data selection criterion than a DMDV dimension. We
also argue that interpretability does not need to be divided at
this point due to our comprehensiveness criterion and that this
division should be kept in mind for the eventual design of an
interpretability metric. Our dimensions are thus validated.

The second axis, “identification of potential missing or
superfluous classes”, only generated one comment as all the
respondents except one completely agreed with the classes
quality and utility. One participant suggested that usability
could be a third class between quality and utility based on
the cognitive process she follows when designing a dashboard.

490

TABLE I
RETRIEVED DIMENSIONS OF DATA VALUE IN THE LITERATURE

Source Dimensions
Batini et al. [6] accuracy, completeness, consistency, timeliness, currency, volatility, uniqueness, appropriate amount of data, accessibility,

credibility, interpretability, usability, derivation integrity, conciseness, maintainability, applicability, convenience, speed,
comprehensiveness, clarity, traceability, security, correctness, objectivity, relevance, reputation, ease of operation, interac-
tivity

Brennan et al. [9] usage, cost, quality, intrinsic, IT operations, contextual, utility
Brennan et al. [10] operational impact/utility, dataset replacement costs, competitive advantage, regulatory risk, timeliness
Wang et al. [27] content, credibility, critical thinking, copyright, citation, continuity, censorship, connectivity, comparability, context, site

access and availability, resource identification and documentation, author identity, author authority, information structure and
design, content relevance and scope, content effectiveness, accuracy and balance of content, navigation within documents,
link quality, aesthetic and emotional aspects, information source, scope, discussion, technology factors, text format,
information organization, price, availability, user support system, authority, credibility, accuracy, reasonableness, support,
timeliness, integrity, consistency, acquisition cost

Attard et al. [5] usage, quality, data, infrastructure
Holst et al. [14] usage, quality, monetization, data sourcing costs, data processing and analysis needs, importance for business model and

decisions
Stein et al. [25] usage, quality, costs, completeness, conciseness, relevance, correctness, reliability, accuracy, precision, granularity, currency,

timeliness
Bendechache et al. [7] volume, usage, utility, replacement cost, legislative risk, timeliness, competitive advantage, quality, security

Fig. 1. Data quality part of the data value taxonomy

Fig. 2. Data utility part of the data value taxonomy

Fig. 3. DMDV taxonomy after dimensions selection

This respondent however recognized that usability may also be
included in utility, so that we do not feel the need to update
our taxonomy. Our two classes are thus validated.

Our final axis, “identification of potential misclassified

dimensions”, did not generate any comment as all the re-
spondents agreed with the way the dimensions are classified.
Our classification of our dimensions in our classes, and
consequently our DMDV taxonomy, are thus validated.

V. FUTURE WORKS

This work, by proposing the concept of Decision-Making
Data Value as data selection criterion and building a DMDV
taxonomy, is a first necessary step towards a main objective:
supporting data selection for decision making. To complete our
work and achieve this objective, a lot of future works may be
considered. This section discusses the main ones.

491

A first way to extend our work is to develop a DMDV
assessment framework based on our taxonomy. For this pur-
pose, a metric should be developed for each dimension of our
taxonomy and a way to aggregate these metrics in a DMDV
indicator should be proposed. This indicator of DMDV could
be designed at different levels of granularity (e.g. the column
level, the database level,...). This would for example allow to
rank columns in terms of importance for reporting.

Then, the next step would be to test the proposed framework
in real-world situations. More specifically, the choice of the
metrics should be tested and adjusted if needed. In order to do
this, it would be interesting to develop use cases and to apply
the framework to test how it performs in comparison with the
assessment of a data specialist. This would also allow to detect
some particular cases that are not taken into account.

Finally, a final step would be to integrate our DMDV
concept into a data-driven DSS design process. Indeed, this
would allow to develop an integrated DSS design process
guiding the user in the data selection. This can be quite
challenging because it requires to center the data selection
part of the DSS design process around the concept of DMDV.
This process could then be tested with end-users to discover
all the practical possibilities offered by our proposition in a
data-driven DSS design process.

VI. CONCLUSION

In this paper, we tackle the problem of finding a data
selection criterion for decision-making support. Organizations
have so much data that it becomes nearly impossible for
decision makers to intuitively select the most important ones.
To address this problem, we suggest to use the decision-
making value of data (DMDV) as data selection criterion. We
thus define the concept of DMDV and develop a taxonomy
of the dimensions having an impact on this concept. For this
purpose, we first create a global data value taxonomy from
which we derive our DMDV taxonomy, based on four criteria:
relevance, distinctiveness, measurability and comprehensive-
ness. Our taxonomy decompose DMDV dimensions into two
classes: data quality and data utility. We present data quality as
the combination of completeness, correctness and timeliness
dimensions, while data utility is composed of interpretability,
uniqueness and usability dimensions. We conduct several
interviews to validate our taxonomy and discuss the results.
We also elaborate on the future works.

In terms of limitation, even if we try to objectify the selec-
tion of dimensions as much as possible, the application of our
criteria may include a small part of subjectivity when selecting
the final dimension to keep for each subclass. However, these
criteria allow to find a set of dimensions that are relevant,
distinct, measurable and comprehensive. This means that, even
if an other dimension is selected for a particular subclass, its
characteristics and meaning should be very similar, resulting
in an equivalent set of dimensions.

REFERENCES

[1] P. Alpar and M. Schulz. Self-service business intelligence. Business &
Information Systems Engineering, 58(2):151–155, 2016.

[2] D. Arnott and G. Pervan. A critical analysis of decision support systems
research revisited: the rise of design science. In Enacting Research
Methods in Information Systems, pages 43–103. Springer, 2016.

[3] J. Attard and R. Brennan. Challenges in value-driven data governance.
In OTM Confederated International Conferences” On the Move to
Meaningful Internet Systems”, pages 546–554. Springer, 2018.

[4] J. Attard and R. Brennan. A semantic data value vocabulary supporting
data value assessment and measurement integration. 2018.

[5] J. Attard, J. Debattista, and R. Brennan. Saffron: a data value assessment
tool for quantifying the value of data assets. 2019.

[6] C. Batini, C. Cappiello, C. Francalanci, and A. Maurino. Methodologies
for data quality assessment and improvement. ACM computing surveys
(CSUR), 41(3):1–52, 2009.

[7] M. Bendechache, N. Sudhanshu Limaye, and R. Brennan. Towards an
automatic data value analysis method for relational databases. 2020.

[8] C. Bowman and V. Ambrosini. Value creation versus value capture:
towards a coherent definition of value in strategy. British journal of
management, 11(1):1–15, 2000.

[9] R. Brennan, J. Attard, and M. Helfert. Management of data value chains,
a value monitoring capability maturity model. 2018.

[10] R. Brennan, J. Attard, P. Petkov, T. Nagle, and M. Helfert. Exploring data
value assessment: a survey method and investigation of the perceived
relative importance of data value dimensions. In ICEIS 2019-21st
International Conference on Enterprise Information Systems, pages 200–
207. SciTePress, 2019.

[11] L. Cai and Y. Zhu. The challenges of data quality and data quality
assessment in the big data era. Data science journal, 14, 2015.

[12] A. Even and G. Shankaranarayanan. Value-driven data quality assess-
ment. In ICIQ, 2005.

[13] A. Even and G. Shankaranarayanan. Dual assessment of data quality in
customer databases. Journal of Data and Information Quality (JDIQ),
1(3):1–29, 2009.

[14] L. Holst, V. Stich, G. Schuh, and J. Frank. Towards a comparative
data value assessment framework for smart product service systems. In
IFIP International Conference on Advances in Production Management
Systems, pages 330–337. Springer, 2020.

[15] M. Kaiser, M. Klier, and B. Heinrich. How to measure data quality?-a
metric-based approach. ICIS 2007 Proceedings, page 108, 2007.

[16] K. Kannan, R. Ananthanarayanan, and S. Mehta. What is my data worth?
from data properties to data value. arXiv preprint arXiv:1811.04665,
2018.

[17] C. Lennerholt, J. Van Laere, and E. Söderström. User-related challenges
of self-service business intelligence. Information Systems Management,
38(4):309–323, 2021.

[18] J. Locke and W. Engels. Some Considerations of the Consequences
of the Lowering of Interest, and Raising the Value of Money. Verlag
Wirtschaft und Finanzen, 2018.

[19] K. Marx. Le capital. Librarie du Progres, 1875.
[20] H. S. Neap and T. Celik. Value of a product: A definition. International

Journal of Value-Based Management, 12(2):181–191, 1999.
[21] L. L. Pipino, Y. W. Lee, and R. Y. Wang. Data quality assessment.

Communications of the ACM, 45(4):211–218, 2002.
[22] D. J. Power. Decision support systems: a historical overview. In

Handbook on decision support systems 1, pages 121–140. Springer,
2008.

[23] G. Shankaranarayanan, A. Even, and P. D. Berger. Optimizing data
management with disparities in data value. Journal of International
Technology and Information Management, 24(3):1, 2015.

[24] Statista. Le big bang du big data, 2019.
[25] H. Stein, L. Holst, V. Stich, and W. Maass. From qualitative to quanti-

tative data valuation in manufacturing companies. In IFIP International
Conference on Advances in Production Management Systems, pages
172–180. Springer, 2021.

[26] R. Y. Wang and D. M. Strong. Beyond accuracy: What data quality
means to data consumers. Journal of management information systems,
12(4):5–33, 1996.

[27] X. Wang, C. Dong, W. Zeng, Z. Xu, and J. Zhang. Survey of data value
evaluation methods based on open source scientific and technological
information. In International Conference of Pioneering Computer
Scientists, Engineers and Educators, pages 172–185. Springer, 2019.

[28] J. R. Wood and L. E. Wood. Card sorting: current practices and beyond.
Journal of Usability Studies, 4(1):1–6, 2008.

492

 Data Modeling and Data Analysis in Simulation

Credibility Evaluation of Autonomous Underwater

Vehicles
Xiaojun Guo, Zhiping Huang, Shaojing Su, Yunxiao Lv

College of Intelligence Science and Technology,

National University of Defense Technology,

Changsha, Hunan, China

jeanakin@163.com; 3421436@qq.com; susj-5@163.com; jeanakin@126.com

Abstract-As an important tool for exploring and defending
the ocean, autonomous underwater vehicles (AUVs) play an
irreplaceable role. With the help of simulation models, the
R&D test cycle of AUV equipment can be accelerated, but
the simulation credibility assessment of AUVs faces many
challenges: uncertainty, emergence and nonlinearity. This
paper starts from the credibility evaluation of the
simulation model of AUVs. Based on small-sample
judgment criterion, Bayesian Sequential Mess Test (SMT)
that makes full use of prior knowledge is proposed for the
credibility evaluation of static parameters. For the
reliability evaluation of the dynamic simulation model, the
NARX steady-state response algorithm and the prior-based
identification are used to evaluate the reliability of the
dynamic simulation model. The application performance of
the data analysis method in the credibility evaluation of
AUVs is analyzed.

Keywords-autonomous underwater vehicle(AUV); credibility

evaluation; Bayesian sequential mess test; non-linear

autoregressive model with exogenous inputs (NARX) steady-

state response algorithm

I. INTRODUCTION

As an important tool for exploring and defending the ocean,
autonomous underwater vehicles (AUVs) play an irreplaceable
role, and simulation credibility evaluation of AUVs has the
characteristics of uncertainty, emergence and nonlinearity.
Whether the reliability of the simulation model can be
effectively evaluated determines the maturity of the AUV
technology. AUV systems not only has complex test
environmental conditions, but also the complex and randomly
changing hydrological conditions under water, the control law
based on fluid dynamics, and the limited underwater
communication methods have all added certain difficulties to
the AUV experiment[1-2]. The number of tests for the
evaluation of model parameters and indicators is very limited
(tens of times at most). Due to the lack of support from actual
flight test data, it is difficult to evaluate the reliability of the
simulation model. This problem also constrains a considerable
part of AUV M&S research. The reference model used in the
verification of the AUV simulation model and the relevant data
of the model to be verified are the sink information under a
certain channel transmission[3-4]. The uncertainty of the system

error and the inaccuracy of the experimental data observation
are the main causes of the uncertainty.

An approach for mixture for symmetric distributions was
proposed. They focused on the two-component mixture and
develop d a Bayesian model using parametric priors for the
location parameters and a nonparametric prior based on
Dirichlet process [5]. As the similar method handling with
small-size sample and high precision, the application of
bootstrap is no less than Bayesian method, and also achieved
surprising improvement [6]. For the simulation modelling and
reliability evaluation of complex large systems, many methods
based on expert systems have been proposed[7-8].

In this paper, starting from the reliability evaluation of the
simulation model of AUV, firstly, for the reliability evaluation
of the static simulation model, a small sample judgment
criterion based on precision measurement is given; The
Bayesian SMT identification test that makes full use of prior
knowledge is used for the reliability evaluation of static
parameters; secondly, for the reliability evaluation of the
dynamic simulation model, the NARX steady-state response
method and the prior-based identification are used to evaluate
the reliability of the dynamic simulation model. The structural
parameters of the model are identified, thereby transforming the
reliability evaluation of the dynamic model into the
performance evaluation of the static parameter distribution.
Finally, the application performance of the data analysis method
in the reliability evaluation of the complex large system is
analyzed.

II. DATA ANALYTICS METHODS IN CREDIBILITY EVALUATION

OF AUV STATIC SIMULATION MODELS

When analyzing the relevant performance of the small
sample test, the traditional statistical method based on classical
frequentism has been unable to reasonably explain the test
results under the background of the small sample due to its
limitations. Most studies use Bayesian statistical methods when
the sample size cannot meet the precision requirements of
specific applications, but they do not give an exact conceptual
definition of small samples [9].

A. Definition of small sample

Based on the application of statistical inference in different
contexts, it can be inferred that the size of the sample is judged
based on the application. In view of the differences between

DOI reference number: 10.18293/SEKE2022-173

493

mailto:jeanakin@163.com;%203421436@qq.com
mailto:susj-5@163.com

classical frequency statistics and Bayesian statistics, the related
concepts of point estimation, interval estimation in classical
frequency statistics are used to help explain the definition of
sample size.

[Definition 1] A random variable has a density distribution
function 𝑓(𝑋) .Suppose its variance is 𝜎 , the precision
required by the application is 𝛿0 , the point estimation of a

certain mathematical characteristic parameter is �̂� , then the

precision of this estimation is 𝜎(�̂�) =
𝜎

√𝑛
, n is the sample

capacity, then

(1) n satisfies 𝑛 > (1/𝜆)𝑐𝑒𝑖𝑙(𝜎2/𝛿0
2), 0 < 𝜆 < 1 is the

large-sample size of the significance degree 1/𝜆of

the mathematical feature parameter point estimation

under the distribution.

(2) n satisfies 𝑛 < (1/𝜂)𝑐𝑒𝑖𝑙(𝜎2/𝛿0
2), 1 < 𝜂 is the

small-sample size of the significance degree 𝜂of the

mathematical feature parameter point estimation

under the distribution.

[Definition 2] A random variable has a density

distribution function𝑓(𝑋). When the confidence level is1 − 𝛼 ,

the interval estimation of a certain mathematical characteristic

parameter is [�̂�(𝑋) − 𝛿, �̂�(𝑋) + 𝛿] The required precision is

𝛿0,
𝛿 = 𝑔(𝑓(𝑋), 𝑛)

,
n is sample capacity, then

(1) n satisfies 𝛿 < 𝜆𝛿0, 0 < 𝜆 < 1 is the large-sample

size with a significance degree of 1/𝜆 in the

estimation of the mathematical feature parameter

interval under the distribution;

(2) n satisfies𝛿 > 𝜂𝛿0, 𝜂 > 1 is the small sample size of

the significance level 𝜂 of the mathematical feature

parameter interval estimation under the distribution.

B. Bayesian Sequential Mess Test

During World War II, in order to meet the needs of military

acceptance work, A. Wald proposed a sequential inspection

method, sequential probability ratio test (SPRT). and proved

that in all test classes where the probability of making two types

of errors does not exceed a given sum of 𝛼 and 𝛽 , the

average SPRT required test sample (ie, the test sample size) is

minimal. Two goals can be achieved with sequential testing as

below:

(1) It is expected to reduce the number of
tests under the same identification accuracy
requirements. The method constructs a buffer region
between the rejection region and the acceptance
region, avoiding drastically different decisions based
on the success or failure of a single trial.

(2) The sampling times can be adjusted
according to the current inspection or estimation
effect, so that the sample size can be appropriately
selected, so that the obtained estimation has a
predetermined accuracy; or under a given sampling

cost, the risk can be reduced.

Compared with the traditional method, the SPRT method
has been greatly improved, and the improvement in reducing the
test sample size is significant, but this method does not take into
account the prior information, so that the historical test data or
empirical data are not fully utilized, and the test sample size is
still large. In fact, the model assumptions are usually biased, that
is, the robustness of the SPRT method, and the optimality of
SPRT is only established under certain hypothetical models.

In the case of fully considering the prior information, based
on SPRT, the sequential posterior odd test (SPOT) method is
proposed. Given two types of risk upper thresholds (denoted as
𝛼𝑁,𝛽𝑁), for the truncated test scheme 𝑇𝑁, if these probabilities
of the determined decision scheme are within the allowable
range, the SPOT truncated scheme 𝑇𝑁is judged to be desirable.
The solution of the SPOT truncation scheme is transformed into
the analysis of the relationship between the decision threshold
C and the sample size N and the two types of risks. For the
specific application background, the computer-aided method
can be used for fitting and solving.

Aiming at the shortcomings of SPRT, the Sequential Mess
Test (SMT) method is constructed for the testing scheme of
simple hypotheses against simple hypotheses, and it has been
proved that it can effectively reduce the test sample size under
the condition of equivalent risk. The idea of this method is to
split the original two-alternative hypothesis testing problem into
multiple groups of hypothesis testing problems under the

condition of given two-alternative hypothesis test values 𝑝0，
𝑝1and two types of risk upper limit values𝛼，𝛽. Taking the

SMT hypothesis test with one point inserted as an example,
𝑝2 ∈ (𝑝1, 𝑝0) the original SPRT hypothesis test is divided into
the following two groups of hypothesis test problems:

𝐻01: 𝑝 = 𝑝2, 𝐻11: 𝑝 = 𝑝1
𝐻02: 𝑝 = 𝑝0, 𝐻12: 𝑝 = 𝑝2

For the two sets of hypothesis tests, the SPRT method is
used to test them respectively, so that the finite value can be
obtained when the algorithm is stopped. Figure 1 depicts an
SMT scheme that inserts a point. It can be seen from Figure 1
that the sample size required by this method has an upper bound,
when the population distribution tested is a binomial
distribution, the upper bound is the intersection of two straight
lines.

nS

n

2 21r s n h= +

2 22r s n h= +

1 12r s n h= +

1 11r s n h= +

Reject 0H

Accept 0H

Continnue

ue

Stopping boundary of
0
H

Stopping boundary of
01
H

Stopping boundary of
02
H

Figure 1. SMT solution for inserting a checkpoint

DOI reference number: 10.18293/SEKE2022-173 494

The minimum sample size of the truncated SMT scheme is

also much better than that of the traditional method, but the

SMT algorithm that simply inserts multiple points has little

improvement in the test effect. This paper combines the above

two ideas and constructs a new inspection scheme, which may

achieve better improvement effect, which is called the Bayes

SMT method. The construction of Bayes SMT test needs to

solve the following problems: a) acquisition, quantification

and rationality test of prior information; b) Splitting of prior

information; c) determination of the principle of Bayes SMT;

d) optimal insertion point solution; e) Risk size; f) Truncated

program design. As shown in Figure 2, the introduction of SMT

test with prior information makes it possible to further reduce

the test area, that is, to further reduce the test sample size.

nS

n

2 22r s n h= +

0n 1 11r s n h= +

Reject 0H

Accept 0H

Continue

tn

Stopping boundary of
0
H

Stopping boundary of
01
H

Stopping boundary of
02
H

Stopping boundary of Trancated BSMT

Figure 2. BSMT solution for inserting a checkpoint

Since the starting point of the design of the SMT scheme is

the sequential test of simple hypotheses against simple

hypotheses, this method is used for multiple hypothesis

testing, but cannot well solve the testing problem with

complex hypotheses. But in solving the problem of sequential

testing of simple hypotheses, it can still better reduce the

amount of calculation.

III. DATA MODELING AND DATA ANALYSIS METHODS IN THE

CREDIBILITY EVALUATION OF DYNAMIC SIMULATION MODELS

A. Steady-state response method for NARX model

In the early stage of nonlinear system identification theory, a

general nonlinear regression model with exogenous variables

(non-linear autoregressive model with exogenous inputs,

NARX) was proposed. As a universal model of NARX,

NARMAX (non-linear autoregressive moving average models

with exogenous inputs) model basically covers almost all

nonlinear models such as bilinear models, H-models, W-

models, nonlinear time series models, ARMAX models, etc. As

illustrated in Figure 3.

()f ARX

()f ARX

()u k ()v k ()y k

()v k()u k ()y k

Hammerstein：

Wiener：

Figure 3. Block-connected nonlinear characterization of Hammerstein and

Wiener models

The general NARX model can be expressed as

𝑦(𝑘) = 𝐹ℓ[𝑦(𝑘 − 1), ⋯ , 𝑦(𝑘 − 𝑛𝑦), 𝑢(𝑘 − 𝑑), ⋯ , 𝑢(𝑘 −

𝑛𝑢), 𝑒(𝑘)] (1)

Equation (1) can be expanded into a polynomial sum of

nonlinearity in the interval[1, ℓ],The (𝑝 + 𝑚)th term includes

a p-order 𝑦(𝑘 − 𝑛𝑖), an m-order 𝑢(𝑘 − 𝑛𝑖) , and a multiple

factor𝑐𝑝,𝑚(𝑛1, ⋯ , 𝑛𝑚) , as shown in Equation (2).

𝑦(𝑘) = ∑ ∑ ∑ 𝑐𝑝,𝑚(𝑛1, ⋯ , 𝑛𝑚)
𝑛𝑦,𝑛𝑢

𝑛1,𝑛𝑚

ℓ−𝑚
𝑝=0

ℓ
𝑚=0 ∏ 𝑦(𝑘 −

𝑝
𝑖=1

𝑛𝑖) ∏ 𝑢(𝑘 − 𝑛𝑖)
𝑚
𝑖=1 + 𝑒(𝑘) (2)

B. NARX characterization of AUV motion models

The nonlinear state equation of the motion model of the

6-DOF AUV can be expressed as

{
�̇� = 𝑓(𝒙, 𝒖)

𝒚 = 𝑔(𝒙)

 (3)

Where，

𝒙 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝑤𝑥, 𝑤𝑦, 𝑤𝑧, 𝑥𝑏, 𝑦𝑏, 𝑧𝑏, 𝜓, 𝜃, 𝜙]
𝑇
，𝒖 =

𝑓(𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝑤𝑥, 𝑤𝑦, 𝑤𝑧, 𝛿𝐸 , 𝛿𝑅, 𝛿𝐷)，

() ()

() ()

2 2

1

2 2

22 33 26

y z z y G y z G x y G x z

z y y z G

e m v w v w mx w w my w w mz w w

v w w w mg F sin Te Rx

= − + + − −

+ − + + − − + +

() ()
()

2 2

2

33 11 26

z x x z G x z G y z G x y

z x x z x y G

e m v w v w my w w mz w w mx w w

v w v w w w mg F cos cos Ry

= − + + − −

+ − − − − +

() ()
()

2 2

3

11 22 26

x y y x G x y G x z G y z

x y y x x z G

e m v w v w mz w w mx w w my w w

v w v w w w mg F cos sin Rz

= − + + − −

+ − − + − +

() ()

() ()

2 2

4 55 66yy zz y z G G y z G G x y G G x z

G x y y x G x z z x G G

e I I w w my z w w mx z w w mx y w w

my v w v w mz v w v w mgy cos mgz cos cos Mx

= + − − + − + −

+ − + − + + +

() ()

() () ()

2 2

5 66 44

26

zz xx x z G G z x G G y z G G x y G

G y z z y G y x x y y x x y G

e I I w w mx z w w mx y w w my z w w mgz sin

my v w v w mx v w v w v w v w mgx cos sin My

= + − − + − + − −

+ − + − + − + +

() ()

() () ()

2 2

6 44 55

26

xx yy x y G G x y G G x z G G y z G

G z x x z G z y y z z x x z G

e I I w w mx y w w my z w w mx z w w mgy sin

mx v w v w my v w v w v w v w mgx cos cos Mz

= + − − + − + − +

+ − + − + − − +

𝑬 = [𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6]𝑇 ， 𝑴 = 𝑴𝐼 + 𝑴𝐴 ，

[�̇�𝑥, �̇�𝑦 , �̇�𝑧, �̇�𝑥, �̇�𝑦, �̇�𝑧]
𝑇

= 𝑴−1𝑬，

[

�̇�𝑎

�̇�𝑏

�̇�𝑏

] = 𝑪0
𝑏 [

𝑣𝑥

𝑣𝑦

𝑣𝑧

]，

DOI reference number: 10.18293/SEKE2022-173 495

[

�̇�

�̇�
�̇�

] = [

(𝑤𝑦 𝑐𝑜𝑠 𝜙 − 𝑤𝑧 𝑠𝑖𝑛 𝜙)/ 𝑐𝑜𝑠 𝜃

𝑤𝑦 𝑠𝑖𝑛 𝜙 + 𝑤𝑧 𝑐𝑜𝑠 𝜙

𝑤𝑥 − (𝑤𝑦 𝑐𝑜𝑠 𝜙 − 𝑤𝑧 𝑠𝑖𝑛 𝜙) 𝑡𝑎𝑛 𝜃

]

TABLE I. PARAMETERS AND DEFINITIONS IN AUV MOTION MODEL

Variable Definitions

m AUV quality (kg)

S Characteristic area, generally take the largest cross-

sectional area (𝑚2)

L Feature length, generally take the total length of

AUV (m)

v AUV speed(m/s)

𝛿𝐸 , 𝛿𝑅 , 𝛿𝐷 Horizontal rudder, straight rudder, differential

rudder

𝜌 The density of water, here 994𝑘𝑔/𝑚3

𝑐𝑥(⋅), 𝑐𝑦(⋅), 𝑐𝑧(⋅) Drag, lift, side force coefficients

𝑚𝑥(⋅), 𝑚𝑦(⋅), 𝑚𝑧(⋅) Roll moment, yaw moment, pitch moment

coefficient

𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺 Center of gravity backward shift, descent, side shift

𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧 Inertia torque in X, Y, Z directions

𝜆𝑖𝑗 Component coefficients for additional inertial forces

and moments

𝛼, 𝛽 Angle of attack, angle of sideslip

𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 Velocity components in X, Y, Z directions

𝑤𝑥 , 𝑤𝑦 , 𝑤𝑧 Angular velocity components in the X, Y, Z

directions

𝑥𝑏, 𝑦𝑏 , 𝑧𝑏 The position component of the AUV in the ground

coordinate system

𝜓, 𝜃, 𝜙 Yaw angle, pitch angle, roll angle

𝐷𝑡 AUV displacement

g Gravitational acceleration, here take 9.81(𝑚/𝑠2)

 So far, the mechanism modeling of the functional

relationship�̇� = 𝑓(𝒙, 𝒖) has been completed. Taking the

observation equation𝒚 = 𝑔(𝒙) = �̇�, there is a discretized

NARMAX state equation as

𝑿(𝑘 + 1) = 𝐹ℓ(𝑿(𝑘), 𝑼(𝑘), 𝑪0
𝑏, 𝑇𝑒, 𝑅𝑥, ⋯ , 𝑀𝑥, ⋯)

(1.1)

For Equation (1), the function 𝑓(⋅)between the steady-state

intermediate signal 𝑣(𝑘) and the output signal 𝑦(𝑘) is

steady-state, and it is the gain of the ARX model. If the steady-

state gain is adjusted to 1, that is �̄�(𝑘) = �̄�(𝑘) , it is the

difference between the input and the output, the steady-state

response function𝑓(⋅). The function can be used to obtain the

corresponding relationship of �̄� × �̄� = �̄�, and a certain linear

regression method can be used to obtain the function

estimate�̄� = 𝑔(�̄�) , which is an estimate on the application

domain. Assuming that the model (shown in equation (2)) is

excited by a constant input, then the steady-state response is

�̄� = 𝑦(𝑘 − 1) = 𝑦(𝑘 − 2) = ⋯ = 𝑦(𝑘 − 𝑛𝑦), �̄� =

𝑢(𝑘 − 1) = 𝑢(𝑘 − 2) = ⋯ = 𝑢(𝑘 − 𝑛𝑢) (4)

Then Equation (2) can be rewritten as

𝑦(𝑘) = ∑ ∑ ∑ 𝑐𝑝,𝑚(𝑛1, ⋯ , 𝑛𝑚)
𝑛𝑦,𝑛𝑢

𝑛1,𝑛𝑚

ℓ−𝑚
𝑝=0

ℓ
𝑚=0 �̄�𝑝�̄�𝑚

 (5)

This gives the model response at a specific input point.

C. NARX Model Steady-State Response Method for Grey

Box Identification

The method of parameter identification using the steady-

state response of the SISO-NARX model can be extended to

multi-dimensional situations, and the same example is still used

for analysis. This nonlinear system is the MISO-NARX system.

The steady-state response parameter identification method of

NARX is based on The SISO system proposes that the labels

of variables in these methods are all defined based on SISO.

When the identification of MISO-NARX is realized, the

relevant labeling methods need to be improved. It can be

known from the combination function𝑃𝑖(𝑘)，

𝑦0(𝑘) = ∑ 𝑑𝑖𝑓
ℓ(𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝑤𝑥, 𝑤𝑦, 𝑤𝑧, 𝜃, 𝜙, �̇�𝑦, �̇�𝑥 , �̇�𝑧, 𝑅𝑦)

12

𝑖=1

+ 𝑑0

(6)

In Equation (6), there are a total of 12 inputs, although there

is no input in the form of 𝑦0 = �̇�𝑥itself, but is a component of

the multi-dimensional output

 𝒀 = [�̇�𝑥, �̇�𝑦, �̇�𝑧, �̇�𝑥, �̇�𝑦, �̇�𝑧, �̇�𝑏, �̇�𝑏, �̇�𝑏, �̇�, �̇�, �̇�]
𝑇 ,

 𝑛𝑦 = 𝑛𝑢 = 1 ,so the nonlinear NARX relationship with

the above 12 inputs needs to be considered when

 𝑢𝑖(𝑘 − 1) = 𝑢𝑖(𝑘).

From the test data without identification design, select the

data that meets the conditions for steady-state response

identification, that is, the steady-state response process. The

100 data samples used in the above two algorithms come from

a direct flight and speed-up process. Therefore, except when

𝑣𝑥(𝑘 − 1) = 𝑣𝑥(𝑘) = 15.2408 entering a steady state, all

other observed variables are 0 or close to 0. At this time, there

are

−휀 < (𝑚𝑔 − 𝜌𝐷𝑡𝑔) (1 +
𝜃2

2
) (1 +

𝜙2

2
) − �̄�𝑦 < 휀

 (7)

The steady-state input referred to�̄�𝑦 in Equation (7) , 휀 is

the identification accuracy requirement, and the steady-state

output of at this time is -310.82, which is why the identification

parameter 𝑚𝑔 − 𝜌𝐷𝑡𝑔 always has a small identification

variance no matter which identification algorithm is used.

Figure 4.5 shows part of the time series of test data that can be

used for identification. For the convenience of observation, the

data has been transformed such as translation and compression.

The identification carried out by Equation (7) is carried out by

intercepting a meta-process or meta-process segment in the test.

Searching for the segment that can be used for steady-state

response identification in the whole process, the identification

segment and identification inequality can be obtained, as

shown in Figure 4.

DOI reference number: 10.18293/SEKE2022-173 496

As shown in Table II, the identification of the first two

methods uses the sampling data of 0-40s, and the sampling

period is 0.025s. It can be seen from the table that for this

example, the effect of parameter identification is NARX

steady-state corresponding method RFF-LS RPEA-BP. The

forgetting factor algorithm of RFF-LS gives priority to new

information to prevent parameter identification drift caused by

data saturation, and makes full use of prior information and

experimental collection of new information. The BP neural

network recognizes the internal structure and parameters of the

sample system through training, but for the model system

whose structure is known, the accuracy of the parameter

identification results is poor. The grey-box identification

method based on the NARX steady-state response makes full

use of the characteristics of the input-output relationship of the

system's steady-state response in the NARX model. Although

there is no special experimental design requirement for the belt

identification system, a sufficient amount of steady-state

response identification inequality is indispensable.

Figure 4. Partial identification data

TABLE II. THREE ALGORITHMS BASED ON THE SAME PRIOR

CONSTRAINTS TO IDENTIFY THE FITTING ACCURACY OF PARAMETERS

Period
Accumulation of identification errors

RFF-LS RPEA-BP Steady state response method

0-40s 6.5254 14.5911 5.5376

0-200s 132.851 213.284 78.265

0-400s 416.4397 520.515 222.549

0-750s 814.675 1302.32 416.61

The parameters identified in different field tests are

𝜃𝑖(𝑖 = 1,2, ⋯ , 𝑁), where N is the number of field tests that

can be used for grey box identification, and the model

parameter based on mechanism modeling is 𝜃0, at this time,

the reliability of the dynamic model based on grey box

identification is transformed into a test of whether it follows the

distribution, or whether it falls within the estimated mean

interval with a certain confidence level. For 𝜃𝑖 , assuming that

it obeys a normal distribution, estimate the Bootstrap BCa

interval estimate under each confidence level. Then examine

the placement points, and measure the credibility level of the

virtual model (mechanism modeling) with confidence.

IV. CONCLUSION

Based on the test accuracy requirements, the criterion of

sub-sample capacity traits is given, which provides a

quantitative standard for the determination of sub-sample size;

when conducting the sequential hypothesis testing of small

sub-sample test index parameters, reference is made on the

basis of SPRT, SPOT, and SMT. Bayes theory proposes the

Bayes SMT test method, which can theoretically save the

sample size based on the prior; a grey box parameter

identification method for the NARX model based on prior and

steady-state response is proposed. The identification results

show that this method improves the parameter identification of

the AUV equation of motion accuracy and identification

efficiency. On the basis of grey box identification, using prior

distribution information and modern statistical inference

methods, the reliability assessment of dynamic models is

transformed into the reliability assessment of static parameter

models, which provides a method for credibility assessment of

dynamic models with prior information. new way.

REFERENCES

[1] Hyakudome, T., Design of Autonomous Underwater Vehicle[J].

International Journal of Advanced Robotic Systems, 2011. 8(1): 122-

130.

[2] Zhou J. and Wang S.,Dynamics Modeling and Maneuverability

Simulation of the Unmanned Underwater Vehicle Hanging Torpedoes

Externally[C]. International Asia Conference on Informatics in Control,

Automation and Robotics. 2009.

[3] Yanhui Wei, Yongkang Hou, Shanshan Luo.Combined dynamics and

kinematics networked fuzzy task priority motion planning for

underwater vehicle-manipulator systems[J]. International Journal of

Advanced Robotic Systems 2021 Vol.18 No.3:1729-1814

[4] Guo X.J., et al., Validation of Torpedo Control System Simulation

Models on Grey Relational Analysis[C]. ICIECS 2010.

[5] Pituch KA, Joshi M, Cain ME. The Performance of Multivariate

Methods for Two-Group Comparisons with Small Samples and

Incomplete Data[J]. Multivariate behavioral research 2020 Vol.55 No.5

P704-721

[6] Koller, M. and W.A. Stahel, Sharpening Wald-type inference in robust

regression for small samples[J]. Computational Statistics and Data

Analysis, 2011. 55: 2504-2515.

[7] Min, F.Y., et al., Knowledge-based method for the validation of

complex simulation models[J]. Simulation Modelling Practice and

Theory, 2010. 18: 500-515.

[8] Sinisi, Stefano , Alimguzhin, Vadim , Tronci, Enrico . Reconciling

interoperability with efficient Verification and Validation within open

source simulation environments[J].Simulation Modelling Practice &

Theory 2021 Vol.109 1569-190X

0 100 200 300 400 500 600 700 800
-20

-15

-10

-5

0

5

10

15

20

25

30

时间(/s)

参
数
数
值

(经
变
换

)

v
x

v
y
+5

v
z

R
y
/1000-5

DOI reference number: 10.18293/SEKE2022-173 497

[9] Bové D.S. and Held L., Bayesian fractional polynomials[J]. Stat

Comput, 2011. 21: 309-324.

[10] J. Raimbault, D. Pumain,Exploration methods for simulation

models[J].Physics 2019:5:1-16

[11] Li, Fang, Goerlandt, Floris. Numerical simulation of ship performance

in level ice: A framework and a model[J].Applied Ocean Research 2020

Vol.102,1181-1187

[12] Liu, Chao a Zhanhong b, Sarkar, Soumik H. b. Root-cause analysis for

time-series anomalies via spatiotemporal graphical modeling in

distributed complex systems[J].Knowledge-Based Systems 2021

Vol.211,1057-1063

DOI reference number: 10.18293/SEKE2022-173 498

Improving Database Learning
with an Automatic Judge

Enrique Martin-Martin∗, Manuel Montenegro†, Adrián Riesco‡, Rubén Rubio§
Dpto. Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid, Spain

Email: ∗emartinm@ucm.es, †montenegro@fdi.ucm.es, ‡ariesco@ucm.es, §rubenrub@ucm.es

Abstract—Databases are a key subject in several technical
degrees. Because they have a strong practical nature, students
require a large number of problems to master them. However,
these problems are useful only if accurate and timely feedback
is provided. In this paper, we present the learning improvements
obtained by using LearnSQL, an automatic judge that has been
designed to complement face-to-face lectures. We have measured
the impact of this judge during the 2021/22 academic year and
report promising results both in student engagement and final
grades.

Index Terms—Database Learning, Automatic Judge, SQL

I. INTRODUCTION

Databases and data-processing systems are key topics in
many technical degrees (see, e.g., the computer science cur-
ricula [1]). In fact, databases are ubiquitous and being able
to manage them is a basic ability required by all companies.
Database lectures include both theoretical aspects, in particular
database design, and practical aspects, which include creating,
searching, and indexing data. We will focus on these practical
aspects, which score higher in Bloom’s taxonomy [2]. In this
sense, it is very important to provide the students with (i) as
many programming exercises as possible and (ii) immediate
feedback, so they are not blocked when an error occurs.
However, although it is possible to generate a large amount of
exercises, the high number of students in standard classrooms
prevents instructors from giving this feedback timely. For this
reason, it is important to provide automatic means to assess
exercises, but it is also important that this feedback is as
informative as possible, because the users are students that
have not mastered the subject yet.

Automatic assessment [3] is a well-known field that tries
to solve this problem by automatically generating a reply
(the type of reply depends on the technique) to students’
exercises. Among these techniques, we are interested in au-
tomatic judges [4], [5], which were initially developed for
quickly evaluating programming exercises in competitions [6].
These judges, which only produced a plain correct/wrong
answer, have been adapted to different environments (mainly
to teaching of programming languages), easing the evaluation
of a large number of students in a short time. In our case, we
are not concerned with evaluation but with teaching, so we
must provide a collection of exercises, including timely and
concrete feedback, as large as possible. In this sense, we will

DOI reference number: 10.18293/SEKE2022-025

take the main ideas of these systems and enrich them to focus
on learning.

In this paper, we present the learning improvements ob-
tained by using LearnSQL in our database course. LearnSQL
is an automatic judge designed to complement face-to-face
lectures with a wide set of SQL problems that students can try
at any time. The judge supports not only problems about SQL
queries but also procedural SQL problems where the student
is expected to define procedures, functions, and triggers, so it
covers a large part of the course syllabus. Moreover, LearnSQL
provides detailed feedback pointing to the source of the error,
so students can understand their mistakes and fix their code.
When measuring the learning improvements, we are mainly
interested in finding evidence that students that use the judge
obtain better grades than those who do not. However, we are
also interested in discovering the usage degree and student
engagement with the judge.

The rest of the paper is organized as follows: Section II
presents the context of the subject where LearnSQL is used.
Section III introduces the judge, while Section IV evaluates
the effects on the students’ performance. Finally, Section V
concludes and presents some topics of future work. The source
code of LearnSQL is available at https://github.com/emartinm/
lsql.

II. CONTEXT OF THE COURSE

We have used LearnSQL in the introductory course on
databases which is part of the degree programs at the Fac-
ulty of Computer Science of the Complutense University
of Madrid, Spain. These degree programs cover 4 years,
being the databases course taught in the first semester of
the 2nd year. Specifically, for this evaluation of the learning
improvement, we used the judge in the academic year 2021–
2022, i.e., from September 2021 to January 2022. The syllabus
of the introductory course on databases covers the standard
contents [7], [8]: relational model, entity-relationship model,
SQL queries, procedural SQL (functions, procedures, and
triggers), and transactions. The teaching in the introductory
course on databases is face-to-face, organized in 30 lectures
of 100 minutes each. Approximately 50% of the lectures are
theoretical and the other 50% are practical sessions where the
students solve exercises that require performing SQL queries
and defining functions, procedures, or triggers in the database.
In the year 2021–2022 there were 6 different groups in this
course, with 40–80 students in each group.

499

https://github.com/emartinm/lsql
https://github.com/emartinm/lsql

Fig. 1. LearnSQL feedback marking missing rows

For the evaluation of LearnSQL, we have used the judge in 3
groups of the course, taught by two different teachers, totaling
157 students. All the students in these selected groups have had
access to the judge and all the exercises from the beginning
of the course, concretely 166 problems about SQL queries
and 23 problems about procedural SQL (functions, procedures,
and triggers). We introduced the judge to the students in the
first weeks of the course, and we encouraged them to use it
to solve the exercises of the practical classes. However, the
use of LearnSQL was completely voluntary for the students:
the assignments in the practical classes were free practice
exercises that were not assessed and did not have any impact
on the final grade of the course. In other words, all students
could freely use LearnSQL as a tool to practice SQL if they
considered it was useful for them.

The 70% of the subject grade was obtained on the basis of a
final written exam. This exam, with a total mark of 10 points,
was composed of 3 parts. The first part covered the design
of databases for a total of 3.5 points. The second part was
the main component of the exam, with exercises about SQL
queries and procedural SQL up to a total of 6 points. This is
the part of the exam we will focus on when evaluating the
impact of LearnSQL on students’ learning (see Section IV).
Finally, there was a final part about transactions with a value
of 0.5 points.

III. LEARNSQL

LearnSQL is an automatic judge for database problems. It is
open-source software available at https://github.com/emartinm/
lsql/ under the MIT license, so any instructor can deploy
it in their server and adapt it to their needs. LearnSQL
provides a simple web interface where students can browse
the collections and problems, as well as submit their solutions
by writing code in a text area. One of the key design features
of LearnSQL is that it is an automatic judge for learning,
so it provides detailed feedback when the student submits an
incorrect solution. This detailed information helps students to
understand their mistakes and fix their solutions, reinforcing

positively their learning process. The received feedback ranges
from syntax errors to differences in the schema of the solution
(different number of columns, or wrong datatypes or names)
or a detailed list of missing or incorrect rows, as shown in
Figure 1.

LearnSQL supports several types of problems that are
suitable for an introductory databases course:

• SQL queries: the student is asked to provide an SQL
query that returns some expected results from the
database.

• DML sentences: the student’s code is expected to produce
changes in the database by adding, removing, or updating
rows.

• Function and procedure definitions: the judge asks for
the definition of a function or procedure fulfilling some
expected behavior when invoked.

• Triggers: the student has to write a trigger linked to a
table manipulation, which must perform some modifica-
tions in the database.

• Discriminate SQL queries: the judge shows two SQL
queries to the student that are very similar but not equiv-
alent. The goal is that the student has to provide a set of
rows in the involved tables such that the queries produce
different results. This kind of problems is very interesting
because it requires students to reach the highest levels of
Bloom’s taxonomy [2], as they must evaluate the queries
and create a database state that could differentiate them.

To verify the correctness of a student’s submission Learn-
SQL follows a simple approach: it executes the student’s
code in the DBMS and compares the obtained results to the
expected ones generated by the official instructor’s solution.
This comparison can be done with more than one test case to
increase the accuracy of the judgment. Currently, LearnSQL
only supports Oracle 11g as DBMS for executing SQL code
because is the system used in our introductory databases
course. However, the SQL execution component follows a
clear interface and could be easily replaced to connect to any
other relational DB system like PostgreSQL or MySQL.

Apart from the judgment based on execution, LearnSQL
also provides a richer feedback obtained by a semantic anal-
ysis of the student code. For that, it relies on the Datalog
Educational System [9] (DES). DES is a deductive database
system that supports many formats and query methods: Dat-
alog, Relational Algebra, Tuple Relational Calculus, Domain
Relational Calculus, and SQL. When handling a query, DES
performs a set of complex analyses on the code that can detect
several semantic errors [10], e.g. unnecessary joins, inconsis-
tent or tautological conditions, or unnecessary subqueries. This
information is very relevant to students as it allows them to
not only fix but also improve and simplify their SQL code,
and gain more knowledge about their solution.

Finally, LearnSQL has been designed to be multilingual, so
it could be used in any teaching environment. At the moment
it only supports Spanish and English, but it could be easily
adapted to any other language by providing a text file with the
translation of all the strings used in the system. From the point

500

https://github.com/emartinm/lsql/
https://github.com/emartinm/lsql/

0 20 40 60 80 100

Number of problems tried

0

10

20

30

40

50

60
N

um
be

r o
fs

tu
de

nt
s

Fig. 2. Problems tried by student

of view of motivation and linked to gamification [11], Learn-
SQL supports an interesting feature: achievements. Teachers
can define achievements that students obtain when solving a
certain number of problems or collections, or a given number
of problems of a concrete type. Apart from the satisfaction
of obtaining recognition for their work, the achievements are
shown as badges in the global ranking, fostering a healthy
competition in the classroom.

IV. EVALUATION

In this section, we first discuss how the judge was used
according to its activity logs. Combining this information with
the marks of the final assessed exam, we analyze whether
there is quantitative evidence to support that the judge has
had a positive effect on the students’ performance and learning
process.

Out of the 157 students registered in the course described
in Section II, we have limited our analysis to the 130 who
have attended the final exam, since their marks are useful for
our analysis. However, among those who have not attended
this exam, 15 have also practiced with LearnSQL, solving
25.8 problems in mean. The students have tried an unequal
amount of exercises among the 189 available in the judge, as
shown in Figure 2, and effectively solved the majority of those
tried. The latter is illustrated in Figure 3, where it can be seen
that just a few problems were left unsolved (7 at most, but
most of the students left between 0 and 2), with an average of
8.18 attempts before giving up. The number of attempts for
a student to solve a given problem is usually low (µ = 2.57,
σ = 3.88), the first try has been enough in the 60.54% of the
cases, and the second attempt in a 15.64%. However, except
for a student with a single submission, everyone has failed
some attempts and obtained feedback from the judge.

We realize that most students have tried to solve around 40
exercises (µ = 38.78, σ = 16.28), and only 8 of them have not
used LearnSQL at all. Around 30 students have used the judge
throughout the whole course duration, but the majority have
concentrated their interaction during the first to second month
of the lessons, two months before the exam. This time window
coincides with the time when SQL queries and procedural SQL

0 1 2 3 4 5 6 7

Number of problems tried and not solved

0

10

20

30

40

50

60

70

80

N
um

be
r o

fs
tu

de
nt

s

Fig. 3. Problems tried but not solved by student

0 100 200 300 400 500 600

Number of submissions

0

4

8

12

16

20

N
um

be
r o

fs
tu

de
nt

s

Fig. 4. Problems submitted by student

are taught in class. However, shortly before the final exam,
the number of submissions has slightly increased. 85.91%
of the submissions have been done outside class hours. It is
also interesting to consider the information in Figure 4, which
indicates that the judge has been used extensively. Although
some students have not used the judge at all, those that have
used it have submitted many times, and some of them sent
more than 500 submissions. Combining this information with
the one presented in Figure 3, we consider that students are
engaged by the judge and do not stop until the problems have
been solved.

In order to evaluate the effect on learning of LearnSQL, we
compare the usage profile of the students with the marks they
have obtained in the SQL-related exercises of the final exam.
Figure 5 shows the distribution of those marks aggregated into
five equally numerous subsets by increasing number of tried
problems, where we can observe an increasing trend on the
marks. The Spearman’s and Pearson’s correlation coefficients
between these metrics are respectively 0.497 (p = 1.8 · 10−9)
and 0.457 (p = 4.6 · 10−8), so there is statistically significant
(linear) relationship between them. In summary, we consider
that practicing with LearnSQL has a positive effect that
becomes more noticeable as the amount of practice increases,
but it is also observable with relatively little training.

501

0 27 41 44 45 92

Tried problems

0

1

2

3

4

5

6
E

xa
m

m
ar

k
in

S
Q

L
ex

er
ci

se
s

Fig. 5. Mean mark by tried problems

Regarding specific categories of exercises, the students who
solved at least one problem on procedures in the judge have
obtained a mean mark of 1.59 out of 2, while the mean mark of
the rest is 0.99. Similarly, those who solved the five problems
on triggers have obtained a mark of 0.95 out of 1 on average,
compared to 0.45 for those who have not tried any problem
of this kind.

We should acknowledge some threats to the validity of these
conclusions. Since the usage of the judge was discretionary
for the students, its hypothetical effect on the performance
in the final exam could alternatively be explained by the
general intuition that stronger and more enthusiastic students
participate more in the activities of the course and also obtain
better marks. However, the Spearman’s correlation between the
number of problems solved and the marks of exam exercises
not related to SQL is much lower (ρ = 0.25, p = 0.003).
Even if we assume that students have gained SQL skills by
practicing with LearnSQL, we may wonder whether this same
improvement could have been obtained with the classical non-
assessed exercises, but more complex experiments would be
required to analyze this.

V. CONCLUSION AND ONGOING WORK

In this paper, we have presented the learning improvements
obtained by using LearnSQL in our database teaching. Learn-
SQL is a judge for automatically assessing the correctness
of database exercises, including SQL queries, triggers, and
procedures, among others. Unlike other automatic judges,
LearnSQL has been designed to provide detailed explanations
to students in order to help them detect their errors. LearnSQL
has been used during the 2021/22 academic year and its
usefulness has been measured. The results are promising, as
there is statistical evidence that using the judge improves the
final degree obtained by the students.

As future work, we plan to integrate the judge into Moodle,
the learning platform used in our virtual campus, following an

approach similar to the one in [12]. In this way, it would use
LearnSQL to (possibly partially) validate assignments from the
students and to integrate the marks obtained using our judge
with the rest of marks, as well as presenting the students a
single source for the whole subject.

In order to obtain further insight into the learning benefits
of LearnSQL, we consider repeating the evaluation next year
including other groups where classical non-assessed exercises
are proposed to the students as control groups. Moreover, for
confirming the conjectured positive effect of the informative
feedback provided by the judge, we plan to offer to a separate
student group a restricted version of LearnSQL where only a
binary answer (correct/wrong) is obtained.

Finally, it might be interesting to add more problems and
to test the tools in different degrees. In particular, we are
interested in analyzing the impact of using this kind of judge
with the students from the Mathematics degree.

Acknowledgements

This work has been supported by the teaching innovation
projects of the Complutense University of Madrid INNOVA-
Docencia 2020-21/18 and 2021-22/387.

REFERENCES

[1] “Computing Curricula 2020,” December 2020, https://www.acm.org/
binaries/content/assets/education/curricula-recommendations/cc2020.
pdf.

[2] B. S. Bloom, M. D. Engelhart, E. J. Furst, W. H. Hill, and D. R.
Krathwohl, Taxonomy of educational objectives: The classification of
educational goals. Handbook I: Cognitive domain. David McKay
Company, 1956.

[3] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of
recent systems for automatic assessment of programming assignments,”
in Proceedings of the 10th Koli Calling International Conference on
Computing Education Research, ser. Koli Calling 2010. ACM, 2010,
pp. 86–93.

[4] N. Gerritsen, T. Kinkhorst, and T. Werth, DOMJudge 8.0 manual,
DOMJudge, 2022.

[5] L. Llana, E. Martin-Martin, C. Pareja-Flores, and J. Á. Velázquez-
Iturbide, “FLOP: A user-friendly system for automated program
assessment,” J. Univers. Comput. Sci., vol. 20, no. 9, pp. 1304–1326,
2014. [Online]. Available: https://doi.org/10.3217/jucs-020-09-1304

[6] M. A. Revilla, S. Manzoor, and R. Liu, “Competitive learning in infor-
matics: The UVa online judge experience,” Olympiads in Informatics,
vol. 2, pp. 131–148, 2008.

[7] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems (7th
Edition). Pearson Harlow, 2017.

[8] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database system
concepts (7th edition). McGraw-Hill, 2019.

[9] F. Sáenz-Pérez, “DES: A deductive database system,” Electron. Notes
Theor. Comput. Sci., vol. 271, pp. 63–78, March 2011. [Online].
Available: http://dx.doi.org/10.1016/j.entcs.2011.02.011

[10] F. Sáenz-Pérez, “Applying constraint logic programming to SQL
semantic analysis,” Theory and Practice of Logic Programming,
vol. 19, no. 5-6, p. 808–825, 2019. [Online]. Available: http:
//dx.doi.org/10.1017/S1471068419000206

[11] J. Hamari, Gamification. John Wiley & Sons, Ltd, 2019, pp. 1–
3. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781405165518.wbeos1321

[12] J. L. Brita-Paja, C. Gregorio, L. Llana, C. Pareja, and A. Riesco,
“Introducing MOOC-like methodologies in a face-to-face undergraduate
course: a detailed case study,” Interactive Learning Environments,
vol. 27, no. 1, pp. 15–32, 2019. [Online]. Available: https:
//doi.org/10.1080/10494820.2018.1451345

502

https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf
https://doi.org/10.3217/jucs-020-09-1304
http://dx.doi.org/10.1016/j.entcs.2011.02.011
http://dx.doi.org/10.1017/S1471068419000206
http://dx.doi.org/10.1017/S1471068419000206
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781405165518.wbeos1321
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781405165518.wbeos1321
https://doi.org/10.1080/10494820.2018.1451345
https://doi.org/10.1080/10494820.2018.1451345

DOI reference number: 10.18293/SEKE2022-024

Data Regulation Ontology

Guillaume Delorme, Guilaine Talens, Eric Disson

Laboratoire Magellan

University Jean Moulin Lyon 3, Iaelyon School of

Management

Lyon, France

@univ-lyon3.fr

Guillaume Delorme

Group Security

Solvay

Lyon, France

@solvay.com

Abstract—The recent upsurge enactment of regulations seeking to

regulate data processing induces a complexification of compliance

management for regulated firms. Firms wishing to implement

efficient, cost effective and compliant information security and risk

management require an increased comprehension of regulatory

requirements. Following a previous paper defining Data Regulation

Risk, this paper describes an ontology to apprehend the business and

operational impacts of regulatory requirements. The ontology is

structured to handle various firms’ legal context while remaining

agnostic of risk management methodologies.

Keywords-Ontology; Compliance; Knowledge-based; Privacy

I. INTRODUCTION

Over the past decades, the upsurge enactment of regulations
seeking to reinforce the protection of individuals’ rights and
privacy, economic interests and national security has led to the
appearance of a new class of risk called Data Regulation Risk
(DRR) [1]. We defined Data Regulation as a norm governing
data processing and/or ICT governances and processes and/or
information technologies and services. Despite addressing
similar concepts, such regulations are yet often demanding
divergent or particular controls. This article aims to furnish the
necessary information to facilitate DR management.

Several authors pointed out the need for ontology in the
security domain [2, 3]. Similarly, several conceptualizations of
the legal domain have been presented and studies and
comparison of legal ontologies can also be found [4, 5].
Despite important contributions, there is a need for
methodologies and models to identify multi-disciplinary risks
like DR management. We seek to address DR by building an
ontology which facilitates its management.

Ontologies are designed to facilitate the sharing, use and re-
use of knowledge [6]. Defined as explicit conceptualization of
a domain [7], they enable its modulization with the desired
level of abstraction depending on the initial objective. We
develop an ontology following the Enterprise Model Approach
[8] with the ambition of facilitating the apprehension of
business and operational impacts of regulatory requirements. It
focuses on regulatory controls while leaving the option of
mapping the controls with additional threats for a broader or
multi-disciplinary risk management. To reach our target, we
use to the extent possible the terminologies of the WordNet
database developed by Princeton University [9] as well as
concepts present in existing ontologies.

This contribution is structured as follows. Section 2
discusses the core ontology and its purpose. Section 3 presents
the building and usability of the ontology. Finally, section 4
draws conclusions and discusses some further research
directions.

II. THE CORE ONTOLOGY ARCHITECTURE AND ITS KEY

CONCEPTS

The creation of an ontology requires to determine what entities

should be considered and studied.

A. Methodology

With the ambition of easing methodology building, [6]
surveyed different ontology building methodologies such as
TOVE [10], Enterprise Model Approach [8], Methontology
[11] and Ontolingua [7]. Recent methodologies have been
developed to focus on specific needs such as [12]. As no
methodology seems to stand out and all of them have their pros
and cons [5], we decided to adopt the Enterprise Model
Approach which is a stage-based approach, widely spread,
providing sufficient freedom of representation [13]. It is
appropriate to a cross disciplinary ontology such as ours and is
articulated around four main stages : identify purpose, building
the ontology, evaluation and documentation. The second stage
incorporates the ontology capture, ontology coding and the
integration of existing ontologies [8].

As opposed to the classic bottom-up and top-down
approach to identify the main terms of our ontology, we opt for
the middle out approach presented in [8]. This approach allows
one to identify the primary concepts of the ontology before
moving on to specialize or generalize terms [11]. The middle
out approach implicitly leads to more stable concepts. In
regards to clarity, which is the foundation of the usability and
reusability of an ontology, we need a world known, easily
accessible, proven and accepted terminology database.
Suggested Upper Merged Ontology (SUMO) [14] is a formal
public ontology providing definitions for general purpose terms
and is intended as a unifying framework for more specific
domain level ontologies. As SUMO is designed as an upper
ontology, it provides generic terms and therefore fails to
address the needs of more specific domains ontologies [15].
We then decide to use when possible the terminologies of the
WordNet database developed by Princeton University [9].
WordNet “is a large lexical database of nouns, verbs, adjectives
and adverbs grouped into sets of cognitive synonyms (Synsets),
each expressing a distinct concept. Synsets are interlinked by

503

means of conceptual-semantic and lexical relations.” Each
concept, relation or attribute in our ontology is mapped with a
unique Synset using the Synset ID.

B. Purpose

Defining an ontology purpose and what its intended uses
are, is the fundamental step towards developing one [8], [11].

Our approach is an attempt to design a system capable of
representing the various legal modalities (ought, ought not,
may, or can) and delivering pragmatic information for the users
based on generalist and sometimes abstract body of laws. It
must then by default be designed to integrate the fast evolution
of the regulations, the divergent or particular controls as well as
being able to focus on a firm specific information systems’
environment. Finally, this system must furnish the necessary
information to apprehend the business and operational impacts
of regulatory requirements. Our ontology does not seek to
assess the effective compliance nor the threat landscape of a
company. Our work is solely to express the requirements and
constraints based on the deontic models of the laws.

The complexity of DR management resides in the necessity
of translating the regulatory constraints and requirements into
technical, organizational and operational terms. Not to mention
that DR is context specific and depends on one organization’s
markets, geographical presence and jurisdictions, it therefore
requires an in-depth analysis involving a broad set of skills
fragmented across the organization’s departments. We then
identified three main types of users which are: IT managers,
security practitioners and compliance managers. All three of
them require different pieces of information extracted from the
laws in order to perform their duties while ensuring business
continuity and their company compliance. For example, the IT
manager will need the deontic modalities and regulatory
requirements to build and manage the overall information
systems while the security practitioners will focus on the
mandatory security controls that need to be implemented.

III. ONTOLOGY BUILDING

A. Reused Ontology

During our search we were able to distinguish two main
areas of work related to ours.

1) Information Security Management Ontologies
As show in [16], security ontologies can be sorted by:

general security ontology, security ontology applied to a
specific domain and theoretical work. This work was later
reused by [17] who extended the classification to eight
categories, namely: beginning security ontologies, security
taxonomies, general security ontologies, specific security
ontologies, web oriented security ontologies, risk based
security ontologies, ontologies for security requirements and
security modeling ontologies. They reached the conclusion that
the existing security ontologies vary a lot and no ontology
covers all of the aspects of the security domain.

A strong basis for information security domain knowledge
may be found in [18]. Their Information Security Ontology is
composed of three sub-ontologies (security, enterprise and

location) and is based on established documentation, industry
best practices and controls. In their previous work, [19] also
proposed a security ontology as a basis for a low cost risk
management solution as well as an ontology focusing on
threats to corporate assets. The ontology consists of five sub-
ontologies (threat, attribute, infrastructure, role and person).
Other works introduce ontologies specific to vulnerability
analysis and management [20], risk assessment [3], security
annotations of agents and web services [21], dependability
requirements that include security [22], secure development
[23]. Despite the variety of domain specific ontologies in the
different branches of information security, they tend to apply to
only very limited scope which prevent us from reusing most of
them. We will nonetheless reuse the role and person concepts
found in [18] as much as possible.

2) Compliance & Legal Ontologies

Several conceptualizations of the legal domain have been

presented or studied and comparison of legal ontologies can
also be found [4, 5]. For instance, the McCarty’s Language for
Legal Discourse [24] is semi-formal conceptualization with the
ambition of creating a general language for legal domain
knowledge. By dividing the domain in three: norm, act and
concept description, the issue of reusability of legal ontologies
is presented in [25]. The three concepts are designed to be
sufficient to conceptualize the subdomains of the legal domain.

There are also ontologies focusing on a single regulation or
a type of regulation such as privacy ontologies. For instance,
PrivOnto [26] is a semantic framework to represent annotated
privacy policies and provide a linguistic instrument for the
privacy domain. Another example is GDPRtEXT [27] which is
a list of concepts present in the General Data Protection
Regulation (GDPR). Its goal is to provide a way to refer to the
concepts and terms found in the GDPR without providing an
interpretation of compliance obligations. Similarly, the privacy
ontology PrOnto [28], models the GDPR main conceptual
cores “to support legal reasoning and compliance checking by
employing defeasible logic theory”. Similarly to the Frame-
Based Ontology, PrOnto manages to model norms through its
conceptualization of deontic operators. We will reuse and
follow as much as possible these design patterns for our
ontology.

Finally, LKIF [15] is a legal core ontology presented as a
knowledge representation formalism that enables the
translation between different legal bases. Comparably to the
role and person concepts found in [26], LKIF presents the
organization, role and person concepts which we will be
reusing.

B. Ontology Capture

The preceding sections presented the requirements for our
ontology and some concepts we reuse from existing ontologies.

1) Key Concepts
Capturing our ontology implies the findings of precise

unambiguous text definitions and terms’ identification for the
different concepts and relationships [8]. We group the top level
concepts of our ontology in four subontologies: enterprise,
security, legal and location.

504

We reuse the top concepts Individual and Role from
[15,18]. The concept Individual (Synset ID: 100007846), (ent:
Individual ⊑ ⊤) is used to represent an identifiable natural
person. The concept Role (Synset ID: 100722061), (ent: Role
⊑ ⊤) and its corresponding subconcepts are used to represent
the normal or customary activity of a person in a particular
social setting. Every individual has one or more roles which
enables a flexible handling of the concepts in complex
scenarios.

The creation of the subontologies enterprise, security and
location is derived from [18]. While the whole subontologies
do not fit the needs of ours, we reuse and adapt their concepts
Control, Asset, Organization, Data and Location to create
respectively Security_Measure (Synset ID: 100823316), (sec:
Security_Measure ⊑ ⊤), Information_System (Synset ID:
103164344), (ent: Information_System ⊑ ⊤), Legal_Entity
(Synset ID: 100001740), (ent: Legal_Entity ⊑ ⊤),
Technological_Data (Synset ID: 105816622), (ent:
Technological_Data ⊑ ⊤), Country (ent: Loc: Country⊑ ⊤),
(Synset ID: 108544813) and Citizenship (loc: Citizenship ⊑ ⊤)
(Synset ID: 113953467).

The concept Technological_Data and its corresponding
subconcepts are used to represent data in digital format. For
this ontology, we model the subconcepts: Business_Data and
Personnal_Data. The former (ent: Business_Data ⊑
Technological_Data) corresponds to data involved in the
course of conduct of activities of a Legal_Entity while the latter
(ent: Personnal_Data ⊑ Technological_Data) are any
information relating to an identified or identifiable natural
person.

The concept Legal_Entity and its corresponding
subconcepts represent a natural or legal person, a public
authority body which carries out an activity whatever its legal
form. The following subconcepts modeled so far are:
Business_Organization, Independant_Organization and
Regulatory_Agency.

We use the concept Information_System to describe an
organized set of resources (hardware, software, individual, data
and procedure) which makes it possible to process data.

Accordingly, we create the concept IT_System (Synset ID:
104377057), (ent: IT_System ⊑ ⊤) to represent a combination
of interacting elements (resources) organized to achieve one or
more desired objectives. We introduce this concept to provide
an agile ontological structure according to the granularity of
regulations. To illustrate various data processing, we add the
concept Action (Synset ID: 100037396), (ent: Action ⊑ ⊤) and
its corresponding subconcepts to represent something done (i.e.
action or processing of data).

We then need to create the concept Functionnal_Process
(SynSet ID: 101023820), (ent: Functionnal_Process ⊑ ⊤) to
describe a set of interrelated or interacting activities that uses
inputs to produce an intended result. As an example, an
instance of a Functionnal_Process would be the payroll process
within an organization.

Security measures are usually gathered within different
classes of documents. We then create the concept

Documentation (Synset ID: 106588326), (sec: Documentation
⊑ ⊤) to represent the set of documents such as policies,
guidelines, procedures or frameworks. The concept is also
useful to illustrate external documentation such as standards
and frameworks which are often cited in regulations.

We need the concept Norm (Synset ID: 106532330), (leg:
Norm ⊑ ⊤) to describe texts of laws. To show an action that is
governed by a regulation through legal modalities, we will use
the concept Act (Synset ID: 100030358), (leg: Act ⊑ ⊤) as
introduced by [23]. Accordingly, a Norm governs an Act which
itself governs Individual, Technological_Data, Legal_Entity
and Security_Measure.

2) Key Relationships

Our next task focuses on determining the relationships

between the concepts. Our model consists of two types of
relationships: characteristic relationships which are used to
represent the links between the different concepts of the model
and action relationships when a concept performs a direct
action on another concept. Our model is composed of 11
characteristic relationships (govern, has_a, isLocatedIn, belong,
involve, protect, define, manage, isOwnedBy, isComposedOf
and create) and 3 action relationships (process, isUsedBy,
perform).

C. Formalization of the U.S. Export Arm Regulations

To illustrate the different primary concepts of our model,
we will formalize parts of the Export Arm Regulations [29]:
EARNorm is_a Norm. EAR Supplement No. 18 to part 734
states the following:

Transmitting or otherwise transferring “technology” or
“software” to a person in the United States who is not a
foreign person from another person in the United States.

Using the concept Act, Supplement No. 18 to part 734 is
therefore represented as: EAR734.18Act is_a Act. Using the
govern relation: EARNorm governs EAR734.18Act. Data
regulated by the EAR Supplement No. 18 to part 734 then
correspond to: EARBusiness_Data is_a (Business_Data ⊑
Technological_Data). We then need to create a first person
using the concept Individual: PersonReceiveingEARData is_a
Individual. Then, this individual must be physically located in
the United States: US is_a Country and be an US citizen:
USCitizenship is_a Citizenship. PersonReceiveingEARData
isLocatedIn US and has_a USCitizenship. We can proceed to
create our second individual residing in the US who is the
sender of the data: PersonSendingEARData is_a Individual and
isLocatedIn US.

Translating the term Release into practical terms would
result in granting or receiving access to EAR controlled data.
To encapsulate this, the concept Action will be used to
represent the transfer of controlled data: TransferEARData is_a
(Transfer ⊑ Action). To add an extra layer of granularity, we
can come up with additional subconcepts such as granting
access and its reverse, receiving access: GrantAccessEARData
is_a (GrantAccess ⊑ Transfer) and ReceiveAccessEARData
is_a (ReceiveAccess ⊑ Transfer). In the end, transmitting or
otherwise transferring would be: An individual that uses an

505

EARSystem is_a IT_System to perform the action
TransferEARData that process EARBusiness_Data.

EAR734.18Act ⊑ governs ((PersonReceiveingEARData ⊓
isLocatedIn.US ⊓ has_a.USCitizenship) and (EARSystem ⊓
perform.ReceiveAccessEARData ⊓
process.EARBusiness_Data))

EAR734.18Act ⊑ governs ((PersonSendingEARData ⊓
isLocatedIn.US) and (EARSystem ⊓
perform.GrantAccessEARData ⊓
process.EARBusiness_Data))

IV. CONCLUSION AND FURTHER RESEARCH DIRECTION

Based on various data sources such as established
documentation or industry best practices, existing ontologies
[15, 18] and regulations, we present an ontology able to
formalize firms’ legal context while enabling the sharing and
reuse of knowledge to support decision making. We present an
ontology with 14 top level concepts grouped in four
subontologies (enterprise, security, legal and location) and 14
relationships. With the ambition of facilitating the
apprehension of business and operational impacts of regulatory
requirements, our ontology is designed for any type of firm.
We are currently developing the ontology using Protégé and
implementing it at a worldwide chemical company subject
multiple regulations.

We also plan to integrate further existing information
security and risk management ontologies. We believe that
combining them will enable more efficient risk management by
combining regulatory risk and information security risk.

REFERENCES

[1] Delorme, G., Talens, G., Disson, E., Collard, G., & Gaget, E. (2020,

December). On the Definition of Data Regulation Risk. In International
Conference on Service-Oriented Computing (pp. 433-443). Springer,
Cham.

[2] Donner, M. (2003). Toward a security ontology. IEEE Security &
Privacy, 1(03), 6-7.

[3] Tsoumas, B., & Gritzalis, D. (2006, April). Towards an ontology-based
security management. In 20th International Conference on Advanced
Information Networking and Applications-Volume 1 (AINA'06) (Vol. 1,
pp. 985-992). IEEE.

[4] Larmande, P., Arnaud, E., Mougenot, I., Jonquet, C., Rouge, T. L., &
Ruiz, M. (2013, May). Proceedings of the 1st International Workshop on
Semantics for Biodiversity. In 1. International Workshop on Semantics
for Biodiversity (pp. 001-131).

[5] Visser, P. R., & Bench-Capon, T. J. (1998). A comparison of four
ontologies for the design of legal knowledge systems. Artificial
Intelligence and Law, 6(1), 27-57.

[6] Jones, D., Bench-Capon, T., & Visser, P. (1998). Methodologies for
ontology development.

[7] Gruber, T. R. (1992). Ontolingua: A mechanism to support portable
ontologies.

[8] Uschold, M., & King, M. (1995). Towards a methodology for building
ontologies (pp. 1-13). Edinburgh: Artificial Intelligence Applications
Institute, University of Edinburgh.

[9] WordNet, https://wordnet.princeton.edu/ last accessed 2022/02/20.

[10] Fox, M.S., Chionglo, J., Fadel, F. A Common-Sense Model of the
Enterprise, Proceedings of the Industrial Engineering Research
Conference 1993

[11] Fernández-López, M., Gómez-Pérez, A., & Juristo, N. (1997).
Methontology: from ontological art towards ontological engineering.

[12] Poveda-Villalón, M., Fernández-Izquierdo, A., Fernández-López, M., &
García-Castro, R. (2022). LOT: An industrial oriented ontology
engineering framework. Engineering Applications of Artificial
Intelligence.

[13] Pinto, H. S., & Martins, J. P. (2004). Ontologies: How can they be
built?. Knowledge and information systems, 6(4), 441-464.

[14] Niles, I., & Pease, A. (2003). Mapping WordNet to the SUMO ontology.
In Proceedings of the ieee international knowledge engineering
conference (pp. 23-26).

[15] Alexander, B. O. E. R. (2009). LKIF core: Principled ontology
development for the legal domain. Law, ontologies and the semantic
web: channelling the legal information flood, 188, 21.

[16] Blanco, C., Lasheras, J., Valencia-García, R., Fernández-Medina, E.,
Toval, A., & Piattini, M. (2008, March). A systematic review and
comparison of security ontologies. In 2008 Third International
Conference on Availability, Reliability and Security (pp. 813-820). Ieee.

[17] Souag, A., Salinesi, C., & Comyn-Wattiau, I. (2012, June). Ontologies
for security requirements: A literature survey and classification. In
International conference on advanced information systems engineering
(pp. 61-69). Springer, Berlin, Heidelberg.

[18] Fenz, S., & Ekelhart, A. (2009, March). Formalizing information
security knowledge. In Proceedings of the 4th international Symposium
on information, Computer, and Communications Security (pp. 183-194).

[19] Ekelhart, A., Fenz, S., Klemen, M. D., & Weippl, E. R. (2006,
December). Security ontology: Simulating threats to corporate assets. In
International Conference on Information Systems Security (pp. 249-
259). Springer, Berlin, Heidelberg.

[20] Wang, J. A., & Guo, M. (2009, April). OVM: an ontology for
vulnerability management. In Proceedings of the 5th Annual Workshop
on Cyber Security and Information Intelligence Research: Cyber
Security and Information Intelligence Challenges and Strategies (pp. 1-
4).

[21] Denker, G., Kagal, L., Finin, T., Paolucci, M., & Sycara, K. (2003,
October). Security for daml web services: Annotation and matchmaking.
In International Semantic Web Conference (pp. 335-350). Springer,
Berlin, Heidelberg.

[22] Dobson, G., & Sawyer, P. (2006, November). Revisiting ontology-based
requirements engineering in the age of the semantic web. In Proceedings
of the International Seminar on Dependable Requirements Engineering
of Computerised Systems at NPPs (pp. 27-29).

[23] Karyda, M., Balopoulos, T., Dritsas, S., Gymnopoulos, L., Kokolakis,
S., Lambrinoudakis, C., & Gritzalis, S. (2006, April). An ontology for
secure e-government applications. In First International Conference on
Availability, Reliability and Security (ARES'06) (pp. 5-pp). IEEE.

[24] McCarty, L. T. (1989, May). A language for legal discourse i. basic
features. In Proceedings of the 2nd international conference on Artificial
intelligence and law (pp. 180-189).

[25] Van Kralingen, R. (1997, June). A conceptual frame-based ontology for
the law. In Proceedings of the first international workshop on legal
ontologies (pp. 6-17).

[26] Oltramari, A., Piraviperumal, D., Schaub, F., et al., (2018). PrivOnto: A
semantic framework for the analysis of privacy policies. Semantic Web,
9(2), 185-203.

[27] Pandit, H. J., Fatema, K., O’Sullivan, D., & Lewis, D. (2018, June).
GDPRtEXT-GDPR as a linked data resource. In European Semantic
Web Conference (pp. 481-495). Springer, Cham.

[28] Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., & Robaldo, L.
(2018, October). Pronto: Privacy ontology for legal compliance. In Proc.
18th Eur. Conf. Digital Government (ECDG) (pp. 142-151).

[29] Export Administration Regulation (EAR), 15 C.F.R. § 730 et seq,
https://www.bis.doc.gov/index.php/regulations/export-administration-
regulations-ear, last accessed 2022/02/20.

506

https://wordnet.princeton.edu/

SMIFIER: A Smart Contract Verifier for Composite
Transactions

Yu Dong∗, Yue Li∗, Dongqi Cui†, Jianbo Gao∗, Zhi Guan‡, and Zhong Chen∗
∗School of Computer Science, Peking University, China

†National Engineering Research Center for Software Engineering, Peking University, China
Email: ∗{dongyu1101, liyue cs, gaojianbo, zhongchen}@pku.edu.cn, †cdq@stu.pku.edu.cn, ‡guan@pku.edu.cn,

Abstract—Ensuring functional correctness of smart contracts
is a pressing security concern to blockchain-based systems. With
the development of blockchain application, the trading scenarios
and function implementation of smart contracts have become
increasing complex, containing several interacted contracts or
related functions. However, the existing contracts verifiers for
proving functional correctness focus on verifying isolated contract
or function but ignore the interactions between them, which
makes it difficult to verify correctness of composite transactions,
i.e., complex transaction scenarios that invoke multiple contracts
or trigger a set of transactions. In this paper, we present
SMIFIER, a formal verification tool for smart contracts to
prove functional properties in composite transactions. SMIFIER
defines a set of specifications for composite transactions and
can automatically specify properties in these multiple complex
transactions. Based on states extraction and mapping, SMIFIER
translates annotated Solidity program into Boogie program and
verifies relations between functions and properties for interacted
contracts. Our experimental evaluation on 12 real-world projects
and 65 properties, demonstrates that SMIFIER is practically
effective in ensuring functional correctness of properties in
composite transactions.

Index Terms—Smart Contract, Formal Verification, Composite
Transaction

I. INTRODUCTION

Ensuring correctness of smart contracts, programs that
stored and executed on the blockchain, is an urgent security
concern. Smart contracts always store and manage millions of
monetary assets, making their security highly sensitive. The
pressing need for contract correctness has gained via several
recent high-value incidents resulting in massive losses [1].
Unfortunately, most existing security analyzers [2]–[4] focus
on universal security vulnerabilities such as contract reen-
trancy and integer overflow, but ignore functional correctness
of contracts, i.e., the functional obligations that the program
is intended to implement. In practice, the functionality of
smart contracts implies transaction logic and supports a va-
riety of blockchain applications. If developers make mistakes
and implement functionality incompletely, the contracts will
not behave as intended and will expose vulnerabilities with
potentially devastating financial effects. Therefore, it is critical
to prove functional correctness of smart contracts.

With the development of blockchain applications, the func-
tion implementation of smart contracts has become increasing
complex, containing the combination of interacted contracts
or transactions. The implementation of a trading scenario al-
ways means exploiting a transaction sequence, which involves

several interacted contracts externally calling each other, or
successive transactions sent to related functions of a contract.
As for the contracts in such composite transactions, code
might appear secure, yet expose vulnerabilities when it inter-
acts with other code. Existing security analyzers always ensure
functional correctness of code in isolation such as single
contract or function, but cannot verify an entire transaction
sequence executing as intended.

Checking for functional correctness of smart contracts in
composite transactions should overcome these challenges: 1)
composite transactions contain multiple transaction rules and
specific contract functionality, thus it is difficult to give a
general and explicit definition of composite transactions. Also,
to specify properties in these transactions, it is essential to
design multiple specifications to describe relations of functions
and interactions of contracts. 2) to verify the interaction of
contracts, we must check the behaviors of called contracts after
invocation. Unfortunately, it is difficult to trace and explore
states of called contracts.

In this work, we introduce SMIFIER, an automated formal
verifier for proving functional correctness of smart contracts
in composite transactions. To achieve this, we give an explicit
definition of composite transaction and define multiple kinds
of specifications for it. Based on translating Solidity [5]
program into an intermediate verification language Boogie
[6], SMIFIER can specify function relations and interacted
contract properties. In particular, SMIFIER takes advantage of
well-engineered pipeline and automated verification conditions
generator of Boogie. We describe SMIFIER through examples
and evaluate SMIFIER on real-world contracts in composite
transactions. We also compare SMIFIER with state-of-the-
art safety analysis tools and demonstrate SMIFIER greatly
outperforms other tools in terms of specifying properties in
composite transactions.

The contribution of our work is as follows:
• We give a definition of composite transaction which

can provide an explicit description of multiple complex
trading scenarios involving several interacted functions or
contracts.

• We impose a framework called SMIFIER, which can
automatically verify functional correctness of contracts
in composite transactions. For conveniently specifying
properties in interacted functions or contracts, we design
a set of specifications applied for composite transactions.

DOI reference number: 10.18293/SEKE2022-128
507

1 /// @notice invariant enableTransfer ==> transferFrom
2 contract DaiToken {
3 mapping(address => uint) public balances;
4 address public owner;
5 uint public totalSupply;
6 bool public transferEnabled;
7
8 constructor() public {
9 owner = msg.sender;

10 balances[msg.sender] = totalSupply;
11 }
12 function enableTransfer() public {
13 transferEnabled = true;
14 }
15 function transferFrom(address _from, address _to, uint

_value) public {
16 require(transferEnabled == true);
17 balances[_from] -= _value;
18 balances[_to] += _value
19 }
20 }

21 /// @notice invariant sum(DaiToken.balances) == DaiToken.
totalSupply

22 contract TokenFarm {
23 DaiToken public daiToken;
24
25 constructor(DaiToken _daiToken) public {
26 daiToken = _daiToken;
27 }
28
29 /// @notice precondition DaiToken.transferEnabled ==

true
30 function deposit(uint _amount) public {
31 daiToken.transferFrom(msg.sender, address(this),

_amount);
32 _mint(msg.sender, _amount);
33 }
34 }

Fig. 1: Simplified Token Farm source code.

• We implement the framework and demonstrate the valida-
tion of our tool. We perform the evaluation over 12 real-
world projects and 65 properties defined for composite
transactions, showing that SMIFIER can effectively verify
properties for smart contracts in composite transactions.

II. MOTIVATING EXAMPLE

In this section, we present a motivating example of contracts
in composite transaction. Fig. 1 presents the simplified source
code from Token Farm, a common DeFi (Decentralised Fi-
nance) application [7]. Through Token Farm, users can deposit
Dai tokens (a stablecoin cryptocurrency) to the contract and it
will mint and transfer Farm Tokens (cryptocurrency provided
by the application) to them. The users can later withdraw their
Dai tokens by burning their Farm Token on smart contract and
the Dai tokens will be transferred back to them. As mentioned,
the annotations (beginning with “/// @notice”) in code
will be illustrated in the following section.

In contract DaiToken, the function enableTransfer sets
the state variable transferEnabled to true (line 13 in
Fig. 1). Only after the owner makes transfers enabled, the
function transferFrom can transfer the specified amount
of tokens from the address _from to the address _to
(line 15-19). The successive transactions sent to function
enableTransfer and function transferFrom make up
a transaction sequence. If the developer forgets writing the
require clause (line 16), the functionality that tokens are
tradeable only after the operation of owner will be incomplete.
However, the result of vulnerable transferFrom would
be identical to the correct one when verifying the single
function. Therefore, the proving of this functionality can only
be achieved by putting the two transactions together to validate
whether the entire transaction sequence is executed in order.

In contract TokenFarm, function deposit externally calls
function transferFrom to transfer several Dai tokens from
msg.sender to this address (line 31). Contract DaiToken is
a token contract and implements standard interfaces. The
developers always assume the implementation is consistent

with the standard interfaces and satisfies intended func-
tionality. However, if the token contract makes fake im-
plementation by only invoking standard interfaces without
correct code writing, developers will mistakenly call the
false function. For example, if transferFrom deliberately
mistakenly writes the plus and minus operators by writing
balances[_from] += _value and balances[_to]
-= _value, “deposit” will become “withdraw” when To-
kenFarm calls this wrong function, which makes the meaning
completely opposite and may lead to unexpected financial loss.
Therefor, it is essential to verify functional correctness of the
called contract before sending message calls.

III. SMIFIER

In this section, we will describe the definition of composite
transaction and the details of SMIFIER in verifying smart
contracts. Our verification architecture is summarized in Fig. 2,
which consists of three phases. In the first phase, SMIFIER
parses annotated smart contracts and generates an abstract
syntax tree (AST). In the second phase, SMIFIER traverses the
AST and converts Solidity program into Boogie by modular
program reasoning. For specifications for composite transac-
tions, we instrument the Boogie program by states recognition,
extraction and mapping. Finally, SMIFIER relies on Boogie
verifier to prove correctness or reports the violated annotations
in Solidity program.

A. Definition of Composite Transactions

Composite transaction means a trading scenario consisting
of multiple transactions involving several related functions in a
contract or several interacted contracts. We define two kinds of
transaction sequences as composite transaction, one inter-txn
and another intra-txn.

Inter-txn. Inter-txn means a transaction sequence containing
successive transactions sent to related functions in a contract.
Inter-txn is operated by the message sender who sends trans-
actions to contract. We let S represent a transaction sequence,

508

Fig. 2: Schematic workflow of SMIFIER.

C.f represent invoking function f in contract C. The inter-txn
can be expressed as S = ⟨C.f1, C.f2, C.f3, · · · ⟩ where f1, f2,
f3 have relation r. We define r as f1⊗v f2 = f2 → (f1 ∼ v),
where two functions refer to the same state variable v and
the requirement in f2 depends on the modification in f1. We
divide the relations into two types, precedence relation and
exclusion relation, respectively expressed as f1⊗vf2 = f2

=→
(f1 ∼ v) and f1 ⊗v f2 = f2

̸=→ (f1 ∼ v). Precedence relation
requires v is equal to the value set by f2, while exclusion rela-
tion requires not equal to. The error handling statements(e.g.,
assert, require) in f2 ensures f2 is executed after f1 was in-
voked. For example, function enableTransfer (in Fig. 1)
modifies transferEnabled to true and the execution of
transferFrom requires the modified value is equal to true.
We say the transactions sent to these two functions in sequence
form the inter-txn and two functions have precedence relation.
Intra-txn. Intra-txn means a transaction sequence involving
a set of contracts which externally call each other. Intrax-txn
is operated by the program developer. The intra-txn can be
expressed as S = ⟨C1.f1, C2.f2, C3.f3, · · · ⟩ where C1, C2,
C3 are different contracts and C1.f1 calls C2.f2 and C2.f2
calls C3.f3. For example, the function deposit in contract
TokenFarm externally calls the function transferFrom in
contract DaiToken (in Fig. 1). The transaction sent to con-
tract TokenFarm and then exposing message calls to another
contract DaiToken forms the intra-txn.

B. Specifications for Composite Transactions

We design multiple specifications so that SMIFIER could
verify function relations for inter-txn and called contract
properties for intra-txn, as shown in Table. I. To be mentioned,
the specifications are inserted as in-code annotations supported
by Solidity and consist of three kinds of statements, pre-
and post-conditions and invariants. Contract-level invariants
must hold before and after the execution of every public
function. Functions are specified with pre- and post-conditions,
which hold before entering functions and specify final states
of functions.

For inter-txn, we design two kinds of specifications re-
spectively for two function relations. We let “=⇒” rep-
resent precedence relation and “||” for exclusion relation.
func1 =⇒ func2 means func2 should be called after func1
was invoked because func2 requires var is equal to the

TABLE I: Specifications for inter-txn and intra-txn. The first
two are for inter-txn while the last one is for intra-txn.

Property Notation Description

Precedence
Relation func1 =⇒ func2

func2 requires the variable var is
equal to the value set by func1.
Insert as contract-level invariant.

Exclusion
Relation func1 || func2

func2 requires the variable var is not
equal to the value set by func1.
Insert as contract-level invariant.

Other Contract
Property Spec {C.var}

Specify state variable var of contract
C.
Insert as contract-level invariant,
function-level pre- and post-conditions.

value assigned in func1 while func1 || func2 means func1
and func2 cannot be called simultaneously. For example,
the precedence relation in Fig. 1 is expressed as annotation
“enableTransfer =⇒ transferFrom” (line 1).

For intra-txn, we create a new format Spec {C.var}. Spec
contains all provided forms of property expressions, as well
as the specifications designed for inter-txn described above.
Different with message calls to contracts supported by Solid-
ity, SMIFIER uses C.var to represent the variable of called
contract, where C is the called contract name rather than
instance name and var is the variable belonging to C. Intra-
txn specifications are inserted in the current contract as all
three kinds of specification statements. For example, we insert
contract-level invariant in contract TokenFarm (line 21 in
Fig. 1) to ensure the sum of individual balance is equal to the
total supply of DaiToken. The special function sum is provided
to express the sum of collections (arrays and mappings).
Besides, we can also insert pre-condition before where the
call happens to verify the function enableTransfer (line
29).

C. Transform and Verification

We implement a transform algorithm for translating Solidity
to Boogie program in composite transactions. As shown in
Algorithm. 1, given a program P as a list of contracts
source codes and S as a list of specifications, the algorithm
produces an Boogie program P

′
that inserted with transformed

annotations. The algorithm has three parts. Line 1 transfers the
Solidity program into Boogie program without specifications.
Lines 3-16 handles the inter-txn specifications in S, while lines
17-27 handles the intra-txn specifications in S.

For each specification s in S, the algorithm first identifies
the type of the specification. If s contains the function relation
operators “=⇒” or “||”, we predicate s is for inter-txn and
define the two functions before and after the relation operator
as f1 and f2. Otherwise we identify s is for intra-txn if
s contains the name of another contract. For inter-txn, the
algorithm extracts requirement in f2 and assignment in f1,
and then respectively converts into pre- and post-condition. To
verify the priority and exclusion of execution, the algorithm
generates a new procedure proc1 calling two functions in order
and declares another procedure proc2 calling only f2 if we
verify precedence relation. If proc1 is proved and proc2 fails
verification, we indicate that f2 cannot be executed alone and

509

Algorithm 1: Transform algorithm
Input: Solidity program P as a list of contracts source codes and S

as a list of specifications
Output: Transformed Boogie program P

′

1 Transfer Solidity program P to Boogie program P
′

without S
2 for s ∈ S do
3 if s contains “=⇒” or “||” then
4 r ← “=⇒” or “||”
5 f1 ← Function before r in s
6 f2 ← Function after r in s
7 pre← Rewrite require statement in f2
8 Insert pre before f2 into P

′

9 post← Transfer assignment statements in f1
10 Insert post after f1 into P

′

11 Declare a new procedure proc1 in P
′

12 proc1 ← “call f1; call f2;”
13 if r is “=⇒” then
14 Declare a new procedure proc2 in P

′

15 proc2 ← “call f2;”
16 end
17 Insert proc1 (and proc2) into P

′

18 end
19 else if s contains another contract name then
20 C ← The current contract
21 C

′ ← The called contract
22 vars← The variables names of C

′
in s

23 func← The called function of C
′

24 Create a new specification s
′

and copy s to s
′

25 for var in vars do
26 bg var ← Locate Boogie variable in func in P

′

according to type and name of var
27 Replace C.var in s

′
with bg var

28 end
29 Insert s

′
in P

′
in the same position as s in P

30 end
31 else
32 Transfer and insert s in P

′

33 end
34 end
35 Return P

′

the invocation of f2 requires f1, i.e., the precedence relation
property is verified. Also, we predicate exclusion relation
is proved when the procedure calling two functions fails
verification, as two functions cannot execute simultaneously.

For intra-txn, the algorithm locates the called variable names
of called contract and replaces them with the translated Boogie
representation. We identify variables in Boogie program by
first determining whether they are state variables or local
variables and then traversing the global or local variable
list (of called function) to search them. After research, we
replace C.var with variables in Boogie and insert the replaced
specification in front of the called contract or function and
keep the specification types the same.

Fig. 3 presents the simplified transformed Boogie program
of Token Farm contracts (Fig. 1). According to our algorithm,
we create two procedures proc1 and proc2 in DaiToken
respectively calling two functions and only the latter function.
The new procedure parameters are made up of arguments
of functions called in the procedure. For intra-txn, we move
specifications (previously inserted in contract TokenFarm) to
the front of called contract DaiToken and called function

transferFrom. We also replace variables in properties
(e.g., DaiToken.balances) with Boogie expressions.

1 // invariant sum(balances) == totalSupply
2 contract DaiToken {
3 var balances: [address]int;
4 var transferEnabled: bool;
5 procedure enableTransfer(...) { ... }
6 // precondition transferEnabled == true
7 procedure transferFrom(_from: address, _to: address,

_value: uint) { ... }
8 procedure proc1(_from: address, _to: address, _value:

uint) {
9 call enableTransfer();
10 call transferFrom(_from, _to, _value);
11 }
12 procedure proc2(_from: address, _to: address, _value:

uint) {
13 call transferFrom(_from, _to, _value);
14 }
15 }
16 contract TokenFarm {
17 DaiToken public daiToken;
18 procedure deposit(_amount: uint) {
19 // call transferFrom() in DaiToken
20 }
21 }

Fig. 3: Simplified transformed Boogie program of Token Farm.

After being transferred to Boogie program, SMIFIER lever-
ages Boogie verifier to transform the program into verification
conditions and discharge them using SMT solvers. SMIFIER
verifies each procedure of each contract and outputs the
verification result of each procedure. If Boogie proves the cor-
rectness of program, the result will display “OK”. Otherwise
if there are vulnerabilities in program, SMIFIER will report
“Error” and map the violated annotations back to the Solidity
code (e.g., line numbers, function names).

IV. EVALUATION

We now present out evaluation of SMIFIER on real-world
Ethereum projects. We focus on the following key questions:
1) What types of properties are common for composite trans-
actions in real world? 2) How effective is SMIFIER in verifying
smart contracts in composite transactions? 3) How does SMI-
FIER compare with other smart contract safety analysis tools?
All experimental results reported in this section are conducted
on a server running Ubuntu 20.04 LTS with 32 AMD EPYC
CPUs at 2.8GHz and 64GB of physical memory.

A. Benchmark and Properties

Benchmark. We have collected in total 12 Ethereum projects
in ERC-20, ERC-721 standards and DeFi applications. We
focus on these projects because 1) they are most widely
used contracts, 2) they contain several related functions in a
contract or several interacted contracts which satisfy definition
of composite transactions, 3) we want to focus our analysis on
contracts that manipulate critical digital assets. Our benchmark
includes the top five ERC-20 contracts and the top five
ERC-721 contracts ranked by Etherscan [8] which define
the interface and specification for implementing fungible and
non-fungible tokens respectively. We also include two decen-
tralized exchanges (DEX), Uniswap and Sushiswap, which

510

TABLE II: Properties for composite transactions and concrete examples taken from the benchmarks.

Type Description Example
User-based
access control

Only particular users have privi-
leges to perform critical actions.

function setOwner() {owner = msg.sender;}
function withdraw() {require(msg.sender == owner);}

Token-based
circulation control

The circulation of token is allowed
at certain states.

function enableTransfer() {transferEnabled = true;}
function transferFrom() {require(transferEnabled == true);}

Contract
life circle

The transaction of contract is al-
lowed at certain states.

function pause() {paused = true;}
function unpause() {require(paused == true);}

Balances
consistence

The sum of individual balance
keeps invariant. invariant sum(ERC20.balance) == ERC20.totalSupply

State-based
properties

Defines states which invariants
must hold or variables must satisfy. invariant ERC721._approve ==> ERC721.transferFrom

use decentralized network protocols to facilitate automated
transactions between cryptocurrency tokens.
Properties. To focus on verifying composite transactions, we
have summarized common properties and classified them into
five distinct categories, as shown in Table. II.

1) User-based access control defines only particular users
have privileges to perform critical actions. This property
is expressed as function relation, where a user has
permissions to invoke another function only after being
granted access in one function. The example in Table. II,
taken from CK contract, stipulates that only the owner
set in function setOwner can invoke withdraw.

2) Token-based circulation control means that the circu-
lation (minting, release and transaction) of token is
allowed at certain states. Only after the tokens are
set accessible in one function, the manipulation of
tokens in another function can be invoked. The exam-
ple in Table. II, taken from LEO contract, shows that
function transferFrom can be invoked only after
enableTransfer enables transfer.

3) Contract life circle defines at which states the trans-
actions of contracts are allowed. The contracts usually
have emergency stop mechanism or can be deprecated,
controlled by state variables. The example in Table. II,
taken from USDT contract, states that function pause
triggers stopped state of the contract and the function
unpause returns the contract to normal state.

4) Balances consistency indicates that the sum of individ-
ual balance keeps invariant after transfers occur. This
property is applied to verifying functional correctness
of the called contract. The example in Table. II ensures
the sum of account balances is equal to the total supply
in Uniswap contract.

5) State-based properties defines states which invariants
must hold and variables must satisfy. This property can
be inserted in single contract or function. It can also
be expressed in the current contract as specification for
the called contract. The example in Table. II shows the
verification of precedence relation in MCHH contract.

B. Verifying Contracts using SMIFIER

We now report on the effectiveness of SMIFIER in verifying
our benchmarks. For each project, we manually insert specifi-

cations using the representation defined in Section.III, which
contain all kinds of properties described above. We represent
out results in Table. III.

The key result is that SMIFIER can successfully verify 60
of the 65 properties (92.3%) in the benchmarks. The reason
why SMIFIER cannot verify the remaining five properties
is that the specification we designed is difficult to express
some properties in ERC-721 contracts. There are several
functions in ERC-721 depending on parameters but not state
variables. If we specify parameters in properties, we are unable
to extract them from functions as state variables when we
implement transform algorithm. We will solve this problem
in future work. The average verification time of SMIFIER is
3.72 seconds and the time is related to the lines of code.
In general, the longer the program, the more contracts and
functions the program contains, the more time SMIFIER takes
to verify it. Because SMIFIER transforms and verifies each
function of each contract in sequence.

Finally, we compare SMIFIER to state-of-the-art smart con-
tract analysis tools: KEVM [9], SOLC-VERIFY [10], VERISOL
[11] and VERX [12], as shown in Table. IV. Our benchmark
consists the first four types of properties defined in the Table. II
which are all for composite transactions, and the last property
for single contract and function. Results indicate that other
tools can only analyze properties in single function or contract
or some properties about function relations while SMIFIER
can verify other contract properties (balances consistence),
which is very important for verifying complete functional
correctness.

V. RELATED WORK

In recent years, there has been great interest in formally
verifying the correctness of smart contracts. For instance,
KEVM [9] translates EVM bytecode to KEVM and leverages
the K framework [13] for checking contracts against given
specifications while Ahrendt [14] translates Solidity into Java
and uses KeY [15], a deductive Java verification tool. SOLC-
VERIFY [10] and VERISOL [11] are two verifiers require users
to manually provide annotations and check contracts based
on translation to Boogie. Except formal verification, there are
other systems using symbolic execution approach for verify-
ing properties. VERX [12] can automatically prove temporal
safety properties of smart contracts since it extracts predicates

511

TABLE III: Experimental results of SMIFIER verification on benchmarks. LOC: the number of lines of code, Contracts: the
number of contracts in the program, Functions: the number of functions in the program, Properties: the number of properties
we verified, Verified: the number of properties that were successfully proved, Avg.time: the average analysis time in seconds.

Contract LOC Contracts Functions Properties Verified Avg.Time (s)
USDT 447 7 25 4 4 2.46
CRO 641 8 30 5 5 2.87

WBTC 663 11 32 5 5 2.89
LEO 734 7 36 6 6 3.03

Fantom 624 6 46 7 7 2.92
LAND 1118 6 62 7 6 4.24

CK 1977 14 82 9 7 5.33
AXIE 891 7 53 4 4 3.24

MCHH 1192 10 56 6 5 4.21
Sherbet 1407 6 53 3 2 4.57
Uniswap 1256 7 52 5 5 4.46

Sushiswap 1353 8 47 4 4 4.42
Overall 12303 97 574 65 60 3.72

TABLE IV: Comparison of SMIFIER with other analysis tools. “✓” represents the tool can verify the property while “✗”
represents the tool cannot verify the property.

Benchmark KEVM SOLC-VERIFY VERISOL VERX SMIFIER

Single Contract Property ! ! ! ! !

Single Function Property ! ! ! ! !

User-based Access Control % % ! ! !

Token-based Circulation Control % % % ! !

Contract Life Circle % % % ! !

Balances Consistence % % % % !

automatically from the contract’s source code. SMARTPULSE
[16] models the contract’s execution environment and uses
CFGAR-based approach to check liveness properties.

VI. CONCLUSIONS

We presented SMIFIER, the first formal verification tool of
Solidity smart contracts for composite transactions. This paper
gives a definition of composite transaction which involves
several related functions or interacted contracts and defines
the two types it contains. SMIFIER presents a set of specifi-
cations and transform algorithm which specify properties and
transfer Solidity program to Boogie program. After transform,
SIMIFIER relies on Boogie verifier to discharge verification
conditions and prove function correctness. We demonstrated
that SMIFIER is effective in specifying properties in composite
transactions and proving functional correctness over 12 real-
world Ethereum projects and 65 properties.

VII. ACKNOWLEDGEMENT

Zhi Guan is the corresponding author. Zhi Guan is
supported by National Key R&D Program of China
(NO.2020YFB1005800) and Beijing Natural Science Founda-
tion(M21040).

REFERENCES

[1] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International conference on principles of
security and trust. Springer, 2017, pp. 164–186.

[2] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254–269.

[3] B. Mueller, “Smashing ethereum smart contracts for fun and real profit,”
HITB SECCONF Amsterdam, vol. 9, p. 54, 2018.

[4] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 1186–1189.

[5] “Solidity documentation,” 2022, https://docs.soliditylang.org/en/v0.8.
12/.

[6] K. R. M. Leino, “This is boogie 2,” manuscript KRML, vol. 178, no.
131, p. 9, 2008.

[7] “Decentralized finance,” 2017, https://ethereum.org/en/defi/.
[8] “Ethereum (eth) blockchain explorer,” 2015, https://etherscan.io/.
[9] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,

B. Moore, D. Park, Y. Zhang, A. Stefanescu et al., “Kevm: A complete
formal semantics of the ethereum virtual machine,” in 2018 IEEE 31st
Computer Security Foundations Symposium (CSF). IEEE, 2018, pp.
204–217.

[10] Á. Hajdu and D. Jovanović, “solc-verify: A modular verifier for solidity
smart contracts,” in Working Conference on Verified Software: Theories,
Tools, and Experiments. Springer, 2019, pp. 161–179.

[11] Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig, C. Born, I. Naseer, and
K. Ferles, “Formal verification of workflow policies for smart contracts
in azure blockchain,” in Working Conference on Verified Software:
Theories, Tools, and Experiments. Springer, 2019, pp. 87–106.

[12] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” in 2020 IEEE
symposium on security and privacy (SP). IEEE, 2020, pp. 1661–1677.

[13] G. Ros, u and T. F. S, erbănută, “An overview of the k semantic frame-
work,” The Journal of Logic and Algebraic Programming, vol. 79, no. 6,
pp. 397–434, 2010.

[14] W. Ahrendt, R. Bubel, J. Ellul, G. J. Pace, R. Pardo, V. Rebiscoul,
and G. Schneider, “Verification of smart contract business logic,” in
International Conference on Fundamentals of Software Engineering.
Springer, 2019, pp. 228–243.

[15] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and
M. Ulbrich, “Deductive software verification-the key book,” Lecture
notes in computer science, vol. 10001, 2016.

[16] J. Stephens, K. Ferles, B. Mariano, S. Lahiri, and I. Dillig, “Smartpulse:
automated checking of temporal properties in smart contracts,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp. 555–
571.

512

https://docs.soliditylang.org/en/v0.8.12/
https://docs.soliditylang.org/en/v0.8.12/
https://ethereum.org/en/defi/
https://etherscan.io/

Ethereum Smart Contract Representation Learning
for Robust Bytecode-Level Similarity Detection

Zhenzhou Tian1,2,3∗, Yaqian Huang1,2, Jie Tian1,2, Zhongmin Wang1,2, Yanping Chen1,2, and Lingwei Chen4∗
1School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, 710121, China

2Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an, 710121, China
3Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an 710121, China

4Department of Computer Science and Engineering, Wright State University, Dayton, OH, USA

Abstract—Smart contracts are programs that run on a
blockchain, where Ethereum is one of the most popular ones
supporting them. Due to the fact that they are immutable,
it is essential to design smart contracts bug-free before they
are deployed. However, various defects have been found in
the deployed smart contracts, causing huge economic losses
and lowing people’s trust. Writing secure smart contracts is
far from trivial, where developers tend to engage in reliable
resources or social coding platforms to reuse code. This leads
to a large number of similar contracts with potential security
risks. Therefore, detecting similarity of smart contracts helps to
avoid vulnerabilities, identify threats, and improve the security of
Ethereum. In this paper, we design a learning-effective and cost-
efficient model, called SmartSD, for Ethereum smart contract
similarity detection. Different from the current research efforts,
SmartSD is performed on a bytecode level and leverages deep
neural networks to learn the latent representations from the
opcode sequences for smart contract bytecodes, where the repre-
sentation learning and similarity measurement are supervised via
siamese neural networks. The experimental evaluations demon-
strate that SmartSD outperforms EClone’s 93.27% accuracy,
achieving 98.37% high detection accuracy and 0.9850 F1-score,
which is computationally tractable and effectively mitigates the
interference caused by compilers.

Index Terms—Smart contract, Similarity detection, Deep learn-
ing, Siamese neural network

I. INTRODUCTION

1 Smart contracts are Turing-complete programs that run
on a blockchain. Among the emerging blockchain platforms,
Ethereum [27] is the most popular one to operate smart con-
tracts. Different from the traditional programs, smart contracts
have the unique characteristics of openness, transparency, non-
tamperability, and independence from third parties. In other
words, they can be integrated to different decentralized appli-
cations (e.g., financial services and supply chain management)
after deployment; more importantly, they are immutable to be
modified or patched, where the only way to change a smart
contract is to deploy a new instance. It is hence essential to
design smart contracts bug-free before their deployments [2].
Unfortunately, various defects have been found in the deployed
smart contracts [3], [11], [25]. To put it into perspective,
according to a recent study, 97% of the collected contracts
are annotated as vulnerable by one or more vulnerability

* Corresponding: tianzhenzhou@xupt.edu.cn and lgchen@mix.wvu.edu
1DOI reference number: 10.18293/SEKE2022-040

analysis tools [5]. This enables attackers to exploit the security
vulnerabilities raised by these defects to fulfill their economic
intents, and cause huge economic losses [19], which has also
severely lowered people’s trust in Ethereum smart contracts.

Smart contracts are usually written in high-level program-
ming languages, where Solidity [20] is the most widely used
one. With high-level languages facilitating smart contract
developments, writing secure smart contracts is still not easy.
The major factor behind this is that these programming lan-
guages are young and evolving, where every change of smart
contracts would introduce significant updates into the lan-
guages. Developers may need many efforts to get familiar with
newer versions, and thus tend to frequently engage in reliable
resources (e.g., Etherscan) or social coding platforms (e.g.,
GitHub) for code reuse to expedite smart code development
process. Considering the widespread defects existing in the
deployed smart contracts, this naturally leads to a large number
of similar smart contract codes with potential security risks.
With this in mind, detecting the similarity of smart contracts
may allow developers to avoid using the compromised ones;
by comparing contracts with known vulnerabilities, it helps to
identify threats and improve Ethereum security.

Similarity detection is a long-term research topic, but the
investigation into smart contracts has been scarce, especially
for similarity detection on Ethereum smart contract byte-
codes. The deployment of a smart contract proceeds by first
compiling its source code into EVM bytecode, encapsulating
bytecode into a transaction, and then sending the transaction
to the zero address [26]. On one hand, smart contract source
codes are not always accessible to avoid attacks, while only
their bytecodes are deployed to run on EVM. On the other
hand, many smart contract defects occur after being compiled
as bytecodes [21]. To this end, our research goal here is
to automatically identify the similarities over the Ethereum
smart contract bytecodes. To achieve this goal, we face a chal-
lenge: developers may compile smart contracts using different
compilers or the same compiler with different optimization
options enabled; accordingly, these cross-compiler and cross-
optimization-level compilations will impose discrepancies on
opcode distributions of the resulting bytecodes, even when
their source codes are exactly the same. Direct fingerprint
generation on bytecodes may not be a good idea to capture
their semantics. It needs a better formulation to learn the

513

higher-level representations of contracts and automatically
detect the similarity among them.

To address the above challenge, in this paper, we design
a learning-effective and cost-efficient model, called SmartSD,
for Ethereum Smart contract Similarity Detection. Different
from the limited research efforts that build upon either finger-
prints susceptible to interference [10], cost-expensive runtime
traces [14], [15], or source code structure [6], our model first
decomposes the given bytecode into EVM instructions and
abstract them as an opcode sequence, and then elaborate deep
neural network structure to learn the representation encoding
structures and semantics of the opcode sequence. In order
to supervise the representation learning and similarity mea-
surement, SmartSD further builds up siamese neural networks
(SNN) [12] to train the model, such that the model can be
successfully applied to the validation and test data sets. The
major traits of our work can be summarized as follows:
• We investigate smart contract similarity detection on the

bytecode level, leveraging feature learning ability of deep
neural networks to learn latent representation from the
abstracted opcode sequence for each bytecode. The pro-
posed method is not only automatic and computationally
tractable, but also effectively to mitigate the interference
caused by compilers and their optimization options.

• We supervise representation learning and similarity mea-
surement via SNN, and use the trained networks to infer
the similarities of smart contract pairs.

• We formulate our positive and negative sample pairs
from smart contract collection using Etherscan, and con-
duct extensive experimental evaluations on them, which
demonstrate the robustness and effectiveness of SmartSD
on smart contract similarity detection.

II. MOTIVATION AND PROBLEM STATEMENT

In this paper, we investigate Ethereum smart contracts devel-
oped in the high-level language Solidity. Due to the significant
differences introduced by different major Solidity versions, the
differences existing in smart contract bytecodes compiled by
different Solidity compiler versions may be also significant. To
understand such differences, we empirically compile a smart
contract’s source code using two different compiler version
with and without optimization options enabled. Accordingly,
we observe that the opcodes generated across these compilers
are different regarding opcode numbers, opcode types, and the
occurring frequencies of the same opcode. Some specific op-
codes reside only in the sequence compiled by certain versions
(e.g., Solidity compilers earlier than version 0.4 do not produce
opcode revert). In addition, the opcode combinations and
their positions are different across different Solidity compiler
versions. These observations imply that direct birthmarks
using signatures or fingerprints on bytecodes may suffer from
the susceptibility to the interference introduced by opcodes and
weak generalizability, and higher-level yet difference-tolerant
representations are needed to address this limitation.

Our goal here is to construct the similarity detection model
over Ethereum smart contract bytecodes: we leverage deep

neural networks of superior feature learning ability to learn
the latent representation from the abstracted opcode sequence
for each smart contract’s bytecodes, and devise SNN to
supervise representation learning and similarity measurement.
More specifically, given two smart contracts’ bytecodes ci
and cj , the opcode sequences si and sj are first extracted
and abstracted from ci and cj respectively, and then jointly
embedded into unified vector space so that we can reasonably
measure the similarity between them. Formally, the similarity
measurement of si and sj can be formulated as:

si
φ(si)−−−→ xi → µ(xi,xj)← xj

φ(sj)←−−− sj (1)

where φ : s → x ∈ Rd is representation learning function
to map opcode sequence s into d-dimensional vector space,
and µ(·) is similarity measuring function. We exploit SNN to
design µ(·). The similarity detection can thus be stated in the
form of µ : (φ(si), φ(sj)) → y, which outputs the similarity
score of the input sample pair in the class space y ∈ {0, 1}
representing the different and similar classes respectively.
That is, if si and sj are similar, then µ(φ(si), φ(sj)) → 1;
otherwise, µ(φ(si), φ(sj))→ 0.

III. METHODOLOGY

In this section, we technically detail how we perform rep-
resentation learning and similarity detection on smart contract
bytecodes though SNN in our designed model SmartSD. Fig. 1
specifies the overview of the SmartSD.

A. Data Preprocessing

In order to prepare the smart contracts for our experimental
evaluations on SmartSD, we first collect our dataset using
Etherscan, which is a block explorer and analytics platform for
Ethereum. More specifically, the HTML pages describing the
transaction information of smart contracts are first crawled and
parsed, such that the data regarding smart contracts’ bytecodes,
and their source codes and compiler versions used are then
collected. Each contract’s bytecodes are encoded by a string
of hexadecimal bytes, which do not reflect the underlying
operations of Ethereum. Therefore, it is inadvisable to analyze
these binaries directly on their raw bytes. In this regard,
we disassemble the contract’s bytecode into assembly EVM
instructions first, and perform the representation learning on
them. Currently, the EVM defines about 142 instructions, and
there are more than 100 instructions to be extended. For
the ground truth preparation, we compile a smart contract
source code to generate bytecodes using compilers of different
versions, where we consider bytecode pairs from them as
positive (similar) data and bytecodes compiled from different
source code as negative (different) data. More details are
presented in Section IV-A.

B. Representation Learning

Given the instruction set extracted from the bytecode of each
smart contract, it is reasonable to learn the embedding from the
sequence as the desired representation for each smart contract.
However, such an implementation applied directly on the

514

E
m

b
e
d

d
in

g

……

CNN BiLSTM

W

S
ig

m
o

id

Instruction Sequence

Normalization

Word2vec

Embedding

Training in

Siamese network

Dense and Sigmoid

for Similarity detection

CNN BiLSTM

Fig. 1. The overview of SmartSD

instruction set can not expressively capture the correlations and
variations among smart contracts. As we want to make features
reflect the smart contract semantics instead of functionality,
using all instructions as they exactly appear may expose us
to the exhaustive functionality information. This immensely
increases the representation learning complexity, and decreases
the embedding expressiveness, which may degrade the succes-
sive SNN performance in turn. To this end, the instruction set
of each smart contract is initially abstracted to the sequence
of opcodes. Afterwards, the opcode sequence is fed to deep
learning framework for representation learning.

1) Instruction Abstraction: Each instruction contains an
opcode followed by some low-frequency tokens (e.g., numer-
ical constants, memory addresses, and special strings), which
can be seen on the left-hand side of Fig. 2. These low-
frequency tokens are random and have a very insignificant
relationship with the semantics of the program. In this respect,
we design the rule to abstract each instruction for the subse-
quent representation learning as follows: the opcode remains
unchanged, and all the non-opcode tokens in the instruction
are removed. An example in Fig. 2 illustrates the instruction
abstraction processing: the instruction sequence on the left is
disassembled from smart contract bytecodes; the abstracted
instruction sequence on the right is simply composed of
opcodes. For example, using the designed abstraction rule,
the instruction “PUSH1 0x80” becomes “PUSH1”, and the
instruction “PUSH1 0xf” is changed to “PUSH1”. After the
instruction abstraction, we can represent a smart contract c
as an opcode sequence s = {op1, op2, op3, · · · , opn}. In the
sequence, each opi represents the opcode of the ith instruction
within n total number of instructions.

2) Opcode Embedding: After getting the opcode sequences
for smart contracts, we further transform them into numerical
embedding space that neural network is able to understand and
process. To this end, we first perform embedding operation to
map each unique opcode to a vector, such that the opcode
sequence can be comprehensively represented. Specifically,
SmartSD employs the representative skip-gram model [17]
to learn opcode representations to encode their contextual
relatedness. Given a set of opcode sequences, each of which is
s = {op1, op2, op3, · · · , opn}, we feed them to the skip-gram
model, and obtain a k-dimensional vector for each unique
opcode by evaluating an opcode’s neighborhood co-occurrence

Fig. 2. Abstraction for smart contract instructions.

within a window w conditioned on its current embedding. In
this way, the learning objective of skip-gram is defined as:

argmin
ψ

−
∑

−w≤j≤w,i6=j

log p(opi+j |ψ(opi)), (2)

where ψ(opi) is opi’s current embedding. After opcode em-
bedding, the opcode sequence of each smart contract can be
converted to an n× k-dimensional vector.

3) Representation Learning for Opcode Sequences: Among
neural networks, convolutional neural network (CNN) [16] can
capture the local correlation, while Long Short-term Memory
(LSTM) [9] can encode the sequential dependency, which best
fit in our problem. We thus design a model that leverages the
advantages of CNN and LSTM over the opcode embedding
sequences for smart contract representation learning. The
model network structure diagram for representation learning
is shown in Fig. 3.

We first enable CNN, which stacks a convolutional layer
and a normalization layer, to refine the opcode embedding
sequence of each smart contract with locally aggregated
opcode information. In this way, it crafts more informative
and higher-level embedding space to facilitate the following
sequence modeling. To characterize the interactions among
different opcode grams, we further integrate filters of different
kernel sizes into CNN to enrich the feature semantics for smart
contracts. Taking the opcode sequence embedding matrix
S ∈ Rn×k, the convolutional layer adopts m filters of shape
l× k to perform convolution operations on S, and formulates
a new embedding matrix S∗ ∈ R(n−l+1)×m with kernel size l.

515

Embeding layer

CNN layer

Instruction Sequence

+

MaxPooling1D

concatenate
BiLSTM layer

Dense & Sigmoid Layers

Fig. 3. Representation learning using CNN and BiLSTM

To extract multi-view feature patterns from 2, 3 and 4 opcode
grams, we employ kernels of size 2, 3 and 4 to convolute S.

Afterward, the resulting feature matrix S∗ = [e1, · · · , en]T
from CNN is fed to bidirectional LSTM (BiLSTM) to embed
the sequential dependency, and output the desired representa-
tion. The BiLSTM proceeds by (1) reading S∗ through the
composite non-linear transformations H to learn a hidden
vector ht at timestep t: ht = H(et,ht−1), ht ∈ Rd [9];
(2) devising two LSTMs with one processing the sequence
in a forward direction and the other in a backward direc-
tion to jointly capture bidirectional dependencies and provide
additional context to the network; and (3) concatenating the
forward and backward hidden vectors at timestep t into new
ht =

[−→
ht;
←−
ht

]
. As it entirely reads the input sequence in both

directions, the hidden states hn at the last timestep act as the
summary vector to represent the opcode sequence.

C. Supervised Learning using Siamese Neural Networks

Under the supervise-learning setting, we use siamese neural
networks (SNN) [1], [12] to chain and optimize the full learn-
ing procedure, including representation learning, similarity
measurement, and similarity prediction. There are four reasons
behind this network choice. (1) SNN has been successfully
deployed in the similarity-based applications, such as zero-
shot and few-shot image recognition. (2) SNN supports back-
propagation optimization for the aforementioned representa-
tion learning process to update its parameters. (3) SNN of twin
networks trains the unilateral network by sharing weights [28];
this ensures that smart contract similarity measurement can
process two opcode sequences consistently and the weights of
both parties are consistent as well. (4) After obtaining the high-
level representations of smart contracts, SNN can calculate
their similarity in a parameterized manner [22], instead of
simply calculating the similarity scores without fine-tuning in
an error-prone way.

In our model design, we elaborate a deep SNN, whose
identical subnetworks receive two opcode sequence embed-
ding matrices Si and Sj of smart contract bytecodes ci and
cj , and pass them through CNN and BiLSTM in succession

to learn the representations xsi and xsj respectively that
extract high-level and difference-tolerant features. Different
from the conventional SNN performing direct similarity metric
computes [4], our network’s top conjoining layer devises
a multilayer perceptron (MLP) [8] stacking multiple fully
connected layers to fuse features as:

x =
[
xsi ;xsj

]
(3)

and measure the similarity using:

µθ
(
xsi ,xsj

)
= MLPθ (x) (4)

where θ are parameters introduced by the network. This is
followed by a sigmoid activation function mapping onto the
interval [0, 1], which is used to minimize cross-entropy loss.
Given the training opcode sequence pair from the correspond-
ing smart contracts’ bytecodes (si, sj) ∈ D, and the similarity
label y ∈ Y where y = 0 means that si and sj are different, and
y = 1 means that si and sj are similar, the cross entropy loss
of our similarity detection (i.e., binary classification problem)
can be defined as:

L = −
∑

(XI
p,X

I
q)∈D

y log(P) + (1− y) log(1− P) (5)

s.t. P = σ(µθ(xsi ,xsj)) (6)

where σ is the sigmoid activation function, and the parameters
introduced by representation learning and similarity measure-
ment can be comprehensively updated via gradient descent
algorithms (e.g., Adam).

From the model formulation, it is worth remarking two
significant advantages yielded by our methodology: (1) smart
contract representation learning and similarity measurement
between sample pairs are automated and advanced by deep
learning frameworks without prior domain knowledge; and
(2) the task-specific representations learned by the designed
networks can tolerate the difference caused by compilers and
their optimization options, and generalize well to unseen data..

IV. EVALUATION

A. Dataset Preparation and Experimental Settings

As a supervised deep learning based scheme is adopted
by SmartSD, a large dataset consisting of totally 72,612
samples is thus constructed to boost the training and testing
of our method. Specifically, the following steps are enforced
in preparing the samples with ground-truth labels:
• To correctly prepare positive (contract pairs that are

really similar) and negative (contract pairs that are indeed
different) samples, we utilize smartEmbed [6], a tool
that detects smart contract clones based on their Solidity
source code, to identify similar and dissimilar smart
contracts crawled from Etherscan. In our setting, their
detected smart contract pairs, which are not identical but
with similarity values greater than 0.95, are taken as
candidates of positive samples CP ; while the detected
pairs with similarity values smaller than 0.35, are taken
as candidates of negative samples CN .

516

• On the basis of the candidate positive and negative sam-
ples, we further retrieve their corresponding runtime byte-
code from the public Ethereum Cryptocurrency database2

that is hosted on the Google BigQuery by feeding in
their contract addresses. The bytecodes of a candidate
smart contract pair is then organized into a triplet of
〈bin(p), bin(q), l〉, where l ∈ {−1,+1} is the ground
truth label that indicates whether the smart contracts p
and q belongs to the positive or the negative pair, while
bin(.) denotes the runtime bytecode of a smart contract.

• To improve the ability of the trained model in dealing
with the adverse impacts from different compiler settings,
we further attempt to incorporate positive and negative
samples by compiling a smart contract’s source code with
varying compiler settings. To this end, we randomly pick
equivalent number of smart contract pairs from CP and
CN , and then try to compile them with varying Solidity
compiler versions as well as setting the –optimize option
on and off. Specifically, 5 different Solidity compiler
versions, including 0.4.24, 0.5.6, 0.6.4, 0.7.2 and 0.8.2,
are set up to compile the source code of each picked
smart contract individually3. The successfully compiled
ones are then combined to make up positive and negative
triplets accordingly.

With these above steps, we finally manage to produce
42,082 pairs of positive samples and 30,530 pairs of negative
samples, as our dataset.

For experimental settings, the dataset is randomly divided
into training, validation and test set at a ratio of 80%, 10%, and
10%. The model is trained using a RTX3090 GPU with the
Adam optimizer. The batch size is set to 64, and the initial
learning rate is set to 0.001. In each epoch, we shuffle the
training samples while calculate the accuracy on the validation
set. Besides, to avoid the over-fitting and non-convergence
problems, early stopping is enforced that stops model training
right after the epoch that the validation accuracy no longer im-
proves. Finally, the model with the highest accuracy witnessed
during all the epochs is adopted, with which frequently used
performance metrics including accuracy, precision, recall, and
F1 score are evaluated and reported on the test set. Also, the
opcode embedding model is trained using 100 epochs and 6
context window size.

B. Evaluation Results

In this section, we report the performance of SmartSD. In
addition, we compare the performance of SmartSD with vari-
ant models by simply substituting the CNN+BiLSTM structure

2https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-
public-dataset-smart-contract-analytics

3As pointed out in a recent study [21], there are many minor Solidity
compiler versions within each major version (For example, besides 0.4.24,
there are 26 more officially released minor versions in the major version
0.4.x), but their impacts on the compiled bytecodes are insignificant, our
used minor versions are thus randomly selected as long as there is one for
each major version. Also, note that not all compiler versions can always
successfully compile each smart contract, especially earlier versions are not
used considering their immaturity and the high failure rate in compiling the
smart contract in our dataset.

TABLE I
PERFORMANCE COMPARISON WITH VARYING NEURAL NETWORK

STRUCTURES IN SMARTSD

Model Accuracy Precision Recall F1-score

SmartSD 98.37% 0.9889 0.9813 0.9850
SmartSDCNN 93.09% 0.9321 0.9119 0.9219

SmartSDBiLSTM 95.20% 0.9536 0.9383 0.9459
SmartSDGRU 93.14% 0.9352 0.9071 0.9209

SmartSDBiGRU 94.32% 0.9479 0.9337 0.9407

Fig. 4. Performance regarding ROC Fig. 5. Training size analysis

in our SmartSD with other widely used deep neural network
structures, including the pure CNN, BiLSTM, GRU and Bi-
GRU. We denote them as SmartSDCNN , SmartSDBiLSTM ,
SmartSDGRU and SmartSDBiGRU , respectively.

Table I summaries the experimental results. As the data
show, SmartSD as well as its substituted models all exhibit
rather good detection performance with respect to the evalua-
tion metrics mentioned in Section IV-A. Their accuracy values
generally compete with or outperform the 93.27% accuracy
value as reported by EClone [14], [15], a smart contract simi-
larity detection method that adopts inefficient and sophisticated
symbolic execution techniques. This indicates the potency of
adopting a deep learning based way to achieve smart contract
similarity detection task. Especially, the original SmartSD
that adopts a CNN+LSTM structure for encoding the opcode
sequence of a smart contract’s bytecodes, outperforms all the
other substitute models with a relatively obvious margins. Its
98.37% high detection accuracy and 0.9850 F1-score value
indicate the superiority of combing CNN and LSTM structure
to capture compiler-setting-agnostic features, which makes our
method highly resilient against the disturbance of varying
compiler settings. Additionally, as depicted in Fig. 4 for the
ROC curve, SmartSD achieves a very high AUC (Area Under
the Curve) value of 0.98.

The impact of the training set size on the detection per-
formance of SmartSD is also evaluated, by training SmartSD
with gradually increased number of training samples and
observing corresponding detection accuracy on the same test
set. As depicted in Figure 5, as the number of training samples
increases, the detection performance of SmartSD increases. It
indicates the importance of abundant data for deep learning
based methods, while the availability of the massive diversi-
form open-sourced smart contracts on Etherscan makes deep
learning especially suitable for our problem.

517

V. RELATED WORK

Similarity analysis of smart contracts: Code similarity
analysis has always been a long-term research topic, but there
have been few studies [6], [14], [15] conducted on the emerg-
ing smart contracts. Liu et al. [14], [15] defined the concept of
smart contract birthmarks by borrowing the typical definition
of software birthmark. They proposed a symbolic transaction
sketch technique to achieve smart contract similarity detection
and DApp (Decentralized Application) clone detection on the
bytecode level. Different from their methods that resorts to
symbolic execution and expert domain knowledge, SmartSD
recurs to the deep neural networks’ powerful learning ability
and the availability of many smart contract to achieve high
accurate and efficient similarity detection while with less hu-
man intervention. Gao et al. [6] proposed to use unsupervised
embedding algorithms including word2vec and Fasttext to
encode smart contracts into numerical vectors, on the basis
of which similarity between smart contract pairs can be effi-
ciently computed with an Edulidean distance based similarity
metric. Different from their works that can only operates on
the Solidity source code, we adopt a deep siamese neural
network architecture that works on the actually deployed smart
contracts’ bytecodes, with the aim of defeating the disturbance
from varying compiler settings.

Smart contract bug detection: With the developments of
smart contracts and the widely used yet maturing programming
languages, their defects and security issues have attracted
major research attentions for the solutions. Apart from these
conventional methods [13], [18], [23], [24] that generally
detect bugs or vulnerabilities based on symbolic execution,
formal verification, and manually constructed bug patterns or
specifications, Gao et al. [7] attempts to detect/retrieve bugs
from smart contracts’ source code by checking the similarity
of the smart contract against known buggy contracts. SmartSD
can accurately detect the similarity of smart contracts directly
on the deployed bytecode, thus it is promising to be applied
to achieve similarity checking based known bug search in the
scenario that smart contracts’ source codes are unavailable.

VI. CONCLUSION

In this paper, we propose to detect the similarity of
Ethereum smart contracts and build up a bytecode-level model
SmartSD using deep siamese neural network to supervise
the representation learning and the similarity measurement
process. The experimental results show that SmartSD achieves
98.37% high detection accuracy and 0.9850 F1-score, which
demonstrate its effectiveness of smart contract similarity de-
tection; SmartSD also significantly outperforms the baseline
models, and is computationally tractable and effectively miti-
gates the interference caused by compilers.

ACKNOWLEDGMENTS

This work was supported in part by the National Nat-
ural Science Foundation of China (61702414), the Sci-
ence and Technology of Xi’an (2019218114GXRC017CG018-
GXYD17.16), the Natural Science Basic Research Program

of Shaanxi (2022JM-342, 2018JQ6078, 2020JM-582), the
International Science and Technology Cooperation Program of
Shaanxi (2019KW-008), the Key Research and Development
Program of Shaanxi (2019ZDLGY07-08), and Special Funds
for Construction of Key Disciplines in Universities in Shaanxi.

REFERENCES

[1] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
E. Säckinger, and R. Shah, “Signature verification using a “siamese”
time delay neural network,” IJPRAI, vol. 7, no. 04, pp. 669–688, 1993.

[2] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining smart
contract defects on ethereum,” TSE, 2020.

[3] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in SANER. IEEE, 2017, pp. 442–446.

[4] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in CVPR, 2005.

[5] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of
automated analysis tools on 47,587 ethereum smart contracts,” in ICSE,
2020, pp. 530–541.

[6] Z. Gao, V. Jayasundara, L. Jiang, X. Xia, D. Lo, and J. Grundy,
“Smartembed: A tool for clone and bug detection in smart contracts
through structural code embedding,” in ICSME, 2019.

[7] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, “Checking smart
contracts with structural code embedding,” TSE, pp. 1–18, 2020.

[8] V. Garcia and J. Bruna, “Few-shot learning with graph neural networks,”
arXiv preprint arXiv:1711.04043, 2017.

[9] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[10] N. He, L. Wu, H. Wang, Y. Guo, and X. Jiang, “Characterizing code
clones in the ethereum smart contract ecosystem,” in FC, 2020.

[11] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts.” in Ndss, 2018, pp. 1–12.

[12] G. Koch, R. Zemel, R. Salakhutdinov et al., “Siamese neural networks
for one-shot image recognition,” vol. 2. Lille, 2015.

[13] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automatically
exploit smart contracts,” in USENIX Security, 2018, pp. 1317–1333.

[14] H. Liu, Z. Yang, Y. Jiang, W. Zhao, and J. Sun, “Enabling clone detection
for ethereum via smart contract birthmarks,” in ICPC, 2019.

[15] H. Liu, Z. Yang, C. Liu, Y. Jiang, W. Zhao, and J. Sun, “Eclone:
Detect semantic clones in ethereum via symbolic transaction sketch,”
in ESEC/FSE, 2018.

[16] Y. Luan and S. Lin, “Research on text classification based on cnn and
lstm,” in ICAICA. IEEE, 2019, pp. 352–355.

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv:1301.3781, 2013.

[18] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: a user-friendly symbolic
execution framework for binaries and smart contracts,” in ASE, 2019.

[19] K. Sliwak, “Smart contract reentrancy: Thedao,” https://medium.com/
@zhongqiangc/smart-contract-reentrancy-thedao-f2da1d25, 2021.

[20] Solidity, “Github - ethereum/solidity: Solidity, the contract-oriented
programming language,” https://github.com/ethereum/solidity, 2021.

[21] Z. Tian, J. Tian, Z. Wang, Y. Chen, H. Xia, and L. Chen, “Landscape
estimation of solidity version usage on ethereum via version identifica-
tion,” IJIS, 2021.

[22] Z. Tian, Q. Wang, C. Gao, L. Chen, and D. Wu, “Plagiarism detection
of multi-threaded programs via siamese neural networks,” IEEE Access,
vol. 8, pp. 160 802–160 814, 2020.

[23] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: static analysis of
ethereum smart contracts,” in WETSEB, 2018, pp. 9–16.

[24] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, and et al.,
“Securify: practical security analysis of smart contracts,” in CCS, 2018.

[25] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the
ethereum ecosystem and solidity,” in IWBOSE, 2018, pp. 2–8.

[26] G. WOOD, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, pp. 1–32, 2014.

[27] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, pp. 1–32, 2014.

[28] L. Zhang, Z. Feng, W. Ren, and H. Luo, “Siamese-based bilstm network
for scratch source code similarity measuring,” in IWCMC. IEEE, 2020,
pp. 1800–1805.

518

https://medium.com/@zhongqiangc/smart-contract-reentrancy-thedao-f2da1d25
https://medium.com/@zhongqiangc/smart-contract-reentrancy-thedao-f2da1d25
https://github.com/ethereum/solidity

An Information Flow Security Logic for
Permission-Based Declassification Strategy

Zhenheng Dong1, Yongxin Zhao1⇤ and Qiang Wang2
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

2 Chinese Academy of Military Science, Beijing, China

Abstract—With the increasing popularity of smartphones and

the rapid development of mobile network, ensuring the security of

mobile applications becomes more and more important, which has

received substantial attention from both academia and industry.

Information flow security, as a prominent approach to system and

network security, aims at ensuring high security level information

would not be accessed by analyzing the information with lower

security levels. In this paper, we design a novel information flow

security logic to reason about the security of mobile applications,

leveraging on the idea of permission based declassification. Firstly,

we propose a formal language with permission check branches,

through which the access to the confidential information can be

controlled. Then we present our novel information flow security

logic based on the permission based declassification strategy,

which can make the reasoning more precise by degrading the

security level of the specific information. Finally, we demonstrate

the usability of our logic via examples.

Index Terms—Information Flow Security, Formal Language

and Logic, Permission-Based Declassification, Mobile Applications

I. INTRODUCTION

Information flow security is a prominent approach to system
and network security. Given the fact that system components
can be classified into different security levels, among which
confidential information (e.g., private data resource) is marked
as high security level, whereas public information (e.g., public
program variable) is marked as low security level, the basic
idea of information flow security is to ensure confidential
information with high security level can not be obtained
by analyzing the observable information with lower security
levels. In the past decades, information flow security has
been investigated and applied to various fields, e.g., operating
systems [1], Web services [2] and cloud computing [3].

Among all the approaches to guarantee the information
flow security, formal methods have been widely used and can
be roughly divided into three categories, i.e., process algebra
based methods, type system based methods and semantic based
methods [4]. The work in [5] described four approaches to
verifying security protocols based on process algebra. In [6] the
authors used type system to check semantic errors in programs
and to catch errors in code before program execution. In [7]
the authors implemented a secure type system implementing
integrity information flow control. The basic idea of semantic

*Corresponding author: yxzhao@sei.ecnu.edu.cn
DOI reference number: 10.18293/SEKE2022-134

based methods is to bind a security level to program variables,
and to adjust the security level according to the semantics of
program operations dynamically. If there is no information
leakage from the high security level to the low security level,
the program access to the system is considered to be secure.
The work in [8] proposed a secure semantic web service model
by analyzing the web service security. In [9] the COVERN logic
was proposed based on the lock mechanism for the security
analysis of shared memory in concurrent programs. In [10]
a non-blocking algorithm was proposed to avoid the use of
locks on shared variables and data structures. Inspired by these
previous work, we adopt the semantic based method to solve
the information flow security in mobile applications.

In this paper, we propose a semantic-based approach to the
information flow security among sequential mobile applications.
Particularly, inspired by the literature [11] and [12], our ap-
proach introduces a permission-based declassification strategy
to ensure that information will only be legally accessed by
applications who have been granted the permissions. Throught
the approach, the information can be downgraded from the
origianl high security level to make the logical reasoning more
accurate. The contributions of this work are as follows:

• Permission-based formal language for information flow

security: The language abstracts application programs into
functions, and uses function calls to represent information
interactions among applications. Permissions are the basis
for whether messages can be obtained in information
interaction. In addition, the operational semantics of the
language are strictly formulated, which is helpful for the
formulation of reasoning logic.

• Logic rules supporting declassification strategy: This
is the first semantic-based permission-dependent infor-
mation flow security method, which adds the content of
permission into the traditional information flow logic. In
addition, the logic also adds a declassification strategy to
make the reasoning more precise.

The rest of this paper is organised as follows. In Section II,
we provide some running examples to illustrate the intuitive
idea of our approach. A permission-based formal language is
presented in Section III and its semantics is given in Section IV.
In Section V, we discuss our novel informal flow security logic.
Section VI illustrates the usability of our logic via examples
and Section VII concludes the paper.

519

II. RUNNING EXAMPLES

Before introducing the language and logic, we informally
describe its core ideas and practical problems that can be solved
through some examples.

The current popular definition of information flow security
is non-interference [13], that is, if only the input changes, the
attacker cannot observe the difference in execution results [14].
However, for mobile applications, traditional information flow
security is not applicable due to the need for nested calls of
programs, as shown in the example in Table I.

TABLE I: An example of traditional information flows

String getInformation(String name){
String information;
if(verifyPass(READ PASSWORD))

information=name.information;
else

information=“”;
return information;

}

We can think of this example as a login service for social
APPs, such as WeChat, instagram, etc., where the parameter
name is the username, and the function verifyPass() is
for authorization verification. If the password verification is
passed, then the information name.information of the user
is returned. Otherwise, an empty string is returned. It is obvious
that the user information is confidential and its security level
should be high, while the security level of an empty string
should be low. Because the traditional information flow security
requires the two branches of the conditional statement to
have the same security level, the non-interference can be
guaranteed. At this time, if the information level is high, then
the information can be used by other applications as the return
value, and there will be a great security risk. Conversely, if the
information level is low, either the application cannot obtain
useful information, or there is an information leakage problem
of assigning a high security level to a variable with a low
security level. Therefore, a new strategy is needed to solve the
resource acquisition problem of the application.

To solve this problem, the work in [15] proposed a type
system that incorporates permissions in function types. And
another work in [16] also proposed a type system that solves
the problem of typing non-monotonic policies without resorting
to downgrading or declassifying the information. Inspired
by the above research, we define a statement that supports
declassification assignment, as shown in Table II.

TABLE II: An example of our method

A.funA(name){
init information=0;
in{

check(p){
then information:=# name.information;
else information:=0;

}
return information;

}
}

We introduce a permission access control mechanism,
and use the Check statement to replace the If-condition in
the traditional information flow. If the application contains
the permission p, then we can lower the security level by
declassifying the assignment statement of the high security
level name.information, and assignthe declassified variable
to information. This can ensure that the return value of each
function is a low security level, which ensures the security of
the information flow of the system, and also solves the problem
of application resource acquisition.

III. THE FORMAL LANGUAGE

In this section, we present a formal language for a permission-
based approach to information flow security.

The syntax of expressions is given below:

e ::= v | x | e op e | e

Where v represents an integer value, x represents a vari-
able, op is a binary operator defined on two expressions,
e = [e1, e2, ..., en] represents an expression tuple, and each
element in the tuple is an expression respectively.

The syntax of the command statement is given in the
following:

c ::= skip | x := e | c1; c2 | if e then c1 else c2
| while e do c | init x = e in c | x := call A.f(e)
| x := # e | check(p) then c1 else c2

Where skip means the empty statement does nothing.
init x := e in c is the definition statement of a local variable
x, and the program block c represents the scope of the local
variable x. x := call A.f(e) means to call the function f(e) of
the application A, the expression e is the incoming parameter
of the function, and uses the variable x receives the return value
of the function call. x :=# e represents the declassification
assignment statement, which means that the expression e with
high security level is allowed to downgrade the security level
and assign it to the variable x. check(p) then c1 else c2

represents the permission check statement, check whether the
atomic permission p is included in the permission context, if
it does, execute the statement c1, otherwise execute c2. Also,
other statements are not much different from those of other
programming languages.

A function definition is in the following:

F ::= A.f(input){init output = 0 in {c ; return output}}

Where A.f denotes the function of application A whose
function name is f . input is the formal parameter of the
function, c is the execution statement of the function body,
output is the local variable and the return value of the function,
and {c; return output} is its scope. We only consider the
closed function in this language, that is the variables that appear
in c will only be variables introduced into the parameter input
or local variables within the function.

520

IV. OPERATIONAL SEMANTICS

A. Semantic Model

In the semantic model, we define a system state µ as a tuple
hmem, tri, where mem represents memory and tr represents
event trace.

The memory memµ denotes a set of assignments for all
variables in the state µ, that is memµ = [x1 7! v1, x2 7!
v2, . . . , xn 7! vn], where x1, x2, . . . , xn represents a finite set
of all variables in the system, and memµ(x1) represents the
value of the variable x1 under the state of the system µ.

We use a sequence trµ to save all the assignment events
from the initial state to the current state of the system. In
this study, the event event consists of two kinds of events:
First, the ordinary assignment event ASGhlvl, x, ei, which
means to assign the value of the expression e to the variable x

whose security level lvl. Second, the classification assignment
event DCF hlvl, x, ei means that the value of the expression
e is declassified and assigned to the variable x, and after
declassification, the security level of variable x is lvl. The
sequence of each historical event is called a trace, which is a
finite collection of events.

B. Operational Semantics

We refer to [17] and [18] for our semantics. Our semantics
is divided into two levels: expressions and statements.

The evaluation of the expressions are given in Table III.
The semantic judgment of the expression has the form of
µ ` e) v, where µ represents the system state, e is the
expression, and v is the value of the expression, which can be
interpreted as in the state µ, the value of the expression e is v.

TABLE III: Evaluation of Expressions

(Value)
µ ` v) v

(Variable)
µ ` x) memµ(x)

(Tuple)
µ ` ei) vi (1 i n)

µ ` e) v

(BiOp)
µ ` e1) v1 µ ` e2) v2 v1 op v2 = v3

µ ` e1 op e2) v3

(Value) indicates that in the system state µ, the value of the
numerical expression v is v.

(Variable) indicates that in the system state µ, the value
of the variable x is the value of x in the memory under the
system state, which can be expressed as memµ(x1).

(Tuple) indicates that in the system state µ, when 1 i n,
the value of the expression ei is vi respectively, then the value
of the tuple expression e is expressed as v.

(BiOp) indicates that in the system state µ, if the value of
e1 is v1, the value of e2 is v2, and the value of v1 and v2

calculated by the binary operator is v3. Then in this state, the
result of the binary operation between e1 and e2 is v3.

The operational semantics of command statements are
given in Table IV. The operational semantic judgment of the

command statement has the form of A,P ` (hmem, tri, c) !
hmem

0
, tr

0i. Where A represents the application, and the
permission set P denotes the permission context, that is the set
of permissions of the application which invokes the function
of A. hmem, tri represents a system state µ, tr represents the
event execution sequence. This judgment means that in the
environment of the application A with the permission context P ,
the system state before executing the statement c is hmem, tri,
and after executing, it becomes hmem

0
, tr

0i.
(Skip) and (Seq) are relatively simple, and they are not very

different from the operational semantics of general sequential
languages, so we will not go into details here. (If) and (While)

use the expression e to determine whether the condition is true.
For simplicity, we use TRUE and FALSE as the distinguishing
criterion.

Two assignment statements correspond to two kinds of events
in the system, that are ASG and DCF . When executing a
normal assignment statement (AssignN), we should add ASG

event after the current trace tr. However, when executing the
declassification assignment statement (AssignD), we add DCF

event after tr. Depending on the trace of the event history, we
can distinguish which type of assignment statement is currently
executing.

The local variable definition statement (DefL) means to
define a local variable x whose initial value is the value v of
the expression e. The scope of the variable x is only within
the statement block c. Its operational semantics are to assign
the value v of the expression e to the variable x, and execute
the statement c under this premise. After execution ends, local
variables should be removed from the memory. mem

0 � x

means to delete the local variable x from memory mem
0.

The permission check statement (Check) is similar to an
(If) statement. Where p is an atomic permission in the system
permission set. Which branch of the statement is executed
depends on the relationship of the atomic permission p to
the permission context P . If P contains permission p, that is,
p 2 P , execute the statement c1, otherwise execute c2.

(Call) is more complex than the operational semantics of
other statements. When application A calls function f of
application B, first we need to find function f in all functions
of application B. Then we use PA to present the permission
set of the application A, after that we give permission set PA

to application B, and execute function body in application
B. Finally, assign the return value to the variable x. In
short, application A calls the function of application B, we
should check whether the corresponding permission exists in
application A during the process of executing the function of
B. This means that the permission set of application cannot
be passed in recursive calls to functions.

V. THE LOGIC

A. Access Control Model

In traditional information flow security, we introduce permis-
sions for access control. We use P to denote a finite set of all
permissions in the entire system, that is, P = {p1, p2, . . . , pn}.
P represents the permission context, and P ✓ P . We require

521

TABLE IV: Operational Semantics of Command Statements

(Skip)
A,P ` (hmem, tri, skip) ! hmem, tri

(AssignN)
µ ` e) v tr0 = tr ·ASG

A,P ` (hmem, tri, x := e) ! hmem[x 7! v], tr0i

(Seq)
A,P ` (hmem, tri, c1) ! hmem0, tr0i A,P ` (hmem0, tr0i, c2) ! hmem00, tr00i

A,P ` (hmem, tri, c1; c2) ! hmem00, tr00i

(IfF)
µ ` e) FALSE A,P ` (hmem, tri, c2) ! hmem0, tr0i
A,P ` (hmem, tri, if e then c1 else c2) ! hmem0, tr0i

(IfT)
µ ` e) TRUE A,P ` (hmem, tri, c1) ! hmem0, tr0i
A,P ` (hmem, tri, if e then c1 else c2) ! hmem0, tr0i

(WhileF)
µ ` e) FALSE

A,P ` (hmem, tri, while e do c) ! hmem, tri

(WhileT)
µ ` e) TRUE A,P ` (hmem, tri, c) ! hmem0, tr0i A,P ` (hmem0, tr0i, while e do c) ! hmem00, tr00i

A,P ` (hmem, tri, while e do c) ! hmem00, tr00i

(DefL)
µ ` e) v A, P ` (hmem[x 7! v], tri, c) ! hmem0, tr0i
A,P ` (hmem, tri, init x = e in c) ! hmem0 � x, tr0i

(AssignD)
µ ` e) v tr0 = tr ·DCF

A,P ` (hmem, tri, x :=# e) ! hmem[x 7! v], tr0i

(CheckF)
p /2 P A,P ` (hmem, tri, c2) ! hmem0, tr0i

A,P ` (hmem, tri, check(p) then c1 else c2) ! hmem0, tr0i
(CheckT)

p 2 P A,P ` (hmem, tri, c1) ! hmem0, tr0i
A,P ` (hmem, tri, check(p) then c1 else c2) ! hmem0, tr0i

(Call) Find(B.f)=B.f(input){init output=0 in {c ; return output}} µ `e) v B,PA`(hmem[input 7!v,output 7!0],tri,c)!hmem0,tr0i
A,P `(hmem,tri,x:=call B.f(e))!hmem[x 7!mem(output)],tr0i

that the permission set of each application is statically allocated
in the initial state and cannot be modified dynamically.

We divide variables into two categories, one is the variable
that requires permission to access, and the other is the variable
that can be accessed without permission. For variables that
require permission to access, we use the function �(x) to
represent the permission required to access the variable x. For
example, when �(x) = p, it means permission p corresponds
to the access to the variable x, then when the permission set P
contains the permission p, the currently executing application
can get access to the variable x through check(p), otherwise
the application cannot access the variable x. For variables that
do not require permission access, it is not necessary to read
the variables through permission control.

We assume that the application running at this time is A. In
the case of no function call, the context permission set P is
the permission set PA of the application A. The application A

can access all variables that do not require permission access
and the variables corresponding to the permissions possessed
by its permission set PA. When making a function call, if
the application A calls the function of the application B, the
context permission set P is the permission set PA, and then
we use P to execute application B.

B. Information Flow Model

We define the security level lvl for all expressions on the
grid Low lvl High. First, we define the security level
for the expression e. We stipulate that the numeric type v has
no specific security level, and its security level depends on the
security level of the variable it is assigned to. For the variable
x that has defined the permission function �(x), we require
its security level to be the highest High. For some variables,
we use the function L(x) to define the security level, and use
L(x) to represent the highest security level of the data that
the variable x can hold at any time. This means that, in all
assignments, the security level of the variable x cannot exceed
the upper limit of L(x). For the variable x that does not define

L(x), we default its security level to any level. When we
assign the value of the expression e to the variable x through
x := e, x automatically has the security level of expression
e. The current security level of the variable x depends on the
security level of the last assigned expression. For the binary
operation expression e := e1 op e2, the security level of the
expression e is the one with the higher security level among
the two expressions involved in the operation. Similarly, in
the expression tuple e = {e1, e2, e3, . . . , en}, the security level
of the expression e is the highest security level held by all
expressions in the tuple. And we use lvle to denote the current
security level of expression e.

We introduce the attacker role to prove the security of the
system, we assume that the attacker is a passive attacker who
can only get information by observing the execution of the
program. Specifically, we assume that the attacker has an attack
level of lvla, then for all variables with a security level of
lvl lvla, the attacker can observe them. At the same time,
if the assignment operation is declassification assignment, the
variable after declassification which security level is lvl lvla

can also be observed by the attacker.
Our logic has judgements of the form µ,A, P, lvla ` c,

where µ represents the current system state, A represents the
name of the application, P represents the permission context,
lvla represents the security level of the attacker, and c represents
a program statement. This judgment is true if and only if the
system state is µ, and we execute application A on permission
context P , the program text c will not leak information to the
lvla level.

C. Declassification Model

In order to make the declassification assignment statement
be executed safely, we define a declassification predicate:

D(lvlsrc, lvldes, µ, c, P).

In the definition of the predicate, lvlsrc represents the
security level of the expression before declassification, lvldes

522

TABLE V: Rules of the logic

(R-Skip)
µ,A, P, lvla ` skip

(R-UAsgN)
L(x) is undefined

µ,A, P, lvla ` x := e

(R-LAsgN)
lvle L(x)

µ,A, P, lvla ` x := e
(R-Seq)

µ,A, P, lvla ` c1 A,P ` (µ, c1) ! µ0 µ0, A, P, lvla ` c2
µ,A, P, lvla ` c1; c2

(R-IfF)
µ ` e) FALSE µ,A, P, lvla ` c2 lvle lvla

µ,A, P, lvla ` if e then c1 else c2
(R-IfT)

µ ` e) TRUE µ,A, P, lvla ` c1 lvle lvla
µ,A, P, lvla ` if e then c1 else c2

(R-WhileF)
µ ` e) FALSE lvle lvla
µ,A, P, lvla ` while e do c

(R-WhileT)
µ ` e) TRUE µ,A, P, lvla ` c ; while e do c lvle lvla

µ,A, P, lvla ` while e do c

(R-DefL)
µ ` e) v hmem[x 7! v], tri, A, P, lvla ` c

µ,A, P, lvla ` init x = e in c
(R-AssignD)

D(lvle, L(x), µ, x :=# e, P)

µ,A, P, lvla ` x :=# e

(R-CheckF)
p /2 P µ,A, P, lvla ` c2

µ,A, P, lvla ` check(p) then c1 else c2
(R-CheckT)

p 2 P µ,A, P, lvla ` c1
µ,A, P, lvla ` check(p) then c1 else c2

(R-Call) Find(B.f)=B.f(input){init output=0 in {c ; return output}} µ `e) v hmem[input 7!v,output 7!0],tri,B,PA,lvla`c lvloutputL(x)
µ,A,P,lvla` x:=call B.f(e)

represents the security level of the expression after declas-
sification, µ represents the current system state, c represents
program statement and P represents the permission context. For
example, when the system state is µ, a declassification statement
x :=# e is executed on the permission context P . At this time,
its declassification predicate is D(lvle, L(x), µ, x :=# e, P).

Whether declassification predicate is hold depends on the
permission function �(e) of the declassification expression e.
If the permission function �(e) of the expression e is defined
and �(e) ✓ P , then the declassification predicate holds, and
the declassification operation is secure at this time. Otherwise,
either when the permission function �(e) of the expression
e is not defined, or the permission function is defined, but
�(e) 6✓ P , the declassification predicate does not hold, and the
declassification operation is insecure at this time.

D. Rules

Our proposed logic rules are shown in the table V.
Some of these rules, such as R-Skip and R-Seq statements

are relatively simple, and we can be easily analogized to Hoare
logic. For assignment statements, we can divide them into
two cases R-UAsgN and R-LAsgN according to whether the
variable defines the security level function L. If a variable
x does not define the security level function L(x), it means
that the variable can receive the value of the expression of all
security levels, that is, its security level is the highest. Therefore,
in this case, it is secure to assign any expression to the variable
x. When the security level function L(x) of the variable x is
defined, it means that the variable x can contain a security
level that cannot exceed L(x). At this time, the assignment
statement needs to guarantee lvle L(x), otherwise we think
that the information flow is insecure.

The conditional statement R-If is similar to the loop
statement R-While. In order to prevent the attacker from
obtaining information of high security level in the condition
through different running results, we require that the security

level of the attacker is not lower than the security level of the
condition, that is lvle lvla.

Local variable definition statement R-DefL, since this state-
ment is not an assignment statement, we have no requirements
for the definition of the variable, we only need to ensure that
the variable is secure for information flow within its scope. The
permission check statement R-Check, we divide the statement
into two cases according to whether the atomic permission p

belongs to the permission set P . Each situation corresponds
to two different permission sets P . In addition, we also need
to ensure that the information flow of the program is secure
in each branch of the permission check.

Because we defined the declassification predicate D in the
previous section, the declassification assignment statement
R-AsgD is secure only if the declassification predicate holds,
otherwise it is not. For the function call statement R-Call, we
need to satisfy the information flow security inside the function
body and the function return value respectively.

VI. VERIFICATION

In this section we illustrate the usefulness of our proposed
logic through an example. The example code is shown in Table
VI below.

We can think of this example as a mobile banking login
application. When we log into the mobile banking, we must
first perform mobile code verification on our mobile phone,
and then we need to identify the person before we can enter the
bank account. We can assume that the above code simulates this
function, where the permission p1 indicates whether the user
has the permission to verify the mobile phone code verification,
and the permission p indicates the permission of the identity
verification. Obviously, these two permissions are indispensable,
otherwise we will not be able to login in normally.

523

TABLE VI: An application example

B.funB(){
init y=0;
in{

check(p1){
then y:=call A.fun();

hmem[y 7! 0], tri, B, PB , lvla ` y := callA.fun()
else y:=0;

}
hmem[y 7! 0], tri, B, PB , lvla ` check(p1) then c1 else c2

return y;
}

µ,B, PB , lvla ` init y = 0 in c
}
A.fun(){

init x=0;
in{

check(p){
then x:=# information;

hmem[y 7! 0, x 7! 0], tri, A, PB , lvla ` x :=# information
else x:=0;

}
hmem[y 7! 0, x 7! 0], tri, A, PB , lvla ` check(p) then c1 else c2

return x;
}

hmem[y 7! 0], tri, A, PB , lvla ` init x = 0 in c
}

In this example, we assume that the permission set PB of
the application B contains the permissions p and p1, then in
the process of executing the application B, the permission
context P is PB . First we define a local variable y. Then
execute the check(p1) statement. Because the permission set
of the application B contains the permission p1, the then

branch is executed to enter the function call statement. In
the function call statement, we should use the permission set
PB of the application B as the permission context into the
application A for execution. After defining the local variable
x in A, enter the check(p) statement. At this time, because
the permission set PB also contains the permission p, we use
declassification assignment statement assigns the high security
level information to the variable x with the reduced security
level, and returns it through the return value. After returning
to the application B, we use the variable y to receive the
return value of the function call, and get the final bank account
information, and the login is successful.

In information flow security, the use of local variables needs
to ensure that the information flow is secure in its scope,
and the function call needs to ensure that the information
flow is secure in the function body. Therefore, if and only
if the security level of the return value of the function is
less than or equal to L(y) and the classification predicate
D(lvlinformation, L(x), µ, x :=# information, P) holds, the
information flow is secure, otherwise it is insecure.

VII. CONCLUSION AND FUTURE WORK

In this work, We present a formal language and the
corresponding logical rules for proving the information flow
security of mobile applications. Our approach has well defined
semantics and makes use of a permission based declassification
strategy, which makes the reasoning more accurate.

In the future, we would like to extend the access control
policy to consider solutions to the branching problem that
relies on secrets. In addition, we will also extend the semantics
and the logic to handle the problem of non-monotonic of
permissions.

ACKNOWLEDGEMENTS

This work is supported by Shanghai Science and Technology
Commission Program under Grant 20511106002, Shanghai
Trusted Industry Internet Software Collaborative Innovation
Center and the Fundamental Research Funds for the Central
Universities.

REFERENCES

[1] M.Krohn and E.Tromer, “Noninterference for a practical difc-based
operating system,” in Proceedings of the 2009 IEEE Symposium on

Security and Privacy, 2009, pp. 61–76.
[2] N. B. Said and L. Cristescu, “End-to-end information flow secu-

rity for web services orchestration,” Science of Computer Program-

ming,187:102376, 2020.
[3] J. Bacon, D. Eyers, T. Pasquier, J. Singh, L. Papagiannis, and P. Piezuch,

“Information flow control for secure cloud computing,” in IEEE Trans-

actions on Network and Service Management, vol. 11, no. 1, 2014, pp.
76–89.

[4] “Review and prospect for information flow security technology,” in
Journal of Nanjing University of Posts and Telecommunications, vol. 31,
no. 5, 2011.

[5] L. Mengjjun, L. Zhoujun, and C. Huowang, “A survey of security protocol
verification base on process algebras,” in Journal of Computer Reserach

and Development, vol. 41, no. 7, 2004, pp. 1097–1103.
[6] D. Zhiyi, S. Guoxin, and S. Zhiqing, “Type system and the correctness

of program,” in Computer Science, vol. 33, no. 1, 2006, pp. 141–143.
[7] W. Libin, “Information flow control for integrity based on type system,”

in Journal of South China Normal University, vol. 3, 2006, pp. 42–47.
[8] L. Chengcheng, Z. Yongsheng, and L. Guangyu, “Research on a secure

semantic web services mode,” in Computer Technology and Development,
vol. 20, no. 2, 2010, pp. 170–174.

[9] T. Murray, R. Sison, and K. Engelhardt, “Covern: A logic for composi-
tional verification of information flow control,” in 2018 IEEE European

Symposium on Security and Privacy, 2018, pp. 16–30.
[10] N. Coughlin and G. Smith, “Rely/guarantee reasoning for noninterference

in non-blocking algorithms,” in 2020 IEEE 33rd Computer Security

Foundations Symposium(CSF), 2020, pp. 16–30.
[11] L. Hao, L. Qiang, Y. Jiwen, and Q. Peide, “A security system model

based on mandatory access control and information flow,” in Computer

Engineering and Science, vol. 27, no. 3, 2005, pp. 16–20.
[12] D. Schoepe, T. Murray, and A. Sabelfeld, “Veronica:expressive and

precise concurrent information flow security,” in IEEE 33rd Computer

Security Foundation Symposium(CSF), 2020.
[13] J.Goguen and J.Mesegue, “Security policies and security models,” in

Proceedings of the 1982 IEEE Symposium on Security and Privacy, 1982.
[14] R. Giacobazzi and I. Mastroeni, “Abstract non-interference: A unifying

framework for weakening information-flow,” in ACM Transactions on

Privacy and Security, vol. 21, no. 2, 2018.
[15] A.Banerjee and D.A.Naumann, “Stack-based access control and secure

information flow,” in Journal of Functional Prpgramming, vol. 15, no. 2,
2005, pp. 131–177.

[16] H. Chen, A. Tiu, Z. Xu, and Y. Liu, “A permission-dependent type
system for secure information flow analysis,” in IEEE 31st Computer

Security Foundations Symposium, 2018, pp. 218–232.
[17] Y. Zhao, X. Wu, J. Liu, and Y. Yang, “Formal modeling and security

analysis for openflow-based networks,” in International Conference on

Engineering of Complex Computer Systems, 2018, pp. 201–204.
[18] Y. Zhao, X. Zhang, L. Shi, G. Zeng, F. Sheng, and S. Liu, “Towards a

formal approach to defining and computing the complexity of component
based software,” in Asia-Pacific Software Engineering Conference, 2019,
pp. 331–338.

524

Unlearnable Examples: Protecting Open-Source
Software from Unauthorized Neural Code Learning

Zhenlan Ji, Pingchuan Ma, Shuai Wang
The Hong Kong University of Science and Technology

{zjiae,pmaab,shuaiw}@cse.ust.hk

Abstract—The vast volume of “free” code maintained on
open-source code management systems significantly simplifies the
process of producing and sharing open-source software. Recently,
we have seen a growing trend in which these open-source software
is being used for neural code learning without authorization.
Note that open-source software does not necessarily imply “un-
restricted usage,” e.g., software under the BSD license requires
users to retain the copyright notice and credit the software’s
developers.

The unauthorized use of software for (commercial) neural
code learning models has raised copyright concerns. This paper,
for the first time, provides approaches for protecting open-
source software from unauthorized neural code learning via
unlearnable examples. Our proposed technique applies a set
of lightweight transformations toward a program before it is
open-source released. When these transformed programs are
used to train models, they mislead the model into learning
the unnecessary knowledge of programs, then fail the model
to complete original programs. The transformation methods are
sophisticatedly designed to ensure that they do not impair the
general readability of protected programs, nor do they entail a
huge cost. We focus on code autocompletion as a representative
downstream task of unauthorized neural code learning. We
demonstrate highly encouraging and cost-effective protection
against neural code autocompletion.

I. INTRODUCTION

Recent advances in deep neural networks (DNNs) have
resulted in advancements in computer vision (CV) and natural
language processing (NLP) applications. Recently, there has
been a surge of interest in using neural networks to solve a
variety of software engineering (SE) tasks by learning from
codes, including program synthesis [10], autocompletion [15],
and code summarization [2]. For example, GitHub recently
released Copilot [8], with the aim to provide an “AI pair
programmer” capable of automatically generating programs
from natural language specifications.

The major success of neural code learning is attributed
in part to the availability of large-scale corpus [15]. For
instance, Copilot is trained on massive amounts of open-
source code, including public code collected from GitHub [3].
Nonetheless, a widespread concern is that some datasets
were amassed without mutual consent [16]. In fact, it has
been extensively noted that Copilot may leak sensitive code
snippets when performing auto programming [23]. And, as
its developers admit, Copilot uses all public Github code for
training regardless of license [11], thus likely breaching the

DOI reference number: 10.18293/SEKE2022-066

copyright of lots of open-source software. In this paper, we
refer to the use of code as training data without consent as
“unauthorized utilization.” Note that “open-source” software
does not necessarily grant model owners like GitHub the right
to sell the software content, nor does it grant model owners
the right to distribute/use open-source software. In short, these
neural code learning applications have raised primary concerns
about unauthorized usages of open-source software.

There are solutions to protect private data against unautho-
rized machine learning. Recent work, in particular, generated
unlearnable images via adversarial transformations [9], [24],
[4], fooling the model into believing that there is nothing
that can be learned from the transformed images. This work
advocates for a focus on creating unlearnable examples of
code that are difficult for neural code learning models to
learn and, meanwhile, exhibit identical functionality and high
readability to humans. However, in comparison to images, it is
more difficult to practically enforce unlearnability on software
with “adversarial transformations,” because arbitrarily flipping
a token in a program may change its semantics and even
impose grammatical errors. Existing techniques (e.g., software
obfuscation) used to protect software from exploitations are
often heavyweight, which significantly impair the readability
and is thus undesirable for open-source software.

In this paper, we design a set of lightweight semantics-
preserving transformations toward software. Users who plan to
open-source release their software can first locally launch our
transformations toward their programs before releasing them.
Given the inadequacy of a single transformation, we form
an iterative transformation process and identify an optimal
transformation sequence using multi-armed bandits. We em-
ploy a commonly-used code embedding model to guide local
transformation, with the aim of maximizing the embedding
distance between a transformed program and its clean version
while preserving a modest edit distance (to retain readability).
Users can then release the transformed program, and when
the released program is used as training data for neural code
learning (which is generally not avoidable for open-source
software), these transformed programs deceive downstream
applications like autocompletion by constantly learning faulty
knowledge. Thus, the transformed program though remains ac-
cessible to the open-source community, becomes unlearnable
from the perspective of unauthorized neural models.

We use CodeBERT [7] as the local model to guide the
transformation. We deceive CodeGPT [12], a SOTA code

525

autocompletion model trained on the POJ-104 dataset [15]
with one or several programs that have been transformed by
our work. The evaluation shows that the transformed programs
can achieve a high success rate of creating unlearnable exam-
ples, greatly reducing the accuracy of CodeGPT (to nearly
“random”), while maintaining decent readability and a small
runtime cost.
Contributions. We summarize our contributions as follows:
1) conceptually, we advocate for a new focus on protecting
software against unauthorized neural code learning, a growing
concern in the open-source community, 2) technically, we pro-
pose a set of lightweight transformations to transform software
in a semantics- and readability-preserving manner. The optimal
transformation sequence toward a program is determined using
multi-armed bandits, and 3) we demonstrate empirically that
transformed programs effectively mislead unauthorized neural
code autocompletion with negligible cost.
Open Source. We release our code at https://github.com/
ZhenlanJi/Unlearnable Code.

II. RELATED WORK

Mitigating Data Privacy Leakage. The majority of work
on reducing model training data privacy leaks is based on
federated learning [13]. Rather than sharing the training data,
owners of training data share the model updates to jointly
train a model. Contemporarily, differential privacy assures
that a trained model does not learn raw training data [6].
In contrast, our work focuses on a more challenging sce-
nario: protecting open-source software from being learned
by unauthorized neural models. That is, the deep learning
models are not trusted in our scenario, and it is unclear
if they have utilized any privacy-preserving techniques like
differential privacy. Recent efforts have been made to protect
the privacy of photos with adversarial transformations against
facial recognition [24], [4]. We protect open-source software,
a timely albeit under-explored subject. We propose a general
framework that produces unlearnable programs that can be
used to mitigate unauthorized code embedding applications.
Protecting Unauthorized Code Usage. Some prior research
focuses on identifying code authorship [1]. Nevertheless, pro-
tecting unauthorized usage of open-source software, though
having raised widespread concern, is rarely discussed. One
contemporary research inserts unusable code snippets (“dead-
code”) to impede unauthorized code usage [20]. Nonetheless,
inserting deadcode, e.g., a special function that is never
executed (referred to as “watermark” in their paper), is gen-
erally easy to be recognized and removed. Transformations
proposed in this work are stealthy and hard to elide, meaning
that our approach is more robust and effective in defeating
unauthorized code usage.

III. APPROACH OVERVIEW

Research Challenge. Existing works generate “unlearnable”
photos by applying adversarial transformations [24], [4]. These
approaches, however, are inapplicable to software. Software is
written in a structured manner, where transforming arbitrary

bytes in a program can easily break its functionality. On
the other end of the spectrum, software obfuscations tech-
niques [5] transform software into an unreadable form, which
may be used to defend unauthorized utilization. However,
obfuscations can largely hamper software readability and
distribution in the open-source community and consequently is
not widely used. In sum, we aim to deliver a lightweight and
effective method, such that software is transformed without
impeding its functionality, retaining high readability, while
making it “unlearnable.”
Assumption and Objective. We aim to design a set of
transformations, particularly toward software. These transfor-
mations change the program source code in a semantics-
preserving manner while retaining readability and execution
speed. This way, we protect open-source software against
unauthorized neural code learning, which is jeopardizing copy-
right of open-source software for unauthorized usages.

While authors may have no direct access to the unauthorized
neural code models, they can set up SOTA code embedding
models like CodeBERT locally to guide transformations. How-
ever, once the transformed software is released as open-source,
authors cannot prevent unauthorized usage, which will include
the released software as part of their training data. We establish
a practical objective for protection, such that the released soft-
ware, after local transformation, cannot be correctly matched
to its original version in front of representative neural code
learning applications like code autocompletion. In the rest of
the paper, we use “clean version” to refer to the original,
untransformed program to ease the reading.

TABLE I
TRANSFORMATION METHODS.

Class Methods Abbreviations

Identifier
Level

identifier replacement IR
identifier synonym IS
character synonym CS

Constant
Level

int rewrite INT
float rewrite FLT

string rewrite STR

Statement
Level

int def. insert IDI
float def. insert FDI
string def. insert SDI
single line insert SLI

A. Semantics-Preserving transformation

This research designs a set of transformation methods for
programs. Each method provides a semantics-preserving trans-
formation, in the sense that the transformed output, another
piece of software, retains the original functionality. We further
clarify that all transformation methods are intended to provide
simple and incremental transformations, while heavyweight
transformations can undermine the readability of open-source
software. Table I lists all designed transformation methods.
Identifier Level. We first parse a program to extract all
identifiers (i.e., variable names). We then design three transfor-
mation methods on extracted identifiers. Identifier replacement
(IR) randomly replaces a subset of identifiers with random

526

https://github.com/ZhenlanJi/Unlearnable_Code
https://github.com/ZhenlanJi/Unlearnable_Code

strings. Identifier synonym (IS) is built on the basis of Word-
Net [14], a large-scale lexical database. We query WordNet
for a given identifier i to see if i and its synonyms exist; if
so, we replace i with a randomly selected synonym. Compared
with IR, IS can better preserve the readability of transformed
programs. We also propose character synonym (CS) which
uses hardcoded rules to replace a single-character identifier
with another character, e.g., i → j.

As discussed in Sec. II, many code embedding models
regard program statements as sentences, with identifiers (and
also constants; see below) treated as tokens. This allows
software to be smoothly processed via NLP techniques. Ac-
cordingly, we envision that identifier-level rewriting, though
lightweight and retains readability to a large extent, will
be useful in token-level transformation and deceiving neural
models. This intuition is supported in our evaluation (Sec. V).

Constant Level. Additionally, we also propose three schemes
to transform constants extracted in a program without breaking
the semantics. Int rewrite (INT) converts an integer into an
arithmetic expression. For instance, after applying IR, the
C statement a = a + 10 will be converted into a = a +
121 - 21, where “121” and “21” are two randomly-decided
constants that will guarantee to yield “10”. Similarly, we
design a transformation scheme, namely float rewrite (FLT),
to convert floating point numbers into arithmetic expressions.
As for strings, our scheme string rewrite (STR) converts a
char* constant in C (or string constant in C++) into
two substrings, where the original string is recovered during
runtime by calling the libc function strdup followed by
calling another libc function strcat.

Existing DNN-based authorship identification and code
clone detection gain from matching “magic numbers,” which
denote representative constants [18]. As a result, transforming
constants should be effective in misleading the model. More-
over, as mentioned in Sec. II, some code embedding techniques
learn the program abstract syntax tree (AST). Accordingly,
by converting constants to expressions, we obscure the AST
without largely impeding readability.

Statement Level. We also design methods to extend existing
statements or insert new statements. For the IDI, FDI, and
SDI schemes, we split an existing declaration statement of
integer, float, or string variables into multiple declarations. For
instance, IDI adds one extra statement with integer arithmetic
computation, ensuring that the result is equal to the original
declarations. Similarly, FDI and SDI insert new statements
that perform floating-point arithmetics or string manipulations
without changing the original functionality. In contrast, SLI
generates and inserts new declarations at random, whose
declared variables are never used in subsequent computation.

While the semantics is retained during transformation, the
newly-inserted statements can complicate program AST and
control flow graphs. We anticipate that neural code learning
models that rely on AST or program structural-level informa-
tion will struggle to understand the transformed programs.

Algorithm 1: Protection framework.
Input: Clean Program s, Transformation Sequence Length K,

Sample Size M , Batch Size m, Exploration Factor ε,
Discounting Factor γ

Output: transformed Program ŝ
1 ŝ← s;
2 foreach k ← 1, · · · ,K do
3 D ← [0]|T |; // initialize expectation distribution
4 S ← ∅; // transformed software set
5 foreach t← 1, · · · ,M/m do
6 T ← ∅;
7 foreach i← 1, · · · ,m do
8 t← random() with probability of γi−1ε;
9 t← argmaxtDt with probability of 1− γi−1ε;

10 T ← T ∪ {t};
11 end
12 transform ŝ with all t ∈ T and update D;
13 record all transformed program to S;
14 end
15 ŝ← argmaxs∈S f(s);
16 end
17 return ŝ

IV. FRAMEWORK DESIGN

Motivation. Each transformation scheme complicates program
structures to some degrees, and different schemes may achieve
a synergistic effect by iteratively modifying a program, with
the output of each iteration, a transformed program, serving
input of the next iteration. As a result, the applied transforma-
tion sequences (we have ten transformation methods) create
a vast search space, 10K , where K represents the number of
iterations applied to the input. We formulate searching for the
optimal transformation sequence as an optimization process,
where statistical methods can help to promptly explore the
search space and find optimal sequences.
Framework. The input of our pipeline is a program s. Let the
local embedding model (e.g., CodeBERT) be E , we iteratively
transform s into ŝ until ŝ manifests a large embedding distance
and also a small edit distance with s. This way, the “identity”
of s will be hidden, given that ŝ is seen as irrelevant to s in
the view of M while similar to s in view of humans (by edit
distance). Users can then release ŝ. Soon we will show that ŝ
will be protected from disclosing the information of s even if
code autocompletion models are trained over ŝ.

Alg. 1 illustrates the protection workflow. For each iter-
ation, we search for an optimal transformed software with
ε-Greedy (line 3–15) such that a predefined objective func-
tion is maximal. Note that since transforming software is
stochastic (e.g., the choice of synonyms is random), the
effectiveness of each transformation method forms a random
variable. Therefore, it requires extensive sampling to derive
an optimal transformed software. Our sampling strategy is
largely enlightened by ε-Greedy in standard multi-armed
bandit problem. In this setting, the sampling strategy is pro-
gressively refined and favors the transformation methods that
have good historical performance. First, it samples a batch of
transformation methods: it 1) takes a random method with
the probability of ε (line 8) or 2) takes the best method
(w.r.t. historical expectation on f) with the probability of

527

1− ε (line 9). Typically, the former case explores all possible
transformation methods, while the latter seeks to maximize
the expected value of f . Alg. 1 collects samples in T and
transforms ŝ with each t ∈ T respectively, and updates the
table of expected value per batch (line 12–13). We define the
objective function f as:

f(ŝ; s) =
l2-norm(E(ŝ), E(s))
edit-dist(ŝ, s)

(1)

where l2-norm measures the euclidean distance of trans-
formed ŝ and its clean version, while edit-dist measures
the edit distance between them. By doing so, we presume
Alg. 1 will gradually find ŝ with sufficiently long euclidean
distance while retaining a small edit distance with s.
Hyper-parameters. Alg. 1 takes hyper-parameters. K denotes
the length of the transformation sequence (i.e., how many iter-
ations are allowed to transform s); M denotes the sample size
for deciding one single transformation method in ε-Greedy.
m is defined as the batch size, where the distribution table
is updated per batch (in contrast to per sample). ε is the
exploration rate that balances exploration and exploitation
in ε-Greedy, and γ is the discounting factor that reduces
the probability of exploration when the distribution is well
captured by prior trials. Overall, larger K and M indicate
more intensive transformation. For the current implementation,
we set K = 15 and M = 256. Our evaluation shows
that this configuration enables a reasonable tradeoff between
effectiveness and cost. Users are encouraged to configure these
two hyper-parameters according to their own usage scenarios.
For m, ε, and γ, they are all common settings for ε-Greedy,
where m = 64, ε = 1, and γ = 0.5 in our implementation.

V. EVALUATION

Neural Embedding. We use CodeBERT, a SOTA code em-
bedding model to guide our local transformation shown in
Alg. 1. We have introduced the high-level concept behind
CodeBERT in Sec. II. We emphasize, however, that our
protection pipeline is orthogonal to specific embedding models
used during local transformation.
Test Dataset. We use POJ-104 [15], a widely-used dataset
containing 52,000 C/C++ programs written for 104 tasks.
These programs implement programming assignments by stu-
dents (e.g., two sum). While programs belonging to the same
task share identical functionality, programs in different tasks
are irrelevant. On average, each POJ-104 program contains
about 36 lines of code (exclude white space and comments),
whose length is comparable or outperforms the program
datasets used by relevant works [21], [22], [25].
Code Autocompletion. We measure how the transformed
programs can successfully mislead unauthorized code auto-
completion models when being exposed. This is a timely
topic, where modern code autocompletion tools like Copilot
have raised concerns by training code on GitHub without
distinguishing licenses. We use CodeGPT [12], a transformer-
based code autocompletion model, for this task. CodeGPT
extends the standard GPT-2 model structure and demonstrates
that it performs at a SOTA level in this line of research [12].

Setup & Metrics. We measure when training CodeGPT
using our transformed programs, whether the transformed
program can be successfully protected from being used for
self-completion. Let the training split of POJ-104 contain
N programs, we measure three setups: randomly selecting
{1, 20%, 40%} programs and replacing them with their trans-
formed versions using our approach. Note that “1” indicates
that only one program is being transformed. We then train
three CodeGPT models with these three training datasets. We
consider two baselines: 1) B1, which uses the original training
dataset to train CodeGPT, and 2) B2, which replaces those
transformed {1, 20%, 40%} programs with irrelevant POJ
programs. Ideally, CodeGPT trained using our transformed
programs would behave similarly to B2 while deviating sig-
nificantly from B1, showing that the identities of protected
programs have been successfully hidden.

To assess autocompletion, the standard approach randomly
splits a program p into two pieces, p1 and p2, and uses p1 as
the model input to determine whether the model-generated
piece p′2 matches p2. Autocompletion models are typically
assessed in terms of their one-line, three-line, and five-line
completion accuracy, such that we match the first one line,
three lines, and five lines of p′2 and p2. To “match” two code
snippets, both edit similarity (ES) and exact match (EM) are
employed, with ES computing the tree edit similarity between
the two code snippets (higher is better), and EM requiring
an exact match between the two code snippets. We clarify
that these two metrics are consistent used in measuring the
performance of CoedXGLUE [12].
Model Training. Our learning and testing were conducted on
a server machine with an Intel Xeon E5-2683 v4 CPU at 2.40
GHz with 256 GB of memory and two Nvidia 2080 GPU
cards. The machine runs Ubuntu 18.04. Note that we use a
pre-trained CodeBERT model to compute code embeddings.
We share the same hyperparameters with CodeXGLUE to
train the CodeGPT model. To benchmark the performance
of our trained model, we also evaluate it on dataset py150
provided by CodeXGLUE. The result shows that our model
has a comparative performance on py150 with CodeXGLUE’s
official report. The average training cost for each CodeGPT
model is about five hours. It takes about one minute to
transform one program using methods in Sec. IV.

A. Generating transformed Code Samples

TABLE II
AVERAGE EMBEDDING DISTANCE AND EDIT DISTANCE OF 1)

TRANSFORMED PROGRAMS AND THEIR CLEAN VERSIONS; 2) SAME CLASS
PROGRAMS; AND 3) CROSS CLASS PROGRAMS.

transformed vs. Clean Same Class Cross Class
Embedding Dist. 3.54 3.54 4.29
Edit Dist. 138.2 480.7 587.8

transformation. We first compute and compare the average
embedding distance and edit distance between transformed
programs and corresponding clean versions in Table II. Fur-
thermore, given that programs in POJ-104 are annotated with
different classes, we also report pairwise distance among

528

programs of the same class or cross classes. Our approach
effectively increases the difference between transformed and
clean versions of the programs in CodeBERT’s view, while
retaining a reasonable edit distance.

The edit distance between the transformed and clean pro-
grams is much lower than that between programs of the
same class. Programs from different classes implement distinct
tasks, resulting in even longer edit distance. This reveals
the high similarity in the view of users. We present further
discussions on readability below in Table IV. In short, our
transformation is shown to be effective in misleading neural
code embedding, whose effectiveness will be further illustrated
by defeating CodeGPT in Sec. V-B.

TABLE III
TRANSFORMATION DISTRIBUTION.

transformation Portion transformation Portion
IR 26.6% STR 6.3%
IS 3.1% IDI 3.7%
CS 14.1% FDI 0.1%
INT 29.3% SDI 0.8%
FLT 1.1% SLI 14.8%

Distribution of Applied transformations. As shown in
Table I, we implement ten transformation methods. Recall
that, in Alg. 1, a transformation method is retained, in case
it effectively reduces embedding distance without primarily
undermining the edit distance. Table III reports the distribution
of successfully retained transformations. Overall, we interpret
that all proposed methods (except FDI) are applied for a non-
trivial amount of iterations. Identifier-level and constant-level
transformations are particularly effective to deceive Code-
BERT. To compute embeddings, CodeBERT extracts a large
number of string and integer constants (including variable
names) from input programs. Accordingly, by transforming
identifiers and constants, CodeBERT can be effectively de-
ceived. Note that the IS scheme is used less frequently. IS
replaces a variable name with its synonym by querying Word-
Net. We find that a considerable fraction of variable names
lack entries or synonyms in WordNet. Recall FLT extends
a floating number into an arithmetic expression, and FDI
rewrites a declaration statement for floating point variables.
POJ-104 programs rarely use floating numbers. According to
our observation, another reason that impedes the usage of
statement-level transformations (IDI, FDI, SDI) is that they
induce a higher edit distance, thereby undermining readability.

TABLE IV
AVERAGE SIMILARITY DECIDED BY JPLAG COMPARING TRANSFORMED

PROGRAMS AND THEIR CLEAN VERSIONS.

transformed vs. Clean Same Class Cross Class
67.5% 4.4% 0.4%

Readability. The “readability” of software is often subjective
and difficult to quantify. In addition to the edit distance, which
our pipeline optimizes for, we provide another metric for the
readability of transformed programs using conventional code
similarity analyzers. At this point, we use a popular similarity
checker called JPlag [17]. JPlag is widely used to detect code

plagiarism based on syntactic and code structure-level features.
Thus, using JPlag to evaluate code similarity provides a more
complete picture of the readability of transformed code. JPlag
can be configured locally prior to use. We also looked at
another well-known tool, Moss [19]. Nonetheless, its remote
server frequently fails to respond.

We assess randomly selected samples within POJ-104 as
a baseline (same setting as Table II). We find that when
randomly selected code samples from different classes are
compared, the baseline similarity between them is only 0.4%,
demonstrating that JPlag is capable of successfully distinguish-
ing distinct programs. Note that JPlag can also distinguish
programs belonging to the same class (for example, two quick
sort programs) as long as their implementations are sufficiently
distinct (average similarity 4.4%). In contrast, transformed
programs exhibit a high degree of similarity to their clean
versions, with an average similarity score of 67.5%. As a
result, we interpret that these transformations do not primarily
harm open-source software’s “readability” and disseminability.

Cost. Our proposed transformations are functionality preserv-
ing, meaning that the transformed programs manifest identical
functionality with their clean versions by design. Nevertheless,
our transformations insert new code fragments into the pro-
grams, imposing additional performance penalty. We manually
write non-trivial test cases for POJ-104 programs to assess
performance penalty. We use a common performance analysis
tool on Linux, perf, to measure the cost of (transformed)
programs. In general, we report that the transformed pro-
grams become negligibly slow (on average less than 1%),
if at all detectable. This is not surprising, as our methods
primarily change symbols (variable names) and statements in a
lightweight manner. Symbols are removed during compilation
and hence have no effect on execution. In terms of statement-
level changes, we find that many of them are optimized
out during compilation. We interpret the cost evaluation as
encouraging, illustrating that our transformation would incur
negligible extra cost.

TABLE V
ASSESSING THE PERFORMANCE OF CODEGPT. B1 AND B2 ARE TWO

BASELINE SETTINGS CLARIFIED IN THE SETUP & METRICS PARAGRAPH.
UE (UNLEARNABLE EXAMPLE) DENOTES OUR RESULTS. “ES” STANDS

FOR EDIT DISTANCE (A MORE TOLERATE METRIC OF CODE SIMILARITY),
WHEREAS “EM” STANDS FOR EXACT MATCH.B2(20%, 40%, 1) AND UE

(20%, 40%, 1) CORRESPOND TO REPLACE 20%, 40%, 1 OF CLEAN
TRAINING PROGRAMS WITH OUR TRANSFORMED VERSIONS. UE IS

EXPECTED TO CLOSE TO B2 FOR HIGH PROTECTION ABILITY.

Method
1 line 3 lines 5 lines

ES EM ES EM ES EM
B1 73.9% 42.4% 71.2% 21.4% 68.3% 10.9%

B2(20%) 68.8% 34.9% 67.3% 15.9% 64.9% 7.2%
UE (20%) 69.3% 35.5% 67.7% 16.2% 65.2% 7.6%
B2(40%) 68.6% 34.5% 66.7% 15.6% 64.3% 6.7%
UE (40%) 68.4% 33.6% 66.7% 15.6% 64.2% 7.0%
B2(1) 74.3% 48.8% 65.8% 10.2% 62.7% 0.9%
UE (1) 73.9% 45.8% 65.7% 10.8% 63.6% 2.2%

529

B. Mitigating Code Autocompletion

Table V reports the results of mitigating CodeGPT in
different settings. When more lines are checked, CodeGPT’s
accuracy decreases. This is reasonable, as matching three or
five lines implies a more difficult task than matching one line.

Recall that B1 feeds CodeGPT with programs in its train-
ing dataset for self-completion, denoting the “upper bound”
of accuracy. Table V reports promising results where the
protected programs (three “UE” rows) are far from the B1.
More importantly, the “UE” rows are extremely close to their
corresponding B2 rows. As previously clarified, Baseline2
denotes the “lower bound” of accuracy, as it replaces the
transformed programs in the training dataset with irrelevant
programs. Therefore, the evaluation results illustrate that,
after transformation, protected programs behave similarly to
randomly-picked programs, successfully deceiving the auto-
completion model.

The 8th and 9th rows (B2(1) and UE (1)) denote inserting
only one transformed program in the training dataset and
feeding its clean version to CodeGPT (as noted in Setup &
Metrics, we will randomly cut the input program into two and
feed CodeGPT with the upper cut). This is a realistic setting,
given that authors may want to protect their own piece of
software before uploading it to GitHub. Though only changing
one piece of training data, it already largely undermines
the accuracy of CodeGPT when performing autocompletion
toward the upper half of its clean version.
Clarification. We also clarify that the accuracy of CodeGPT
in matching other programs (which may be also within the
training data) has only negligible change (around 1%; par-
ticularly for the evaluation setting where 40% training data
are transformed) compared with B1. In summary, though
it is generally hard (if at all avoidable) to prevent open-
source software from being used as training data, information
regarding the open-source software will not be leaked via
autocompletion after applying our protection.
Case study. We provide an code example to illustrate
the effectiveness of our approach to impede autocomple-
tion at https://github.com/ZhenlanJi/Unlearnable Code/blob/
main/example.pdf.

VI. CONCLUSION

In this paper, we propose to mitigate unauthorized neural
code learning from using open-source software. We design a
set of lightweight transformations and explore optimal trans-
formation sequences using multi-armed bandits. Our evalua-
tion demonstrates that transformed programs can successfully
deceive a SOTA code autocompletion model, CodeGPT.

ACKNOWLEDGEMENT

We are grateful to the anonymous reviewers for their valu-
able comments. The work is supported in part by NVIDIA
Academic Hardware Grant Program. Shuai Wang is the cor-
responding author of this paper.

REFERENCES

[1] Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen, and DaeHun
Nyang. Large-scale and language-oblivious code authorship identifica-
tion. In CCS, 2018.

[2] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq:
Generating sequences from structured representations of code. ICLR.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde,
Jared Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg
Brockman, et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

[4] Valeriia Cherepanova, Micah Goldblum, Harrison Foley, Shiyuan Duan,
John Dickerson, Gavin Taylor, and Tom Goldstein. LowKey: leveraging
adversarial attacks to protect social media users from facial recognition.
arXiv preprint arXiv:2101.07922, 2021.

[5] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy
of obfuscating transformations. Technical report, Department of Com-
puter Science, The University of Auckland, New Zealand, 1997.

[6] Cynthia Dwork. Differential privacy. In International Colloquium on
Automata, Languages, and Programming, pages 1–12. Springer, 2006.

[7] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Code-
BERT: A pre-trained model for programming and natural languages.
arXiv preprint arXiv:2002.08155, 2020.

[8] GitHub. Copilot, 2021.
[9] Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey,

and Yisen Wang. Unlearnable examples: Making personal data unex-
ploitable. arXiv preprint arXiv:2101.04898, 2021.

[10] Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao.
Neural symbolic machines: Learning semantic parsers on freebase with
weak supervision. In ACL, 2017.

[11] Andrew Liu. Copilot, 2021.
[12] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,

Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang,
et al. Codexglue: A machine learning benchmark dataset for code
understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

[13] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282. PMLR, 2017.

[14] George A Miller. WordNet: a lexical database for english. Communi-
cations of the ACM, 1995.

[15] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural
networks over tree structures for programming language processing. In
AAAI, 2016.

[16] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-
Gavitt, and Ramesh Karri. An empirical cybersecurity evaluation of
github copilot’s code contributions. arXiv preprint arXiv:2108.09293.

[17] Lutz Prechelt, Guido Malpohl, Michael Philippsen, et al. Finding
plagiarisms among a set of programs with JPlag. J. UCS, 8(11):1016.

[18] Erwin Quiring, Alwin Maier, and Konrad Rieck. Misleading authorship
attribution of source code using adversarial learning. In USENIX
Security, 2019.

[19] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local
algorithms for document fingerprinting. In SIGMOD, 2003.

[20] Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and Li Li. Coprotector:
Protect open-source code against unauthorized training usage with data
poisoning. arXiv preprint arXiv:2110.12925, 2021.

[21] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy,
and Mohammad Mamun Mia. Towards a big data curated benchmark
of inter-project code clones. In ICSME, 2014.

[22] Jeffrey Svajlenko and Chanchal K Roy. Evaluating clone detection tools
with bigclonebench. In ICSME, 2015.

[23] Jake Williams. Copilot privacy leakage, 2021.
[24] Xiao Yang, Yinpeng Dong, Tianyu Pang, Hang Su, Jun Zhu, Yuefeng

Chen, and Hui Xue. Towards face encryption by generating adversarial
identity masks. In ICCV, 2021.

[25] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang
Liu. Devign: Effective vulnerability identification by learning compre-
hensive program semantics via graph neural networks. arXiv preprint
arXiv:1909.03496, 2019.

530

https://github.com/ZhenlanJi/Unlearnable_Code/blob/main/example.pdf
https://github.com/ZhenlanJi/Unlearnable_Code/blob/main/example.pdf

DeepController: Feedback-Directed Fuzzing for Deep Learning Systems

Hepeng Dai 1 Chang-ai Sun 1 * Huai Liu 2

1 University of Science and Technology Beijing
Email: daihepeng@sina.cn, casun@ustb.edu.cn

2 Swinburne University of Technology
Email: hliu@swin.edu.au

Abstract

Deep learning (DL) systems are increasingly adopted
in various fields, while fatal failures are still inevitable in
them. One mainstream testing approach for DL is fuzzing,
which can generate a large amount of semi-random yet
syntactically valid test cases. Previous studies on fuzzing
are mainly focused on selecting “quality” seeds or using
“good” mutation strategies. In this paper, we attempt to im-
prove the performance of fuzzing from a different perspec-
tive. A new fuzzer, namely DeepController, is accordingly
developed, which makes use of the feedback information ob-
tained in the test execution process to dynamically select
seeds and mutation strategies. DeepController is evaluated
through empirical studies on three datasets and eight DL
models. The experimental results show that, with the same
number of seeds, DeepController can generate more adver-
sarial inputs and achieve higher neuron coverage than the
state-of-the-art testing techniques for DL systems.

Keywords: Fuzzing, Deep Learning Systems, Software
Testing

1 Introduction
Nowadays, deep learning (DL) systems are used in a

wide variety of fields, thanks to their powerful learning and
reasoning capabilities. Nevertheless, DL systems, like tra-
ditional software systems, unavoidably contain some faults
and thus show incorrect or unexpected behaviors. Testing
is a main approach to support quality assurance of software
systems. However, the unique features of DL systems pose
new challenges for testing. For example, the logic behind a
DL system is not manifested as that in traditional software;
DL introduces much higher non-determinism in the soft-
ware output. As such, many traditional testing techniques
are no longer applicable to DL systems.

Among recently proposed testing techniques for DL sys-
tems, fuzz testing (or simply fuzzing) [1] is a basic tech-
nique that has gradually become a standard method in the
industry. It can generate lots of semi-random test cases

*corresponding author

based on existing test data with relatively low cost. Despite
the simplicity in concept, fuzzing has successfully gener-
ated the adversarial inputs that facilitate the fault detec-
tion [2]. Since the first white-box-based fuzzing method for
DL systems [1], various fuzzing techniques have been pro-
posed [3]. Some fuzzing techniques are focused on select-
ing appropriate seeds [1, 4], while others attempt to improve
the performance of fuzzing via choosing “good” mutation
strategies [5, 6].

Most previous studies on seed selection mainly used sin-
gle pieces of test information (e.g., coverage information,
the number of seed mutations, or the times of seeds added
to the seed queue), but did not consider a variety of in-
formation comprehensively. Previous studies on mutation
strategies showed that they tend to activate different sets of
neurons [7], implying the uncertainty on the optimal muta-
tion strategies for a specified seed during testing. Unfortu-
nately, existing mutation strategy selection approaches did
not individually consider specific seeds, which may affect
the fault-detection efficiency of fuzzing.

In this paper, we propose a new fuzzing technique,
namely DeepController, which makes full use of the feed-
back information (including coverage information, testing
results, the number of seed mutations, and the times of seeds
added to the seed queue) collected during the test execu-
tion process to guide the selections of seeds and mutation
strategies. In line with software cybernetics [8], DeepCon-
troller treats the whole testing procedure as a feedback con-
trol system, providing feedback-directed strategies for se-
lecting seeds from the seed queue and choosing the most
appropriate mutation strategies for selected seeds.

Our study has the following three major contributions:

(1) A comprehensive framework (Section 3.1), was pro-
posed to implement DeepController, which can select
seeds and mutation strategies that both have high po-
tentials of fault detection, adaptive to the feedback in-
formation from test executions.

(2) Two algorithms, namely AS2 (Section 3.2) and AMS2
(Section 3.3), were developed for the selections of seeds
and mutation strategies, respectively.

(3) A series of empirical studies on three datasets, and

DOI reference number: 10.18293/SEKE2022-126

531

eight DL models (Section 4), were conducted to eval-
uate the performance of DeepController. As observed
from these experiments, DeepController could generate
more adversarial inputs, and obtain higher neuron cov-
erage than the state-of-the-art DL testing techniques.

2 Background and Related Work
2.1 Fuzzing

The key idea of fuzzing is to generate a large amount of
semi-random yet syntactically valid test cases by mutating
existing test cases. Generally, the test case generation is
composed of the following three components.

• Seed queue construction, which is responsible for con-
structing the seed queue by selecting test cases from
corpus that contains a test pool as well as the label and
coverage information of each test case.

• Seed selection, which is responsible to select seeds
from the seed queue based on a certain selection strat-
egy.

• Seed mutation, which uses some seed mutation strate-
gies to generate mutated seeds that serve as test cases
for executing the program under test (PUT).

2.2 Related Work
Recently, researchers have proposed a large number of

fuzzing techniques for DL systems based on different the-
ories and observations. Among them, coverage-guided
fuzzing techniques have been proven to be very effective
in detecting faults and exploring the internal states of the
DL models. Closely related works are described below.

Seed Selection. Fuzzing iteratively selects seeds from
the seed queue based on some strategies. One simple and
commonly used strategy is random selection, but it does not
use any information of testing process or DL systems. To
enhance the random strategy, the idea of “recency-aware”
was used to select the seed that induces the new coverage
[9, 7, 4, 10, 11, 12], which corresponds to the observation
that if a seed covers a branch, the following branches are
more likely to be covered due to the hierarchical relation-
ship between branches. In addition, the idea of “frequency-
aware” was used to probabilistically select a seed based on
the number of times it has been mutated: if a seed has al-
ready been picked many times, it has a lower probability of
being selected again [4, 10].

Seed Mutation. As one core component of fuzzing,
mutation strategy directly affects the fault-detection effi-
ciency and effectiveness of fuzzing. The existing strategies
for seed mutation can be classified into three categories:
(1) gradient-based mutation strategies, which first calculate
the gradient of the objective function, and then mutate the
seed according to the calculated gradient [1, 13, 14]; (2)
domain-knowledge-based mutation strategies, which mu-
tate the seeds according to the properties of inputs, while the

mutated seed has the same semantic information as the orig-
inal one [7, 15, 16]; (3) search-based mutation strategies,
which mutate the selected seeds using some search-based
algorithms, such as population-based metaheuristics [5] and
Monte Carlo Tree Search (MCTS) [6].

Although existing fuzzers showed promising results in
detecting faults in DL systems, they do not make full use
of the information obtained in test execution process, which
could be useful for improving the efficiency of fuzzing, thus
motivating this study.

3 Methodology
In order to further improve the performance of fuzzing

for DL systems, this study makes use of the feedback in-
formation obtained in test executions to guide the selection
of appropriate seeds and proper mutation strategies, partic-
ularly focused on designing new framework and two strate-
gies for seed and mutation strategy selections.
3.1 Framework

Based on the principles of software cybernetics and the
features of fuzzing, we propose the framework of Deep-
Controller, as illustrated in Figure 1. The starting point of
DeepController is that there already exist a test suite and
some mutation strategies. Note that researchers have de-
vised many mutation strategies for different types of DL
models, so it remains a challenging issue how to select
them for testing. There is a feedback loop in the frame-
work, which consists of basic components of fuzzing, DL
model, the database for storing test information (including
coverage information, the testing results, the times of the
seed being selected, and the time of the seed adding to seed
queue), and the controller for selecting seed and mutation
strategy. Particularly, in the controller, the historical test in-
formation is leveraged to guide the selections of seeds and
mutation strategies. Furthermore, the historical information
can also be used to improve the underlying testing strate-
gies.
3.2 Seed Selection Strategy

Suppose that a seed queue Q has n seeds, that is, Q =
{s1, s2, . . . , sn}. Li(i = 1, 2, . . . , n) = {(si, t0)} is to
store the time of si and the seeds generated based on si
added to Q. For instance, seeds s∗1 and s∗2 are generated at
time t∗1 and t∗2 by seeds s1 and s2, respectively. Both s∗1
and s∗2 can trigger some new coverage (e.g. new neurons).
Then L1 and L2 should be updated as L1 = L1∪{(s∗1, t∗1)}
and L2 = L2 ∪{(s∗2, t∗2)}. The selection probabilities of Li

are denoted as LP = {〈L1, p1〉, 〈L2, p2〉, . . . , 〈Ln, pn〉},
where pi(i = 1, . . . , n) denotes the selection probabil-
ity of Li. There are two lists E = {e1, e2, . . . , en} and
E′ = {e′1, e′2, . . . , e′n}, where ei(i = 1, 2, . . . , n) records
the times the seeds in Li are selected and trigger new cover-
age, while e′i records the times the seeds in Li are selected
but no new coverage is triggered.

532

Mutation
Strategy

Seed
2. Test Cases

Generation

DL ModelTest Cases
Fuzzing

3. Test Execution

4. Test Information

Record
5. Selection

Probabilities Adjustment

1. Seed and Mutation

Strategy Selection

Controller

Results

Seed, Coverage,
and Results
Information

Selection
Probabilities

Figure 1: The framework of DeepController

We propose an adaptive seed selection strategy, namely
AS2, which utilizes test information (including the cover-
age, the times of seeds being used, and the time of a seed
added to seed queue) to select those seeds with higher fault-
detection potentials. If the mutated seeds generated by si
(that belonged to Li) could trigger new coverage, the cor-
responding selection probability pi of Li will be increased;
otherwise, pi will be decreased. Moreover, the smaller the
times of Li being selected, the increase of pi is greater; oth-
erwise, the increase of pi is smaller.

At the beginning, AS2 initializes LP =
{〈L1, 1/n〉, 〈L2, 1/n〉, . . . , 〈Ln, 1/n〉}, and ei = 0, e′i =
0(i = 1, . . . , n). During the test process, assume that
AS2 selects Li based on the LP , and the seed si that is
the latest seed of Li is selected. Accordingly, a set of
mutated seeds T = {s1i , s2i , . . . , ski } (k is the number of
times a seed can be mutated) are generated based on si and
some mutation strategies. Suppose that all seeds in T are
executed. If ∃si∗ ∈ T , and si∗ triggers new coverage and
∀j = 1, . . . , n, j 6= i, we then update ei = ei + 1 and set

p′j =

pj −
ε× (1 + ln(1 + 1/(ej + 1)))

n− 1
if pj ≥W

0 if pj < W
,

(1)
where ε is a probability adjusting factor, and W =
ε× (1 + ln(1 + 1/(ej + 1)))

n− 1
. Then,

p′i = 1−
n∑

j=1,j 6=i

p′j . (2)

Alternatively, If ∀si∗ ∈ T , and si∗ cannot trigger new cov-
erage, we then update e′i = e′i + 1 and set

p′i =

{
pi − ε× (1 + e′i/n) if pi ≥ ε× (1 + e′i/n)

0 if pi < ε× (1 + e′i/n)
,

(3)

p′j =

pj +
ε× (1 + e′i/n)

n− 1
if pi ≥ ε× (1 + e′i/n)

pj +
pi

n− 1
if pi < ε× (1 + e′i/n)

(4)
.

AS2 keeps updating the selection probabilities of seeds
via the formulas 1 to 4. As a result, the seeds with higher
chances of triggering new coverage and being used less
times have higher probabilities of being selected.
3.3 Mutation Strategy Selection Strategy

Suppose that there exist a seed queue Q =
{s1, s2, . . . , sn} and a set of mutation strategies M =
{m1,m2, . . . ,mx}. The list MPi(i = 1, 2, . . . , n) =
{〈m1, p

1
i 〉, 〈m2, p

2
i 〉, . . . , 〈mx, p

x
i 〉} can be created as the

set of mutation strategy selection probabilities for each seed
in Q. The list Ci = {c1i , c2i , . . . , cxi } records the times each
strategy mh(h = 1, . . . , x) has been used by si and trig-
gered new coverage.

We propose an adaptive mutation strategy selection ap-
proach, namely AMS2, which analyzes the performance
of mutation strategies on different seeds and selects the
most appropriate strategy for a specific seed. If the mu-
tated seeds generated by seed si and the mutation strategy
mh(h = 1, 2, . . . , x) could trigger new coverage or detect
faults, the corresponding selection probability phi ofmh will
be increased; otherwise, phi will be decreased. Moreover,
the smaller the times of mh being used, the increase of phi
is greater; otherwise, the increase of phi is smaller.

At the beginning, AMS2 initializes MPi =
{〈m1, 1/x〉, 〈m2, 1/x〉, . . . , 〈mx, 1/x〉}, and sets all
elements in Ci to 0. During the test process, assume that
si is selected by AS2. AMS2 selects a mutation strategy
mh based on the MPi. Accordingly, a set of mutated seeds
T = {s1i , s2i , . . . , ski } (k is the number of times a seed can
be mutated) are generated based on the si andmh. Suppose

533

that all seeds in T are executed. If ∃si∗ ∈ T , and si∗
triggers new coverage or detects a fault, ∀y = 1, 2, . . . , x
and y 6= h, we then update chi = chi + 1 and set

pyi
′
=

pyi −

δ × x
cyi + 1

if pyi ≥
δ × x
cyi + 1

0 if pyi <
δ × x
cyi + 1

, (5)

where δ is a probability adjusting factor. Then,

phi
′
= 1−

x∑
y=1,y 6=h

pyi
′
. (6)

Alternatively, If ∀si∗ ∈ T , and si∗ cannot trigger new cov-
erage or detect a fault, we then set

phi
′
=

{
phi − δ if phi ≥ δ
0 if phi < δ

, (7)

pyi
′
=

pyi +

δ

x− 1
if phi ≥ δ

pyi +
phi
x− 1

if phi < δ
. (8)

AMS2 dynamically adjusts the selection probabilities of
mutation strategies based on the formulas 5 to 8. As a result,
the mutation strategies with a higher probabilities of trigger-
ing new coverage and detecting faults for the selected seeds
have higher probabilities of being selected.

4 Empirical Study
We conducted a series of empirical studies to evaluate

the performance of DeepController.
4.1 Research Questions

In our experiments, we focused on addressing the fol-
lowing three research questions.
RQ1 Can DeepController generate more adversarial inputs

than the commonly used testing techniques for DL
models?

RQ2 Can DeepController achieve higher neuron coverage
(NC) [1] than state-of-the-art techniques?

RQ3 How about the performance of DeepController in
terms of time overhead?

4.2 Experimental Design
DeepController was implemented as a self-contained

fuzzing framework, written in Python based on the DL
framework Keras (ver.2.1.6) with TensorFlow (ver.1.5.0)
backend. With DeepController, we performed a compar-
ative study to answer the three research questions raised
above.

Datasets, DNN Models, and Baselines. We selected
three popular publicly available datasets (i.e., MNIST [17],
ImageNet [18], and CIFAR10 [19]) as the evaluation sub-
jects (see Table 1). We further utilized the commonly

Table 1: Subject datasets and DL models

Dataset DL Model Number of Parameters Acc.(%)

ImageNet VGG-16 138,357,544 92.60
VGG-19 143,667,240 92.70

LetNet-1 7,206 98.25
MNIST LetNet-4 69,362 98.75

LetNet-5 107,786 98.63

VGG-16 138,357,544 86.84
CIFAR10 VGG-19 143,667,240 77.26

CNN-20 952,234 77.68

used DL models, including LeNet-1, LeNet-4, LeNet-5,
VGG-16 and VGG-19 for ImageNet, VGG-16 and VGG-
19 for CIFAR10, and 20 layer CNN with max-pooling
and dropout layers [6]. Note that most used models are
open-source available, except VGG-16 and VGG-19 for
CIFAR10, which were trained by ourselves. As summa-
rized in a survey [3], there are several open-source tools for
DL systems. To further measure the fault-detection ability
of DeepController, we selected three representative fuzzers
(DeepXplore [1], DeepTest [7], and DeepHunter [4]) and a
gradient-based testing approach proposed recently (FGSM
[20]) as our baselines.

Mutation Strategies. We select eight mutation strate-
gies for image, which can be partitioned into two categories:
(1) Pixel Value Mutation P , which includes image contrast,
image brightness, image blur, and image noise; (2) Affine
Mutation G, which includes image translation, image scal-
ing, image shearing, and image rotation. The empirical re-
sults in [7] showed that combining different image mutation
strategies, neuron coverage can be improved. In order to
keep the semantics of the mutated seeds close to the origi-
nal one, we adopt a conservative strategy that selects a pixel
value mutation strategy p from P by using AMS2, and ran-
domly selects an Affine mutation g from G. Then the mu-
tated seeds could be obtained by applying selected p and g
on the selected seed. Note that this study aims to improve
the fault-detecting efficiency of fuzzing, the strategy pro-
posed in [4] was used to judge whether the mutated seeds
are valid or not.

Parameter Settings. The hyper-parameters of DeepX-
plore, DeepTest, DeepHunter, and FGSM were configured
based on the settings in their original studies. For the prob-
ability adjusting factors ε and δ of DeepController, we con-
ducted a series of trial experiments to find a fair setting, and
finally set ε = 0.01 and δ = 0.1.

To reduce the randomness effect of experiments, we ran-
domly generated ten seed queues for each dataset using dif-
ferent random seeds (each seed queue has 1000 images) and
averaged the results. The termination condition of testing

534

Table 2: Average number of adversarial inputs generated by fuzzers on different datasets

Fuzzers MNIST ImageNet CIFAR10

LeNet-1 LeNet-4 LeNet-5 VGG-16 VGG-19 VGG-16 VGG-19 CNN-20

DeepXplore 23.4 32.8 23.2 118.0 124.8 88.2 92.2 103.0
DeepTest 21.8 26.4 20.2 130.2 166.4 302.0 309.6 370.4
DeepHunter 24.8 24.4 38.6 132.6 150.4 381.4 308.2 472.6
FGSM 27.2 19.8 19.4 30.8 31.0 324.4 311.4 595.2
DeepController 37.8 35.4 43.4 162.6 199.0 478.8 447.4 697.2

Table 3: Average neuron coverage of fuzzers on different datasets

Fuzzers MNIST ImageNet CIFAR10

LeNet-1 LeNet-4 LeNet-5 VGG-16 VGG-19 VGG-16 VGG-19 CNN-20

DeepXplore 44.62% 55.81% 53.88% 23.66% 22.20% 5.53% 5.37% 32.55%
DeepTest 47.88% 64.32% 55.60% 32.33% 29.25% 5.74% 5.24% 34.56%
DeepHunter 46.62% 63.86% 58.58% 26.98% 24.04% 5.47% 4.85% 34.26%
FGSM 38.46% 61.08% 57.39% 32.02% 28.95% 5.06% 4.76% 33.26%
DeepController 48.08% 64.59% 59.11% 32.94% 29.80% 5.88% 5.57% 34.71%

DL models on MNIST and CIFAR10 is the generation of
1000 test cases. Since testing the VGG models on Ima-
geNet required huge testing resources, we set the generation
of 500 test cases as the termination condition. Besides, in
all experiments, we set the threshold of NC to 0.75 and the
experiments are preformed on an Mac machine (one Intel i5
3733 MHz processor with four cores, 16GB of memory).

4.3 Results

RQ1: Generation of Adversarial Inputs. Table 2 re-
ports the average number of adversarial inputs generated by
different fuzzers. It is clearly shown that DeepController
generated more adversarial inputs than the four baseline
techniques.

We also conducted statistical testing to verify the
significance of this evaluation. We used ANOVA [21]
(with significance level α = 0.05) to determine which
pairs of testing techniques had significant differences.
Our calculated results (the f-ratio value was 6.0951, and
the p-value was 0.0001) show that DeepController was
significantly better than the four baseline techniques in
terms of the capabilities of generating adversarial inputs.
Answer to RQ1: DeepController generated more adver-
sarial inputs than the four baseline techniques .

RQ2: Neurons Coverage. Table 3 reports the average
neuron coverage achieved by the four baseline techniques
and DeepController on different datasets. It is clearly
shown that DeepController achieved higher neuron cover-
age on different models than the four baseline techniques.

Answer to RQ2: DeepController covered more neurons
than the four baseline techniques.

RQ3: Time Overhead. DeepController makes use of feed-
back information to select appropriate seeds and mutation
strategies, which might result in longer computation time
as compared with DeepXplore, DeepTest, DeepHunter,
and FGSM. The time overhead is mainly composed of the
following: (1) seed and mutation strategy selection time
that refers to how long it takes to select seeds and mutation
strategies; (2) seed mutation time that refers to how long
it takes to generate mutated seeds based on the selected
mutation strategies and seeds; (3) seed execution time that
represents the time required for executing mutated seeds.
Table 4 reports the time overhead of the different tech-
niques, where x/y/z denotes the average time overheads
of studied techniques on MNIST, ImageNet, and CIFAR10,
respectively.

DeepController needed more time to select seeds. How-
ever, seed selection is an inexpensive process. On average,
seed selection time was only 1.2% of the whole testing time.
In terms of the whole test overhead, DeepController did not
always have the longest testing time. Specifically, Deep-
Controller had shorter testing time than DeepXplore and
FGSM on all datasets, shorter than DeepHunter on MNIST
and CIFAR10, DeepTest had shorter testing time than Deep-
Controller on all datasets, but the difference was marginal.

Answer to RQ3: For executing the same number of
test cases, DeepController generally had shorter testing
time than DeepXplore, FGSM, and DeepHunter, but had
marginally higher time overhead than DeepTest.

535

Table 4: Time overhead of the different techniques on different datasets

Techniques Seed and Mutation Seed Mutation (s) Seed Execution (s) Total (s)
Strategy Selection (s)

DeepXplore 0.003/0.043/0.006 170.467/994.904 /596.079 4.658/3223.119/230.186 175.129/4218.066/826.271
DeepTest 0.003/0.015/0.053 0.384 /7.643 /0.447 1.817/1443.383/21.819 2.204 /1451.041/22.319
DeepHunter 0.880/0.150/0.147 157.648/31.388 /51.072 1.666/1440.198/21.035 160.194/1471.736/72.253
FGSM 0.002/0.013/0.020 4.048 /1497.753/131.868 1.681/441.829 /60.696 5.731 /1939.595/192.585
DeepController 0.782/0.087/0.151 2.204 /11.068 /1.676 1.790/1483.132/22.342 4.776 /1494.288/24.169

5 Conclusions and Future Work
Fuzzing has increasingly been proven to be very effec-

tive in detecting faults and exploring the internal states of
the DL models. In recent years, researchers have pro-
posed quite a few fuzzers. Nevertheless, the execution in-
formation has not been fully utilized in the state-of-the-
art fuzzing techniques. In this paper, we introduced feed-
back into fuzzing for DL models, and proposed DeepCon-
troller, which makes use of feedback information obtained
in test executions to guide the selection of seeds and muta-
tion strategies. Empirical studies were conducted to evalu-
ate the performance of DeepController, in comparison with
four popular techniques for testing DL models, based on
three commonly used datasets, and eight DL models. The
experimental results showed that the proposed approach can
generate more adversarial inputs and explore more internal
states of DL models, with at least similar time overhead.

For our future work, there are two aspects that need fur-
ther investigations: (1) We will apply DeepController to ap-
plications with other types of inputs, such as audios and
text; (2) It is also important to investigate the influence of
hyper-parameters (the probability adjusting factor ε of AS2,
and the probability adjusting factor δ of AMS2) on the per-
formance of DeepController.

6 Acknowledgment
This work is supported by the National Natural Science

Foundation of China under Grant No. 61872039 and the
Fundamental Research Funds for the Central Universities
under Grant No. FRF-GF-19-019B.

References
[1] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated white-

box testing of deep learning systems,” in Proceedings of SOSP’17,
2017, pp. 1–18.

[2] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of
the art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–
1218, 2018.

[3] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Soft-
ware Engineering, vol. 48, no. 1, pp. 1–36, 2020.

[4] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li,
J. Yin, and S. See, “Deephunter: A coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of ISSTA’19,
2019, pp. 146–157.

[5] H. B. Braiek and F. Khomh, “Deepevolution: A search-based testing
approach for deep neural networks,” in Proceedings of ICSME’19,
2019, pp. 454–458.

[6] S. Demir, H. F. Eniser, and A. Sen, “Deepsmartfuzzer: Reward
guided test generation for deep learning,” arXiv:1911.10621, 2019.

[7] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of
ICSE’18, 2018, pp. 303–314.

[8] H. Yang, F. Chen, and S. Aliyu, “Modern software cybernetics: New
trends,” Journal of Systems and Software, vol. 124, pp. 169–186,
2017.

[9] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “Tensorfuzz:
Debugging neural networks with coverage-guided fuzzing,” in Pro-
ceedings of ICML’19, 2019, pp. 4901–4911.

[10] X. Xie, H. Chen, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Coverage-guided
fuzzing for feedforward neural networks,” in Proceedings of ASE’19,
2019, pp. 1162–1165.

[11] P. Zhang, B. Ren, H. Dong, and Q. Dai, “Cagfuzz:coverage-guided
adversarial generative fuzzing testing for image-based deep learning
systems,” IEEE Transactions on Software Engineering, 2021. DOI:
10.1109/TSE.2021.3124006.

[12] P. Zhang, Q. Dai, and S. Ji, “Condition-guided adversarial genera-
tive testing for deep learning systems,” in Proceedings of AITest’19,
2019, pp. 71–72.

[13] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differ-
ential fuzzing testing of deep learning systems,” in Proceedings of
ESEC/FSE’18, 2018, pp. 739–743.

[14] S. Lee, S. Cha, D. Lee, and H. Oh, “Effective white-box testing
of deep neural networks with adaptive neuron-selection strategy,” in
Proceedings of ISSTA’20, 2020, pp. 165–176.

[15] X. Du, X. Xie, Y. Li, L. Ma, J. Zhao, and Y. Liu, “Deep-
cruiser: Automated guided testing for stateful deep learning sys-
tems,” arXiv:1812.05339, 2018.

[16] A. Rios, “Fuzze: Fuzzy fairness evaluation of offensive language
classifiers on african-american english,” in Proceedings of AAAI’20,
vol. 34, no. 01, 2020, pp. 881–889.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in Neural
Information Processing Systems, vol. 25, pp. 1097–1105, 2012.

[19] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” University of Toronto, Tech. Rep., 2009, TR-
2009.

[20] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in Proceedings of ICLR’15, 2015, pp.
134–146.

[21] L. St, S. Wold et al., “Analysis of variance (anova),” Chemometrics
and intelligent laboratory systems, vol. 6, no. 4, pp. 259–272, 1989.

536

WasmFuzzer: A Fuzzer for WebAssembly Virtual Machines

Bo Jiang, Zichao Li, Yuhe Huang
State Key Laboratory of Software Development Environment

School of Computer Science and Engineering
Beihang University

Beijing, China
{jiangbo, lizichao, yhhuang}@buaa.edu.cn

Zhenyu Zhang
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

zhangzy@ios.ac.cn

W.K. Chan
Department of Computer Science

City University of Hong Kong
Hong Kong

wkchan@cityu.edu.hk

Abstract—WebAssembly is a fast, safe, and portable low-level
language suitable for diverse application scenarios. And The
WebAssembly virtual machines are widely used by Web browsers
or Blockchain platforms as execution engine. When there is a bug
in the implementation of the Wasm virtual machine, the execution
of WebAssembly may lead to errors or vulnerability in the
application. Due to the grammar checks by WASM VMs, fuzzing
at the binary level is ineffective to expose the bugs because most
inputs cannot reach the deep logic within the WASM VM. In this
work, we propose WasmFuzzer, a bytecode level fuzzing tool for
WASM VMs. WasmFuzzer proposes to generate initial seeds for
Fuzzing at the Wasm bytecode level and it also designs a systematic
set of mutation operators for Wasm bytecode. Furthermore,
WasmFuzzer proposes an adaptive mutation strategy to search for
the best mutation operators for different fuzzing targets. Our
evaluation on 3 real-life Wasm VMs shows that WasmFuzzer can
significantly outperform AFL in terms of both code coverage and
unique crash.

Keywords-fuzzing; WebAssembly; Virtual Machine

I. INTRODUCTION
In order to improve the performance of Web applications, a

number of companies and organizations have designed and
implemented a new low-level language that can be executed
across platforms, called WebAssembly [1].*

WebAssembly was born in Web technology, and many
browsers, including Chrome, have provided compatibility,
allowing WebAssembly code files to be embedded in Web pages.
WebAssembly modules will be able to call into and out of the
JavaScript context and access browser functionality through the
same Web APIs accessible from JavaScript. WebAssembly has
some great features. First, it is a refined target language, with a
significantly shorter code length than both scripting languages
and many compiled native codes. As a result, it has a small
footprint for deployment. Secondly, the instruction set of
WebAssembly is designed to correspond directly to CPU
instructions as much as possible. In some experiments, it runs
more than 20 times faster than JavaScript and is more suitable

DOI reference number: 10.18293/SEKE2022-165

for implementing more complex applications. Furthermore,
since WebAssembly is a back-end language supported by
LLVM [2], many source codes that support LLVM toolchains,
including C [3], C++ [4], Rust [5], can be compiled into
WebAssembly code, which allows much software originally
implemented in traditional languages to generate WebAssembly
code with the same functionality after adaptation, not only
reducing the difficulty of program migration, but also allowing
WebAssembly code to reuse existing library code. Because of
these advantages, WebAssembly is now not only used as a
technology for Web applications, but also integrated in
blockchain platforms [6].

The WebAssembly code is executed within WebAssembly
virtual machine [7]. The existing Wasm virtual machine
implementations include WAVM [8], Wasmtime [9], Wasmer
[10], etc. Virtual machines are the infrastructure that executes
WebAssembly and should be implemented correctly, efficiently,
and robustly. However, if there are errors in the implementation
of the virtual machine, the execution of WebAssembly may lead
to wrong results, or the program may exit abnormally. Some of
these bugs can even lead to security vulnerabilities. For example,
there are 7 CVEs reported for the Wasm VM called WAVM [8]
in 2018. To avoid these situations, we can adopt fuzzing
techniques [11] to identify errors in virtual machine
implementations.

There are two major challenges faced with Wasm VM
fuzzing. First, the Wasm VM often performs Wasm code
validation before execution, which makes it hard to generate
effective input to reach the deep logic within the VM. Although
AFL, the mainstream fuzzing test software, can be used to test
WebAssembly virtual machines written in C/C++, the test cases
they generate are all binary data without considering Wasm
bytecode grammar, which is hard to pass through the code
validations commonly performed by the Wasm VMs. To solve
this problem, we propose a Wasm bytecode level fuzzing
framework that can both generate and mutate Wasm modules to
test Wasm VMs. In particular, our proposed mutation operators
can systematically mutate a Wasm module at different
granularity. Second, there are many different implementations of

537

WASM VM and they have different code structures and bug
patterns. A fixed mutation strategy is hard to accommodate the
differences among those Wasm VMs to achieve the best fuzzing
effectiveness. To solve this problem, we propose an adaptive
mutation strategy that can dynamically update the probabilities
of different mutation operators for a testing target.

The contributions of this work are as follows:

First, we propose a Wasm bytecode level fuzzing framework
called WasmFuzzer for Wasm VMs, the tool can generate and
mutate Wasm bytecode modules to reach the deep logic within
the Wasm VMs.

Second, we propose an adaptive mutation strategy that can
dynamically update the probabilities of different mutation
operators. In this way, we can optimize the mutation operator
configurations for a testing target.

Finally, we have systematically performed fuzzing on 3 real-
life Wasm VMs with WasmFuzzer. Our evaluation results show
that WasmFuzzer is more effective than AFL in terms of both
code coverage and bug detection. And WasmFuzzer has detected
235 unique crashes within WAVM, WAMR, and EOS-VM.

 The following sections are organized as follows. In section
II, we will present the background knowledge on Wasm. In
section III, we will discuss the design of WasmFuzzer in detail.
In section IV, we present our fuzzing experiment with
WasmFuzzer and AFL on 3 popular Wasm VM implementations
and discuss the experiment results. Finally, we present related
works and conclusion in section V and VI.

II. BACKGROUND
In this section, we present background information on Wasm

bytecode. In general, Wasm is a binary instruction format for a
stack-based virtual machine. It is designed as a portable target
for compilation of high-level languages like C/C++/Rust,
enabling deployment on the web for client and server
applications.

Wasm provides only four basic number types. These are
integers and IEEE 754-2019 numbers, each in 32 and 64 bit
width [1]. The computational model of WebAssembly is based
on a stack machine. The instructions of Wasm fall into two main
categories: simple instructions performing basic operations on
data and control instructions altering control flow. The
instructions are in turn organized into separate functions.
A table in Wasm stores an array of untyped function references,
which a program can call indirectly through a dynamic index
into a table. WebAssembly adopts a linear memory structure,
which is a contiguous, mutable array of raw bytes. A program
can load and store values from/to a linear memory at any byte
address. Finally, a WebAssembly binary takes the form of
a module that contains definitions for functions, tables, linear
memories, and global variables. In addition to definitions,
modules can define initialization data for their memories or
tables.

A. The Workflow of WasmFuzzer
The workflow of WasmFuzzer is shown in Figure 1. , which

follows the general workflow of coverage-guided grey-box

fuzzing. At first, WasmFuzzer will generate a set of Wasm files
as seed inputs. Then it will enqueue these Wasm files and start
the Wasm VM under fuzzing. Within the fuzzing loop, it will
dequeue the first Wasm module and execute it against the Wasm
VM. After execution, if the execution of the Wasm module leads
to any new code coverage or new crashes, the module is
considered a good candidate for mutation. And the WasmFuzzer
will perform mutation on it to generate new Wasm modules,
which are then enqueued for further fuzzing. Note that
WasmFuzzer proposes several different mutation strategies to
perform mutation. Then WasmFuzzer will further check the
condition to stop the fuzzing process. If the fuzzing has reached
the predefined time limit, the fuzzing will halt. Otherwise, it will
continue the fuzzing loop the dequeue the next Wasm module
for execution.

III. THE DESIGN OF WASMFUZZER

A. The Generation of Wasm Bytecode
The input to the Wasm VM is the Wasm bytecode. To

extensively fuzz the WebAssembly VM, WasmFuzzer proposes
to generate valid Wasm bytecode for execution and mutation.
Compared with binary input and mutation, the bytecode level
inputs have a higher chance to reach deeper logic of the Wasm
VM.

Figure 1. The Workflow of WasmFuzzer

According to the characteristics of the instruction, there are
two main approaches to generating parameters: selecting
parameters from the module and generating parameters from the
domain of data type. Selecting a parameter from a module is
used when the parameter of the instruction depends on the

538

internal state of the module. For example, the global.set
instruction is to set a global variable at the top of the stack, and
its parameter is the id of the global variable. Therefore,
WasmFuzzer obtains the ids of all global variables from the
global array in the module and selects one of them as the
parameter of the instruction. Generating parameters from the
domain of data type is used when the parameter is of certain data
type. In such case, WasmFuzzer randomly returns a value within
the domain of the data type.

WasmFuzzer extends the WebAssembly Binary Toolkit
(WABT) to help generate different kinds of instructions. To be
specific, it uses the internal functions of the WABT to generate
different kinds of opcode, which are combined with the
corresponding parameters to build different instructions. Finally,
the instructions are further assembled into functions and
modules as seed inputs.

B. Mutation Operator for Wasm Bytecode
Modules are the basic unit of deployment for WebAssembly.

With an existing module, you can mutate it to generate new
modules for fuzzing. To support feedback-directed fuzzing, we
have systematically designed a set of mutation operators for
Wasm modules.

1) Mutation operations
Mutation operations are divided into 2 types: mutation

operations on instructions and other mutation functions. The
mutation operations currently supported by WasmFuzzer are
shown in TABLE I. .

TABLE I. LIST OF WASMFUZZER MUTATION OPERATIONS

Classification Mutation Operator Description

Mutation
operations on
Instructions

insertInstruction Insert an instruction

eraseInstruction Delete an instruction

moveInstruction Move an instruction

addFunction Add an empty function

eraseFunction Delete a function

swapFunction Swap the positions of two
functions

Other
mutation
operations

addGlobal Add a global variable

eraseGlobal Delete a global variable

swapGlobal Swap the positions of two global
variables

addExport Add an export entry

eraseExport Delete an export entry

swapExport Swap the positions of two export
entries

addType Add a type

addMemory Add a block of storage space

setStart Set the start function

eraseStart Delete start function

The mutation operations on instructions are performed at the
instruction level or at the function level. They randomly insert,
delete, or change the instructions or functions to perform the
mutation. The other mutation operations aim at changing the
global variables, the export entries, the memory, or the start
functions. To ensure the mutated WebAssembly code can pass
through the validation [12] process of Wasm VM, we control the
probability of different mutation operators such that the newly
generated Wasm modules have a higher chance to be valid.

2) Adaptive Random Mutation Strategy
WasmFuzzer proposes an adaptive random mutation strategy

to perform mutation. During the mutation step, each mutation
operator has a probability to be selected. In general, our mutation
strategy will reward the mutation operators leading to new code
coverage or crash by dynamically increasing their probabilities.
In this way, those more “promising” mutation operators have a
higher chance to be selected.

To realize this, WasmFuzzer defines an adaptive mutation
table, which is an array of function pointers of length 256. These
function pointers may point to different mutation operators. The
first 16 positions of this array are read-only areas and they
correspond to the 16 mutation operators. In this way,
WasmFuzzer ensures each mutation operator at least has a
chance of 1/256 to be selected for performing mutation, which
is not affected by the adaptive strategy.

TABLE II. ALGORITHM UPDATING ADAPTIVE MUTATION TABLE

Input table: adaptive mutation table,
 func: pointer to the current mutation operator
Output updated adaptive mutation table
1 #define NEW_PATH_REWARD 3
2 #define CRASH_REWARD 6
3 int increase = 0;
4 if (new paths found)
5 increase += NEW_PATH_REWARD;
6 if (new crash triggered)
7 increase += CRASH_REWARD;
8 for (int i = 0; i < increase; ++i) {
9 int num = randomBetween(16, 255);
10 table[num] = func;
11 }
12 return table;

The positions starting from 16 to the 255 can be both read
and written, which is used for dynamically changing the
selection probability of the mutation operators. At first, all
positions in the table are initialized to various mutation
operations with equal probability. The algorithm to update the
adaptive mutation table is shown in Table II. During fuzzing, if
the Wasm module obtained from a mutation operator called M
leads to new code coverage or crash, WasmFuzzer will increase
the selection probability of the mutation operator M (lines 3 to
7). Then, WasmFuzzer will generate a random number between
16 and 255 as index into the mutation table, and overwrite the
position in the table corresponding to the index with the pointer
of M (line 9 to line 10). In this way, the probability of those more
effective mutation operators for a fuzzing target will increase
gradually while those ineffective mutation operators for a target
will decrease gradually. When testing multiple Wasm VMs, the

539

adaptive mutation strategy can automatically change the
probability of each mutation operation to find the best mutation
probability for each Wasm VM.

C. Test Oracle and Bug Report Generation
When the software under testing crashes or aborts during

fuzzing, the system will send out signals such as SIGSEGV or
SIGABT. WasmFuzer will capture these signals to report errors.
Furthermore, WasmFuzzer also utilizes the AddressSanitizer [13]
to detect memory-related software bugs such as use-after-free,
buffer overflow, stack overflow, memory leaks, etc.

When WasmFuzzer has detected an error, it will generate
bug reports to facilitate further debugging. The bug reports
include two sections: the Wasm bytecode triggering a unique
crash, and the Wasm bytecode triggering a unique hang. By
"Unique", it means the execution of these Wasm bytecode leads
to unique code path. Furthermore, we also measure the code
coverage achieved during fuzzing as another metric.

IV. EVALUATION
In this section, we evaluate WasmFuzzer by fuzzing 3 large-

scale Wasm VMs.

A. Research Question
Based on the implementation of WasmFuzzer, this chapter

mainly focuses on its test capability and test efficiency. Various
performance metrics of WasmFuzzer and AFL were compared,
including code coverage, number of unique crashes that could
be found, and type of software problem, through comparative
experiments under the same conditions.

B. Experiment Design
In our experiment, we compare WasmFuzzer with AFL to

evaluate its fuzzing effectiveness.

1) Subjects
We have selected 3 real-life Wasm VM implementations to

evaluate WasmFuzzer. These 3 Wasm VMs (WAVM, WAMR,
and EOS VM) are written in C/C++, which is friendly for
instrumentation and collecting code coverage. WAVM [8] is a
popular WebAssembly virtual machine designed for non-
browser applications. WebAssembly Micro Runtime [14]
(WAMR for short) is a small WebAssembly virtual machine
frequently used in embedded systems.

EOS-VM [15] is a WebAssembly virtual machine designed
for blockchain applications. Since the command line interface
provided by EOS-VM only supports the call of exported
functions without parameters. To perform fuzzing, we modified
the interface of EOS-VM to call the exported functions with
parameters.

2) Experimental Setup
Our experiments were performed using a desktop with

Intel(R) Core (TM) i7-6700 CPU @ 3.40 GHz and 16GB of
memory. The operating system is Ubuntu 20.04 LTS. The
version number of the AFL tool for comparison is 2.51b.

3) Instrumentation Procedure

To instrument the Wasm VMs for code coverage collection,
we use Gcc compiler with code coverage profiling options
enabled. To detect memory-related bugs, we also enabled the
address sanitizer during compilation.

4) The experimental process
For each WebAssembly VM, we performed 8 hours of

fuzzing using both WasmFuzzer and AFL. Then we use the afl-
cov tool to analyze the code coverage achieved by each tool. We
also manually analyzed the test cases leading to the crash or hang
in the VMs to confirm the bug detected.

C. Results and Analysis
In this section, we present and compare the results of

WasmFuzzer and AFL in terms of code coverage and unique
crashes.

1) Code coverage
The code coverage results for the 3 Wasm VMS are shown

in TABLE III. For WAVM, the code coverage of WasmFuzzer
is 25.7% while the code coverage for AFL is 23.6%. For WAMR,
the code coverage of WasmFuzzer is 25.9% while the code
coverage for AFL is 22.7%. For EOS-VM, the code coverage of
WasmFuzzer is 84.7% while the code coverage for AFL is
59.3%. We can see that WasmFuzzer consistently performs
better than AFL in terms of code coverage at line level.

TABLE III. CODE COVERAGE RESULTS

Subjects Code Coverage

/ WasmFuzzer AFL

WAVM 25.7% 23.6%

WAMR 25.9% 22.7%

EOS-VM 84.7% 59.3%

Figure 2. Code Coverage over Time

As shown in Figure 2, we also present the code coverage with
respect to fuzzing time for WasmFuzzer and AFL on all 3 Wasm
VMs. In this way, we want to understand the code coverage
results of WasmFuzzer during the fuzzing process. We can see
that for each subject VM, WasmFuzzer consistently performs
better than AFL in terms of code coverage over time. And the
advantage is more significant on EOS-VM than the other 2

0

10

20

30

40

50

60

70

80

0 60 120 180 240 300 360 420 480

C
od
e
C
ov
er
ag
e
in
Pe
rc
en
ta
ge

Fuzzing Time in Minutes

WAVM-WasmFuzzer WAVM-AFL WAMR-WasmFuzzer
WAMR-AFL EOS-VM-WasmFuzzer EOS-VM-AFL

540

Wasm VMs. Therefore, for different fuzzing time limit,
WasmFuzzer can outperform AFL in terms of code coverage.

Based on the results above, we can conclude that
WasmFuzzer can indeed achieve more code coverage than AFL
if given the same fuzzing time.

2) Unique crashes
The main goal of fuzzing is to find bugs in the system.

Therefore, we further present and compare the unique crashes
detected by WasmFuzzer and AFL. The number of unique
crashes for WasmFuzzer and AFL are shown in TABLE IV. We
can see that WasmFuzzer consistently outperforms AFL on all
three WebAssembly VMs. For WAVM, the difference between
WasmFuzzer and AFL is small. But on WAMR and EOS-VM,
the advantage of WasmFuzzer is significant.

In particular, for EOS-VM, the AFL fails to detect any error
after 8 hours of fuzzing. We double-checked the code of EOS-
VM, and we find that it performs strict code validation checks
before executing the Wasm code. Most of the inputs generated
by AFL are rejected during the code validation phase. As a result,
AFL cannot detect the bugs hidden in the VM execution program
logic. In contrast, WasmFuzzer can build and mutate valid
Wasm modules, which makes it easier to test the execution logic
of EOS-VM.

TABLE IV. NUMBER OF UNIQUE CRASHES

Subjects Unique Crash

/ WasmFuzzer AFL

WAVM 56 55

WAMR 97 77

EOS-VM 82 0

Figure 3. Unique Crashes over Time

The number of unique crashes over time for WasmFuzzer
and AFL on the 3 Wasm VMs are shown in Figure 3. For
WAMR and EOS-VM, WasmFuzzer consistently detected much
more crashes than AFL over time. However, for WAVM,
WasmFuzzer and AFL found almost the same number of unique
crashes over time. A closer analysis on the crashes shows that
WasmFuzzer and AFL can indeed detect different unique
crashes. Therefore, when there are abundant resources during

fuzzing, it is desirable to adopt both tools to perform fuzzing so
they can complement each other. However, when the testing
resource is limited, WasmFuzzer is preferred than AFL.

Based on the results above, we can conclude that
WasmFuzzer can perform as good as or better than AFL in terms
of unique crashes.

V. RELATED WORK
Park et al. designed a new test case mutation technique called

aspect-preserving, and implemented a JavaScript fuzzing tool
called DIE [16]. They believe that there are certain patterns in
test cases that can trigger vulnerabilities. For the JavaScript
language, the combination of some code structures and variable
types is more likely to trigger vulnerabilities in the JavaScript
execution engine. Therefore, DIE tends to retain these
combinations when performing mutation.

Fuzzing tools can also be combined with neural network
models to generate inputs that can trigger vulnerabilities more
easily. Lee et al. developed a fuzzing tool based on neural
network language model for JavaScript engines named Montage
[17]. They train the model with the abstract syntax subtree
converted from the JavaScript abstract syntax tree. In this way,
the model can generate valid JavaScript code. With this
approach, their tool has detected previously undiscovered
software bugs in the JavaScript execution engine under fuzzing.

Zhong et al. designed and implemented a fuzzing tool called
Squirrel for relational databases [18], whose input data is
structured query language. Since the structured query language
needs to meet certain grammatical rules, the proportion of input
that can be executed by the database when directly mutating
binary data is small. Therefore, they designed an intermediate
representation capable of generating structured query language
code and performed type-based mutation on the intermediate
representation. In this way, the proportion of input that can be
executed by the database is significantly increased.

Fuzzing tools are also effective to find functional
implementation bugs in the software implementation. For
example, Chen et al. implemented a fuzzing tool for
differentially testing Java virtual machines [19]. The main idea
is to use the same input to execute multiple Java virtual machines
and compare the running results among them. If there is any
difference in their results, one of these Java virtual machines
must contain a bug. Engineers can further perform analysis and
debugging based on the fuzzing results to find the position of the
software error.

Ventuzelo proposes to use mainstream fuzzing tools to test
WebAssembly virtual machines, and they integrated a fuzzing
tool called WARF [20]. WARF can fuzz WebAssembly virtual
machines and test them with binary data. WARF has found
several bugs in the WebAssembly virtual machine
implementation. WARF is implemented in Rust language and
integrates three mainstream fuzzing tools, AFL++ [21],
Honggfuzz [22] and libFuzzer [23].

0 0 0 0 0 0 0 0 00

10

20

30

40

50

60

70

80

90

100

0 60 120 180 240 300 360 420 480

N
um

b
er

 O
f

U
ni

q
ue

 C
ra

sh
es

Fuzzing Time in Seconds

WAVM-WasmFuzzer WAVM-AFL WAMR-WasmFuzzer
WAMR-AFL EOS-VM-WasmFuzzer EOS-VM-AFL

541

VI. CONCLUSION
WebAssembly is a fast, safe, and portable low-level

language suitable for diverse application scenarios. And The
WebAssembly virtual machines are widely supported by Web
browsers for building Web applications. When there is a bug in
the implementation of the Wasm virtual machine, the execution
of WebAssembly may lead to errors in its supporting application.
Due to the code validation performed by WASM VMs, fuzzing
at the binary level is ineffective to expose the bugs because most
inputs cannot reach the deep logic within the WASM VM. In
this work, we propose WasmFuzzer, a bytecode level fuzzing
tool for WASM VMs. WasmFuzzer proposes to generate initial
seeds for Fuzzing at the Wasm bytecode level and it also
proposes a systematic set of mutation operators for Wasm
bytecode. Furthermore, WasmFuzzer proposes an adaptive
mutation strategy to search for the best mutation operators for
different fuzzing targets. Our evaluation on 3 real-life Wasm
VMs shows that WasmFuzzer can significantly outperform AFL
in terms of both code coverage and unique crash.

For future work, we plan to explore new seed generation
scheme and fuzzing input scheduling scheme to improve the
effectiveness of the fuzzing tool. We will also perform fuzzing
on other popular Wasm VMs to further evaluate the
effectiveness of WasmFuzzer.

ACKNOWLEDGMENTS
This research is supported in part by the National Key R&D

Program of China under Grant 2019YFB2102400, NSFC
(project no. 61772056), the Beijing Advanced Innovation Center
for Future Blockchain and Privacy Computing, Innovative
Technology Fund of HKSAR (project no. 9440226) and CityU
MF_EXT (project no. 9678180). Zhenyu Zhang is the
corresponding author.

REFERENCES
[1] WebAssembly. https://webassembly.org/. Last access, 2022.
[2] The LLVM Compiler Infrastructure. https://llvm.org/. Last access, 2022.
[3] Ritchie D. M.. The Development of the C Language. ACM Sigplan

Notices 28.3, 201-208, 1993.
[4] Stroustrup B.. The C++ programming language. Pearson Education India,

India, 2000.

[5] Matsakis N. D.., Klock F. S.. The rust language. ACM SIGAda Ada Letters
34.3, 103-104, 2014.

[6] Wang S., Yuan Y., Wang X., et al. An overview of smart contract:
architecture, applications, and future trends. 2018 IEEE Intelligent
Vehicles Symposium (IV), 2018.

[7] Sauntry D. M., Gilbert M.. Generating a compiled language program for
an interpretive runtime environment. US, US6327702 B1. 2001.

[8] WAVM. https://wavm.github.io/. Last access, 2022.
[9] Wasmtime. https://wasmtime.dev/. Last access, 2022.
[10] Wasmer. https://wasmer.io/. Last access, 2022.
[11] Ammann P., Offutt J.. Introduction to software testing. UK: Cambridge

University Press, 2016.
[12] Validation — WebAssembly 1.1 (Draft 2021-11-18).

https://webassembly.github.io/spec/core/valid/index.html. Last access,
2021.

[13] AddressSanitizer.
https://github.com/google/sanitizers/wiki/AddressSanitizer. Last access,
2019.

[14] WebAssembly Micro Runtime.
https://github.com/bytecodealliance/wasm-micro-runtime. Last access,
2021.

[15] EOS VM - A Low-Latency, High Performance and Extensible
WebAssembly Engine. https://github.com/EOSIO/eos-vm. Last access,
2019.

[16] Park S., Xu W., Yun I., et al. Fuzzing JavaScript Engines with Aspect-
preserving Mutation. 2020 IEEE Symposium on Security and Privacy (SP),
1629-1642, 2020.

[17] Lee S., Han H. S., Cha S. K., et al. Montage: A Neural Network Language
Model-Guided JavaScript Fuzzer. 20th USENIX Security Symposium
(USENIX Security 2020). 2020.

[18] Zhong R., Chen Y., Hu H., et al. SQUIRREL: Testing Database
Management Systems with Language Validity and Coverage Feedback.
https://arxiv.org/abs/2006.02398, 2020.

[19] Chen Y., Su T., Sun C., et al. Coverage-directed differential testing of
JVM implementations. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
2016: 85-99.

[20] WARF - WebAssembly Runtimes Fuzzing project.
https://github.com/pventuzelo/wasm_runtimes_fuzzing. Last access,
2022.

[21] The AFL++ fuzzing framework | AFLplusplus. https://aflplus.plus/. Last
access, 2021.

[22] Honggfuzz | honggfuzz. https://honggfuzz.dev/. Last access, 2021.
[23] libFuzzer – a library for coverage-guided fuzz testing.

https://llvm.org/docs/LibFuzzer.html. Last access, 2022.

542

Multi-Frames Temporal Abnormal Clues
Learning Method for Face Anti-Spoofing

Heng Cong*, Rongyu Zhang, Jiarong He, Jin Gao
Interactive Entertainment Group of Netease Inc, Guangzhou, China
{congheng, zhangrongyu, gzhejiarong, jgao}@corp.netease.com

Abstract—Face anti-spoofing researches are widely used in
face recognition and has received more attention from industry
and academics. In this paper, we propose the EulerNet, a new
temporal feature fusion network in which the differential filter
and residual pyramid are used to extract and amplify abnormal
clues from continuous frames, respectively. A lightweight sample
labeling method based on face landmarks is designed to label
large-scale samples at a lower cost and has better results than
other methods such as 3D camera. Finally, we collect 30,000
live and spoofing samples using various mobile ends to create a
dataset that replicates various forms of attacks in a real-world
setting. Extensive experiments on public OULU-NPU show that
our algorithm is superior to the state of art and our solution has
already been deployed in real-world systems servicing millions
of users.

I. INTRODUCTION

Face anti-spoofing (FAS) plays an important role in interac-
tive AI systems and is also a challenging task without specific
hardware equipped in the industry. The existing methods based
on multi-modal information (e.g. infrared light, structured
light, and light field) are widely used in scenarios, where there
are specialized hardware devices. Although these methods [1]–
[3] perform well in classification, they cannot be used on
mobile devices on a broad scale.

Initially, the traditional manual feature is used to recognize
face spoofing [4]–[6]. With the development of convolution
neural network (CNN), classification techniques are excelled
in the FAS task [7]–[9]. Recently, the application of face
depth information has further improved the FAS effectiveness.
The previous method performed excellently, but there are
many shortcomings. In [10]–[13], single-frame information
is used to estimate the face depth for video prediction, but
the inter-frame information of the video is discarded. [14]–
[17] achieved better effects by considering the inter-frame
information, whereas the feature of face abnormal clues is not
be utilized. [18] label face depth with the 3D camera equipped
to focus on face detail, which is difficult to promote. By
contrast, [19]–[21] convert 2D faces to 3D faces using PRNet,
which has a lower label cost but a higher error rate. Especially
in the prediction of large-angle side faces, [19]–[21] is not
effective. The binary mask label is obtained by the middle part
of the face, in [10], [22]–[25], where live and attack is marked
as 1 and 0, respectively. However, [10], [22]–[25] ignores the
face depth and edge texture information, which degrades the
effect of the model. Moreover, many datasets such as NUAA

* denotes corresponding author

[26], CASIA-MFSD [27], Replay-Attack [28], MSU-USSA
[29], and OULU-NPU [30] released several FAS data that
are collected in the laboratory state. However, because of the
uncertainty of lighting, scenarios, device, etc., the samples
in the laboratory varies greatly from the samples in the real
world.

To address the above problems, we propose a temporal
feature fusion network named EulerNet. The eulerian video
magnification is introduced to extract temporal clues and fuse
the inter-frame feature from the video. Residual Pyramid is
designed in EulerNet to fuse features of different resolutions.
We propose a feature-compressed attention module (FCAM)
to process features in the temporal dimension. To balance the
cost and accuracy, we propose a lightweight face labeling
method based on face landmarks, which is faster than [18]
and more accurate than [19]–[21]. The face position map
obtained by the proposed labeling method is easier to model
at fine-grain than depth map. Compared with binary mask,
more gradient information of the face edges is retained by
face position map. Finally, a large and comprehensive FAS
dataset is built to simulate the real usage background under
the industry environment. According to the real proportion of
cell phone models and application scenarios in real-world, we
collect live and attack by different types of mobile ends in
various scenarios for our dataset.

In summary, the main contributions of this work as follows:

• We propose a novel network architecture to extract abnor-
mal clues and process multi-frame temporal information.
The feature-compressed attention module (FCAM) and
Residual Pyramid are designed to improve the compu-
tational efficiency, focus on prominent face information,
and amplify the weak signal.

• A lightweight face labeling method based on face land-
marks is presented to balance the labeling cost and
accuracy. Compared with binary mask and depth map,
face position map is accurate and fast.

• We build a large and comprehensive dataset, in which
live and attack samples are collected by different types
of mobile ends in various scenarios.

• The effectiveness, performance, and advantages of the
proposed method are numerically and experimentally
verified.

DOI reference number: 10.18293/SEKE2022-076
543

II. THE PROPOSED METHOD

In this section, we first introduce a temporal feature fusion
network based on eulerian magnification (EulerNet), including
feature-compressed attention module (FCAM) and Residual
Pyramid. Following EulerNet, a lightweight face labeling
method based on face landmarks is described and the super-
vision method based on face location map is presented.

A. EulerNet

We propose a temporal feature fusion network based on
eulerian magnification, namely EulerNet, to extract the ab-
normal clues from live and spoofing. By applying eulerian
video magnification [31] to live and spoofing faces, the import
clues for face anti-spoofing are discovered. As illustrated
in Fig. 1, the result of print attack sample, lack a natural
motion transition has obvious distinguishability with other
attacks. Although replay attack and live sample have the
same motion transition, the pattern characteristics are different,
which provides reliable information for the network. Fig. 2
shows EulerNet architecture includes a Residual Pyramid and
a series of feature-compressed attention modules (FCAM) and
max pooling. Instead of processing the whole video, we extract
a sequence (length 4 and frame interval 3) from the video as
input to avoid the problems of excessive memory usage and
high derivation time overhead. The attention structure was
designed in FCAM to process the temporal features. Using
differential infinite impulse response filtering, FCAM amplify
the subtle changes in faces between different frames. In Fig.
2, the feature level is divided from 256×256 into 128×128,
64×64, and 32×32 in EulerNet, which is fused by Residual
Pyramid. Different levels of features (128×128, 64×64, and
32×32) are sampled for residuals to obtain effective frequency
for face anti-spoofing.

(a) Live (b) Print (c) Replay

Fig. 1: Results of Applying Eulerian Video Magnification

Feature-compressed Attention Module. In FCAM, the
feature map channels are adjusted to 1 by the 3×3 convolution
(Conv3×3), which synthesizes information from each channel.
Inspired by the realization of speech signal [32], we transform
the implementation of an infinite impulse response (IIR) filter
on the image feature map to construct a differential infinite
impulse response filter (DIIRF). By initializing a state matrix
at the feature map size with 0, the output and the update for
state in time sequence can be described as

Input

Output

FCAM × 4

Max Pooing

FCAM × 3

Max Pooing

FCAM × 3

Max Pooing

FCAM

Residual

Pyramid

FCAM × 2

Labels

t + ∆t t + 2∆t t + 3∆t t + 4∆t

L2 Loss

128×128

64×64

32×32

Fig. 2: The proposed EulerNet.

y[n] = b0x[n] + h1[n− 1] (1)

h1[n] = b1x[n] + h2[n− 1]− a1y[n] (2)

h2[n] = b2x[n]− a2y[n] (3)

where y[n] and x[n] present output and input at nth timestamp,
respectively. hi is the state matrix with 0. bi and aj is the
training parameters of the filter layer, i ∈ [0, 2], j ∈ [1, 2].
The sequential feature is utilized to filter video signals in
DIIRF and the effective frequency for face anti-spoofing is
reserved. The sigmoid function as the gate control unit process
the feature from DIIRF. Attentional structure is built by
multiplying the feature map obtained by sigmoid back to the
original input. FCAM architecture is shown in Fig. 3.

DIIRF SigmoidConv3×3

input output

Feature compressed Signal capture

Attention multiply

Fig. 3: Feature-compressed attention module.

Residual Pyramid. To amplify the weak signal for face
anti-spoofing, we design Residual Pyramid to fuse feature.
As shown in Fig. 2, 3-level outputs from backbone network
are collected as the input of Residual Pyramid. In Residual
Pyramid, the 32×32 (F32×32) and 64×64 (F64×64) features
are upsampled to generate 64×64 (F ′64×64) and 128×128

544

F ′128×128) feature. Then, the F ′64×64 and F ′128×128 feature
are subtracted by F64×64 and F128×128, respectively. After
Conv3×3 extracting, the output S64×64 and S128×128 are
obtained.

S128×128 = Conv (F128×128 − Upsample (F64×64)) (4)

S64×64 = Conv (F64×64 − Upsample (F32×32)) (5)

Ouput32×32 = Concat(Donwsample(S128×128),

Donwsample(S64×64),

F32×32)

(6)

The Residual Pyramid can help the network directly learn use-
ful information from features of different depths. In particular,
upsampling and downsampling are introduced to calculate the
residual between different resolutions.

F128×128F128×128

F64×64

F32×32

F64×64

Legend

Up-Sample Down-Sample Subtract

C
o
n
ca

te
n
at

io
n

Conv

Conv

＇

＇

Fig. 4: Residual Pyramid for feature fusing of different depths.

B. A lightweight face labeling method based on face land-
marks

Binary mask-based and Depth map-based labeling methods
are effective, but both have drawbacks. Binary mask [22] does
not distinguish between the face and background, and discards
the depth information, which reduces the network efficiency.
For depth map-based labeling methods, additional labeling
resources are required. Compared with binary mask-based and
Depth map-based labeling methods, we connect the key points
of the face contour to form a closed face region, namely
face position map. In particular, the pixel points within the
face region are labeled as 1 and 0 on live face and spoofing,
respectively. Face position map is used to reduce the labeling
time, preserve the gradient information of the face edges, and
improve accuracy. Fig. 5 shows the binary mask, depth map,
and face position map.

Live Binary Mask Depth Map Location Map

Fig. 5: Comparison of different supervision for FAS.

III. DATASET COLLECTION

The difference of data distribution in different application
scenarios determines the model performance in a specific
scenario. To address this problem, we simulate the real-world
scenario to establish the face anti-spoofing dataset, where each
data sample is captured by the mobile end camera. In our
dataset, the majority of mobile ends currently on the market
are used for data collection. The spoofing type is divided
into three parts: complex attack, certificate attack, and image
dynamic generation attack. In particular, it is difficult to create
and conduct 3D attacks in practical scenarios, so we mainly
collect 2D attacks used in [33].

In our dataset, the complex attack includes various paper
attacks, projection attacks, high-definition quality shots, and
low-quality shots. Certificate attack is common in real-world
scenarios and different from other attacks, which consists of ID
card attacks, passport document attacks, etc. Image dynamic
generation attack is an AI attack method, where dynamic
images are generated from single images for face spoofing.

Our dataset outperforms previous public datasets [27], [28],
[34] in three points: 1) Our dataset is the largest one that
includes 30,000 live and spoofing videos (average duration to
be 2s), collected from 10000 subjects, compared to 12,000
videos from 200 subjects in [18]. 2) As shown in Fig. 6, our
dataset covers dozens of commonly used mobile ends. 3) The
data distribution of our dataset matches the real-world mobile
verification scenarios.

Environment

OutdoorIndoor

Android system device
25%

20%

15%

10%

5%

00

16%

14%

12%

10%

8%

6%

4%

2%

IOS system device

Dark

Backlight

Exposure

New Window

Near Light

Roadside

Garden

Square

Court

Indoor
Outdoor

60%
40%

23%
15%

23%

20%

21%

23%

40%

7%

30%

Fig. 6: Statistics of electronic devices and scenes of our
dataset.

IV. EXPERIMENTS

A. Implementation Details

To verify the effectiveness of our proposed network archi-
tecture and supervision method, we conduct experiments on
the collected dataset, dividing the training, development, and
test sets according to the ratio of 3:1:1. The learning rate
is initialized as 1e-4 and the batchsize is set to 16 for a
synergistic optimizer Ranger [35]. The input to the model are

545

sequences of 4 consecutive frames taken from the same video
at intervals of 3. Thus we compute 64 images in one gradient
update. The model is trained with Nvidia Tesla V100s. Pytorch
is utilized as the backend for the network architecture. L2 loss
is utilized to guide the network predict the location map.

Average Classification Error Rate (ACER) is the mean value
of Attack Presentation Classification Error Rate (APCER) and
Bona Fide Presentation Classification Error Rate (BPCER),
given by

APCER =
FP

TN + FP
, BPCER =

FN

TP + FN
(7)

ACER =
APCER+BPCER

2
(8)

In the next subsections, ACER is uniformly utilized for evalu-
ation. For each video, we extracted multiple non-overlapping
sequences, then calculated the live score individually and
finally average scores for video.

B. Ablation Study

To investigate the behavior of EulerNet, we conducted
several ablation studies. Table I shows the ablation study
on our dataset. The baseline model is the proposed method
using all improvements. Compare 1 (C1) and Compare 5 (C5)
discuss the influence of different labels, including binary mask
and depth map. In Compare 3 (C3), the Residual Pyramid is
replaced by channels concatenation. Compare 4 (C4) removes
the FCAM. Compare 2 (C2) discards all structure improve-
ments and uses the common depth map for global comparison.

Effectiveness of FCAM and Residual Pyramid. After
adding FCAM and d Residual Pyramid, ACER decreased by
0.34 percent and 0.38 percent, respectively, indicating that they
were beneficial in FAS. The results suggest that extracting
the effective frequency information of the input and fusing
different resolution features together in a residual manner is
meaningful for face anti-spoofing. Table I demonstrate that we
must guide the network to mine as many anomalous patterns as
possible in the attack video. The ACER of the proposed model
is reduced by 0.7% concerning Compare 2 in Table I. We
optimize the combination of models and labels to maximize
the benefits and obtain excellent accuracy on our dataset.

Effectiveness of Face Location Map Supervision. The
optimal model on the development set is utilized to check the
test set. Our proposed model yields the best ACER, achieving
0.18% lower than the model supervised with depth map and
0.96% lower than the model supervised with binary mask. This
indicates that the features with binary mask supervision are not
robust and discriminative, which are learned from labeling all
pixels of living images as 1. The practice of regression on face
location map reduces the difficulty of pixel modeling task and
makes the network focus more on the color texture of face
region and edge gradient information.

As shown in the Fig. 7, we plot the training performance
curves of different models. At the beginning, the curve without
FCAM drops the fastest because the model does not extract
frequency information. Although the early iteration is fast, the

TABLE I: Ablation study on our dataset.

Structure ACER(%)↓
Tag Label FCAM Residual

Pyramid Dev Test

Compare 1 Binary Mask
√ √

3.95 2.84
Compare 2 Depth Map × × 3.62 2.57
Compare 3 Face Location Map

√
× 2.85 2.26

Compare 4 Face Location Map ×
√

3.13 2.22
Compare 5 Depth Map

√ √
2.74 2.06

Baseline Face Location Map
√ √

2.48 1.88

5 10 15 20 25 30 35 40 45 50
Epochs

2

3

4

5

6

7

8

A
C

E
R

(%
)

binary mask(C1)
remove all improvements(C2)
w/o Residual Pyramid(C3)
w/o FCAM(C4)
depth map(C5)
our method

Fig. 7: Performance comparison curve on the development set
in training process.

accuracy in the later stage is low, which suggests that it is sig-
nificant to mine the specific frequency information. In the late
training phase (epochs 45-50), the fluctuating curves are sorted
by mean value size as C2>C1>C4>C3>C5>our method.
Especially, the proposed method curve shows a smoother
decreasing trend during training with less fluctuation.

C. Visualization

The Grad-cam [38] is used to visualize the output of the
neurons in the model to compare the changes brought by
changing the structure or the supervision method. Fig. 8 details

(a)

(b)

(c)

Max Pooling 1 Max Pooling 2 Max Pooling 3 Fusion Result Predicted Map

0.364

Score

0.453

0.485

Fig. 8: Visualization study of neuron outputs at different
depths: (a) our method, (b) w/o FCAM, (c) w/o Residual
Pyramid. From left to right are the results with increasing
downsampling multiplier as well as the multi-resolution fusion
results and the final prediction maps. Their resolutions are
128×128, 64×64, 32×32, 32×32, 32×32 in order.

546

ID 1 ID 2 ID 3

L
iv

e S
am

p
le

Face

Location

Map

Depth

Map

Binary

Mask

S
p
o
o
fin

g
 S

am
p
le

Face

Location

Map

Depth

Map

Binary

Mask

Fig. 9: Model output and heatmap visualization under different
supervision methods. The same column indicates the results
of the same face, marked with ID 1-3.

TABLE II: The results of intra testing on four protocols of
OULU-NPU compared with deep learning methods

Prot. Method APCER(%) BPCER(%) ACER(%)

1

Disentangled [36] 1.7 0.8 1.3
FAS-SGTD [14] 2.0 0.0 1.0
DeepPixBiS [22] 0.8 0.0 0.4

CDCN [37] 0.4 1.7 1.0
EulerNet(Ours) 0.4 3.3 1.9

2

DeepPixBiS [22] 11.4 0.6 6.0
Disentangled [36] 1.1 3.6 2.4
FAS-SGTD [14] 2.5 1.3 1.9

CDCN [37] 1.5 1.4 1.5
EulerNet(Ours) 2.1 1.4 1.7

3

DeepPixBiS [22] 11.7±19.6 10.6±14.1 11.1±9.4
FAS-SGTD [14] 3.2±2.0 2.2±1.4 2.7±0.6

CDCN [37] 2.4±1.3 2.2±2.0 2.3±1.4
Disentangled [36] 2.8±2.2 1.7±2.6 2.2±2.2
EulerNet(Ours) 2.6±1.3 1.6±0.8 2.1±0.5

4

DeepPixBiS [22] 36.7±29.7 13.3±14.1 25.0±12.7
CDCN [37] 4.6±4.6 9.2±8.0 6.9±2.9

FAS-SGTD [14] 6.7±7.5 3.3±4.1 5.0±2.2
Disentangled [36] 5.4±2.9 3.3±6.0 4.4±3.0
EulerNet(Ours) 1.8±1.9 4.3±2.4 3.1±0.9

the effect of FCAM and Residual Pyramid on the features
extracted by the network. Max Pooling 1-3 indicates the
results using different downsampling multipliers. Fusion result
is the multi-resolution fusion results. The final prediction are
shown in Predicted Map. Scores are presented in the last
column of Fig. 8. The higher the score on the far right,
the higher the likelihood of being judged as live faces. The
comparison between Max Pooling 1 and Max Pooling 2
shows that the visualization features are clearly distinct under
different downsampling scales. The model with FCAM pays
more attention to the parts where the action occurs, so there
are higher activation values at pixels of the contour, eyes,
and nose. Finally, the face score obtained by our method is

0.485, which is better than the model removed FCAM and
Residual Pyramid. In addition, as the network deepened, the
extracted features mined more abnormal clues and produced
more accurate face location maps.

Fig. 9 shows the visualization results for the three different
labels (face location map, binary map, and depth map) are
studied in this paper. For the live face, the heat map supervised
by the face localization map is sharper and finer at the edges
of the face region. As shown in Fig. 9, the binary mask-
based supervised method ignores the gradient information of
face edges. Compared with the depth map, the prediction
map based on the face location map has higher contrast
in distinguishing faces and backgrounds. When the input is
spoofing face, the predictions obtained by the face location
map-based and depth map-based methods are similar and still
bias the face region, which demonstrates that the network does
not need to simulate depth information in practice. As shown
in Fig. 9, the results of the binary mask have less distinct
semantic features. The data distribution on the heat map is
more uniform and scattered with the binary mask supervision.
Compared with the above three supervision methods, the loss
of generalization of the features extracted by the network
without the drive of depth and location information.

D. Comparison on Public Dataset

We compare the proposed EulerNet with recent deep learn-
ing methods on OULU-NPU [30]. Protocol 1-3 respectively
evaluate the generalization of the algorithm under previously
unseen environmental conditions, attacks created with different
printers or displays, and input camera variation. Protocol 4
considers all the above three factors. Generally, protocols 3
and 4 are more difficult than other protocols.

The Comparison results on OULU-NPU are shown in Table
II. The best performance obtained by the proposed method in
protocols 3 and 4 demonstrates that our method can maintain
accuracy under complex conditions. Table II proves that the
structures we have designed are capable of extracting abnormal
clues, which has a stronger generalization in facing changes
of the shooting device. The complexity of protocols 3 and 4
is similar to the realistic scenario where electronic products
are changing rapidly, there are demonstrates the practicality
of our proposed method.

V. CONCLUSION

In this paper, we propose a novel face anti-spoofing method,
which effectively recognize the subtle differences between real
face and spoofing in the video. The novel network architecture,
namely EulerNet, is designed to fuse temporal information
and extract abnormal clues. We propose a lightweight label-
ing method based on face landmarks to reduce the labeling
cost and improve the labeling speed. Extensive experimental
results on our datasets and public OULU-NPU validate the
effectiveness of our method.

547

REFERENCES

[1] Y. Liu, A. Jourabloo, and X. Liu, “Learning deep models for face anti-
spoofing: Binary or auxiliary supervision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 389–
398.

[2] X. Xie, Y. Gao, W.-S. Zheng, J. Lai, and J. Zhu, “One-snapshot face anti-
spoofing using a light field camera,” in Chinese Conference on Biometric
Recognition. Springer, 2017, pp. 108–117.

[3] D. Yi, Z. Lei, Z. Zhang, and S. Z. Li, “Face anti-spoofing: Multi-spectral
approach,” in Handbook of Biometric Anti-Spoofing. Springer, 2014,
pp. 83–102.

[4] Z. Boulkenafet, J. Komulainen, and A. Hadid, “Face anti-spoofing based
on color texture analysis,” in 2015 IEEE international conference on
image processing (ICIP). IEEE, 2015, pp. 2636–2640.

[5] T. A. Siddiqui, S. Bharadwaj, T. I. Dhamecha, A. Agarwal, M. Vatsa,
R. Singh, and N. Ratha, “Face anti-spoofing with multifeature videolet
aggregation,” in 2016 23rd International Conference on Pattern Recog-
nition (ICPR). IEEE, 2016, pp. 1035–1040.

[6] X. Li, J. Komulainen, G. Zhao, P.-C. Yuen, and M. Pietikäinen, “Gener-
alized face anti-spoofing by detecting pulse from face videos,” in 2016
23rd International Conference on Pattern Recognition (ICPR). IEEE,
2016, pp. 4244–4249.

[7] J. Stehouwer, A. Jourabloo, Y. Liu, and X. Liu, “Noise modeling, synthe-
sis and classification for generic object anti-spoofing,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 7294–7303.

[8] O. Lucena, A. Junior, V. Moia, R. Souza, E. Valle, and R. Lotufo,
“Transfer learning using convolutional neural networks for face anti-
spoofing,” in International conference image analysis and recognition.
Springer, 2017, pp. 27–34.

[9] Y. A. U. Rehman, L. M. Po, and M. Liu, “Deep learning for face anti-
spoofing: An end-to-end approach,” in 2017 Signal Processing: Algo-
rithms, Architectures, Arrangements, and Applications (SPA). IEEE,
2017, pp. 195–200.

[10] Z. Yu, Y. Qin, X. Xu, C. Zhao, Z. Wang, Z. Lei, and G. Zhao, “Auto-fas:
Searching lightweight networks for face anti-spoofing,” in ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2020, pp. 996–1000.

[11] Z. Yu, J. Wan, Y. Qin, X. Li, S. Z. Li, and G. Zhao, “Nas-fas: Static-
dynamic central difference network search for face anti-spoofing,” IEEE
transactions on pattern analysis and machine intelligence, vol. 43, no. 9,
pp. 3005–3023, 2020.

[12] Y. Qin, W. Zhang, J. Shi, Z. Wang, and L. Yan, “One-class adaptation
face anti-spoofing with loss function search,” Neurocomputing, vol. 417,
pp. 384–395, 2020.

[13] Y. Qin, Z. Yu, L. Yan, Z. Wang, C. Zhao, and Z. Lei, “Meta-teacher for
face anti-spoofing,” IEEE transactions on pattern analysis and machine
intelligence, 2021.

[14] Z. Wang, Z. Yu, C. Zhao, X. Zhu, Y. Qin, Q. Zhou, F. Zhou, and
Z. Lei, “Deep spatial gradient and temporal depth learning for face anti-
spoofing,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 5042–5051.

[15] M. Asim, Z. Ming, and M. Y. Javed, “Cnn based spatio-temporal feature
extraction for face anti-spoofing,” in 2017 2nd International Conference
on Image, Vision and Computing (ICIVC). IEEE, 2017, pp. 234–238.

[16] Z. Yu, X. Li, P. Wang, and G. Zhao, “Transrppg: Remote photoplethys-
mography transformer for 3d mask face presentation attack detection,”
IEEE Signal Processing Letters, vol. 28, pp. 1290–1294, 2021.

[17] X. Yang, W. Luo, L. Bao, Y. Gao, D. Gong, S. Zheng, Z. Li, and W. Liu,
“Face anti-spoofing: Model matters, so does data,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 3507–3516.

[18] Y. Liu, Y. Tai, J. Li, S. Ding, C. Wang, F. Huang, D. Li, W. Qi, and
R. Ji, “Aurora guard: Real-time face anti-spoofing via light reflection,”
arXiv preprint arXiv:1902.10311, 2019.

[19] Z. Yu, X. Li, X. Niu, J. Shi, and G. Zhao, “Face anti-spoofing with
human material perception,” in European Conference on Computer
Vision. Springer, 2020, pp. 557–575.

[20] T. Kim, Y. Kim, I. Kim, and D. Kim, “Basn: Enriching feature repre-
sentation using bipartite auxiliary supervisions for face anti-spoofing,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision Workshops, 2019, pp. 0–0.

[21] Z. Wang, C. Zhao, Y. Qin, Q. Zhou, G. Qi, J. Wan, and Z. Lei,
“Exploiting temporal and depth information for multi-frame face anti-
spoofing,” arXiv preprint arXiv:1811.05118, 2018.

[22] A. George and S. Marcel, “Deep pixel-wise binary supervision for
face presentation attack detection,” in 2019 International Conference
on Biometrics (ICB). IEEE, 2019, pp. 1–8.

[23] M. S. Hossain, L. Rupty, K. Roy, M. Hasan, S. Sengupta, and
N. Mohammed, “A-deeppixbis: Attentional angular margin for face anti-
spoofing,” in 2020 Digital Image Computing: Techniques and Applica-
tions (DICTA). IEEE, 2020, pp. 1–8.

[24] Y. Ma, L. Wu, Z. Li et al., “A novel face presentation attack detection
scheme based on multi-regional convolutional neural networks,” Pattern
Recognition Letters, vol. 131, pp. 261–267, 2020.

[25] W. Sun, Y. Song, H. Zhao, and Z. Jin, “A face spoofing detection method
based on domain adaptation and lossless size adaptation,” IEEE access,
vol. 8, pp. 66 553–66 563, 2020.

[26] X. Tan, Y. Li, J. Liu, and L. Jiang, “Face liveness detection from a single
image with sparse low rank bilinear discriminative model,” in European
Conference on Computer Vision. Springer, 2010, pp. 504–517.

[27] Z. Zhang, J. Yan, S. Liu, Z. Lei, D. Yi, and S. Z. Li, “A face anti-
spoofing database with diverse attacks,” in 2012 5th IAPR international
conference on Biometrics (ICB). IEEE, 2012, pp. 26–31.

[28] I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of local
binary patterns in face anti-spoofing,” in 2012 BIOSIG-proceedings
of the international conference of biometrics special interest group
(BIOSIG). IEEE, 2012, pp. 1–7.

[29] K. Patel, H. Han, and A. K. Jain, “Secure face unlock: Spoof detection on
smartphones,” IEEE transactions on information forensics and security,
vol. 11, no. 10, pp. 2268–2283, 2016.

[30] Z. Boulkenafet, J. Komulainen, L. Li, X. Feng, and A. Hadid, “Oulu-npu:
A mobile face presentation attack database with real-world variations,”
in 2017 12th IEEE international conference on automatic face & gesture
recognition (FG 2017). IEEE, 2017, pp. 612–618.

[31] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. Freeman,
“Eulerian video magnification for revealing subtle changes in the world,”
ACM transactions on graphics (TOG), vol. 31, no. 4, pp. 1–8, 2012.

[32] B. Kuznetsov, J. D. Parker, and F. Esqueda, “Differentiable iir filters for
machine learning applications,” in Proc. Int. Conf. Digital Audio Effects
(eDAFx-20), 2020, pp. 297–303.

[33] L. Li and X. Feng, “Face anti-spoofing via deep local binary pattern,” in
Deep Learning in Object Detection and Recognition. Springer, 2019,
pp. 91–111.

[34] P. P. Chan, W. Liu, D. Chen, D. S. Yeung, F. Zhang, X. Wang, and C.-C.
Hsu, “Face liveness detection using a flash against 2d spoofing attack,”
IEEE Transactions on Information Forensics and Security, vol. 13, no. 2,
pp. 521–534, 2017.

[35] L. Wright, “Ranger - a synergistic optimizer.” https://github.com/
lessw2020/Ranger-Deep-Learning-Optimizer, 2019.

[36] K.-Y. Zhang, T. Yao, J. Zhang, Y. Tai, S. Ding, J. Li, F. Huang, H. Song,
and L. Ma, “Face anti-spoofing via disentangled representation learning,”
in European Conference on Computer Vision. Springer, 2020, pp. 641–
657.

[37] Z. Yu, C. Zhao, Z. Wang, Y. Qin, Z. Su, X. Li, F. Zhou, and G. Zhao,
“Searching central difference convolutional networks for face anti-
spoofing,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 5295–5305.

[38] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

548

https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer

Paying Attention to the Insider Threat
Eduardo Lopez

Information Systems, DeGroote School of Business
McMaster University

Hamilton, ON, Canada
lopeze1@mcmaster.ca

Kamran Sartipi
Department of Computer Science

East Carolina University
Greenville, NC, USA
sartipik16@ecu.edu

Abstract—The misuse of information systems by internal
actors – the insider threat – is an ever-growing concern in
organizations of all types. The timely detection of an insider
threat is as important as it is difficult. Analyzing user behaviors
recorded in electronic logs require significant computing
resources and the capability to find and interpret complex
patterns in temporal sequences that may contain irrelevant,
temporary or novel elements. In this paper we use an attention-
based architecture derived from BERT (Bidirectional Encoder
Representations from Transformers) for the creation, storage
and updating of an always-current, holistic user behavior model
that enables real-time insider threat detection through anomaly
detection and user behavior prediction techniques. A case study
with a very large transaction system is provided.

Keywords: insider threat, transformers, BERT, anomaly de-
tection, cybersecurity1

I. INTRODUCTION

Detecting an on-going insider threat is a significant chal-
lenge. Although the actions by every user are regularly
recorded in electronic files (i.e., logs), those logs can be ob-
scured by a very large number of unrelated events. Information
in electronic logs is usually unstructured, stored in very large
text files that require specialized tools to be analyzed. User
behaviors are captured in sequences of events that can be
mined for abnormal patterns. However, their ever-evolving
characteristics and dependence on a variety of contextual
parameters (e.g., the time of use or location of computer) pose
remarkable challenges for advanced analytic applications. For
the purpose of this work, we focus on a set of technologies
known as Transformers [13] that have dramatically improved
Artificial Intelligence (AI) applications in Natural Language
Processing (NLP). They are encoder/decoder architectures that
implement the concept of Attention [3].

The preceding decade has witnessed remarkable advances
in Artificial Intelligence (AI). Deep learning in particular
has consistently delivered results across myriad disciplines,
sometimes surpassing human-level benchmarks [1]. A deep
learning architecture is a multi-layer stack of neural network
units where usually most of them are subject to learning
and that may include non-linear input-to-output mappings [8].
Each layer in the network incrementally learns about the
structure of data from its preceding layers, becoming very
good function approximators that can find and learn very

1DOI reference number: 10.18293/SEKE2022-059

complex patterns in the data. There are several deep learning
architectures that can be applied to specific applications and
data types.

Deep learning has been proven effective across a wide
range of disciplines, with cybersecurity being the focus of this
work. The protection of information assets against malicious
threats is a pivotal element for an increasingly technified
society where information systems enable processes for many
organizations. Arguably, one of the most interesting challenges
pertains to the phenomena known as the insider threat. It
can be defined as current (or former) users – or somebody
impersonating them – that intentionally misuse access priv-
ileges negatively impacting the confidentiality, integrity or
availability of information or information systems [4]. As an
anomaly detection exercise, deep learning is an effective tool
to find such patterns. User behavior is non-linear, complex
and difficult to ascertain unless a strong function approximator
such as a deep learning network can be used.

In this study we train a user behavior model as the baseline
to perform anomaly detection and behavior prediction for
insider threat detection. In particular, this paper contribures
to the cybersecurity literature by proposing a Transformer-
based architecture that uses self-attention for modeling user
behaviors. The model created can be used effectively in
transfer learning tasks.

This paper is organized as follows: Section II presents
the relevant research to our work. Section III articulates the
architecture of Transformers. Section IV presenst the proposed
approach and Section V elaborates on the case study we
conducted. Section VI draws conclusion to our discussion.

II. RELATED WORK

The detection of the insider threat with machine learning
can be formulated in multiple ways. Lopez and Sartipi [10]
articulated the analysis as a supervised-learning classification,
where the existence of a known pattern or signature is used by
a logistic regression classifier to determine if the user behavior
indicates information systems misuse. Liu et al [9] present an
example for the use of autoencoders in insider threat detection.
Paul and Mishra [12] propose an LSTM-based approach to
threat detection. LSTM architecture’ effectiveness in insider
threat detection has also been demonstrated by Lopez and
Sartipi [11], and by Paul and Mishra [12]. More advanced

549

Fig. 1. Transformer architecture adapted from [13] .

architectures leveraging LSTM include stacked models, pre-
initialized LSTM and bi-directional LSTM which have pro-
duced better results than single LSTM layers [6]. The concept
of attention and in particular the Transformers proposed in the
seminal work by Vaswani et al. [13]. From that moment on, the
rate of new advances in Natural Language Processing has been
unrelenting. Interestingly enough, the use of Transformers
in cybersecurity applications has been rather limited. To our
knowledge, no work has been done in applying these concepts
to insider threat detection.

III. TRANSFORMER

The concept of Attention first appeared in 2015 [3] but it
was until the Transformers concepts were proposed in 2017
that a new leap in performance was attained [13]. In its original
form, a Transformer follows an encoder-decoder architecture
as depicted in Figure 1. The original implementation uses six
stacked encoders and six stacked decoders; however, since then
multiple evolutions have taken place with different values and
parameters. As it is the case with most deep learning architec-
tures, the learning model uses successive representations of the
original data, obtaining features at a higher abstraction level.

The input to a transformer model is usually raw data in
the form of a sequence. Figure 1 represents this as a one-
hot encoded table from words w1 to wn. The first step in the
encoder is to transform the input into meaningful dense-vector
representations. In contrast to recurrent neural networks, all
the words in the sequence are fed at the same time to the
encoder, so the word placement in the sequence is not explic-
itly captured. To add this information, a positional encoding
takes place to calculate the words’ positional embeddings. The
encoder usually has multiple, parallel self-attention heads used
during training. Each head can be considered a representation
subspace where different attributes of the embeddings are
calculated. In the case of NLP, a useful intuition is to consider
each head as a representation of a different words’ attributes,

i.e., one may represent grammar and the other one may
represent syntax or gender. The original Transformer uses
eight heads with each one randomly initialized at training time.

Self-attention is the next step in the encoder which is
considered fundamental to the concept of transformers. Re-
verting back to NLP for intuition: let us supposed we have
the sentence ”Transformers are great for long sequences
because they use attention”. Any learning model needs to
clearly determine if the word they refers to ”Transformers”
or to ”long sequences”. A way to formulate and quantify
this dependency is by calculating for each word a vector to
represent the contribution of itself and every other word in
the sentence. Figure 1 depicts the self-attention as m square
matrices of length n, where m is the number of attention heads
in the architecture. Equation 1 shows the different operations
performed.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

Q, K and V are three abstractions for Query, Key and Value,
which are calculated by multiplying the word embeddings with
weigh matrices WQ, WK and WV learned during training.
The dot product of Q and K is scaled down by the square root
of the dimension of the K matrix. A softmax transformation
is then applied (producing a matrix with values from 0 to 1)
and then multiplied by the V matrix to produce the attention
matrix.

There are multiple transformer designs based on the original
work by Vaswani [13]. For reasons that will be explained
in section IV, we proceed to elaborate on the architecture
known as BERT. The term stands for Bi-directional Encoder
Representation from Transformers [5], and it uses only the
encoder part of the transformer architecture. A fundamental
characteristic of BERT is that it learns the underlying patterns
of the data considering both the left and right context of
the sequences used. BERT uses two unsupervised learning
objectives: a Masked Language Model (MLM) and Next
Sentence Prediction (NSP). These two tasks are executed over
a large text corpus during a stage known as pre-training.
Once the parameters have been found, the model is ready for
prediction or classification tasks during a fine-tuning stage.
Pre-training BERT can be conceptualized as building the
underlying knowledge about the dataset. This knowledge can
be then applied to other tasks with a smaller dataset, i.e., an
example of transfer learning. While pre-training may be a
lengthy task, fine-tuning is very efficient. Pre-trained BERT
models are publicly available for NLP tasks. BERT large
uses 24 encoders stacked, representing each word with 1024
dimensions and 16 self-attention heads. The total number of
parameters learned for BERT large is 340M.

IV. APPROACH

Dataset. We use the Los Alamos cybersecurity events
dataset that is publicly available for research [7]. It includes
multiple files from different information systems containing
authentication events, programs started or finished, Domain

550

Fig. 2. Architecture for insider threat detection.

Name Service (DNS) calls and network flows. The dataset is
the result of 58 days of continuous monitoring of more than
12,000 users and 17,000 computers. There are a total of 1.6
billion records contained in 17GB of data. In addition to this,
there are 728 authentication records capturing the events from
a Red Team, which are individuals purposely performing tasks
that are typical of insider threats.

Architecture. To describe the architecture selected for the
experiments, we use industry best practices, categorizing three
groups of processes: i) Data engineering pipeline; ii) Data
Science and Machine Learning (DSML) pipeline, and; iii)
Software engineering pipeline [2]. In the data pipeline we
transform the raw data into information that can be entered
in the DSML model, with its output provided through a user
interface so the user can verify the results.

We select BERT as the foundational architecture for the
DSML pipeline. As was explained in Section III, BERT is an
encoder that uses left and right contexts from sequences. Upon
pre-training, BERT effectively creates a model (equivalent to
a Masked Language Model in the original BERT implementa-
tion) that can be used in downstream tasks such as prediction
or classification. In the scenario explored in this study, BERT
produces a user behavior model that can be leveraged for the
detection of the insider threat. In order to provide BERT with
the required data, the data engineering pipeline pre-processes
the data and crafts the sequences that will be used in the DSML
model. Figure 2 depicts the complete architecture.

There are three distinct time windows used for the insider
threat detection. The first one is the historical data used for
pre-training. Based on domain knowledge, 14 days provides
sufficient data to capture repetitive user patterns. Keeping the
time window short, the pre-training time can be optimized so
the learning process and can be completed in a timely fashion.
Once the model has been pre-trained, a daily fine-tuning can
take place. By using this strategy, the user behavior model
is kept current with novel patterns performed by users. Fine
tuning with 1-day data can be done overnight. The final time
window used is one second. This means that the system will
use the information collected within the log in real-time, and
performs the analysis using the user behavior model.

The DSML component is where the user behavior model
is estimated and stored. The pre-training task estimates the
parameters of the deep learning model using the historical
data. The fine-tuning adjusts the parameters based on the
information from the preceding day. The current data (i.e.,
t0) is then used in the detection of the threat. To achieve this

objective, the architecture performs two sets of analysis: word
prediction and anomaly detection.

V. CASE STUDY

Data engineering pipeline. From the data tables available
in the Los Alamos cybersecurity events dataset [7] we select
authentications as the source for the analysis. Figure 3 shows
the elements of an authentication record.

Fig. 3. Transforming authentications to sequences.

There are 1.051 billion authentication records in the dataset.
Each record includes the time (in seconds) when it happened,
as well as other key data such as the users, computers, type and
direction involved in the authentication. As can be observed
in Figure 3, there are multiple authentication events in any
given time instance which involve different entities. Through
the pre-processing stage we transform the dataset and obtain
the ’words’ to be used in downstream processes.

The next stage is the creation of sequences, first into
’sentences’ and later on into ’documents’ where sentences
are separated by the special token [SEP]. To build the sen-
tence structure we consider the most optimal, meaningful
information that will enable the threat detection. Through
experimentation we find that the maximum number of tokens
that support short pre-training and fine-tuning cycles is 256.
Conversely, a ’short’ sentence may contain less information
but enable the use of longer sequences and still succeed at
detecting the insider threat. A review of the data shows that the
user behavior on any given second (which in NLP is analogous
to a document) may contain anywhere from 250 to 3,000
tokens (i.e., words), with the median around 2,000. We select
2048 as the maximum sequence length. Upon tokenization,
we determined that the total number of unique events – the
vocabulary size is around 30K. The data is now ready to be
used by the DSML pipeline.

DSML pipeline As mentioned before, we adopted BERT as
the deep learning architecture for the detection of the threat.
The original BERT base design was composed of 12 layers
(i.e., stacked transformer encoders) using 768 dimension for
the hidden states and 12 attention heads. The total number
of trainable parameters is 109M, equivalent to all the weights
that will be adjusted during training. Given the time constraints
that we have articulated, and the efficiency we require in the
process to enable fast response, we reduce the model size
by decreasing the number of heads and encoders to six and
the hidden state size to 384. Although the vocabulary size is

551

Fig. 4. User behaviours prediction for insider threat detection.

comparable to that of the English language, the short sentence
structure has just five unique types of entities: computers,
users, hours and weekdays. In contrast, a natural language uses
myriad different token types. This simpler architecture uses
approximately 30M trainable parameters, driving contained
and efficient resource usage while still representing each token
by rich 384-dimensional vectors. We proceed with the pre-
training of the model using 14-day historical data, or 1,209,600
documents (i.e., seconds). When using an NVIDIA V100
GPU and the short sentence structure the pre-training takes
approximately 40 hours for 4 epochs. The fine tuning of the
user behavior model is performed using the data from the
preceding day. As expected, resuming the training with the
latest daily data can be done quite rapidly (e.g., overnight).
The user behavior model is now suitable for use by the core
detection processes.

Insider threat detection. The user behaviour model learned
in the pre-training stage can also be used for sequence pre-
diction. A key advantage of a BERT-centric architecture is the
ability to perform transfer learning. Any token in the sequence
can be masked and predicted with the model. We select the
current second (t0) in Figure 2, pre-process the raw data and
create the sequence to be inputted in the model. Figure 4
displays six different instances for analysis.

The first three sequences correspond to normal user behav-
iors captured in the data. The first sequence has 565 tokens,
and it is entered into the model masking the user name. All
predicted values whose probabilities add up to more than
50% are displayed. For the first sentence, only one value is
needed for surpassing the 50% threshold; this is U2753 with
a probability of 90.56%. The model is quite certain about the
prediction, and the actual value is indeed U2753. Therefore,
we can consider the behavior as normal.

The second sequence has 216 tokens in it, and we now mask
the source computer. The two highest-probability predictions
cumulatively reach the 50% threshold: C568 and C62. The
actual source computer used by the user U8 was C62, so the
model is once again correct with no indication of an insider
threat taking place. The third sequence is very short, just
85 tokens, and we mask the destination computer. As it was
the case in the preceding one, the correct computer C616 is
predicted, so we can consider the behavior a normal one.

We now proceed to analyze three known threat cases. It
is important to emphasize that this ground truth data is used

to evaluate the accuracy of the prediction, but was not used
when training the model. In the first case we mask the source
computer for user U8946 in a 693-tokens sequence. Two
computer predictions accumulate beyond 50%: C2388 and
C3610, but none of them is the actual computer in the data,
i.e., C17693. In this case, none of the predictions ended up
being correct. This is an indicator of an insider threat that
would be communicated to a human for further review. The
incorrect prediction by the model is a correct indicator of
an insider threat. The fifth sequence is 397-tokens long, and
we mask again the source computer. The model in this case
is also strongly convinced that the source computer must be
C19038 (with a very definitive 99% probability). However, the
actual source computer is different, which is a clear indicator
of an abnormal event, as the model has high confidence in
a prediction that ends up being incorrect. In the last case we
mask the destination computer and enter the data in the model.
Many predictions are needed to reach the 50% threshold –
which can be interpreted as the model having difficulties to
predict with a high-level of certainty. The actual value C370 is
not in the prediction group, which again points to a potential
insider threat and shall be sent to a human for review.

VI. CONCLUSION

This research formulates the insider threat detection as an
attention-based machine learning problem. The objective is to
effectively detect a threat taking place with optimal efficiency
driving a timely response from a human actor. We demonstrate
how a Transformer deep learning configuration based on the
BERT architecture achieves this objective by leveraging the
strengths of an attention-based configuration. We demonstrated
how to identify a potential insider threat in near real-time using
a well-defined three-step machine learning process.

REFERENCES

[1] AI index report 2021. https://aiindex.stanford.edu/report/, 2021.
[2] S. Barot. Realizing Value From Composable AI Through XOps.
[3] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio.

Attention-Based Models for Speech Recognition. arXiv:1506.07503 [cs,
stat], June 2015.

[4] D. L. Costa, M. J. Albrethsen, M. L. Collins, S. J. Perl, G. J. Silowash,
and D. L. Spooner. An Insider Threat Indicator Ontology. page 87.

[5] Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. arXiv:1810.04805 [cs], May 2019.

[6] A. Graves, N. Jaitly, and A.-r. Mohamed. Hybrid speech recognition
with Deep Bidirectional LSTM. In 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding, pages 273–278, Olomouc,
Czech Republic, Dec. 2013. IEEE.

[7] A. D. Kent. Comprehensive, Multi-Source Cybersecurity Events, 2015.
[8] Y. Lecun, Y. Bengio, and G. Hinton. Deep learning. Nature,

521(7553):436–444, 2015.
[9] Liu et al. Anomaly-Based Insider Threat Detection Using Deep

Autoencoders. In 2018 IEEE International Conference on Data Mining
Workshops (ICDMW), pages 39–48, Nov. 2018.

[10] E. Lopez and K. Sartipi. Feature Engineering in Big Data for Detection
of Information Systems Misuse. page 12, 2018.

[11] E. Lopez and K. Sartipi. Detecting the Insider Threat with Long Short
Term Memory (LSTM) Neural Networks. arXiv:2007.11956 [cs], July
2020.

[12] S. Paul and S. Mishra. LAC: LSTM AUTOENCODER with Community
for Insider Threat Detection. In 2020 the 4th International Conference
on Big Data Research (ICBDR’20), pages 71–77, Tokyo Japan, Nov.
2020. ACM.

[13] Vaswani et al. Attention is All you Need. In Advances in Neural In-
formation Processing Systems 30, pages 5998–6008. Curran Associates,
Inc., 2017.

552

A Novel Network Alert Classification Model based
on Behavior Semantic

Zhanshi Lia, Tong Lia,∗, Runzi Zhangb, Di Wua, Zhen Yanga
a Beijing University of Technology

b NSFOCUS Technologies Group Co., Ltd., Beijing 100089, China
*litong@bjut.edu.cn

Abstract—With the ever-increasing complexity and scale of
today’s information systems, security personnel have to face
massive alerts every day. Efficiently and precisely classifying
such alerts in terms of different threat levels is essential for
protecting systems from serious threats. However, existing works
mainly focus on binary classification which are coarse-grained
and cannot pragmatically reduce the number of alerts examined
by security personnel. This challenge is further exacerbated
when dealing with large numbers of alerts. Moreover, existing
approaches only focus on textual and temporal features without
considering behavior semantic information when training classi-
fiers. In this paper, we propose a behavior semantic-based alert
multi-classification model. Specifically, our proposal classifies
alerts into three threat levels according to the real practice of our
industrial collaborator. In the meantime, we extract attribute,
temporal, and behavioral semantic features to help classifiers
to better learn classification boundaries. To extract behavior
semantic information, we embed the alert attributes by learning
their contextual behavior semantics and use the embedding vector
as behavioral semantic features. We conducted experiments using
a real enterprise network alert dataset. The experimental results
demonstrate that our approach outperforms baseline methods in
terms of false positive rate and classification performance.

Index Terms—Alert Classification, Semantic Feature, Machine
Learning

I. INTRODUCTION

In large enterprises, security personnel need to continuously
monitor, analyze, and classify security alerts to defend against
malicious attacks [1]. Security alerts are typically classified
into multiple levels by security personnel. However, modern
large-scale systems face a vast number of security alerts every
day, desperately requiring an effective and efficient multi-
classification approach. While there has been some work ex-
ploring the task of alert classification, it still has shortcomings.

Firstly, existing works [2], [3] mainly focus on binary
classification which are coarse-grained. Coarse-grained alerts
cannot pragmatically reduce the number of alerts examined
by security personnel. Especially, when dealing with a huge
number of alerts, existing approaches cannot effectively reduce
the workload of security personnel. For example, Lin et al. [2]
classify alerts into alerts triggered by attacks and by non-
attacks, respectively. They believe that alerts triggered by
attacks are all important high-threats. However, this is not the
case in practice. Because some attacks (e.g., worm attacks) are
low-threat and do not cause actual loss to the enterprise. The

DOI reference number: 10.18293/SEKE2022-116.

security personnel’s real needs are identifying high-threats,
which are usually not that many and feasibly to be manually
reviewed. In conclusion, the alert classification method based
on binary classification is not reasonable.

Secondly, existing approaches only focus on textual and
temporal features without considering behavior semantic in-
formation when training classifiers. Specifically, these methods
are simple in representing alert attributes without considering
the behavior semantic information of the alert attributes. For
example, Shittu et al. [4] represent IP addresses as binary
strings to calculate the distance between alerts. The distance
between IP addresses is measured by the length of the longest
common prefix. The way the distance between IP addresses is
calculated shows that the longer the common prefix, the closer
the logical distance between different IP addresses. However,
the longest common prefix length for two IP addresses only
implies whether they are in closer subnets and does not
indicate similar behavior.

To address the above shortcomings, we propose A behavioR
seMantic-based alert multi-Classification mOdel (ARMCO).
Specifically, ARMCO extracts a series of alert features from
the attributes of historical alerts, including attribute, temporal,
semantic features. Attribute features encode discrete attributes
of alerts with a wide range of values into a low-dimensional
vector space, which save space and facilitates subsequent clas-
sification model learning. Temporal features can characterize
the temporal aspects of alerts for different threat levels. To
extract behavioral semantic information, we embed the alert
IP addresses and ports by learning their contextual behavior
semantics, and use the embedding vector as semantic features.
Therefore semantic features can characterize the contexts of
IP addresses and ports at different threat levels alerts. In the
meantime, the representation of the IP addresses and ports is
kept consistent with their behavior characteristic. In addition,
ARMCO classifies alerts into high-threat, low-threat, and non-
threat alerts according to the real practice of our industrial
collaborator. Fine-grained classification of alerts more conform
to the real network situation, and more friendly to security
personnel as well. The major contributions of this paper are
the following:

• We classify alerts into non-threat, low-threat, and high-
threat, which are more in accordance with the threat
situation of real network alerts.

• We embed the alert attributes by learning contextual

553

behavior semantics to consistent their representation and
behavioral characteristics.

• We conducted a number of experiments on a real network
dataset, the results of which demonstrate the effectiveness
of ARMCO.

II. RELATED WORK

Recently there is a lot of work dedicated to the alert post-
processing, such as alert correlation [5]–[7], aggregation [8],
clustering [9]. These works are interdependent, and the divid-
ing line is blurred. However, they aim to reduce the number
of alerts or detect the attack. Shittu et al. [4] extracted the
association conditions from historical alerts by using posterior
probabilities. They use these conditions to correlate alerts,
called meta-alert. Finally, the different local outliers of meta-
alert are mapped to different alert threat levels. Low-threat
alerts can then be filtered. Hofmann et al. [10] proposed
an online intrusion alert aggregation system, which uses a
finite mixture distribution to measure the similarity between
alerts. However, the effectiveness of this approach depends on
the assumptions of the distributions. Siraj et al. [11] design
domain-specific similarity calculation methods for different
alert attributes. The similarity of two alerts is a weighted sum
of the similarity of attributes. Then, the alerts are aggregated
by similarity for attack detection. Ahmadinejad et al. [12]
use some temporal windows to reduce the comparison of
new alerts with the full history alerts. After that, they use a
probability-based evaluation function to determine the thresh-
old value of the alert association. Two alerts are associated
if their temporal similarity is higher than the threshold value.
The correlated alerts are treated as hyper-alerts, which can be
used for attack detection. In summary, the above works aim
to relieve the pressure on security personnel. However, many
alerts still need to be examined, and security personnel cannot
focus on examining high-threat alerts.

Identifying the threat level of alerts is a relevant research
topic in intrusion detection systems (IDS) [13]. Shittu et al. [4]
mines possible correlation conditions in the alerts history and
set correlation thresholds for different correlation conditions.
Two alerts can be correlated when they satisfy multiple corre-
lation conditions simultaneously. Directly or indirectly related
alerts form a correlation graph. High-threat correlation graphs
are discovered by calculating the similarity among correlation
graphs. Lin et al. [2] jointly model alert temporal dependencies
and textual dependencies to discover actual attacks in alerts.
Temporal dependence exploits Bayes’ rule and prefix tree to
extract attack patterns. Text dependencies measure the co-
occurrence probability between attributes. They combine the
two dependencies to sort the alerts in order of probability
of being an actual attack. Chen et al. [14] encode and
decode high-threat alerts, and the model computes a higher
reconstruction error when non-high-threat alerts appear. More
specifically, they identify high-threat alerts by two encoding
and decoding layers. The above work can also not relieve the
pressure of security personnel very well. They didn’t make a
finer division of non-high-threat alerts, which is unreasonable.

In addition, they capture inadequate factors that influence the
threat level of alerts.

III. A BEHAVIOR SEMANTIC-BASED ALERT
MULTI-CLASSIFICATION MODEL

Fig. 1 illustrates the overall framework of the ARMCO. As
shown in Fig. 1, alerts are input to the semantic, attribute and
temporal feature extraction modules. After the three feature
extraction modules are computed, their outputs are concate-
nated to generate the feature vectors. Then the alerts feature
vector, including multi-dimension features, is used to train the
classification model. Finally, the trained model is used for alert
threat level classification. After threat level classification, alerts
will be classified as high-threat, low-threat, and non-threat.

A. Extract Attribute Features

Most alert attributes are discrete variables such as source IP
address (Sip), destination IP address (Dip), source port (Sport),
destination port (Dport), the rule id utilized to trigger the alert
(RuleId) and the attack category to which the traffic belongs
(AttackType). The above alert attributes include important
information about an attack, which is useful for classifying the
alert threat level. To facilitate the learning of the classification
model, these discrete variables need to be encoded as feature
vectors. In this paper, we use hash coding to encode discrete
attributes. The hash encoding approach is more suitable for
cases where the variables have a large range of values. And it
can map variables with any range of values to feature vectors
of a small length. Let the set of values of a variable v be V . v
including n different values, we use hash coding approach to
map a (a ∈ V) to a feature vector a⃗ of length

√
n. Specifically,

we use the signed 32-bit variant of MurmurHash3 as hash
function. MurmurHash3 is an extensively tested and fast non-
cryptographic hash function [15]. It has good distributivity and
is suitable for machine learning. The RuleId and AttackType
attributes of the alert can be encoded directly as described
above. The remaining four attributes need to be coded in
two separate groups, Sip, Dip and Sport, Dport, respectively.
Because Sip and Dip belong to the IP address, they need to
be encoded together, so do Sport and Dport. The following
description is how to encode Sip and Dip, the same for Sport
and Dport. Let the set of values of Sip be S, the set of values
of Dip be D,and V = A ∪D, and n = |A|+ |D|. Then for b
(b ∈ V) and n, they also input above-mentioned hash function
to get the feature vector.

B. Extract Temporal Features

In this section, the construction of temporal features is
described. For simplicity, no-threat, low-threat and high-threat
are represented by 0, 1 and 2 respectively.

Alert count. We define the number of alerts in a specific
time window as the alert count (e.g., the total number of
alerts in the 5 minutes before the current alert was triggered).
Intuitively, security personnel should pay more attention to an
alert with a sharp change in the number of alerts in a short
period [16].

554

Fig. 1. The architecture of ARMCO.

Inter-arrival time. We define the time difference between
the current alert and the previous alert as the inter-arrival
time [16] (e.g., if alert A was triggered at 2021.03.22 00:00:00
and alert B was triggered at 2021.03.22 00:01:00, the inter-
arrival time for alert B is 60 seconds). Intuitively, the first
alert after a long period of no alerts should be focused on by
security personnel [16].

C. Extract Semantic Features

For simplicity, we consider Sip, Dip, Sport and Dport as im-
portant attributes of the alert. Although the important attributes
are also encoded by the attribute features, they are encoded
for different purposes. The attribute features are designed to
numerically encode discrete attributes.And semantic features
aim to encode important attributes with contextual behavioral
semantics. The contextual behavioral semantics of attributes
refers to different IP addresses or ports that are similar if
they appear in similar contexts. The approach to embedding
important attributes of alerts follows the idea of IP2Vec [17]
but is still somewhat different. While IP2Vec embeds IP
addresses in network traffic, our approach embeds both IP
addresses and ports in alerts. We extract the context of IP
addresses and ports from historical alerts and construct training
samples to input the embed attributes module. Fig. 1 shows the
architecture of embedding the IP addresses and ports. Several
key tasks are explained in detail next.

Selection of context. How to select behavioral semantics of
important attributes is a core issue. As introduced in Section I,
existing methods are simple in their representation of alert
attributes and fail to capture the differences between their be-
haviors. Each alert describes the information related to specific
anomalous traffic, as shown in Table I. Not all attributes are
helpful. It is not difficult to find that the important attributes
themselves are closely related because host communication
requires this information. Therefore, we choose the important
attributes themselves as their context.

Sampling of training data. The Sip, Dip, Sport and Dport
of each alert are considered a ”sentence”, we use a subset of
the ”sentence” to construct the input and output words. As

shown in Fig 1, it shows how to sample training data. When
using Sip as input words, Dip, Sport, and Dport are used as
context words. When Dport is used as the input word, only
Dip is selected as the context word. When using Sport as the
input word, only Dip is selected as the context word. After
the above sampling, input-output word pairs can be obtained,
which are inputted into the module of embedding attributes.

Embed attributes. After receiving the input-output pairs,
we need to convert them into knowledge graphs. The nodes in
the knowledge graph are the set of all inputs and outputs.
For each input-output pair, a directed edge from input to
output is added to the knowledge graph. There are at most
two edges with different directions between two nodes. In the
module of embedding attributes, we adopt interactE([18])
to embed the attributes. InteractE is based on three key
ideas – feature permutation, a novel feature reshaping, and
circular convolution. The interactE optimizes the performance
of embedding by increasing feature interaction.

D. Classify alerts

After feature extraction, each alert is represented by a set of
features, and each alert also includes a threat level label that is
examined and labeled manually. The XGBoost classification
model is adopted for the alert threat level classification task.
XGBoost is a gradient boosting tree-based model that is widely
used by data analysts and has achieved good performance on
many problems [19]. The algorithm creates and combines a
large number of separate weak but complementary classifiers
to produce a powerful estimator. This combination can be done
in two ways: bagging (random forests) and boosting. Gradient
boosting is established sequentially. In fact, a new weak
learner is constructed to have a maximum correlation with the
negative gradient of the loss function of the entire set in each
iteration [20]. XGBoost belongs to a group of widely used
tree learning algorithms [21]. Decision trees allow prediction
of output variables based on a series of rules arranged in a tree
structure. They consist of a series of segmentation points, or
nodes, determined according to the values of the input features.
The last node is a leaf that gives us the specific value of

555

TABLE I
AN EXAMPLE ALERT.

Attribute Value
Timestamp 2021-03-22 00:00:00
AlertLevel 2
RuleId 18622209
AttackType Directory traversal
Sip *.*.*.*
Dip *.*.*.*
Sport 48045
Dport 80
Payload \x085q\x1024\x9cW\xadopu\x08. . .
q body POST /login/login.htm. . .
r body HTTP/1.1 200 OK \r\n Server. . .

the output variable. Tree learning algorithms do not require
linear features or linear interactions between features. They
are significantly better classifiers than other algorithms [22].
In addition, XGBoost, a gradient boosting algorithm, has
two major improvements: accelerated tree construction and
proposed a new distributed tree search algorithm.

IV. EXPERIMENT

In this section, we use real network dataset to evaluate
ARMCO, aiming to answer the following research questions:

• RQ1: Can ARMCO effectively improve the alert threat
level classification performance?

• RQ2: How much do different features affect classification
performance?

A. Datasets

We first present information about the attributes of the alerts
and the dataset used.

1) Alert Description: an alert, which has multi-dimensional
alert attributes, is the smallest core data structure we study and
analyze. Table I presents an example alert with several major
attributes. The Timestamp attribute indicates the time when
the alert was triggered. The AlertLevel attribute indicates the
threat level determined by the traditional rule-based approach.
The higher the value, the higher the threat level. The RuleId
attribute indicates the rule ID utilized to trigger the alert. The
AttackType attribute indicates the attack category to which
the traffic belongs. The Sip, Dip, Port, and Dport attributes
indicate the source IP address, destination IP address, source
port, and destination port of the traffic, respectively. The
payload attribute indicates the alert payload, including IP
layer and lower layer data. The q body attribute indicates the
request body of the web access. The r body attribute indicates
the response body of the web request.

2) Dataset Description: the network alert dataset used in
this paper is collected from a real security company. This
dataset records a day’s total of about nine million alerts. As
Table I shows, while each alert log includes its threat level,
that threat level is evaluated by a rule-based approach that
has poor classification performance. For further analysis and
to get better classification performance, the security personnel
examine each alert and label it with the real corresponding
threat level.

B. Metrics

As described in Section III, the trained classification model
classify the test set alert. After all the alerts are classified,
the precision (P) /recall (R) /F1-score (F1) /false positive rate
(FPR) be calculated to evaluate the performance of each class.
Each class can calculate P, R, F1 and FPR. Finally, we use the
weighted P, R, F1 and FPR to evaluate the model performance.
The weight of each class is equal to its proportion in the
test set. Precision measures the percentage of identified threat
levels that are the same as the actual threat level. Recall
measures the percentage of alert threat levels that are correctly
identified. F1-score is the harmonic mean of precision and
recall. FPR measures the percentage of alert threat levels
that are incorrectly identified. Therefore a better classification
model has a higher P, R, F1 and a lower FPR.

C. Parameter Settings

We tune the hyperparameters of the ARMCO in the valida-
tion set (split from trainset). In the attribute features, the length
of the feature vectors after hashing Sip, Sport, Dip, Dport,
RuleId and AttackType are 24,124,24,124,5,5, respectively.
In the temporal features, the window size of the alert count
is set to 165 seconds. In interactE model, the attributes are
embedded with a feature vector dimension of 32. For each
positive sample, 50 negative samples are randomly sampled.
Also, we set input dropout rate to 0.2, feature dropout rate
to 0.5, hidden dropout rate to 0.5. It is trained via stochastic
gradient descent over shuffled mini-batches with a batch size
of 128. It uses an Adam optimizer with a learning rate is
0.0001. In the XGBoost classification model, we set lambda
to 2, gamma to 0.1, max depth to 6, subsample to 0.6,
colsample bytree to 0.9, min child weight to 3 and eta is 0.1.

D. Experimental Settings

To answer the research questions raised above, we designed
two experiments. The following experiments uses the dataset
introduced in Sec. IV-A. We use the top 80% of the alerts
that have been sorted in time order as the training set and the
remaining 20% as the test set.

1) Experiment 1: To demonstrate the performance of the
ARMCO, we compare it with two baseline methods. The
compared methods are listed below.

• Rule-based. The traditional rule-based approach classifies
alerts into different threat levels (e.g., high-threat, low-
threat, and non-threat). Experienced security personnel is
required to keep the rule database updated regularly.

• Bug-KNN [23]. Bug-KNN calculates the similarity be-
tween bugs by textual similarity. It uses K-Nearest Neigh-
bor to calculate the distribution of severity levels in
historical bug reports most similar to the new bug report.

2) Experiment 2: The features ARMCO extracted include
the attribute, temporal, semantic features. To demonstrate the
effect of different features on the performance, we prepare
three variants of ARMCO: ARMCOTS , ARMCOAT and
ARMCOAS . They are differentiated below.

556

Fig. 2. Performance comparison of different methods.

TABLE II
EFFECT OF DIFFERENT FEATURE.

P R F1 FPR
ARMCOTS 0.944 0.939 0.941 0.366
ARMCOAT 0.937 0.930 0.933 0.406
ARMCOAS 0.892 0.666 0.750 0.497
ARMCO 0.945 0.940 0.942 0.362

• ARMCOTS : This variant removes the attribute features.
• ARMCOAT : This variant removes the semantic features.
• ARMCOAS : This variant removes the temporal features.
• ARMCO: This is our complete model which involves

all the proposed features.

E. Experimental Results

1) Experiment 1: Fig.2 shows the performance comparison
of ARMCO and baseline methods in P, R, F1 and FPR.
ARMCO outperformed other baselines, achieving an F1 of
0.942, higher than others, and an FPR of 0.362, lower than
others. Compared with Rule-based, ARMCO’s F1 is increased
by 100%, and FPR is reduced by 31.6%. Compared with Bug-
KNN, ARMCO’s F1 increased by 4.7% and FPR reduced by
61.1%. As shown in Fig.2, the Rule-based approach has an
F1 of 0.470, FPR of 0.530, which is weakly effective. Due
to various factors influencing the threat level of alerts, using
rules alone can’t completely capture these factors. Besides,
the Rule-based approach requires security personnel to spend
plenty of time and effort to maintain the rules.

Bug-KNN measures the threat level by calculating the threat
distribution of the historical alerts that are most similar to
the current alert. As shown in Fig.2, Bug-KNN has an F1 of
0.899, FPR of 0.931. The results show that the Bug-KNN
is weakly effective and has a very high time complexity.
Due to various factors influencing the threat level of alerts,
using textual information alone can’t completely capture these
factors. In summary, the experimental results demonstrate the
effectiveness of ARMCO on classifying the alert threat level.

2) Experiment 2: Table II shows the performance of
ARMCO with its three variants. From Table II, we can see that
ARMCO can achieve the highest F1 of 0.942 and the lowest

Fig. 3. Effects of embedding size.

FPR of 0.362 when all features are used. The following is a
detailed introduction to the impact of each ARMCO variant
on performance.

• ARMCOTS : When this variant was used, F1 drops
from 0.942 to 0.941, and FPR increases from 0.362 to
0.366 compared to ARMCO. The phenomenon shows
that attribute features have little effect on improving
F1 and reducing FPR. Therefore, attribute features have
weakly impact on improving classification performance.

• ARMCOAT : When this variant was used, F1 drops
from 0.942 to 0.93, and FPR increases from 0.362 to
0.406 compared to ARMCO. Compared with the attribute
features, the semantic features have a greater effect
on improving F1 and reducing FPR. Semantic features
can be seen as a way to encode alerting attributes.
Semantic features encode only four attributes. Due to the
encoding process considering the semantic information
of the attributes, the performance leads to significant
improvement. This experimental result demonstrates the
effectiveness of the semantic feature and reflects our
second contribution.

• ARMCOAS : When this variant was used, F1 drops from
0.942 to 0.75, and FPR increases from 0.362 to 0.49
compared to ARMCO. Compared with the previous three
features, the temporal features have the biggest effect
on improving F1 and reducing FPR. This indicates that
the temporal features significantly affect classification
performance.

In summary, the experimental results show that different
features have different extent effects on the performance.
And the temporal feature has the greatest effect, followed by
semantic feature, and attribute feature.

F. Effects of Parameters

Our model has important parameters that need to be tuned.
Here, we evaluate the impact of one parameter on perfor-
mance, i.e., the embedding size in semantic features.

To investigate the effect of the embedding size in semantic
features, we vary it in the set of 4, 8, 16, 32, 64, 128 and
record performance results. From Fig. 3, we can see that the

557

F1 first improves with the increase in embedding size, and
then starts to decrease at size 16. From Fig. 3, we can see that
the FPR first improves with the increase in embedding size
and then starts to decrease at size 16, finally starts to increase
at size 32. As mentioned in Section IV-B, we expect larger
F1 and smaller FPR. When the embedding size is smaller, the
alert’s important attributes may overlap in the low-dimensional
representation space and cannot be represented accurately, so
F1 and FPR are a bit worse. When the embedding size is
larger since the behavioral semantics of the alert’s important
attributes are stationary, it leads to a deviation of the learning
direction during the embedding process, so F1 and FPR are a
bit worse. Although F1 achieves a maximum of 0.9422 at size
16, the corresponding FPR is high at 0.3859. FPR achieves a
minimum of 0.362 at size 32, and although the corresponding
F1 of 0.942 is 0.0002 lower than the maximum, it is ignorable.
So the optimal performance can be obtained at the embedding
size 32.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a behavior semantic-based alert
multi-classification model, which contains a set of powerful
features to measure alerts of different threat levels. The results
demonstrate the effectiveness of ARMCO and achieve an F1
of 0.942 and an FPR of 0.362. This dramatically reduces the
pressure on security personnel to examine and minimize losses
to the enterprise.

Alerts do not occur in isolation. Some attacks require
relatively fixed attack steps to exploit the target, and different
attack steps trigger different alerts. This can lead to the alert
under different alert contexts having different threat levels,
and how to incorporate this information into the alert threat
assessment needs further study. Besides, we will also evaluate
the proposed approach to real-time scenarios in future work.

ACKNOWLEDGEMENT

This work is partially supported by the Major Research
Plan of National Natural Science Foundation of China
(92167102), the Beijing Nova Program (Z211100002121150),
the Project of Beijing Municipal Education Commission
(No.KM202110005025), and Engineering Research Center of
Intelligent Perception and Autonomous Control, Ministry of
Education.

REFERENCES

[1] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log cluster-
ing based problem identification for online service systems,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 2016, pp. 102–111.

[2] Y. Lin, Z. Chen, C. Cao, L.-A. Tang, K. Zhang, W. Cheng, and Z. Li,
“Collaborative alert ranking for anomaly detection,” in Proceedings of
the 27th ACM International Conference on Information and Knowledge
Management, ser. CIKM ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1987–1995. [Online]. Available:
https://doi.org/10.1145/3269206.3272013

[3] M. E. Aminanto, T. Ban, R. Isawa, T. Takahashi, and D. Inoue, “Threat
alert prioritization using isolation forest and stacked auto encoder with
day-forward-chaining analysis,” IEEE Access, vol. 8, pp. 217 977–
217 986, 2020.

[4] R. Shittu, A. Healing, R. Ghanea-Hercock, R. Bloomfield, and M. Ra-
jarajan, “Intrusion alert prioritisation and attack detection using post-
correlation analysis,” Computers & Security, vol. 50, pp. 1–15, 2015.

[5] S. A. Mirheidari, S. Arshad, and R. Jalili, “Alert correlation algorithms:
A survey and taxonomy,” in International Symposium on Cyberspace
Safety and Security. Springer, 2013, pp. 183–197.

[6] A. A. Ramaki, M. Khosravi-Farmad, and A. G. Bafghi, “Real time
alert correlation and prediction using bayesian networks,” in 2015 12th
International Iranian Society of Cryptology Conference on Information
Security and Cryptology (ISCISC). IEEE, 2015, pp. 98–103.

[7] S. Salah, G. Maciá-Fernández, and J. E. Dı́az-Verdejo, “A model-based
survey of alert correlation techniques,” Computer Networks, vol. 57,
no. 5, pp. 1289–1317, 2013.

[8] D. Man, W. Yang, W. Wang, and S. Xuan, “An alert aggregation
algorithm based on iterative self-organization,” Procedia Engineering,
vol. 29, pp. 3033–3038, 2012.

[9] D. Lin, R. Raghu, V. Ramamurthy, J. Yu, R. Radhakrishnan, and J. Fer-
nandez, “Unveiling clusters of events for alert and incident management
in large-scale enterprise it,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 1630–1639.

[10] A. Hofmann and B. Sick, “Online intrusion alert aggregation with
generative data stream modeling,” IEEE transactions on dependable and
secure computing, vol. 8, no. 2, pp. 282–294, 2009.

[11] A. Siraj and R. B. Vaughn, “Multi-level alert clustering for intrusion
detection sensor data,” in NAFIPS 2005-2005 Annual Meeting of the
North American Fuzzy Information Processing Society. IEEE, 2005,
pp. 748–753.

[12] S. H. Ahmadinejad and S. Jalili, “Alert correlation using correlation
probability estimation and time windows,” in 2009 International Con-
ference on Computer Technology and Development, vol. 2. IEEE, 2009,
pp. 170–175.

[13] K. Alsubhi, E. Al-Shaer, and R. Boutaba, “Alert prioritization in intru-
sion detection systems,” in NOMS 2008-2008 IEEE Network Operations
and Management Symposium. IEEE, 2008, pp. 33–40.

[14] C. Chen, D. Zhang, P. S. Castro, N. Li, L. Sun, S. Li, and Z. Wang,
“iboat: Isolation-based online anomalous trajectory detection,” IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp.
806–818, 2013.

[15] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg,
“Feature hashing for large scale multitask learning,” in Proceedings of
the 26th annual international conference on machine learning, 2009,
pp. 1113–1120.

[16] N. Zhao, P. Jin, L. Wang, X. Yang, R. Liu, W. Zhang, K. Sui, and D. Pei,
“Automatically and adaptively identifying severe alerts for online service
systems,” in IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, 2020, pp. 2420–2429.

[17] M. Ring, A. Dallmann, D. Landes, and A. Hotho, “Ip2vec: Learning
similarities between ip addresses,” in 2017 IEEE International Confer-
ence on Data Mining Workshops (ICDMW), 2017, pp. 657–666.

[18] S. Vashishth, S. Sanyal, V. Nitin, N. Agrawal, and P. Talukdar, “In-
teracte: Improving convolution-based knowledge graph embeddings by
increasing feature interactions,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 34, no. 03, 2020, pp. 3009–3016.

[19] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[20] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,”
Frontiers in neurorobotics, vol. 7, p. 21, 2013.

[21] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Her-
brich, S. Bowers et al., “Practical lessons from predicting clicks on ads
at facebook,” in Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising, 2014, pp. 1–9.

[22] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proceedings of the 23rd international
conference on Machine learning, 2006, pp. 161–168.

[23] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, “Towards more accurate
severity prediction and fixer recommendation of software bugs,” Journal
of Systems and Software, vol. 117, pp. 166–184, 2016.

558

DOI reference number: 10.18293/SEKE2022-010

Analyzing Cyber-Physical Systems with Learning Enabled Components

using Hybrid Predicate Transition Nets

Xudong He

Knight Foundation School of Computing and Information Sciences

Florida International University

Miami, USA

hex@cs.fiu.edu

Abstract — Cyber-physical systems (CPSs) are ubiquitous and

are becoming increasingly important in the functioning of our

society. CPSs have complex discrete and continuous behaviors. In

recent years, learning enabled components (LECs) built using

machine learning approaches are increasingly used in CPSs to

perform autonomous tasks to deal with uncertain and unfamiliar

environments. CPSs with LECs are even more difficult to develop.

We have developed a methodology for formally modeling and

analyzing CPSs with LECs. Hybrid predicate transition nets

(HPrTNs) are used as the underlying formal method to model

CPSs with LECs and their training through their simulation

capability. In this paper, we present our new analysis methodology

for CPSs with LECs consisting of three complementary

techniques, including a testing technique based on HPrTN

simulation capability, a simulation guided barrier certificate

technique, and a SMT based bounded model checking technique.

The above analysis methodology is partially supported by a tool

chain and is demonstrated through an example.

Keywords — cyber-physical systems; learning enabled

components; formal methods; hybrid predicate transition nets;

barrier certificate; bounded model checking

I. INTRODUCTION

Cyber-physical systems (CPSs) are ubiquitous and are
becoming increasingly important in the functioning of our
society. CPSs are hybrid systems that contain physical devices
having continuous dynamics and computational control
processes with discrete behaviors. These systems are extremely
difficult to build and error-prone. In recent years, CPSs have
started to use learning enabled components (LECs) as part of the
control loop for performing various perception-based autonomy
tasks. These data-driven components are trained using machine
learning (ML) approaches such as deep learning – deep neural
nets (DNNs) and reinforcement learning (RL) [17]. These
approaches have provided CPSs the capability to continuously
learn and work in uncertain and unfamiliar environments.
Although many ML techniques have been developed in the past
few decades and tremendous progresses have been made in the
last decade, there is very little understanding of the properties of
these data-driven models built using ML. Research on the
formal analysis of these data-driven models has just emerged in
recent years. LECs have added additional dimensions of
difficulties to those of CPSs.

We have developed a methodology for modeling and
analyzing CPSs with LECs, which contains the following new
results: (1) A method for modeling deep neural nets (DNNs)
using hybrid predicate transition nets (HPrTNs), (2) An

reinforcement learning (RL) technique to train DNNs with an
environment (plant) using HPrTNs, (3) A Simplex architecture
to integrate advanced controller (a trained DNN) with a baseline
controller defined using ordinary differential equations such that
the overall system has a closed loop dynamics, (4) A simulation
analysis method based on the dynamic semantics of HPrTNs and
supported in tool PIPE+, (5) A barrier certificate analysis
technique based on inductive invariant reasoning supported in
tool Pyomo with linear program solver Gurobi and SMT solver
Z3, (6) A bounded model checking analysis approach supported
by tool dReach and backend solver dReal. We have presented
our detailed modeling method that covers results (1) to (3) in [7].
In this paper, we will provide a brief overview of the modeling
method while focus on the analysis techniques covering results
(5) to (6). In the following sections, we provide some
background information on the modeling method and the details
of the analysis techniques.

II. HYBRID PREDICATE TRANSITION NETS

In this section, a formal definition of HPrTNs [6] is
provided.

 An HPrTN is a tuple 𝑁 = (𝑃, 𝑇, 𝐹, 𝛼, 𝛽, 𝛾, 𝜇, , 𝑀0), where
(1) 𝑃 = 𝑃𝑑 ∪ 𝑃𝑐 is a non-empty finite set of discrete places 𝑃𝑑

and continuous places 𝑃𝑐 (graphically represented by
circles and double circles respectively);

(2) 𝑇 is a non-empty finite set of discrete transitions
(graphically represented by bars or boxes), which disjoins
𝑃, i.e. 𝑃 ∩ 𝑇 = ∅;

(3) 𝐹 𝑃 × 𝑇 ∪ 𝑇 × 𝑃 is a flow relation (the arcs of 𝑁);
(4) 𝛼: 𝑃 → 𝑇𝑦𝑝𝑒 associates each place 𝑝 ∈ 𝑃 with a type in

𝑇𝑦𝑝𝑒. 𝑇𝑦𝑝𝑒 defines the structure of the data the places can
hold. The basic types include String, Integer, and Real; and
the composite types are defined using Cartesian product
and power set;

(5) 𝛽: 𝑇 → 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 associates each transition 𝑡 ∈ 𝑇 with a
constraint. Each constraint is a disjunction ⋁ 𝑑𝑖𝑖 for 𝑖 ≥ 1,
where each disjunct 𝑑𝑖 has a canonical form 𝑝𝑟𝑒𝑖𝑝𝑜𝑠𝑡𝑖
that defines the precondition (enabling condition) and post-
condition (output result) of a case of 𝑡 respectively. The
precondition contains only variables appearing in the labels
of incoming arcs and the post-condition contains variables
appearing in the labels of outgoing arcs;

(6) 𝛾: 𝐹 → 𝐿𝑎𝑏𝑒𝑙 associates each arc 𝑓 ∈ 𝐹 with a label in the
form of a simple variable 𝑥 or a set element {𝑥};

559

(7) 𝜇: 𝑃𝑐 → (×)
𝑛 associates each continuous component

of a continuous place with a pair of lower and upper bounds,
where 𝑛 is the number of continuous components;

(8) : 𝑃𝑐 → 𝑂𝐷𝐸
𝑛 associates each continuous component of a

continuous place an ordinary differential equation that
defines its evolution;

(9) 𝑀0: 𝑃 → 𝑇𝑜𝑘𝑒𝑛 is an initial marking and associates each
place 𝑝 ∈ 𝑃 with some valid tokens (respecting the type of
𝑝 and the bounds for continuous components). Each
continuous place can only hold at most one token.

The dynamic semantics of HPrTNs are defined based on the
markings (states) 𝑀:𝑃 → 𝑇𝑜𝑘𝑒𝑛. A transition 𝑡 ∈ 𝑇 is enabled
in marking 𝑀 if one of its precondition is true, Formally: ∀𝑝 ∈
𝑃. (𝜃(�̅�(𝑝, 𝑡)) 𝑀(𝑝) ∃𝑖. (𝜃(𝛽(𝑡). 𝑝𝑟𝑒𝑖))) , where 𝜃 is a

substitution that instantiates all the variables in relevant arcs and
constraint expression.

An enabled transition 𝑡 ∈ 𝑇 in marking 𝑀 with substitution
𝜃 can fire. The firing of transition 𝑡 results in a new marking 𝑀′
defined by ∀𝑝 ∈ 𝑃. (𝑀′(𝑝) = 𝑀(𝑝) ∪ 𝜃(�̅�(𝑡, 𝑝)) −

𝜃(�̅�(𝑝, 𝑡))) , which is denoted as: 𝑀
𝑡/𝜃
→ 𝑀′ . The firing of a

transition is instant and does not consume time. Two enabled
transitions are in conflict if the firing of one of them disables the
other. Non-conflict enabled transitions can fire concurrently.

Tokens in continuous places are continuously evolving
according to the differential equations governing the change
rates as long as their bounds are not violated. Given a marking
𝑀, we use [𝑀] to denote the state space covering all possible
continuous token evolution with the same token distribution.

Let 𝑇𝑖 be a set of concurrently enabled non-conflict
transitions with corresponding substitutions 𝜃𝑖 in marking [𝑀𝑖],
and [𝑀𝑖+1] be the resulting new marking after firing 𝑇𝑖 with 𝜃𝑖.
The behavior of the net 𝑁 consists of the set of all firing

sequences [𝑀0]
𝑇0/𝜃0
→ [𝑀1]⋯ [𝑀𝑖]

𝑇𝑖/𝜃𝑖
→ [𝑀𝑖+1]⋯. The set of all

reachable markings is denoted as [[𝑀0] >.

III. MODELING CPS WITH LECS USING HPRTNS

Our modeling methodology based on HPrTNs consists of
three steps: (1) modeling LECs using DNNs, (2) training LECs
though modeling environment and system dynamics using
reinforcement learning, and (3) modeling and integrating LECs
with other conventional system components within the HPrTN
paradigm. We briefly discuss our modeling methods in steps (1)
and (2) below.

DNNs have become a dominant deep learning approach in
recent years. A DNN has an architecture, which consists of an
input layer, multiple hidden layers and an output layer. Each
layer contains multiple neurons (each is represented by a circle)
that contain numerical values. The value of a neuron in layer 𝑙
is calculated through an activation function on the weighed input
from neurons in layer 𝑙 − 1 . Different types of DNN
architecture can be obtained based on how the adjacent layers
are connected, including feedforward (fully connected),
convolution, and recurrent. DNNs are trained using the output
results. A cost function defined on the output is used to calculate
the final error rate. By calculating and propagating the error rates

layer by layer backwards starting from the final error rate, we
can adjust the weights and biases based on the error rates.

 We have developed a novel HPrTN template to model a
DNN with backpropagation, where the architecture of the DNN
is modeled as follows:

(1) Each layer 𝑙 in DNN is modeled by a discrete place 𝑝𝑙 of
type × …×, where the cardinality determines the number
of neurons within the layer;

(2) Modeling neurons – each neuron is modeled by a token (or
a token component) of a real type, and the neurons within the
same layer is modeled by a structured token;

(3) Let 𝑙 and 𝑙 + 1 be two layers with cardinality 𝑚 and 𝑛
respectively, a discrete place 𝑤𝑙 of type (𝑚)𝑛 is used to
model the weight matrix between these two layers and a
discrete place 𝑏𝑙 of type 𝑛 is used to represent the bias vector;

(4) A transition 𝑡𝑙 with input places 𝑝𝑙 , 𝑤𝑙 , 𝑏𝑙, and output place
𝑝𝑙+1 is used to model activation function between these two

layers, the transition constraint ⋀ 𝑧𝑖 = 𝜎(𝑤
𝑖𝑥𝑇 + 𝑏𝑖)

𝑛
𝑖=1

defines the algebraic relationships between the activations (the
neurons) in these two layers, where each 𝑧𝑖 is a weighted input
to neuron 𝑖 in layer 𝑙 + 1;

(5) A transition 𝑐𝑜𝑠𝑡 is added with the constraint defining
initial error estimation. This transition has the place modeling
the final output layer as an input, and an output place for error
propagation;

(6) A place 𝑑𝑜𝑢𝑡𝑝𝑢𝑡 is added as an input to the 𝑐𝑜𝑠𝑡 transition,
a token specifying the desirable output 𝑦 resides in this place;

(7) A place 𝑒𝑙 abstracting backward error propagation is added
between layers 𝑙 and 𝑙 + 1;

(8) A transition 𝑔𝑙 is added between layers 𝑙 and 𝑙 + 1; this
transition produces the backward error and updates the weights
and biases of layer 𝑙 + 1.

Fig. 1 shows an HPrTN of two adjacent layers of a DNN
with backpropagation:

Reinforcement learning (RL) is a major machine learning
approach, which learns how to attain a complex objective (goal)
or how to maximize along a particular dimension over many
steps. An agent (controller) continuously interacts with an
environment (plant). The agent selects some action 𝑎 according
to a policy 𝜋 defined using a value function on an input state 𝑠
and reward 𝑟 or defined using a Q-value function on an input
pair of state 𝑠 and action 𝑎. The environment generates a new

560

state 𝑠′ and reward 𝑟′ according to the given action 𝑎. The goal
is to maximize cumulative rewards when a final state is reached.

Our method is based on neural fitted Q-learning process
[10], which builds an HPrTN model for a CPS with LECs and
uses the simulation capability of HPrTNs to train LECs modeled
as a DNN where a baseline controller or plant is used as the
learning environment. We have developed several HPrTN
templates to capture temporal difference methods in RL, which
support a variety of RL learning settings, including on / off line,
model based / model free, stationary / non-stationary, and
discrete / continuous.

To demonstrate the applicability of the method to model and

train a LEC, we have used the following car system adapted

from [1]: a car needs to move along a circular track as closely

as possible. The sensors (simulated) of the car can detect the

center of the track. The car’s position is defined by its

coordinates (x, y). The car has a direction 𝜃 and a speed v. The

car has three modes straight, left, and right and the dynamics in

each mode is as follows:

• Right: �̇� = (𝑣𝑐𝑜𝑠𝜃)/2, �̇� = (𝑣𝑠𝑖𝑛𝜃)/2, �̇� = −𝜋, 𝑑 ≥ 𝑒;

• Straight: �̇� = 𝑣𝑐𝑜𝑠𝜃, �̇� = 𝑣𝑠𝑖𝑛𝜃, �̇� = 0, −𝑒 ≤ 𝑑 ≤ 𝑒;

• Left: �̇� = (𝑣𝑐𝑜𝑠𝜃)/2, �̇� = (𝑣𝑠𝑖𝑛𝜃)/2, �̇� = 𝜋, 𝑑 ≤ −𝑒.

A parameter e is used to define the error margin [-e, e], and
the distance 𝑑 between the car’s current position and the center
of the track is calculated dynamically to control the switching
between modes. A baseline controller mimicking the
environment of the car and several advanced controllers (LECs)
using different DNN architectures and activation functions have
been tried. Fig. 2 shows a trained advanced controller (AC)
together with a baseline controller (BC) modeled using an
HPrTN developed in PIPE+ [14].

Training is done using HPrTN’s simulation capability. For
example, we have run six batches with randomly generated with

position (x, y), and direction . Each batch contains 1000
execution steps. The overall training involves firing 100,000
transitions and takes 31673 milliseconds on a PC with Intel(R)
Core(TM) i7-4770S CPU @ 3.10 GHz and 8 GB RAM running
Windows 10 OS.

IV. ANALYZING CPSS WITH LECS

Three techniques for analyzing CPSs with LECs are
explored, including simulation, barrier certificate, and SMT
based bounded model checking. Simulation is supported by the
operational semantics of HPrTNs, which can be used to train
LECs as well as test CPSs with LECs by selecting targeted or
random initial markings. Simulation results also provide the
basis for barrier certificate analysis. Simulation is easy to use,
scalable, and fully automatic. Simulation is supported by our
tool environment PIPE+. In the following sections, we describe
the barrier certificate and the bounded model checking
techniques.

A. Barrier Certificate Technique

Barrier certificate technique is based on symbolic
simulations for finding inductive invariants to prove the safety
requirements of a dynamic system. Since a CPS with LECs
modeled in an HPrTN is executable and produces simulation
traces, we can apply barrier certificate technique to analyze the
dynamics of the whole closed loop system.

A barrier certificate is a differentiable function B from the
set of states of the dynamical system to the set of real numbers
satisfying the following conditions:

(1) ∀𝑥 ∈ 𝑋0: 𝐵(𝑥) ≤ 0, where 𝑋0 is the set of possible initial
states,

(2) ∀𝑥 ∈ 𝑈: 𝐵(𝑥) > 0, where 𝑈 is the set of unsafe states,

(3) ∀𝑥: 𝐵(𝑥) = 0 ⇒ (𝐵)𝑇•𝑓(𝑥) < 0 , where (𝐵)𝑇 is the

transpose of gradient 𝐵 = (
𝐵

𝑥1
, … ,

𝐵

𝑥𝑛
) and 𝑓(𝑥) defines the

system dynamics.

Condition (3) ensures future system states are safe by

ensuring the separation the set of unsafe states from the set of

reachable states from the given initial states 𝑋0. Thus a barrier

certificate provides an unbounded-time safety certificate of the

system.

The key idea is to find a symbolic representation of a barrier

certificate from sample simulation traces. This analysis

technique was first used to analyze hybrid systems in [15], and

more recently applied to study CPSs with LECs [18]. We have

adapted the process in [18] to find candidate barrier certificates

using optimization system Pyomo [9] with linear solver Gurobi

and to validate a barrier certificate using SMT solver Z3.

First, a candidate barrier certificate W (similar to find a
Lyapunov candidate in stability analysis is found using a typical
template (sum of squares polynomials): 𝑊(𝑥) = 𝑥𝑇𝑃𝑥, where

𝑃 ∈ 𝑚×𝑚 is symmetric. The key is to find the values of 𝑃
using linear constraints: 𝑊(𝑥[𝑡𝑖]) > 0 and 𝑊(𝑥[𝑡𝑖]) −
𝑊(𝑥[𝑡𝑖+1]) > 0, where 𝑥[𝑡𝑖] (0 ≤ 𝑖 ≤ 𝑁) is a simulation trace
of the closed loop (including both plant and DNN controller)
system dynamics 𝑓. The above linear constraints correspond to
the negations of conditions (1) and (3) in barrier certificate. W
is a positive function and decreases along system trajectories.
Then, a level 𝑙 is found such that 𝐵(𝑥) = 𝑊(𝑥) − 𝑙, where 𝑙 is
a non-negative real number that separates 𝑋0 from 𝑈 . The
overall process in [18] is shown in Fig. 3.

Fig.2. An HPrTN representing a CPS with a LEC

561

In the above process:

• Equation (3.1): ∀𝑥 ∈ 𝐷. (𝑥𝑋0 (𝑊)𝑇•𝑓(𝑥) ≥ −𝛾)
• Equation (3.2): ∃𝑥 ∈ 𝑋0. (𝑥𝑥|𝑊(𝑥) − 𝑙 ≤ 0})
• Equation (3.3): ∃𝑥 ∈ {𝑥|𝑊(𝑥) − 𝑙 ≤ 0 }. (𝑥 ∈ 𝑈)

Equations (3.2) and (3.3) define the opposite of separation,
i.e. unsafe.

The barrier certificate technique is applied to the car
system presented in a previous section. Eight simulation traces
(200 steps) of the LEC automated vehicle are run and collected

around the region x: [-1,1], y: [49, 51], and : [-5, 5]. Python is
used to process the raw simulation data into 10 steps of data of

system error dynamics (distance error: √𝑥2 + 𝑦2-50, where 50

is the radius of the circular track, and angular error: 0). The sum
of squares polynomials template is used to fit the simulation
data, and the resulting equations are solved using optimization
system Pyomo [9] with solvers glpk and Gurobi. Among the 8
sets of equations, four are successfully solved while the other
four have no solutions.

One of the candidate barrier certificate is 𝑊(𝑑, 𝜃) =

0.776 ∗ 𝑑2 + 0.2 ∗ 𝜃 ∗ 𝑑 + 0.013𝜃2 , where 𝑑 = √𝑥2 + 𝑦2 −

50 and 𝑊 = (
𝑊

𝑑
,
𝑊

𝜃
) = (1.552 ∗ 𝑑 + 0.2 ∗ 𝜃, 0.2 ∗ 𝑑 +

0.026 ∗ 𝜃). The error dynamics is 𝑓 = [�̇�, �̇�]: �̇� = (𝑥 ∗ �̇� + 𝑦 ∗

�̇�)/√𝑥2 + 𝑦2 = (𝑥 ∗ sin (𝜃) + 𝑦 ∗ cos (𝜃))/√𝑥2 + 𝑦2 , and

Equation (3.1) is ∀𝑥 ∈ 𝐷. (𝑥𝑋0 (𝑊)𝑇•𝑓(𝑥) ≥ −𝛾) ,
where 𝛾 = 0.0001 , which is formulated as a constraint
satisfaction problem using Pyomo and solved using Z3. Z3
confirms 𝑊(𝑑, 𝜃) as a valid barrier certificate candidate. Z3 is
then applied to check Equation (3.2) in finding level 𝑙 = 60,
and thus the barrier certificate 𝐵(𝑥, 𝑦, 𝜃) = 𝑊(𝑥, 𝑦, 𝜃) − 60.
Finally, Z3 is used to check Equation (3.3) to ensure the safety
region, where unsafe region is defined by half spaces: 𝑥 ≤ −5,
𝑥 ≥ 5, y ≤ 48, 𝑥 ≥ 52.

B. Bounded Model Checking Technique

Bounded model checking was first developed to analyze
safety properties of discrete systems [3]. In bounded model
checking, the following logic formula

𝑘
 is constructed from a

given system model and property:
𝑘
=

𝐼(𝑠0)⋀ 𝑇(𝑠𝑖 , 𝑠𝑖+1)
𝑘−1
𝑖=0 ⋁ 𝑓(𝑠𝑖)

𝑘
𝑖=0 , where 𝐼(𝑠0) is the

characteristic function of the initial state 𝑠0 , 𝑇(𝑠𝑖 , 𝑠𝑖+1) is the
characteristic function of the transition relation, and 𝑓(𝑠𝑖)
represents the negated safety property in unrolled state 𝑠𝑖 (0 ≤
𝑖 ≤ 𝑘). If

𝑘
 is satisfiable, there is a transition sequence or a

trace from the initial state 𝑠0 to a state 𝑠𝑖 that satisfies f, thus
violates the safety property. An SMT solver is used to check

𝑘
.

Bounded model checking can be used to find violation of a
safety property through a counter example, and can ensure a
safety property up to 𝑘 steps.

Bounded model checking techniques have been generalized
to analyze hybrid systems with limited successes in the past
decade ([2], [4], [5], [13]) and thus can be applied to analyze
CPSs. However formal analysis techniques for LECs modeled
using DNNs barely exist, a few existing works ([8], [12], [16])
can only handle simple activation functions such as ReLU.

A recent work [11] shows promise to formally analyze CPSs
with LECs, in which the LEC modeled in DNN is transformed
into a hybrid automaton, and then the overall system is analyzed
by composing the LEC generated hybrid automaton with the
hybrid automaton modeling the rest of the system. The overall
closed loop system model in [11] is shown in Fig. 4.

 The plant dynamics is defined by �̇� = 𝑓𝑝(𝑥, 𝑢) and 𝑦 =
𝑔(𝑥), where 𝑥 ∈ 𝑛 is system state, and 𝑢 ∈ 𝑚 is the input,
𝑓𝑝 is a locally Lipschitz-continuous vector field, 𝑔:𝑛→ 𝑞 .

The DNN controller is defined by 𝑢 = ℎ(𝑦) , where
ℎ:𝑞→ 𝑚 . The closed loop system dynamics: �̇� =
𝑓𝑝(𝑥, ℎ(𝑔(𝑥))).

 The DNN is transformed into a hybrid automaton as follows:
ℎ(𝑦) = ℎ𝐿°ℎ𝐿−1°… °ℎ1(y), where each hidden layer 𝑖 has an
element-wise sigmoid activation function ℎ𝑖(𝑦) = 1/(1 +
𝑒−(𝑊𝑖𝑦+𝑏𝑖)), with the last layer being a linear function: ℎ𝐿(𝑦) =
𝑊𝐿𝑦 + 𝑏𝐿 . The derivative of sigmoid function 𝜎(𝑦) = 1/(1 +

𝑒−𝑦) is
𝑑𝜎

𝑑𝑦
= 𝜎(𝑦)(1 − 𝜎(𝑦)) . The timed proxy function

𝜎(𝑡, 𝑦) = 1/(1 + 𝑒−𝑡𝑦) is used to define evolution with

derivative: �̇�(𝑡, 𝑦) =
𝜎

𝑡
= 𝑦𝜎(𝑡, 𝑦)(1 − 𝜎(𝑡, 𝑦)). The resulting

hybrid automaton has one mode for each DNN layer. A set of
continuous variables (each corresponding to a neuron) is
introduced. The flow of continuous variable 𝑦𝑗 in each mode 𝑖

Fig.3. The process of finding barrier certificate

Fig.4. The closed loop system of a controller with plant

562

is defined by proxy function 𝜎𝑖𝑗(𝑡, 𝑦) from 𝑡 = 0.5 to 1 defined

using differential equation 𝜎𝑖𝑗̇ (𝑡, 𝑦). Another set of continuous

variables are used to keep track the linear functions (weighted
sums) of each neuron and have constant change rates 0. Discrete
jumps between modes happen when 𝑡 = 1. The overall closed
loop system model (composition) is 𝑆 = ℎ ||𝐻𝑝, where 𝐻𝑝 is the

plant automaton with dynamics 𝑓𝑝(𝑥, 𝑢) . The reachability

property on plant with initial state 𝑋0 is defined by (𝑋0) ⇒
𝑓(𝑥(𝑡)), for 𝑡 ≥ 0.

 A bounded model checking technique has been developed
for CPSs with LECs in this research. The approach in [11] is
adapted to translate the component of an HPrTN representing a
LEC into a hybrid automaton. The translation of the rest part of
HPrTN to a hybrid automaton is straightforward based on the
relationships between HPrTNs and hybrid automata given in [6].
Bounded model checker dReach [13] with dReal [5] for non-
linear hybrid automata are used to check the resulting composed
hybrid automaton.

 The bounded model checking technique is applied to the car
system presented in a previous section. The Plant (Car) 𝐻𝑝 has

3 continuous variables – location x and y and direction angle ,
and three modes – forward, left, and right. The controller (DNN)
ℎ has three layers with one hidden layer containing sigmoid
activation function. The overall closed loop system model 𝑆 =
ℎ ||𝐻𝑝 contains 6 modes (after reduction), and twelve

continuous variables (including time). The reachability property
to check (the car off the center of circular track of radius 50 by
5) is 𝑠𝑞𝑟𝑡(𝑥2 + 𝑦2) − 50 > 5 𝑠𝑞𝑟𝑡(𝑥2 + 𝑦2) − 50 < −5 .
The model checking results are shown Table I below:

V. CONCLUDING REMARKS

HPrTNs are well suited for modeling CPSs with LECs due to
(1) their capability to capture concurrency and hybrid behaviors
in typical CPSs, (2) their graphical representation and
executability to naturally fit the machine learning techniques
based DNNs and RL, and (3) their distributed and concurrent
data flow computational model to easily integrate different
system components. This paper contributes a unique analysis
methodology to analyze CPSs with LECs modeled using
HPrTNs. Although both barrier certificate and bounded model
checking techniques have been around for decades, their
applications to deal with LECs only happened in recent years.
Integrating both analysis techniques within the same framework
with unique tool support is a new contribution of this work.

More case studies will be carried out to show the
effectiveness and scalability of this analysis methodology.
Additional research will be done to develop new techniques to

analyze the robustness of DNNs and the overall stability and
safety of CPSs with LECs built using neural fitted RL.

ACKNOWLEDGMENT

This work was partially supported by AFRL under FA8750-15-2-0106

and FA9550-15-0001. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon.

REFERENCES

[1] R. Alur: “Principles of Cyber-Physical Systems”, The MIT Press, 2015.

[2] K. Bae and S. Gao: “Modular SMT-based analysis of nonlinear hybrid
systems,” 2017 Formal Methods in Computer Aided Design (FMCAD),
Vienna, 2017, pp. 180-187.

[3] E. Clarke, A. Biere, R. Raimi, Y. Zhu: “Bounded model checking using
satisfiability solving”. Formal Methods in System Design 19(1), 7–34
(2001).

[4] A. Cimatti, S. Mover, and S. Tonetta: “SMT-based verification of hybrid
systems”. In Proc. AAAI, 2012.

[5] S. Gao, S. Kong, and E. M. Clarke: “dReal: An SMT solver for nonlinear
theories over the reals”. In CADE, volume 7898 of LNCS, pages 208–
214. Springer, 2013.

[6] X. He and D. Alam: “Hybrid Predicate Transition Nets - A Formal Method
for Modeling and Analyzing Cyber-Physical Systems”, Proc. of The 2019
IEEE International Conference on Software Quality, Reliability &
Security (QRS’19), Sofia, Bulgaria, 2019, 216-227.

[7] X. He: “Modeling and Analyzing Cyber Physical Systems with Learning
Enabled Components using Hybrid Predicate Transition Nets”, Proc. of
2021 IEEE 21th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), Hainan, China, 2021.

[8] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu: “Safety verification of
deep neural networks”, In International Conference on Computer Aided
Verification, 2017, Springer, 3–29.

[9] W. E. Hart, C. D. Laird, J. Watson, D. L. Woodruff, G. A. Hackebeil, B. L.
Nicholson, J. D. Siirola: “Pyomo – Optimization Modeling in Python”,
Springer, 2017.

[10] R. Hafner, M. Riedmiller: “Reinforcement learning in feedback control –
Challenges and benchmarks from technical process control”, Mach Learn
(2011) 84:137–169.

[11] R. Ivanov, J. Weimer, R. Alur, G. J Pappas, and I. Lee: “Verisig: verifying
safety properties of hybrid systems with neural network controllers” In
Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC’19), 2019, 169–178.

[12] G. Katz, C. Barrett, D. L Dill, K. Julian, and M. J Kochenderfer: “Reluplex:
An efficient SMT solver for verifying deep neural networks”, In
International Conference on Computer Aided Verification. Springer,
2017, 97–117.

[13] S. Kong, S. Gao, W. Chen, and E. M. Clarke: “dReach: -reachability
analysis for hybrid systems”. In TACAS, volume 9035 of LNCS.
Springer, 2015.

[14] S. Liu, R. Zeng, X. He: “PIPE+ - A Modeling Tool for High Level Petri
Nets”, Proc. of International Conference on Software Engineering and
Knowledge Engineering (SEKE11), Miami, July 2011, 115 - 121.

[15] S. Prajna and A. Jadbabaie: “Safety Verification of Hybrid Systems Using
Barrier Certificates”. In In Hybrid Systems: Computation and Control.
Springer, 477–492, 2004.

[16] L. Pulina and A. Tacchella: “An Abstraction-Refinement Approach to
Verification of Artificial Neural Networks”. In Proc. 22nd Int. Conf. on
Computer Aided Verification (CAV), pages 243-257, 2010.

[17] R. S. Sutton, and A. G. Barto: “Reinforcement Learning: An Introduction”,
(2nd edition), Cambridge, MA: MIT Press, 2018.

[18] C. Tuncali, J. Kapinski, H. Ito, J. Deshmukh: “Reasoning about Safety of
Learning-Enabled Components in Autonomous Cyber-physical
Systems”. Design Automation Conference (DAC) 2018.

Table I Bounded model checking results

563

Problem-specific knowledge based artificial bee
colony algorithm for the rectangle layout
optimization problem in satellite design

Yichun Xu1,2,Shuzhen Wan2,Fangmin Dong2

1Hubei Province Engineering Technology Research Center for Construction Quality Testing Equipments
2College of Computer and Information Technology

China Three Gorges University, Yichang 443002, Hubei, China
xuyichun@ctgu.edu.cn, wanshuzhen@163.com, fmdong@ctgu.edu.cn

Abstract—The layout optimization problem is brought from
the design of the recoverable satellite, where a set of objects
(equipments or devices) are required to be installed on a circular
load board. The aim of the problem is to find a layout of
the objects with no interference, less unbalance, and less space
occupied. Artificial bee colony (ABC) algorithms show good
performance in many engineering problems. In this article,
based on the analysis of the solution distribution, a problem-
specific knowledge based ABC is proposed, which is configured
with special initialization and parameter settings. On an open
benchmark with ten instances, the proposed ABC is compared
with two widely used algorithms. Its performance outperforms
the genetic algorithm on all the instances, and outperforms the
quasi-human algorithm on nine instances.

Keywords—swarm intelligence; artificial bee colony algorithm;
layout optimization problem; weighted rectangle packing

I. INTRODUCTION

In the design of the recoverable satellite, some objects
(devices or equipments) are required to be installed on a
circular load board (Fig. 1). Three kinds of constrains or
objectives should be concerned: 1. There should be no inter-
ference between objects. 2. The layout of the objects should
be compact so that they occupy less space. 3. The unbalance
of the system should be small enough, so the system is easy to
control. In this article, we study the two-dimensional problem
that the shapes of the objects are modeled as rectangles, which
is called the rectangle layout optimization problem (RLOP).

RLOP was first proposed in [1], where the authors studied
the isomorphism of the layouts by graph theory and group
theory, and then proposed a global optimization framework.
From then on, some meta-heuristics were proposed for this
problem, such as the genetic algorithms (GA)[2], the particle
swarm optimization (PSO) [3, 4], the simulated annealing
algorithm (SA) [5], and the ant colony optimization (ACO)
[6]. Another class of algorithms are based on the quasi-physics
and quasi-human strategies [7], that an elastic potential energy
function is defined to measure the overlaps between objects,
and then the overlaps are reduced by the elastic force step by
step. Recently, [8] proposed a three-dimensional model, that

DOI reference number: 10.18293/SEKE2022-014

(a) 3D model (b) 2D model

Fig. 1: Installing equipments on the load board of a recoverable
satellite

the items have height and there are multiple layers to install
the items. Except for assigning a layer for each item, their
layout optimization algorithm is basically an application of the
algorithm for two-dimensional models. In general, the existing
algorithms are with good results on the small-scale RLOP.
With the increase of the rectangle numbers, they become time
consuming and the solutions decline in quality.

This article aims at designing a new algorithm for RLOP
with the help of some “guiders”. The main idea is based
on the observation that in a good layout, the bigger and the
heavier objects often locate at the center of load board. This
observation leads us to design a new greedy strategy. We
then combine the greedy strategy into an artificial bee colony
(ABC) framework. The artificial bee colony (ABC) algorithm
is a kind of nature-inspired optimizer in swarm intelligence
proposed by Karaboga [9]. Because ABC algorithm needs
fewer parameters and the performance is often good, it is very
popular in most engineering fields [10].

On an open benchmark with ten instances, the performance
of the proposed ABC outperforms the widely used genetic
algorithm [2] and the quasi-human algorithm [7].

II. MATHEMATICAL MODEL

In two-dimensional case, we need to pack a set of rectangles
with masses into a containing circle as Fig. 1(b). For the
constraints, the rectangles cannot overlap each other, and the
center of mass of the system should be near the center of
the containing circle to keep the equilibrium. The aim of the

564

problem is to minimize the envelopment circle which covers
all the rectangles. The problem can also be stated as follows.

Define n rectangles by a list R = (l1, w1,m1), (l2, w2,m2),
. . . , (ln, wn,mn), where li, wi, and mi are the length, the
width, and mass of rectangle i. Assume the center of mass
and shape is located at the same point in each rectangle. In
a two-dimensional Cartesian coordinate system, we set the
Cartesian origin to the center of the containing circle. The
list X = (x1, y1, θ1), (x2, y2, θ2), . . . , (xn, yn, θn) denotes a
layout, where xi, yi is the center of the rectangle i, and θi
denotes its orientation. The aim of the problem is to find a
layout X to satisfy the following constraints:

1) θi ∈ {0, 1}, where θi=0 or 1 mean that the edge with
length li is parallel or perpendicular to the x axis, then
the items are placed orthogonal to each other.

2) There is no overlap between any two rectangles, that is,
for all i 6= j, at least one of the following conditions
should be satisfied:

xi + l′i/2 ≤ xj − l′j/2 (1)
xi − l′i/2 ≥ xj + l′j/2 (2)
yi + w′i/2 ≤ yj − w′j/2 (3)
yi − w′i/2 ≥ yj + w′j/2 (4)

where l′i and w′i are related to the length and width after
considering the orientation θi, which satisfy

l′i = li(1− θi) + wiθi (5)
w′i = wi(1− θi) + wiθi (6)

3) The center of mass of all rectangles should be located
at the center of the circle for equilibrium, that is, given
a small positive permissible value of δ

(xw, yw) = (

∑i=n
i=1 mixi∑i=n
i=1 mi

,

∑i=n
i=1 miyi∑i=n
i=1 mi

) (7)√
x2w + y2w ≤ δ (8)

such that the radius r of the envelopment circle is minimized,
where

r = max
1≤i≤n

(√
(|xi|+ l′i/2)

2 + (|yi|+ w′i/2)
2

)
. (9)

III. ABC ALGORITHM

Before introducing the design of ABC for RLOP, we first
give out a constructive heuristic to compose a layout, which
is an important building block.

A. Constructive kernel heuristic (CKH)

The ABC algorithm is based on a constructive heuristic first
appeared in [2]. At first, all the rectangles are waited in a
queue, and the first rectangle is packed in the center of the
circle. When packing a rectangle, for the goal of minimizing
envelopment radius, we require it close to an already packed
rectangle. As in Fig. 2(a), an already packed rectangle i
provides 8 regions along its edges and vertices. A rectangle
j to be packed should choose a region with an orientation

�

✁

✂

✄

☎

✆

✝ ✞

✟

(a) regions

�

✁

�

✁

(b) placement

Fig. 2: The regions provided by a rectangle(a) and the place-
ment of a rectangle in a region with different orientation(b)

(Fig. 2(b)), so there are totally 16 schemes to place j beside
i. After deletion of the schemes with overlap, there are still
many feasible schemes besides all the packed rectangles, and
the algorithm will select one by a greedy strategy–the region
leads to the minimal temporary envelopment circle will be
chosen.

B. Inversion count and distribution of the solutions

The application of CKH in this article is different from
[2]. In the CKH, the output layout X is dependent on the
permutation p. Because there are n! permutations in total, the
blind search such as [2] has very low efficiency. According
to the computational practice, we find that the bigger and
heavier objects should be placed first, which means a greedy
permutation ggg in the descending order of liwimi can lead to
a good layout. This finding relates the concept of inversion
count to the goodness of a permutation.

For a permutation p, an inversion exists between the items
pi and pj , if lpi

wpi
mpi

< lpj
wpj

mpj
and i < j. According

to the number theory, the inversion count of a permutation
ranges from 0 to n(n−1)

2 , and the greedy permutation g has a
inversion count of 0.

By the computational experiences, a permutation with small
inversion count often results in a better layout. On a randomly
chosen RLOP instance with 10 rectangles (larger instance
is in similar situation), we enumerate all the permutations
and get the corresponding layouts and their envelopment
radii by CKH. The minimal radii from the permutations with
same inversion count are plotted in Fig. 3(a). The number
of permutations with the same inversion count are illustrated
in the histogram Fig. 3(b). We found that the permutations
with inversion count less than 10 are obvious have better
results, Moreover, the number of such types of permutations
is relatively small that it is easy to search them.

C. ABC algorithm based on inversion count

ABC algorithm is a meta-heuristic based on the foraging
behavior of honey bees. There are three kinds of bees in
a colony. The employed bees work on a food source and
share the information with the onlooker bees by dancing. The
onlooker bees select a food source after watching the dance
and try to improve it. When the food source is exhausted, the

565

(a) minimal radius (b) histogram

Fig. 3: The distribution of the solutions

related employed bee becomes a scout bee, who tries to find a
new resource. The ABC algorithm for the RLOP is described
in algorithm 1.

Algorithm 1 ABC algorithm

1: Initialize the first generation s1, s2, . . . , sn by the greedy
strategy

2: for generation = 2 to G do
3: for i=1 to n do {Employed phase}
4: si:=best of (si, INSERT(si))
5: end for
6: for i=1 to n do {Onlooker phase}
7: Randomly select a sk with probability of P (sk)
8: sk:=best of (sk, INSERT(sk))
9: end for

10: for i=1 to n do {Scout phase}
11: if si is not improved for T generations then
12: Restore si from the first generation
13: end if
14: end for
15: end for
16: return the best solution

1) Individual and fitness function: The individual solution
si is a permutation p, which can be evaluated by the fitness
function as (10), where r(si) is the envelopment radius result
of CKH.

f(si) =
1

r(si)
(10)

2) first generation: The first generation defines the start
points of the search. Based on the analysis in section III-B, we
should focus on the permutations with small inversion count.
We initial the fist generation with the greedy permutation g and
other n− 1 permutations generated by swapping the adjacent
elements of g. The inversion count of the first generation is
less than or equal to 1.

3) Mutation operator : In the employed phase, we choose
the INSERT mutation operator like the genetic algorithm [11].
In a permutation p, after a block of pi, pi+1, . . . , pi+k−1
is chosen, the INSERT operator moves pi+k−1 before pi.
The mutation operator can change the inversion count of the
permutation. Moreover, the larger the block size k, the more

Fig. 4: Results on different initialization

the inversion count is changed. So the block size k should
have an upper bound.

4) Selection probability: The selection probability for an
individual in the onlooker phase is proportional to its fitness
value, which is defined as (11)

P (si) =
f(si)∑n
i=1 f(si)

(11)

IV. COMPUTATIONAL RESULTS

The numerical experiments were on a Dell OptiPlex 7080
Tower, with a 3.10 GHz Intel i5-10500 CPU,16 GB RAM,
Win10 OS. And the programs were compiled by Dev C++
5.9.2. By the experiences, the block size of INSERT is set to
5, and the initialization interval T in the scout phase is set to
10.

A. Experiment 1: Comparison of greedy initialization and
random initialization

This experiment is to compare the greedy initialization and
the popular random initialization in ABC. 30 instances with
20 rectangles for each were randomly generated that wi, li
are in range of [1,200] and mi is near wili for each rectangle
i. In the experiment, the average radii of the 30 instances
were recorded in each generation. The convergence curves
are provided in Fig. 4. The results show that the greedy
initialization is more advantage than the random initialization.
Even after 100 generations of search, the average radii with
random initialization is still worse than the start point of
the greedy initialization. The ABC algorithm with random
initialization wastes too much search energy in the subspace
of permutation with larger inversion count.

B. Experiment 2: Numerical computation on an open bench-
mark with large-scale instances

In this experiment, we ran the ABC algorithm on a bench-
mark provided in [7], that there are 10 test instances R1, R2,
. . . , R10, and the numbers of rectangles are 10, 20, . . . , 100
respectively. Two algorithms in the literatures were selected
as the baselines, which are the quasi-human algorithm (IBF)
in [7] and the genetic algorithm (GA) in [2].

566

TABLE I: Results on 10 instances

inst rtarget GA IBF ABC

Fail time(s) Fail time(s) Fail time(s)
R1 36.90 5 / 0 113.79 5 /
R2 65.30 5 / 4 746.96 0 378.16
R3 56.05 5 / 5 / 0 530.71
R4 75.30 5 / 5 / 0 50.48
R5 91.55 5 / 5 / 1 317.02
R6 101.79 5 / 5 / 0 88.18
R7 102.89 5 / 5 / 0 128.74
R8 109.09 5 / 5 / 0 407.82
R9 115.32 5 / 5 / 0 1628.23

R10 124.10 5 / 5 / 1 881.53

IBF uses the container radius as an input and its objective
is to find a layout smaller than the given radius. To make a
fair comparison with IBF, we defined a target container radius
(rtarget) for each instance, and then used the time of finding a
valid layout as the metric of performance. We set the stopping
criterion of all the three algorithm as obtaining a layout with
envelopment radius less than the target, or execution time
exceeding an hour. The other parameters of the baselines were
set as the literatures. In the ABC, the number of individual n
was set to the number of rectangles in each instance. The three
algorithms were executed on each instance for 5 times. If an
execution did not output a layout in an hour, we marked it
as one ‘failure’. Excluding the failed executions, we provide
the average time of the rest executions on each instance. The
results are listed in Table I and we give the layout diagram of
the instance R10 by ABC in Fig. 5.

From the detailed data in Table I, GA fails in all the tests
and shows the worst performance among the three algorithms.
The reason why GA loses is that it tries to search the whole
solution space and wastes much energy on the space with poor
solutions, while the proposed ABC makes the search around
the greedy solution, many good results are in this subspace.

IBF only passes the first 2 smaller instances, that it gets
best results in R1, and gets a layout for R2 after 4 failures.
It fails all the tests on the last 8 instances. But on the other
side, ABC gets the best results in the rest 9 instances except
R1, and passes 43 tests among the total 45 tests. The only
two failures in tests of instance 5 and 10 should be because
we set harder targets. ABC’s failures in R1 is because of the
shortcoming of CKH. It places the objects at certain positions,
which restricts the pattern of the solution, so it may miss the
optimal layout of smaller instances.

V. CONCLUSION

A problem-specific knowledge based artificial bee colony
(ABC) algorithm for the layout optimization problem in the
satellite design is presented in this article. After the investigate
of the distribution of the solutions, the ABC algorithm is
designed to search the most likely subspace containing high
quality solutions, so that it can easily find a good solution in
short time. On an open benchmark with 10 instances, ABC
algorithm is compared with two widely used algorithms. It

(a) R10

Fig. 5: Layout diagram of ABC on R10

outperforms the genetic algorithm on all the instances, and
outperforms the quasi-human algorithm on nine of them. The
proposed ABC algorithm may have great practical value to find
the rational layout of the objects in the aerospace industry.

REFERENCES

[1] E. Feng, X. Wang, X. Wang, and H. Teng, “A global optimization
agorithm for layout problems with behavior constraints,” Applied Math-
ematics, A Journal of Chinese Universities, vol. 14, no. 1, pp. 98–104,
1999.

[2] Y. Xu, F. Dong, Y. Liu, and R. Xiao, “Genetic algorithm for rectangle
layout optimization with equilibrium constraints,” Pattern Recognition
and Artificial Intelligence, vol. 23, no. 6, pp. 794–801, 2010.

[3] Y.-C. Xu, R.-B. Xiao, and M. Amos, “Particle swarm algorithm for
weighted rectangle placement,” in the 3rd Int’l Conf. on Natural Com-
putation, pp. 728–732, 2007.

[4] Z. Huang and R. Xiao, “Hybrid algorithm for the rectangular packing
problem with constraints of equilibrium,” Journal of Huazhong Univer-
sity of Science and Technology (Natural Science Edition), vol. 9, no. 3,
pp. 96–99, 2011.

[5] Y.-C. Xu, R.-B. Xiao, and M. Amos, “Simulated annealing for weighted
polygon packing.” https://arxiv.org/abs/0809.5005, 2008.

[6] M. Ji and R. Xiao, “Ant colony optimization and heuristic algorithms
for rectangle layout optimization problem with equilibrium constraints,”
Journal of Computer Applications, vol. 30, no. 11, pp. 2898–2901, 2010.

[7] J. Liu, J. Li, Z. Lv, and Y. Xue, “A quasi-human strategy-based improved
basin filling algorithm for the orthogonal rectangular packing problem
with mass balance constraint,” Computers and Industrial Engineering,
vol. 107, pp. 196–210, 2017.

[8] C.-Q. Zhong, Z.-Z. Xu, and H.-F. Teng, “Multi-module satellite com-
ponent assignment and layout optimization,” Applied Soft Computing,
vol. 75, pp. 148–161, 2019.

[9] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Tech. Rep. tr062005, Erciyes University, Engineering
Faculty, Computer Engineering Department, 2005.

[10] B. Akay, D. Karaboga, B. Gorkemli, and E. Kaya, “A survey on the
artificial bee colony algorithm variants for binary, integer and mixed
integer programming problems,” Applied Soft Computing, vol. 106,
no. 3, p. 107351, 2021.

[11] M. Serpell and J. Smith, “Self-adaptation of mutation operator and
probability for permutation representations in genetic algorithms,” Evo-
lutionary Computation, 2010.

567

Modeling and Verifying AUPS Using CSP
Hongqin Zhang, Huibiao Zhu∗, Jiaqi Yin, Ningning Chen

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

Abstract—The Internet of Things (IoT) is an important tech-
nology in IT industries. The wide adoption of IoT raises concerns
about security and privacy. The Authenticated Publish/Subscribe
(AUPS) model is an IoT system which aims to address the security
and privacy issues in the IoT environment. AUPS is attracting
more and more attention from industries. Hence, the reliability
of AUPS is worth investigating.

In this paper, we model AUPS using Communicating Sequen-
tial Processes (CSP). Five properties (Deadlock Freedom, Data
Availability, Data Leakage, Device Faking and User Privacy
Leakage) of the model are verified by utilizing the model
checker Process Analysis Toolkit (PAT). The verification results
demonstrate that AUPS cannot ensure the security of critical
data. To solve the problem, we improve the model by using a
digital certificate. The verification results of the improved model
indicate that our study can enhance the security and reliability
of the AUPS model.

Index Terms—AUPS, CSP, PAT, Modeling, Verifying

I. INTRODUCTION

As an important paradigm in IT industries, the Internet
of Things (IoT) connects heterogeneous devices to provide
users with required services [1]. Communication efficiency,
data security and user privacy are the three major issues of
IoT [2]. In order to cope with these issues, several solutions
have been proposed [3]–[5]. Shi et al. came up with an
IoT system [3] which used a machine learning method to
improve the efficiency of data processing. Jung et al. proposed
a distributed IoT scheme where two or more servers created a
group and a client viewed the group as a powerful server [4].
This scheme reduced network latency. However, it cannot
protect user privacy. Shang et al. presented a publish/subscribe
IoT framework [5]. It adopted data authentication to improve
the communication security without considering user privacy
issues. These solutions improved communication efficiency.
However, they did not fully explore security and privacy issues.

Thus, a publish/subscribe IoT system called Authenticated
Publish/Subscribe (AUPS) [6] was proposed. AUPS adopted
Attribute-based Access Control (ABAC) [7] to improve the
security and privacy of the system. ABAC controls access
to data by evaluating rules against the attributes of users.
According to the experimental results [6], AUPS was more
efficient than the other existing secure solutions. As AUPS
is attracting more and more attention from industries, we
believe that it is valuable to analyse the functional and security
properties of AUPS using formal methods.

In this paper, AUPS is formally modeled using the process
algebra CSP [8]. The model checking tool PAT [9] is adopted

∗Corresponding author: hbzhu@sei.ecnu.edu.cn (H. Zhu).

to verify its functional and security properties. According to
the verification results, AUPS may cause data leakage, device
faking and user privacy leakage once intruders appear. Thus,
we improve the model by using a digital certificate. Then we
verify the improved model using PAT. The verification results
show that our work can guarantee the security of AUPS.

The rest of this paper is organized as follows. Section
II briefly introduces AUPS and CSP. Section III is devoted
to the modeling of AUPS. In Section IV, we analyse the
verification results and give the improvement that can address
the vulnerabilities of the model. Finally, conclusion and future
work are given in Section V.

II. BACKGROUND

In this section, we give a brief description of AUPS. After
that, we introduce the process algebra CSP.

A. AUPS

As shown in Fig. 1, the Authenticated Publish/Subscribe
(AUPS) contains the following entities:

Fig. 1: AUPS schema

• Device: It collects data from the environment and sends
them to the Networked Smart Object (NOS).

• Networked Smart Object (NOS): The NOS deals with
the collected data and publishes them to the broker.

• User: The user subscribes to services to get the required
data by interacting with the broker.

• Broker: It handles the subscription requests from users,
and then forwards data to the legal subscribers.

• Enforcement Framework (EF): The EF is a policy
enforcement framework. It performs access control and
manages the data encryption/decryption keys using a key
table. The structure of key table is shown in TABLE I.

• Keys Topics Manager (KTM): It generates the data
encryption/decryption keys according to the services.

The core functions of AUPS are data publishing and service
subscription. Data publishing represents that the devices pub-
lish collected data to the Internet. Service subscription means

DOI reference number: 10.18293/SEKE2022-088
568

TABLE I: Key table
Field Description
id The identifier of the corresponding key
key The actual key
val The expiration date of the key
atb The attribute(s) owned by users allowed to get the data

that users subscribe to services to obtain the required data.
We introduce the actions of the two functions as follows. The
related notations and descriptions are listed in TABLE II.

TABLE II: Notations and descriptions
Notation Description

pukx/prkx/skx
Public/Private/Symmetric key of the user/device/
broker/NOS/intruder, x ∈ {u, d, b, n, i}

idx/sidx
Identity information/Session identifier of the user/
device, x ∈ {u, d}

Before publishing data, the device must finish device regis-
tration. The related actions are shown in Fig. 2.
• a1: A device sends a registration request reqd to the NOS.
• a2: When receiving the request, the NOS sends its public

key pukn to the device.
• a3: The device sends its identity information idd and

symmetric key skd encrypted with pukn to the NOS.
• a4: The NOS decrypts the message to get idd and skd

using its private key prkn, and then distributes a session
identifier sidd encrypted with skd to the device.

• a5: The device sends the collected data d and session
identifier sidd encrypted with skd to the NOS.

• a6: The NOS decrypts the message to get the data d using
skd, and then asks the EF for a data encryption key.

• a7: The EF sends a key kT to the NOS. After that, the
NOS can publish data encrypted with kT to the broker.

Before getting data, the user needs to register and subscribe
to relevant services. The related actions are given in Fig. 3.
• b1: A user sends a registration request requ to the broker.
• b2: The broker sends its public key pukb to the user.
• b3: The user sends its private information idu and sym-

metric key sku encrypted with pukb to the broker.
• b4: The broker decrypts the message to get idu and sku

using prkb, and then sends the session identifier sidu and
attribute at to the user. Notice that sidu is used to identify
the user without revealing its sensitive information.

• b5: The user sends a subscription request reqT encrypted
with sku to the broker.

• b6: The broker verifies the identity of the user, and then
sends an access control request to the EF.

• b7: The EF checks whether the user can access the data
of service T . If the result is positive, the EF forwards the
data decryption key kT to the broker.

• b8: The broker sends kT encrypted with sku to the user.
Finally, the user can obtain the data using kT .

B. CSP
Communicating Sequential Processes (CSP) is a process

algebra proposed by C. A. R. Hoare [8]. Here we briefly
introduce the syntax of CSP used in this paper.

P,Q ::= a→ P | c?x→ P | c!v → P | P ;Q |
P ||Q | P�Q | P C bBQ | P [[a← b]]

Fig. 2: Data publishing

Fig. 3: Service subscription

• a → P indicates that a process performs action a first,
and then acts like process P .

• c?x → P represents that a process receives a message
via channel c and assigns the received message to x, and
then behaves like process P .

• c!v → P denotes that message v is sent through channel
c, and then process P is executed.

• P ;Q is the sequential execution of processes P and Q.
• P ||Q describes that processes P and Q run in parallel.
• P�Q stands for the general choice of processes P and

Q, and the selection is made by the environment.
• P C bBQ shows that if the condition b is true, process

P is executed, otherwise process Q is executed.
• P [[a ← b]] means renaming action. Event a in process

P is replaced by event b.

III. MODELING

In this section, we focus on the modeling of AUPS. First,
we introduce some preparatory notations for the modeling in-
cluding sets, messages and channels. Based on these notations,
we give the formal model of AUPS.

A. Sets, Messages and Channels
First, we explain the sets defined in our model. Entity is

a set of entities described in Section II. Req set contains
requests of entities. Key set is composed of all the keys.
Data set contains the data collected by devices. Inf set denotes
other message contents including identifier set ID, feedback
message set Ack, attribute set Atb and service set Service.

Besides, we define the encryption function E and decryption
function D to model the messages:

E(k, m); D(k, E(k, m)); D(k−1, E(k,m))

Function E(k,m) means that we encrypt the message m
using k. D(k,E(k,m)) denotes that we use a symmetric key

569

k to decrypt the message which is encrypted by k. D(k−1,
E(k,m)) indicates that we use the corresponding decryption
key k−1 to decrypt the message encrypted by k.

Based on the sets and functions defined above, we abstract
and classify the messages as follows:
MSGreq = {msgreq.a.b.req,msgreq.a.b.E(k, req) |

a, b ∈ Entity, k ∈ Key, req ∈ Req}
MSGkey = {msgkey.a.b.E(k1, k) | a, b ∈ Entity, k1, k ∈ Key}
MSGinf = {msginf .a.b.inf | a, b ∈ Entity, inf ∈ Inf}
MSGdata = {msgdata.a.b.d,msgdata.a.b.E(k, d) |

a, b ∈ Entity, d ∈ Data, k ∈ Key}
MSGin = {msgreq1.t,msgkey1.k | t ∈ Service, k ∈ Key}
MSGout = MSGreq ∪MSGinf ∪MSGkey ∪MSGdata

MSG = MSGout ∪MSGin

MSGreq represents the set of request messages. MSGkey

denotes the set of messages containing the keys. MSGinf

involves messages containing identifiers, feedback messages,
attributes and services. MSGdata consists of messages con-
taining the data collected by devices. MSGout means the set
of messages transmitted between entities. MSGin consists
of the internal processing messages of entities. MSG is
composed of all the messages in the model.

Then we give the definitions of communication channels:
• Channels between honest entities shown by COM PATH:

ComDN, ComNB, ComUB, ComBE, ComNE,

GetE, ComEK

• Channels for intruders to intercept or fake the transmitted
messages denoted by INTRUDER PATH:

FakeDN, FakeND, FakeUB, FakeBU

The declaration of the channels is given as follows:

Channel COM PATH, INTRUDER PATH : MSG

Fig. 4: Channels of AUPS model

B. Overall Modeling

In this subsection, we give the whole model of AUPS.
System0 only contains legal entities which are running in
parallel. Based on the model System0, we construct the model
of System by introducing attacks from intruders.

System0 =df Broker‖User‖EF‖ProcessE‖KTM‖
Device‖NOS‖Clock

System =df System0[|INTRUDER PATH|]Intruder
Broker, User, EF , Device, NOS and KTM are pro-

cesses describing the behavior of the broker, user, EF, device,
NOS and KTM respectively. ProcessE denotes the internal
processing procedures of the EF. The process Clock is used
to realize the synchronization of time. In addition, the process
Intruder simulates the actions of intruders. The channels
between all processes are shown in Fig. 4.

C. Clock Modeling

AUPS adopts a temporary key to encrypt the published
data. Before using the temporary key, the entity needs to
check the expiration date of the key. Hence, we define the
process Clock to realize the synchronization of all entities.
The process Clock serves to record the time and return the
current time whenever the entities want it.

Clock(t) =df tick → Clock(t+ 1) � T ime!t→ Clock(t)

D. User Modeling

We formalize the process User0 to describe the behavior
of the user without intruders as follows:

User0 =df ComUB!msgreq.U.B.requ →
ComUB?msgkey.B.U.pukb →
ComUB!msgreq.U.B.E(pukb, idu.sku)→
ComUB?msginf .B.U.E(sku, sidu.at)→
ComUB!msgreq.U.B.E(sku, reqT.at)→
ComUB?msgkey.B.U.E(sku, kT)→ ComUB?msgdata.B.U.E(kT, d)→

User0 CD(kT,E(kT, d))B (fail→ User0)
CD(sku, E(sku, kT))B (fail→ User0)

CD(sku, E(sku, sidu.at))B (fail→ User0)

The above actions correspond to b1 − b5 and b8 in Fig.

3. First, the user sends a registration request requ to the
broker and receives the broker’s public key pukb. Then the
user requests an attribute by sending its identity information
idu and symmetric key sku encrypted with pukb to the broker.
Once getting the attribute at and session identifier sidu, the
user sends a subscription request reqT encrypted with sku to
the broker. If the request is accepted, the user receives the data
decryption key kT and encrypted data. Finally, the user can
obtain the required data d using kT . Then we consider attacks
from intruders.

Based on the achieved model User0, we formalize the
process User with intruders via renaming as follows:
User =dfUser0[[

ComUB!{|ComUB|} ← ComUB!{|ComUB|},
ComUB!{|ComUB|} ← FakeUB!{|ComUB|},
ComUB?{|ComUB|} ← ComUB?{|ComUB|},
ComUB?{|ComUB|} ← FakeBU?{|ComUB|}]]

{|ComUB|} represents the set of all communications over
the channel ComUB. The first two lines mean that whenever
User0 transmits a message on the channel ComUB, User

570

can transmit the same message on the channel ComUB or
FakeUB. The last two lines are similar.

E. Broker Modeling
We give the model of process Broker0 to describe the

behavior of the broker without intruders as follows:
Broker0 =df ComUB?msgreq.U.B.requ →

ComUB!msgkey.B.U.pukb →
ComUB?msgreq.U.B.E(pukb, idu.sku)→

ComUB!msginf .B.U.E(sku, sidu.at)→
ComUB?msgreq.U.B.E(sku, reqT.at)→

ComBE!msgreq.B.E.req.at.T →
ComBE?msginf .E.B.ack.kT →

ComUB!msgkey.B.U.E(sku, kT)→
ComNB?msgdata.N.B.E(kT, d)→
ComUB!msgdata.B.U.E(kT, d)→
Broker0 C (ack == true)B
(fail→ Broker0)

CD(sku, E(sku, reqT.at))B (fail→ Broker0)

CD(prkb, E(pukb, idu.sku))B (fail→ Broker0)

The above actions correspond to b1− b8 in Fig. 3. During

user registration, the broker sends its public key pukb to the
user, and then obtains the user’s identity information idu and
symmetric key sku through decryption. After that, the broker
distributes the attribute at and session identifier sidu encrypted
with sku to the user. When receiving the subscription request
reqT , the broker verifies the user’s identity by sending the
attribute at and service T to the EF. If the feedback message
ack from the EF is true, the broker sends the data decryp-
tion key kT encrypted with sku to the user. Otherwise, the
subscription request is rejected.

Based on Broker0, the model of the process Broker with
intruders can be acquired via renaming similar to the process
User. We leave out the details.

F. EF Modeling
The EF interacts with the broker and NOS to perform access

control. We model the process EF using general choice �.
EF =df ComBE?msgreq.E.B.req.at.T →

ack := check(at, T)→ GetE!msgreq1.T → GetE?msgkey1.kT →
ComBE!msgkey.E.B.ack.kT → EF0

C(ack == true)B (fail→ EF0)

�ComNE?msgreq.N.E.reqK → GetE!msgreq1.T →
GetE?msgkey1.kT → ComNE!msgkey.E.N.kT → EF0

The model before � describes the communication between
the EF and broker. check(at, T) is a function used to verify
whether the user with attribute at can access service T . After
receiving the broker’s request req, the EF adopts check(at, T)
to verify the access authority of the user. If the result ack
is true, the EF sends a key request to its internal process
ProcessE. Once receiving the data decryption key kT from
ProcessE, the EF forwards kT to the broker. These actions
correspond to b6 and b7 in Fig. 3. The model after � describes
the communication between the EF and NOS. When receiving
the NOS’s request reqK, the EF requests a data encryption
key from ProcessE, and then forwards the key to the NOS.
The related actions are illustrated by a6 and a7 in Fig. 2.

G. ProcessE Modeling

In order to simulate the internal process of EF , we model
ProcessE. It mainly deals with the key requests of entities.
ProcessE =df GetE?msgreq1.T → kT := findKey(T)→ GetE!msgkey1.kT → ProcessE
C(∃e ∈ tablei • e.key == kT ∧ T ime?t→ e.val > t)B
ComEK!msgreq.E.K.reqEK.T → ComEK?msgkey.
K.E.kT → GetE!msgkey1.kT → ProcessE

findKey(T) is a function designed to find the symmetric

key that can encrypt or decrypt the data of service T . After
receiving the key request from the EF, ProcessE adopts
findKey(T) to find a symmetric key kT . Then ProcessE
verifies whether kT is valid by checking the expiration date
val. If val is later than the current system time, it means that
kT has not expired. Then ProcessE sends kT to the EF. If
kT has expired, ProcessE requests a new key from the KTM,
and then forwards the new key to the EF.

Similarly, we can define CSP processes representing the
device, NOS and KTM. The actions of them are introduced
in Section II. We omit the details of these processes here.

H. Intruder Modeling
In order to simulate the attacks from the real environment,

we model the Intruder process. It can intercept and fake the
messages on channel ComDN , ComNB and ComUB.

First, we define the set of facts that the intruder can learn.
Fact =df Entity ∪MSGout ∪ {ski, puki, prki}

Through the known facts, the intruder can deduce new facts.
The symbol F 7→ f means that the intruder can deduce a fact
f from the fact set F .

{k, c} 7→ E(k, c)

{k−1, E(k, c)} 7→ c, {sk,E(sk, c)} 7→ c

F 7→ f ∧ F ⊆ F ′ =⇒ F ′ 7→ f

The first rule means encryption. The second and third rules
denote the decryption in asymmetric and symmetric encryption
forms respectively. The last rule shows that if the fact f can
be derived from a fact set F , and F is a subset of F ′, then
the intruder can also deduce f from the larger set F ′.

Moreover, we use a function Info(m) to imply the facts
that the intruder can learn through intercepted messages.

Info(msgkey.a.b.E(k1, k)) =df {a, b, E(k1, k)}
Info(msgdata.a.b.E(k, d)) =df {a, b, E(k, d)}

Besides, we introduce a channel DEDUCE for the intruder
to deduce new facts. Its definition is given as below:

Channel DEDUCE : Fact.P (Fact)

Then the process Intruder0 can be modeled as follows:
Intruder0(F)

=df �m∈MSGoutFake.m→ Intruder0(F ∪ Info(m))

��f∈Fact,f /∈F,F 7→fInit{dl = false} → Deduce.f.F

→

 (
dl := true→ Intruder0(F ∪ {f})

)
C(f == d))B(

dl := false→ Intruder0(F ∪ {f})
)

When intercepting a message m, the intruder adds Info(m)
to its knowledge. If the intruder can decrypt m, it can falsify
m and send the modified message to the original receiver.

571

If the receiver does not recognize that the message has been
modified, it means that the intruder successfully fakes as the
original sender. Furthermore, the intruder can deduce new facts
from its knowledge via the channel DEDUCE and add them
to its knowledge. Once the intruder deduces the published data
successfully, data leakage occurs. idu represents the identity
information of the user, such as name and address. If the
intruder deduces the user’s sensitive information idu, user
privacy leakage happens. Now we give the model of Intruder.
The parameter IK is the initial knowledge of the intruder.

Intruder =df Intruder0(IK)

where, IK =df Entity ∪ {ski, puki, prki}

IV. VERIFICATION AND IMPROVEMENT
In this section, we verify several functional and security

properties of AUPS. Based on the verification results and
analysis of attacks, we improve the original model and give
the new verification results of the improved model.

A. Properties Verification

We use Linear Temporal Logic (LTL) formulas to describe
five properties of AUPS. System() denotes the model with
intruders. By using the assertion #assert System() | = F
in PAT, we verify whether the model satisfies the formula F .
Property 1: Deadlock Freedom

The system should not run into a deadlock state. We verify
this property by means of a primitive in PAT.

#assert System() deadlockfree;

Property 2: Data Availability
The property means that legal users should be able to obtain

the required data. We define a Boolean variable data suc to
verify this property. When the subscriber gets the required
data, we set the value of data suc to true.

#define Data Available data suc == true;

#assert System() reaches Data Available;

Property 3: Data Leakage
Data leakage can cause a bad effect to the system. We use

a Boolean variable dl to verify the property. If the intruder
obtains the data, we set the value of dl to true.

#define Data Leak Success dl == true;

#assert System() | = []! Data Leak Success;

Property 4: Device Faking
The property means that the intruder can pretend to be a

legal device without being recognized. We adopt a Boolean
variable df to verify the property. If the intruder fakes as a
legal device successfully, we set the value of df to true.

#define Device Fake Success df == true;

#assert System() | = []! Device Fake Success;

Property 5: User Privacy Leakage
User privacy leakage may bring great security risks to users.

Hence, we check whether the intruder can obtain the sensitive
information of the user using the following assertion.

#define User Privacy Leak pl == true;

#assert System() | = []! User Privacy Leak;

Fig. 5: Verification results of the original model

B. Verification Results
The verification results are shown in Fig. 5:
• Property 1 is valid. It represents that the model will

never run into a deadlock state.
• Property 2 is valid. It shows that the data can be

transmitted to the legal subscribers.
• Property 3 is invalid. It indicates that the intruder can

obtain the data illegally.
• Property 4 is invalid. It means that the intruder can

pretend to be a legal device to publish fake data.
• Property 5 is invalid. It indicates that the model cannot

protect the user privacy once intruders appear.

C. Attack Analysis
According to the verification results, although AUPS adopts

the access control and temporary keys, the system is still
unreliable. Now we discuss the reasons for the insecure results.
When the broker sends pukb to the user, the intruder can
intercept the message, and then replace pukb with its public
key puki. Since the user cannot detect that the key has been
changed, the user sends sku and idu encrypted with puki to
the broker. Then the intruder can decrypt the message with
prki to obtain sku and the user’s sensitive information idu,
which leads to user privacy leakage. After obtaining sku, the
intruder can get the data decryption key. Finally, the intruder
can acquire the data, which results in data leakage. We give
an example of the related attacks as follows:

A1. U −→ I : U.B.requ

A2. I −→ B : U.B.requ

A3. B −→ I : B.U.pukb

A4. I −→ U : B.U.puki

A5. U −→ I : U.B.E(puki, sku.idu)

A6. I −→ B : U.B.E(pukb, sku.idu)

A7. B −→ I : B.U.E(sku, sidu.at)

A8. I −→ U : B.U.E(sku, sidu.at)

A9. U −→ I : U.B.E(sku, at.T))

A10. I −→ B : U.B.E(sku, at.T))

A11. B −→ I : B.U.E(sku, kT)

where U , I and B mean user, intruder and broker respectively.
• A1: The user sends a request requ to the broker.
• A2: The intruder intercepts the request.
• A3: The broker sends its public key pukb to the user.

572

• A4: The intruder intercepts the message, and then re-
places pukb with its own public key puki.

• A5: The user sends its symmetric key sku and private
information idu encrypted with puki to the broker.

• A6: The intruder intercepts the message, and then de-
crypts the message to obtain sku and idu using prki. At
this point, user privacy leakage occurs.

• A7: The broker distributes the session identifier sidu and
attribute at encrypted with sku to the user.

• A8: The intruder acquires sidu and at using sku.
• A9: The user requests to subscribe to service T .
• A10: The intruder eavesdrops on the message.
• A11: The broker distributes the data decryption key kT

encrypted with sku to the user. The intruder intercepts the
message and gets kT using sku. Then, the intruder can
obtain the data using kT , which results in data leakage.

Similarly, the intruder can obtain the session identifier sidd
and symmetric key skd, and then fake as the device to publish
data, which leads to device faking. We omit the details here.

D. Improved Model and Verification

In order to address the above issues, we improve the model
by adding a digital certificate. Before sending the public key
to other entities, the entity needs to send its public key to
the Certification Authority (CA) to apply for a certificate. Fig.
6 depicts the flows of the digital certificate. First, the sender
applies for a certificate. Second, CA generates a certificate
based on the information of the sender, and then transmits
the certificate to the receiver. Finally, the receiver verifies the
validity of the certificate.

As the certificate is encrypted by CA’s private key, the
intruder cannot fake the certificate. It means that the intruder
cannot replace the public keys of the honest entities with its
own public key. Thus, the intruder can neither get the data nor
violate user privacy. We modify the message definitions of the
model. MSGkey is replaced by the following MSGkey2.

MSGkey2 = {msgkey2.a.b.E(k1, k.inf) |
a, b ∈ Entity, k1, k ∈ Key, inf ∈ Inf}

Then we formalize the improved processes of Broker1,
User1, Device1 and NOS1 using the new message defini-
tions. The improved model is given as follows.

System1 =df Broker1‖User1‖EF‖ProcessE‖KTM‖
Device1‖NOS1‖CA‖Clock

System =df System1[|INTRUDER PATH|]Intruder

The verification results are shown in Fig. 7. Property 3−5
are valid. It means that Data Leakage, Device Faking and
User Privacy Leakage problems are solved now.

V. CONCLUSION AND FUTURE WORK

AUPS is an IoT system based on the publish/subscribe
paradigm. In this paper, we formalized AUPS using the process
algebra CSP. Feeding the model into PAT, we verified several
functional and security properties of the model including dead-
lock freedom, data availability, data leakage, device faking and
user privacy leakage. According to the verification results, data

Fig. 6: Flows of digital certificate

Fig. 7: Verification results of the original model

leakage, device faking and user privacy leakage may occur
once intruders appear. Hence, we improved the model by using
a digital certificate. Then we verified the improved model with
PAT. The verification results show that the improved model
can prevent intruders from invading the system. In the future,
we will study more security properties of AUPS using formal
methods and improve our model to handle more attacks.
Acknowledgements. This work was partly supported by the Na-
tional Key Research and Development Program of China (Grant
No. 2018YFB2101300), the National Natural Science Foundation of
China (Grant Nos. 61872145, 62032024), Shanghai Trusted Industry
Internet Software Collaborative Innovation Center, and the Dean’s
Fund of Shanghai Key Laboratory of Trustworthy Computing (East
China Normal University).

REFERENCES

[1] Tewari A, Gupta B B. Security, privacy and trust of different layers in
Internet-of-Things (IoTs) framework. Future Gener. Comput. Syst. 2020,
108: 909-920.

[2] Khan F I, Hameed S. Understanding Security Requirements and Chal-
lenges in Internet of Things (IoTs): A Review. ArXiv abs/1808.10529
2019.

[3] Shi Y, Zhang Y, et al. Using machine learning to provide reliable dif-
ferentiated services for IoT in SDN-like Publish/Subscribe middleware.
Sensors, 2019, 19(6): 1449.

[4] Jung J, Choi Dong, et al. Distributed pub/sub model in CoAP-based
Internet-of-Things networks. Proc. of the International Conference on
Information Networking (ICOIN), 2018: 657-662.

[5] Shang W, Gawande A, et al. Publish-Subscribe Communication in
Building Management Systems over Named Data Networking. Proc.
of the 28th International Conference on Computer Communication and
Networks, 2019: 1-10.

[6] Rizzardi A, Sicari S, et al. AUPS: An Open Source AUthenticated
Publish/Subscribe system for the Internet of Things. Inf. Syst. 2016,
62: 29-41.

[7] Hu V C, Kuhn D R, et al. Attribute-based access control. Computer,
2015, 48(2): 85-88.

[8] Hoare C A R. Communicating sequential processes. Communications
of the ACM, 1978, 21(8): 666-677.

[9] PAT, PAT: Process Analysis Toolkit. 2019. http://pat.comp.nus.edu.sg.

573

Formal Verification of the Lim-Jeong-Park-Lee Autonomous Vehicle Control
Protocol using the OTS/CafeOBJ Method

Tatsuya Igarashi Masaki Nakamura Kazutoshi Sakakibara

Toyama Prefectural University, Toyama, Japan

Abstract- The Lim-Jeong-Park-Lee protocol (LJPL protocol)
has been proposed as an efficient distributed mutual exclusion
algorithm for intersection traffic control. The LJPL proto-
col has been specified and verified formally using the Maude
model checker. Because of the limitation of computation, the
existing model checking approach restricts the number of ve-
hicles participating the protocol. In this paper, we model the
LJPL protocol as an observational transition system, describe
its specification in CafeOBJ, the algebraic specification lan-
guage, and verify its safety property using the proof score
method, where mutual exclusiveness can be proved for an ar-
bitrary number of vehicles ∗.

Keywords-component; autonomous vehicles; the Lim-Jeong-
Park-Lee protocol; algebraic specification; observational transi-
tion system; proof score method

I. Introduction

In [1], an efficient distributed mutual exclusion algorithm
for intersection traffic control, called the Lim-Jeong-Park-
Lee protocol (LJPL protocol), has been proposed, where
each lane of the intersection has a queue of vehicles (Fig-
ure 1). All vehicles in a queue can enter the intersection if
the top vehicle of the queue arrived first among the waiting
vehicles in the other conflict lanes. Since the vehicles ex-
cept the top one do not need extra permissions to enter the
intersection, the protocol has been shown to be effective.

In [2], the LJPL protocol has been formally specified and
some properties are verified by Maude tool†. In Maude,
a state transition system is specified as a rewrite specifi-
cation. A desired property is verified by fully automated
model checking. In principle, model checking restricts the
state space finite. Thus, by the Maude model, only finite
combinations of initial states can be treated. In [2], it is
mentioned that an initial state with five vehicles has been
proved to be safe and the authors had encountered the state
explosion problem for the case of more than a dozen vehi-
cles.

∗DOI reference number: 10.18293/SEKE2022-028.
This work was supported by JSPS KAKENHI Number JP19K11842.
†http://maude.cs.uiuc.edu

In our study, we model the LJPL protocol as an obser-
vational transition system (OTS) [3, 4, 5], where a state of
the system is not represented explicitly but can be identi-
fied through a given set of observation functions. A state
transition is also defined through observations. By such an
approach, we may obtain more abstract system specifica-
tions independent from the structure of states. Especially
our model does not fix the number of vehicles participating
the protocol. An OTS can be specified in CafeOBJ lan-
guage‡, which supports not only specification description
based on equational specifications but also specification ex-
ecution based on term rewriting theory. Roughly speaking,
when we add a new equation t0 = t1 to a given specification
S P, reduce a term t2 by the CafeOBJ processor and obtain
t3 as a reduced term, then it guarantees that the implication
t0 = t1 ⇒ t2 = t3 holds for all models of the specifica-
tion. By combining specification executions, we may con-
struct complicated proofs, such as case splitting and induc-
tions. To make a complete proof through interaction with
CafeOBJ processor is called the proof score method, or the
OTS/CafeOBJ method. For the OTS/CafeOBJ specification
of the LJPL protocol, we verify the safety property such that
vehicles of different conflict lanes cannot enter at same time
by the proof score method.

II. Lim-Jeong-Park-Lee protocol

We give a brief introduction of the LJPL protocol in this
section. See [1, 2] for more detail.

The intersection of the LJPK protocol is a crossroad rep-
resented in Figure 1. The lanes are labeled by lane0 , . . . ,
lane7. Each of four directions has two lane: the straight or
right turn lanes (even numbered) and the left turn lanes (odd
numbered). When some vehicle is crossing the intersection,
some vehicle can enter the intersection and some are not. A
lane l conflicts with a lane l′ if a vehicle in l may collide
with a vehicle in l′ when they enter the intersection at same
time. For example, lane0 conflicts with lane2, lane5, lane6
and lane7.

‡https://cafeobj.org/intro/ja/

574

lane0

lane1

lane2lane3

lane4

lane5

lane6 lane7

Figure 1. The intersection of the LJPL protocol

In the LJPL protocol, a vehicle passes the intersec-
tion through the following states: running, approaching,
stopped, crossing and crossed. In the running state, the ve-
hicle is running before the intersection. From the running
state to the approaching state, the vehicle approaches the
queue of a lane. From approaching to stopped, the ve-
hicle is added to the queue and the arrival time of the top
vehicle of the queue is set to the vehicle. From stopped to
crossing, the vehicle enters the intersection if the time of
the vehicle is less than the time of the top vehicle of each
conflict lane. From crossing to crossed, the vehicle leaves
the intersection.

III. An OTS/CafeOBJ specification of the LJPL
protocol

In this section, we give an OTS/CafeOBJ specification
of the LJPL protocol. We assume the reader is familiar
with observational transition systems and CafeOBJ alge-
braic specification language, and introduce the notions and
notations briefly through the specification of the LJPL pro-
tocol. See [3, 4, 5] for full syntax and semantics of OTS/-
CafeOBJ specifications.

A Data modules

An OTS/CafeOBJ specification consists of data modules
and a system module. We first give a data module VID for
vehicles.

mod* VID{
[Vid < Vid+]
op dummy : -> Vid+
op _=_ : Vid+ Vid+ -> Bool {comm}
eq (I:Vid = dummy) = false .
eq (V:Vid+ = V) = true . }

The module declaration with mod* denotes the loose de-
notation, where the module denotes all models (algebras)
which satisfies all equations in the modules. The name of
the module is VID. Two sorts Vid and Vid+ are declared

with a relationship Vid < Vid+. Each sort denotes a (car-
rier) set in a model. Hereafter we deal with a sort as a set if
no confusion occurs. Sort Vid is interpreted as a subset of
Vid+. We intend to use Vid as a set of (identifiers of) vehi-
cles and Vid+ as a set of vehicles including a dummy one.
There are two operator declarations with op. The name of
the first operator is dummy, which takes the empty arity and
returns Vid+. The empty arity operator denotes a constant
of the returned sort. The commutative operator = takes
two arguments of Vid+ and returns a boolean value. There
are two equations which all models satisfy. A term X:S is
a variable of Sort S , which denotes an arbitrary element of
the sort. The first equation declare that all elements of Vid
are not equivalent to the dummy vehicle. By the second
equation, each vehicle is equivalent to itself.

The following is a data module for (identifiers of) lanes.
For all i, j ∈ {0, 1, . . . , 7, 999}, we give the values of lanei =
lane j and lanei < lane j by equations. The dots part (...)
are omitted.

mod! LID{
[Lid]
ops lane0 lane1 lane2 lane3 lane4 lane5 lane6 lane7

lane999 : -> Lid
op _=_ : Lid Lid -> Bool {comm}
op _<_ : Lid Lid -> Bool
eq (L:Lid = L) = true .
eq (lane0 = lane1) = false
eq (L:Lid < L) = false .
eq (lane0 < lane1) = true
eq (lane5 < lane3) = false }

The module declaration with mod! denotes the tight de-
notation, where the module denotes only the initial model,
where each element of the model has a corresponding
term constructed from operators in the module (no dupli-
cation), and an equation is deducible from the equations
of the module, whenever the both hand sides of the equa-
tion are interpreted into a same element (no confusion). In
the model of LID, Sort Lid has exactly nine elements of
lane0∼lane999. The constants lane0∼lane7 stand for
lanes of the intersection. The constant lane999 stands for a
special lane where all vehicles belong before coming the in-
tersection. We define the order of lanes as lane i is smaller
than lane j iff i < j.

We specify a tight data module VSTAT of the labels of
vehicles’ states, where Sort Vstat and constants running,
approaching, stopped, crossing and crossed of Sort
Vstat are declared with an equivalent predicate = sim-
ilarly. We also specify a data module TIMEVAL with the
built-in sort Rat of rational numbers, Sort Rat+ of rational
numbers with the infinity oo and predicates < , <= , =
on Rat+. We omit the details of VSTAT and TIMEVAL.

Since the LJPL protocol manages a queue of vehicles,
we specify a data module QUEUE of queues as follows:

mod! QUEUE{
pr(VID) [Queue]
op empty : -> Queue

575

op _,_ : Vid Queue -> Queue
op put : Queue Vid -> Queue
op remove : Queue -> Queue
op top : Queue -> Vid+ ... }

Module QUEUE imports Module VID with the protect
mode, where a model (carrier sets) of the importing module
includes a model of the imported module as it is. The first
two operators empty and , are constructors of queues.
The set Queue of queues is defined inductively. Constant
empty denotes the empty queue. Term e,queue is a queue
whose top element is e and the tail is queue if e is of Vid and
queue is of Queue. For example, Term e0,e1,e2,empty is
a term of Queue. Operator put, remove and top are stan-
dard operations of queues. Term put(queue,e) stands for
the result queue by adding an element e to a queue as the
last element. Term remove(queue) is the result queue by
deleting the top of queue. Term top(queue) is the top el-
ement of queue. For example, Operator put is defined by
the following equations in QUEUE:

eq put(empty,I:Vid) = I,empty .
eq put((J:Vid,Q:Queue),I:Vid) = J,put(Q,I) .

For example, Term put((a,b,empty),c) is equivalent
to Term a,b,c,empty since put((a,b,empty),c)

= a,put((b,empty),c) = a,b,put(empty,c) =

a,b,c,empty. Similarly, the other operators are defined
inductively.

B The system module : observers

We give a system module of the LJPL protocol. First,
we give observers and a definition of an initial state of our
system module.

mod* OTS{
pr(LID + VSTAT + QUEUE + TIMEVAL)
[Sys]
bop lid : Sys Vid+ -> Lid
bop vstat : Sys Vid+ -> VStat
bop t : Sys Vid+ -> Rat
bop lt : Sys Vid+ -> Rat+
bop q : Sys Lid -> Queue
bop now : Sys -> Rat

Our system module, OTS, imports all data modules de-
fined above with the protecting mode. Sort Sys is declared
as a hidden sort, which denotes the state space of the sys-
tem. An operator with the hidden sort in its arity is called
a behavioral operator. A behavioral operator is divided into
two categories: it is called an observer if the returned sort
is not hidden and a transition if it is hidden. Six observers
are declared in OTS: lid(s,i) is the lane ID of a vehicle i
at a state s. vstat(s,i), t(s,i) and lt(s,i) are the state,
the arrival time, and the arrival time of the top vehicle in
the queue of the lane of a vehicle i at a state s respectively.
q(s,l) is the queue of a lane l. now(s) is the elapsed time
at a state s.

The following specifies an initial state.

op init : -> Sys
eq lid(init,I:Vid) = lane999 .
eq vstat(init,I:Vid) = running .
eq t(init,I:Vid) = oo .
eq lt(init,I:Vid) = oo .
eq q(init,L:Lid) = empty .
eq now(init) = 0 .

Constant init is an element of Sys, which we call the
initial state. The initial state is not defined explicitly but is
defined through observers. The first equation specifies the
initial lane of all vehicles is lane999. The state is defined
as running. The arrival times are defined as the infinity oo,
which means that they have the lowest precedence to enter
the intersection.

For the dummy vehicle, its lane, state, arrival times are
defined as lane999, stoped and oo for all states respec-
tively. The queue of lane999 is defined as empty for all
states. We omit the equations for the dummy vehicle.

C The system module : transitions

State transitions are declared as follows:

bop set : Sys Vid Lid -> Sys
bop approach : Sys Vid -> Sys
bop check : Sys Vid -> Sys
bop enter : Sys Vid -> Sys
bop leave : Sys Vid -> Sys
bop tick : Sys Rat -> Sys

Term set(s,i,l) is the result state after applying the
transition set for a vehicle i and a lane l at the state s. Sim-
ilarly, other transitions are declared as operators which take
a current state and return the result state with some param-
eters. Transition tick(s,x) is a special transition which
advances elapsed time by x.

For a transition τ, the effective condition c−τ is a condi-
tion under which the transition τ can be applied. The fol-
lowing is a definition of the effective condition c-set of the
transition set §.

op c-set : Sys Vid -> Bool
eq c-set(S:Sys,I) =
(vstat(S,I) = running && lid(S,I) = lane999) .

ceq set(S,I,L) = S if not c-set(S,I) .

The operator c-set is declared and is defined by the first
equation such that set is effective for a vehicle I if I’s state
is running and lane is lane999. The last equation is a con-
ditional equation, where the body equation holds when the
condition part is true. The condition part of the last equa-
tion is not c-set(S,I), that is, set is not effective for I.
Then, the body equation says that the result of applying set
does not change a state. The application of the transition is
considered to be ignored when it is not effective.

The following is the set of all equations defining set
when it is effective.
§Hereafter we use D, I, J, S and L (L’) as variables of Rat, Vid, Vid+,

Sys and Lid respectively.

576

ceq lid(set(S,I,L),J) =
(if I = J then L else lid(S,J) fi)
if c-set(S,I) .

ceq vstat(set(S,I,L),J) = vstat(S,J) if c-set(S,I) .
ceq t(set(S,I,L),J) = t(S,J) if c-set(S,I) .
ceq lt(set(S,I,L),J) = lt(S,J) if c-set(S,I) .
ceq q(set(S,I,L),L’) = q(S,L’) if c-set(S,I) .
ceq now(set(S,I,L)) = now(S) if c-set(S,I) .

The first equation specifies that the lane ID of a vehicle J
after set(S,I,L) is defined as L if I = Jwhen set is effec-
tive, and it is unchanged if I , J. Only lane ID is changed
and the other observed values are unchanged as defined by
the following five equations. By Transition set, a vehicle
can be assigned to any lane.

To define a system behavior completely, for all combina-
tions of an observer o and a transition τ, we need to define
the value observed by o of the result state after applying τ
to a state s, denoted by o(τ(s)). Since there are lots of equa-
tions in our system module, we show subset of them in this
paper.

Transition approach is defined as follows:

eq c-approach(S,I) =
(vstat(S,I) = running && not(lid(S,I) = lane999)) .

ceq vstat(approach(S,I),J) = (if I = J then approaching
else vstat(S,J) fi) if c-approach(S,I) .

ceq t(approach(S,I),J) = (if I = J then now(S)
else t(S,J) fi) if c-approach(S,I) .

ceq q(approach(S,I),L) = (if L = lid(S,I) then
put(q(S,L),I) else q(S,L) fi) if c-approach(S,I) .

Transition approach is effective if the state is in
running and the lane is not lane999, that is, immediately
after set. By approach(S,I), the state of I becomes
approaching. The arrival time is set to the current time
now(S) and I is added to the queue of the belonging lane.

Transition check is defined as follows:

eq c-check(S,I) = (vstat(S,I) = approaching &&
top(q(S,lid(S,I))) = I

|| vstat(S,getpre(q(S,lid(S,I)),I)) = stopped
|| vstat(S,getpre(q(S,lid(S,I)),I)) = crossing)) .

ceq vstat(check(S,I),J) = (if I = J then stopped
else vstat(S,J) fi) if c-check(S,I) .

ceq lt(check(S,I),J) = (if
I = J && (top(q(S,lid(S,I))) = I
|| vstat(S,getpre(q(S,lid(S,I)),I)) = crossing)
then t(S,I) else if
I = J && vstat(S,getpre(q(S,lid(S,I)),I)) = stopped
then lt(S,getpre(q(S,lid(S,I)),I)) else lt(S,J)
fi fi) if c-check(S,I) .

Transition check is effective when the state of the ve-
hicle is approaching and either it is top of the queue or
the previous vehicle’s state is stopped or crossing, where
getpre(q,i) returns the previous vehicle of i in a queue q.
The state of the vehicle becomes stopped. The last equa-
tion specifies that the arrival time of the previous vehicle in
the queue is set to the vehicle as lt.

Transition enter is defined as follows:

eq c-enter(S,I) = (vstat(S,I) = stopped
&& top(q(S,lid(S,I))) = I && ...)

ceq vstat(enter(S,I),J) = (if lid(S,I) = lid(S,J) &&

vstat(S,J) = stopped then crossing else
vstat(S,J) fi) if c-enter(S,I) .

Transition enter is effective when the vehicle’s state is
stopped, it is top of the queue and the arrival time lt is
smaller than that of the top vehicle of each conflict lane.
We omit a part of the right-hand side of the first equation
of c-enter. The states of all vehicles in the same queue
(stopped) become crossing, that is, they enter the inter-
section at once.

Transition leave is defined as follows:

eq c-leave(S,I) =
(vstat(S,I) = crossing && top(q(S,lid(S,I))) = I) .

ceq vstat(leave(S,I),J) = (if I = J then crossed
else vstat(S,J) fi) if c-leave(S,I) .

ceq q(leave(S,I),L) = (if L = lid(S,I) then
remove(q(S,L)) else q(S,L) fi) if c-leave(S,I) .

Transition leave is effective when the vehicle’s state is
crossing and it is top of the queue. The vehicle’s state
becomes crossed and it is removed from the queue.

Finally, Transition tick is defined as follows:

eq now(tick(S,D)) = now(S) + D .

Transition tick(S,D) is always effective and it increase
the current time by D.

D Specification execution

The CafeOBJ reduction command reduces a term to a
term equivalent to the input term based on term rewriting
theory. The following is an example of reduction.

open OTS
eq s1 = set(set(set(set(

init,a,lane0),b,lane3),b2,lane3),c,lane4) .
eq s2 = approach(approach(approach(s1,a),b),c) .
eq s3 = approach(tick(s2,1),b2) .
eq s4 = check(check(check(check(s3,a),b),c),b2).
eq s5 = enter(enter(enter(s4,c),b),a) .
red vstat(s5,a) . red vstat(s5,b) .
red vstat(s5,b2) . red vstat(s5,c) .
close .

State s1 is equivalent to a term obtained by applying four
set transitions with vehicles a, b, b2, c with lanes lane0,
lane3, lane3, lane5 respectively. We apply Transition
approach to vehicles a, b, c, and advance time by one time
unit and apply approach to b2 (State s3). Then, we apply
check to all vehicles and apply enter to a, b, c. State s5 is
the result state. Note that lane lane0 does not conflict with
lane lane3 and lane4 but lane lane3 conflict with lane4.

By the last four reduction commands, we check states of
all vehicles. CafeOBJ returns crossing for a in lane0,
crossing for b and b2 in lane3, and stopped for c in
lane4. Vehicles a and b, b2 are crossing since they do
not conflict with each other. Vehicle c failed to enter (from
stopped to crossing) since b in a conflict lane has already
entered. Although b2’s arrival time is later than c’s arrival
time, b2 entered since it belongs to the same queue with b.

577

IV. Formal verification of the LJPL protocol

In this section we verify the safety property of the LJPL
protocol, that is, no two vehicles enter the intersection
if they belong to conflict lanes, by using the proof score
method. First we formalize a safe state by operators and
equations.

mod INV{ pr(OTS) ...
eq concur(L,L’) = ((L = L’) ||
(L = lane0 && (L’ = lane1 || L’ = lane3 || L’ = lane4))
||

eq inv1(S,I,J) = (not(I = J)
&& vstat(S,I) = crossing && vstat(S,J) = crossing)
implies concur(lid(S,I),lid(S,J)) . }

The first equation specifies a predicate concur such that
concur(L,L’) is true if lanes L does not conflict with L’.
Then, the invariant property inv1 is defined by the last
equation. The invariant property inv1(S,I,J) is true if
vehicles I and J do not belong to conflict lanes whenever
I and J are different and their states are crossing. The
invariant property is a state predicate. If inv1(s,i, j) is
true for all states s reachable from the initial state and ve-
hicles i and j, the LJPL protocol is safe. In OTS/CafeOBJ
specifications, reachable states are represented by terms like
τn(· · · (τ1(τ0(init)))), which stands for the result state af-
ter applying transitions τ0, τ1, . . . , τn to the initial state in
this order. Since reachable terms are infinite, we prove this
claim by induction on the structure of reachable states. The
base step is proved for the initial state init and the induc-
tion step is proved for s′ = τ(s) for each transition τwith the
assumption of inv1(s,i, j) as the induction hypothesis.

Base step The following is a fragment of a proof score,
called a proof passage, for the base step.

open INV .
ops i j : -> Vid .
red inv1(init,i,j) .
close .

Constants i and j are declared as arbitrary vehicles. The
reduction command red takes a term and returns a term
reduced by using declared equations. CafeOBJ processor
returns true as the result of the above reduction, that guar-
antees that the base step is proved successfully.

Induction step The following is a module for proving in-
duction steps.

mod ISTEP{ pr(INV) ...
ops s s’ : -> Sys
eq istep1(I,J) = inv1(s,I,J) implies inv1(s’,I,J) . }

Constants s and s’ are declared as arbitrary states. For
each induction step of a transition τ, we declare an equation
s′ = τ(s). Thus, in induction steps, we prove the implica-
tion inv1(s,i, j)⇒ inv1(s’,i, j) for each vehicles i and
j. Predicate istep1 is declared for proving the implication.

The following is a proof passage for Transition set in
the case that the effective condition is false.

open ISTEP .
ops i j k : -> Vid . op l : -> Lid .
eq c-set(s,k) = false .
eq s’ = set(s,k,l) .
red istep1(i,j) .
close .

The above reduction returns true. Thus, if set is not ef-
fective, the induction step for set is proved. The following
is the case that it is effective.

open ISTEP .
ops i j k : -> Vid .
op l : -> Lid .
eq vstat(s,k) = running .
eq lid(s,k) = lane999 .
eq s’ = set(s,k,l) .
red istep1(i,j) .
close .

Note that we declare two equations instead of
c-set(s,k) = true. They are same meaning from
the definition of c-set in the system module. Unfortu-
nately, the above reduction does not return true. The
result of the reduction is a term like (if (k = i) then
l else lid(s,i) fi) = (if (k = j) then ...)

.... This result means that CafeOBJ cannot prove the
input property to be true or false. In such a case, we revise
the proof passage such that CafeOBJ can prove it. Such a
procedure is called an interactive theorem proving.

In this case, the result term includes k = i. If it is true
or false, CafeOBJ may proceed reduction more. Thus, we
apply a case splitting about k = i. We make two copies
of the above failed proof passage, add equations k = i and
(k = i) = false for each copy. Since k = i ∨ (k =
i) = false = true, if the both copies return true then the
original proof passage is true. If results are not true or false,
we apply case splitting until it is reduced into true or false.

Lemma discovery If a proof passage returns false, there
are two possibilities, the invariant property is not true or the
considered state is unreachable from the initial state.

Consider the following proof passage which returns
false.

open ISTEP .
ops i j k : -> Vid .
eq vstat(s,k) = stopped . eq top(q(s,lid(s,k))) = k .
eq lid(s,k) = lane0 . eq top(q(s,lane0)) = k .
eq vstat(s,top(q(s,lane2))) = stopped
eq s’ = enter(s,k) .
eq i = k . eq (j = k) = false . eq lid(s,j) = lane2 .
eq (lid(s,j)= lane0) = false . eq vstat(s,j) = crossing .
red istep1(i,j) .
close .

In this case, the vehicle i = k is the top of Lane lane0
and waits for enter. Although the vehicle j is crossing in
lane2, the top of lane2 is stopped. In the LJPL protocol,
a vehicle in a queue should not be the state of crossing if

578

the top vehicle of its lane is in the state of stopped. Thus,
this case of the proof passage is considered to be unreach-
able state from the initial state.

To solve this proof passage, we introduce a lemma ex-
tracted from the unreachable state. The following is a
lemma we introduce.

eq pred1(S,empty) = true .
eq pred1(S,(I,Q)) = (if vstat(S,I) = crossing

then false else pred1(S,Q) fi) .
eq pred2(S,empty) = true .
eq pred2(S,(I,Q)) = (if vstat(S,I) = stopped

then pred1(S,Q) else pred2(S,Q) fi) .
eq inv2(S,I) = pred2(S,q(S,lid(S,I))) .

Predicate inv2 is the lemma we introduce and Predicates
pred1 and pred2 are auxiliary predicates for defining the
lemma. Predicate pred1(S,Q) is true if the queue Q does
not have crossing vehicles. Predicate pred2(S,Q) is true
if no crossing vehicles exist after any stopped vehicle.
The invariant inv2(S,I) is defined by pred2 with State S
and the queue of the lane of Vehicle I. We add the invariant
to the proof passage as the premise of the target implication
as follows:

open ISTEP
eq (lid(s,j)= lane0) = false . eq vstat(s,j) = crossing .
red inv2(s,j) implies istep1(i,j) .
close .

Then, the reduction does not return false. We proceed
case splitting and lemma discovery repeatedly and all proof
passages (cases) for inv1 become true after introducing
more two lemmata inv3 and inv4.

eq inv3(S,I) =
(vstat(S,I) = approaching || vstat(S,I) = stopped ||
vstat(S,I) = crossing) implies (I in q(S,lid(S,I))) .

eq inv4(S,I) = vstat(S,I) = crossing implies
not pred1(S,q(S,lid(S,I))) .

Verification of lemmata In the previous section we
showed the main invariant property inv1 holds under the
assumption of three lemmata. In order to complete a proof
we need to prove those lemmata. They can be proved by the
induction on reachable states similarly. Although we do not
need more lemmata about the induction on reachable states,
we needed to introduce another kind of lemmata, for exam-
ple, pred2(set(s,k,L),q) = pred2(s,q), which can be
proved by the induction on the data structure of queues q.

Finally, we obtain a complete proof score for inv1 with
609 proof passages which all return true, where three lem-
mata about reachable states and 17 lemmata about queues
are introduced. Since the data module VID of vehicles de-
notes the loose denotation, the system specification OTS de-
notes all systems following the LJPL protocol with arbitrary
number of vehicles. Our verification result guarantees that
the LJPL protocol is safe for any vehicles.

V. Conclusion

We described an OTS model of the LJPL protocol in
CafeOBJ language and verified a safety property by the
proof score method. The main contribution of our study
is to give a formal verification of the safety property of the
LJPL protocol for arbitrary number of vehicles.

Through the experience of formal verification of the
LJPL protocol, we faced lemmata about queues as well as
lemmata inv1∼inv4 about reachable states. Although to
find an appropriate lemma about reachable states we may
need an insight into a target system, the lemmata about
queues seem to have some pattern. To investigate a way to
construct a semi-automated support tool for the proof score
method for such data types is one of our future work.

In [2], not only the safety property we deal with in this
study but other important properties of intersection con-
trol protocols have also been verified, e.g. the deadlock-
freedom and the starvation-freedom properties. To specify
and verify such properties in our OTS/CafeOBJ specifica-
tion is another one of our future work.

Acknowledgment

This work was supported by JSPS KAKENHI Grant
Number JP19K11842.

References

[1] J. Lim, Y. Jeong, D. Park, and H. Lee, An efficient
distributed mutual exclusion algorithm for intersection
traffic control, The Journal of Supercomputing, vol.74,
pp.1090-1107, 2018.

[2] Moe Nandi Aung, Yati Phyo, Kazuhiro Ogata, Formal
Specification and Model Checking of the Lim-Jeong-
Park-Lee Autonomous Vehicle Intersection Control
Protocol，SEKE 2019，pp.159-208，2019.

[3] K. Ogata, and K. Futatsugi, Proof scores in the OT-
S/CafeOBJ method, FMOODS 2003, LNCS 2884,
pp.170-184. Springer, 2003.

[4] K. Ogata and K. Futatsugi, Modeling and verification
of real-time systems based on equations, Science of
computer programming, 66(2), pp.162-180, 2007.

[5] Masaki Nakamura, Shuki Higashi, Kazutoshi Sakak-
ibara, Kazuhiro Ogata, Specification and verifica-
tion of multitask real-time systems using the OTS/-
CafeOBJ method, IEICE Transactions on Informa-
tion and Systems, Vol.E105-A, No.5, pp.-, 2022. (ac-
cepted)

579

Improving the Early Rumor Detection Performance of
the Deep Learning Models By CGAN

Fangmin Dong2, Yumin Zhu2, Shuzhen Wan2, Yichun Xu1,2*
1Hubei Province Engineering Technology Research Center for Construction Quality Testing Equipments

2College of Computer and Information Technology
China Three Gorges University, Yichang 443002, Hubei, China

*Corresponding author email: xuyichun@ctgu.edu.cn

Abstract—Deep learning models are recently applied to detect
rumors on social media based on the information in the posts.
However, at the early stage of rumor propagation, due to the
lack of responses, the performance of these models often
degrades. In this paper, we propose a method based on the
conditional generative adversarial network, which can generate
the responses like data and help the deep learning models in
early detection. On two large-scale Sina Weibo datasets, the
proposed method is applied on the existing convolution neural
network model, the recurrent neural network model, and the
recursive neural network model. The results show that the
proposed method can significantly improve the performance of
the models in the case of zero response, and has performance
superiority in a certain early period.

Keywords-Rumor Detection, Deep Learning, Conditional
Generative Adversarial Network, Sina Weibo

I. INTRODUCTION1
The nowadays social media provided a place for the people

to spread his statements rapidly on the internet; however, the
rumors have also proliferated there. The proliferation of
rumors has caused significant damage to individuals and
society [1]. The social media operators and the government
have established the platforms to deal with the rumors, such as
WeiboPiyao, but these platforms rely on manual inspection, so
they are inefficient. In order to improve the efficiency,
machine learning technology has been applied to rumor
detection, such as support vector machine, decision tree, and
logistic regression [2]. These models work on the data features
of the events, which are extracted from the texts and images
within the posts, the user profiles, and the propagation
structure. However, the data features are also manually
extracted and the feature engineering is painstakingly detailed,
biased, and labor-intensive. Recently, the deep learning
techniques dispense with the complex manual feature
extraction and perform the rumor detection by the neural
networks, such as conventional neural networks (CNN) [3],
recurrent neural networks (RNN) [4], tree recurrent neural
networks (RvNN) [5, 6]. The reported results show that the
deep learning models generally have better performance
compared to traditional machine learning models.

This work was supported by the National Science Foundation of
China (U1703261).
DOI reference number: 10.18293/SEKE2022-030

Early detection is very important because it can reduce the
damages by the rumor propagation. It should be ideal to make
the detection when a user has just posted a source post and no
any other user follows him (we later call this case as detection
with zero response). On the other hand, since the
aforementioned learning models are trained on the events with
hundreds of responses, when they make the predictions with
less or no response, their performance will certainly decline,
because most important patterns may not appear at that time.
In comparison, the reported results showed that the CNN or
RNN models [3, 4, 7] had better early performance than the
traditional methods, and the recent RvNN models [5, 6] gave
the improved early detection results above the CNN and RNN
models. However, the early detection performances of these
models are still a little weak.

In this paper, we propose a method that can improve the
early detection performance of some deep learning models. We
believe that some conditional relationships exist between the
source (first) post and the responses, so that we train a
conditional generative adversarial network (CGAN) to
generate the response data from source post. In early detection,
when there is only a source post or with few responses, the
generated data is added to assist the detection. The idea behind
is that we adjust the test data and try to make it accord with the
distribution of the training data.

On two public Sina Weibo datasets, we applied the
proposed methods on the existing CNN model [3], LSTM
model [4] and RvNN model [5] respectively. The results show
that the improved CNN and RNN models are nearly exceed the
original RvNN model in the early detection, and moreover, the
RvNN model can also be improved.

II. RELATED WORKS

A. Deep Learning Models for Rumor Detection
In this section, we review the related deep learning models

for rumor detection.

CNNs. Convolutional neural network (CNN) is a multi-
layer network that uses local connectivity and shared weights
to reduce the network complexity and has been applied very
successfully in image classification [8]. CNN extracts features
by convolutional and pooling computations, and they are
suitable for the structured data, and were also used in text
classification [9]. Liu et al. used word vector to represents the
posts and responses and then applied CNN to perform rumor

580

detection [10]. Yu et al. divided the posts into groups by time
and used doc vector to represent them, finally used CNN to
extract high level information and achieved rumor detection
[3].

RNNs. Recurrent neural network (RNN) takes sequence
data as input, and performs recursive computation in the
sequence direction, thus it can capture the historical
information of the sequence. Ma et al. first applied RNN to
rumor detection and discussed the performance of different
RNN types, such as gate recurrent unit (GRU) and long short-
term memory (LSTM) [4]. Chen et al. used LSTM network
with soft attention mechanism [7]. Xu et al. used user
information to perform data preprocessing to improve the
performance of RNN [11].

Some other works combined CNN and RNN on the rumor
detection. Nguyen et al. used CNN and RNN sequentially to
score the reliability of a single tweet and then make the rumor
detection by a time series model [12]. Liu et al. made the
rumor detection only on the user data, that the data were
processed and synthesized by both CNN and RNN [13].

RvNN. Unlike the RNN which performs chain recursion
on sequence data, a recursive neural network (RvNN) which
makes recursion on a tree structure was proposed by Ma et al.
[5, 6]. They found that the propagation of information forms a
tree, and the rumor tree and the non-rumor tree have different
node relationships-the support and opposition structures are
different. So they proposed a tree-structured RvNN to extract
these relationships. Recently, the propagation of information
were handled with the graph convolutional networks [14-16],
where the tree structure were also used.

B. Generative Adversarial Network for Rumor Detection
Generative adversarial network (GAN) was proposed by

Goodfellow et al. [17], consisting of a generator and a
discriminator, where the generator generates fake data and the
discriminator tries to distinguish between the real and fake data.
During the training process, the generator and the
discriminator compete with each other and the final generated
data has the similar distribution as the real data. Currently
GAN has been widely used in computer vision, natural
language processing, and artificial intelligence [18]. When
some conditional parameters are added to the input, we get a
conditional generative adversarial network (CGAN), that the
data can be generated according to the conditions [19, 20].

GANs were applied in some classification problems, where
they were used to generate more data to help the training of the
classifiers [21, 22]. But in this paper, we apply the GAN in a
different way that the generated data is used in the prediction
phase.

The applications of GAN have also been found in rumor
detection field. Wang et al. used a GAN to remove the
specificity in different types of events, thus their model can
extract event-independent features and get good performance
[23]. Considering that some rumor mongers tried to mislead
the public with pseudo-responses, Ma et al. built a generator to
insert pseudo-responses and thus strengthen the discriminator
[24]. Song et al build adversary generator by encoder-decoder
framework to produce a response for malicious attack [14].

However, the objectives of these works are not related to the
early detection.

III. PROBLEM STATEMENT

In social media, most rumors are spreading only with
textual information, and the techniques based on texts are the
focus of rumor detection field. Other techniques based on
multimedia information also need the texts. So in this paper we
mainly conducted the rumor detection by the text of the posts.
Some relevant concepts are listed below:

Post: The text message posted by a user in social media
with a limited number of words. The first post about an event
is called the source post;

Response: A comment post made by a user after he read a
post. A response can be a comment to the source post, or to a
response;

After a user posts a source post P0 on social media, the
post is then read and responded by several other users.
Suppose there are N responses to the source post, which are
P1, P2 ..., and PN in time order. The sequence E=P0, P1,
P2 ..., PN is called an event.

The machine learning algorithm uses the event data to
train a model M, and then uses M to predict a new event being
a rumor or not. The early rumor detection takes place at the
early stage of propagation, that the number of responses N is
very small, even zero. Original models trained with full-life
event data will suffer performance degrade in early detection
due to the lack of responses. In this paper, we integrate
CGAN into the original model to improve its early detection
performance.

IV. EARLY RUMOR DETECTION METHOD

A. Overall Framework
The proposed method includes three main modules, which

are illustrated in Fig. 1 with different colors.

Input
layer

Hidden
layers

Output
layer

P(Rumor)
fp1,…

Generator

M
L
Pf’

P(T/F)

Mf

Discriminor

P0

Noise

p0

P(Rumor)

Figure 1. The framework of early rumor detection method

581

Original Deep learning Module: In the upper part of Fig.
1, from an original deep learning rumor detection model M,
we decompose a sub model Mf , which consists of the input
layer and all the hidden layers. With the inputs of source post
P0 and the responses P1, P2, ..., and PN, the feature f is
obtained through the hidden layers. The output layer is often a
linear layer with a sigmoid function.

CGAN module: In the middle part of Fig. 1, the
connection between the source post P0 and the feature f is
established through a conditional generative adversarial
network (CGAN). The generator outputs the fake feature f′
based on the input of P0 and a noise parameter, while the
discriminator tries to judge whether f and f′ are real. The
symbol indicates the concatenation of two vectors. After the
adversarial training of CGAN, the generator is finally able to
generate the features containing the information of responses.

MLP module: In the lower part of Fig. 1, Mf first extracts
the feature f from the inputs of P0, P1, P2, ..., and PN,
meanwhile the generator outputs a fake feature f′ by the
source post P0, and finally f and f′ are synthesized and fed to a
MLP (multi-layer perception) to get the rumor detection
results.

B. Design of CGAN
The CGAN module includes a generator and a

discriminator. The generator concatenates the source post P0
and the noise as the input, and outputs the generated feature
by a three layered fully-connected network,

)tanh(
2,1),(

),(

222

111

00

bxwf
ibxwrelux

Pzx

iiii

 (1)

The discriminator is another three layered perceptron,
which concatenates the source post and the feature as the
input, and then outputs the probability of the feature being
real or generated,

555

111

03

5,4),(
),(

bxwr
ibxwrelux

Pfx

iiii

 (2)

Let θ be the parameters (w0, w1, w2, b0, b1, b2), w be the
parameters (w3, w4, w5, b3, b4, b5), then the generator and
discriminator are denoted by),(0PzGf and

),(0PxDr w respectively. For the convenience, we use
superscript to indicate the id of the event, such
as),,,(10

i
N

iii PPPE . Let Mf denote the sub model
decomposed from the original deep learning model, we use
Wasserstein Loss [25] in the training of the discriminator,

m

i
PPzGD

m

m

i
PEMD

mwJ
iii

w
ii

fw
1

),,(1

1
,1

000 (3)

where m is the batch size of the data. The loss function of the
generator is defined as (4),

m

i
PPzGD

mθJ
iii

w
1

),,(1
00 (4)

C. Design of MLP
The final process of the early detection is finished by a

two layered MLP, which concatenates the real feature
)(EMf f and the generated feature),(' 0PzGf as the

input, and then outputs the probability of the event being
rumor,

)(
)(

)),(),((

777

6667

06

bxwsigmoidp
bxwrelux

PzGEMx f

(5)

We use the cross-entropy loss to train the MLP，

))1))(log(1()log(1

1
iii

m

i
i ypyp

m
J

(6)

where yi is the label of the event Ei.

V. EXPERIMENTS

A. Three Deep Learning Models to Be Improved
We use the proposed method to improve three recent

reported deep learning rumor detection models with different
early detection ability. The sub model decompositions are
illustrated in Fig 2, where the layers before “feature” make the
sub modelMf.

Input Conv1 Pool1

Conv2 Pool2 Dense P(rumor)

feature

(a)

Input LSTM1 LSTM2 Dense P(rumor)

feature

(b)

P(rumor)

P0

Dense

feature

P1

P3 P4
P5

P2

(c)

Figure 2. The models of CNN(a), LSTM(b), and RvNN(c)

CNN model [3]. As in Fig 2-a, in the input layer, the
authors divided all the posts of an event into groups by time
and then used doc vector to represent each group. They used
two convolutional lays with two pooling layers as the hidden

582

layers to extract the feature, and a fully-connected layer as the
output layer to make the classification.

LSTM model [4]. As in Fig 2-b, the authors also divided
the input posts into groups by time and then got a data
sequence. After converting the data into vectors, they extracted
the feature by two LSTM layers. Finally, they used a fully-
connected layer with sigmoid activation to finish the rumor
detection.

RvNN model [5]. As in Fig 2-c, the authors found that the
propagation of the posts in an event is tree-structured, so they
configured an RvNN layer at each node (post) of the tree.
Taking the post in a node and the output of its parent node as
the input, RvNN layer makes a computation and the results
flow to the child nodes. The computation is recursively
continued till to each leaf node, and then the outputs of all leaf
nodes are pooled to get the feature. The classification is
performed by a fully-connected layer finally.

In comparison, the CNN and LSTM models [3, 4] group all
the posts and then extract the features on the whole data, while
the RvNN model [5] processes each post one by one, so the
RvNN model depends more on the pattern of single post and
thus it has better early detection ability than the CNN and
RNN models.

B. Dataset
The experiments were on two large Sina Weibo datasets,

and their statistical information is shown in TABLE I. .

TABLE I. WEIBO AND CHECKED DATASETS.

Name Weibo CHECKED
Year 2016 2021
Number of rumor 2313 344
Number of non-rumor 2351 1760
Average # of responses in a rumor 741 48
Average # of responses in a non-rumor 889 664

The first dataset Weibo is a large Sina Weibo dataset
reported in the paper [4], with events covering various aspects
of politics, economics, entertainment, etc. It is a balanced
dataset and each event in it is with a large number of responses,
the complete propagation information is also provided.

The second dataset CHECKED is a Sina Weibo dataset
recently published in the paper [26], which is special about the
COVID-19 events. It is unbalanced dataset with a ratio of
positive and negative samples of 1:5. In addition, the average
numbers of responses of rumor and non-rumor are very
different, that the former is only 48. It should be because that
the society is sensitive to COVID-19 rumors that they were
ended in short time.

The improvements of the CNN, LSTM, and RvNN were
tested on the Weibo dataset. Because the CHECKED dataset
does not provide the tree structure information among the
responses, so the RvNN was not test on it.

C. Parameter Setting
In the experiments, the same hyper-parameters are used

for the CGAN which can be modified according to the models
to be improved in practice. For the generator, P0 needs to be

normalized and the noise is standard normally distributed, and
they are both 100-dimensional vectors. After the
concatenation, a 200-dimensional vector is obtained and then
fed to three fully connected layers and the dimensions become
160, 120 and 100 in turns. Because there are positive and
negative elements in the real feature vector, we use tanh as the
active function in the last layer. For the discriminator, the
input P0 and features are both 100-dimensional vectors and
concatenated into a 200-dimensional vector, and then it is fed
to a three layer perceptron, the dimension is convert to 100,
20, and 1 in turns. We choose RMSprop [24] as the optimizer.
The learning rate α is set to 5◊10 -5, the truncation amplitude
c is set to 0.01, the batch size m is set to 128, and the
discriminator-generator training ratio n is set to 5.

The input layer of the MLP module concatenates two
100-dimension feature vectors and gets a 200-dimensioal
vector. Passing through two fully-connected layers, the
dimensions of the vector become 100 and 1 in turn, and with a
sigmoid activation, we get the probability of being a rumor.
The optimizer of MLP is Adagrad, and the learning rate is set
to 0.01。

D. Results and Analysis
The 5-fold cross-validation was performed for each model.

In the prediction step, we chose k responses of each event in
the time order to test early detection performance of the
original models and the proposed model. The accuracy,
precision, recall, and F1 are used as the metrics of evaluation.
In addition, due to the unbalance in CHECKED, Macro F1 is
also used.

1) Performance of the original models on all responses
We first trained the three original models with all the

responses. Because CGAN is trained on the features extracted
by the original models, their performances are vital to the
proposed method. The results in TABLE II show that the
trained original models all have good performance, and
provide a good basis for the subsequent steps.

TABLE II. MACRO F1 VALUE OF ORIGINAL MODELS.

Dataset CNN LSTM RvNN
Weibo 0.930 0.933 0.912
CHECKED 0.985 0.982 \

2) Results on Weibo
a) Early detection with zero response
TABLE III shows the performance of the proposed method

in early detections when there is zero response, where CNN,
LSTM and RvNN are the original models and the iCNN,
iLSTM and iRvNN are the corresponding improved models.

We find that if only the source post is provided, the
performances of three original models are seriously degraded
compared to the results inTABLE II. It shows that the
responses play an important role in the detection. The
accuracies of CNN and LSTM are just 0.504 and 0.582. We
noted that the recall of class rumor is quite small which means
a large number of rumors are misclassified to be non-rumors.
By the help of the generated features, the accuracies of iCNN

583

and iLSTM are increased about 23% and 13% respectively.
The macro F1 of them are also improved about 37% and 20%
respectively.

Among the three models, the original RvNN has better
performance when there is no response that it gets an accuracy
of 0.734. The improved model iCNN has already outperformed
the RvNN model in accuracy, while iLSTM is closed to it.
Moreover, the RvNN can also be improved that the accuracy
and Macro F1 of iRvNN are about 1% above the original
RvNN.

TABLE III. RESULTS ONWEIBO WITH ZERO RESPONSE

Models Acc Macro
F1

Rumor Non-rumor
Prec Recall F1 Prec Recall F1

CNN 0.504 0.335 0 0 0 0.504 1.000 0.670
iCNN 0.737 0.718 0.921 0.494 0.643 0.673 0.961 0.792
LSTM 0.582 0.505 0.862 0.19 0.309 0.549 0.968 0.700
iLSTM 0.716 0.702 0.823 0.519 0.637 0.669 0.897 0.767
RvNN 0.734 0.729 0.689 0.860 0.765 0.810 0.606 0.693
iRvNN 0.743 0.743 0.688 0.926 0.789 0.871 0.544 0.699

Figure 3. Results on Weibo with some responses

b) Early Detection in different time stages
With the increase of the responses, the accuracies of the

three original models increase. However, the proposed method
can still improve their performance in certain time stages (Fig.
3). The iCNN model improves the accuracy about 3.4% when
there are 40 responses, and it keeps the superiority until there
are 200 responses. The iLSTM model improves the accuracy
about 4.7% in the first 40 responses, and the improvement is
kept above 3% till 200 responses. For the iRvNN model, its
improvement is about 1% over the RvNN until there are 200
responses. Among the six models, iLSTM gains the best early
detection performance when there are some responses.

According to TABLE I, the average response in each event
is less than 900, which indicates that the proposed method can
be applied in a long early time stage.

3) Results on CHECKED
The results on the CHECKED dataset are shown in TABLE

IV and Fig. 4. Because the responses in rumor class are

relatively few, we chose 80 responses at most to test the early
detection performance. The proposed method also shows the
performance superiority.
In the cases of zero responses, CNN and LSTM have bad

accuracy. The precision and recall show that the models tend
to wrongly classify most events as rumors. The accuracies of
the proposed iCNN and iLSTM are improved above 60% in
the case of zero response.
When there are some responses, the accuracies of CNN and

LSTM are both very high. However iCNN and iLSTM can
still improve the accuracy about 1% and the superiorities are
kept in the early 80 responses.

TABLE IV. RESULTS ON CHECKED WITH ZERO RESPONSE

Models Acc Macro F1
Rumor Non-rumor

Prec Recall F1 Prec Recall F1
CNN 0.164 0.142 0.164 1.000 0.281 0.400 0.001 0.002
iCNN 0.905 0.840 0.622 0.903 0.737 0.982 0.905 0.942
LSTM 0.163 0.141 0.163 1.000 0.281 0 0 0
iLSTM 0.845 0.775 0.488 0.967 0.649 0.993 0.824 0.901

Figure 4. Results on CHECKED with some responses

4) Cases Study
Because the generated features are just vectors of real

number, we cannot observe the semantic information directly
from them. However, the relationship between the feature
generated from the source post (FG), the feature extracted by
the original model from some responses in the early stage (FE),
and the features extracted by the original model from all the
responses (FA) can be investigated through data visualization.

Fig. 5-a is from the event with ID 3514388935498432 in
Weibo dataset, which is a rumor correctly predicted by the
iCNN model with zero response, but the original CNN model
makes wrong prediction. In the figure, the x-axis represents the
elements of the 100-dimensinal feature vector, and the color
represents the value of the each element. We can see that the
magnitude and variation of the elements in the generated
feature (FG) is more similar to the feature from all the
responses (FA) compared to the early feature (FE) extracted by
CNN.

Fig. 5-b shows the different situation of another event with
ID 3912024620676243, which is a non-rumor, and the

584

prediction is on 40 responses. The CNN model classifies it as a
rumor incorrectly, but the iCNN model makes a correct
prediction. It can be seen that the variation of the elements in
FG is still more similar to the FA compared to the FE of the
original CNN model.

The case study shows that the CGAN model is able to
simulate the distribution of the responses.

(b)
Figure 5. Comparison of the features of FG, FE, and FA from two sample

events in Weibo.

VI. CONCLUSIONS
In the early stage of rumor propagation, the performance

of existing deep learning models is not high due to the small
amount of response data. In this paper, we generate the feature
data containing the response information based on the source
post by the conditional adversarial generative network, and
the generated feature is combined with the real feature to
improve the early detection performance. The effectiveness
and generality of this method are verified on three deep
learning models.

Future work is to apply this method to more deep learning
models, and investigate how to make the improvements more
effective.

REFERENCES
[1] Y. Liu, "Two Defendants Were Sentenced in Yili Rumor Case ", ed:

China News Agency 2018.
[2] G. Liang, W. He, C. Xu, and L. Chen, "Rumor Identification in

Microblogging Systems Based on Users Behavior," IEEE Transactions on
Computational Social Systems, vol. 2, no. 3, p. 10, 2015.

[3] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan, "A Convolutional Approach
for Misinformation Identification," presented at the Proceedings of the
26th International Joint Conference on Artificial Intelligence, 2017.

[4] J. Ma et al., "Detecting Rumors from Microblogs with Recurrent Neural
Networks," presented at the IJCAI2016 New York, USA, July 9–15, 2016,
2016.

[5] J. Ma, W. Gao, and K.-F. Wong, "Rumor Detection on Twitter with Tree-
structured Recursive Neural Networks," presented at the Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics,
Melbourne, Australia, 2018.

[6] J. Ma, W. Gao, S. Joty, and K. F. Wong, "An Attention-based Rumor
Detection Model with Tree-structured Recursive Neural Networks," ACM
Transactions on Intelligent Systems and Technology, vol. 11, no. 4, pp. 1-
28, 2020.

[7] T. Chen, X. Li, H. Yin, and J. Zhang, "Call Attention to Rumors: Deep
Attention Based Recurrent Neural Networks for Early Rumor Detection,"
presented at the Pacific-Asia Conference on Knowledge Discovery and
Data Mining, 2018.

[8] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image
Recognition," presented at the Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016.

[9] Y. Kim, "Convolutional Neural Networks for Sentence Classification,"
Eprint Arxiv, 2014.

[10] Z. Liu, Z. Wei, and R. Zhang, "Rumor Detection Based on
Convolutional Neural Network," Journal of Computer Applications, vol.
37, no. 11, pp. 3053-3056, 2017.

[11] Y. Xu, C. Wang, Z. Dan, S. Sun, and F. Dong, "Deep Recurrent Neural
Network and Data Filtering for Rumor Detection on Sina Weibo,"
Symmetry, vol. 11, no. 11, p. 1408, 2019.

[12] T. N. Nguyen, C. Li, and C. Nieder´ee, "On Early-stage Debunking
Rumors on Twitter: Leveraging the Wisdom of Weak Learners,"
presented at the The 9th International Conference on Social Informatics,
2017.

[13] Y. Liu and Y.-F. Wu, "Early Detection of Fake News on Social Media
Through Propagation Path Classification with Recurrent and
Convolutional Networks," presented at the Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[14] Y.-Z. Song, Y.-S. Chen, Y.-T. Chang, S.-Y. Weng, and H.-H. Shuai,
"Adversary-Aware Rumor Detection," presented at the ACL-IJCNLP
2021, 2021.

[15] Tian Bian et al., "Rumor Detection on Social Media with Bi-Directional
Graph Convolutional Networks," presented at the AAAI 2020, 2020.

[16] L. Wei, D. Hu, W. Zhou, Z. Yue, and S. Hu, "Towards Propagation
Uncertainty: Edge-enhanced Bayesian Graph Convolutional Networks for
Rumor Detection," presented at the ACL2021, 2021.

[17] I. J. Goodfellow et al., "Generative Adversarial Networks," Advances in
Neural Information Processing Systems, vol. 3, pp. 2672-2680, 2014.

[18] D. Saxena and J. Cao, "Generative Adversarial Networks (GANs)," ACM
Computing Surveys (CSUR), vol. 54, pp. 1 - 42, 2021.

[19] D. Chang, W. Yang, X. Yong, G. Zhang, and Y. Wang, "Seismic Data
Interpolation Using Dual-Domain Conditional Generative Adversarial
Networks," IEEE Geoscience and Remote Sensing Letters, vol. PP, no. 99,
pp. 1-5, 2020.

[20] H Zhang et al., "StackGAN: Text to Photo-realistic Image Synthesis
with Stacked Generative Adversarial Networks," 2017 IEEE International
Conference on Computer Vision (ICCV), 2017.

[21] S. W. Huang, C. T. Lin, S. P. Chen, Y. Y. Wu, and S. H. Lai, "AugGAN:
Cross Domain Adaptation with GAN-based Data Augmentation,"
presented at the ECCV, 2018.

[22] Z. Zhong, L. Zheng, Z. Zheng, S. Li, and Y. Yang, "Camera Style
Adaptation for Person Re-identification," presented at the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18-23 June 2018, 2018.

[23] Y. Wang et al., "EANN: Event Adversarial Neural Networks for Multi-
Modal Fake News Detection," presented at the 24 th Acm Sigkdd
International Conference, 2018.

[24] J. Ma, W. Gao, and K.-F. Wong, "Detect Rumors on Twitter by
Promoting Information Campaigns with Generative Adversarial
Learning," presented at the The World Wide Web Conference, San
Francisco, CA, USA, 2019.

[25] M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein GAN." doi:
arXiv:1701.07875 [stat.ML]

[26] C. Yang, X. Zhou, and R. Zafarani, "CHECKED: Chinese COVID-19
Fake News Dataset," Social Network Analysis and Mining, vol. 11, no. 1,
p. 58, 2021.

585

Recurrent Graph Convolutional Network for Rumor
Detection

Song Wu, Hailing Xiong*, Ye Yang, Jinming Zhang, Chenwei Lin
College of Computer and Information Science, Southwest University, Chongqing, China

wusong5543@gmail.com

Abstract—The development of social media has provided an ideal
platform for sharing information, but it has also become a hotbed
for rumor posting and spreading. Existing rumor detection
methods mainly look for clues from the textual content, static
propagation structures. However, existing studies do not make
full use of user information while ignoring the dynamic change of
the communication structure. Therefore, this paper proposes a
rumor detection model based on dynamic propagation structure
called Recurrent Graph Convolutional Network (Re-GCN). In
terms of rumor content representation, both the textual content
of rumors and user information are considered. In terms of
propagation structure, the dynamic propagation structure of
rumors is considered. A dynamically changing propagation
structure representation is constructed by dividing rumor
propagation into multiple stages, and the dynamically changing
propagation features are captured using a Bi-directional
Recurrent Neural Network (Bi-RNN) and Graph Convolutional
Networks (GCN). Finally, the attention mechanism is introduced
to fuse the information of each stage to classify rumors.
Experimental results on two real-world datasets show that the
proposed method has significant improvement compared to the
state-of-the-art benchmark methods.

Keywords-rumor detection; graph convolutional network;
dynamic propagation structure; social media

I. INTRODUCTION
Mobile Internet has become an integral part of people's

lives. The openness and convenience of social media platforms
such as Twitter, Facebook, and Weibo have lowered the
threshold of information exchange, but it has also become a
hotbed for rumors to spread. An official report released by
Weibo shows that the Weibo platform effectively dealt with
76,107 rumors in 2020[1]. Rumors seriously mislead people's
minds and even cause substantial economic losses, and
endanger public safety. Therefore, there is an urgent need for
fast and effective methods to detect social media rumors in
response to the potential threats that rumors may pose.

Most early rumor detection methods mainly used manually
extracted features such as text content[2] [3], user features[2],
and propagation methods [4] [5] to train supervised classifiers,
e.g., decision trees[2], support vector machine (SVM)[6]. Some
studies have mined more effective features, such as temporal
structure features[7], sentiment attitude of posts[8]. However,
such methods rely heavily on feature engineering, which is
time-consuming and suffers from insufficient robustness.

Recent studies have mainly employed deep learning
methods to fully exploit the deep features of rumors by learning

DOI reference number: 10.18293/SEKE2022-063

high-level representations of rumor texts through various
neural networks, such as RNN and Gated Recurrent
Unit(GRU)[10], to detect rumors. Some studies also considered
the propagation structure of rumors and constructed top-down
propagation trees and bottom-up propagation trees based on the
retweet-reply relationships among posts in social media, as
shown in Fig.1. The node "1" represents the source post of the
rumor, and the other nodes represent the retweeted messages
related to the source post. Then, the structural features of rumor
propagation are captured by Recursive Neural
Networks(RvNN)[11] and GCN[12][15].

Figure 1. A bottom-up/top-down propagation tree. Node "1" represents the
source post, i.e., the earliest post, and the other nodes represent the re-posted
comment messages related to the source post. The number in the node
indicates the order in which the messages are posted, and the larger the
number, the later the message is posted.

Although the above studies have achieved good results in
rumor detection tasks, there are still two shortcomings. The
first is in the representation of the content of the rumor, these
methods mainly consider rumor text content and ignore the
user information contained in social media, which proved to be
an essential clue for rumor detection in earlier studies[2]. The
second is in the representation of the structure of rumor
propagation, they consider the static structure of rumor
propagation and ignore the change of rumor propagation
structure over time, i.e., the dynamic propagation structure.
Taking Fig.2 as an example, the global propagation structures
of the propagation trees (a) and (b) are the same, but there are
differences in their propagation structures when different cutoff
times are chosen.

Figure 2. When the selected cutoff time is "6", which is the case of global
propagation structure, the propagation trees (a) and (b) have the same structure.
However, in the case of not global propagation structure, for example, when
the cutoff time is "3", the structure of (a) can be described as
"�(������ ����) → �1, � → �2" and the structure of (b) can be described as
"� → �1 → �2 ", which are different.

586

To address the above issues, our research is concerned with
(1) Considering both textual content and user information in
the rumor detection task. (2) modeling the dynamic
propagation structure of rumors and applying it to rumor
detection. In this paper, we propose a novel Recurrent Graph
Convolutional Network (Re-GCN) for rumor detection. First,
we consider both textual content and user information during
rumor propagation and extract features from them as the
content representation of rumors. Second, we constructed a
representation of the dynamic propagation structure by dividing
the propagation tree into multiple stages at the same number
interval, and Fig.3 shows an example of dividing a rumor
propagation tree into 4 stages. We also propose the Re-GCN
model to model the dynamic propagation structure and classify
the rumors. The main contributions of this work are as follows.

 We consider both textual content and user information in
social media, and encode them separately using different
representations.

 We analyze and introduce the dynamic propagation
structure of rumors. A multi-stage propagation structure
representation method is proposed and a Recurrent Graph
Convolutional Network (Re-GCN) is designed to model
the dynamic propagation structure.

 Experiments on the Weibo and PHEME datasets show
that our model improves significantly on the rumor
detection task compared to some state-of-the-art models.

The rest of this paper is organized as follows. In Section II,
we describe the related work on rumor detection. The problem
statement is discussed in Section III. In Section IV, we describe
the details of the proposed Re-GCN model. In Section V, we
present the experiments and analyze the experimental results.
In Section VI, we summarize the research of this paper.

Figure 3. The rumor propagation is divided into 4 stages based on the
number of nodes interval to represent the dynamic propagation of rumors, and
the difference in the number of nodes between each stage is the same.

II. RELATEDWORK

In recent years, research on automatic rumor detection on
social media has attracted much attention. For the sake of
description, this paper adopts the concept of "event", which
consists of a source post and retweeted posts related to the
source post. The rumor detection task aims to determine
whether the event is a rumor based on information of the
source post and related retweeted comments. Related research
can be divided into two main categories: (1) Feature
engineering-based approaches; (2) Deep learning-based
approaches.

Most early studies mainly used feature engineering-based
approaches to extract hand-crafted features from event-related
post messages and classify events using classifiers such as
decision trees, random forests, and SVM. Castillo et al. [2]
considered features such as the average sentiment score of
messages, and the proportion of messages with URLs in their

research work on Twitter news topic credibility assessment.
Yang et al.[6] considered two new features in their work on
rumor detection: the client used by the user to post the message
and the location of the event mentioned in the message content;
Kwon et al.[16] proposed a method for rumor detection based
on rumor propagation time, structure, and linguistic features;
Zhang et al.[17] considered four implicit content-based features:
popularity, internal and external consistency, sentiment polarity
and comment opinion. Feature engineering-based methods
usually require extensive pre-processing and feature design
processes, which are less efficient. Hand-crafted features also
have the limitation of not being robust enough.

As deep learning methods have achieved remarkable results
in various natural language processing tasks, many scholars
have also applied deep learning models to rumor detection. Ma
et al.[10] first applied deep learning models to the field of
rumor detection, using RNN and GRU to model rumor
propagation, and achieved significant improvements compared
to previous benchmark methods. Chen et al.[18] improved the
RNN-based approach by combining attentional mechanisms
with RNN and introducing attentional mechanisms to capture
text features. Yu et al.[9] used Doc2vec method to obtain text
vectors of tweets in periods, stitched the text vectors of each
period into a feature matrix of events, and used CNN to learn
the hidden layer representation of events. Bian et al.[12] first
applied GCN to rumor detection research and proposed a Bi-
Directional Graph Convolutional Neural Network(Bi-GCN)
model that takes into account the top-down and bottom-up
propagation structure of rumors. Wei et al.[13] considered the
propagation uncertainty of rumor detection and proposed an
Edge-enhanced Bayesian Graph Convolutional
Network(EBGCN) to capture robust structural features. Lao et
al.[14] considered both linear temporal sequence and the non-
linear diffusion structure, capturing linear sequence features by
LSTM and nonlinear structural features by GCN. For the
limited rumor labeling data, He et al.[15] designed three event
enhancement strategies and proposed the Rumor Detection on
social media with Event Augmentations(REDA) framework to
learn event representation by self-supervised pre-training.
However, most of these methods focus on the textual content of
rumors and ignore other types of information in social media.
In contrast, the representation of the rumor propagation
structure mainly focuses on the static structure of rumor
propagation and ignores the dynamic change of the rumor
propagation structure with the sequential posting of posts.

Previous work has provided valuable ideas for our study.
To address the deficiencies in content representation, we
consider both textual content and user information. In terms of
propagation structure, we introduce a dynamic propagation
structure representation and design a Re-GCN model for rumor
detection.

III. PROBLEM STATEMENT

In this paper, the rumor detection dataset is defined as � =
{�1, �2, …, ��}where �� represents the �-th event and � is the
number of events. The ground-truth label of all events defined
as � = {�1, �2, …, ��} where �� denotes the label of �� . ��
contains several posts, �� = {��, �1

� , �2
� , …,���−1

� , } ,where ��
denotes the number of posts contained in �� , �� denotes the

587

source post, and ��
� denotes the �-th related reply or retweet

post. We denote the propagation structure of �� by the directed
graph �� =< ��, �� > . where �� denotes the set of nodes of
�� and �� denotes the set of edges of �� . As shown in Fig.1,
each post is a node, and if the post �1

� replies to ��, there is a
directed edge from �� to �1

� .

The problem to be solved in this paper can be summarized
as follows: given a rumor dataset, learn a classifier � that
maps each event in C to the ground-truth label(rumor/non-
rumor)

�: � → �.

Figure 4. Our Re-GCN rumor detection model.

IV. RE-GCN RUMOR DETECTION MODEL

This section proposes a dynamic propagation structure-
based rumor detection method called Recurrent Graph
Convolutional Network (Re-GCN). The core idea of Re-GCN
is to learn the appropriate high-level representation from the
propagation structure of rumors at each stage. Re-GCN consists
of four components: post content representation module, GCN
module, Bi-RNN module, feature fusion and classification
module. Specifically, the event representation module describes
mapping the post text and user information in the event to the
vector space and the construction process of the dynamic
propagation structure representation of the event. The GCN
module obtains the high-level node representation of each stage
of event propagation by GCN. The Bi-RNN module models the
dynamic changes of the propagation structure by using the
high-level node representations of the event phases obtained
from the GCN module as the input sequence of the Bi-RNN.
The feature fusion and rumor detection module use the
attention mechanism to fuse the high-level features of the
events in each stage and perform classification. Fig.4 shows the
structure of the proposed model.

We discuss how to use the Re-GCN to detect an event �
with post count � . The same calculation is used for all other
events.

A. Event Representation
The event representation of rumors is mainly divided into

post content representation and dynamic propagation structure
representation. We arrange all posts in the event according to
the posting time from early to late, dividing them into �
copies according to the number equally, which corresponds to
the � stages of rumor propagation, and � takes the value of

6 in this paper. The propagation structure of the � -th stage
contains the first � number of posts, i.e., ��

�
posts.

1) Post Content Representation
For the post content, taking a post in an event as an

example, we consider both the user information and the text
content of the post. User information features mainly refer to
the content of the user account registration and some statistical
features under that account. Table I and Table II show the user
information in the selected Weibo[10] and PHEME[19]
datasets.

TABLE I. USER INFORMATION EXTRACTED FROM WEIBO.

No. Feature Type
1 GENDER Binary
2 VERIFIED Binary
3 USER_GEO_ENABLED Binary
4 BI_FOLLOWERS_COUNT Integer
5 FRIENDS_COUNT Integer
6 FOLLOWERS_COUNT Integer
7 STATUSES_COUNT Integer
8 FAVOURITES_COUNT Integer
9 COMMENTS_COUNT Integer

TABLE II. USER INFORMATION EXTRACTED FROM PHEME.

No. Feature Type
1 VERIFIED Binary
2 USER_GEO_ENABLED Binary
3 FAVOURITES_COUNT Integer
4 RETWEET_COUNT Integer
5 FOLLOWERS_COUNT Integer
6 LISTED_COUNT Integer
7 STATUSES_COUNT Integer
8 FRIENDS_COUNT Integer

588

Then we describe the preprocessing of these features. We
preprocess them using One-Hot encoding for binary features
such as “VERIFIED” in user information. For integer features
such as “FRIENDS_COUNT” in user information, we use
normalization to process them. The discrete features are then
spliced with the numerical features as the user information
feature representation. For text content, BERT[20] is an
excellent algorithm to obtain text vector representation, and
we use the pre-trained BERT-base model to extract the
representation vector of text content. Finally, the user
information feature representation is stitched with the text
content representation to obtain the post content representation
vector.

We construct the content feature matrix � =
{�1, �2, …, ��} for each stage of the event based on the �
stages of rumor propagation, where �� denotes the content
feature matrix of the �-th stage, which consists of the content
representation vectors of the first ��

�
posts.

2) Dynamic propagation structure representation
Taking stage � of rumor propagation as an example, we

define the adjacency matrix �� corresponding to the top-
down propagation structure based on the forward-reply
relationship between posts in the � stage. The values of the
adjacency matrix �� are defined in Eq.1. We consider both
the top-down and bottom-up propagation structures, and the
adjacency matrix corresponding to the top-down propagation
structure is denoted as ���� = �� . The adjacency matrix
corresponding to the bottom-up propagation structure is
denoted as ���� = ���, ���� is the transpose of ��.

(��)�� =
1, �� ����� � ������� �� ����� �
0, ��ℎ������ (1)

We construct the adjacency matrix ��� =
{�1��, �2��, …, ����} and ��� = {�1��, �2��, …, ����} for both
top-down and bottom-up propagation structures of � stages.

B. GCN module
GNN-based methods have achieved impressive results in

many fields (e.g., click-through rate prediction[22], text
classification[23]), among which GCN is a very effective
method for processing graph structured data by updating the
node's embedding based on its neighbors. GCN can capture
information from direct and indirect neighbors of a node
through a stacked hierarchy. There exist several types of
message propagation functions for GCN. In this paper, we use
the message propagation function defined by GCN in the first-
order approximation of ChebNet[21]. For a top-down
propagation structure, the 2-layers GCN is calculated as

��0
�� = � ���������0

�� (2)
��1
�� = � �������0

����1
�� (3)

Where ����� = �−12������
−12 is the normalized adjacency

matrix, ����� is ���� plus the self-loop, � is the degree matrix,
and ��0

�� and ��1
�� denote the GCN weight parameters of the

first and second layers, respectively. For the bottom-up
propagation structure, the same computational procedure can
be used to obtain ��1

�� .We use ���� as the activation

function. To prevent overfitting, we apply the Dropout[24]
regularization method to the GCN.

We use mean pooling to aggregate information from these
two sets of node representations and then stitch the top-down
propagation features and bottom-up propagation features to
obtain the final representation of the propagation features. It is
formulated as

���� = ���� ��1
�� (4)

���� = ���� ��1
�� (5)

�� = ������ ����, ���� (6)

For each of the N stages of rumor propagation, we obtain
its propagation characteristics, which are denoted as � =
{�1, �2, . . . , ��} for all stages.

C. Bi-RNN module
RNN-based approaches are effective in modeling

sequential data. We use Bi-RNN to model the dynamically
changing propagation structure with � as the input sequence
of Bi-RNN. Bi-RNN consists of forward RNN and backward
RNN, and the computation procedures of forward RNN and
backward RNN are shown in Eq. 7and Eq. 8, respectively.
Then we splice the output of forwarding RNN and backward
RNN as the output of the current moment, as shown in Eq. 9.

ℎ���� = tanh ���� �� +���� ℎ�� �−1 + ��� (7)

ℎ���� = tanh ������ +�����ℎ���+1 + ��� (8)

ℎ� = ������ ℎ���� , ℎ���� (9)

Where (���� , ����) and (����, �����) are the weight parameters inside
the forward RNN(�����������) and backward RNN(�����������) hidden
layer cells, ��� and ��� are the bias of the ����������� and �����������. ��
denotes the propagation characteristics of the event at stage �,
tanh is the activation functions of ����������� and ����������� ,
respectively, ℎ���� and ℎ���� are the outputs of the ����������� and
����������� at moment � , and ℎ� denotes the splicing of ℎ���� and
ℎ���� as the outputs of the Bi-RNN at moment �.

D. Feature fusion and classification
In order to enable the model to make focused use of the

information in each stage of rumor propagation, we use the
attention mechanism to assign attention weights to the output
of the hidden state by the Bi-RNN at each moment. The
attention mechanism is calculated as

�� = tanh ��ℎ� + �� (10)

�� =
exp �����
� exp ������

(11)

� = ������ (12)

Where �� is the hidden layer representation of ℎ� after a
hidden layer with ���ℎ as the activation function, �� and
�� are the weight parameter matrix and bias, respectively. ��
is the random initialized weight parameter, �� is the
calculated weight value of the hidden state at each moment of
the Bi-RNN, and � is the sequence representation obtained

589

by weighting and summing the hidden state values at each
moment. Finally, a fully connected layer and a �������
layer are used to calculate the prediction results �� of the
events.

�� = ������� �� � (13)

We train all parameters of the Re-GCN model by
minimizing the cross-entropy of the ground-truth labels and
predicted labels. To speed up the convergence of the model,
we use the Adam[25] optimization algorithm to update the
model parameters.

V. EXPERIMENTS

In this section, we compare the performance of the
proposed Re-GCN model with that of some state-of-the-art
benchmark models.

A. Datasets
We evaluate our proposed method on two real-world

datasets: Weibo[10] and PHEME[19]. In all datasets, nodes
refer to posts, and edges represent retweet or reply
relationships. Both Weibo and PHEME contain two binary
labels, false rumors (F) and true rumors (T). The tags of each
event in Weibo are annotated by the Sina Community
Management Center, which reports various error messages[10].
PHEME contains relevant rumor and non-rumor posts that
appeared on Twitter during the period when some breaking
news was released. The statistics for both datasets are shown
in Table III.

TABLE III. STATISTICS OF THE DATASETS

Statistic PHEME Weibo
Of source tweets 5802 4664
Of tree nodes 30376 3805656
Of non-rumors 3803 2351
Of rumors 1972 2313
Avg. time length/tree 18 Hours 2461 Hours
Avg. of posts/tree 6 816
Max of posts/tree 228 59318
Min of posts/tree 3 10

B. Baselines
We compare the proposed model with some state-of-the-

art benchmarking methods, including feature engineering-
based methods and deep learning-based methods.

The comparison methods are as follows. DTC[2]: a rumor
detection method that uses a decision tree classifier based on
various manual features to obtain the credibility of information.
SVM-TS[26]: a linear SVM classifier that uses hand-crafted
features to construct a time series model for rumor detection.
DTR[27]: a decision tree based ranking model for rumor
detection by querying phrases. GRU[10]: a recurrent neural
network-based rumor detection model with GRU units that
learns rumor representations by modeling the sequential
structure of related posts. RvNN[11]: a rumor detection
method based on tree-structured recurrent neural networks
with GRU units that learn rumor representation by propagation
structure. Bi-GCN[12]: a GCN-based rumor detection model
that captures the features of rumor propagation through top-
down and bottom-up rumor propagation structures.

As in the original paper[12], we randomly partitioned the
dataset into five sections and performed 5-fold cross-
validation to obtain stable results. For Bi-GCN, which also
uses graph structures, we conducted experiments using the
same Bert-based semantic vectors as this paper. For the Weibo
and PHEME datasets, we evaluated the accuracy (Acc.) of the
two categories and the precision (Prec.), recall (Rec.), and F1
value (F1) of each category. The hidden feature vector
dimension of each node was 64, and the dropout was set to 0.5.
The training procedure was iterated for 100 epochs, and early
stopping[28] was used when the validation loss stopped
decreasing by 7 epochs.

C. Results and analysis
Table IV and Table V show the experimental results of the

proposed method with all the comparison methods on the
Weibo and PHEME datasets.

TABLE IV. RUMOR DETECTION RESULTS ON WEIBO DATASET

Method Acc. rumor Non-rumor
Prec. Rec. F1 Prec. Rec. F1

DTC 0.831 0.847 0.815 0.831 0.815 0.847 0.830
SVM-TS 0.857 0.839 0.885 0.861 0.878 0.830 0.857
DTR 0.732 0.738 0.715 0.726 0.726 0.749 0.737
GRU 0.899 0.865 0.946 0.904 0.940 0.852 0.894
RvNN 0.928 0.914 0.951 0.932 0.934 0.905 0.919
Bi-GCN 0.954 0.949 0.956 0.952 0.951 0.955 0.953
Re-GCN 0.968 0.982 0.954 0.967 0.954 0.982 0.967

TABLE V. RUMOR DETECTION RESULTS ON PHEME DATASET

Method Acc. rumor Non-rumor
Prec. Rec. F1 Prec. Rec. F1

DTC 0.670 0.572 0.435 0.494 0.687 0.837 0.755
SVM-TS 0.717 0.318 0.541 0.405 0.832 0.786 0.814
DTR 0.657 0.472 0.239 0.317 0.695 0.867 0.772
GRU 0.775 0.667 0.643 0.658 0.825 0.840 0.832
RvNN 0.820 0.733 0.741 0.731 0.869 0.857 0.867
Bi-GCN 0.828 0.771 0.714 0.736 0.858 0.887 0.871
Re-GCN 0.845 0.767 0.781 0.772 0.886 0.879 0.882

First, it can be clearly observed that the deep learning-
based methods (GRU, RvNN, Bi-GCN, and Re-GCN)
significantly outperform the manual feature-based methods
(DTC, SVM-TS, and DTR). This is mainly due to the ability
of deep learning methods to learn advanced representations of
rumors and thus capture more effective features. This proves
the importance of studying deep learning methods for rumor
detection.

Secondly, among the deep learning-based methods, RvNN,
Bi-GCN, and Re-GCN perform better relative to GRU since
they consider the rumor propagation structure, while GRU
ignores important rumor propagation structure features. It can
also be observed that RvNN performs poorly relative to Bi-
GCN due to the fact that RvNN is tree-structured by nature
and it uses the hidden features of all leaf nodes as the final
event representation, so it is more susceptible to the latest
postings, resulting in the loss of more information from
previous posts.

Finally, our proposed Re-GCN method is significantly
better than the Bi-GCN method. There are two main reasons.
First, Bi-GCN only considers the static propagation structure,

590

and Re-GCN takes into account the important factor of the
dynamically changing propagation structure of rumors.
Second, compared with Bi-GCN, which only uses textual
content to represent events, Re-GCN considers both textual
content and user information. This demonstrates the
effectiveness of introducing user information and dynamically
changing the propagation structure for rumor detection.

D. Ablation study
In order to analyze the effect of introducing user

information and dividing the number of stages N, we
compared different values of N and the use of text-only
content with the introduction of user information.

Figure 5. Experimental results for different values of N.

The experimental results on the Weibo dataset are shown
in Fig.5, where the range of N is set to 1-10, “only text” means
using only text as the post content representation, and
“text+user” means splicing text and user information as the
post content representation. According to Fig.5, firstly, it is
evident that the accuracy rate of both datasets increases to
different degrees after the introduction of user information,
which indicates the effectiveness of introducing user
information. Second, starting from a value of N of 1, the
accuracy of rumor detection increases gradually as N's value
increases, reaching the best result when N is taken as 6. When
N is greater than 6, the model's accuracy decreases slightly but
still outperforms all compared benchmark models, which
indicates the effectiveness of the propagation structure
considering dynamic changes.

In order to investigate the effect of the number of graph
convolution layers on the model detection, we conducted
experiments with the number of graph convolution layers set
to 1, 2, 4 and 6, and the experimental results on the Weibo
dataset are shown in Fig.6. According to Fig.6, it is not the
case that the larger the number of graph convolution layers is,
the better the overall performance is when the number of
graph convolution layers is set to 2. Since increasing the depth
of the graph convolution layers brings more parameters to the
model, and the amount of data used for training is relatively
insufficient, resulting in a possible overfitting of the model,
the detection accuracy no longer improves with the increase in
the number of graph convolution layers.

Figure 6. Experimental results of different graph convolution layers.

E. Early rumor detection
Early rumor detection is one of the important metrics for

evaluating rumor detection methods, aiming to assess the
ability of the method to detect rumors at an early stage of
dissemination. We set a series of cutoff times and use only
posts published before the cutoff time to compare the
proposed method with the benchmark method.

Fig.7 shows the performance of our Re-GCN method and
some benchmark methods for the Weibo dataset with different
cutoff times. As can be seen from the Fig.7 Re-GCN achieves
high rumor detection accuracy early in the propagation and
outperforms the compared benchmark method at different
cutoff times. This shows that considering user characteristics
and dynamic propagation structure not only facilitates long-
term rumor detection, but also helps to detect rumors early in
propagation.

Figure 7. Experimental results of early rumor detection.

F. Case study
Take as an example the event in the PHEME dataset whose

source tweet id is 500235112785924096, the propagation
structure and some text contents of the posts in this event are
shown in Fig.8. The event is labeled as a true rumor, which is
incorrectly classified as a non-rumor by Bi-GCN using a static
propagation structure, and correctly classified as a true rumor
by our Re-GCN.

591

Figure 8. Propagation structure of the event with source twitter id
500235112785924096.

We extracted the attention values of the 6 stages when Re-
GCN classified the event, as shown in Table VI. It can be seen
that Re-GCN correctly classifies the event with the main clues
of 3rd and 5th stage of the propagation of this event. As
described in subsection D of Section IV, our proposed model
is able to focus on diffierent stage of propagation features with
the attention mechanism, which is beneficial to improve the
effectiveness of rumor detection.
TABLE VI. ATTENTION VALUES IN 6 STAGES OF EVENT PROPAGATION

Terms Stage
1st 2nd 3rd 4th 5th 6th

Attention Values 0 0 24.1 0 75.7 0.15

VI. CONCLUSION
This paper proposes a dynamic propagation structure-

based rumor detection model named Re-GCN. First, compared
with previous studies that mainly consider textual content, we
encode both user information and textual content as post
content representation, which provides richer information for
the rumor detection model. Second, we introduced a dynamic
propagation structure and constructed a dynamically changing
propagation structure representation by dividing rumor
propagation into multiple stages. Finally, the dynamically
changing propagation features are captured using Bi-RNN and
GCN, and an attention mechanism fuses the dynamic
propagation features. Experimental results on two real-world
datasets show that the proposed approach outperforms other
state-of-the-art models for the rumor detection task.

REFERENCES
[1] Weibo:The 2020 Annual Report On counter-Rumor Work.

https://weibo.com/1866405545/K0QaImwsK
[2] Castillo C, Mendoza M, Poblete B. Information credibility on

twitter[C]//Proceedings of the 20th international conference on World
wide web. 2011: 675-684.

[3] Popat K. Assessing the credibility of claims on the web[C]//Proceedings
of the 26th International Conference on World Wide Web Companion.
2017: 735-739.

[4] Sampson J, Morstatter F, Wu L, et al. Leveraging the implicit structure
within social media for emergent rumor detection[C]//Proceedings of the
25th ACM international on conference on information and knowledge
management. 2016: 2377-2382.

[5] Ma J, Gao W, Wong K F. Detect rumors in microblog posts using
propagation structure via kernel learning[C]. Association for
Computational Linguistics, 2017.

[6] Yang F, Liu Y, Yu X, et al. Automatic detection of rumor on sina
weibo[C]//Proceedings of the ACM SIGKDD workshop on mining data
semantics. 2012: 1-7.

[7] Wu K, Yang S, Zhu K Q. False rumors detection on sina weibo by
propagation structures[C]//2015 IEEE 31st international conference on
data engineering. IEEE, 2015: 651-662.

[8] Liu X, Nourbakhsh A, Li Q, et al. Real-time rumor debunking on
twitter[C]//Proceedings of the 24th ACM international on conference on
information and knowledge management. 2015: 1867-1870.

[9] Yu F, Liu Q, Wu S, et al. A Convolutional Approach for Misinformation
Identification[C]//IJCAI. 2017: 3901-3907.

[10] Ma J, Gao W, Mitra P, et al. Detecting rumors from microblogs with
recurrent neural networks[J]. 2016.

[11] Ma J, Gao W, Wong K F. Rumor detection on twitter with tree-
structured recursive neural networks[C]. Association for Computational
Linguistics, 2018.

[12] Bian T, Xiao X, Xu T, et al. Rumor detection on social media with bi-
directional graph convolutional networks[C]//Proceedings of the AAAI
conference on artificial intelligence. 2020, 34(01): 549-556.

[13] Wei L, Hu D, Zhou W, et al. Towards Propagation Uncertainty: Edge-
enhanced Bayesian Graph Convolutional Networks for Rumor
Detection[J]. arXiv preprint arXiv:2107.11934, 2021.

[14] Lao A, Shi C, Yang Y. Rumor detection with field of linear and non-
linear propagation[C]//Proceedings of the Web Conference 2021. 2021:
3178-3187.

[15] He Z, Li C, Zhou F, et al. Rumor Detection on Social Media with Event
Augmentations[C]//Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval.
2021: 2020-2024.

[16] Kwon S, Cha M, Jung K, et al. Prominent features of rumor propagation
in online social media[C]//2013 IEEE 13th international conference on
data mining. IEEE, 2013: 1103-1108.

[17] Zhang Q, Zhang S, Dong J, et al. Automatic detection of rumor on social
network[M]//Natural Language Processing and Chinese Computing.
Springer, Cham, 2015: 113-122.

[18] Chen T, Li X, Yin H, et al. Call attention to rumors: Deep attention
based recurrent neural networks for early rumor detection[C]//Pacific-
Asia conference on knowledge discovery and data mining. Springer,
Cham, 2018: 40-52.

[19] Zubiaga A, Liakata M, Procter R. Learning reporting dynamics during
breaking news for rumour detection in social media[J]. arXiv preprint
arXiv:1610.07363, 2016.

[20] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep
bidirectional transformers for language understanding[J]. arXiv preprint
arXiv:1810.04805, 2018.

[21] Kipf T N, Welling M. Semi-supervised classification with graph
convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.

[22] Fang W, Lu L. Deep Graph Attention Neural Network for Click-
Through Rate Prediction[C]//SEKE. 2020: 483-488.

[23] Liu X, You X, Zhang X, et al. Tensor graph convolutional networks for
text classification[C]//Proceedings of the AAAI conference on artificial
intelligence. 2020, 34(05): 8409-8416.

[24] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to
prevent neural networks from overfitting[J]. The journal of machine
learning research, 2014, 15(1): 1929-1958.

[25] Kingma D P, Ba J. Adam: A method for stochastic optimization[J].
arXiv preprint arXiv:1412.6980, 2014.

[26] Ma J, Gao W, Wei Z, et al. Detect rumors using time series of social
context information on microblogging websites[C]//Proceedings of the
24th ACM international on conference on information and knowledge
management. 2015: 1751-1754.

[27] Zhao Z, Resnick P, Mei Q. Enquiring minds: Early detection of rumors
in social media from enquiry posts[C]//Proceedings of the 24th
international conference on world wide web. 2015: 1395-1405.

[28] Yao Y, Rosasco L, Caponnetto A. On early stopping in gradient descent
learning[J]. Constructive Approximation, 2007, 26(2): 289-315.

592

https://weibo.com/1866405545/K0QaImwsK

Chinese Spam Detection based on Prompt Tuning

Yan Zhang
College of Computer Science

Inner Mongolia University
 Hohhot, China

zy09230@163.com

Chunyan An*
College of Computer Science

Inner Mongolia University
Hohhot, China

ann@imu.edu.cnd

Abstract—Spam has plagued Internet users for a long time, and it
is of great significance to design an efficient spam detection method.
In recent years, spam detection methods based on fine-tuning
pre-trained language models (PLM) have achieved great success.
The approach is to fine-tune a pre-trained language model on a
large dataset to adapt it to the downstream spam detection task.
However, the objective of the initial training phase of PLM is
inconsistent with the objective of downstream tasks, which results
in the downstream tasks cannot fully utilize the latent knowledge
in PLM. In this paper, we use Prompt Tuning and PLM to identify
Chinese spam by constructing additional prompt templates,
converting the email classification task into a fill-in-the-blank task,
and then getting the email classification results according to the
filling content on the prompt templates. This process is very
similar to the process of initial training of PLM, which can more
fully utilize the rich knowledge in PLM. We use prompt tuning to
train the model on public datasets. Through experiments, we
found that the accuracy score of the proposed model on trec06
datasets can reach 0.996, and the F1 score can reach 0.994, which
is better than the comparison model. In terms of model
convergence speed, the proposed model only needs less than 200
training steps to converge, which is faster than the comparison
model.

Keywords-Chinese spam detection; deep learning; prompt
tuning; ERNIE

I. INTRODUCTION
The number of Internet users in China has grown rapidly in

the past 10 years due to the booming of traditional Internet and
mobile Internet. According to "The 44th China Statistical Report
on Internet Development", as of June 2019, China’s number of
Internet users has reached 854 million [1]. This rapid
development also facilitates the dissemination of information,
including social media, email, WeChat platforms, and other
applications. At the same time, these channels also attract
malicious users to spread spam, threatening people's property
safety. The goal of spam detection technology is to filter out
spam before it causes damage to users.

Current mainstream spam detection methods are based on
machine learning (ML) and deep learning (DL) techniques. The
characteristics of emails are learned through sample data to
classify emails. Models commonly used for spam detection
include support vector machines (SVM) [2], convolutional
neural networks (CNN) [3], recurrent neural networks (RNN)
[4], etc. How to obtain accurate text features has a huge impact

on model performance, and the pre-trained language models
(PLM) that have appeared in recent years have effectively solved
this problem. PLM has achieved good results in multiple NLP
tasks, and the effect of email detection models can be
significantly improved by PLM [5]. The approach is to fine-tune
PLM through the task target dataset to make it suitable for
downstream tasks. However, an important problem is that the
target task of the initial training of PLM is the filling-in-the-
blank task, and the downstream task is the classification task,
which will cause the model to fail to fully utilize the knowledge
in the PLM.

Now, a new paradigm called prompt tuning [6] has achieved
satisfactory results in tasks such as news classification. It does
not directly classify through the features of the text but designs
prompt templates to convert downstream tasks into similar to the
initial training of PLM, let PLM directly complete the task of
filling in the blanks, making more efficient use of the rich
knowledge in PLM, as shown in Figure 1. However, spam
classification is somewhat different from news classification: in
order to evade detection, spam will use various methods to
disguise as normal emails, and even express friendly feelings,
while normal emails may contain some negative or even
offensive Emotion, which brings greater challenges for PLM to
fill in the blanks in the prompt templates.

The contributions of this paper are summarized as follows:
We design a Chinese spam detection model based on prompt
tuning and ERNIE [7]. We construct prompt templates as
additional information to help the ERNIE model achieve spam
detection. We conduct experiments on the public Chinese spam
dataset, and the experiments show that our model outperforms
existing models in terms of accuracy score, F1 score, and
convergence speed.

∗Corresponding Author
DOI reference number: 10.18293/SEKE2022-120

Figure 1. Pre-trained language model training process (a), and two

paradigms of fine-tuning (b) and prompt tuning (c).

593

II. RELATED WORK
Over the years, many methods have been proposed to detect

spam based on the content of the email. These methods fall into
three main categories: supervised, semi-supervised[8], and
unsupervised[9] methods. Supervised methods treat mail
detection as a classification task, and supervised methods
generally show better performance compared to other
methods[10].

Among the various methods of supervised learning, methods
based on deep learning perform better. [11] tested many
supervised learning algorithms such as NB, SVM, KNN, etc.,
which were used individually or in combination to detect spam.
[12] found that ML methods are inefficient in the case of high-
dimensional data and different spammers, and it becomes crucial
to explore DL methods with effective feature selection
mechanisms. With the development of deep learning, many
scholars began to use DL technology to automatically learn
features. In NLP, deep learning methods are mainly based on a
distributed representation of each word, also known as word
embedding [13]. [14] implemented a Semantic Convolutional
Neural Network (SCNN) model that maps word vectors using an
NLP technique called Word2Vec. [5] shows that different
methods of obtaining word vectors have a greater impact on
feature extraction, and using PLM to obtain word vectors is the
best way.

The common approach in existing works is to extract
features using encoders of pre-trained language models and then
use classification algorithms to identify spam. Spam will deceive
the detection model by carefully designing the input content,
which requires the detection model to obtain sufficiently
accurate email features. [5] used BERT Encoder to obtain email
features and tested a variety of classification algorithms. In
addition, they simulated the camouflage methods commonly
used in spam such as synonym replacement to test the
performance of the model. The results show that the BERT-
based detection model can effectively resist this camouflage
strategy. [15] used the M-BERT pre-trained language model,
which can encode multiple languages to achieve multilingual
mixed spam classification.

The spam detection model designed in this paper is aimed at
Chinese spam, and we select the ERNIE model to extract the text
features of the email. The ERNIE model has achieved excellent
results in some Chinese natural language processing tasks and
demonstrated strong knowledge reasoning ability in the cloze
test. ERNIE uses multi-layer Transformer [16] as basic encoder.
The Transformer can capture the contextual information for each
token in the sentence via self-attention, and generates a sequence
of contextual embeddings. In the training stage, they randomly
mask 15 percents of basic language units, and using other basic
units in the sentence as inputs, and train a transformer to predict
the mask units [7].

In past studies, the standard paradigm for using pre-trained
language models to handle downstream tasks is the fine-tuning
paradigm [17], which focuses on designing training objectives
in the training phase to adapt pre-trained language models to
downstream tasks. Today, this paradigm is hopefully replaced
by a paradigm called prompt tuning, which reformulates
downstream tasks with the help of textual cues to look more like

the tasks solved during the original PLM training [6]. Some
studies have applied this paradigm in text classification tasks,
such as [18] formulating task-specific prompt templates
according to logical rules, outperforming baseline models in
many-class text classification. [19] showed that training models
with prompt templates on different tasks or different amounts of
data can improve the prediction performance.

Although the use of the prompt-tuning paradigm in some
classification tasks can improve the model effect, since spam
emails are disguised as normal emails using various methods,
there is no relevant research to show that this paradigm is still
suitable for spam detection models. In this paper, a spam
detection model based on the ERNIE and prompt tuning is
designed for Chinese spam. The prompt template is manually set,
and PLM completes the task of filling in the template. Then the
model classifies the email according to the content filled in the
template by PLM.

III. PROMPT TUNING METHOD
An example of email detection with prompt tuning is shown

in Figure 2. Our model consists of the following parts:

• Prompt Addition: Design a suitable prompt template for
the task. The content of the template is a sentence
describing the email message, and it has a [Mask]
placeholder. This template is spliced with the original
text and used as the input of the Encoder.

• Fill in the Prompt template: The input text is encoded
and decoded by PLM, and the filling content of the
[Mask] position is obtained.

• Answer Mapping: Mapping the filled content Y of the
[Mask] position with the answer space Z, resulting in an
effective predictive model.

A. Prompt Addition
A classification task can be denoted as T = {X, Y}, where X

is the instance set and Y is the class set. For each x ∈ X, there
is a unique label y ∈ Y.

Prompt Addition needs to design a prompt template T()
suitable for the task first, and then map each text x to xprompt =
T(x), xprompt is obtained by splicing the prompt template and the
email text. The prompt template converts the original task into a
fill-in-the-blank task by adding additional prompt information
and at least one [Mask] placeholder. We set T() = 'This is a
[Mask][Mask] email' and x maps to xprompt = 'This is a
[Mask][Mask] mail. x '. In addition, we set a character set V, v
∈V to fill the prompt template.

B. Fill in the Prompt template
Calculate the conditional probability p([MASK] = v| xprompt)

of the [Mask] position padding character using the encoder-
decoder network structure from PLM. First add the token
embedding, position embedding, and segment embedding of
xprompt as the input of the encoder.

Encoder uses multi-layer Transformer structure to capture
the context of each character through self-attention to encode the

594

input content. The Multi-Head Attention in the Decoder decodes
according to the output from the Encoder, and outputs the hidden
vector h[Mask] of [Mask]. Calculate the dot product of h[Mask] and
Emb(v), Emb(v) is the embedding of the token v. Then, the
scores of all characters in the model dictionary are calculated by
the softmax function, and the character with the largest score is
obtained as the predicted character. To prevent the model from
predicting characters that exceed our answer space, we restrict
the output to the set V.

p�[𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀] = 𝑣𝑣�𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = �Softmax �ℎ[𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀] ∙ Emb(𝑣𝑣)� 𝑣𝑣 ∈ V
0 𝑣𝑣 ∉ V

 (1)

C. Answer Mapping
At this stage, the calculated predicted characters need to be

mapped to the category labels of the emails. Set a mapping ∅
between the mail category y and the predicted character v. With
this mapping function, we can map the predicted category label
to the predicted character at the [Mask] position:

𝑝𝑝(𝑦𝑦|𝑥𝑥) = 𝑝𝑝�[𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀] = ∅(𝑦𝑦)�𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� (2)

For example, we can map the label of normal mail to 'good'
and the label of spam to 'bad'. When the pre-trained language
model fills in 'good' or 'bad' on the prompt template, we can
know whether the email x is spam.

Finally, according to the dataset D, the cross-entropy loss
function is used to calculate the error between the correct answer
and the predicted value, and all the model parameters are
updated.

𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀 = − 1
|𝑋𝑋|
∑ log𝑝𝑝�[𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀] = ∅(𝑦𝑦𝑥𝑥)�𝑇𝑇(𝑥𝑥)�𝑥𝑥∈𝑋𝑋 (3)

IV. EXPERIMENTS
We conduct experiments on Chinese datasets to demonstrate

the effectiveness of our model in the task of email detection.

A. Datasets and Experimental Settings
We conduct experiments on public Chinese spam datasets:

Trec06[20] and microblogPCU[21].

• Trec06 ： one of the largest and most widely used
datasets for Spam Detection， including Chinese and
English emails.

• microblogPCU: Data sourced from Weibo, including
email text and information about these spammers.

More details of these datasets are shown in Table I shows.
For all the above datasets, we use F1 scores and accuracy scores
as the main metric for evaluation.

B. Experimental settings
We set the length of each text to 250 characters, excess

characters are deleted, and insufficient characters are padded
with 0 when converted into word embeddings. our model is
optimized with Adam using the learning rate of 1e - 5 on ERNIE-
1.0, with a linear warmup for the first 10% steps. For all datasets,
we train our model for 20 epochs with the batch size 64. The best
model checkpoint is selected based on the performance on the
development set.

C. baseline models
we compare our model with several typical models for text

classification, including:

• Learning models from scratch: for text classification, the
typical approach is learning neural models from scratch.
We choose SVM [2] , Naive Bayes ,DPCNN [3],
TextRNN [4], TextRCNN [22] as baselines, these
models perform well in text classification tasks.

• Fine-tuning pre-trained models: PLM performs well in
various NLP tasks, and many works use fine-tuning
PLM for text classification. [15] showed that using
PLMs is effective for spam detection, we implemented
fine-tuning on ERNIE.

In addition, due to the strong semantic expression ability of
PLM, we improved the deep learning techniques mentioned
above by using PLM as an embedding layer, implementing
ERNIE+RCNN, ERNIE+TextRNN, and ERNIE+DPCNN.

Figure 2. An example of implementing email detection using prompt tuning.

TABLE I. STATISTICS OF DIFFERENT DATASETS

Dataset SPAM HAM Total
Trec06 42853 21766 64619

microblogPCU 2194 3007 5201

595

D. Experimental results
The experimental results are shown in Table II, From the

table, we can see that:

• Using a pre-trained language model to obtain text
features can significantly improve the model
performance compared to methods that do not use a pre-
trained model.

• For the Fine-tuning paradigm, using a pre-trained
language model combined with DPCNN, TextRNN and
TextRCNN have a small performance gap compared to
just using a pre-trained language model and a fully
connected layer for classification.

• Our model uses the prompt tuning paradigm, and its
performance is better than the model using the fine-
tuning paradigm. The reason for the low F1 scores and
accuracy scores on the microblogPCU dataset is that the

length of the text is short, and the dataset itself has
problems with labeling errors.

In general, the experimental results in Table II show that our
model has higher F1 scores and accuracy scores than the baseline
models in the Chinese spam detection task. We believe that this
is the result of the combined knowledge of the prompt template
and the latent knowledge of the PLM.

We also tested the effect of training sets of different sizes on
the model, as shown in Figure 4, our model performed well on
both small and rich datasets. As shown in Figure 3, training the
model through prompt tuning can significantly improve the
convergence speed. Our model only requires less than 200
training steps to converge, while training the model with fine-
tuning requires 400 training steps. Furthermore, our model had
an F1 score of 0.6 before the model started training, while the
comparison model only had an F1 score of 0.2. Our experiments
show that the knowledge contained in the prompt template plays
a positive role in both model convergence and prediction.

TABLE II. COMPARATIVE EXPERIMENTAL RESULTS OF OUR MODEL AND BASELINE MODELS ON DIFFERENT DATASETS.

 Models Trec06 microblogPCU

Accuracy F1 Accuracy F1

Learning models from
scratch

Naive Bayes 0.9758 0.9734 0.7958 0.7874

SVM 0.9935 0.9929 0.7861 0.7834

TextRNN 0.9882 0.9833 0.7418 0.7994

TextRCNN 0.9943 0.9915 0.8170 0.8393

DPCNN 0.9948 0.9926 0.8035 0.8277

Fine-tuning pre-trained
models

ERNIE+TextRNN 0.9950 0.9928 0.8265 0.8495

ERNIE+ TextRCNN 0.9953 0.9933 0.8170 0.8398

ERNIE+ DPCNN 0.9931 0.9900 0.7765 0.8159

Fine-tuning ERNIE 0.9951 0.9931 0.8324 0.8533

Prompt tuning pre-
trained models

prompt tuning ERNIE 0.9960 0.9942 0.8423 0.8633

 (a) Accuracy scores (b) F1 scores

Figure 3. Changes in accuracy scores (a) and F1 scores (b) with increasing number of training steps.

596

V. CONCLUSION
In this paper, we design a Chinese spam detection model

using the ERNIE pre-trained language model and the prompt
tuning paradigm. By designing the prompt template, the mail
classification task is converted into a filling-in-the-blank task,
and the latent knowledge of the pre-trained language model and
the knowledge contained in the prompt template are more fully
utilized, which improves the convergence speed and prediction
accuracy of the model. The experimental results show that the
accuracy score of our model can reach 0.996, the F1 score can
reach 0.994, which is better than the comparison model, and the
convergence speed of our model is faster. In our work, the design
of prompt template relies on the expertise of developers. In the
future, we hope to further study the construction method of
prompt templates, try to automatically generate templates and
design learnable templates.

VI. ACKNOWLEDGEMENT
The authors wish to thank the Project of Inner Mongolia

Science &Technology Plan under Grant No. 2021GG0164,
2020GG0186, Natural Science Foundation of China under Grant
No.61862047,61962039,62162046, Inner Mongolia Science and
Technology Innovation Team of Cloud Computing and Software
Engineering, Inner Mongolia Engineering Lab of Cloud
Computing and Service Software and Inner Mongolia
Engineering Lab of Big Data Analysis Technology.

REFERENCES
[1] http://www.cac.gov.cn/2019/08/30/c_1124938750. htm.
[2] S. I. Wang and C. D. Manning, “Baselines and Bigrams: Simple, Good

Sentiment and Topic Classification,” in The 50th Annual Meeting of the
Association for Computational Linguistics, Proceedings of the
Conference, July 8-14, 2012, Jeju Island, Korea - Volume 2: Short Papers,
2012, pp. 90–94, [Online]. Available: https://aclanthology.org/P12-2018/.

[3] R. Johnson and T. Zhang, “Deep Pyramid Convolutional Neural Networks
for Text Categorization,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL 2017, Vancouver,

Canada, July 30 - August 4, Volume 1: Long Papers, 2017, pp. 562–570,
doi: 10.18653/v1/P17-1052.

[4] P. Liu, X. Qiu, and X. Huang, “Recurrent Neural Network for Text
Classification with Multi-Task Learning,” in Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, 2016, pp. 2873–2879.

[5] S. R. Galeano, “Using BERT Encoding to Tackle the Mad-lib Attack in
Spam Detection,” CoRR, vol. abs/2107.0, 2021.

[6] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train,
Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing,” CoRR, vol. abs/2107.1, 2021, [Online].
Available: https://arxiv.org/abs/2107.13586.

[7] Y. Sun et al., “ERNIE: Enhanced Representation through Knowledge
Integration,” CoRR, vol. abs/1904.0, 2019, [Online]. Available:
http://arxiv.org/abs/1904.09223.

[8] J. S. Whissell and C. L. A. Clarke, “Clustering for semi-supervised spam
filtering,” in The 8th Annual Collaboration, Electronic messaging, Anti-
Abuse and Spam Conference, CEAS 2011, Perth, Australia, September 1-
2, 2011, Proceedings, 2011, pp. 125–134, doi: 10.1145/2030376.2030391.

[9] Z. Chen and D. Subramanian, “An Unsupervised Approach to Detect
Spam Campaigns that Use Botnets on Twitter,” CoRR, vol. abs/1804.0,
2018, [Online]. Available: http://arxiv.org/abs/1804.05232.

[10] E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O. Adetunmbi,
and O. E. Ajibuwa, “Machine learning for email spam filtering: review,
approaches and open research problems,” Heliyon, vol. 5, no. 6, 2019, doi:
10.1016/j.heliyon.2019.e01802.

[11] R. Narayan, J. K. Rout, and S. K. Jena, “Review Spam Detection Using
Opinion Mining,” in Progress in Intelligent Computing Techniques:
Theory, Practice, and Applications, 2018, pp. 273–279.

[12] A. Barushka and P. Hajek, “Spam Filtering in Social Networks Using
Regularized Deep Neural Networks with Ensemble Learning,” in
Artificial Intelligence Applications and Innovations, 2018, pp. 38–49.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of
Word Representations in Vector Space,” in 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, 2013, [Online]. Available:
http://arxiv.org/abs/1301.3781.

[14] G. Jain, M. Sharma, and B. Agarwal, “Spam Detection on Social Media
Using Semantic Convolutional Neural Network,” Int. J. Knowl. Discov.
Bioinform, vol. 8, no. 1, pp. 12–26, 2018.

[15] J. Cao and C. Lai, “A Bilingual Multi-type Spam Detection Model Based
on M-BERT,” in IEEE Global Communications Conference,
GLOBECOM 2020, Virtual Event, Taiwan, December 7-11, 2020, pp. 1–
6, doi: 10.1109/GLOBECOM42002.2020.9347970.

[16] [A. Vaswani et al., “Attention is All you Need,” in Advances in Neural
Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 2017, pp. 5998–6008, [Online].
Available:https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547d
ee91fbd053c1c4a845aa-Abstract.html.

[17] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained
Models for Natural Language Processing: A Survey,” CoRR, vol.
abs/2003.0, 2020, [Online]. Available: https://arxiv.org/abs/2003.08271.

[18] X. Han, W. Zhao, N. Ding, Z. Liu, and M. Sun, “PTR: Prompt Tuning
with Rules for Text Classification,” 2021, [Online]. Available:
http://arxiv.org/abs/2105.11259.

[19] T. Le Scao and A. M. Rush, “How many data points is a prompt worth?,”
in Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, [Online], 2021, pp. 2627–2636, doi:
10.18653/v1/2021.naacl-main.208.

[20] https://plg.uwaterloo.ca/˜gvcormac/treccorpus06/,2006,[Online].
[21] https://archive.ics.uci.edu/ml/datasets/microblogPCU,2015,[Online].
[22] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent Convolutional Neural

Networks for Text Classification,” in Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015, pp. 2267–2273.

Figure 4. Comparison of F1 scores (%) when training models on
different sized training sets with two paradigms.

597

Identifying Gambling Websites with Co-training

Chenyang Wang ★ Pengfei Xue ★ Min Zhang ★ Miao Hu ★

★ National University of Defense Technology

Abstract

Gambling websites do great harm to society and many
even cause serious network crime. To identify the gambling
websites, many machine learning based methods are pro-
posed by analysing the URL, the text, and the images of the
websites. Nevertheless, most of them ignore one important
information, i.e., the text within the website images. The
text on the images of gambling websites has keywords that
clearly point to such websites. Motivated by this, in this
paper, we propose an co-training based gambling website
identification method by combining the visual and semantic
features of the website screenshots. First, we extract text
information from webpage screenshots through the optical
character recognition (OCR) technique. Then we train an
image classifier based on a convolutional neural network
(CNN) and a text classifier based on TextRNN respectively
from image view and text view. Second, the two classi-
fiers are retrained on unlabeled data with the co-training
algorithm. Third, we conduct experiments on the webpage
screenshot dataset we collected. The experimental results
indicate that OCR text has strong semantic feature and the
proposed method can effectively improve the performance
in identifying gambling websites.

Index terms— Co-training, Convolutional Neural Net-
work, TextRNN.

1 Introduction
Nowadays, most people get information from the Inter-

net. However, the Internet is full of malicious content, espe-
cially gambling websites, which are on the edge of network
crime and do great harm to the society. Due to the huge
number and continuous updating of gambling websites, it
is difficult to identify manually. Therefore, it is necessary
to design an automatic, efficient, and accurate method to
identify gambling websites.

The existing malicious website identification methods
could be classified into black-list based, URL based [1, 2,
3], webpage content based [4, 5, 6, 7] and mixed-features
based [8, 9]. Black-list based methods establish a black list
by collecting the malicious URLs or domain names. It is
labor-intensive to establish and maintain the black list, and
the detection efficiency is slow. URL based methods extract

DOI reference number: 10.18293/SEKE2022-106

投注0%风险，稳赚不赔

There is no risk of betting and you

can earn money without loss

欧洲杯买球出款秒

Quick payouts when betting on the

European Championship

...

Figure 1: The text information on the website images

features from URLs for classification. However, because
the URLs contain insufficient information, the identifica-
tion accuracy of URL based methods is not high. Webpage
content based methods extract content features from web-
pages for identification, such as HTML text, image, link,
JavaScript code, etc. Mixed-feature based methods com-
bine different features to improve the accuracy of classifica-
tion. For both webpage content based methods and mixed-
feature based methods, when extracting visual features from
images for gambling websites identification, the accuracy
of them is not too high due to the high complexity of the
image.

However, in our study, we find that there are some text
information on website images that has strong semantic fea-
tures and can be used to identify gambling websites. Fig-
ure 1 shows an example of a gambling website that has the
text ”投注0%风险,稳赚不赔” (the text in English means
that ”there is no risk of betting and you can earn money
without loss”). The word ”投注” (”betting”) clearly points
to gambling. In order to avoid the keyword matching de-
tection methods, some gambling websites do not have such
obvious keywords in the html text, but in the website im-
ages. There are two challenges to solve the problem: the
one challenge is how to extract the text information within
the images of websites. The other challenge is how to com-
bine image and the text information to identify gambling
websites.

Motivated by this, in this paper, we propose an co-
training based gambling websites identification method,
which extracts visual and semantic features of webpage
screenshots, and utilizes unlabeled data to improve the per-
formance of classification models. The idea of co-training
is to benefit from two (or more) models which are trained
from different views. These views may be obtained from
multiple sources or different feature subsets (e.g., image
is a view and text is another view). The two models are
complementary to one another and can help correct each

598

other when they make mistakes. Naturally, the idea of co-
training suits the task of learning a classification system
from the image and the text view to identify gambling web-
sites. Specifically, the proposed method is implemented
as follows. Firstly, we extract text information from web-
page screenshots by OCR [10] technique. Then, we train
an image classifier based on CNN [11]. and a text classifier
based on TextRNN [12] respectively from image view and
text view. Finally, we retrain the image and text classifiers
on unlabeled data with the co-training algorithm. The pro-
posed method has the following advantages: (i) It extracts
text information on website images which has strong se-
mantic features and is useful in identifying gambling web-
sites. (ii) It proposes a gambling websites identification
method based on the multi-view semi-supervised learning
algorithm (co-training) which uses unlabeled data to im-
prove the performance of the classification model. (iii) It
combines mixed-feature based identification method with
semi-supervised learning to better identify gambling web-
sites. The main contributions of this paper are as follows.

1. We propose an co-training based gambling websites
identification method in this study. Compared to ex-
isting methods, this method make full use of the visual
feature and key semantic feature of webpage screen-
shots. Through the multi-view semi-supervised learn-
ing (co-training) algorithm, this method utilizes a large
number of unlabeled data to improve the performance
of classification models.

2. We use OCR technique to extract the text informa-
tion on webpage screenshots which has strong seman-
tic features. Then, we train an image classifier based
on CNN and a text classifier based on TextRNN re-
spectively from image view and text view. Finally, we
retrain the image and text classifiers on unlabeled data
with the co-training algorithm to improve the perfor-
mance of the two classifiers.

3. We evaluate the proposed method by conducting ex-
periments in the gambling dataset we collected. The
experimental results show that the proposed method
can effectively improve the performance of classifiers
in terms of precision, recall, and F1-score.

2 Background
Co-training. The traditional supervised learning method

uses a large number of labeled data to establish a model and
predict the labels of unknown instances. If only a small
number of labeled data is used, the trained model is diffi-
cult to have strong generalization ability. Semi-supervised
learning attempts to make the machine automatically use
a large number of unlabeled data to assist a small number
of labeled data in learning. The goal is to obtain the best
generalization performance on these unlabeled data [13].

Labeled Data

View 1

View 2

Classifier 1

Classifier 2

Unlabeled
Data

Train

Train

Prediction

Add Samples

Add Samples

Figure 2: Base framework of co-training

Co-training [14, 15, 16] is a multi-view semi-supervised
classification algorithm which improves the generalization
performance of models by combining two (or more) classi-
fiers trained from different views. Firstly, the labeled data is
used to train the classifiers under different views. Then the
classifiers predict on unlabeled data and label the samples
with high prediction confidence. The samples that are la-
beled with pseudo-labels are added to the training datasets
of other classifiers for retraining. Co-training is shown in
Figure 2.

Different views exchange the prediction labels of unla-
beled samples to realize the information exchange. The co-
training algorithm is based on two key assumptions. The
one assumption is that each view contains enough infor-
mation to build the optimal learner. The other assump-
tion is that the two (or more) views are independent un-
der the condition of a given class label. Although the pro-
cess of co-training algorithm is simple, the theory proves
that if the two views satisfy the two key assumptions, the
generalization of weak classifiers can be improved to any
high level through co-training using unlabeled data. The
two key assumptions are often difficult to satisfy in real
tasks, so the performance improvement will not be so large.
However, research shows that co-training can effectively
improve the performance of weak classifiers [13]. Qiao
et al. [17] present Deep Co-Training (DCT) based on co-
training framework for semi-supervised image recognition,
which improves the accuracy of models. Katz et al. [18]
propose an ensemble-based co-training approach that make
use of unlabeled text data to improve text classification
when labeled data is very small.

3 Methodology
3.1 Overview of the Proposed Method

Figure 3 shows our method based on co-training for gam-
bling website identification. The webpage screenshot data
can be divided into two views: one is the image view data,
and the other is the text view data on the image which can
be extracted by OCR. Although the image and text data

599

Train

Predict

Gambling Webpage Screenshots

Normal Webpage Screenshots OCR
View B

Text Data

View A

Image Data
CNN

TextRNN

Labeled Data

Unknown Webpage Screenshots

Unlabeled Data

View B

Text Data

View A

Image Data
CNN

TextRNN

Prediction
Label

OCR
Text Data

Image Data

Add Samples

Predicted from view A

Predicted from view B

High Confidence Samples

Figure 3: Overall framework of the proposed method.

Input

Layer

.

.

.Webpage
Screenshots

Conv 1

3×3

Conv 2

3×3

Conv 3

3×3

Conv 5

3×3
Conv 4

3×3 Fc Output

Layer

Adaptive

pooling layer

Gambling ?

Normal ?

Input

Layer

.

.

.Webpage
Screenshots

Conv 1

3×3

Conv 2

3×3

Conv 3

3×3

Conv 5

3×3
Conv 4

3×3 Fc Output

Layer

Adaptive

pooling layer

Gambling ?

Normal ?

Figure 4: The image classifier based on CNN

are extracted from the same webpage screenshot, they are
from different views, satisfying the sufficient redundancy
and conditional independence of co-training.

First, we extract text messages on webpage screenshots
by OCR technique. The webpage screenshots are the data of
view A (image view) and the OCR texts are the data of view
B (text view). We train an image classifier based on CNN
and a text classifier based on TextRNN respectively from
view A and view B on labeled data. Second, the unlabeled
data are predicted from view A and view B. The samples
with high prediction confidence are selected and labeled.
The image data of the selected samples predicted from text
view are added to the training dataset of the image classifier.
Similarly, the text data of the selected samples predicted
from image view are added to the training dataset of the
text classifier. Third, the two classifiers are retrained with
new training datasets.

3.2 Image Classifier based on CNN

The image classifier is constructed based on the CNN
model. The input are webpage screenshots and the output
of the fully-connected network are prediction labels, which
are gambling or normal. The image classifier based on CNN
is shown in Figure 4.

We stack 3 × 3 small convolutional kernels to construct
convolutional networks instead of using large convolutional
kernels like 7 × 7. Because the receptive field of a small
convolutional kernel is smaller, it can extract finer-grained
image features. In addition, a larger convolutional kernel
requires more computation than a small one. Thus, we stack
several 3 × 3 kernels to construct the CNN model. We add
an adaptive pooling layer after convolutional layers so that
the model can process the input of different sizes.

1x 2x 3x tx

Figure 5: The text classifier based on TextRNN

3.3 Text Classifier based on TextRNN

A text classifier is constructed based on TextRNN, the
input is text data of webpage screenshots extracted by OCR
technique. We use pre-trained word vectors as embedding
representation, the output of hidden layer at moment t is
semantic feature and input to fully-connected layer for clas-
sification. The text classifier based on TextRNN is shown
in Figure 5.

We use the Sogou News Chinese corpus to train the pre-
trained word vector as the embedding layer. Words in the
word list are represented as word vectors, words not in the
word list are represented as random vectors, and the dimen-
sion of word vectors is 300. In hidden layers we use Bi-
LSTM, and each LSTM unit has the following vectors in
the time step t: An input gate it, an output gate ot, a for-
getting gate ft, a memory unit ct, and hidden layer state ht.
The input gate it process the input of the current sequence
position. The forgetting gate ft determines what informa-
tion is discarded from the cell.

3.4 Co-training of Image and Text Classifiers

First, we train image and text classifiers on labeled
dataset L =

{
(xA

i , x
B
i , yi)|i = 1, . . . , N

}
. Where xA

i is
the image data of sample xi, xB

i is the text data of sam-
ple xi, yi is the label, and N is the total number of sam-
ples. Second, the image classifier predicts on unlabeled
dataset U =

{
(xA

i , x
B
i)|i = 1, . . . ,M

}
, select p positive

samples and q negative samples with high prediction con-
fidence. Text data

{
(xB

t , yt)|t = 1, . . . , p+ q
}

of selected
samples is added to the training dataset LB of the text clas-
sifiers. The labels {yt|t = 1, . . . , p+ q} are pseudo-labels.
Similarly, p + q samples with high prediction confidence

600

Algorithm 1 Co-training of image and text classifiers
Input:
Labeled dataset L =

{
(xA

i , x
B
i , yi)|i = 1, . . . , N

}
,

Unlabeled dataset U =
{
(xA

i , x
B
i)|i = 1, . . . ,M

}
,

Iteration number g,
The confidence threshold θ.
Output:
The trained image and text classifiers.
Process:

1: Train an image classifier based on CNN on labeled
dataset LA =

{
(xA

i , yi)|i = 1, . . . , N
}

.
2: Train a text classifier based on TextRNN on labeled

dataset LB =
{
(xB

i , yi)|i = 1, . . . , N
}

.
3: The image classifier predicts on unlabeled dataset U

and selects p positive samples and q negative sam-
ples with confidence higher than θ. And these p +
q selected samples are added to the training dataset
of the text classifier. The new dataset LB ={
(xB

i , yi)|i = 1, . . . , N + p+ q
}

.
4: The text classifier predicts on unlabeled dataset U

and selects p positive samples and q negative sam-
ples with confidence higher than θ. And these p +
q selected samples are added to the training dataset
of the image classifier. The new dataset LA ={
(xA

i , yi)|i = 1, . . . , N + p+ q
}

.
5: Remove the selected 2p+ 2q samples from U .
6: Retrain the image classifier on the new dataset LA.
7: Retrain the text classifier on the new dataset LB .
8: Repeat steps 3 to 7 g times.

that predicted by the text classifier are added to the training
dataset LA of the image classifier. Third, image and text
classifiers are retrained on new training datasets LA and
LB . The above process is repeated several times, The al-
gorithm is as Algorithm 1.

4 Experiments and Analysis
Datasets. We use crawlers to get webpage screenshots

of the website on the Internet. We collect 1600 webpage
screenshots, including 800 of gambling and 800 of nor-
mal (including movie, science, education, traffic, shopping,
medical, etc.). These images are labeled to form the dataset
LA. We extract text data from webpage screenshots by
OCR. These text data are preprocessed to form the dataset
LB . In addition, a lot of webpage screenshots are collected
and used for unlabeled dataset U . A total of 600 webpage
screenshots of gambling and normal websites constitute the
test dataset TA and 600 OCR text data constitute the test
dataset TB .

Evaluation metrics. In this paper, we use three evalu-
ation metrics to evaluate the method, including Precision,
Recall, and F1-score.

Table 1: Results of CNN-5 and Resnet34

Evaluation metrics Model Gambling Normal Overall

Precision Resnet34 0.7639 0.8958 0.8299
CNN-5 0.8364 0.9111 0.8737

Recall Resnet34 0.9167 0.7167 0.8167
CNN-5 0.9200 0.8200 0.8700

F1 Resnet34 0.8333 0.7963 0.8148
CNN-5 0.8762 0.8632 0.8697

Table 2: Results of TextRNN on OCR text and html text

Evaluation metrics Data Gambling Normal Overall

Precision html text 0.9052 0.9218 0.9135
OCR text 0.9794 0.9515 0.9654

Rrcall html text 0.9233 0.9033 0.9133
OCR text 0.9500 0.9800 0.9650

F1 html text 0.9142 0.9125 0.9133
OCR text 0.9645 0.9655 0.9650

4.1 Image Classification based on CNN

We construct an image classifier named CNN-5 and
stack five 3 × 3 small kernels in convolutional layers as
the feature extraction module. After the last convolutional
layer, an adaptive pooling layer is added to unify the image
output size, and then a fully-connected layer is connected as
the classification module. We also do the same experiment
on the pre-trained model Resnet34 for comparison. When
using the Resnet34 pre-trained model, we freeze all feature
extraction modules, that is, all convolution layers, and up-
date the weight of the fully-connected network of the clas-
sification module. The two models are trained on labeled
image dataset LA. The test results of CNN-5 and Resnet34
on the test dataset TA are shown in Table 1.

From Table 1, we can observe that the test result on Pre-
cision, Recall, and F1-score of CNN-5 is better than that of
the Resnet34 pre-trained model. At the same time, because
the CNN-5 model only uses five small convolutional ker-
nels and one fully-connected layer, the training speed of the
CNN-5 model is faster. We choose the CNN-5 model as the
image classifier of co-training.

4.2 Text Classification based on TextRNN

When constructing a text classifier based on TextRNN,
we use two bidirectional LSTM layers and one fully-
connected layer. The dimension of word vectors is 300 and
the hidden size of two bidirectional LSTM layers is 128.
We do the text classification experiment both on OCR text
extracted from the webpage screenshots and html text. The
test results on the test dataset TB are shown in Table 2.

From Table 2, we can see that the test result on Preci-
sion, Recall, and F1-score of using OCR text is better than
that of using html text. The screenshots of webpage may
contain some key text information that is not contained in

601

(a) CNN-5 (b) TextRNN

Figure 6: Performance of CNN-5 and TextRNN with differ-
ent numbers of samples selected in one iteration

html. So it is necessary to extract text information from
webpage screenshots by OCR. The text in the image has
strong semantic features and is useful for identifying gam-
bling websites.

4.3 The Number of Samples Selected in One Iteration

In this paper, the number of samples selected in one it-
eration is an important factor. In one iteration, p positive
samples and q negative samples with confidence higher than
threshold θ are selected. If we select a few samples, the effi-
ciency of the algorithm is low. If we select a lot of samples,
we may introduce some noisy samples with wrong labels.
To obtain appropriate number p and q of samples selected,
we perform the experiments with different numbers of sam-
ples. The experimental results are shown in Figure 6.

From Figure 6, we can observe that when the number
p and q of samples selected in one iteration is 20, the per-
formance of CNN-5 and TextRNN is poor, and the perfor-
mance is better as the number increases. When the num-
ber is 40, CNN-5 obtain the best performance, when the
number is 50, TextRNN obtain the best performance. After
that, as the number increases, the performance of CNN-5
and TextRNN deteriorates. This phenomenon may be ex-
plained by the fact that when we select a small number of
samples, we may lose a lot of useful samples. When we
select a large number of samples, we may introduce some
noisy samples with wrong labels, and the performance will
decrease. When the number is within an appropriate range,
we can avoid introducing noisy samples as much as possible
and retain more useful samples for classification.

4.4 Co-training of CNN-5 and TextRNN

After the initial training of CNN-5 and TextRNN, the
next step is to retrain the two classifiers with co-training.
We set the prediction confidence threshold θ to 0.8, the
number p and q of samples selected in one iteration to 50,
and the iteration number g to 6. After six iterations of re-
training on the unlabeled dataset U , the co-training of CNN-
5 and TextRNN is completed, named Co-CNN-5 and Co-

Table 3: Results of CNN-5 and TextRNN after co-training

Evaluation metrics Model Gambling Normal Overall

Precision

CNN-5 0.8364 0.9111 0.8737
Co-CNN-5 0.8947 0.9054 0.9001
TextRNN 0.9794 0.9515 0.9654

Co-TextRNN 0.9739 0.9932 0.9835

Recall

CNN-5 0.9200 0.8200 0.8700
Co-CNN-5 0.9067 0.8933 0.9000
TextRNN 0.9500 0.9800 0.9650

Co-TextRNN 0.9933 0.9733 0.9833

F1

CNN-5 0.8762 0.8632 0.8697
Co-CNN-5 0.9007 0.8993 0.9000
TextRNN 0.9645 0.9655 0.9650

Co-TextRNN 0.9835 0.9832 0.9833

Figure 7: The performance of CNN-5 and TextRNN in dif-
ferent iterations of co-training

TextRNN. The test results of Co-CNN-5 and Co-TextRNN
on the test datasets TA and TB are shown in Table 3.

From Table 3, we can observe that after co-training, the
test results on Precision, Recall, and F1-score of Co-CNN-
5 and Co-TextRNN are better than that of CNN-5 and Tex-
tRNN before co-training. It indicates that the performance
of the two classifiers are improved after co-training, and
proves the effectiveness of the proposed method.

Meanwhile, the performance of CNN-5 and TextRNN in
different iterations of co-training is shown in Figure 7. We
can observe from Figure 7 that the F1-score of the CNN-5
and TextRNN shows an overall upward trend with the in-
crease of the number of iterations. It infers that if the num-
ber of selected samples in one iteration is within an appro-
priate range, we can avoid introducing noisy samples and
select more useful samples to improve the performance of
classification models with co-training. We can observe that
the performance of TextRNN is much better than CNN-5,
this may be because the visual feature of webpage screen-
shots is too complex and the OCR text on the image has
strong semantic features.

602

5 Related Work

URLs based methods extract features from URLs for
classification. Fan et al. [1] identify illegal websites by de-
tecting whether the unknown website contains illegal URL
features. Garera et al. [2] study four different types of URL
confusion structures used in phishing attacks, propose 18
URL features, and classify websites by logistic regression.
Ma et al. [3] propose a website classification method based
on URL features, which integrates the vocabulary features
and domain name features of URLs. However, because
the URLs contain insufficient features and information, the
identification accuracy of URLs based methods is not high.

Webpage content-based methods extract content features
from webpages for identification, such as HTML text, im-
age, link, JavaScript code, and so on. Zhang et al. [4] ex-
tracted Chinese text from webpages and used text classifi-
cation technology to classify webpages according to differ-
ent themes. Li et al. [5] extract visual features from web-
page screenshots to identify gambling and porn websites.
Cernica et al. [6] propose a method that combines multiple
techniques together with Computer Vision technique to de-
tect phishing webpages. Jain et al. [7] propose a phishing
website detection method by analyzing the hyperlinks in the
webpage.

Mixed-feature-based methods combine different features
to improve the accuracy of classification. Zhang et al. [8]
propose a two-stage extreme learning machine for phishing
website detection based on the mixed features of URL, web,
and text content. Chen et al. [9] extract features from im-
ages and text in the webpages to detect gambling and porn
websites.

6 Conclusion

In this paper, we propose a gambling websites identifi-
cation method based on co-traning that extracts visual and
semantic features of webpage screenshots and utilizes un-
labeled data to improve the performance of classification
models. We use OCR technique to extract text information
in the webpage screenshots, the OCR text has strong seman-
tic feature and is useful for identifying gambling websites.
Then we construct an image classifier based on CNN and
a text classifier based on TextRNN, the two classifiers are
respectively trained from image view and text view. We re-
train the image and text classifiers on unlabeled data with
co-training algorithm. The experimental results indicate
that the proposed method can effectively improve the per-
formance of classifiers.

Acknowledgment

This work has been supported by the National Key R&D
Program of China under Grant 2021YFB3100500.

References
[1] Y. Fan, T. Yang, Y. Wang, and G. Jiang, “Illegal website identifica-

tion method based on url feature detection,” Computer Engineering,
2018.

[2] S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for
detection and measurement of phishing attacks,” in Proceedings of
the 2007 ACM workshop on Recurring malcode, 2007, pp. 1–8.

[3] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond black-
lists: learning to detect malicious web sites from suspicious urls,” in
Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009, pp. 1245–1254.

[4] D. Zhang, “Research and implementation of content-oriented web
page classification,” Nanjing University of Posts and Telecommuni-
cations, Nanjing, China, 2017.

[5] L. Li, G. Gou, G. Xiong, Z. Cao, and Z. Li, “Identifying gambling
and porn websites with image recognition,” in Pacific Rim Confer-
ence on Multimedia. Springer, 2017, pp. 488–497.

[6] I. Cernica and N. Popescu, “Computer vision based framework for
detecting phishing webpages,” in 2020 19th RoEduNet Conference:
Networking in Education and Research (RoEduNet). IEEE, 2020,
pp. 1–4.

[7] A. K. Jain and B. B. Gupta, “A machine learning based approach for
phishing detection using hyperlinks information,” Journal of Ambi-
ent Intelligence and Humanized Computing, vol. 10, no. 5, pp. 2015–
2028, 2019.

[8] W. Zhang, Q. Jiang, L. Chen, and C. Li, “Two-stage elm for phishing
web pages detection using hybrid features,” World Wide Web, vol. 20,
no. 4, pp. 797–813, 2017.

[9] Y. Chen, R. Zheng, A. Zhou, S. Liao, and L. Liu, “Automatic de-
tection of pornographic and gambling websites based on visual and
textual content using a decision mechanism,” Sensors, vol. 20, no. 14,
p. 3989, 2020.

[10] S. Mori, C. Y. Suen, and K. Yamamoto, “Historical review of ocr
research and development,” IEEE Computer Society Press, 1995.

[11] T. Technicolor, S. Related, T. Technicolor, and S. Related, “Imagenet
classification with deep convolutional neural networks [50].”

[12] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network
for text classification with multi-task learning,” arXiv preprint
arXiv:1605.05101, 2016.

[13] Z.-H. Zhou and M. Li, “Semi-supervised learning by disagreement,”
Knowledge and Information Systems, vol. 24, no. 3, pp. 415–439,
2010.

[14] A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proceedings of the eleventh annual conference
on Computational learning theory, 1998, pp. 92–100.

[15] Z.-H. Zhou, M. Li et al., “Semi-supervised regression with co-
training.” in IJCAI, vol. 5, 2005, pp. 908–913.

[16] Y. Wang and T. Li, “Improving semi-supervised co-forest algorithm
in evolving data streams,” Applied Intelligence, vol. 48, no. 10, pp.
3248–3262, 2018.

[17] S. Qiao, W. Shen, Z. Zhang, B. Wang, and A. Yuille, “Deep co-
training for semi-supervised image recognition,” in Proceedings of
the european conference on computer vision (eccv), 2018, pp. 135–
152.

[18] G. Katz, C. Caragea, and A. Shabtai, “Vertical ensemble co-training
for text classification,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 9, no. 2, pp. 1–23, 2017.

603

Social Information Popularity Prediction based on
Heterogeneous Diffusion Attention Network

Xueqi Jia
College of Computer Science

Chongqing University
Chongqing, China

jiaxueqi99@126.com

Jiaxing Shang∗
College of Computer Science

Chongqing University
Chongqing, China

shangjx@cqu.edu.cn

Linjiang Zheng
College of Computer Science

Chongqing University
Chongqing, China
zlj cqu@cqu.edu.cn

Dajiang Liu
College of Computer Science

Chongqing University
Chongqing, China
liudj@cqu.edu.cn

Weiwei Cao
Key Laboratory of Flight Techniques and Flight Safety

Civil Aviation Flight University of China
Guanghan, China

ywcao@my.swjtu.edu.cn

Hong Sun
Flight Technology and Flight Safety Research Base

Civil Aviation Flight University of China
Guanghan, China
hanksun@263.net

Abstract—Information popularity prediction on social media
platforms is a valuable and challenging issue. However, existing
studies either neglect the correlation among different cascades, or
lack a comprehensive consideration of user behavioral proximity
and preference with respect to different messages. In this paper
we propose a graph neural network-based framework named
HeDAN (heterogeneous diffusion attention network), which com-
prehensively considers various factors affecting the information
diffusion to predict the information popularity more accurately.
Specifically, we first construct a heterogeneous diffusion graph
with two types of nodes (user and message) and three types
of relations (Friendship, Interaction, and Interest). Among them,
Friendship reflects the strength of social relationship between
users, Interaction reflects the behavioral proximity between users,
and Interest reflects user preference to messages. Next, a graph
neural network model with hierarchical attention mechanism is
proposed to learn from these relations. Specifically, at the node-
level, we utilize the graph attention network to learn the subgraph
structure and generate the representations of nodes under each
specific relationship. At the semantic-level, we distinguish the
importance of different nodes in different relations via multi-
head self-attention mechanism. Extensive experimental results on
three datasets show the superior performance of our proposed
model over the state-of-the-arts.

Index Terms—Information popularity prediction, Graph neu-
ral network, Hierarchical attention, Social network analysis

I. INTRODUCTION

Nowadays, social media platforms have greatly promoted
the generation and dissemination of information, at the same
time intensified the competition among different messages for
users’ attention. Among many of hot topics [1]–[3] related to
social media analysis and mining, the theoretical and practical
values of information popularity prediction have been widely
recognized by both academia and industry. However, due to
the openness of social media platforms and uncertainty of user

∗Corresponding author: Jiaxing Shang
This work was supported in part by: National Natural Science Foundation

of China (Nos. 61966008, U2033213), Open Fund of Key Laboratory of Flight
Techniques and Flight Safety, CAAC (Nos. FZ2021KF01, FZ2021KF14)

behaviors, it is challenging to accurately predict the popularity
of information on social media platforms.

Considering the importance of graph topology on infor-
mation diffusion, graph representation-based methods have
received more attention in recent years. Previous studies
either focused on capturing the topology structure of a single
diffusion graph [4]–[6] or mining the social dependencies be-
tween active and inactive users [7]–[9], which cannot directly
exploit the correlations among different information cascades.
However, the simultaneous consideration of all cascades can
help to learn the interaction intimacy between users from their
historical forwarding behaviors, which is helpful for accu-
rately modeling information diffusion. Furthermore, messages
attracting the same group of users are more likely to have
similar popularity in the future, which means that establishing
the direct links between messages and users can reflect the
users’ preferences to different messages, thereby benefiting
the popularity prediction of messages. Therefore, this paper
aims to comprehensively consider the role of social influence,
interaction intimacy among users, and user preference to
messages on information diffusion, so as to effectively capture
predictive factors for more accurate information popularity
prediction.

To this end, we propose a graph neural network-
based framework named HeDAN (Heterogeneous Diffusion
Attention Network), which utilizes a hierarchical attention
mechanism to directly learn representations for both users
and messages, so as to provide more accurate popularity
prediction. Specifically, we first construct a heterogeneous dif-
fusion graph with two types of nodes (user and message) and
three types of relations (Friendship, Interaction, and Interest).
Among them, Friendship refers to the underlying follower-
followee relationships among users on social media platforms,
which reflects the influence of users themselves from the
perspective of social friendship. Interaction refers to the his-
torical forwarding behaviors between users, which reflects the

DOI reference number: 10.18293/SEKE2022-075

604

proximity among users from the perspective of user behaviors.
Interest refers to the direct interactions between messages and
users, which reflects the attractiveness of messages to users
from the perspective of user preference. We creatively combine
the above three types of relations to form a heterogeneous
diffusion graph. Next, we propose a graph neural network
model with hierarchical attention mechanism to learn from this
heterogeneous diffusion graph. Specifically, at the node-level,
we utilize graph attention network to learn the structure of the
subgraphs according to the relationships and characterize the
mutual importance of nodes. Then at the semantic-level, we
utilize multi-head self-attention mechanism to distinguish the
influence of different relationships and users on information
diffusion, and finally fuse all kinds of influences to obtain the
final representation vector for popularity prediction. Our main
contributions and advantages are:

• We consider the correlation among different cascades
and creatively construct a heterogeneous diffusion graph
which contains three types of relations among users and
messages to make information diffusion modeling more
comprehensive.

• We propose a graph neural network model with hierarchi-
cal attention mechanism to learn from the heterogeneous
diffusion graph for more accurate popularity prediction.

• Experimental results on three real-world datasets demon-
strate the effectiveness of our proposed model, where the
overall prediction errors are significantly reduced.

II. RELATED WORK

In this paper, we will organize related works from
the sequential representation-based methods and the graph
representation-based methods.

A. Sequential representation-based methods

Sequential representation-based methods usually regard in-
formation cascades as dynamic time series and apply recurrent
neural networks (RNN) to learn and model the diffusion
process. DeepCas [4] utilized random walks to sample the
cascade graphs to obtain the sequences of nodes as the input of
the bidirectional gated recurrent unit (Bi-GRU). DeepHawkes
[10] merged three crucial concepts of Hawkes process, i.e.,
user influence, self-exciting mechanism, and time decay effect,
with RNN to make the modeling process more interpretable.
DeepDiffuse [11] employed embedding technique and atten-
tion model to learn from the infection timestamp information.

B. Graph representation-based methods

With the development of graph neural networks (GNN)
[12], graph representation-based information diffusion studies
have received increasing attention in recent years. DeepInf [5]
and DiffuseGNN [13] evaluated the social influence of the
central user by predicting the user’s state (active or inactive)
based on the given r-ego network and neighbors’ states.
CasCN [6] sampled a cascade graph as a series of sequential
subcascades and adopted a dynamic multi-directional GCN to
learn structural information of cascades. DeepCon+Str [14]

proposed two higher-order graphs with cascades as nodes
based on content and structural proximity, and learned the
higher-order graphs by random walks and semi-supervised
language models. CoupledGNN [8] leveraged two specifically
designed GNNs, one for node states and the other for influence
spread, to model the cascading effect.

III. METHODOLOGY

In this section, we present the framework of our HeDAN
(Heterogeneous Diffusion Attention Network) model, as il-
lustrated in Fig.1. On the whole, HeDAN consists of the
following four major components: (a) Heterogeneous diffusion
graph construction module: which extracts the Interaction
relations among users and Interest relations between users
and messages from information cascades, and combines them
with social relationships to construct a heterogeneous diffu-
sion graph; (b) Node-level attention module: which utilizes
graph attention networks to learn the graph structure under
each specific relational subgraph, thereby generating node
embeddings representing specific relationships; (c) Semantic-
level attention module: which utilizes multi-head self-attention
mechanism to distinguish the importance of different types
nodes in different relationships, and fuse them into the final
representation vector; (d) Prediction module: which transforms
the final representation vector into the predicted popularity
value via a multi-layer perceptron (MLP).

A. Heterogeneous diffusion graph construction module

We first define and construct a heterogeneous diffusion
graph which contains two types of nodes (user and message)
and three types of relations (Friendship, Interaction, and In-
terest). Fig.2 shows how to extract the corresponding relations
from the cascade graphs (Fig.2(a)) and the global social graph
(Fig.2(b)) to form a heterogeneous diffusion graph (Fig.2(c)).

Given the global social graph GS , a set of messages
M = {m1,m2, · · · ,md} and the corresponding set of cas-
cade graphs GC = {GC1

,GC2
, · · · ,GCd

}, the heterogeneous
diffusion graph is defined as GH = (VH , EH), where node set
VH = M∪VS∪VC1∪VC2∪· · ·∪VCd

is the set of all message
nodes and user nodes. Each user node is associated with two
states, active or inactive. If the user has participated in one
of the messages, then it is active, otherwise it is inactive. The
edge set EH = EF (u) ∪ EI(u) ∪ EI(m) contains three subsets
EF (u), EI(u) and EI(m), where EF (u) = ES is the Friendship
edge set, EI(u) = EC1 ∪ EC2 ∪ · · · ∪ ECd

is the Interaction
edge set, and EI(m) = {(uj ,mi)|uj ∈ VCi

,mi ∈ M} is the
Interest edge set. As shown in Fig.2, the Interest edge set
EI(m) corresponding to m1 in Fig.2(c) is {(u1,m1), (u2,m1),
(u3,m1)}, where an edge (u,m) indicates that user u is
interested in message m.

B. Node-level attention module

The purpose of this module is to model non-linear associ-
ations between nodes and generate the node representations
under each relation type. As shown in Fig.1(b), this module
generates three subgraphs from the original graph according

605

(b) Node-level attention module

U AU M

(c) Semantic-level attention module(a) Heterogenous diffusion graph

Friendship

Interaction

Interest

MLP

i
S

Loss

i
S

(d) Prediction module

Mult-head self-attention

pre

Graph attention network

Fig. 1. The framework of HeDAN.

Message

(Active) User

(Inactive) User Friendship

Interaction

Interest

1u

2u

7u

3m

5u

4u 6u

1m
2m

12u
8u

(a) Cascade graphs

1u

2u

3u

10u

4u

5u

6u

9u

7u
8u12u

11u

(b) Global social graph

1u

2u

3u

10u

4u

5u

6u

9u

1m

7u
8u12u

2m

3m

11u

(c) Heterogeneous diffusion graph

1u

3u 2u 9u
3u 2u

Fig. 2. An example of the heterogeneous diffusion graph. (a) An example
of cascade graphs of message m1, m2, m3(marked as orange squares). The
edges denote that the user (marked as green circles) reposted a message from
another user at a certain timestamp; (b) The global social graph consisting of
follower-followee relationships between users; (c) The constructed heteroge-
neous diffusion graph, which includes two types of nodes (user and message)
and three types of edges (Friendship, Interaction, and Interest). The green
circles represent active user nodes, while the gray circles represent inactive
user nodes.

to the three types of relationships, and then utilizes the
graph attention network which incorporates the importance of
neighbors to learn node representations on the subgraphs. The
detailed process of this module is as follows:

1) Node feature transformation: Following the works [15]
and [16] on heterogeneous graph representation learning, and
considering that the feature spaces of message nodes and user
nodes are different, we use transformation matrices to project
both kinds of nodes into the same feature space. The projection
process can be expressed as follows,

h′(u)
i = M(u) · h(u)

i , (1)

h′(m)
j = M(m) · hj

(m), (2)

where h
(u)
i and h′(u)

i are the original and projected features
of the user node i, h

(m)
j and h′(m)

j are the original and
projected features of the message node j, M(u) ∈ Rdu×d′

and M(m) ∈ Rdm×d′
are the transformation matrices of user

and message nodes respectively.
2) Friendship subgraph attention layer: We utilize the

friendship subgraph attention layer to capture the friendship
importance among users and obtain user representations based
on friendship relations. The friendship subgraph GF (u) is a
bidirectional homogeneous subgraph generated by the edge-
set EF (u). GF (u) is bidirectional because each social user plays
two roles of sender and receiver in information diffusion. For
example, if there is a following relationship between node B
and node A, the edge (A, B) indicates that A is the sender
and B is the receiver, while the edge (B, A) indicates that A
is the receiver and B is the sender. Further, we adopt the graph
attention layer to learn the importance e

F (u)
ij on the subgraph

GF (u), which measures how sender j would contribute to
receiver i on friendship. It can be formulated as follows,

e
F (u)
ij = LeakyReLU(wT

F (u) ·
[
h′(u)

i ∥ h′(u)
j

]
), (3)

where wF (u) ∈ R2d′
are the parameterized attention vector

for subgraph GF (u) and ∥ denotes the concatenate operation.
Therefore, edge (A, B) and edge (B, A) can still learn different
weight values, ie e

F (u)
ij ̸= e

F (u)
ji .

Then we apply softmax function to obtain the normalized
weight coefficient αF (u)

ij , which can be formulated as follows,

α
F (u)
ij = softmaxj(e

F (u)
ij) =

exp(e
F (u)
ij)∑

k∈GF (u)
i

exp(e
F (u)
ik)

, (4)

where GF (u)
i is the first-order in-degree neighborhood of user

i. For users with a large number of followers, due to its large
in-degree value, the influence of each follower is lower on

606

average. For users with few followers but who are active
in their own communities, the influence of their neighbors’
connections is higher on average.

Finally, the embedding of node i in subgraph GF (u) can
be aggregated by the neighbors’ projected features with the
corresponding coefficients as follows,

z
F (u)
i = σ(

∑
j∈GF (u)

i

α
F (u)
ij · h′(u)

j), (5)

where z
F (u)
i is the output of node i for subgraph GF (u), and

σ(·) is the activation function.
3) Interaction subgraph attention layer: We utilize the

interaction subgraph attention layer to capture the interaction
intimacy among activated users and obtain activated user rep-
resentations based on interaction relations. Similar to GF (u),
we generate the interaction subgraph GI(u) by the edge-set
EI(u) . EI(u) includes the forwarding relationship among acti-
vated users. We process the generated subgraph as a directed
homogeneous graph GI(u) and employ the graph attention
layer to learn interaction attention and interaction-based user
representations on GI(u). Similar to that in friendship sub-
graph, the calculation formulas involved are as follows,

e
I(u)
ij = LeakyReLU(wT

I(u) ·
[
h′(u)

i ∥ h′(u)
j

]
), (6)

α
I(u)
ij = softmaxj(e

I(u)
ij) =

exp(e
I(u)
ij)∑

k∈GI(u)
i

exp(e
I(u)
ik)

, (7)

z
I(u)
i = σ(

∑
j∈GI(u)

i

α
I(u)
ij · h′(u)

j). (8)

4) Interest subgraph attention layer: We utilize the interest
subgraph attention layer to capture the user preferences for
messages and to obtain message representations based on
interest relations. When generating the interest subgraph, we
consider two type of edges, one is the connections between
the active users and the message, and the other is the virtual
edges from other users and the message. A virtual edge means
that if there is a reachable path of length 2 between an inactive
user and a message, then a virtual edge is constructed for the
inactive user as the source node and the message as the target
node. Therefore, the interest subgraph GI(m)′ contains two
directed bipartite subgraph, one is GIA whose edges directly
connect active users to messages, and the other is GIB whose
edges connect inactive users who are 2-hop away from the
corresponding messages. Further, we train the graph attention
network layer on GIA and GIB respectively, and finally get
z
I(m)
i . The formulas involved are as follows,

αIA
ij =

exp(LeakyReLU(wT
IA

[
h′(m)

i ∥ h′(au)
j

]
))∑

k∈GIA
i

exp(LeakyReLU(wT
IA

[
h′(m)

i ∥ h′(au)
k

]
))
,

(9)

αIB
ij =

exp(LeakyReLU(wT
IB

[
h′(m)

i ∥ h′(u)
j

]
))∑

k∈GIB
i

exp(LeakyReLU(wT
IB

[
h′(m)

i ∥ h′(u)
k

]
))
,

(10)

z
I(m)
i = σ(

∑
j∈GIA

i

αIA
ij · h′(au)

j +
∑

k∈GIB
i

αIB
ik · h′(u)

k +h′(m)
i).

(11)

C. Semantic-level attention module

The goal of this module is to model the importance of
different relationships on information diffusion, so as to obtain
a vector representation that integrates the effects of various
impacting factors. Through the learning of each relational sub-
graph by the node attention module, we obtain the friendship-
based user representations ZF (u), the interaction-based user
representations ZI(u), and the interest-based message repre-
sentations ZI(m). Now we apply the semantic attention to
distinguish the importance of each relationship and generate
the final representation by fusing the above representations.
The specific process is as follows:

Suppose the popularity of message m is to be predicted, and
the active user list within observation window is [uA, uB , uC].
First, we query the message representation vector vI(m)

from matrix ZI(m) according to the id of message m. Next,
we query the friendship-based user representation vector list
[v

F (u)
A ,v

F (u)
B ,v

F (u)
C] from matrix ZF (u) and the interaction-

based user representation vector list [vI(u)
A ,v

I(u)
B ,v

I(u)
C] from

matrix ZI(u) according to the user id of the list [uA, uB , uC].
Finally, we fuse the above vectors as Ṽ ∈ RN×d for semantic
attention learning, where N represents the number of vectors
in the list. The specific implementation of semantic attention
adopts the following multi-head self-attention mechanism,

Attention(Q,K,V) = softmax(
QKT

√
dk

)V, (12)

hi = Attention(ṼW
Q

i , ṼW
K

i , ṼW
V

i), (13)

Y = [h1;h2; ...;hH]WO, (14)

pre =
1

N

N∑
n=1

yn, (15)

where WQ
i ,W

K
i ,WV

i ∈ Rd×dk and WO ∈ RHdk×dQ ;
dk = d/H ; H is the number of heads of attention module.
Y ∈ RN×dQ represents the vector list after semantic fusion.

D. Prediction module

The last component of HeDAN is a multi-layer perceptron
(MLP) with one final output unit. Given the representation
vector prei, we calculate the popularity ∆Si as:

∆Si = MLP (prei) (16)

607

Our ultimate task is to predict the final cascade size of
message mi, which can be done by minimizing the following
loss function:

loss(∆Si,∆S̃i) =
1

M

M∑
i=1

(log∆Si − log∆S̃i)
2

(17)

where M is the number of messages, ∆Si is the predicted
popularity for message mi, and ∆S̃ is the ground truth.

IV. EXPERIMENTAL EVALUATION

A. Dataset

We select three datasets containing both user social graphs
and diffusion cascades [17] for experiments. The detailed
statistics are presented in Tab.I.

TABLE I
STATISTICS OF THE TWITTER, DOUBAN, AND WEIBO DATASETS.

Datasets Twitter Douban Weibo

#Users 12,627 23,123 2,000,000
#Links 309,631 348,280 12,822,901

#Cascades 3,442 10.662 22,767
#Train Casacdes 2,768 8,529 18,231
#Valid Cascades 345 1,067 2,265
#Test Cascades 344 1,066 2,271

B. Baseline & Evaluation Metric

1) Baseline: To evaluate the effectiveness of HeDAN, we
select four methods from the existing deep learning-based
methods for comparison. For the sequential representation-
based methods, we select DeepCas [4] and DeepHawkes
[10]. For the graph representation-based methods, we select
DeepCon+Str [14] and CoupledGNN [8].

2) Evaluation metric: Following the existing works [4], [6],
[10], we choose MSLE and mSLE as the evaluation metrics
of the experiments.

C. Settings

For the baseline methods, the node embedding size of
DeepCas, DeepHawkes and DeepCon+Str is set to 64, and
all other hyperparameter settings of each model are set to
their default values. For our model, the dimension of the
hidden units is set to 64. For GAT, the number of heads
in the multi-head attention is 8 and the dimension of each
head is 8. For multi-head self-attention mechanism, we set the
number of heads in the multi-head attention to 4. Our model
is implemented by PyTorch. We employ the Adam optimizer
with the learning rate set to 0.005 and the weight decay (L2
penalty) set to 0.001. We set the dropout rate to 0.6.

D. Results

1) Overall performance: Tab.II, Tab.III and Tab.IV show
the performance of all methods on the three datasets, where
the best results are highlighted.

TABLE II
EXPERIMENTAL RESULTS ON TWITTER DATASET.

Dataset Twitter

Observation time 1 hour 2 hours 3 hours
Evaluation metric MSLE mSLE MSLE mSLE MSLE mSLE

DeepCas 1.3770 0.2788 1.3227 0.3092 1.3180 0.2992
DeepHawkes 0.9322 0.1710 0.8953 0.1615 0.8222 0.1552
DeepCon+Str 0.8847 0.1366 0.8521 0.1288 0.7297 0.1243
CoupledGNN 0.7867 0.1301 0.7660 0.1247 0.7045 0.1208

HeDAN 0.7766 0.1263 0.7349 0.1211 0.6606 0.1127

TABLE III
EXPERIMENTAL RESULTS ON DOUBAN DATASET.

Dataset Douban

Observation time 1 year 2 years 3 years
Evaluation metric MSLE mSLE MSLE mSLE MSLE mSLE

DeepCas 1.1293 0.2564 1.0997 0.2369 0.9452 0.2408
DeepHawkes 0.8135 0.1820 0.7335 0.1788 0.7020 0.1665
DeepCon+Str 0.7026 0.1738 0.6854 0.1692 0.6663 0.1673
CoupledGNN 0.6330 0.1696 0.6262 0.1633 0.6035 0.1631

HeDAN 0.6260 0.1676 0.6158 0.1618 0.5927 0.1618

TABLE IV
EXPERIMENTAL RESULTS ON WEIBO DATASET.

Dataset Weibo

Observation time 2 hours 4 hours 6 hours
Evaluation metric MSLE mSLE MSLE mSLE MSLE mSLE

DeepCas 2.2237 1.2260 2.2343 1.2394 2.2053 1.2102
DeepHawkes 1.5527 0.9886 1.5332 0.9727 2.5096 0.9662
DeepCon+Str 1.3724 0.9224 1.3522 0.9103 1.3042 0.8962
CoupledGNN 1.2228 0.7228 1.1055 0.6888 1.0134 0.6835

HeDAN 1.1139 0.6905 1.0264 0.5707 0.9734 0.5664

From Tab.II, Tab.III and Tab.IV, we can see that HeDAN
outperforms the state-of-the-art methods by a significant mar-
gin. Specifically, we have the following observations: (1) The
graph representation-based methods significantly outperform
the sequence representation-based methods (over 10% im-
provement in MSLE on three datasets). This indicates that
graph structural information learned by graph representation-
based methods is useful for information modeling. (2) HeDAN
outperforms DeepCon+Str, with MSLE and mSLE improved
by nearly 20% on the Weibo dataset. Unlike DeepCon+Str
which ignores fine-grained user-message interactions, HeDAN
directly constructs the Interaction and Interest relationships,
which reserves detailed information for users and cascades.
Moreover, HeDAN uses the graph representation model such
as GAT to learn the node representation, which better captures
the internal structure of the cascades compared with the
semi-supervised language model. (3) HeDAN outperforms
CoupledGNN, with both MSLE and mSLE improved by nearly
10% on the Weibo dataset. This indicates that HeDAN consid-
ers co-processing of the cascades to capture the interactions
between users and the relationship between cascades, which
has a boosting effect in predicting the popularity of cascades.

608

2) Ablation experiments: To show the relative importance
of each module in HeDAN, we perform a series of ablation
studies over the key modules of the model. Fig.3 gives the
overall performance on several variant methods of HeDAN.
We can observe that: The performance of variants (1) (2) (3)
shows that all three types of relations have a catalytic effect on
information popularity prediction. Variant (4) demonstrates the
effectiveness of GAT in node-level modules. The effectiveness
of the multi-head self-attention mechanism in the semantic-
level module is demonstrated through the variant (5).

Values

HeDAN

Variant (1): w/o Friendship

Variant (2): w/o Interaction

Variant (3): w/o Interest

Variant (4): GCN

Variant (5): Mean-Pooling

Va
ria

nt
me

tho
ds

0.7766

0.7943

0.8460

1.0723

0.7954

0.7760

0.1263

0.2202

0.1667

0.4314

0.1583

0.1308

Metrics
MSLE
mSLE

Fig. 3. Results of ablation experiments under a 1-hour observation time
window on Twitter dataset.

3) Visualization: In this section, we utilize the t-SNE
[18] algorithm to visualize the final prediction representations
learned by HeDAN, as shown in Fig.4. We find a clear change
in the popularity distribution in Fig.4 (weaker from left to
right), which indicates that the latent representations learned
by HeDAN are more expressive. Moreover, the distribution of
datapoints in Fig.4 is aggregated rather than scattered, which
reflects the characteristics of the regression problem.

Fig. 4. A visualization of the final prediction representations of cascades
on the Twitter dataset. Each datapoint represents a cascade. The darker
the datapoint, the higher its popularity value. The locations of datapoints
are obtained by performing t-SNE dimensionality reduction on their final
prediction representations.

V. CONCLUSION

In this paper, we studied the information popularity predic-
tion problem on social media platforms. To comprehensively
consider various factors that affect information diffusion, we
proposed a novel heterogeneous diffusion attention network
model to characterize both the user and message representa-
tions through hierarchical attention. Specifically, we learned
various subgraph structures through node-level attention, and
creatively integrated the roles of friendship, user interaction

and user preference through semantic-level attention. We con-
ducted experiments on three real-world datasets. The exper-
imental results indicate that our model achieved significant
improvements over state-of-the-art models. As for future work,
we will extend our model to fine-grained problems such as
user-level diffusion behavior prediction. We will also consider
model interpretability in our future work.

REFERENCES

[1] S. Bhattacharya, K. Gaurav, and S. Ghosh, “Viral marketing on social
networks: An epidemiological perspective,” Physica A: Statistical Me-
chanics and its Applications, vol. 525, pp. 478–490, 2019.

[2] F. Ducci, M. Kraus, and S. Feuerriegel, “Cascade-lstm: A tree-structured
neural classifier for detecting misinformation cascades,” in Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020, pp. 2666–2676.

[3] C. Huang, H. Xu, Y. Xu, P. Dai, L. Xiao, M. Lu, L. Bo, H. Xing, X. Lai,
and Y. Ye, “Knowledge-aware coupled graph neural network for social
recommendation,” in 35th AAAI Conference on Artificial Intelligence
(AAAI), 2021.

[4] C. Li, J. Ma, X. Guo, and Q. Mei, “Deepcas: An end-to-end predictor
of information cascades,” in Proceedings of the 26th international
conference on World Wide Web, 2017, pp. 577–586.

[5] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, “Deepinf:
Social influence prediction with deep learning,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 2110–2119.

[6] X. Chen, F. Zhou, K. Zhang, G. Trajcevski, T. Zhong, and F. Zhang,
“Information diffusion prediction via recurrent cascades convolution,” in
2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 2019, pp. 770–781.

[7] Z. Wang, C. Chen, and W. Li, “A sequential neural information diffusion
model with structure attention,” in Proceedings of the 27th ACM
International Conference on Information and Knowledge Management,
2018, pp. 1795–1798.

[8] Q. Cao, H. Shen, J. Gao, B. Wei, and X. Cheng, “Popularity prediction
on social platforms with coupled graph neural networks,” in Proceedings
of the 13th International Conference on Web Search and Data Mining,
2020, pp. 70–78.

[9] S. Molaei, H. Zare, and H. Veisi, “Deep learning approach on informa-
tion diffusion in heterogeneous networks,” Knowledge-Based Systems,
vol. 189, p. 105153, 2020.

[10] Q. Cao, H. Shen, K. Cen, W. Ouyang, and X. Cheng, “Deephawkes:
Bridging the gap between prediction and understanding of information
cascades,” in Proceedings of the 2017 ACM on Conference on Informa-
tion and Knowledge Management, 2017, pp. 1149–1158.

[11] M. R. Islam, S. Muthiah, B. Adhikari, B. A. Prakash, and N. Ramakrish-
nan, “Deepdiffuse: Predicting the’who’and’when’in cascades,” in 2018
IEEE International Conference on Data Mining (ICDM). IEEE, 2018,
pp. 1055–1060.

[12] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[13] F. Zhang, J. Tang, X. Liu, Z. Hou, Y. Dong, J. Zhang, X. Liu, R. Xie,
K. Zhuang, X. Zhang et al., “Understanding wechat user preferences
and “wow” diffusion,” IEEE Transactions on Knowledge and Data
Engineering, 2021.

[14] X. Feng, Q. Zhao, and Z. Liu, “Prediction of information cascades via
content and structure integrated whole graph embedding.” IJCAI, 2019.

[15] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 793–803.

[16] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in The World Wide Web
Conference, 2019, pp. 2022–2032.

[17] F. Zhou, X. Xu, G. Trajcevski, and K. Zhang, “A survey of information
cascade analysis: Models, predictions, and recent advances,” ACM
Computing Surveys (CSUR), vol. 54, no. 2, pp. 1–36, 2021.

[18] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

609

Context-Aware Model for Mining User Intentions
from App Reviews

Jinwei Lu†, Yimin Wu†§, Jiayan Pei‡, Zishan Qin†, Shizhao Huang‡ and Chao Deng§
†School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

‡School of Software Engineering, South China University of Technology, Guangzhou, China
§School of Computer Science and Engineering, Guangdong Ocean University at yangjiang, Yangjiang, China

cskilljl@mail.scut.edu.cn, csymwu@scut.edu.cn, seasensio@mail.scut.edu.cn,
csqzs@mail.scut.edu.cn, se hsz@mail.scut.edu.cn, dengchao@gdou.edu.cn

Abstract—Due to the highly competitive and dynamic mobile
application (app) market, app developers need to release new
versions regularly to improve existing features and provide new
features for users. To accomplish the maintenance and evolution
tasks more effectively and efficiently, app developers should
collect and analyze user reviews, which contain a rich source
of information from user perspective. Although there are many
approaches based on intention mining that can automatically
predict the intention of reviews for better understanding valu-
able information, those approaches are limited since contextual
information of the whole review text may be lost. In this paper,
we propose Mining Intention from App Reviews (MIAR), a novel
deep learning model to predict the intention of app reviews au-
tomatically. We adopt a Contextual Feature Extractor to capture
the context semantic information and fuse it with the local feature
through a fusion mechanism. The experiment results demonstrate
that MIAR has made significant improvement over the baseline
approaches in Precision, Recall, and F1-score evaluation metrics,
achieving state-of-the-art performance in this task. Our model
also performs well in other intention mining tasks, proving its
generalization ability and robustness.

Keywords—Software Maintenance; Deep Learning; App Re-
view; Intention Mining

I. INTRODUCTION

With the highly competitive and dynamic app market, it is
essential for app developers to regularly release new versions
to fix bugs and offer new features to users. In order to
understanding the changing user needs which are related to
app maintenance and evolution, many app stores offer a review
module to users, which provide a communication channel to
users and developers [1]. However, manually processing such
user reviews is a big challenging. Many useless reviews do
not express any valuable information, or unstructured reviews
use non-technical language, making review processing task
become time-consuming and error-prone. Therefore, many
researchers have developed a variety of approaches to automat-
ically identifying relevant user reviews [2] [3], or by clustering
and prioritizing user reviews to find the most crucial topics [4].

Apart from previous approaches which are helpful to cope
with large amounts of user review, it is also important for
app developers to understand the intention that users ex-
pressed implicitly in reviews [5], which could provide valu-
able information in detecting relevant content to accomplish

DOI reference number: 10.18293/SEKE2022-084

several maintenance and evolution tasks. To help identify
user intentions more accurately, many researchers leveraged
a process called intention mining to analyze and filter user
review sentences. While these researches have performed well
in classifying app reviews into different user intentions, their
methods based on linguistic patterns matching may waste a
lot of time and manual inspection in pattern identification.
Moreover, it is still difficult to accomplish this task when
reviews are unstructured or intentions are implicit, which
will be hard for these methods to distinguish the relevant
components and patterns for classification.

In recent years, some researchers adopt deep learning to
overcome this shortcoming. With the strong non-linear fit-
ting ability, deep learning can effectively extract semantic
information. Some researchers have adopted deep learning
to identify intentions from various communication channels
[6] [7]. Taking Huang et al.’s [7] work as an example, their
approach builds a convolutional neural network (CNN) to
classify sentences from issue tracking systems. However, they
only adopt neural network to learn local representation of
sentence, which ignores the contextual information of the text.

This paper conducts research based on Huang et al.’s work.
In order to leverage intention mining to accomplish review
mining task, we propose a novel model, named Mining Inten-
tion from App Reviews, which can detect intentions via neural
network. To better understand the contextual information in the
review, we build a context-aware model based on BiLSTM [8]
that can deeply learn the global representation. To evaluate
the proposed model, we conduct experiments on the review
dataset to compare with state-of-the-art method, and results
demonstrate the superior performance of our proposed method.

The main contributions of this paper are as follows:
• We propose a novel intention mining model for app

review classification task, which does not rely on the
linguistic patterns and greatly reduce the manual effort.

• We implement a contextual feature extractor to capture
the global feature for better gaining the context sematic
information and understanding user intentions.

• We evaluate our approach on several relevant datasets,
and the result shows that our model not only outperforms
previous methods in app review domain, but also have a
good performance in other software engineering domains.

610

The rest of the paper is organized as follows. Section
2 briefly presents the related work of our study. Section 3
introduces the overall framework and technical details of our
approach. Section 4 describes the experimental settings and
presents the experiment results. Finally, Section 5 concludes
the paper and outlines future work.

II. RELATED WORK

App review is essential to app developers, as it contains
valuable insights that can help successfully accomplish app
maintenance and evolution tasks. Pagano and Maalej [1]
identified 17 topics in user feedback by manually investigating
the content of selected user reviews, which included the topics
of feature request or bug report that could be mined for
requirements-related information.

Many previous researchers used machine learning methods
based on linguistic rules or heuristics patterns to extract such
information. Iacob and Harrison [2] extracted feature requests
from app reviews utilizing linguistic rules and used Latent
Dirichlet Allocation (LDA) to group them. AR-Miner, which
was proposed by Chen et al. [4], also employed LDA to group
informative reviews. Maalej and Nabil [3] generated a list
of keywords to be applied for the classification task. Then,
they applied various machine learning methods to classify
reviews. Panichella et al. [5] hypothesized that understanding
the intention in a review has an important role in extracting
useful information for developers. Therefore, they leveraged
intention mining, which was proposed by Di Sorbo et al.
[9], to catch useful contents. They merged three techniques
to mining user intention for classify app reviews into the
categories which are relevant to user intention. After that, they
proposed AR-Doc [10], which is based on J48 algorithm, to
use linguistic patterns for classification. In a later work, Di
Sorbo et al. [11] proposed SURF to summarize app review
for software change recommendation. Palomba et al. [12]
proposed ChangeAdvisor to extract the intention of reviews
to analyze potential app evolution. These tools leveraged
classifier proposed by Panichella et al. [5], which means that
intention mining can be a fundamental component to support
complicated tasks. In order to minimize the manual effort
of relevant pattern tagging, Di Sorbo [13] proposed NEON
to automatically mine linguistic rules for review analysis
and classification. However, these methods based on syntax
analyzing or linguistic patterns matching limit the ability to
extract semantic information from reviews, which means that
the classifier could not understand the implicit intentions and
just use the explicit feature to identify the category of app
reviews. Therefore, to solve this problem, we leverage deep
learning to model high-level abstractions in data by building
neural networks with multiple layers.

In recent years, some researchers have explored the possibil-
ity of applying deep learning for intention mining. Stanik et al.
[14] used a simple CNN-based model to classify user feedback
for software development. Huang et al. [7] also proposed
a CNN-based approach, which improves Di Sorbo et al.’s
approach [9] and the other automated sentence classification

approaches by a substantial margin. However, in their work,
deep learning approaches were based on the local feature
extraction model, which learns the representation of the recep-
tive field and only calculates the relevance between adjacent
n-gram elements. Hence these methods can not sufficiently
consider the contextual information of the whole text, which
is essential to predicting the intention of app review. Therefore,
based on deep learning, we adopt the global feature extraction
mechanism to learn the contextual information, hoping to
achieve better performance in the review intention mining task.

III. APPROACH

According to Panichella et al. [5], user intention categories
of app review can be defined as the following four classes:

• Information Giving (IG) : sentences that inform or update
users or developers about an aspect related to the app.

• Information Seeking (IS) : sentences related to attempts to
obtain information or help from other users or developers.

• Feature Request (FR) : sentences expressing ideas, sug-
gestions or needs for improving or enhancing the app or
its functionalities.

• Problem Discovery (PD) : sentences describing issues
with the app or unexpected behaviors.

The intention of a review is predicted to be one of the
four classes mentioned above. We use raw text sentences of a
review as the input sequence. Suppose the input text sequence
is R = {w1, w2, . . . , wn} ,where n is the sequence length.

Figure 1 presents the overall framework of MIAR, which
is mainly composed of the following five modules: (1) Word
Embedding Layer, (2) Local Feature Extractor, (3) Contextual
Feature Extractor, (4) Fusion Layer, and (5) Prediction Layer.

Fig. 1. The framework of MIAR

611

A. Word Embedding Layer
In this Layer, we leverage Word Embedding technique to

transform words into the corresponding vector representations.
Each word wi in the input sequence is transformed into a
vector representation xi ∈ Rd through the pre-trained word
embeddings. In our work, we use the pre-trained GloVe word
embeddings with 300 dimensions [15]. Then, we train word
vectors to obtain word embeddings. Of course, all kinds of
word embedding methods can be employed in this process.

Moreover, inspired by previous work [16], making good
use of POS tag can benefit semantic understanding by extract-
ing explicit lexical information. Therefore, we add POS tag
information into word vector to augment its ability of feature
representation. Specifically, each type of POS tag is initialized
as a random vector with uniform distribution and optimized
during training. Hence, each word can be represented as:

xi = [xei ⊕ x
p
i] (1)

Where ⊕ is the concatenation operator, xei and xpi denotes
the corresponding word embedding and the embedding of the
POS tag of the word, respectively.

Therefore, the review sequence containing n words can be
converted to corresponding matrix representation, which is the
input of the two feature extractors of the model:

Rx = x1 ⊕ x2 ⊕ . . .⊕ xn (2)

B. Local Feature Extractor
In this module, we adopt TextCNN [17], which is a type of

CNN for sentence classification, to extract the local feature in
the text sequence. The convolutional layer receives the matrix
representation Rx and performs convolution operation on it
using different filters. Each filter is also a matrix, denoted as
F , having the same width as the matrix R. The purpose of
each filter with height f is to capture the semantic feature of
each n-gram sequence in the sentence through a convolution
operation, which is computed as follows:

Ci = F ·Ri:i+f−1 + bi,∀i ∈ {1, 2, . . . , n− f + 1} (3)

Where Ri:i+f−1 represents the sub-matrix of R from the i th
row to the (i+n-1) th row, which represents the vectors of f
continuous words (n-gram), and bi is a bias value.

The j th filter is applied repeatedly to each n-grams in the
sentence with convolution operation and produces a vector:

Fj = [C1, C2, . . . , Cn−f+1],∀j ∈ {1, 2, . . . ,m} (4)

Where n is the height of matrix Rx. In order to help the extrac-
tor to learn enough semantic features in different granularities,
multiple filters with various heights are used.

After performing the convolution operation, a pooling layer
is applied to reduce the number of parameters and the com-
putation cost. Specifically, the pooling layer applies a 1-max
pooling function to the vector Fj received from each filter.
Then outputs of m filters are concatenated as a high-level
feature vector, which can catch semantic features of different
n-grams in the input, representing the local feature vector LF:

LF = maxpooling([F1;F2; . . . ;Fm]) (5)

C. Contextual Feature Extractor

To solve the problem of Local Feature Extractor that is not
sensitive to the sequential information which is essential to
understand the semantic relation and implicit intention, we
build a Contextual Feature Extractor to extract the contextual
information and generate the global representation of the
input sequence. Here, we adopt BiLSTM to incorporate the
contextual information into the original representation of each
token in input sequence. BiLSTM is composed of a forward
and a backward LSTM. Through its three gate structures,
LSTM can solve the long-term dependence information very
well, which means that bi-directional semantic dependencies
within the review can be well captured. We concatenate the
outputs of the two LSTM to generate the augmented vector
of a token, which incorporates the contextual information into
the token representation. This process can be represented as:

−→
h i = LSTM(

−→
h i−1, xi),∀i ∈ {1, 2, . . . , n} (6)

Hi = [
−→
h i;
←−
h i],∀i ∈ {1, 2, . . . , n} (7)

Where
−→
h i is the hidden state of the forward LSTM in the time

step i,
←−
h i represents the backward, xi is the input of LSTM

in the time step i, and Hi is the contextual representation.
To condense the rich information extracted by BiLSTM, we

add a convolutional layer to abstract the contextual feature.
The feature vector transferred from BiLSTM does not contain
sequential information incorporated into representation, which
is suitable for convolutional network to perform feature con-
densing. Then a max-pooling layer is leveraged to conduct
feature dimension reduction and generate the global represen-
tation. This global feature vector contains high concentration
contextual information that can help mining intention better.
The global feature vector GF can be calculated as follow:

HCi = Fh ·Hi:i+f−1 + bi,∀i ∈ {1, 2, . . . , n− f + 1} (8)

Fj = [HC1, HC2, . . . ,HCn−f+1],∀j ∈ {1, 2, . . . ,m} (9)

GF = maxpooling([F1;F2; . . . ;Fm]) (10)

Where Hi:i+f−1 = [Hi, . . . ,Hi+f−1], f is filter size, m is
the number of filters, and bi is a bias value. Then the final
representation is passed to the fusion layer for feature fusion.

D. Fusion Layer

In the Fusion Layer, LF and GF are integrated to generate
the intention representation. We fuse the features as follow:

X̃1
i = αLFi + (1− α)GFi (11)

X̃2
i = βLFi − (1− β)GFi (12)

X̃3
i = γGFi − (1− γ)LFi (13)

Where + represents feature augment computation, which high-
lights the similarity between two vectors, and − denotes the
difference between two vectors. α, β, and γ are the weighting
factors which can be tuned for controlling the fusion degree

612

of each feature. We concatenate the results obtained by the
above three methods and input them into another single-layer
feed-forward network F to compute the output:

X̃1
i = F ([X̃1

i ; X̃
2
i ; X̃

3
i]) (14)

Where [;] refers to the concatenation operation. Then the final
feature representation is passed to the Prediction Layer.

E. Prediction Layer

In the Prediction Layer, for vectors obtained from last layer,
we use a multi-layer feed-forward network L to get feature
vectors. Then a softmax function is applied to normalize the
values so that the output vector can represent the probability
of the input sequence belonging to one specific category:

σ(Vi) =
eVi∑K
j=1 e

Vj

,∀i ∈ 1, 2, . . . ,K (15)

Finally, we use the cross-entropy function to measure the
loss between the prediction result and the ground truth:

Loss = −(y log(ŷ) + (1− y) log(1− ŷ)) (16)

IV. EXPERIMENT

In this section, we conduct some experiments for answering
the following research questions.

A. Research Questions

RQ1: How effective is MIAR for predicting user intention
of different categories in app reviews?

MIAR adopts deep learning to automatically mining review
intention based on two feature extractors and the fusion
mechanism, which is much different from the previous works.
To investigate the effectiveness of our approach, we compare
the performance of MIAR with the baseline from Panichella
et al.’s work [5]. Moreover, we also conduct experiments with
other three intention mining models including AR-Doc [10],
DECA [9], and Huang et al.’s CNN-based model [7]. To
present results more accurately, we keep results of all models
to three decimal places.

RQ2: How much influence do the techniques or modules
we proposed contribute to the improvement of MIAR?

Three important techniques we proposed, including POS
tag embedding (POS), Contextual Feature Extractor (CFE),
and Fusion Layer (FL), could help MIAR to capture semantic
information and identify intention from app reviews better.
To evaluate their contributions, we conduct an ablation study
to demonstrate. We take turns to remove one of the three
techniques and compare the revised model with the original
model on the F1-score. Specifically, when we remove CFE, we
must remove FL simultaneously, since the fusion mechanism
needs global feature generated by CFE to perform the fusion
process. Thus, we perform the following ablation studies,
consisting in (1) only removing POS; (2) only removing FL
and replacing by concatenation; and (3) removing the CFE.

RQ3: Does MIAR work well in intention mining tasks
from other software engineering domains?

TABLE I
DETAILS OF DATASETS

Domain IG IS FR PD Other Total
Review 583 101 218 488 31 1421
Issue 1,328 962 536 762 397 3,985
Email 167 264 187 170 0 788

To explore the generalization ability of MIAR, we apply
MIAR to emails mining task [9] and issue mining task [7]
for comparison. Following Huang et al.’s work, we conduct
the following studies, including (1) only using issue dataset
(Issue); (2) only using email dataset (Email); (3) using issue
dataset as training set and email dataset as test set (I to E); (4)
using email dataset as training set and issue dataset as test set
(E to I). The results of baseline models are from paper [7].

B. Dataset

We carry out experiments on the review dataset built by
Panichella et al. [5]. They sampled 1421 review sentences out
of 7696 reviews and manually labeled the sample according
to the categories of their intention taxonomy, which includes
four intention classes and Other class. We use 3-folds cross-
validation to carry out our experiments on this dataset.

Moreover, to evaluate the generalization ability of MIAR,
we also run experiments on two intention mining datasets
proposed by Di Sorbo et al. [9] and Huang et al. [7]. We
also carry out 3-folds cross-validation as Huang et al. [7] to
evaluate the performance of MIAR. The detailed data of these
three datasets is presented in Table I.

C. Evaluation Metric

We use the same evaluation metrics as Huang et al. [7] to
evaluate MIAR’s performance.

Precision represents the proportion of samples predicted to
be positive that are truly positive samples.

Precision =
TruePositive

TruePositive+ FalsePositive
(17)

Recall represents the proportion that the positive samples
are predicted to be positive correctly.

Recall =
TruePositive

TruePositive+ FalseNegative
(18)

F1-score is the weighted average of Precision and Recall.
This metric takes into account both the Precision and Recall
of the model. In the multi-class classification task, F1-score
are computed for each class and then averaged via arithmetic
mean to get Macro-F1.

F1− score = 2 · precision · recall
precision+ recall

(19)

D. Implementation Details

MIAR is implemented based on the PyTorch [18] frame-
work, experimented on an Nvidia 1080Ti GPU. For the Local
Feature Extractor, we set two different kernel sizes, which are
2 and 3, respectively, and 100 feature maps for each kernel.

613

TABLE II
MAIN RESULT

IG IS FR PD
P R F1 P R F1 P R F1 P R F1 Avg-P Avg-R Macro-F1

Baseline 0.680 0.904 0.776 0.712 0.684 0.698 0.704 0.225 0.341 0.875 0.776 0.823 0.743 0.647 0.659
DECA 0.327 0.730 0.451 0.723 0.640 0.679 0.516 0.281 0.364 0.733 0.810 0.769 0.575 0.615 0.566
Huang 0.677 0.788 0.728 0.793 0.396 0.528 0.512 0.401 0.450 0.745 0.717 0.731 0.682 0.575 0.609

AR-Doc 0.456 0.747 0.566 0.683 0.633 0.657 0.625 0.385 0.476 0.751 0.808 0.779 0.629 0.643 0.620
MIAR 0.750 0.880 0.810 0.871 0.692 0.772 0.578 0.646 0.610 0.829 0.836 0.833 0.757 0.764 0.756

TABLE III
COMPARING THE F1-SCORE OF MIAR AND THE REVISED MODELS

IG IS FR PD Macro-F1
MIAR 0.810 0.772 0.610 0.833 0.756

MIAR(-POS) 0.761 0.757 0.570 0.787 0.719
MIAR(- FL) 0.748 0.724 0.531 0.752 0.689

MIAR(- CFE -FL) 0.703 0.664 0.488 0.728 0.646

For the Contextual Feature Extractor, we use BiLSTM with
700 units as the encoder. Adam optimizer [19] with an initial
learning rate of 0.001 is applied. We release the source code
of MIAR and hope to facilitate future researches.1

E. Result

RQ1: How effective is MIAR for predicting user intention
of different categories in app reviews?

Table II presents the experiment results. The best results
are highlighted in bold. We can see that MIAR achieves the
best results for all the four intention classes, with an average
of 75.7%, 75.4%, and 75.6% in precision, recall, and F1-
score. Although Baseline method has a better performance
of precision in some classes, the F1-score of this model
is approximately 9.7% below than that of MIAR, which is
limited by its low recall, which is 11.7% below than MIAR.
This result indicates that using the approach based on linguistic
pattern can predict intentions precisely, but this method may
be confused by some ambiguous patterns which can appear
in different intentions. Moreover, these tools relies heavily
on manual effort. The lack of relevant linguistic pattern for
matching can seriously degrade the performance of these tools.
In contrast, deep learning methods, which do not rely on the
fixed pattern, can model the high-level abstractions of reviews
to understand the whole sentence and achieve higher score.

The result of FR is lower than other classes, which indicates
that the semantic information of this class is more confused
for understanding, or the expression is more implicit. So
that Baseline and DECA are difficult to identify patterns for
classification, which leads to a poor result (34.1% and 36.4%).
This result reflect that this class limits the overall performance
of all approaches included MIAR, which still have a major
improvement of F1-score (at least 13.4%) compared with
other approaches. For the remaining three classes, MIAR’s
improvement is also significant (8.2%−24.4%) compared with

1Our model is openly available in https://anonymous.4open.science/r/MIAR/

TABLE IV
PERFORMANCE OF DIFFERENT MODELS IN OTHER DATASETS

IG IS FR PD Macro-F1
DECA 0.293 0.511 0.420 0.601 0.456

Issue Huang 0.805 0.904 0.794 0.820 0.831
MIAR 0.842 0.980 0.846 0.829 0.874
DECA 0.743 0.874 0.789 0.879 0.821

Email Huang 0.785 0.883 0.793 0.890 0.838
MIAR 0.804 0.954 0.842 0.818 0.854
DECA 0.743 0.874 0.789 0.879 0.821

I to E Huang 0.562 0.808 0.579 0.760 0.678
MIAR 0.659 0.943 0.693 0.811 0.776
DECA 0.293 0.511 0.420 0.601 0.456

E to I Huang 0.487 0.678 0.579 0.520 0.566
MIAR 0.684 0.890 0.670 0.746 0.747

Huang et al.’s approach. This result indicates that extracting
contextual features and semantic relations is essential for
understanding and identifying user intentions, especially in the
noisy and informal communication environment.

RQ2: How much influence do the techniques or modules
we proposed contribute to the improvement of MIAR?

The experimental results are shown in Table III. After
removing POS or FL, respectively, the revised models’ per-
formance decreases in some degree (3.7%and6.7%, in terms
of Macro-F1, respectively). However, after removing the CFE,
the model’s performance decreases more obviously (11.0%
in Macro-F1), especially in predicting the Feature Request
class (12.2% in terms of F1-score). This experiment results
prove the importance of the CFE, which plays an essential
role in predicting review intention. Certainly, POS and FL
also improve our model’s performance.

RQ3: Does MIAR work well in intention mining tasks
from other software engineering domains?

Table IV presents the experiment results. For Issue, Email
and E to I, MIAR outperforms other models, which include the
state-of-the-art model on these datasets. For I to E, MIAR has
a performance degradation, due to the poor performance in IG
and FR, which are also the bottleneck of other models. This
experimental result may cause by the gap between different
communication channels. The discussion from issue is more
similar to app review in the statement, which has more verbal
and indirect expression that understanding the contextual in-
formation is more important. Moreover, MIAR achieves better
results in all the four experiments than Huang et al.’s model,

614

TABLE V
CASE STUDY

Case Review AR-Doc Huang MIAR Label
1 Crashing Bug Normally I will be able to find a work Around but I couldn’t get a ROM to run. PD PD FR FR
2 And I’m also not sure how to search for hybrid cards am I missing something here PD PD IS IS

which shows that MIAR has good generalization ability that
can be applied to other software engineering domains.

F. Case Study

To investigate how our architecture makes a difference in
details, we visualize two examples from different classes in
Table V. The most important phrases extracted by CNN-based
architectures are highlighted in bold, and we underline the
important contextual information extracted by CFE.

In case (1), AR-Doc captures the linguistic pattern: ”some-
one get something”, and this pattern generally apply to express
some problems. So that the linguistic pattern belongs to PD,
leading to the wrong predicting. Huang et al.’s approach
extracts the most important phrase “Crashing Bug”, which
generally indicates some bugs. Thus their model misclassifies
this review into PD. In contrast, MIAR not only captures
the important local feature“Crashing Bug”, but also extracts
some contextual information: “couldn’t get” and “run”, which
belong to long distance dependency and could be ignored by
Local Feature Extractor. These contextual features can provide
more semantic information for predicting the correct label.

In case (2), both AR-Doc and Huang et al.’s approach are
disturbed by the influential local feature “missing something”,
which is inclined to report some errors appeared in the app,
while MIAR can consider the helpful contextual feature “not
sure” and “search for”, which is effective on understanding the
implicit intention and predicting IS correctly. In short, with the
help of CFE, MIAR can extract more useful information and
provide to the classifier for efficiently mining intentions.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a deep learning model MIAR
based on the feature fusion mechanism to predict the user
intention from app review, which can reduce the manual effort
and better help developers obtain useful information for soft-
ware maintenance and evolution. The experiment results show
MIAR’s effectiveness and consistency in predicting review
intention, outperforming some baseline models in previous
works. Moreover, in some other intention mining tasks, MIAR
can also achieve state-of-the-art performance, which proves
its generalization ability. We will explore the application that
identify the intention of other written communication channels
from software engineer domain in future work.

REFERENCES

[1] D. Pagano and W. Maalej, “User feedback in the appstore: An empir-
ical study,” in 2013 21st IEEE international requirements engineering
conference (RE). IEEE, 2013, pp. 125–134.

[2] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in 2013 10th working conference on
mining software repositories (MSR). IEEE, 2013, pp. 41–44.

[3] W. Maalej and H. Nabil, “Bug report, feature request, or simply
praise? on automatically classifying app reviews,” in 2015 IEEE 23rd
international requirements engineering conference (RE). IEEE, 2015,
pp. 116–125.

[4] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner: mining
informative reviews for developers from mobile app marketplace,” in
Proceedings of the 36th international conference on software engineer-
ing, 2014, pp. 767–778.

[5] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user reviews
for software maintenance and evolution,” in 2015 IEEE international
conference on software maintenance and evolution (ICSME). IEEE,
2015, pp. 281–290.

[6] M. Haering, C. Stanik, and W. Maalej, “Automatically matching bug
reports with related app reviews,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 970–981.

[7] Q. Huang, X. Xia, D. Lo, and G. C. Murphy, “Automating intention
mining,” IEEE Transactions on Software Engineering, vol. 46, no. 10,
pp. 1098–1119, 2018.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta, G. Canfora,
and H. C. Gall, “Development emails content analyzer: Intention mining
in developer discussions (t),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2015,
pp. 12–23.

[10] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “Ardoc: App reviews development oriented classifier,” in
Proceedings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, 2016, pp. 1023–1027.

[11] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? summarizing app reviews for recommending software changes,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 499–510.

[12] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia, “Recommending and localizing change requests
for mobile apps based on user reviews,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 2017,
pp. 106–117.

[13] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. D. Penta, G. Canfora, and
H. C. Gall, “Exploiting natural language structures in software informal
documentation,” IEEE Transactions on Software Engineering, vol. 47,
no. 8, pp. 1587–1604, 2021.

[14] C. Stanik, M. Haering, and W. Maalej, “Classifying multilingual user
feedback using traditional machine learning and deep learning,” in
2019 IEEE 27th International Requirements Engineering Conference
Workshops (REW). IEEE, 2019, pp. 220–226.

[15] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[16] L. Shi, M. Xing, M. Li, Y. Wang, S. Li, and Q. Wang, “Detection of
hidden feature requests from massive chat messages via deep siamese
network,” in 2020 IEEE/ACM 42nd International Conference on Soft-
ware Engineering (ICSE). IEEE, 2020, pp. 641–653.

[17] Y. Kim, “Convolutional neural networks for sentence classification,”
Eprint Arxiv, 2014.

[18] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

615

COAT: A Music Recommendation Model based on
Chord Progression and Attention Mechanisms

Weite Feng, Tong Li*, Zhen Yang
Beijing University of Technology

*litong@bjut.edu.cn

Abstract—Recently, efforts have been made to explore in-
troducing music content into deep learning-based music rec-
ommendation systems. In previous research, with reference to
tasks such as speech recognition, music content is often fed into
recommendation models as low-level audio features, such as the
Mel-frequency cepstral coefficients. However, unlike tasks such
as speech recognition, the audio of music often contains multiple
sound sources. Hence, low-level time-domain-based or frequency-
domain-based audio features may not represent the music content
properly, limiting the recommendation algorithm’s performance.
To address this problem, we propose a music recommendation
model based on chord progressions and attention mechanisms.
In this model, music content is represented as chord progressions
rather than low-level audio features. The model integrates user
song interactions and chord sequences of music and uses an
attention mechanism to differentiate the importance of different
parts of the song. In this model, to make better use of the
historical behavioral information of users, we refer to the
design of the neural collaborative filtering algorithm to obtain
embedding of users and songs. Under this basis, we designed a
chord attention layer to mine users’ fine-grained preferences for
different parts of the music content. We conducted experiments
with a subset of the last.fm-1b dataset. The experimental results
demonstrate the effectiveness of the method proposed in this
paper.

Index Terms—Data Mining, Recommendation System, Music
Information Retrieval, Machine Learning

I. INTRODUCTION

In recent years, with the growth of the mobile internet,
access to music from internet music platforms has become
convenient. Exposure to new music productions through rec-
ommendation algorithms is becoming a new way of consuming
music. As such, music recommendation algorithms are broadly
applied in the industry and have captured the interests of many
academics.

Common music recommendation algorithms can be broadly
classified into two categories, one known as Collaborative
Filtering (CF) and one known as Content-Based Filtering
(CBF) [1]. The CF method learns the user’s preferences from
the user’s interaction with the song. The CBF approach makes
a recommendation based on similarities that are calculated
using song’s labels or audio contents. Since audio content
reflects music’s content directly, establishing a relationship
between users and audio content will help achieve accurate
music recommendations.

DOI reference number: 10.18293/SEKE2022-115

To this end, efforts have been made to hybridize the user’s
listening history with the audio content to generate recom-
mendations. For example, Oord et al. introduce Convolutional
Neural Network (CNN) into the music recommendation task
[2]. They first obtain a representation vector of music items via
the CF method and then learns the mapping of audio content to
the music vector by training a CNN to generate an embedding
vector for new music. Lee et al. propose a user embedding
approach, which integrates user history records with audio
content in the framework of Neural Collaborative Filtering
(NCF) [3] and generates recommendations end-to-end [4].

Due to the success of audio features in tasks such as speech
recognition, audio content is often represented as frequency
domain features such as Mel-frequency cepstral coefficients
or spectrograms in hybrid music recommendation algorithms
[5]. However, while these low-level features have been shown
to be suitable to for certain tasks, their discriminative power
and semantics are limited. This makes them may be unsuitable
for music classification, musical emotion recognition, or music
recommendation tasks, which require better representations
[6].

At the same time, users tend to have different degrees of
preference for different segments of music content, termed
fine-grained music preferences [7]. However, existing embed-
ding methods for music content do not distinguish between
different parts of the music at a fine-grained level. Instead, use
CNNs or Recurrent Neural Networks (RNNs) to directly learn
the mapping between the audio content and the embedding
vector. Such coarse-grained embedding methods may trap
existing methods into sub-optimal solutions. Therefore, how
to appropriately represent music content in a hybrid music
recommendation system and tap into the fine-grained music
preferences of users for music content becomes a problem
that needs to be addressed.

For the representation of music content, we propose to
use higher-level music features such as the chord progression
instead of audio features. In musical compositions, a chord
progression is a continuous sequence of chords (e.g., C-G-Am-
F) that describes the structure of music, which is the defining
feature on which melody and rhythm are built. The chord
features showed better performance than the low-level audio
features in the music emotion classification task [8]. For the
mining of users’ fine-grained music preferences, we propose

616

to leverage attention mechanisms to learn users’ preferences
for different parts of the music, which have recently been used
as an effective means to fine-grained data mining [9], [10].

We argue that users’ fine-grained preferences on music
content should be carefully mined in order to render better
recommendations. To this end, we proposed a music recom-
mendation model based on chord progression and attention
mechanisms (COAT), which combines user-item interaction
with music content. In the COAT model, we use a Generalized
Matrix Factorization (GMF) layer to mimic matrix factoriza-
tion and mining users’ musical interests from their interaction
with songs. Based on this, we design a chord attention layer
to calculate user attention scores for the different chords on
the chord progression and generate music content embedding.
Finally, we use a prediction layer to combine the output of the
GMF layer and the chord attention layer to predict the listening
probabilities. We conducted experiments with a subset of the
last.fm-1b dataset to assess the performance of our proposal.
The experimental results show that our approach outperforms
the baseline.

II. RELATED WORK

A. Music Recommendation Algorithm

Deep learning-based music recommendation approaches
usually use deep learning techniques to obtain a vector repre-
sentation of a song from its audio content or metadata, known
as an embedding vector. The obtained embedding vectors
are then used to perform content-based recommendations,
integrated into matrix factorization methods, or build hybrid
music recommendation systems [5].

Oord et al. introduce deep learning techniques to music
recommendation systems [2]. After obtaining the embedding
vectors of the users and songs by implementing a matrix
factorization method, they train a CNN to learn the mapping
between the audio features and its embedding vector. This
allows new generated music to obtain its embedding vector
via this CNN without interaction with the users. Beyond the
audio content, scholars try to integrate information in more
modalities. Yi et al. propose a cross-modal variable auto-
encoder for content-based micro-video background music rec-
ommendations that integrates video content and audio content
to form recommendations [11].

Since separating the process of acquiring music embedding
vectors from acquiring user and song embedding vectors may
produce sub-optimal solutions, some scholars consider an end-
to-end manner to build hybrid recommendation systems [4].
Liang et al. suggest a hybrid approach. The method first learns
the content features through a multi-layer neural network and
subsequently integrates them into the matrix factorization as a
prior [12]. Lee et al. suggest a deep content-user embedding
model, which learns user and song embedding through a multi-
layer neural network while using a CNN to learn the audio
features of the song, and combines the two in an end-to-
end way to finally generate recommendations [4]. Feng et
al. proposed a hybrid music recommendation algorithm that

combines user behavior and audio features to learn the fine-
grained preferences of users for music content from multiple
audio features by using an attention mechanism [7].

To sum up, much work has been done on integrating au-
dio content into collaborative filtering recommender systems.
However, these approaches have not yet explored the effects
of higher-order music features with more explicit meanings in
music recommendation tasks, nor have they been able to mine
the fine-grained preferences of users for music content. The
development of music information retrieval techniques and the
application of attention mechanisms in recommender systems
make it possible to fill this gap.

B. Attention-based Recommendation and Data Mining System

The human attention mechanism inspires the attention
mechanism in deep learning. Like the attention to a specific
part of the input in human vision, applying attention mecha-
nisms in recommender systems allows the model to filter the
most informative part from the input features. Hence reducing
the influence of noisy data and thus improving the effective-
ness of recommendations and bringing some interpretability
[9], [13].

Wang et al. introduced the attention mechanism into the
collaborative filtering method and proposed a dynamic user
modeling approach based on the attention mechanism [14].
The method accurately portrays user interests by combining
temporal information from calculating the degree of influence
of the K items that the user has recently interacted with.
The incorporation of the attention mechanism enhances the
effectiveness of the CF method. Zhou et al. proposed a
framework based on self-attention for modeling user behavior.
The introduced self-attention mechanism demonstrated better
performance and efficiency in their experiments than CNNs
and RNNs [15].

Du et al. introduce an attention mechanism in the integration
of user embedding vectors in a sarcasm detection task, which
allows the features of various aspects of the user to be used
effectively [16]. For the next point-of-interest recommendation
task, Liu et al. proposed an attention-based category-aware
GRU (ATCA-GRU) model [17]. The ATCA-GRU model can
select the more significant parts of the relevant historical
check-in trajectory to enhance the recommendation effect
using the attention mechanism.

Gong et al. introduced an attention mechanism on the
MOOC recommendation task. They fused meta-paths with
contextual information by applying the attention mechanism
on meta-paths of heterogeneous graphs to capture differ-
ent students’ different interests [18]. Shi et al. propose a
method based on meta-paths and the attention mechanism
[19]. Their proposed approach uses an attention mechanism
to differentiate the importance of different meta-paths, which
improves the effectiveness of recommendations and brings
some interpretability.

In summary, attention mechanisms have been widely used
with good results in various data mining tasks, which allows

617

us to apply them to the analysis of users’ fine-grained music
preferences.

III. METHOD

The architecture of our proposed COAT model is shown
in Figure 1. COAT model takes the one-hot vector of users
and songs and the corresponding audio file of the song as
input, and the output is the probability that the user listens
to the song. Within the model, we model the history of user-
song interactions in a neural collaborative filtering framework
designed by He et al [3]. Above this, we design a chord
attention layer to differentiate the importance of different parts
of the song. After obtaining the vectors representing the user’s
long-term interests and the vectors representing the music
content, we use a stacked neural network (called a prediction
layer) to learn the complex relationship between user behavior
records and music content and thus generate recommendations.

A. Generalized Matrix Factorization Layer

The user’s interaction history is the most important repre-
sentation of the user’s interests, and mining the user’s interest
preferences can help improve the recommendation effect. Ma-
trix factorization is a representative technique for this task, and
being able to mimic this technique in a recommendation model
is the foundation for building a successful recommendation
model [3].

For this, we use a generalized matrix factorization layer
(GMF) to mimic the matrix factorization. This layer first
receives one-hot vector representations of the user and the
song, denoted by V U

u and V I
i . After the embedding operation

is implemented, these high-dimensional one-hot vectors are
mapped to lower-dimensional vectors, called user and song
embedding vectors. In the work of He et al., after obtaining the
embedding vectors for the user and the song, the probability
of the user clicking on the song can be obtained directly from
the inner vector product. Here we keep these two vectors and
input them into the next part of the model. The function is as
follow:

GMFout = WT
u V U

u ⊙WT
i V I

i (1)

where Wu and Wi are the learnable parameters that map V U
u

and V I
i into embedding vectors, and ⊙ denotes the element-

wise product of vectors.

B. Chord Attention Layer

The chord attention layer first takes in the audio file and
then performs chord extraction. At this stage, we use the
chord-extractor tool1 to extract the chords of the music. As
the number of chords is often inconsistent from song to song,
and neural networks cannot handle variable-length data, we
uniformly padded the collected chord sequences to 100 by
repeating them in order.It is worth mentioning that as chord
progressions are always repeated in a song, thus this treatment
will not affect the data quality.

1https://ohollo.github.io/chord-extractor/

After obtaining the chord sequence, we generate a random
embedding vector representation for each chord. Each chord
sequence can be represented by a matrix C, and Ci repre-
sents the i-th chord vector in the chord matrix. The value
of i indicates the order in which the chord appear in the
time dimension. And since different placements of the same
chords produce different sounds (e.g., Am-F-C-G and C-G-
Am-F are different chord progressions), we generate positional
embedding for each position, representing as pi.

Combining the user embedding vector eu and the position
vector pi, we calculate the attention weight ai of each chord
embedding vector using the following equation:

ai = hTRelu

WT

 eu
Ci

pi

+ b

 (2)

Where h, W and b are parameters, and Relu is the Relu
activation function.

After applying equation 2 to calculate the individual atten-
tion weights ai, we normalized them using softmax with the
following equation:

βi =
exp (ai)∑|C|
j=1 exp (aj)

(3)

The normalized attention weights βi represent the impor-
tance of the different parts of the song, with which we finally
weighted and summed with the chord embedding vector to
obtain the output of the chord attention layer Attout. The
function is as follow:

Attout =

|C|∑
i=1

βi · Ci (4)

C. Prediction layer

After feeding the model with information on chord se-
quences that represent the content of the music, the preference
relationship between the user and the song becomes complex.
Therefore, the model needs to have a stronger fitting capability
to fit this kind of preference relationship.

Thus, after obtaining the vector GMFout which contains
information on user behavior and the vector Attout which
contains information on song content from the other two parts
of the model, we calculate the final listening probability using
a stacked neural network with the following equation:

ŷui = MLP

([
GMFout
Attout

])
(5)

MLP stands for the common multi-layer perceptron, whose
number of layers and shape can be set flexibly. In this paper,
we set its number of layers to 3 to avoid too many parameters
causing overfitting. In terms of shape, we set it using a typical
tower structure, where each layer has twice the number of
neurons as the next layer. The premise of this approach is that
setting smaller neurons in the higher-level neural network will
enable more abstract information to be learned from the data
[20].

618

1 0 0 1 … 1

0 1 1 0 … 1

GMF-User
Embedding

GMF-Item
Embedding

Element-wise
 Product

�

...

Chord
Attention

Chord
Extract

������

������

MLP

� �
���

� �
���

�1

�2

�n

 Chord
Sequence

���� �

���� �

Audio
Signal

Chord Attention Layer

GMF Layer

Prediction Layer

Concatenation

...

�1

�2
�n

Fig. 1. The overall framework of our proposed COAT model

IV. EXPERIMENT SETTINGS

In this section, we introduce the dataset used in the experi-
ments. We then pose two research questions that we intend
to answer in this paper to justify the proposed approach’s
effectiveness. Based on these questions, we design experiments
and report their results.

A. Dataset Descriptions and Constructions

The experiments require a dataset containing the user’s
listening history and the song’s audio file. For user listening
history, we extracted a subset from the widely used last.fm-
1b dataset [21]. As the dataset does not contain audio files of
the songs, we downloaded the corresponding audio files from
streaming platforms based on the collection of songs in the
subset to form the dataset used in this paper.

Due to the size of the complete last.fm-1b dataset, con-
ducting experiments on the complete data set would consume
too much time. So we streamlined the last.fm-1b dataset in
the following steps: Firstly, we used 2014 as the boundary to
remove previous records from the complete dataset; Secondly,
we filtered the top 10,000 popular songs from the song set
to build a new subset; Finally, based on this subset, we
removed listening records that were not relevant to it. We
removed users with less than ten interaction records to ensure
the dataset’s quality. With 30,753 users, 10,000 songs and
1,533,245 interaction records, our dataset has a data sparsity
of 99.50%.

B. Research Questions

• RQ1: Whether the chord attention mechanism improves
the recommendation effect?

• RQ2: Whether the proposed method is better than tradi-
tional methods?

C. Experiment Design

To address the above research questions, we design four
experiments accordingly.

• Experiment 1: To validate the effectiveness of our
proposed attention mechanism, we conducted ablation
experiments on it. As shown in Table I, we designed
variants of the model with and without the attention
mechanism (attention weights set to 1) and judged the
effectiveness of the attention mechanism by comparing
the performance of the recommendations.

• Experiment 2: We use a comparative experiment to ver-
ify whether our proposed model can obtain better results
than the baseline approach. The chosen baseline methods
include a traditional matrix factorization algorithm, a
neural network-based collaborative filtering algorithm,
and hybrid music recommendation algorithms based on
audio features.

1) Parameter Settings.: The models involved in this paper
use the same strategy for parameter settings. The range of
searching for each hyperparameter is as follows: batch size
is [128,256,512,1024], learning rate is [0.0001, 0.0005, 0.001,
0.005] and embedding size is [8,16,32,64].

619

2) Evaluation Protocols.: We used a strategy called leave-
one-out to test the model’s effectiveness, which has also been
widely adopted in other work [22]. Regarding this strategy, the
test set consists of one positive sample and several negative
samples, where the positive sample is the last song in the
user’s listening record. For a given user, it would be time-
consuming to add all songs in the dataset that have not been
interacted with as negative samples to the test set for sorting,
so we only sample 99 songs that have not been interacted with
for a user as negative samples. This is a common strategy
[23]. We use two common evaluation metrics to measure
the effectiveness of ranking, Hit Ratio (HR) and Normalized
Discounted Cumulative Gain(NDCG) [24]. The HR metric is
given a 1 or 0 depending on whether the positive sample
appears in the final top-n list. NDCG gives finer scores to
positive samples based on where they appear in the top-n list.
Higher scores are given to positive samples that appear higher
up. We generate top-n recommendation lists for all users for
each experiment round and use this to calculate two metrics,
HR and NDCG. The average of all users’ scores on both
metrics is used as the final score of the model.

TABLE I
PERFORMANCE W.R.T. WITH OR WITHOUT ATTENTION

Embedding size With Attention W/o Attention
HR NDCG HR NDCG

8 0.581 0.344 0.392 0.205
16 0.629 0.390 0.491 0.281
32 0.647 0.421 0.556 0.319
64 0.653 0.442 0.608 0.355

V. RESULTS AND DISCUSSIONS

A. Whether the chord attention mechanism improves the rec-
ommendation effect (RQ1)

Table I shows the results of the ablation experiments related
to the attention mechanism proposed in this paper. As can
be seen from the table, the model’s performance is always
better when attention is applied than when it is not, and
there is a significant drop in performance when attention is
not applied. This phenomenon suggests that the application
of attention mechanisms to distinguish the importance of
different parts from multimedia content in deep learning-
based recommendation algorithms can positively impact the
effectiveness of recommendations.

B. Performance Comparison (RQ2)

In this experiment, we selected a traditional matrix factor-
ization approach, a deep learning-based collaborative filtering
approach, and a hybrid audio content approach as baselines
for comparison with the COAT model.

• WMF [25]: The method uses a weighted matrix factor-
ization technique to obtain embedding vector of users
and items and produces recommendations from the inner
vector product.

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

8 16 32 64

H
R

@
10

Factors

HR@10

WMF NeuMF
COAT NeuMF with CNN
NeuMF with LSTM

0.24
0.26
0.28

0.3
0.32
0.34
0.36
0.38

0.4
0.42
0.44

8 16 32 64

N
D

C
G

@
10

Factors

NDCG@10

WMF NeuMF
COAT NeuMF with CNN
NeuMF with LSTM

Fig. 2. Performance comparison of different methods.

• NeuMF [3]: The method uses deep neural networks to
implement collaborative filtering and is the basis for many
neural network-based recommendation algorithms.

• NeuMF with CNN: On top of NeuMF, CNN is used
to process MFCCs features as a way to compare the
performance of our proposed chord attention layer with
that of the CNN-based approach.

• NeuMF with LSTM: On top of NeuMF, LSTM is used
to process MFCCs features as a way to compare the
performance of our proposed chord attention layer with
that of the RNN-based approach.

Figure 2 shows the performance of each method under
different predictive factors.

For the NeuMF method, the size of the predictive factor
is the output dimension of the MLP and GMF layers in the
method. For COAT, the size of the predictive factor is equal
to the dimensions of the embedding vectors. For WMF, the
number of predictive factors is equal to the embedding size.
And for the LSTM-based approach and CNN-based approach,
we use the Librosa [26] library to extract the MFCCs features
from the audio to represent music content.

Figure 2 shows that the COAT model consistently achieves
better results than the other methods on the two evaluation
metrics when the predictor is greater than 8. NeuMF performs
slightly better than the COAT model when the predictive factor
size is 8. We consider this phenomenon because when the
embedding dimension is too small, the COAT model has a
smaller proportion of inputs related to user behavior, allowing
the model to be influenced by the noise from the music
content. This finding suggests that mining the user’s behavioral
history is crucial in designing recommendation algorithms.
When the size of the neural network model is small, too much
introduction may introduce more noise into the model and
degrade the recommendation performance.

Compared with NeuMF, the LSTM-based approach can
obtain some improvement, while the CNN-based approach will
obtain more inferior results. This phenomenon indicates that
audio features in matrix form, though similar to pictures, have
more significant temporal features than local features. And
because low-level audio features are complex, it is challenging

620

to process them properly in music recommendation models.
As shown in Figure 2. The gap between the COAT model

and other methods becomes larger as the predictive factor in-
creases. In our analysis, the input chord sequence information
makes the preference relationship between the user and the
song more complicated, which means that the recommendation
model needs to have stronger fitting power to learn this
preference relationship. As the predictors increase, the model’s
width increases, making the model a stronger fitting capability.
This phenomenon demonstrates again that when applying deep
learning techniques to recommender systems, the use of larger-
scale models brings improved recommendation results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose using higher-order music features
instead of lower-order frequency domain features to represent
music content in the music recommendation model and dif-
ferentiate the importance of music content properly. To this
end, we propose a music recommendation model known as
COAT, which is based on chord progression and attention
mechanism. The model integrates user song interactions and
chord sequences of music and uses an attention mechanism
to differentiate the importance of different parts of the song.
The experimental results demonstrate the effectiveness of the
method proposed in this paper.

In the future, we will explore introducing more higher-order
music features, such as melody, rhythm, lyrics, etc., into the
recommendation model based on the latest advancement in
music information retrieval. At the same time, we will consider
integrating this work with the existing graph neural network-
based collaborative filtering recommendation model to achieve
better recommendation results.

ACKNOWLEDGEMENT

This work is partially supported by the Project of Beijing
Municipal Education Commission (No.KM202110005025),
the Importation and Development of High-Caliber
Talents Project of Beijing Municipal Institutions
(CIT&TCD20190308), and Engineering Research Center
of Intelligent Perception and Autonomous Control, Ministry
of Education.

REFERENCES

[1] M. Schedl, H. Zamani, C. Chen, Y. Deldjoo, and M. Elahi, “Current
challenges and visions in music recommender systems research,” Inter-
national Journal of Multimedia Information Retrieval, vol. 7, no. 2, pp.
95–116, 2018.

[2] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based
music recommendation,” in Advances in neural information processing
systems, 2013, pp. 2643–2651.

[3] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua, “Neural collab-
orative filtering,” in Proceedings of the 26th International Conference
on World Wide Web, 2017, pp. 173–182.

[4] J. Lee, K. Lee, J. Park, J. Park, and J. Nam, “Deep content-user embed-
ding model for music recommendation,” arXiv: Information Retrieval,
2018.

[5] M. Schedl, “Deep learning in music recommendation systems,” Frontiers
in Applied Mathematics and Statistics, vol. 5, 2019.

[6] P. Knees and M. Schedl, Music similarity and retrieval: an introduction
to audio-and web-based strategies. Springer, 2016, vol. 9.

[7] W. Feng, T. Li, H. Yu, and Z. Yang, “A hybrid music recommendation
algorithm based on attention mechanism,” in International Conference
on Multimedia Modeling. Springer, 2021, pp. 328–339.

[8] H.-T. Cheng, Y.-H. Yang, Y.-C. Lin, I.-B. Liao, and H. H. Chen,
“Automatic chord recognition for music classification and retrieval,” in
2008 IEEE International Conference on Multimedia and Expo. IEEE,
2008, pp. 1505–1508.

[9] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T. Chua, “Attentive
collaborative filtering: Multimedia recommendation with item- and
component-level attention,” in Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2017, pp. 335–344.

[10] Y. Yu, S. Luo, S. Liu, H. Qiao, Y. Liu, and L. Feng, “Deep attention
based music genre classification,” Neurocomputing, vol. 372, pp. 84–91,
2020.

[11] J. Yi, Y. Zhu, J. Xie, and Z. Chen, “Cross-modal variational auto-encoder
for content-based micro-video background music recommendation,”
IEEE Transactions on Multimedia, 2021.

[12] D. Liang, M. Zhan, and D. P. Ellis, “Content-aware collaborative music
recommendation using pre-trained neural networks,” in Proceedings of
the 16th International Society for Music Information Retrieval Con-
ference, ISMIR 2015. International Society for Music Information
Retrieval, 2015, pp. 295–301.

[13] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based rec-
ommender system: A survey and new perspectives,” ACM Computing
Surveys, vol. 52, no. 1, p. 5, 2019.

[14] R. Wang, Z. Wu, J. Lou, and Y. Jiang, “Attention-based dynamic
user modeling and deep collaborative filtering recommendation,” Expert
Systems with Applications, vol. 188, p. 116036, 2022.

[15] C. Zhou, J. Bai, J. Song, X. Liu, Z. Zhao, X. Chen, and J. Gao,
“Atrank: An attention-based user behavior modeling framework for
recommendation,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, 2018, pp. 4564–4571.

[16] Y. Du, T. Li, M. S. Pathan, H. K. Teklehaimanot, and Z. Yang, “An
effective sarcasm detection approach based on sentimental context and
individual expression habits,” Cognitive Computation, pp. 1–13, 2021.

[17] Y. Liu, A. Pei, F. Wang, Y. Yang, X. Zhang, H. Wang, H. Dai, L. Qi, and
R. Ma, “An attention-based category-aware gru model for the next poi
recommendation,” International Journal of Intelligent Systems, vol. 36,
no. 7, pp. 3174–3189, 2021.

[18] J. Gong, S. Wang, J. Wang, W. Feng, H. Peng, J. Tang, and P. S.
Yu, “Attentional graph convolutional networks for knowledge concept
recommendation in moocs in a heterogeneous view,” in Proceedings
of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2020, pp. 79–88.

[19] B. Hu, C. Shi, W. X. Zhao, and P. S. Yu, “Leveraging meta-path based
context for top- n recommendation with a neural co-attention model,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 1531–1540.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[21] M. Schedl, “The lfm-1b dataset for music retrieval and recommenda-
tion,” in Proceedings of the 2016 ACM on International Conference on
Multimedia Retrieval, 2016, pp. 103–110.

[22] I. Bayer, X. He, B. Kanagal, and S. Rendle, “A generic coordinate
descent framework for learning from implicit feedback,” in Proceedings
of the 26th International Conference on World Wide Web, 2017, pp.
1341–1350.

[23] A. Elkahky, Y. Song, and X. He, “A multi-view deep learning approach
for cross domain user modeling in recommendation systems,” in Pro-
ceedings of the 24th International Conference on World Wide Web, 2015,
pp. 278–288.

[24] X. He, T. Chen, M. Kan, and X. Chen, “Trirank: Review-aware ex-
plainable recommendation by modeling aspects,” in Proceedings of the
24th ACM International on Conference on Information and Knowledge
Management, 2015, pp. 1661–1670.

[25] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in Eighth IEEE International Conference on Data
Mining, 2009, pp. 263–272.

[26] B. Mcfee, C. Raffel, D. Liang, D. Ellis, and O. Nieto, “librosa: Audio
and music signal analysis in python,” in Python in Science Conference,
2015.

621

Deep Correlation based Concept Recommendation
for MOOCs

1st Shengyu Mao
Zhejiang University of Technology

Hangzhou, China
201806062515@zjut.edu.cn

2nd Pengyi Hao
Zhejiang University of Technology

Hangzhou, China
haopy@zjut.edu.cn

3th Cong Bai
Zhejiang University of Technology

Hangzhou, China
congbai@zjut.edu.cn

Abstract—The current course recommendation in massive
open online courses (MOOCs) usually ignores students’ interests
in some certain type of knowledge concepts, resulting in low
completion of most courses. Therefore, it requires a concept
recommendation to help students accurately choose courses in
MOOCs. In this paper, we propose Deep Correlation based
Concept Recommendation (DCCR) for MOOCs. It gathers the
interactive information obtained by different entities through
meta-paths in MOOCs and extracts the semantic information of
concepts. To deeply capture the correlation information among
users, a multi-relation graph is built to generate the correlation
features which aggregates the abundant information under dif-
ferent meta-paths. Then through the graph convolutional neural
networks, entity embeddings of users and knowledge concepts are
generated. Additionally, a concatenation-based fusion function is
designed to get the final joint representations reasonably. By
verifying on two public datasets, experiments show that DCCR
outperforms the state-of-the-art methods.

Index Terms—concept recommendation, correlation feature,
concatenation based fusion, moocs

I. INTRODUCTION

MOOCs have been developing rapidly in recent years,
providing users with a convenient way of education [12]. The
emergence of MOOCs’ platforms has completely changed the
entire education field. However, according to statistics, there
is a very low completion rate of online courses [10]. So there
are lots of works concentrating on course recommendation
in MOOCs. But barely focus on courses would lead to
some problems. 1) The normal course recommendation could
probably cause students to take courses that they are not
attracted to. For example, some computer vision courses only
cover knowledge about geometric, and others may cover deep
learning, which could mislead the result in recommendation.
2) The content and focus of similar courses are different. For
instance, in advanced mathematics, some courses are based on
geometry, and some courses are based on calculus, which is
difficult for students to select [16]. 3) Students with different
prerequisite background may require totally different [5], but if
recommending in the traditional way, students may not realize
that they have not learnt some necessary prerequisite knowl-
edge until taking certain courses [8]. Therefore, the MOOCs
need to accurately locate the learning needs of students, which

DOI reference number: 10.18293/SEKE2022-107

makes it necessary to do concept recommendation, a more
fine-grained recommendation task.

The existing course or concept recommendations are mainly
divided into two categories. One is the methods based on
collaborative filtering (CF), which considers the historical
interaction behavior of users with other online resources
(e.g., videos, courses), and explores the potential of the
same preference [9]. For example, He et al. proposed a
neural network model to evaluate the similarity between items
by using an attention network [7]. Elbadrawy et al. used
neighborhood-based user collaborative filtering to design a
course ranking model [6]. These methods have achieved great
success in recommendation courses, but suffering from the
problem of data sparsity and cold start, so the performance
is limited. The other one constructs the MOOCs information
into heterogeneous information networks, and utilize meta-
paths to guide the dissemination of student preferences. It
always captures the corresponding fruitful semantic relation-
ships between different types of entities, learns the embedding,
and finally generates a recommendation list through matrix
factorization [16]. Vashishth et al. [14] proposed a three-
way neural interaction model to use the rich meta-path-based
information for recommendation. Gong et al. [16] proposed a
method to capture the representation of different types of enti-
ties in heterogeneous information networks, fused the content
features of entities to do recommendation. However, due to
the relative independence of different meta-path relationships,
this kind of methods can not completely capture the interactive
information from the heterogeneous networks in MOOCs, and
may lose some inner information among different meta-paths,
resulting in an unsatisfactory performance.

In this paper, we excavate the deep correlation of users.
Motivated by some efficient multi-relational graph methods
like [15], we propose deep correlation based concept rec-
ommendation (DCCR) for MOOCs, where a multi-relational
graph is constructed to deeply capture the inner correlation of
users among different meta-paths. With the deep correlation
feature extracting from the multi-relational graph , represen-
tations for users in MOOCs can be better learnt from graph
convolutional network to accurately reflect users’ preference.
Meanwhile, we deeply extract the information contained in
concepts themselves including names, definitions, etc. as
auxiliary features, which makes the recommendation system

622

more effective. We also propose a concatenation-based fusion
function to better combine the entity representations under
different meta-paths, and finally get the rating matrix from
users towards knowledge concepts. The key contributions of
this paper can be summarized as: (i) deep correlation features
of users are generated by constructing a multi-relational graph
among different meta-paths, which leads to better embedded
representations of user entities. (ii) a feature fusion function is
proposed by concentrating on the different entity embeddings
under different meta-paths, which leads to more reasonable
representation for users and concepts. (iii) the DCCR is eval-
uated on two publicly available real datasets MOOCCube [17]
and XuetangX [16], not only the performance in each dataset
is compared, but also the difference between the two datasets
are analysised.

II. PROPOSED METHOD

A. Probelm Statement

In the recommendation task, MOOCs’ data usually in-
cludes five specific entities (user(u), knowledge concept(k),
video(v), course(c), teacher(t) [13], [16]). Additionally, there
are abundant text information along with knowledge concepts,
including their definitions, descriptions, and classifications.
The purpose is to generate concept recommendation list for
each user. The framework of DCCR is shown in Fig. 1, and
the explanations of notations are given in Table I.

TABLE I: Notations and explanations.

Notation Explanation
Sk semantic feature of knowledge concepts
Cu correlation feature of users

du, dk the dimension of correlation feature and semantic feature
Nu, Nk the number of users and knowledge concepts

MPu,MPk the meta-path sets of users and knowledge concepts
Ampu , A

mpk
the adjacency matrix sets of users and knowledge concepts

G the correlation triad set
z the correlation triad threshold

fmpu , f
mpk

the representation sets of users and knowledge concepts
p the scale parameter

Fk, Fu the final representations of users and knowledge concepts

dF
the dimension of the final representations

of users and knowledge concepts
ru,k the true rating of user u to knowledge concept k
ˆru,k the predicted rating of user u to knowledge concept k
xu the latent factors of user u
yk the latent factors of knowledge concept k

tu, tk the parameters to integrate the Fu and Fk in the same space
βu, βk the tuning parameters

δ the regularization parameters

B. Semantic Feature Extraction

Ordinarily, the name of a concept, almost the generalization
of itself, contains rich semantic information. Moreover, just
like the name, there is also a wealth of information in con-
cept’s subject classifications, e.g., the subject classifications
of ‘Binary tree’ are ‘theoretical computer science’ and ‘data
structure’, so at least two specific subject classifications can
be collected for this knowledge concept.

After separating the text informations into words, a param-
eter c is set as the number of classification we chose, and

then the word vectors Sname, Sclass1 , Sclass2 , · · · , Sclassc ∈
RNk×dv are generated by Word2Vec [18], in which Nk in-
dicates the total number of knowledge concepts, and dv
indicates the dimension of word vectors. We stitch the word
vectors together to get the semantic feature of concepts
Sk ∈ RNk×dk , Sk = [Sname, Sclass1 , Sclass2 , · · · , Sclassc],
here dk = dv × (c + 1) indicates the dimension of semantic
feature.

C. Meta-Path Adjacency Matrices
Given the interactive information between different kinds

of entities in MOOCs (e.g., user u3125 have learned courses
c254 and c617), we build the interactive matrices be-
tween entities, including user-click-knowledge concept matrix,
user-watch-video matrix, user-learn-course matrix, user-learn-
course-taught by-teacher matrix, knowledge concept-included
by-video matrix and knowledge concept-involved-course ma-
trix. Each element in each matrix belongs to {0, 1}, which
represents the interaction between two specific entities.

Meta-path [4] means the semantic path that connects dif-
ferent entities and illustrates the relational information in the
dataset. Here, meta-paths are defined like u watch−→ v watch−1

−→
u, which indicates that two different users are connected
because they have watched the same video; k clicked by−→
u clicked by−1

−→ k means that two different knowledge concepts
have been clicked by the same user. In this way, the meta-
path sets MPu = {mpu1 ,mpu2 , · · · ,mpum} and MP k =
{mpk1 ,mpk2 , · · · ,mpkn} are set for users and knowledge con-
cepts respectively, where m,n indicate the number of meta-
paths of users and knowledge concepts.

With the interactive information matrices and
the meta-path sets, the corresponding adjacency
matrix sets Ampu = {Ampu

1
, Ampu

2
, · · · , Ampu

m
} and

Ampk = {Ampk
1
, Ampk

2
, · · · , Ampk

n
} are generated for users

and concepts. Taking users as an example, Ampu is generated
and normalized by the following formula,

Ampu
i
= Norm(Le

u · Le
u
T), (1)

here Le
u is the corresponding interactive matrix of mpui (e.g.,

the user-watch-video matrix is the corresponding interactive

matrix of meta-path u watch−→ v watch−1

−→ u), Ampu
i

is the nor-
malized adjacency matrix. After iterating through all the meta-
paths in MPu, the meta-path adjacency matrix Ampu of users
is obtained. In the same way, the meta-path adjacency matrix
of knowledge concepts Ampk = {Ampk

1
, Ampk

2
, · · · , Ampk

n
} is

also generated.

D. Correlation Feature Extraction
The meta-path adjacency matrix sets generated above have

captured many significant information from MOOCs. How-
ever, the relative independence of those adjacency matrices
loses lots of correlation information among meta-paths. Fig. 2
shows the contrast between with and without correlation
among meta-paths. Since there are various connections be-
tween users and other entities, the correlation information
among different users’ preferences can be deeply gathered.

623

clickedtaught

contained

learned

𝑢𝑁𝑢−1

𝑢𝑁𝑢

𝑢𝑖

𝑢𝑖+1

𝑢𝑗

𝑢0

𝑢0

𝑢1

𝑢1

𝑢𝑁𝑢−1

𝑢𝑁𝑢

𝑢𝑁𝑢−1 𝑢𝑁𝑢

concat

binary tree

Semantic Extraction

data

structure

tree

binary

tree

a case

of tree

defined

as
empty

or
consists

of
root node and

 at

most
two disjoint

called
left

subtrees

right

subtrees
or

binary

trees

theoretical

computer science

theoretical

computer science

data

structure

Fig. 1: The framework of DCCR for MOOCs.

First, a threshold z is used to select the users that are
strongly correlated. Then, a user correlation triad set G is cre-
ated. For specific user entities ui and uj , if their corresponding
value in Ampu

q
(q ∈ [1,m]) is lager than z, which means that

these two users are correlated in mpuq , then the correlation
information (ui, r, uj) will be written into G, where r is the
meta-path mpuq .

Based on the triad set G, we build a multi-relational graph
by Graph = (V ,R ,E ,X ,Z), where V is the node set of enti-
ties, R is the correlation set of entities, E is the enlarged cor-
relation triad set, X and Z are the initial feature of nodes and
relations, V ,R ,E are built by G. For every triad (ui, r, uj) ∈
G, ui, uj are involved in V ; R = R ′ ∪ R ′

inv ∪ {Se}, where
R ′ = {r|(ui, r, uj) ∈ G}, R ′

inv = {r−1|(ui, r, uj) ∈ G}, Se
means the self-loop correlation; E = {(ui, r, uj)|(ui, r, uj) ∈
G} ∪ {(uj , r

−1, ui)|(ui, r, uj) ∈ G} ∪ {(u, Se, u)|u ∈ V }.
After that, we get the embeddings with following rules,

h1
uj

= tanh(
∑

(ui,r)∈N(uj)

W 1
λ(r)ϕ(xui , zr)), (2)

h2
uj

= tanh(
∑

(ui,r)∈N(uj)

W 2
λ(r)ϕ(h

1
ui
, h1

r)), (3)

where N(uj) is a set of immediate neighbours of uj for
its outgoing edges, ϕ : Rd × Rd → Rd is a composition
operator, λ(r) indicates the relation type of r, W k

λ(r) is a
relation-type shared parameter at k-th layer, xui and zr are
the initial features of node ui and relation r, h1

uj
is the

u

v

u

u

k

u

u

c

u

u

c

t

c

u

u

v

u

u

c

t

c

u

u

k

u

u

c

u

𝑢𝑗

𝑢𝑖+1
𝑢𝑁𝑢−1

𝑢𝑁𝑢

𝑢𝑖

Fig. 2: Contrast between with and without correlation

feature of node uj generated at the first layer, h1
r is the

representation of relation generate at first layer which follows
the rule hk+1

r = W k
relh

k
r , here W k

rel are the shared parameters
for each relation. h2

uj
∈ Rdu is the output of the second layer

as well as the correlation feature of uj . All the parameters
are randomly initialized. Finally the correlation feature matrix
Cu ∈ RNu×du is generated as,

Cu = [h2
u1
, h2

u2
, · · · , h2

uNu
]T , (4)

here, Nu is the number of users and du is the dimension of
correlation feature.

E. Concatenation-based Representations Learning

Unlike the specific values in meta-path adjacency matrices
Amp, the triads in the multi-relation graph can not tell the
degree that two users are correlated. So it’s not efficient to

624

take the correlation feature Cu as the final representations
of users. We need to further generate the representations of
users and concepts under every meta-path. Given the semantic
feature Sk, correlation feature Cu, and the meta-path adja-
cency matrices Ampk and Ampu as inputs, graph convolutional
network (GCN) [19] is adopted with a layer-wise propagation
rule for both users and concepts. Taking user as an example,
the propagation layer is defined as

h
(l+1)
mpu

i
= ReLU(Pmpu

i
hl
mpu

i
W l). (5)

Here h
(l+1)
mpu

i
indicates the new representation of users under

mpui at layer l + 1. Pmpu
i
= D̃− 1

2 · (Ampu
i
+ I) · D̃− 1

2 ,D̃ =
diag((Ampu

i
+I) ·1), I is the identity matrix, 1 is the all-ones

vector, W l is the shared trainable weight matrix at layer l for
every meta-path. Particularly, we take Cu as h0

mpu
i

for users
at the first layers, and take the output at the third layer as the
representation under mpui ,

fmpu
i
= h3

mpu
i
. (6)

After iterating through all the matrices in Ampu
i

,
we ultimately get the representation sets fmpu =
{fmpu

1
, fmpu

2
, · · · , fmpu

m
} for users. In the same way, we take

Sk as h0
mpk

i
for knowledge concept at the first layer to adopt

GCN and generate the representations as

fmpk
i
= h3

mpk
i
. (7)

Finally, fmpk = {fmpk
1
, fmpk

2
, · · · , fmpk

m
} is abtained for

concepts.
In order to evenly consider meta-paths, joint representation

by fusing representations under different meta-paths should
be considered. However, in MOOCs, users’ interactivity under
different meta-paths are quite dissimilar. To solve this problem,
we design a concatenation-based fusion function, which gener-
ates fusion weights by concentrating on representations under
both the current meta-path and the others at the same time. In
this way, we obtain a reasonable joint representation, which
can reflects the association between meta-paths effectively.
Taking users as an example, fusion weight αmpu

i
of mpui is

calculated as

αmpu
i
= softmax(v(tanh(w1fmpu

i
p+w2fmpu

i
(1−p)+ b))),

(8)
where fmpu

i
=

1

m− 1
·
∑m

j ̸=i fmpu
j

is the second concerned

object of mpui , v, w1, w2, b are trainable parameters, p ∈ (0, 1)
is a scale hyper-parameter. Then the final joint representation
of user Fu ∈ RNu×dF is calculated as

Fu =
m∑
i=1

αmpu
i
fmpu

i
. (9)

Similarly, the final representation of knowledge concept
Fk ∈ RNk×dF is calculated as

Fk =
m∑
i=1

αmpk
i
fmpk

i
. (10)

Algorithm 1 shows how to generate Fu and Fk.

Algorithm 1: Generate the representations of users and
concepts

Input: The interactive information
between different entities in
MOOCs,
the meta-path sets of users
and concepts MPu,MPk ,
the text information of
concepts

Output: The representations
Fu, Fk of users and
concepts

1 Initialize
Ampu , Ampk , fmpu , fmpk as
empty lists

2 Extract semantic feature Sk from
text information

3 for each mpki ∈MPk do
4 Calculate Ampki

by Eq (1)
5 Add Ampki

to Ampk

6 for each mpui ∈MPu do
7 Calculate Ampui

by Eq (1)
8 Add Ampui

to Ampu

9 Represent a multi-relational graph
by Ampu

10 Extract correlation feature Cu by
Eq (2,3,4)

11 for each Ampui
∈ Ampu do

12 h0
mpui

← Cu

13 for l = 0 to 2 do
14 Calculate hl+1

mpui
by Eq (5)

15 fmpui
= h3

mpui
according to

Eq (6)
16 Add fmpui

to fmpu

17 for each Ampki
∈ Ampk do

18 h0
mpki

← Sk

19 for l = 0 to 2 do
20 Calculate hl+1

mpui
by Eq (5)

21 fmpki
= h3

mpki
by Eq (7)

22 Add fmpki
to fmpk

23 for each fmpui
∈ fmpu do

24 Calculate αmpui
by Eq (8)

25 Generate Fu by Eq (9)
26 for each fmpki

∈ fmpk do
27 Calculate αmpki

by Eq (8)

28 Generate Fk by Eq (10)
29 return Fu, Fk

F. Concept Recommendation for User

Lastly, an extend matrix factorization is utilized to complete
the recommendation task. The predicted rating matrix ˆru,k is
got as follows,

ˆru,k = xT
u yk + βuF

T
u tk + βkt

T
uFk, (11)

where xu and yk are randomly initialized latent factors of user
and knowledge concept, tu and tk are parameters that make
sure Fu and Fk to be in the same space, βu and βk are tuning
parameters. We define the following loss function for reaching
an appropriate rating prediction,

Loss =
1

Nu ×Nk

Nu∑
u=1

Nk∑
k=1

(ru,k − ˆru,k)
2+

δ(||xu||2 + ||yk||2 + ||tu||2 + ||tk||2),

(12)

where ru,k is the target rating matrix of user on knowledge
concept, δ is the regularization parameter. Finally, with the
rating matrix of user on knowledge concept, the concepts are
recommended with the highest rating for each user.

III. EXPERIMENT

A. Datasets

To evaluate the effectiveness of the proposed method, we
adopt two datasets, MOOCCube [17] and the real data from
XuetangX [16]. MOOCCube [17] is a large-scale data repos-
itory of over 700 MOOC courses, 100k concepts, 8 million
student behaviors with an external resource. The abundant
data of MOOCCube was mostly obtained from Baidubaike,
Wikipedia, and Termonline. We divide the interactive behav-
iors of users to concepts into training set and test set with a

625

ratio of 8:2. XuetangX [16] includes a training set occurring
between October 1st, 2016 and December 30th, 2016 and a
test set with the data occurring between January 1st, 2018 and
March 31st, 2018. It contains 7,020 MOOC courses 43,405
videos, 1,029 course concepts, and 9,986 real MOOC users.
For both datasets, we paired 99 randomly sampled negative
instances with 1 positive instance for each users, and output
the prediction rating [7].

B. Evaluation Metrics and Implementation Details

Several metrics are utilized to evaluate the recommendation
methods. HR@K is a common recall measure that shows the
percentage of top-K recommendations that were successful.
NDCG@K [3] is used to evaluate the differences between this
ranking list and the user’s actual interaction list. MRR [7] is
used for evaluating any process that produces a list of possible
responses to a sample of queries. Additionally, AUC is also
used as a metric.

The methods are run in the environment of python-3.7,
tensorflow-1.13.1. When extracting correlation features, We set
the initial dimension size for nodes and relations to 100 and
the output dimension to 200. When learning representations,
we set the dimension to 256, 128 and 64 at the first, second
and output layer, respectively. Moreover, we set the dropout
rate to be 0.5 and the latent dimension to be 30 in MF. As
for the learning rate, we set it to be 0.001, and implement an
exponential learning rate decays every 100 steps.

C. Analysis of the Proposed Method

1) Evaluation of Meta-path Combinations: We emphati-
cally analyse the influence of the selection and combination of
different meta-paths through the whole recommendation task
by referring the combinations in [16], but we further conduct
a detailed analysis in two different datasets. Specifically,
we consider the following meta-path combinations in both
datasets, including mp1 : u → k −1→ u,mp2 : u → c −1→
u,mp3 : u → v −1→ u and mp4 : u → c → t −1→ c −1→ u.

From Table II, the rank of effectiveness is mp1 > mp3 >
mp4 > mp2 in MOOCCube, and mp3 > mp1 > mp2 > mp4
in XuetangX. Additionally, the combinations of meta-paths
perform better than the individual, and the tendency of the ef-
fect is the same as the individual. For instance, in MOOCCube
the performance of mp1&3 is better than mp1&2, and in Xue-
tangX the performance of mp1&2&3 is better than mp1&2&4,
which indicates that users have dissimilar interactive behaviors
under different meta-paths. In general, it works best when
combining all the four meta-paths. In MOOCCube, the AUC
of mp1&2&3&4 is 4.17%, 6.18%, 4.78%, 5.67% higher than
mp1, mp2, mp3, mp4, respectively. In XuetangX, the AUC
of mp1&2&3&4 is 6.74%, 9.79%, 6.48%, 10.07% higher than
mp1, mp2, mp3, mp4, respectively.

From Table II, it exhibits a larger increase in XuetangX
than in MOOCCube when combing more meta-paths. For
example, the AUC grows 0.75% from mp1&2 to mp1&2&3 in
MOOCCube, while it grows 2.01% in XuetangX. It is because
of that XuetangX has more courses, videos and teacher entities

besides users and concepts, depending on which we can extract
more complete correlation features from XuetangX.

TABLE II: Results of different meta-path combinations

meta-path MOOCCube XuetangX
HR@5 NDCG@5 MRR AUC HR@5 NDCG@5 MRR AUC

mp1 0.6336 0.5184 0.5247 0.9077 0.5871 0.4166 0.3933 0.8909
mp2 0.6027 0.5013 0.4735 0.8876 0.4559 0.3184 0.3115 0.8604
mp3 0.6292 0.5125 0.5179 0.9016 0.6058 0.4218 0.3954 0.8937
mp4 0.6125 0.5087 0.4893 0.8927 0.4456 0.3123 0.3072 0.8576

mp1&2 0.6748 0.5689 0.5564 0.9194 0.5655 0.3919 0.3699 0.9058
mp1&3 0.6984 0.6134 0.6083 0.9236 0.5969 0.4423 0.4353 0.9185
mp1&4 0.6851 0.5868 0.5732 0.9204 0.5828 0.4025 0.3795 0.9077
mp2&3 0.6927 0.6059 0.5913 0.9227 0.6502 0.4723 0.4439 0.9161
mp2&4 0.6624 0.6106 0.5718 0.9176 0.4934 0.3466 0.3353 0.8586
mp3&4 0.6858 0.6048 0.5883 0.9208 0.5257 0.3697 0.3575 0.8993

mp1&2&3 0.7279 0.6364 0.6360 0.9311 0.7162 0.5464 0.5168 0.9386
mp1&2&4 0.7167 0.6222 0.6207 0.9246 0.6727 0.5285 0.4673 0.9199
mp1&3&4 0.7214 0.6347 0.6301 0.9302 0.7106 0.5463 0.5191 0.9367
mp2&3&4 0.7125 0.6208 0.6264 0.9274 0.6924 0.5307 0.4916 0.9213

mp1&2&3&4 0.7542 0.6708 0.6637 0.9494 0.7851 0.6118 0.5766 0.9583

TABLE III: Results of different meta-path combinations

Method MOOCCube XuetangX
HR@5 NDCG@5 MRR AUC HR@5 NDCG@5 MRR AUC

Ave-Fusion 0.6338 0.5387 0.5292 0.8852 0.3923 0.2602 0.2602 0.8506
Loc-Fusion 0.7364 0.6504 0.6426 0.9414 0.7247 0.5552 0.5204 0.9475
Con-Fusion 0.7542 0.6708 0.6637 0.9494 0.7851 0.5833 0.5491 0.9583

2) Comparison of Different Fusion Functions: In order
to verify the efficiency of the proposed fusion function, we
evaluate the recommendation task when using different fusion
functions in the two datasets, including Ave-Fusion that takes
an average of each vector, Loc-Fusion that is a location-
based fusion [11], and Con-Fusion is a concatenation-based
fusion designed in our method. Table III turns out that in
both datasets, the effect of Ave-Fusion is much worse than
the others. Con-Fusion works the best, the AUC of Con-
Fusion is 0.8% higher than Loc-Fusion in MOOCCube, and
1.08% higher than Loc-Fusion in XuetangX, which means that
concatenation-based fusion designed in our method can gather
more associated information from different meta-paths.

0.955

0.9555

0.956

0.9565

0.957

0.9575

0.958

0.9585

0.9445
0.945
0.9455
0.946
0.9465
0.947
0.9475
0.948
0.9485
0.949
0.9495
0.95

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

A
U
C

z

MOOCCube XuetangX

Fig. 3: The performance of
different z in two datasets

0.9545

0.955

0.9555

0.956

0.9565

0.957

0.9575

0.958

0.9585

0.9455

0.946

0.9465

0.947

0.9475

0.948

0.9485

0.949

0.9495

0.95

0.5 0.6 0.7 0.8 0.9

A
U
C

p

MOOCCube XuetangX

Fig. 4: The performance of
different p in two datasets

3) Evaluation of Model Parameters: In DCCR, the triad
threshold z is an important parameter. Fig. 3 shows how
z effect the result. The best results in the two datasets are
obtained when z is equal to 0.38 and 0.42, respectively. When
z is too small, too much useless correlation information may
be got, which will affect the performance of the method. While
if z is too large, there will be a lack of correlation information
leading to a bad performance.

626

In addition, in the proposed fusion function, we consider the
impact of different values of scale parameter p ∈ [0, 1], Fig. 4
shows the results. When p = 0.8, the best results are obtained
in both datasets. If p is too small, the effect will be reduced
due to insufficient attention to the representation itself. If too
large, it will be hard to fuse the association with the other
meta-paths.

D. Comparison with Other Methods
We compare with the following methods. MLP [2] that

applies a multi-layer perceptron to user representations and
the target knowledge concept representations, FISM [1] that is
an item-to-item CF method, and conducts the recommendation
task with the embeddings of users’ history behaviors and the
corresponding concept, NAIS [7] that is also an CF method
with an attention mechanism to distinguishe the weights of
different online learning behaviors, ACKRec [16] that is an
attentional graph neural network in a heterogeneous view. For
MLP, FISM, and NAIS, we construct the rating matrix and
interaction histories between users and concepts from datasets.
For ACKRec, we construct the corresponding features and
adjacency matrices as inputs based on its steps. We select the
most appropriate parameters to obtain the best results for a
fair comparison.

From Tabel IV , it is apparent that the performance of DCCR
is much better than MLP, FISM, NAIS in both datasets. The
AUC of DCCR is about 5.15% to 8.53% higher than MLP,
FISM, and NAIS in MOOCCube, and 7.72% to 10.51% higher
in XuetangX. Compared with ACKRec, DCCR extracts the
correlation feature of user preference, which leads to a better
performance. The AUC, HR@20, NDCG@20 and MRR
of DCCR are 2.06%, 6.22%, 3.62% and 4.7% higher than
ACKRec in MOOCCube, respectively, and 3.51%, 10.39%,
9.73%, 4.92% higher in XuetangX. It has a lager growth from
ACKRec to DCCR in XuetangX than in MOOCCube, which
means that the correlation information in XuetangX is more
abundant so that DCCR can make a bigger improvement.

TABLE IV: Results of different methods in Mooccube

Methods HR NDCG
MRR AUC

@5 @10 @20 @5 @10 @20

MOOCCube
MLP [2] 0.4335 0.5744 0.7102 0.3562 0.3807 0.4088 0.3335 0.8651
FISM [1] 0.5285 0.7411 0.7715 0.4826 0.5033 0.5288 0.4701 0.8684
NAIS [7] 0.4957 0.6235 0.8497 0.2848 0.3651 0.4218 0.3563 0.8979

ACKRec [16] 0.7125 0.8014 0.8827 0.6326 0.6622 0.6855 0.6015 0.9288
DCCR 0.7542 0.8539 0.9297 0.6708 0.7026 0.7217 0.6637 0.9494

XuetangX
MLP [2] 0.3680 0.5899 0.7237 0.2231 0.2926 0.3441 0.2146 0.8595
FISM [1] 0.5849 0.7489 0.7610 0.3760 0.4203 0.4279 0.3293 0.8532
NAIS [7] 0.4112 0.6624 0.8649 0.2392 0.3201 0.3793 0.2392 0.8863

ACKRec [16] 0.6470 0.8122 0.9255 0.4635 0.5170 0.5459 0.4352 0.9232
DCCR 0.7851 0.9063 0.9747 0.5833 0.6259 0.6432 0.5491 0.9583

IV. CONCLUSIONS

This paper proposes a recommendation method named as
DCCR which generates the knowledge concept recommenda-
tion list for users in MOOCs. DCCR captures the rich entity

interactive information in MOOCs by the guide of meta-path
and extracts the semantic features from text information along
with concepts. It also gathers the correlation features of users
among meta-paths by constructing a multi-relational graph. To
better consider the association between different meta-paths,
a concatenation-based fusion function is proposed to gener-
ate the final joint representation of users and concepts. By
verifying the effectiveness of DCCR on two public datasets,
the experimental results show that DCCR is superior to the
existing methods.

REFERENCES

[1] S. Kabbur, X. Ning, G. Karypis, Fism: factored item similarity models
for top-n recommender systems, In: ACM SIGKDD, 2013, pp. 659–667.

[2] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.S. Chua, Neural collaborative
filtering, In: International Conference on World Wide Web, 2017, pp.
173–182.

[3] K. Järvelin, J. Kekäläinenm, Ir evaluation methods for retrieving highly
relevant documents, In: ACM SIGKDD, 2017, pp. 41-48.

[4] M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph
domains, In: IEEE International Joint Conference on Neural Networks,
2005, vol. 2, pp. 729–734.

[5] L. Pan, X. Wang, C. Li, J. Li, J. Tang, Course concept extraction in
moocs via embedding-based graph propagation, In Proceedings of the
Eighth International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), 2017, pp. 875-884.

[6] A. Elbadrawy, G. Karypis, Domain-aware grade prediction and top-
n course recommendation, In: ACM Conference on Recommender
Systems, 2016, pp. 183–190.

[7] X. He, Z. He, J. Song, Z. Liu, Y.G. Jiang, T.S. Chua, Nais: Neural
attentive item similarity model for recommendation, IEEE Transactions
on Knowledge and Data Engineering 30(12), 2354–2366, 2018.

[8] L. Pan, C. Li, J. Li, J. Tang, Prerequisite Relation Learning for Concepts
in MOOCs, In: Annual Meeting of the Association for Computational
Linguistics, 2017, pp. 1447–1456.

[9] Y. Pang, Y. Jin, Y. Zhang, T. Zhu, Collaborative filtering recommen-
dation for mooc application, Computer Applications in Engineering
Education 25(1), 120–128, 2017.

[10] H. Zhang, M. Sun, X. Wang, Z. Song, J. Tang, J. Sun, Smart jump:
Automated navigation suggestion for videos in moocs, In: International
Conference on World Wide Web Companion,2 2017 pp. 331–339.

[11] M.T. Luong, H. Pham, C.D. Manning, Effective approaches to attention-
based neural machine translation, In: Conference on Empirical Methods
in Natural Language Processing, 2015, pp. 1412–1421.

[12] C. King, A. Robinson, J. Vickers, Targeted mooc captivates students,
Nature 505(7481), 26–26, 2014.

[13] C. Shi, B. Hu, W.X. Zhao, S.Y. Philip, Heterogeneous information net-
work embedding for recommendation, IEEE Transactions on Knowledge
and Data Engineering 31(2), 357–370, 2018.

[14] C. Shi, B. Hu, W.X. Zhao, P.S. Yu, Leveraging meta-path based
context for top-n recommendation with a neural co-attention model, In:
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 1531–1540.

[15] S. Vashishth, S. Sanyal, V. Nitin, P. Talukdar, Composition-based multi-
relational graph convolutional networks, In: International Conference on
Learning Representations, 2020, pp. 1–15.

[16] J. Gong, S. Wang, J. Wang, W. Feng, H. Peng, J. Tang, P.S. Yu,
Attentional graph convolutional networks for knowledge concept recom-
mendation in moocs in a heterogeneous view, In: ACM SIGIR, 2020,
pp. 79–88.

[17] J. Yu, G. Luo, T. Xiao, Q. Zhong, Y. Wang, J. Luo, C. Wang, L. Hou, J.
Li, Z. Liu, J. Tang, J.: Mooccube: A large-scale data repository for nlp
applications in moocs, In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, 2020, pp. 3135–3142.

[18] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient Estimation of Word
Representations in Vector Space, In: ICLR Workshop, 2013.

[19] T.N. Kipf, M. Welling, Semi-supervised classification with graph con-
volutional networks, In: International Conference on Learning Repre-
sentations, 2016.

627

DOI reference number:10.18293/SEKE2022-091

Postoperative MPA-AUC0-12h Prediction for Kidney

Transplant Recipients based on Few-shot Learning

Pan Qiao

Donghua University

Shanghai, China

panqiao@dhu.edu.cn

Yu Xinyu

Donghua University

Shanghai, China

974581233@qq.com

Li Xinyu

Donghua University

Shanghai, China

13918802469@163.com

Shaokun*

Ruijin Hospital affiliated to Shanghai Jiao Tong

University Medical College

Shanghai, China

*Correspondence: shaokuntrue@hotmail.com

Abstract—Mycophenolic acid (MPA) is a commonly used

immunosuppressive drug. The anti-immune rejection effect of

mycophenolic acid is closely related to its exposure level in the

body. In clinical practice, mycophenolate acid drug exposure level

is usually reflected by monitoring the area under the drug-time

curve MPA-AUC0-12h. Calculating the MPA-AUC0-12h requires

numerous blood sampling time points. Not only does the medical

staff have more work, but patients suffer more as well. Limited

sampling strategies (LSS) are generally used to reduce the number

of time points. Nevertheless, this method involves complicated

calculations and the predictive accuracy is very low for small

sample data. A new method of predicting the MPA-AUC0-12h value

is proposed based on the selection of SHAP features with an

improved neural network for small sample data. The experimental

results show that the average prediction errors of the MPA-AUC0-

12h values on different data sets by our method are better than that

of the baseline models.

Keywords-kidney transplantation; MPA-AUC0-12h; SHAP;

affinitynet

I. INTRODUCTION

Mycophenolic acid (MPA) is a kind of immunosuppressant
commonly used in the clinic. It is widely used in the prevention
and treatment of acute rejection of transplanted organs[1]. Its
strong immunosuppressive effect can significantly reduce the
incidence of rejection after transplantation[2]. Clinically, the
Area Under Curve (AUC) of postoperative mycophenolic acid
administration MPA-AUC0-12h in renal transplantation patients
is often monitored to evaluate the postoperative mycophenolic
acid exposure in renal transplantation patients[3]. Too low drug
exposure level (low MPA-AUC0-12h) will lead to an increase in
acute rejection, and too high drug exposure level (high MPA-
AUC0-12h) will lead to an increase in the incidence of
gastrointestinal reactions and other adverse reactions.

However, the clinical detection of the MPA-AUC0-12h value
is complicated. Medical staff often need to draw peripheral
venous blood from patients at 10 time points. Then the plasma
MPA concentration was determined by high-pressure liquid

chromatography. According to the linear trapezoidal method,
doctors calculated the area under the curve during 0-12 hours
(MPA-AUC0-12h) after medication[4]. Due to a number of blood
sampling time points, the workload of medical staff is heavy, the
cost of testing is high, and the patients are also very painful.

To solve the problem of too many clinical blood sampling
time points, limited sampling strategies (LSS)[5] are usually
used to calculate the value of MPA-AUC0-12h. The method of
limited sampling is divided into two steps. The first step is to
determine the time point of blood collection. The second step is
to estimate the value of MPA-AUC0-12h by Multiple Linear
Regression (MLR). Although this method solves the problem of
too many times of blood collection in clinical practice, the
calculation process of choosing blood sampling time points is
complicated. In the second step, the main method of existing
research is to predict the value of MPA-AUC0-12h with multiple
linear regression and an artificial neural network. The problem
with these methods is that when the number of blood sampling
time points is very small, the dimension of data in the calculation
process is low. Moreover, due to the difficulty in obtaining
clinical medical sample data, the data quantity is small.
Therefore, the accuracy of the finite sampling method based on
linear regression and a simple artificial neural network is not
high. There are many research methods for this kind of small
sample data. However, most of these few-shot learning methods
need to be based on similar large data sets. And the model cannot
guarantee the stability of prediction under the condition that
there are deviations in the sample distribution of the training set
and test set. The prediction effect on the test set is poor.

Given the problems existing in the current methods, this
paper proposed a method for selecting blood sampling time
points based on the SHAP method and a method for predicting
the value of MPA-AUC0-12h after kidney transplantation based
on a few-shot learning model. Then improve the AffinityNet
model to predict the MPA-AUC0-12h value by combining the
method of causal reweighting. The contributions of this paper
are as follows.

628

(1) We propose a SHAP-based method to choose blood
sampling time points. The method reflects the contribution
degree of feature to model output by calculating the marginal
contribution of each feature, so as to select the most important
feature combination for model training. In this paper, the SHAP-
based method is used to select 3 or 4 blood sampling time points
from 10 points for calculating the MPA-AUC0-12h.

(2) We propose an improved AffinityNet to predict the
MPA-AUC0-12h value for small sample data. Causal reweighting
is used to deal with the deviation in the distribution of small
sample data on training and test sets. The sample weight
obtained by the causality weight algorithm is integrated into the
AffinityNet model, which improves the stability of model
prediction on the test set. Due to the low data dimension, the
gaussian function is used as an attention kernel to reduce the
number of aggregation nodes in the attention layer. By
improving the feature extraction effect of the attention pooling
layer, the KNN model becomes more suitable for low-
dimensional vector aggregation.

II. RELATED WORK

A. Selection Method of Blood Sampling Point

Ratain and Vogelzang[6] first proposed the use of a limited
sampling strategy combined with linear regression analysis to
predict the MPA-AUC0-12h value. Yichen Jia[7] et al. used the
limited sampling strategy to establish a model to predict the
MPA value on the data of 36 kidney transplant patients. They
finally got the best blood sampling time points for the model at
0h, 3h, 4h, and 8h. Shao Kun et al.[8] used the limited sampling
method and multiple linear regression model to predict the
MPA-AUC0-12h based on the data of 108 patients in the early
stage. Although this method can reduce the number of blood
sampling time points, the calculation process is complicated, and
the accuracy of the linear regression method is not high after the
data dimension is reduced.

B. Few-sample Learning Method

Wang YX et al.[18] generated virtual data through the data
generation method and trained the classification model with the
meta-learning method. Santoro A et al.[9]proposed MANN
neural network based on the meta-learning method in 2016. In
2018, Howard J et al.[10] proposed ULMFit fine-tuning
language model, which fine-tunes the model by changing the
learning rate. However, both meta-learning methods and model
fine-tuning methods need a large base data set.

Currently, Tianle Ma[11] proposed AffinityNet small
sample neural network for medical disease type prediction.
However, AffinityNet is suitable for data with higher feature
dimensions. In addition, due to the deviation of the distribution
of the training set and test set in the small sample data, the
prediction of the model on the test set is not stable.

III. METHOD

We propose a prediction method of MPA-AUC0-12h value
based on SHAP feature selection. The AffinityNet is improved
with causal weights to make it more effective for predicting
small sample data. The sample weight obtained by the causal

weight algorithm on global data is combined with the loss
function of the AffinityNet model. The overall flow chart of the
proposed method is shown in Figure 1.

Figure1. the Overall framework of the model.

A. Blood Collection Time-point Selection Module

In this paper, a SHAP-based method is proposed to select the
features of blood sampling time points data of kidney
transplantation patients. Features with larger SHAP values have
a greater influence on results [12].

We used the method to select features of blood collection
point data. The input data were blood MPA concentration of
kidney transplantation patients before (0ℎ) and after 0.5ℎ, 1ℎ,
1.5ℎ , 2ℎ , 4ℎ , 6ℎ , 8ℎ , 10ℎ and 12ℎ in one medication cycle.
The output is the feature ranking of MPA-AUC0-12h values
predicted by features at different blood sampling time points.
SHAP method measures the importance of blood sampling point
features by calculating the marginal contribution of each feature
to the model prediction. For all feature sets of blood sampling
time points 𝐹 = {𝑋0, 𝑋0.5, 𝑋1, 𝑋1.5, 𝑋2, 𝑋4, 𝑋6, 𝑋8, 𝑋10, 𝑋12} and
one feature 𝑋𝑖 of blood sampling time points, the SHAP-based
method trains two models 𝑓(𝐹) and 𝑓(𝐹/𝑋𝑖) with feature 𝑋𝑖
and without feature 𝑋𝑖 respectively. The predicted values
𝐸[𝑓(𝐹)] and 𝐸[𝑓(𝐹/𝑋𝑖)] were obtained by the two models
respectively. Then, the marginal contribution 𝑊𝑖 of the blood
sampling point features on all features was

𝑊𝑖 = 𝐸[𝑓(𝐹)] − 𝐸[𝑓(𝐹/{𝑋𝑖})] (1)

In actual prediction, we calculated the marginal contribution
of feature 𝑋𝑖 on all subsets of feature set excluding feature 𝑋𝑖
and calculated the average value to obtain the final SHAP value
of the feature of a blood collection point. The calculation method
is shown in Formula 2

629

𝑤𝑖 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆𝜖𝐹{𝑥𝑖}
(𝑓(𝑆 ∪ {𝑥𝑖}) − 𝑓(𝑆)) (2)

Where 𝑆 is the full subset of the sum of the feature sets
excluding 𝑋𝑖 features. 𝑓(𝑆 ∪ 𝑋𝑖) − 𝑓(𝑆) is the marginal
contribution of characteristic 𝑋𝑖 to a subset. Then the marginal
contribution of the 𝑋𝑖 feature on all subsets was averaged to
obtain the SHAP value of the feature 𝑋𝑖 at blood sampling time
points. Finally, SHAP values of all blood sampling time points
were ranked. Therefore, the features of the highest blood
sampling time points were selected for the construction of the
Prediction model of the MPA-AUC0-12h value.

B. MPA-AUC0-12h Prediction Module

The model prediction consists of the AffinityNet and causal
sample weight modules.

1) AffinityNet Model Structure

AffinityNet model is composed of a Feature Attention Layer
and several stacked KNN Attention Pooling layers. The feature
attention layer assigns corresponding weight values to the
features of each blood collection point. Before these blood
sampling time points enter the attention feature extraction
module of the graph, attention calculation is carried out for blood
sampling time points through the attention mechanism.

Let 𝐻𝑖 be the vector composed of p blood sampling time
points data of patient I after taking medicine. 𝑊𝑞 is the attention

weight of the qth blood collection point. The sum of weights of
p features is 1, which satisfies the following formula

∑ 𝑤𝑞 = 1
𝑝
𝑞=1 , 𝑤𝑞 ≥ 0,𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑞) (3)

Unlike the usual transforms, the feature attention layer
performs element-by-element multiplication. The data of P
blood sampling time points and corresponding feature weights
of patient 𝑖 after taking medication were used for element
counterpoint multiplication. The data 𝑓(ℎ𝑖) of patient 𝑖 can be
represented by Formula 4. Where 𝑥 is the parallel multiplication
of elements. 𝑊 still satisfies the constraint in formula 3.

𝑓(ℎ𝑖) = 𝑊 × ℎ𝑖 (4)

The distance 𝑑𝑖𝑗
′ between patients after transformation can

be expressed as Formula 5. It can better measure the similarity
between patients and achieve a better aggregation effect.

𝑑𝑖𝑗
′ = ||𝑓(ℎ𝑖) − 𝑓(ℎ𝑗)|| = ||𝑤 × ℎ𝑖 − 𝑤 × ℎ𝑗||

2 (5)

The KNN attention pooling layer can stack a large number
of graph attention networks (GAT) together. The kidney
transplant patient data vector is represented in the form of nodes
in AffinityNet. The neighbor nodes of this node are calculated
by the vector similarity. The high-dimensional representation of
the data vector is represented by the neighbor nodes of the node
at this level through the attention mechanism.

Figure 2 describes how the KNN attention pooling layer
extracts the data features of patient 𝑖 . The data vector of
mycophenolic acid after the patient 𝑖 takes the medicine is ℎ𝑖. In
the generated graph network architecture, other patient data
vectors similar to patient 𝑖 are ℎ𝑖−1, ℎ𝑖+1, ℎ𝑖+2. These vectors are
called ℎ𝑖

′ neighbors in the graph structure. Then the high-

dimensional data feature ℎ𝑖
′ of the i-th patient can be represented

by ℎ𝑖−1, ℎ𝑖+1, ℎ𝑖+2.

Figure2. The component unit of the attention pooling layer in KNN.

In the graph structure, a node and its nearest m neighbors
should have similar feature representations. We employ the
GAT module and attention-based pooling to represent vector
high-dimensional features. The expression formula is as follows:

ℎ𝑖
′ = 𝑓(∑ 𝑎(ℎ𝑖 , ℎ𝑗). ℎ𝑗𝑗∈𝑁(𝑖)) (6)

Among them, ℎ𝑖 represents the data vector representation of
the kidney transplant patient 𝑖 . ℎ𝑖

′ represents the data
transformation feature representation of the kidney transplant
the 𝑖-th patient, and 𝑁(𝑖) represents the neighbor of the kidney
transplant patient 𝑖 in the figure. In the KNN attention pooling
layer, 𝑘 is a hyperparameter used to determine how many
neighbors of a node will calculate its high-dimensional vector.
𝑓(.) is the ReLU() nonlinear activation function combining
weight 𝑊 and bias 𝑏:

𝑓(ℎ) = max(𝑊ℎ + 𝑏) (7)

𝑎𝑖𝑗 = 𝑎(ℎ𝑖 , ℎ𝑗) is the attention calculation after

normalization of the 𝑖 -th and 𝑗 -th patients. The goal is to
calculate the similarity between patients. For introducing the
graph attention layer, we use the Gaussian kernel function,
which is more suited for low-dimensional vector aggregation.
The calculation formula of attention kernel after quoting the
Gaussian function is as follows:

𝑎𝑖𝑗 = 𝑎(ℎ𝑖 , ℎ𝑗) =
𝑒
−
||ℎ𝑖−ℎ𝑗||

2

2𝜎

∑ 𝑒
−
||ℎ𝑖−ℎ𝑗||

2

2𝜎𝑗∈𝑁(𝑖)

 (8)

2) Causal Sample Weight Model

In causal studies, collinearity between features is an
important cause of prediction instability[13]. So that the model
cannot learn true causality between features and predicted
outcomes. It has been proved in causal studies that under ideal
conditions there exists a set of sample weight values that make
the original eigenmatrix nearly orthogonal and minimize the
collinearity between input variables. Zheyan Shen et al.[14] in
2020 proposed a sample reweighted de-correlation operator to
reduce collinearity of input variables to improve collinearity
between input matrix features. A Decorrelated Weighting
Regression (DWR) algorithm was proposed by Kun Kuang et al.
[15] in 2020.

630

We use the Sample Reweighted Decorrelation Operator
(SRDO) algorithm to reduce collinearity between different
features of the input matrix. First of all, a design matrix 𝑋 is used

to create an unrelated transformation matrix �̃� according to the

column random resampling method. The resulting matrix �̃�
breaks the co-distribution among variables in the original matrix
𝑋 . Then the sample weight is learned by the density ratio
estimation method. Study a set of sample weights that make the

variable distribution D of 𝑋 matrix close to distribution �̃� of �̃�
matrix.

Specifically, samples in �̃� matrix are labeled as positive
samples (Z=1) and samples in the 𝑋 matrix are labeled as
negative samples (Z=0). Fit a probability classifier. According
to The Bayesian theory, the density ratio, namely the sample
weight, is:

𝑤(𝑥) =
𝑝�̅�(𝑥)

𝑃𝐷(𝑥)
=

𝑝(𝑥|�̃�)

𝑝(𝑥|𝐷)
=

𝑝(�̃�)

𝑝(𝐷)

𝑝(𝑍=1|𝑥)

𝑝(𝑍=0|𝑥)
 (9)

Where 𝑥 is constant in all samples, so it can be ignored. To
find the unit mean of 𝑤(𝑥), we can further divide 𝑤(𝑥)′, the
mean of 𝑤(𝑥).

𝑤(𝑥)′ =
1

𝑛
∑ 𝑤(𝑥𝑖)
𝑛
𝑖=1 (10)

𝑤(𝑥) =
𝑤(𝑥)

𝑤(𝑥)′
 (11)

After the sample weight is obtained, it is counterbalanced by
the loss value of the model to correct the loss value of the model.
MSE is used as the Loss function in our regression task. The
final combination of weights is as follows:

𝑙𝑜𝑠𝑠 = ∑ ((𝑦𝑖 − 𝑦𝑖
𝑝𝑟𝑒𝑑

)2 × 𝑤𝑖)
𝑛
𝑖=1 (12)

The specific causal sample weight and model integration
process are shown in Figure 3:

Figure3. The combination of causal sample weight and AffinityNet

IV. EXPERIMENT

A. Dataset

The dataset contains 152 kidney transplant patients. The data
of each patient included the features of 10 blood sampling points
and the MPA-AUC0-12h values. The 10 blood sampling time
points were the blood mycophenolic acid concentrations
collected before medication (0ℎ) and 0.5ℎ, 1ℎ, 1.5ℎ, 2ℎ, 4ℎ,
6ℎ, 8ℎ, 10ℎ and 12ℎ after medication within one medication
interval. The patient's MPA-AUC0-12h value was the outcome
index to be predicted.

B. Blood Collection Time-point Selection

1) Select blood sampling point by SHAP:
SHAP values and importance rankings of different blood

sampling time points are shown in Table 1. According to the
results in the table, the importance of blood sampling time points
from high to low is 2ℎ, 6ℎ, 4ℎ, 1.5ℎ, 8ℎ, 1ℎ, 10ℎ, 0.5ℎ, 12ℎ,
0ℎ.

TABLE I RANKING OF THE FEATURE IMPORTANCE

The features of different blood sampling times are selected.

The MPA-AUC0-12h values were predicted by the original

AffinityNet. In each group, 20% of the data were randomly

selected as the training set. The MPE(Mean Predict Error)

values are shown in Table 2.
TABLE II FEATURE SELECTION COMPARISON

The MPE of the few-shot learning model decreases with the
continuous addition of new blood collection point features. The
final blood sampling time points T2, T4 and T6 were chosen for
the purposes of ensuring accuracy and reducing the number of
features as much as possible.

Figure4. MPE comparison of different feature selection methods

631

2) Comparison of different feature selection methods:
The SHAP-based method was compared with traditional

feature selection methods including the Pearson, the Recursive
Feature Elimination (RFE), and the Random Forest. As shown
in Figure 4, features extracted by SHAP have better effects
through model training. The prediction effect is better than other
feature selection methods in most cases. When the features
increase, the model MPE shows a steady decline.

C. MPA-AUC0-12h Prediction

1) Model parameter tuning:

a. Aggregate function experiment

Given the reduced dimension of kidney transplantation data
after feature selection, this model uses a vector similarity
calculation method that is more suitable for low-latitude data as
the core of attention. Observe the influence of different
aggregation functions on the prediction effect of the original
AffinityNet model. The features used in the experiment are the
features of 𝑇2, 𝑇4 and 𝑇6 blood sampling time points selected
in the previous experiment. The specific comparison results are
shown in Table 3.

TABLE III MPE WITH DIFFERENT AGGREGATION FUNCTIONS

It can be seen from Table 3 that when 10% of the data is used
as training data, the model that uses Gaussian as the attention
core realizes the lowest MPE on both the training set and the test
set. When 20% of the data is used as training data, using
Gaussian as the attention core model has the lowest MPE on the
test set, but it is slightly worse than Affine as the attention core
on the training set. Therefore, in general, the Gaussian kernel
function is the best attention aggregation function of the
AffinityNet model in this dataset.

b. Aggregate node number experiment

In order to improve the attention pooling layer's ability to
aggregate similar functions, this paper proposes to reduce the
KNN attention layer to aggregate neighbor nodes. An
experiment is designed to compare the model prediction results
of different aggregation nodes, as shown in Figure 5.

When the 𝐾 value is 3, the model effect is the best. As the 𝐾
value increases, the model effect gradually becomes worse. This
is because when the amount of data samples is small, the KNN
attention pooling layer is extracting the value of a certain node.
In the feature, the high-dimensional features of the node can be
better represented by fewer neighbor nodes, and the learning
efficiency can be improved.

Figure5. The influence of K value selection on the model

2) Comparison of model prediction results:

We use traditional machine learning methods, basic neural
networks, and the original AffinityNet model as the baseline
model. The comparison results of different models are shown in
Table 4.

TABLE IV COMPARISON OF PREDICTION MODELS

As can be seen from Table 4, when the number of samples is
small, the prediction effect of traditional machine learning
methods on test sets is poor. The effect is not good when the
sample size is small and the distribution of the training set and
test set is different. The prediction effect of the simple ANN and
CNN model is not as good as the AffinityNet model. The
features of the data can not be better extracted and learned. Our
improved AffinityNet has the best prediction effect among all
models. Especially in the test set, the prediction effect was
significantly improved. Compared with the AffinityNet model,
the model with causal weight has no obvious improvement in the
training set. When 20% of the samples were used as training
samples, the MPE value decreased from 10.27% to 8.59%.
When 10% of the samples were used as training samples, the
MPE value decreased from 10.97% to 8.98%. However, the
effect on the test set is significantly improved. When 20%
samples were used as training samples, the MPE of the original
model test set was reduced from 15.82% to 10.65%. When 10%
samples were used as training samples, the MPE of the original
model was reduced from 18.71% to 14.01%. This shows that the
model achieves a better learning effect after adding causal
weight. The stability of prediction is greatly improved when the
distribution of the training set and test set is different.

D. External Data Verification

In order to prove the generalization of our proposed method
of predicting MPA-AUC0-12h after kidney transplantation based
on SHAP feature selection and improved AffinityNet model, this
section uses the kidney transplant patient data set provided by

632

another tertiary hospital as an external the data undergoes model
validation.

Data from the second hospital dataset included blood
mycophenolic acid concentrations at 10 time points and patients'
MPA-AUC0-12h values of 40 kidney transplant patients. The 10
blood sampling time points included before medication (0ℎ) and
after medication 0.5ℎ, 1ℎ, 1.5ℎ, 2ℎ, 4ℎ, 6ℎ, 8ℎ, 10ℎ and 12ℎ.
MPA-AUC0-12h is the target value to be predicted.

We used the SHAP-based method for feature selection of
blood sampling time points from the data of kidney transplant
patients in the second hospital. Then the improved AffinityNet
model proposed in this paper is used for prediction. The
selection results are shown in Table 5:

TABLE V RANKING OF BLOOD SAMPLING TIME POINTS

It can be seen from the results in the table that the feature
importance ranking of 10 blood sampling time points for MPA-
AUC0-12h value prediction is 4ℎ , 6ℎ , 8ℎ , 3ℎ , 2.5ℎ , 2ℎ , 12ℎ ,
1.5ℎ , 1ℎ , 0.5ℎ , 0ℎ from high to low. We also selected the
features of the three most important blood sampling time points
at 4h, 6h, and 8h to construct the prediction model. Since the
data set of the second hospital had less data, we used 80% of the
data as a training set and 20% as a test set. The prediction effect
of the improved AffinityNet model proposed in this paper is
compared with that of other baseline models. The comparison
results are shown in Table 6:

TABLE VI MODEL PREDICTION EFFECT COMPARISON

As can be seen from the results in Table 6, the improved
AffinityNet neural network proposed in this paper can also
achieve good prediction results in other data sets. And the
prediction effect of the model is better than all baseline models.
The training set MPE reached 10.54%. The MPE can reach
14.22%. Compared with the original AffinityNet, the MPE on
the test set is reduced by 22.55%.

V. CONCLUSION

In this paper, a blood collection point selection method based
on SHAP is proposed, and the AffinityNet model is improved
with causal weight to complete the prediction of MPA-AUC0-12h
The experimental results show that compared with the previous
method, the method presented in this paper can achieve better
prediction effect, and can effectively reduce the number of
clinical blood sampling. It reduces the workload of clinicians
and makes the predicted MPA-AUC0-12h values have greater
clinical reference value.

ACKNOWLEDGEMENTS

This work was supported by the National Key RD Program of

China under Grant 2019YFE0190500.

REFERENCES

[1] Scott LJ, McKeage K, Keam SJ, et al. Tacrolimus: a further update of its
use in the management of organ transplantation[J]. Drugs, 2003, 63(12):
1247-1297

[2] Lu Y P, Zhu Y C, Liang M Z, et al. Therapeutic drug monitoring of
mycophenolic acid can be used as predictor of clinical events for kidney
transplant recipients treated with mycophenolate mofetil[J].
Transplantation Proceedings, 2006, 38(7): 2048-2050.

[3] Le Meur Y, Buchler M, Thierry A, et al. Individualized mycophenolate
mofetil dosing based on drug exposure significantly improves patient
outcomes after renal transplantation[J]. Am J Transplant, 2007, 7(1):
2496-2503.

[4] Ren B, Li MW, Tang L, et al. Rapid determination of mycophenolic acid
in plasma by HPLC[J]. Chin Hosp Pharm, 2008, 28: 407−408.

[5] Willis C, Taylor PJ, Salm P, et al. Evaluation of limited sampling
strategies for estimation of 12-hour mycophenolic acid area under the
plasma concentration-time curve in adult renal transplant patients[J]. Ther
Drug Monit, 2000, 22: 549-554.

[6] Ratain,M.J. and Vogelzang,N.J.(1987). Limited sampling model for
vinblastine pharmacokinetics. Cancer Treat. Rep. 71, 935–939.

[7] Jia Y, Peng B, Li L, et al. Estimation of mycophenolic acid area under the
curve with limited-sampling strategy in Chinese renal transplant
recipients receiving enteric-coated mycophenolate sodium[J]. Ther Drug
Monit, 2017, 39(1): 29-36.

[8] Shao Kun,et al. The relationship between the pharmacokinetics of
mycophenolate mofetil and the polymorphism of multidrug resistance
gene 1[J]. Chinese Journal of Organ Transplantation, 2009(02) : 81-84.

[9] Santoro A, Bartunov S, Botvinick M, et al. One-shot learning with
memory-augmented neural networks. arXiv preprint arXiv:
1605.06065,2016.

[10] Howard J, Ruder S. Universal language model fine-tuning for text
classification. arXiv:1801.06146,2018.

[11] Ma T, Zhang A. AffinityNet: semi-supervised few-shot learning for
disease type prediction[J]. 2018, 33(01): 1069-1076.

[12] Futagami Katsuya, Fukazawa Yusuke, Kapoor Nakul, KIto Tomomi.
Pairwise acquisition prediction with SHAP value interpretation[J]. The
Journal of Finance and Data Science. 10.1016/J.JFDS.2021.02.001.

[13] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz.
Invariant risk minimization. arXiv preprintarXiv: 1907.02893,2019.

[14] Zheyan Shen, Peng Cui, Tong Zhang, and Kun Kuang. Stable learning via
sample reweighting. AAAI. 5692–5699,2020.

[15] K. Kuang, R. Xiong, P. Cui, S. Athey, and B. Li. Stable prediction with
model misspecification and agnostic distribution shift. Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 4, 2020:4485–
4492

633

Correlation Feature Mining Model Based on Dual
Attention for Feature Envy Detection

1st Shuxin Zhao
Beijing Institute of Technology

School of Computer Science
Beijing, China

zhaosx@bit.edu.cn

2nd Chongyang Shi*
Beijing Institute of Technology

School of Computer Science
Beijing, China

cy shi@bit.edu.cn

3rd Shaojun Ren
Beijing Institute of Technology

School of Computer Science
Beijing, China

3120191036@bit.edu.cn

4th Hufsa Mohsin
Beijing Institute of Technology

School of Computer Science
Beijing, China

hufsa.bit@yahoo.com

Abstract—Feature Envy is a code smell due to the abnormal
calling relationships between methods and classes, which ad-
versely affects software scalability and maintainability. Existing
methods mainly use various technologies to model abnormal
relationships to detect feature envy. However, these methods
only rely on local features such as entity names, which is
not robust enough. Moreover, the mining depth of correlation
features between entities involved in feature envy is limited. In
this paper, we propose a correlation feature mining model based
on dual attention to detect feature envy. Firstly, we propose a
multi-view-based entity representation strategy, which enhanced
the robustness of the model while improving the suitability of
the correlation feature and model. Secondly, we add attention
mechanism to the channel dimension and spatial dimension
of CNN to control the flow of information and capture the
correlation features between entities more accurately. Finally,
the evaluation results on projects both with and without feature
envy injected show that our proposed approach outperforms the
state-of-the-art methods.

Index Terms—Code Smell, Feature Envy, Software Refactor-
ing, Attention Mechanism, Deep Learning

I. INTRODUCTION

A code smell is a potential problem in code caused by non-
standard programming [1], [2]. Feature envy is a common code
smell that has a significant impact on the degree of coupling
and cohesion of software [3]–[5]. An accurate and widely
accepted definition, first proposed by Beck and Fowler [6],
is more interested in a class other than the one it actually is
in. Based on this definition, many methods have been proposed
to complete the critical step of the refactoring operation, that
is, the detection of feature envy [7], [8].

The core of the existing feature envy detection methods is
to model the abnormal calling relationship between methods
and classes, which can be divided into the traditional method
based on structural information (code metrics) [8] and the
deep learning method based on text information [9]–[11]. The
code metrics represent the element overlap degree between
the method and the class, but this method relies heavily on
artificial design features and selection threshold. In the case

DOI reference number:10.18293/SEKE2022-009
This work is supported by the National Key Research and Development

Program of China(No. 2018YFB1003903), National Natural Science Founda-
tion of China (No. 61502033) and the Fundamental Research Funds for the
Central Universities.

that the coding specification is met, there will be a certain
correlation between the name of the method and the name of
the class. Therefore, many deep learning methods are proposed
to automate the end-to-end complex feature mapping [11].

Although deep learning methods based on text information
have achieved good performance in feature envy detection,
there are two key problems with such methods: 1) the selected
local feature of entity name cannot fully represent the entity
[11], [12], and the robustness of the model is also affected by
the singleness of the feature, for example, when the method
name conforms to the specification but the called variable is
completely contained in another class. 2) Existing methods
usually use CNN or RNN to extract correlation features [11],
[13], but they cannot accurately capture effective information
and filter other information, resulting in limited expression the
ability of the model.

To solve the above problems, we first propose a multi-
view based entity representation strategy, which selected name,
context and content to represent the entity [14], [15]. The
above entity representation strategy was mainly based on the
following three observations:

• Name is usually an accurate summary of the entity’s
function, and the method name in the right place should
have some correlation with the class name.

• Context refers to the external inputs of a method and its
outputs to the external. For a method, the inputs are its
parameters and the outputs are its return values. In a class
with good cohesion, the methods contained in it must be
similar in function or goal, which means that the context
of multiple methods is similar.

• Content of a method includes the external properties and
methods called by the method, and two methods that
are similar in function are also similar in content. And
for method names, which are intuitive generalizations
of method functions, we can find deeper correlations
between method functions due to the fine-grained nature
of the content.

To sum up, we should select information from the three
views of method, contain class and target class to get a
comprehensive representation. In addition, in order to more
accurately capture the correlation features in the selected text

634

Fig. 1. Data generation process.

information, we propose a correlation feature mining model
based on dual attention. The framework is illustrated in Fig.1.
Inspired by CBAM [16], this model adds attention mechanism
to channel dimension and spatial dimension of feature map
obtained by CNN. It can assign more weight to the important
feature and the level of the important feature, so the local
correlation feature can be accurately captured and filtered.
Finally, we use GRU to combine the context among the three
entities to obtain the overall correlation from the global view.

The evaluation of the proposed method consists of two parts.
1) On an existing large-scale data-set, which was obtained by
manually injecting feature envy through the operation of move
methods on seven high-quality open-source Java projects [11].
On this data-set, our method can reach F-measure 55%, which
is higher than the state-of-the-art. 2) We tested the proposed
method on three open-source Java projects without feature
envy injection, and the results showed that the performance
of our method is still higher than the existing tools and
technologies. The paper makes the following contributions:

• We propose a multi-view based entity representation strat-
egy, which extracts text information from name, context
and content to comprehensively represent the entity, so
that the entity integrates more correlation features and
improves the robustness of the model.

• We propose a dual attention based correlation feature
mining model for feature envy detection, based on the
comprehensive representation of entities. Dual-channel
attention mechanism can expand the depth of text in-
formation and accurately filter and capture correlation
features.

• The evaluation results on open source projects with
and without feature envy injection show that our ap-
proach achieves better performance than state-of-the-art
approaches.

The remainder of this paper is organized as follows. Section
II introduces the work related to feature envy detection. Sec-
tion III explains the proposed approach, after which Section
IV presents the results of the proposed approach. Finally, the
conclusions are drawn in Section V.

II. RELATED WORK
Feature envy is a common code smell characterized by being

more interested in a class other than the one it actually is in
[9]. Many methods have been proposed to detect this code
smell, including the traditional method based on structural
information (code metrics) and the deep learning method based
on text information.

Existing feature envy detection methods rely primarily on a
metrics that can measure the relationship between the method
entity and the class entity [17], [18], which was first proposed
by Simon et al. [19] in 2001 . They propose a metric based
on the set operation to indicate the distance between entities,
as follows:

distance(e1, e2) = 1− |p(e1) ∩ p(e2)|
|p(e1) ∪ p(e2)|

(1)

The change rules of p(e) with the entity types of e are as
follows:

p(e) =

{
{e, entitiesCalled}, if e is method

{e, entitiesAccess}, if e is attribute
(2)

Entities in code are divided into method entities and attribute
entities, where e represents an entity. Here, P (e) represents
the set of properties possessed by e. If e is a method, the
set contains the entity itself, along with the attribute and
method entities that are called by e. If e is an attribute, the set
contains the entity itself and all methods that directly access e.
Based on the filtered entity set and calculation formula (1)(2),

635

the distance between entities can be obtained. If the distance
between a method entity and the entities in its class is greater
than the distance between the entity and the entities in other
classes, this method is associated with feature envy.

Tsantalis et al. [20] propose a new metric to define the
distance between entities, that differs from that proposed by
Simon et al. Although they divide entities into methods and
attributes, the final result is the distance between method
entities and classes; by contrast, Simon et al. focuses on the
distance between method entities and attribute entities [19]. If
the method entity m being detected belongs to the class entity
C, the formula for calculating the distance is as follows :

distance(m,C) = 1− Sm ∩ SC

Sm ∪ SC
, where SC =

⋃
eiϵC

{ei} (3)

Otherwise, the distance is computed as follows:

distance(m,C) = 1−Sm ∩ S
′

C

Sm ∪ S
′
C

, where S
′

C = SC\{m} (4)

In formula (3)(4), m represents a method entity, Sm repre-
sents the collection of entities called by the method entity, and
SC represents the method and attribute entities contained in
the class; moreover, the measured method entities should be
excluded from the collection of their classes. If the final result
shows that the distance between a method and the containing
class exceeds the distance between the method and the target
class, then the method is deemed to be associated with feature
envy. This method is implemented by JDeodorant, a well-
known code smell detection tool, has become the most com-
monly used benchmark in the code smell detection research
field [11].

To make better use of metric information and text infor-
mation, Liu et al. propose feature envy detection based on
deep learning [11], [13]. This method can automatically extract
the text information and metrics required by the training
classifier from the open-source applications; here the metrics
information is the distance metrics proposed by Tsantalis et
al. [20], [21], [22]. The text information mainly includes the
identifier of the method and the corresponding identifiers of the
containing class and the target class [23], [24]. The classifier
primarily uses the CNN neural network structure to extract the
internal features of the input information. Finally, the extracted
features are spliced into the linear layer to predict whether the
method and target class is “smelly” or “non-smelly”. They
are the first to apply deep learning techniques to feature envy
detection, and the detection effect is much higher than other
methods.

III. METHODOLOGY

A. Data Generation

As we employ deep learning technology to build a mapping
between input information containing comprehensive features
and feature envy judgment, we need large-scale data to train
the model. However, due to the characteristics of code smell,
it is difficult to compile relevant training data on a large scale,

making it necessary to artificially inject feature envy into the
code to generate such large-scale data. We here utilize the
method of automatic large-scale data generation proposed by
Liu et al. [11].

Finally, we can obtain any number of positive and negative
items, as shown in formula (5).

Item = < Input,Output > (5)
Input = < inputm, inputC , inputT > (6)
Output = < 0/1 > (7)

Respectively, the inputm, inputC , and inputT elements of
input represent the information extracted from the movable
method m, the containing class C, and the target class T .
This information comprises three main parts: name, context,
and content, as shown in the following formula (8)(9)(10). The
Output information 0 / 1 respectively represents whether this
item is negative or positive, as shown in formula (7).

inputm = < name(m), context(m), content(m) > (8)
inputC = < name(C), context(C), content(C) > (9)
inputT = < name(T), context(T), content(T) > (10)

B. Information Processing

Based on the sample generation method, we can get text
information that contains correlation features. However, in
order to meet the input specifications of the neural network
and make better use of data, we still need to process the data.

1) Text Processing: The information we obtain is composed
of many identifiers, each of which is generally a combination
of one or more words. Thus, to change the input into a form
acceptable to the neural network, we need to do the following
[25]:

• Divide the identifier into a sequence of words according
to the camel case method based on lower-line change,
uppercase letters, and numbers.

• Change all words to lowercase.
• Remove programming keywords, special characters and

English stop words.

2) Information Combination: Among the three views em-
phasized by representation strategy, name and content indicate
performance of different levels of function, for its part, the
context focuses on the input and output of a method, which
are the most intuitive representation of a method’s interaction
with the external environment. Therefore, we combine the
name and content modules to represent the internal functional
features of a method or class, while the context modules of
the method and class are combined to explore the features
of the interaction among the method, containing class and
target class. By using this combination method, we get a
comprehensive representation of entities, and obtain the com-
bination information which is beneficial to correlation mining.
We verify the effectiveness of this combination method for
feature envy detection in Section IV.

636

C. Correlation Feature Mining

After the above processing, we have nine unordered sets of
words from name, context, and content of three entities. Since
the structure is the same, we chose the method name as an
example to illustrate our model flow.

First, we obtain a dense embedding matrix X ∈ RN×d

by embedding the sequence of words forming method name
through the embedding space, where N is the number of
words and d is the dimension. Most of the text information
extracted was short text, so we chose CNN (convolutional
neural network) with good local feature extraction ability to
process X .

F = Conv(Emb(X)) (11)

As shown in formula (11), the size of three convolution
kernels are 2 ×d, 3×d and 4×d respectively, F is the set of
feature maps obtained after convolution.

In order to accurately capture features, inspired by CBAM,
we add attention mechanisms in channel and spatial dimen-
sions respectively, where channel attention focuses on the
difference in importance of features and spatial attention
focuses on the difference in location of features.

F ′ = F × σ(W1(W0(Favg)) +W1(W0(Fmax)) (12)

F ′′ = F ′ × σ(f(F ′
avg;F

′
max)) (13)

The operation is shown in formula (12)(13), and the feature
map set F ′′ containing weights is obtained. We then perform
another convolution operation on F ′′ to capture the deep
features.

As mentioned in the above chapter, context interaction is the
most direct expression of the correlation of the three entities.
Therefore, context information Sm, Sc and St of the three
entities are input into GRU as state flow. The update process
of GRU is as formula (14). The hidden state hi in formula X
contains the correlation features of three contexts.

zi = σ(Wzxi + Uzhi−1) (14)
ri = σ(Wrxi + Urhi−1) (15)

h̃i = tanh(Wxi + U(ri ⊙ hi−1)) (16)

hi = (1− zi)hi−1 + zih̃i (17)

Finally, to extract the global correlation features, we con-
catenate the name and content of each entity, that is, F ′′ ob-
tained in formula (13), the concatenate results and hi from for-
mula (14) are entered into the fully connected neural network,
whose output represents the final classification result: smelly
or no-smelly. In addition, we select binary crossentropy as
loss function, which is defined as follows:

L =
N∑
i=1

y(i) log ˆy(i) + (1− y(i)) log(1− ˆy(i)) (18)

where ˆy(i) is the true type of the method, and y(i) is the
prediction of our proposed model.

IV. EXPERIMENTS
A. Research Questions

We evaluate our proposed approach by answering the fol-
lowing research questions.

• RQ1: Does our proposed approach outperform the state-
of-the-art approaches in detecting feature envy?

• RQ2: How does our proposed method perform on real
projects without feature envy injected?

• RQ3: Are the proposed representation strategy and dual
attention mechanism helpful for FE detection?

Both RQ1 and RQ2 focus on the performance difference
between our proposed method and other technologies in fea-
ture envy detection, so we choose the deep learning-based
method proposed by Liu et al. [11] and the two popular code
smell detection tools JDeodorant and JMove as comparison
methods. RQ3 is mainly to verify the validity of the model.
We verify the combination of name, context and content. At
the same time, we also conduct an ablation experiment on the
dual-attention mechanism.

B. Dataset and Experimental Design

The data used for experimental evaluation can be divided
into two parts; (i) Large-scale data with feature envy automat-
ically injected for training and verification of the classifier. (ii)
Small-scale data without feature envy injected that is used to
evaluate the effectiveness of the proposed approach on real
projects.

To avoid over-fitting and reduce the impact of insufficient
data size on the detection results, we choose to use the k-
fold cross-validation method. Moreover, we selected three
commonly used indicators, F1, Recall, and Precision, to
evaluate the effect of each method (19) (20) (21).

precision =
true positives

true positives+ false positives
(19)

recall =
true positives

true positives+ false negatives
(20)

F1 = 2× precision× recall

precision+ recall
(21)

C. RQ1: Detection on Injected Projects

To effectively verify that our proposed approach performs
better than the best comparison approach, we select the
highest-performance deep learning-based method and two pop-
ular code smell detection tools for comparison. The evaluation
results are presented in Table I. From the above data, it
can be determined that our method outperforms the best
existing technology. Specifically, the method we proposed is
achieves significantly better results than the traditional tool
JDeodorant and JMove on the three indicators. Moreover,
compared to the method proposed by Liu et al., which also
uses deep learning technology, our method has higher preci-
sion but slightly lower recall, and finally, our method performs
better in terms of comprehensive indicators.

The improvement of precision indicates that the prediction
results of our method are more reliable, which in turn suggests

637

TABLE I
EVALUATION RESULT ON FEATURE ENVY DETECTION

Applications
Proposed Approach Approach of Liu JDeodorant JMove

precision recall F1 precision recall F1 precision recall F1 precision recall F1
JUnit 51.90% 100.00% 68.33% 40.59% 91.11% 56.16% 30.76% 14.82% 20% 22.72% 18.52% 20.41%

PMD 67.44% 78.38% 72.50% 41.27% 68.42% 51.49% 15.79% 5.36% 8% 30% 26.79% 28.3%

JExcelAPI 25.52% 68.52% 37.19% 31.9% 92.85% 47.49% 60% 10.7% 18.18% 27.27% 16.07% 20.22%

Areca 38.42% 75.26% 50.87% 46.05% 72.16% 56.23% 32.14% 9.28% 14.4% 26.76% 39.18% 31.8%

Freeplane 63.16% 75.29% 68.69% 38.09% 68.58% 48.97% 21.62% 8.94% 12.65% 24.83% 13.79% 17.73%

jEdit 34.66% 72.73% 46.94% 42.63% 78.57% 55.28% 22.73% 4.55% 7.58% 17.43% 13.57% 15.26%

Weka 35.19% 66.25% 45.97% 40.05% 86% 54.65% 58.33% 17.5% 26.92% 11.22% 11.75% 11.48%

Average 45.18% 76.63% 55.79% 39.79% 79.27% 52.98% 39.51% 12.22% 18.66% 18.37% 16.3% 17.27%
The data of approach of Liu, JDeodorant and Jmove are cited from Deep Learning Based Feature Envy Detection [11].

that the complementary relationship between the three views of
representation strategy that we propose has indeed corrected
the erroneous preference in prediction. Since a certain con-
tradiction exists between the two indicators of precision and
recall, the inconsistency of the two indicators is also within
the acceptable range: specifically, precision and recall for our
method is 31.45% (76.63%-45.18%), which is much smaller
than the 39.48% (79.27%-39.79%) of the method proposed
by Liu et al. This further proves that our extraction of feature
envy features is highly comprehensive, allowing us to obtain
a more reliable and stable detector.

D. RQ2: Detection on Projects without Injection

As shown in Table I, our proposed method outperforms
the best technology on java projects that automatically inject
feature envy. However, the automatically injected feature envy
characteristics must be based on the assumption that there is
no misplaced method in this project, which is difficult to fully
guarantee. Moreover, the feature envy created by the moving
method may have certain key differences when compared to
real feature envy, which leads to deviations in the extracted
features and affects the effect of the detector. We accordingly
choose to verify our method on real projects without injected
feature envy to its effectiveness in real-world scenarios. Four
graduate students with rich Java development experience will
review the test results and provide their opinions on whether
the findings can be accepted as true feature envy, and take
more than half of the opinions will be taken as the final
result. Finally, we conducted feature envy testing on three real
projects according to the process. The results are shown in
Table II.

From the table, we can construct our method is still superior
to other methods on real projects without feature envy injec-
tion. Compared with Liu’s method, the detection accuracy of
our method is 16.97% (58.20%-41.23%) higher. Moreover, our
method also achieves performance improvements of 30.61%
(58.20%-27.59%) and 42.85% (58.20%-15.35%) relative to
JDeodorant and JMove respectively.

E. RQ3: The Effectiveness of Model

To verify the effectiveness of each of the three perspectives,
we set up four sets of experiments. (i) The information con-
tains three modules. (ii) Name module deleted; (iii) Context
module deleted; (iv) Content module deleted. The results of
the experiments are shown in Fig. 2. From the figure, it can

Fig. 2. Results of three perspectives.

be observed that deleting any module will lead to a decline in
the detection result, which proves that all three perspectives
complement each other and lead to more comprehensive
feature representation. After deleting the context module, f1
dropped by 18.31% (55.79%-37.48%), which is the largest
drop; this indicates that the context module is most important
for feature envy detection.

Inside the neural network, we added a dual attention mech-
anism on CNN. To prove the effectiveness of this operation,
we deleted the operation and got the results as shown in the
following Table III:

As can be seen from the table, after deleting the dual
attention mechanism, the three indicators of precision, recall,
and F1 were reduced by 4.01% (45.18%-41.17%), 3.67%
(76.63%-72.96%), and 3.55% (55.79-52.24%). Therefore, the

638

TABLE II
EVALUATION RESULT ON PROJECTS WITHOUT INJECTING FEATURE ENVY

Metrics
Proposed Approach Approach of Liu JDeodorant JMove

XMD JSmooth Neuroph Total XMD JSmooth Neuroph Total XMD JSmooth Neuroph Total XMD JSmooth Neurpoh Total

Reported 40 22 72 134 32 26 56 114 8 3 18 29 106 27 82 215

Accepted 28 10 40 78 15 11 21 47 3 1 4 8 12 5 16 33

Precision 70.00% 45.45% 55.56% 58.20% 46.88% 42.31% 37.5% 41.23% 37.5% 33.33% 22.22% 27.59% 11.32% 18.52% 19.51% 15.35%

The data of approach of Liu, JDeodorant and Jmove are cited from Deep Learning Based Feature Envy Detection [11].

TABLE III
DETECTION RESULT WITHOUT JOINT FEATURES EXTRACTION

Applications Precision Recall F1

JUnit 55.93% 80.49% 66.00%

PMD 52.54% 83.78% 64.58%

JExcelAPI 22.00% 61.11% 32.35%

Areca 41.72% 70.10% 52.31%

Freeplane 51.90% 85.88% 64.70%

jEdit 31.01% 60.61% 41.03%

Weka 33.09% 68.75% 44.68%

Average 41.17% 72.96% 52.24%

dual attention mechanism does enhance the expressive ability
of the model.

V. CONCLUSION

In this paper, a correlation feature mining model based on
dual attention to detect feature envy is proposed. At first, a
new representation strategy is proposed, which extracts the
text information from the three views of name, content and
context to comprehensively express entities. Secondly, a dual
attention mechanism is used to accurately capture local and
global correlation features to detect Feature envy. Lastly, We
respectively evaluated the method on seven open-source Java
projects that automatically injected feature envy and three
open-source Java projects that did not inject feature envy.
The results show that the feature envy detection effect of
the proposed method is indeed superior to the state-of-the-art.
Recommending suitable target class for methods with feature
envy will be considered as a potential future work.

REFERENCES

[1] A. April and A. Abran, Software maintenance management: evaluation
and continuous improvement, vol. 67. John Wiley & Sons, 2012.

[2] W. J. Brown, R. C. Malveau, H. W. McCormick III, and T. J. Mowbray,
“Refactoring software, architectures, and projects in crisis,” 1998.

[3] A. K. Das, S. Yadav, and S. Dhal, “Detecting code smells using
deep learning,” in TENCON 2019 - 2019 IEEE Region 10 Conference
(TENCON), pp. 2081–2086, Oct 2019.

[4] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158–173, 2018.

[5] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” Ieee software, vol. 29, no. 6, pp. 18–21, 2012.

[6] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Signature Series (Fowler), Pearson Education, 2018.

[7] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2009.

[8] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in 20th IEEE International Conference on Software
Maintenance, 2004. Proceedings., pp. 350–359, IEEE, 2004.

[9] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning
techniques for code smell detection: A systematic literature review and
meta-analysis,” Information and Software Technology, vol. 108, pp. 115–
138, 2019.

[10] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman,
“A textual-based technique for smell detection,” in 2016 IEEE 24th
international conference on program comprehension (ICPC), pp. 1–10,
IEEE, 2016.

[11] H. Liu, Z. Xu, and Y. Zou, “Deep learning based feature envy detection,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 385–396, 2018.

[12] X. Guo, C. Shi, and H. Jiang, “Deep semantic-based feature envy
identification,” in Proceedings of the 11th Asia-Pacific Symposium on
Internetware, pp. 1–6, 2019.

[13] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep learning based
code smell detection,” IEEE transactions on Software Engineering,
2019.

[14] N. Tsantalis and A. Chatzigeorgiou, “Identification of extract method
refactoring opportunities for the decomposition of methods,” Journal of
Systems and Software, vol. 84, no. 10, pp. 1757–1782, 2011.

[15] J. Chang and D. M. Blei, “Hierarchical relational models for document
networks,” The Annals of Applied Statistics, pp. 124–150, 2010.

[16] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional
block attention module,” in Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

[17] N. Anquetil and T. C. Lethbridge, “Experiments with clustering as a
software remodularization method,” in Sixth Working Conference on
Reverse Engineering (Cat. No. PR00303), pp. 235–255, IEEE, 1999.

[18] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens, “Formalizing
refactorings with graph transformations,” Journal of Software Mainte-
nance and Evolution: Research and Practice, vol. 17, no. 4, pp. 247–276,
2005.

[19] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics based refactor-
ing,” in Proceedings fifth european conference on software maintenance
and reengineering, pp. 30–38, IEEE, 2001.

[20] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, 2009.

[21] S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble
methods for online class imbalance learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 5, pp. 1356–1368, 2014.

[22] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4,
p. e1249, 2018.

[23] H. Liu, M. Shen, J. Zhu, N. Niu, G. Li, and L. Zhang, “Deep learning
based program generation from requirements text: Are we there yet?,”
IEEE Transactions on Software Engineering, pp. 1–1, 2020.

[24] Y. Jiang, H. Liu, and L. Zhang, “Semantic relation based expansion
of abbreviations,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 131–141, 2019.

[25] M. F. Porter, “An algorithm for suffix stripping,” Program, 1980.

639

Graph Embedding Models for Community Detection

Yinan Chen, Zhuanming Gao*, Dong Li+

South China University of Technology, Guangzhou 510006, China

Abstract—Graph embedding models, also known as network

representation models, have been tried to be applied to community

detection tasks. However, most existing graph embedding models

are not specially designed for community detection tasks and thus

may be incapable of revealing the community structures in

networks well. To fill this gap, this paper proposes two novel graph

embedding models, GEMod and GEMap, which are specially

designed for community detection. The proposed methods try to

optimize the modified modularity and two-level coding length

while learning the nodes embedding, so that the learned nodes

embedding can be better applied to detect community structures

in networks. Experimental results show that the algorithms

proposed are superior or comparable to other community

detection algorithms based on graph embedding models. Besides,

the nodes embedding generated by GEMod and GEMap are

generally more compact and separable, which means that they are

more suitable for clustering tasks.

Keywords—community detection, graph embedding, clustering

I. INTRODUCTION

Many complex systems exist in the form of networks or can
be modeled as networks, such as social networks, scientists
collaboration networks, epidemic spreading networks and
protein interaction networks. Community detection is an
important task in the field of network analysis, which aims to
reveal the community structures in networks. A community is
generally defined as a group of nodes which are closely
connected internally, while the connections between different
community nodes are sparse.

The graph embedding task attempts to represent network
nodes with low-dimensional continuous vectors and
simultaneously capture the structural information of the network.
Graph embedding can provide effective input for downstream
machine learning tasks, such as node classification [1], link
prediction [2] and graph visualization [3]. With the gradual
maturity of graph embedding, some scholars try to apply it to
community detection tasks [4][5]. However, most existing graph
embedding models are not designed for community detection, so
they may not be able to effectively detect the community
structures in networks.

Inspired by [6] and [7], we modify the definition of
modularity and two-level coding length by using the nodes
embedding, and propose the GEMod and GEMap graph

 These authors have contributed equally to this work.
+ Corresponding Author. E-mail: cslidong@scut.edu.cn

DOI reference number: 10.18293/SEKE2022-005

embedding models. Same as DeepWalk [8] model, GEMod and
GEMap are both based on random walk, but they take the
community structure into consideration while learning the nodes
embedding, so that the learned nodes embedding can be better
applied to detect the communities in networks. Specifically, the
GEMod model will try to optimize the modified modularity, and
the GEMap model will try to optimize the modified coding
length. Experimental results show that our methods can
generally generate more compact and separable nodes
embedding as shown in Fig. 1.

Figure 1. Node embeddings of Karate Club network. Different colors

represent different community nodes.

The contributions of this paper are summarized as follows:

• Based on nodes embedding, a modified definition of
modularity and two-level coding length are proposed.

• The modified community structure metrics are
explicitly introduced into the graph embedding models,
so that the learned nodes embedding can be better
applied to the community detection tasks.

• The methods proposed can achieve more compact and
divisible clustering results.

II. RELATED WORK

A. Community Detection

Newman et al. first introduced the definition of modularity
[6] and used it as the evaluation metric of community partition.
Specifically, the modularity is defined as follows:

640

mailto:cslidong@scut.edu.cn

𝑄 =
1

2𝑚
∑ [𝑨𝑖,𝑗 −

𝑑𝑖𝑑𝑗

2𝑚
] 𝛿(𝑪𝑖 , 𝑪𝑗)

𝑖,𝑗

 (1)

where 𝑚 denotes the number of edges of the network and 𝑨𝑖,𝑗

denotes the number of edges between node 𝑖 and node 𝑗. 𝑑𝑖 and
𝑪𝑖 respectively denote the degree of node 𝑖 and the community

that node 𝑖 is located in. 𝛿(𝑪𝑖 , 𝑪𝑗) is the Kronecker delta, which

equals to 1 if 𝑪𝑖 is equal to 𝑪𝑗, otherwise 0. Many subsequent

community detection algorithms based on modularity
optimization have also been proposed, such as [9][10].

Besides the optimization method based on modularity,
community detection based on information theory is also a
widely studied direction. [7][11] Among them, the Infomap
algorithm regards community detection in networks as a
problem of map creating, and holds that a good map needs to be
well compressed, so that the length of each path in the map
should be short as possible. The algorithm uses information
entropy to represent the average path length, and proposes the
idea of two-level coding to measure the average coding length
of random walking in the network. Specifically, the coding
length is defined as:

𝐿(𝑀) = 𝑞𝐻(𝑄) + ∑ 𝑝𝑖𝐻(𝑃𝑖)

𝑚

𝑖=1

(2)

where 𝑀 represent the partition scheme, 𝐻(𝑄) represents the

average coding length between communities, and 𝐻(𝑃𝑖)
represents the average coding length of community 𝑖 , 𝑞
represents the probability of jumping between different

communities, and 𝑝𝑖 represents the probability of staying inside
community 𝑖.

B. Graph Embedding

Bryan et al. proposed the DeepWalk algorithm [8] based on
natural language model. The basic idea is to apply the process of
random walk for each node in the network to obtain node
sequences, then regard each node as a word and node sequences
as sentences. After that, based on the SkipGram [12] language
model, the low-dimensional vector representation of each node
is learned. [13][14][15]

In recent years, network representation algorithms based on
graph neural networks have also been proposed, such as
[16][17][18]. However, most of them are supervised learning
models or semi-supervised learning models, while community
detection is an unsupervised learning task. Consequently, these
graph neural networks can not be directly applied to community
detection in networks.

C. Graph Embedding and Community Detection

An intuitive way of community detection based on network
representation is to obtain the nodes embedding of the network
by applying some kind of graph embedding model, and then
cluster the embeddings by a clustering algorithm [4][5], so as to
achieve the goal of community detection. However, in such
approach, the network representation process is independent of
the node clustering process, and the network representation
model cannot get feedback from the nodes clustering model.

In order to alleviate the above problem, the ComE [19]
model combines node embedding, community embedding and
community detection into a single process, so as to complement
each other. However, it assumes that the community embedding
obeys a multivariate Gaussian distribution. GEMSEC [20]
model introduces a self-clustering process into the nodes
embedding process, thus improving the clustering quality of
nodes representation, but it does not explicitly introduce
community structure metrics.

III. THE METHODS

A. Problem Definition

The methods mainly focus on detecting non-overlapping
communities by using graph embedding methods, given an
undirected and unweighted network 𝐺 = (𝑉, 𝐸).

Definition 1 Non-overlapping Community Detection

Given a network 𝐺 = (𝑉, 𝐸), non-overlapping community
detection aims to divide 𝑉 into 𝐾 disjoint node subsets {𝑃𝑖|𝑃𝑖 ⊂
𝑉, 𝑃𝑖 ∩ 𝑃𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑖 = 1, . . . , 𝐾} , and ⋃𝑃𝑖 = 𝑉 , so that the

nodes in each node subset share some kind of similarity, while
different node subsets have great dissimilarity.

Definition 2 Graph Embedding

Given a network 𝐺 = (𝑉, 𝐸), graph embedding models aim

to find a mapping function 𝑓: 𝑉 → ℝ𝑑, so that the learned nodes
embedding can effectively express the structural information of
the network. 𝑑 is the dimension of the embedding space. That is,
the nodes are projected from discrete space to a continuous
vector space.

B. Node Similarity

Given nodes 𝑢, 𝑣 ∈ 𝑉 and mapping function 𝑓 , let 𝒉𝑢 =
𝑓(𝑢) and 𝒉𝑣 = 𝑓(𝑣), 𝒉𝑢 , 𝒉𝑣 ∈ ℝ𝑑 . Graph embedding models
often use the softmax or sigmoid function to measure the
similarity or adjacency probability of 𝑢 and 𝑣 . Nevertheless,
nodes embedding will generally serve as the input of some kind
of clustering model, and many clustering models usually uses
Euclidean distance to measure the dissimilarity between
different samples. The dissimilarity between node 𝑢 and node 𝑣
is defined as:

𝑑𝑖𝑠𝑠𝑖𝑚(𝑢, 𝑣) = ‖𝒉𝑢 − 𝒉𝑣‖2 (3)

The opposite number of the dissimilarity is defined as the
similarity measure between nodes:

𝑠𝑖𝑚(𝑢, 𝑣) = −𝑑𝑖𝑠𝑠𝑖𝑚(𝑢, 𝑣) (4)

C. GEMod Algorithm

The GEMod model includes two stages: embedding
initialization and modified modularity optimization. Specifically,
the algorithm firstly takes each node as the starting point to do
multiple truncated random walks. The process of random walk
can be regarded as the process of message propagation. Since the
small world effect [21] generally exists in networks, the length
of each walk is set to a value less than 6. After that, the nodes in
the same walk sequence are regarded as the friend nodes, and let
the friend nodes of node 𝑢 be 𝐹(𝑢). It is assumed that the a node

641

and its friend nodes should have great similarity for they share
some kind of characteristic. Similar to the SkipGram model,
GEMod also performs negative sampling to obtain another set
of node sequences, and takes the nodes in the sequence as
stranger nodes of the source node, and let the stranger nodes of
node 𝑢 be 𝑆(𝑢). The negative sampling process of GEMod is
the same as that of SkipGram model.

GEMod expects to maximize the similarity between node 𝑢
and its friend nodes, and simultaneously maximize the
dissimilarity between node 𝑢 and its stranger nodes.
Consequently, the loss function corresponding to the first stage
is:

𝐿1 = − [∑

𝑢∈𝑉

∑ 𝑠𝑖𝑚(𝑢, 𝑣)

𝑣∈𝐹(𝑢)

+ ∑

𝑢∈𝑉

∑ 𝑑𝑖𝑠𝑠𝑖𝑚(𝑢, 𝑣′)

𝑣′∈𝑆(𝑢)

] (5)

In order to make the node embeddings better reflect the
community structures, and make the connections within
community closer, while the connections between communities
more sparse, a modified definition of modularity is proposed:

𝑀 = ∑ 𝑠𝑖𝑚(𝑢, 𝑣)𝛿(𝐂𝑢, 𝐂𝑣)

𝑢,𝑣∈𝑉

+ ∑

𝐾

𝑖=1

∑ 𝑑𝑖𝑠𝑠𝑖𝑚(𝐶𝑖,0𝐶𝑗,0)

𝐾

𝑗=𝑖+1

(6)

ℎ𝑖,0 =
1

|𝐶𝑖|
∑ ℎ𝑢

𝑢∈𝐶𝑖

(7)

where 𝐂𝑢 represents the community to which the node 𝑢

belongs, 𝐶𝑖 represents the 𝑖 -th community, 𝐶𝑖,0 represents the

center of community 𝑖 , ℎ𝑖,0 is embedding of 𝐶𝑖,0 , 𝐾 is the
number of communities, and 𝛿(𝐂𝑢 , 𝐂𝑣) = 1 if 𝐂𝑢 = 𝐂𝑣 ,
otherwise, 𝛿(𝐂𝑢, 𝐂𝑣) = 0. Herein, we use k-means to cluster the
nodes embedding to obtain the community partition of the
network, and then calculate the modified modularity. It should
be pointed out that other clustering methods are also feasible.
The meaning of maximizing the above equation is to maximize
the similarity of nodes within the same community and the
dissimilarity between different community centers. Thus, the
connections within communities are tight while the communities
are far away from each other. As a result, the nodes embedding
generated by GEMod model can get more compact and
separable clusters. The loss function of the second stage is,

𝐿2
𝑚𝑜𝑑 = 𝐿1 − 𝛼𝑀 (8)

where 𝛼 is a hyper-parameter used to balance the influence of 𝑀
on the result.

In order to accelerate the convergence of the algorithm,
GEMod will be trained for a certain number of rounds in the first
stage, and then enter the second stage.

D. GEMap Algorithm

The GEMap algorithm is similar to the GEMod algorithm,
but the second stage of GEMap tries to optimize the modified
coding length instead of the modified modularity. The modified
coding length also uses the idea of two-level coding, including
coding within communities and coding between communities.
However, unlike the Infomap algorithm, GEMap expects to

minimize the coding length within communities and maximize
the coding length between communities.

Suppose that there is a signal source in the center of each
community, which is called a local signal source, and the nodes
closer to the signal source have more opportunities to receive the
message sent by the signal source. Therefore, the probability that
a node receives a message by the distance between the node and
the signal source can be measured. Specifically, for the

community 𝐶𝑖 , the distances between each node in the

community and the community center 𝐶𝑖,0 are first calculated,
then divided by the sum of all distances, and finally sorted in

descending order to get the probability distribution 𝑝𝑖 . 𝑝𝑖,1
represents the receiving probability of the nearest node from the

community center, 𝑝𝑖,2 represents the receiving probability of
the next nearest node from the community center, and so on.
Actually, the average coding length of each community has

nothing to do with the order of 𝑝𝑖, so the sorting process can be
omitted.

Similarly, suppose that there is also a signal source in the
center of the network composed of all community centers, which
is called the global signal source, and then calculate the
probability that each community center receives the message
sent by the global signal source as described above, the average
coding length between communities can be calculated.

Since we only focus on non-overlapping community
detection in networks, we make an assumption that each signal
source only produces messages belong to a specific topic, and
each community is only interested in a specific topic, while
different communities do not share the same interest. Thus, we
expect to minimize the average coding length within
communities and maximize the average coding length between
communities. In summary, the average intra-community coding
length of each community is defined as follows:

𝐸𝑖𝑛𝑡𝑟𝑎 = − ∑

𝐾

𝑖=1

∑ 𝑝𝑖,𝑢 log 𝑝𝑖,𝑢

𝑢∈𝐶𝑖

(9)

𝑝𝑖,𝑢 =
𝑠𝑖𝑚(𝐶𝑖,𝑢, 𝐶𝑖,0)

∑ 𝑠𝑖𝑚(𝐶𝑖,𝑢𝐶𝑖,0)𝑢∈𝐶𝑖

(10)

where 𝐶𝑖,𝑢 represents the node 𝑢 in community 𝑖 . And the
average inter-community coding length is defined as follows:

𝐸𝑖𝑛𝑡𝑒𝑟 = − ∑ 𝑞𝑖 log 𝑞𝑖

𝐾

𝑖=1

(11)

𝑞𝑖 =
𝑠𝑖𝑚(𝐶𝑖,0, 𝐶0)

∑ 𝑠𝑖𝑚(𝐶𝑖,0, 𝐶0)𝐾
𝑖

(12)

ℎ0 =
1

𝐾
∑ ℎ𝑖,0

𝐾

𝑖

(13)

where 𝐶𝑖,0 is the center of community 𝑖, 𝐶0 is the centroid of

community centers, ℎ𝑖,0 is the embedding of 𝐶𝑖,0 , ℎ0 is the
embedding of 𝐶0 and 𝐾 is the number of communities in the
network. And the overall coding length is,

𝐸 = 𝐸𝑖𝑛𝑡𝑟𝑎 + 𝐸𝑖𝑛𝑡𝑒𝑟 (14)

642

In summary, the loss function of the second stage of GEMap
algorithm is,

𝐿2
𝑚𝑎𝑝

= 𝐿1 + 𝛽𝐸 (15)

where 𝛽 is a hyperparameter used to balance the influence of 𝐸
on the result.

E. Models Optimization

Both GEMod and GEMap models need to optimize the
parameter set of 𝐇 = {ℎ𝑢|𝑢 ∈ 𝑉} , and its size is 𝑂(𝑑|𝑉|) .
Herein, we use the back-propagation algorithm to calculate the
derivative of the loss function, and choose the Adam [22]
optimizer to optimize the model parameters.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data-sets

In this paper, the effectiveness of the algorithms is verified
on four real-world data-sets [23][24][25] and four LFR [26]
synthetic data-sets. The specific network structure information
of each data-set is shown in Table I. In which n represents the
number of nodes, 𝑚 represents the number of edges, 𝑘
represents the number of ground-truth communities, 𝑑
represents the average degree of nodes, and 𝜇 represents the
mixing parameter for synthetic networks.

TABLE I. MAIN PROPERTIES OF THE DATA-SETS

Data-set 𝒏 𝒎 𝒌 𝒅 𝝁

Karate 34 78 2 4.6 -

Dolphin 62 162 2 5.1 -

Polbooks 105 441 3 10.7 -

Football 115 613 12 8.4 -

L1 1,000 15,304 49 15 0.3

L2 1,000 30,708 29 30 0.3

L3 1,000 15,206 49 15 0.5

L4 1,000 30,156 31 30 0.5

B. Comparison Algorithms

Here six graph embedding models are selected to compare
with GEMod and GEMap algorithms, including DeepWalk [8],
Node2vec [13], WALKLETS [14], LINE [15], ComE [19] and
GEMSEC [20]. Specifically, the embeddings learned by these
models are clustered using k-means, to obtain the community
partition for a network.

C. Evaluation Metric

Because the data-sets have ground-truth community partition,
normalized mutual information (NMI) [27] is used to measure
the similarity between the partition output by algorithm and the
ground-truth partition, which is defined as follows:

𝑁𝑀𝐼 =
−2 ∑

𝐶𝐴
𝑖=1 ∑

𝐶𝐵
𝑗=1 𝐶𝑖𝑗 𝑙𝑜𝑔2(𝐶𝑖𝑗𝑁/𝐶𝑖.𝐶.𝑗)

∑
𝐶𝐴
𝑖=1 𝐶𝑖. 𝑙𝑜𝑔2(𝐶𝑖./𝑁) + ∑

𝐶𝐵
𝑗=1 𝐶.𝑗 𝑙𝑜𝑔2(𝐶.𝑗/𝑁)

(16)

where 𝐶𝐴 and 𝐶𝐵 respectively represents the community
partition obtained by the algorithm and the ground-truth
community partition, and 𝐶𝐴 and 𝐶𝐵 respectively represents the
number of communities in partition 𝐶𝐴 and partition 𝐵. 𝐶 is the
confusion matrix, and 𝐶𝑖𝑗 represents the number of nodes in the

community 𝑖 divided by 𝐶𝐴 and also in the community 𝑗 divided
by 𝐵. 𝐶𝑖. represents the sum of elements in the 𝑖 -th row of the
confusion matrix, 𝐶.𝑗 represents the sum of elements in the 𝑗 -th

column of the confusion matrix, and 𝑁 is the total number of
nodes in the network. The value range of NMI is [0,1]. The
larger the NMI value, the closer the partition result obtained by
the algorithm is to the ground-truth community partition.

D. Experimental Results

Each algorithm runs five times on each data-set, and finally
take the average of the results. The comparison results of the
algorithms are shown in Table II and Table III. The error of the
experimental results is indicated in parentheses, which is
measured by the standard deviation of the results.

TABLE II. AVERAGE NMI OF EACH ALGORITHM ON REAL-WORLD NETWORKS

Data-set Karate Dolphins Polbooks Football

DeepWalk 0.663 (±0.038) 0.817 (±0.048) 0.562 (±0.003) 0.925 (±0.001)

Node2vec 0.946 (±0.120) 0.874 (±0.033) 0.561 (±0.024) 0.927 (±0.002)

WALKLETS 0.869 (±0.073) 0.889 (±0.000) 0.557 (±0.012) 0.927 (±0.000)

LINE 0.473 (±0.103) 0.322 (±0.131) 0.409 (±0.045) 0.852 (±0.020)

ComE 0.604 (±0.049) 0.453 (±0.019) 0.465 (±0.035) 0.691 (±0.117)

GEMSEC 0.226 (±0.000) 0.293 (±0.000) 0.103 (±0.000) 0.930 (±0.000)

GEMod 1.000 (±0.000) 0.889 (±0.000) 0.568 (±0.007) 0.927 (±0.001)

GEMap 1.000 (±0.000) 0.889 (±0.000) 0.573 (±0.009) 0.926 (±0.004)

643

TABLE III. AVERAGE NMI OF EACH ALGORITHM ON SYNTHETIC NETWORKS

Data-set L1 L2 L3 L4

DeepWalk 0.977 (±0.007) 0.996 (±0.049) 0.959 (±0.010) 0.994 (±0.006)

Node2vec 0.974 (±0.007) 0.994 (±0.006) 0.939 (±0.009) 0.994 (±0.005)

WALKLETS 0.984 (±0.007) 0.992 (±0.005) 0.957 (±0.012) 0.994 (±0.006)

LINE 0.541 (±0.014) 0.772 (±0.024) 0.335 (±0.008) 0.241 (±0.013)

ComE 0.504 (±0.023) 0.599 (±0.037) 0.435 (±0.009) 0.559 (±0.034)

GEMSEC 0.884 (±0.000) 1.000 (±0.000) 0.832 (±0.000) 0.996 (±0.000)

GEMod 0.995 (±0.001) 1.000 (±0.000) 0.959 (±0.005) 0.998 (±0.002)

GEMap 0.994 (±0.003) 1.000 (±0.000) 0.960 (±0.004) 1.000 (±0.000)

The results show that in the real-world data-sets, except for
Football data-set, GEMod and GEMap algorithms outperform
other benchmark algorithms. On Football data-set, GEMod and
GEMap algorithms are only 0.3% and 0.4% inferior to the best
results respectively. In addition, both GEMod and GEMap
algorithms have very small experimental errors, which shows
the stability of the algorithms.

E. Parameters Analysis

In order to test the impact of hyper-parameters on the
clustering effect, GEMod and GEMap are run with different
hyper-parameters on Football data-set. The experimental results
are shown in Fig. 2.

Figure 2. Influence of cluster quality to parameters changes measured by

NMI

The random-walk length is set from 1 to 10 in consideration
of the small-world effect [26]. The results show that when the
random-walk length is between 2 and 4, the clustering performs
best. Because the length of each random walk is short, in order
to increase the data-set to get better fitting result, we increase the
number of random-walk iterations made by each node here.
Experimental results show that when the number of random
walks is between 50 and 100, the clustering effect is better. In
addition, in order to get a stable and better clustering effect, the
dimension of nodes embedding should be between 48 and 128.
Finally, when 𝛼 is between 0.5 and 0.8, GEMod can generally
get better clustering results, and when 𝛽 is between 0.7 and 0.8,
GEMap can achieve better clustering quality, besides 𝛽 has
unstable influence on the clustering results.

V. CONCLUSION

In this paper, two novel graph embedding models, GEMod
and GEMap is proposed, which are customized for community
detection tasks. The former uses the modified modularity, while
the latter uses the modified coding length to optimize the
community structure in the process of nodes embedding.
Experimental results show that GEMod and GEMap are both
superior to most community detection algorithms based on
graph embedding models, and the nodes embedding generated
by these models are generally more compact and separable.

REFERENCES

[1] Bhagat S, Cormode G, Muthukrishnan S. Node classification in social
networks. In Social network data analytics. Springer, Boston, MA, 2011:
115-148.

[2] Liben‐Nowell D, Kleinberg J. The link‐prediction problem for social
networks. Journal of the American society for information science and
technology, 2007, 58(7): 1019-1031.

[3] Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of
machine learning research, 2008, 9(11)..

[4] Chen Y, Wang L, Qi D, W Zhang. Community detection based on
deepwalk in large scale networks. International Conference on Big Data
and Security. Springer, Singapore, 2019: 568-583.

[5] Hu F, Liu J, Li L, J Liang. Community detection in complex networks
using Node2vec with spectral clustering. Physica A: Statistical Mechanics
and its Applications, 2020, 545: 123633..

[6] Newman M E J. Modularity and community structure in networks.
Proceedings of the national academy of sciences, 2006, 103(23): 8577-
8582.

[7] Rosvall M, Bergstrom C T. Maps of random walks on complex networks
reveal community structure. Proceedings of the national academy of
sciences, 2008, 105(4): 1118-1123.

[8] Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2014: 701-710..

[9] Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory
and experiment, 2008, 2008(10): P10008.

[10] Zhuang D, Chang J M, Li M. DynaMo: Dynamic community detection by
incrementally maximizing modularity. IEEE Transactions on Knowledge
and Data Engineering, 2019, 33(5): 1934-1945.

[11] Shen H, Cheng X Q, Chen H Q, Liu Y. Information bottleneck based
community detection in network. Chinese Journal of Computers (Chinese
Edition), 2008, 31(4): 677.

644

[12] Mikolov T, Sutskever I, Chen K, Corrado G S, Dean J. Distributed
representations of words and phrases and their compositionality.
Advances in neural information processing systems, 2013, 26.

[13] Grover A, Leskovec J. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 2016: 855-864..

[14] Perozzi B, Kulkarni V, Chen H, Skiena S. Don't Walk, Skip! Online
learning of multi-scale network embeddings. In Proceedings of the 2017
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining. 2017: 258-265.

[15] Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q. Line: Large-scale
information network embedding. In Proceedings of the 24th international
conference on world wide web. 2015: 1067-1077.

[16] Kipf T N, Welling M. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[17] Kipf T N, Welling M. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[18] Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K. Inductive representation
learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020..

[19] Cavallari S, Zheng V W, Cai H, Chang K C, Cambria E. Learning
community embedding with community detection and node embedding
on graphs. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management. 2017: 377-386..

[20] Rozemberczki B, Davies R, Sarkar R, Sutton C. Gemsec: Graph
embedding with self clustering. In Proceedings of the 2019 IEEE/ACM
international conference on advances in social networks analysis and
mining. 2019: 65-72.

[21] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks.
Nature, 1998, 393(6684): 440-442.

[22] Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[23] Zachary W W. An information flow model for conflict and fission in small
groups. Journal of anthropological research, 1977, 33(4): 452-473.

[24] Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E, Dawson S M.
The bottlenose dolphin community of Doubtful Sound features a large
proportion of long-lasting associations. Behavioral Ecology and
Sociobiology, 2003, 54(4): 396-405.

[25] Girvan M, Newman M E J. Community structure in social and biological
networks. Proceedings of the national academy of sciences, 2002, 99(12):
7821-7826..

[26] Lancichinetti A, Fortunato S. Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities. Physical Review E, 2009, 80(1): 016118..

[27] Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community
structure identification. Journal of statistical mechanics: Theory and
experiment, 2005, 2005(09): P09008..

645

DOI reference number: 10.18293/SEKE2022-093

An Emotion Cause Detection Method Based on XLNet
and Contrastive Learning

Hai Feng Zhang
School of Computer Science and

Information Engineering
Hubei University

Wuhan, China
zhf@stu.hubu.edu.cn

Cheng Zeng*
School of Computer Science and

Information Engineering
Hubei University

Wuhan, China
zc@hubu.edu.cn

Peng He
School of Computer Science and

Information Engineering
Hubei University

Wuhan, China
penghe@hubu.edu.cn

Abstract—Emotion cause detection is a new direction in the field of
emotion research and is a fine-grained analysis of emotion.
However, research on emotion cause detection is still challenging
due to the extreme complexity of human emotions, the difficulty of
tracing emotions back to their origins, and the fact that emotion
cause detection corpus annotation requires a lot of manual
involvement. An emotion cause detection method incorporating
contrastive learning is proposed to address this problem, which
combines the autoregressive language model XLNet and a
contrastive learning approach to introduce a difficult sample
generation strategy and a word repetition strategy in the
positive/negative example comparison pattern in the training
data,and design a loss function that incorporates the classification
task and the comparison learning task. Experiments on the Weibo
sports game commentary dataset show better performance in terms
of accuracy, macro-average F1 values, and a 2.73 percentage point
improvement in accuracy compared to the baseline XLNet,
demonstrating the effectiveness of the proposed method.

Keywords-emotion cause detection;contrastive learning;
autoregressive anguage model；

I. INTRODUCTION

Emotion cause detection refers to an individual's cognitive
process when influenced by factors such as environmental
stimuli, physiological conditions and cognitive processes.
[3].Analyzing the text of online media comments can dig out
effective public opinion information and it is important to find
the key factors in the review text that influence the user's
emotional change government departments can guide public
opinion and avoid major public opinion incidents [1-2].Gui et
al. [4] inspired by the question-and-answer domain, used
sentiment keywords as query words and their context as query
text to determine whether the current clause is an emotional
cause by means of question-and-answer. Li et al. [5] proposed a
co-attention neural network (CANN) model based on
emotional context-awareness. The method first encodes the
reason candidate and sentiment clauses by a BiLSTM model,
and then sends them to the convolutional layer of CNN for
sentiment reason recognition. And with the widespread use of
pre-trained models like BERT [6] in natural language
processing, there has been a qualitative improvement in the
study of emotion cause detection.The emotion cause detection
research is not only dependent on the algorithms implemented
but also limited by the cause-labeled corpus, and the current

lack of relevant corpora has affected the depth of research in
this area [7].

To address the above issues, this paper proposes an emotion
cause detection method incorporating contrastive learning. The
method combines a pre-trained model and a contrastive
learning approach, extracts emotional text features using an
autoregressive language model XLNet [8], adds a contrastive
learning task during model training, and makes full use of the
positive/negative example contrast patterns in labeled data to
improve the classification of emotional attribution.

II. RELATED TECHNOLOGIES

A. Autoregressive language model XLNet
Fig. 1 shows the structure of the XLNnet model, the XLNet
autoregressive language model is based on the core of
transformer-XL framework [9]. By introducing the circular
transfer mechanism and encoding relative position information,
it can make full use of the textual context information and
combine the information of each word context to better
characterize the multi-sense of words, which reflects the
superiority of the autoregressive model.In the emotion cause
detection task, the XLNet sentence vector output is connected
to the fully connected layer and then softmax is computed to
obtain the cause category probability distribution.

Figure 1. XLNet Model Structure.

B. Contrastive Learning
The main idea of contrastive learning is to draw similar
samples closer and push away dissimilar samples to learn a
better semantic representation space from the samples.Chen et
al. [10] proposed a simple framework for contrast learning for

646

mailto:zc@hubu.edu.cn

Corresponding author: Cheng Zeng (zc@hubu.edu.cn)

visual representation (SimCLR), which has made great
progress in image representation.Also in terms of text
representation,Gao et al. [11] propose two ways of constructing
positive and negative examples in SimCSE.Liang et al. [12]
proposed an R-Drop regularization method similar to
contrastive learning, which only uses the model's two dropout
outputs as positive example pairs, and adds a KL-divergence
loss without any structural modification, with significant
improvement in a variety of NLP tasks.

The key to introduce contrastive learning in the emotion
cause detection task is how to construct positive and negative
example pairs and combine them with the classification task, so
that the model can perform both the contrastive learning task

and the classification task, design an effective contrast model,
and improve the classification effect of the model by
effectively combining the contrast loss function and the
classification loss function to obtain a better sentence
representation.

III. APPROACH

As shown in Fig. 2, the XLNet-CL emotion cause detection
method proposed in this paper incorporates a contrastive
learning approach based on the autoregressive language model
XLNet.

Figure 2. The framework of XLNet-CL.

The model training process consists of five main steps: data
processing, comparison learning positive and negative example
sample generation, dropout training, loss function fusion
calculation, and difficult negative sample update. As shown in
the figure, the detailed flow of each step of the fusion model in
the training process is as follows.

Step 1: Data processing. Before model training, data
processing is required to regularize the data text, delete the text
fragments that affect the attribution of emotions, for example,
the user’s name of microblog comments can have an impact on
the classification results, eliminate unnecessary user business
card segments, and improve the normality of the data. The
emotional text dataset N

i=ii , yx 1)}{(is divided into training set,

validation set mD
i=ii , yx 1)}{(and test set mT

i=ii , yx 1)}{(.

Step 2: Contrastive learning positive and negative example
sample generation. For small batches of training set data

mT
i=ii , yx 1)}{(, positive sample pairs are generated using the

word repetition strategy for the input samples to obtain the
positive sample set m

ii

T
i=, yx 1)}{(. Initial negative samples

m

ii

T
i=, yx 1)}{(are generated by random selection among the

training set samples.

Word repetition strategy mainly solves the problem that
pre-trained models may mistakenly believe that input texts of
the same length have the same semantics when using only
dropout strategy for positive sample generation, so word

repetition is used to extend the sentence word length without
changing the sentence word semantics. word repetition will
randomly copy some words or phrases in a sentence. Here we
take word repetition as an example, given a sequence of
sentences][= n321 ,w,,w,wws , n is the length of the
sequence. After the word repetition policy generates positive
samples][= n3221 ,w,,ww,w,ws , the positive sample
length becomes n+1 and the word w2 is repeated once in the
sentence. To enable more diversity to be introduced when
extending the sequence length, 10% to 30% of the words are
randomly selected for word repetition, which results in a
random increase of 10% to 30% in the positive sample length.

Step 3: Dropout training. The input mini-batch data
mT

i=ii , yx 1)}{(and its positive sample pairs m

ii

T
i=, yx 1)}{(and

negative sample pairs m

ii

T
i=, yx 1)}{(are trained by XLNet-

dropout. The dropout training method makes the model
partially deactivate the neurons during the training process,
although for the same XLNet model, the output of three sub-
models is actually obtained by three times XLNet forward
propagation, thus obtaining the probability distribution of three
outputs :�1�、�2�、�3� .The output eCLS of the sentence vectors
corresponding to the input samples are extracted by XLNet,
and then the probability distribution �� is calculated by the
fully connected layer and softmax.

Step 4: Loss function fusion calculation. For the 3
probability distribution outputs �1�、�2�、�3� of input samples

647

Corresponding author: Cheng Zeng (zc@hubu.edu.cn)

�, �+, �− , not only the basic classification loss calculation is
needed, but also the contrastive learning loss NCEloss function
calculation is needed between �1�、�2�、�3� , so as to close the
positive sample-to-vector space distance and keep away from
the negative sample-to-vector space distance, so that the model
can obtain a better sentence vector representation in the
classification process. The contrast loss function is calculated
as follows:

 N

j

τhhsimhhsim

τhhsim

jij

ii

ee
eNCE

1

/)(τ/)(

/)(

log
）（

.
(1)

The temperature coefficient � is a hyperparameter that can
be fine-tuned to adjust the model performance, and the
comparative loss is calculated by subjecting �1�、�2� , and �3�
to the comparative loss LCL:

),(w
3

w
2

w
1CL ,PPPNCEL , (2)

The three probability distributions are similarly subject to the
basic categorical loss function calculation:

)|(log

)|(log)|(log

3

21

ii
w

ii
w

ii
w

NLL

xyP

xyPxyPL

, (3)

The final model fusion loss function is calculated as follows,
with the loss function fusion factor α as the hyperparameter:

CLNLL LLL .
(4)

Step 5: Difficult negative sample generation. After the
initial training, the model has a certain classification capability,
and the validation set is verified on the trained model, when the
dropout strategy is off and all the deep neural network neurons
are in working state. The accuracy values of each category are
obtained from the validation results on the model validation set.
The N categories with poor accuracy in the training set are
randomly filtered to generate negative samples, and among the
total 7 emotional reason categories, only the N categories with
the worst accuracy are selected to go into the negative sample
set for comparison learning negative sample comparison. At
the same time, the negative example sample pairs

m

ii

T
i=, yx 1)}{(

are updated for the next training, and N is also
the model hyperparameter.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental data
The emotion cause detection dataset used in this paper is
annotated by crawling on Sina Weibo sports event comment
data, using manual annotation. The seven emotional reasons
are labeled as: behavior itself, discourse expression, empathy,
rating criteria, opinion climate, history and culture, and
derivative topics. The total number of data is 11520, and the
training set, validation set and test set are divided according to
the ratio of 6:2:2.Some of the data are shown below:

TABLE I. DATA DISPLAY

Emotional Text Label
All of you who have watched the whole thing know that
your score shouldn't be like this, this judge is really not
good, stuck with the score to give the score.

rating criteria

Great, great, superb! empathy
He is also still our hero derivative topics

Since this experimental task is an emotion-attributed
multiclass text classification task, accuracy (Acc), macro-
precision (MP), macro-recall (MR), and macro F1 value are
used as the evaluation metrics for model performance.

B. Experimental details
The main hyperparameters in the contrastive learning

module include the contrastive learning loss function NCEloss
hyperparameter temperature coefficient �, the negative sample
pool hyperparameter N, and the loss function fusion factor
�.After tuning the model for several times, τ is set to 0.1, N is
set to 5, and α is set to 0.5 to achieve the best model
performance. The model was trained by Adam gradient descent
algorithm, with batch size of 128, maximum rounds set to 20,
and initial learning rate set to 5E-5.

In order to verify the effectiveness of the proposed method
of fusing contrastive learning for emotion cause detection,
several deep learning text classification methods are selected
for experimental comparison, among which the text
classification methods based on pre-trained models are BERT,
RoBERTa, baseline XLNet, XLNet-RCNN [16], and the text
classification methods combined with Word2Vec word vectors
are TextCNN, BiLSTM-Att [15]. and some other fusion ratio
learning methods XLNet-Rdrop, XLNet-SimCSE.The
experiments in this paper all use the Chinese pre-training
models BERT, RoBERTa, and XLNet proposed by Cui [13] et
al.XLNet-Rdrop: Integration of XLNet and R-Drop methods
for experimental comparison of emotion cause
detection.XLNet-SimCSE: Fusing XLNet and SimCSE, the
SimCSE approach is used in the contrastive learning mode,
using dropout output as positive example pairs and other
categories of the same batch training data as negative example
pairs, with the same loss function calculation as in this paper.

V. ANALYSIS OF EXPERIMENTAL RESULTS

The experimental results are shown in the table for the
comparative model experiments on the Weibo sports event
commentary dataset. As can be seen in the model comparison
data experimental table, the text classification method using
pre-trained model is significantly more effective than the text
classification method TextCNN, BiLSTM-Att combined with
Word2Vec experiments.BERT, RoBERTa and XLNet are not
much different in experimental effects, RoBERTa has slightly
higher classification effect due to longer training time, larger
batch size and more training data on the basis of BERT.All the
XLNet-based fusion models have improved over the baseline
XLNet in terms of experimental results, especially the XLNet-
CL method proposed in this paper has improved 2.73
percentage points in accuracy and 16.47 percentage points in
F1 value.Compared with the other two methods of fusing
XLNet with contrastive learning, XLNet-Rdrop and XLNet-
SimCSE, it is obvious that the XLNet-CL method proposed in
this paper works better.

648

Corresponding author: Cheng Zeng (zc@hubu.edu.cn)

TABLE II. EXPERIMENTAL RESULTS

Model Acc MP MR F1
TextCNN 0.7550 0.5173 0.5203 0.5174

BiLSTM-Att 0.7432 0.5252 0.5160 0.5197
BERT 0.7763 0.5766 0.5711 0.5718

RoBERTa 0.7822 0.6782 0.5997 0.6196
XLNet 0.7763 0.5745 0.5555 0.5619

XLNet-RCNN 0.7893 0.6996 0.6940 0.6890
XLNet-Rdrop 0.7846 0.6977 0.6906 0.6931

XLNet-SimCSE 0.7917 0.7311 0.7164 0.7199
XLNet-CL 0.8036 0.7424 0.7159 0.7266

VI. HYPERPARAMETER INFLUENCE

The main hyperparameters of the emotion cause detection
model proposed in this paper include: the temperature
coefficient �of the contrastive learning loss function, the fusion
factor � of the loss function, and the difficult negative sample
hyperparameter N. As shown in Fig. 3, the experimental
comparison after fine-tuning the three hyperparameters shows
that the model performs best when the temperature coefficient
is set to 0.1, the fusion factor � is set to 0.5, and the negative
sample hyperparameter N is set to 5.

Figure 3. Hyperparameter Comparison.

VII. CONCLUSION

In this paper, we propose an emotion cause detection
method based on XLNet and contrastive learning. The results
of several experimental comparisons show the effectiveness of
the proposed fusion model on the emotion cause detection task
in this paper. The disadvantage of the model in this paper is the
large number of parameters during model training, which is not
suitable for long text sentiment analysis tasks. The difficult
sample generation strategy is although simple negative sample
generation for difficult category data can alleviate the data
imbalance problem, it still has not fully explored the difficult
samples in depth. In the next work, we will optimize the
difficult sample generation strategy and try to conduct
experiments on multi-granularity sentiment analysis tasks to
find more suitable task scenarios for this model.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program of
China (No. 2018YFB1003801), the National Natural Science
Foundation of China (Nos. 61832014, 61902114, 61977021), and the
Science and Technology Innovation Program of Hubei Province under
Grant (No. 2018ACA133, 2019ACA144), and the Open Foundation of
Hubei Key Laboratory of Applied Mathematics (No. HBAM201901).

REFERENCES
[1] Ravi K, Ravi V. A survey on opinion mining and sentiment analysis:

tasks, approaches and applications[J]. Knowledge-based systems, 2015,
89: 14-46.

[2] MU Yongli;LI Yang;WANG Suge, Emotion cause detection Based on
Ensembled Convolution Neural Networks[J], Journal of Chinese
Information Processing,2018,32(02):120-128.

[3] ZHANG Haitao，ZHANG Xinrui，ZHOU Honglei，SUN Tong, Key
Factors and Influencing Mechanisms of User Emotion Evolution in
Public Health Emergencies[J],Information Science,2020,38(07):9-14.

[4] Gui L, Hu J, He Y, et al. A question answering approach to emotion
cause extraction[J]. arXiv preprint arXiv:1708.05482, 2017.

[5] Li X , Song K , Feng S , et al. A Co-Attention Neural Network Model
for Emotion Cause Analysis with Emotional Context Awareness[C]//
Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. 2018.

[6] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep
bidirectional transformers for language understanding [EB/OL]. [2019-
08-17]. https://arxiv.org/pdf/1810.04805.pdf.

[7] Deriu J , Lucchi A , Luca V D , et al. Leveraging Large Amounts of
Weakly Supervised Data for Multi-Language Sentiment Classification[J].
International World Wide Web Conferences Steering Committee, 2017.

[8] YANG Z, DAI Z, YANG Y, et al. XLNet: Generalized autoregressive
pretraining for language understanding[EB/OL].Neural Information
Processing Systems.Canada,2019: 5754-
5764.https://arxiv.org/abs/1904.09482

[9] DAI Z, YANG Z, YANG Y, et al. Transformer-XL: Attentive Language
Models beyond a Fixed-Length Context[C]. Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. Italy,
2019: 2978-2988.

[10] Chen X, Fan H, Girshick R, et al. Improved baselines with momentum
contrastive learning[J]. arXiv preprint arXiv:2003.04297, 2020.

[11] Gao T, Yao X, Chen D. Simcse: Simple contrastive learning of sentence
embeddings[J]. arXiv preprint arXiv:2104.08821, 2021.

[12] Liang X , Wu L , Li J , et al. R-Drop: Regularized Dropout for Neural
Networks[J].arXiv preprint arXiv:2106.14448,2021.

[13] Cui Y , Che W , Liu T , et al. Revisiting Pre-Trained Models for
Chinese Natural Language Processing[J]. 2020.

[14] KIM Y. Convolutional neural networks for sentence classification [C]//
Proceedings of the 2014 Conference of Empirical Methods in Natural
Language Processing. Stroudsburg, PA: Association for Computational
Linguistics, 2014: 1746-1751.

[15] Zhou Peng,Shi Wei,Tian Jun,et al.Attention-based bidirectional long
short-term memory networks for relation classification[C]//Proceedings
of the 54th Annual Meeting of the ACL.Stroudsburg, PA: Association
for Computational Linguistics,2016:207-212.

[16] PAN Lie,ZENG Cheng,et al.Text sentiment analysis method combining
generalized autoregressive pre-training language model and recurrent
convolutional neural network[J/OL].Journal of Computer
Applications.2021.

649

https://arxiv.org/pdf/1810.04805.pdf.

Proceedings of the 34th
International Conference on

Software Engineering and
Knowledge Engineering

	a
	a
	a
	a
	a
	a
	a
	a
	seke22proc
	seke22proc
	seke22proc
	seke22proc
	paper098
	paper143
	I Introduction
	II Related Work
	III Framework for modeling ML systems
	IV Conclusions
	References

	paper114
	paper007
	paper169
	paper140
	Introduction
	Transformation Approach
	Ontology Generation
	Traceability Information Model

	Evaluation
	Experiment Design
	Evaluation Results

	Related Work
	Conclusion
	References

	paper137

	paper060
	paper077
	paper130
	Introduction
	Related Work
	Machine Learning-Based Code Readability Classification
	Deep Learning-Based Code Readability Classification

	Proposed Approach
	Dataset Construction and Code Representation
	Dataset Construction
	Code Representation

	Code Augmentation
	Domain-Specific Data Transformation Method
	GAN-Based Data Augmentation Method
	Parallel Augmentation Method
	Sequential Augmentation Method

	Multi-Class Classification Network

	Experiment Setup
	Evaluation Metrics
	Research Questions

	Results
	Discussion
	Conclusions and Future Work

	paper022
	Introduction
	Background
	Code Review
	Abstract Syntax Tree
	SimAST-GCN
	Contrastive learning

	Proposed Approach
	Contrastive Learning for Code Encoder
	CLMN
	Encoder Module
	Combined Representation
	Prediction

	Experimental design
	Dataset Construction
	Comparison Models
	Evaluation
	Experimental Setting

	Experimental Results
	Does our proposed model CLMN outperform other models for Multi-Modal ACR?
	Does the addition of developer's comments improve the performance of ACR?
	How about the impact of contrastive learning on model robustness?

	Conclusion
	References

	paper078
	paper079
	paper164
	paper049
	Introduction
	The Algorithm
	The Tree-Differencing Phase
	The lay out phase
	Illustration

	The Implementation and Case Study
	The Data Set
	The Distribution of Syntax Coupled Hunks(RQ1)
	Effectiveness of The Proposed Algorithm(RQ2)
	Threats to Validity

	Related Work
	Conclusions
	References

	paper085
	paper111
	paper167

	paper042
	paper051
	paper016
	Introduction
	Related work
	Masked Face Dataset
	Masked Face Synthesis and Generation Method

	Method
	Three-stage training pipeline
	Stage1: Generate Correct Mask
	Stage2: Generate Authentic-Looking Mask
	Stage3: Generate Type-Diverse Mask

	Experiments
	Datasets and Implementation Details
	Evaluation Metrics and Baselines
	Comparison of Masked Face Image Generation Effect
	Quantitative Comparison
	Qualitative Comparison
	Diversity Display

	Comparison of MFR training effect on generated dataset
	Ablation Study

	Conclusion
	References

	paper015
	paper109
	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Problem Formulation
	3.2 Intra-Series Embedding Module
	3.3 Inter-Series Embedding Module
	3.4 Fusion
	3.5 Prediction

	4 Experiments
	4.1 Datasets and Metrics
	4.2 Methods for Comparison
	4.3 Experimental Details
	4.4 Main Results
	4.5 Ablation Study

	5 Conclusion
	Acknowledgments
	References

	paper026
	paper149
	Introduction
	Background
	BDI Agents
	Bigraphs

	Framework
	Environments
	Perceiving and Acting

	Agent Reasoning Cycle
	UAVs Example
	Design
	Analysis

	Related Work
	Conclusions
	References

	paper012
	paper019
	paper071
	paper100

	paper157
	paper147
	paper102
	paper161
	paper047
	Introduction
	Related Work
	Methodology
	Fault Localization
	Patch Generation
	Patch Prioritization
	Patch Validation

	Experiment
	Research Question
	Evaluation
	Experiment Settings
	Result Analysis

	Conclusion
	References

	paper039
	paper064
	Introduction
	Background
	Individual fairness testing
	Aequitas
	Two-phase-structured algorithm
	Perturbation
	Local search

	Keeper Of Systematic Equality Investigation
	Limitation of Aequitas's local search algorithm
	Aequitas's local search algorithm searches space, where there may be little discriminatory data.
	Aequitas's local search may waste search resources by evaluating duplicated data.

	Two key mechanisms of our local search
	Perturbation
	Dynamic update of seed data

	Local search algorithm of KOSEI
	Advantages of KOSEI

	Evaluation
	Experimental environment and settings
	[RQ1] Does KOSEI find more discriminatory data than Aequitas, at a reasonable execution cost?
	[RQ2] Does KOSEI generate test cases likely to be discriminatory and avoid duplicated data, better than Aequitas?

	Threats to Validity
	Related work
	Conclusion and Future Work
	References

	paper125
	paper027
	Introduction
	Background and Related Work
	Background
	Links between Issues
	Links between Bugs and Commits

	Study Design
	Research Questions
	Case Selection
	Data Collection
	Data Analysis

	Study Results
	Explicitness of Bug Associations (RQ1)
	AE of Different Association Types (RQ2)

	Discussion
	Interpretation of Study Results
	Implications

	Conclusions
	References

	paper086
	I. INTRODUCTION
	II.RELATED WORK
	A.Data Selection for CPDP
	B.Representation Learning in Software Engineering

	III.APPROACH
	A.Generation of local semantic features
	1)Parsing AST
	2)Building CNN

	B.Generation of Global structural Features
	Training Data Selection
	C.

	IV.EXPERIMENT SETUP
	A.Dataset
	B.Experimental Design
	C.Classifiers and Evaluation Measures

	V.EXPERIMENTAL RESULTS
	VI.CONCLUSION
	REFERENCES

	paper112
	paper074
	paper148
	paper155
	paper159

	paper110
	paper175
	paper176

	paper036
	paper048
	paper054
	paper087
	paper142
	paper032
	paper021
	paper152
	paper020

	paper131
	Introduction
	Related Work
	Unsupervised Keyphrase Extraction
	Contrastive Self-Supervised Learning

	Problem Definition
	Methodology
	Candidate Generation
	Model Architecture
	Encoder
	Doc-Phrase Attention Module
	Contrastive supervision

	Prediction Strategy
	Accumulated Self-attention Module
	Final Score Calculation

	Experiments
	Datasets and Evaluation Metrics
	Baselines
	Experiment Settings
	Results
	Impact of hyperparameters

	Conclusion
	References

	paper024
	paper037
	paper095
	Introduction
	Related Work
	Automated Essay Scoring
	Prompt-based learning

	AESPrompt
	Prompt Encoder
	Prompt Tuning with self-supervised constraints
	Discourse Indicator Shuffle
	Paragraph Reordering Detection

	Training

	Experiments
	Dataset and Metrics
	Experimental settings
	Main Results
	Ablation Study
	Runtime and Memory

	Conclusion
	References

	paper052
	paper062

	paper089
	Introduction
	Preliminaries
	Lustre language
	L2SIA-WFR

	NKind Architecture
	Main Features
	Safety Property
	Liveness Property
	Liveness Usage
	Liveness implementation

	Experimental Evaluation
	Safety Evaluation
	Liveness Evaluation

	Conclusion

	paper029
	paper072
	paper094
	paper103
	paper097
	Introduction
	Saber Key Encapsulation Mechanism
	Key encapsulation mechanism
	Saber

	Formal specification of Saber
	Formalization of polynomials, vectors, and matrices
	Formalization of honest parties
	Formalization of intruders

	Model checking and Man-In-The-Middle-Attack
	Conclusion
	References

	paper058
	Introduction
	Preliminaries
	Multiple Layer Division of Until Model Checking
	A Divide & Conquer Approach to Until Model Checking Algorithm
	Multiple Layer Division of Until Stable Model Checking
	A Divide & Conquer Approach to Until Stable Model Checking Algorithm
	Related Work
	Conclusion
	References

	paper123
	paper160
	paper013
	paper163
	paper113
	paper151
	paper117
	Introduction
	Background and related work
	Revealing Agile Mindset Using LSP
	The Online Agile Training Project
	Online LSP Workshop Implementation
	Utilizing LSP Models to Reveal Agile Mindset
	The Effectiveness of LSP to Review Agile Mindset

	Lessons Learned and Recommendations
	Conclusion

	paper158
	paper006
	paper118
	paper092
	Introduction
	Dataset
	RQ1: Maintenance Practices Adoption
	Methodology
	Results

	RQ2: MAINTENANCE ACTIVITY
	Methodology
	Results

	RQ3: USAGE
	Methodology
	Results

	RELATED WORK
	CONCLUSION
	References

	paper154
	paper171
	Introduction
	Related Work
	Continuous Integration and Delivery
	Decisions in Software Engineering

	Research Design
	Data Collection
	Data Filtering, Extraction and Analysis
	Filter candidate issues
	Extract and analyze the data item

	Results
	Discussion
	Types of Decisions Made in CI/CD
	Interpretations
	Implications

	Differences from Traditional Software Development

	Threats to Validity
	Conclusions and Future Work
	References

	paper067

	paper179
	paper180
	paper181
	Introduction
	Tool Features
	Problem Diagram Modeling
	Syntactical Checking of Problem Diagrams
	Decomposing Problem Diagrams with traceability

	Related Work
	Conclusion
	References

	paper141
	paper172
	Introduction
	Basic foundations
	Implementation and Experimental Evaluation
	Prerequisites
	Results
	Threads to Validity

	Related Research
	Conclusions
	References

	paper104
	paper173
	paper025
	Introduction
	Context of the Course
	LearnSQL
	Evaluation
	Conclusion and Ongoing Work
	References

	paper053

	paper128
	Introduction
	Motivating Example
	Smifier
	Definition of Composite Transactions
	Specifications for Composite Transactions
	Transform and Verification

	Evaluation
	Benchmark and Properties
	Verifying Contracts using Smifier

	Related Work
	Conclusions
	Acknowledgement
	References

	paper040
	Introduction
	Motivation and Problem Statement
	METHODOLOGY
	Data Preprocessing
	Representation Learning
	Instruction Abstraction
	Opcode Embedding
	Representation Learning for Opcode Sequences

	Supervised Learning using Siamese Neural Networks

	Evaluation
	Dataset Preparation and Experimental Settings
	Evaluation Results

	Related Work
	Conclusion
	References

	paper134
	paper066
	Introduction
	Related Work
	Approach Overview
	Semantics-Preserving transformation

	Framework Design
	Evaluation
	Generating transformed Code Samples
	Mitigating Code Autocompletion

	Conclusion
	References

	paper126
	paper165
	paper076
	Introduction
	The Proposed Method
	EulerNet
	A lightweight face labeling method based on face landmarks

	Dataset Collection
	Experiments
	Implementation Details
	Ablation Study
	Visualization
	Comparison on Public Dataset

	Conclusion
	References

	paper059
	paper116
	paper010
	paper014
	paper088
	paper028

	paper030
	paper063
	I. INTRODUCTION
	II.RELATED WORK
	III.PROBLEM STATEMENT
	IV.RE-GCN RUMOR DETECTION MODEL
	A.Event Representation
	1)Post Content Representation
	2)Dynamic propagation structure representation

	B.GCN module
	C.Bi-RNN module
	D.Feature fusion and classification

	V.EXPERIMENTS
	A.Datasets
	B.Baselines
	C.Results and analysis
	D.Ablation study
	E.Early rumor detection
	F.Case study

	VI.CONCLUSION
	REFERENCES

	paper120
	I. Introduction
	II. Related Work
	III. Prompt Tuning Method
	A. Prompt Addition
	B. Fill in the Prompt template
	C. Answer Mapping

	IV. EXPERIMENTS
	A. Datasets and Experimental Settings
	B. Experimental settings
	C. baseline models
	D. Experimental results

	V. CONCLUSION
	VI. Acknowledgement
	References

	paper106
	Introduction
	Background
	Methodology
	Overview of the Proposed Method
	Image Classifier based on CNN
	Text Classifier based on TextRNN
	Co-training of Image and Text Classifiers

	Experiments and Analysis
	Image Classification based on CNN
	Text Classification based on TextRNN
	 The Number of Samples Selected in One Iteration
	Co-training of CNN-5 and TextRNN

	Related Work
	Conclusion

	paper075
	paper084
	paper115
	paper107
	paper091
	paper009
	paper005

	paper093
	I. INTRODUCTION
	II.RELATED TECHNOLOGIES
	A.Autoregressive language model XLNet
	B.Contrastive Learning

	III.APPROACH
	IV.EXPERIMENTS AND ANALYSIS
	A.Experimental data
	B.Experimental details

	V.ANALYSIS OF EXPERIMENTAL RESULTS
	VI.HYPERPARAMETER INFLUENCE
	VII.CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	seke22foreword.pdf
	CONFERENCE CHAIR
	STEERING COMMITTEE CHAIR
	STEERING COMMITTEE
	ADVISORY COMMITTEE
	PROGRAM COMMITTEE
	Silvia Acuna, Universidad Autonoma de Madrid, Spain Shadi Alawneh, Oakland University, USA Hyggo Almeida, Federal University of Campina Grande, Brazil Dionysios Athanasopoulos, Queen's University of Belfast, United Kingdom Doo-Hwan Bae, Korea Advanced...
	BEST DEMO AWARD COMMITTEE
	Kuhaneswaran Banujan, Sabaragamuwa University of Sri Lanka; Chair, Best Demo Award, Sri Lanka
	PUBLICITY CO-CHAIRS
	Patrick Cook, Texas Tech University, USA; Publicity Co-Chair Michael Bosu, New Zealand; Publicity Co-Chair
	ASIA LIAISON
	EUROPE LIAISON
	INDIA LIAISON
	Dr. Jeff Offutt is a Professor of Software Engineering at George Mason University. In his 30+ year career in academia, he has led numerous collaborative research projects with funding from government and industry; designed and taught courses and degre...
	Table of Contents
	Session REDE: Requirements Engineering and Domain Engineering
	Panel Session ESEKE: Education and SEKE
	Session DSML: Distributed Systems and Machine Learning
	Session STDP: Software Testing and Defect Prediction
	Session ADPBD: Agile Development Practices for Big Data
	Beyond Numerical – MIXATON for outlier explanation on mixed-type data (S) Jakob Nonnenmacher and Jorge Marx Gomez 249 Log Sinks and Big Data Analytics along with User Experience Monitoring to Tell a Fuller Story (S) Vidroha Debroy, Senecca Mil...
	Session KE: Knowledge Engineering
	Session FSVM: Formal Specification, Verification and Model Checking
	Session SDMP: Software Development and Maintenance Processes
	Session: DEMO Technical Demos
	Session DMMA: Data Modeling, Mining and Analysis
	Session IOTS: IoT and Security
	Session SNRS: Social Network and Recommendation Systems
	Notes: (S) denotes a short paper. (D) denotes demo description.

	seke22foreword.pdf
	CONFERENCE CHAIR
	STEERING COMMITTEE CHAIR
	STEERING COMMITTEE
	ADVISORY COMMITTEE
	PROGRAM COMMITTEE
	Silvia Acuna, Universidad Autonoma de Madrid, Spain Shadi Alawneh, Oakland University, USA Hyggo Almeida, Federal University of Campina Grande, Brazil Dionysios Athanasopoulos, Queen's University of Belfast, United Kingdom Doo-Hwan Bae, Korea Advanced...
	BEST DEMO AWARD COMMITTEE
	Kuhaneswaran Banujan, Sabaragamuwa University of Sri Lanka; Chair, Best Demo Award, Sri Lanka
	PUBLICITY CO-CHAIRS
	Patrick Cook, Texas Tech University, USA; Publicity Co-Chair Michael Bosu, New Zealand; Publicity Co-Chair
	ASIA LIAISON
	EUROPE LIAISON
	INDIA LIAISON
	Table of Contents
	Session REDE: Requirements Engineering and Domain Engineering
	Panel Session ESEKE: Education and SEKE
	Session DSML: Distributed Systems and Machine Learning
	Session STDP: Software Testing and Defect Prediction
	Session ADPBD: Agile Development Practices for Big Data
	Beyond Numerical – MIXATON for outlier explanation on mixed-type data (S) Jakob Nonnenmacher and Jorge Marx Gomez 249 Log Sinks and Big Data Analytics along with User Experience Monitoring to Tell a Fuller Story (S) Vidroha Debroy, Senecca Mil...
	Session KE: Knowledge Engineering
	Session FSVM: Formal Specification, Verification and Model Checking
	Session SDMP: Software Development and Maintenance Processes
	Session: DEMO Technical Demos
	Session DMMA: Data Modeling, Mining and Analysis
	Session IOTS: IoT and Security
	Session SNRS: Social Network and Recommendation Systems
	Notes: (S) denotes a short paper. (D) denotes demo description.

