
SEKE2021

Proceedings of the 33rd
International Conference on

Software Engineering and

Knowledge Engineering

July 1 to 10, 2021
KSIR Virtual Conference Center
Pittsburgh, USA

Copyright ⓒ 2021 by KSI Research Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the publisher.

DOI: 10.18293/SEKE2021

Proceedings preparation, editing and printing are sponsored by KSI Research Inc.

 i

PROCEEDINGS

SEKE 2021

The 33rd International Conference on
Software Engineering &
Knowledge Engineering

Sponsored by
KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

Technical Program
July 1 – 10, 2021

KSIR Virtual Conference Center, Pittsburgh, USA

Organized by
KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

ii

Copyright ⓒ 2021 by KSI Research Inc. and Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of the publisher.

ISBN: 1-891706-52-7
ISSN: 2325-9000 (print)

2325-9086 (online)
DOI reference number: 10.18293/SEKE2021

Publisher Information:
KSI Research Inc. and Knowledge Systems Institute Graduate School
156 Park Square
Pittsburgh, PA 15238 USA
Tel: +1-412-606-5022
Fax: +1-847-679-3166
Email: seke@ksiresearch.org
Web: http://ksiresearchorg.ipage.com/seke/seke19.html

Proceedings preparation, editing and printing are sponsored by KSI Research Inc. and Knowledge Systems Institute
Graduate School, USA.

Printed by KSI Research Inc. and Knowledge Systems Institute Graduate School

mailto:seke@ksiresearch.org

 iii

FOREWORD

Welcome to the 33rd International Conference on Software Engineering and Knowledge Engineering (SEKE), in KSIR Virtual
Conference Center, Pittsburgh, PA, USA. In the last 30 years, SEKE has established itself as a major international forum to foster,
among academia, industry, and government agencies, discussion and exchange of ideas, research results and experience in software
engineering and knowledge engineering. The SEKE community has grown to become a very important and influential source of
ideas and innovations on the interplays between software engineering and knowledge engineering, and its impact on the knowledge
economy has been felt worldwide. On behalf of the Program Committee, it is my great pleasure to invite you to participate in the
technical program of SEKE.

This year, we received 196 submissions. Through a rigorous review process where a majority of the submitted papers received
three reviews, and the rest with two reviews, we were able to select 67 full papers for the general conference (34 percent), 45 short
papers (23 percent) and 84 rejects (43 percent). In addition, there are 5 demos selected from 7 demo submissions. SEKE 2021
Technical Program consists of four invited talk (keynote and plenary talk) sessions, 11 paper presentation sessions and one demo
sessions. We greatly appreciate the committee members and authors of accepted papers in professional roles to serve as the chairs
of the 16 sessions.

The high quality of the SEKE 2021 technical program would not have been possible without the tireless effort and hard work of
many individuals. First of all, we would like to express our sincere appreciation to all the authors whose technical contributions
have made the final technical program possible. We are very grateful to all the Program Committee members whose expertise and
dedication made our responsibility that much easier. Our gratitude also goes to the keynote speakers who graciously agreed to
share their insight on important research issues, to the conference organizing committee members for their superb work, and to the
external reviewers for their contribution.

Personally, we owe a debt of gratitude to a number of people whose help and support with the technical program and the
conference organization are unfailing and indispensable. We are deeply indebted to Dr. S. K. Chang, Chair of the Steering
Committee, for his constant guidance and support that are essential to pull off SEKE 2021. Our heartfelt appreciation goes to Dr.
Raúl García Castro, Polytechnic University of Madrid, Spain, the Conference Chair, for his help and experience. We also thank
Dr. Jeff Offutt, Dr. Iaakov Exman, Dr. Adrian Riesco, and Dr. Enrique Alba for their excellent keynotes.

We would like also to express our great appreciation to all of the conference organization committee members, including the
Publicity Chair, Rong Peng, Wuhan University, China and Publicity Co-Chairs Michael Bosu, New Zealand; Patrick Cook, Texas
Tech University, USA; and Carlos Eduardo Pantoja, Federal Center for Technological Education, Brazil. Moreover, we would like
to appreciate and recognize our Conference Liaisons in different regions for their important contributions. They are: Asia Liaison –
Hironori Washizaki, Waseda University, Japan; Europe Liaison – Raúl García Castro, Polytechnic University of Madrid, Spain;
and India Liaison - Swapan Bhattacharya, National Institute of Technology Karnataka, Surathakl.

Last but certainly not the least, we must acknowledge the important contributions that the KSI staff members have made. Their
timely and dependable support and assistance throughout the entire process have been truly remarkable. Finally, we wish you have
productive discussion, great networking and effective virtual presentation to participate in SEKE 2021.

Kazuhiro Ogata, JAIST, Japan, Program Committee Chair
Lan Lin, Ball State University, USA, Program Committee Co-Chair

 iv

SEKE 2021

The 33rd International Conference on
Software Engineering &
Knowledge Engineering

July 1 – 10, 2021

KSIR Virtual Conference Center, Pittsburgh, USA

Conference Organization

CONFERENCE CHAIR
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain; Conference Chair

Huiqun Yu, East China University of Science and Technology, China; Conference Co-Chair

PROGRAM COMMITTEE CHAIR AND CO-CHAIR
Kazuhiro Ogata, JAIST, Japan; PC Chair

Lan Lin, Ball State University, USA; PC Co-Chair

STEERING COMMITTEE CHAIR
Shi-Kuo Chang, University of Pittsburgh, USA

STEERING COMMITTEE
Vic Basili, University of Maryland, USA

Bruce Buchanan, University of Pittsburgh, USA
C. V. Ramamoorthy, University of California, Berkeley, USA

ADVISORY COMMITTEE
Jerry Gao, San Jose State University, USA

Swapna Gokhale, University of Connecticut, USA
Xudong He, Florida International University, USA

Natalia Juristo, Universidad Politecnica de Madrid, Spain
Taghi Khoshgoftaar, Florida Atlantic University, USA

Guenther Ruhe, University of Calgary, Canada
Masoud Sadjadi, Florida International University, USA

 v

Du Zhang, California State University, USA

PROGRAM COMMITTEE
Silvia Teresita Acuna, Universidad Autonoma de Madrid, Spain

Shadi Alawneh, Oakland University, USA
Hyggo Almeida, Federal University of Campina Grande, Brazil

Dionysios Athanasopoulos, Queen's University of Belfast, United Kingdom
Doo-Hwan Bae, Korea Advanced Institute of Science and Technology, Korea

Kyungmin Bae, Pohang University of Science and Technology, Korea
Kuhaneswaran Banujan, Sabaragamuwa University of Sri Lanka, Sri Lanka

Vita Barletta, University of Bari, Italy
Ateet Bhalla, Consultant, India

Swapan Bhattacharya, Jadavpur University, India
Tanmay Bhowmik, Mississippi State University, USA

AndrÃ© Borges, Federal University of Technology - Parana (UTFPR), Brazil (EEAS)
Michael Bosu, Centre for Information Technology, New Zealand

Ivo Bukovsky, Czech Technical University in Prague, Czech Republic
Guoray Cai, Penn State University, USA

Juan Cano-DeBenito, Universidad PolitÃ©cnica de Madrid, Spain
Rafael Cardoso, University of Liverpool, United Kingdom (EEAS)

John Castro, Universidad de Atacama, Chile
Samuel Chen, Brookhaven National Laboratory, USA

Xiang Chen, Nantong University, China
Wen-Hui Chen, National Taipei University of Technology, Taiwan

Lingwei Chen, Pennsylvania State University, USA
Xiangping Chen, Sun Yat-sen University, China (IPA)

Meiru Che, University of Texas at Austin, USA
Nacha Chondamrongkul, Mae Fah Luang University, Thailand

Lawrence Chung, University of Texas at Dallas, USA
Andrea Cimmino, Universidad Politecnic de Madrid, Spain

Patrick Cook, Texas Tech Universityy, USA
Fabio Costa, Universidade Federal de Goias, Brazil
Andrea DeLucia, University of Salerno, Italy (IPA)

Lin Deng, Towson University, USA
Wei Dong, National University of Defense Technology, China

Bowen Du, University of Warwick, United Kingdom
Weichang Du, University of New Brunswick, Canada

Abdelrahman Elfaki, University of Tabuk, Saudi Arabia
Iaakov Exman, Jerusalem College of Engineering, Israel

Onyeka Ezenwoye, Augusta University, USA
Yuan Fei, Shanghai Normal University, China

Maria Francesca Costabile, University of Bari, Italy
Fumiyo Fukumoto, University of Yamanashi, Japan (IPA)

Jianbo Gao, Peking University, China
Honghao Gao, ShangHai University, China

RaÃºl Garcia-Castro, Universidad PolitÃ©cnica de Madrid, Spain
Ignacio Garcia Rodriguez DeGuzman, University of Castilla-La Mancha, Spain

Swapna Gokhale, Univ. of Connecticut, USA
Wolfgang Golubski, Zwickau University of Applied Sciences, Germany

Desmond Greer, Queen's University Belfast, United Kingdom
Xudong He, Florida International University, USA

Dou Hu, National Computer System Engineering Research Institute, China
Sayem Imtiaz, Iowa State University, USA
Venkata Inukollu, Purdue University, USA

Bassey Isong, North-West University, South Africa

 vi

Clinton Jeffery, New Mexicon Tech, USA
Shuyuan Jin, Sun Yat-sen University, China

Peiquan Jin, University of Science and Technology, China
Pankaj Kamthan, Concordia University, Canada

Taeghyun Kang, University of Central Missouri, USA
Ananya Kanjilal, B.P. Poddar Institute of Technology and Management, India

Ritu Kapur, IIT Ropar, India
Wiem Khlif, Miracl Laboratory, Tunisia

Taghi Khoshgoftaar, Florida Atlantic University, USA
Jun Kong, North Dakota State University, USA

Vinay Kulkarni, Tata Consultancy Services, India
Ashish KumarDwivedi, National Instititute of Technology, India (IPA)

Olivier LeGoaer, University of Pau, France
Peng Liang, Wuhan University, China

Tong Li, Beijing University of Technology, China
Zengyang Li, Central China Normal University, China

Yingling Li, Chengdu University of Information Technology, China, (IPA)
Xin Li, Google Inc., USA

Yanhui Li, Nanjing University, China
Lan Lin, Ball State University, USA

Bixin Li, Southeast University, China
Xiaodong Liu, Edinburgh Napier University, United Kingdom

Weidong Liu, Inner Mongolia University, China
Wanwei Liu, National University of Defense Technology, China

Yi Liu, University of Massachusetts Dartmouth, USA
Luanna LopesLobato, Federal University of Goias, Brazil

Jiawei Lu, Zhejiang University of Technology, China (IPA)
Xinjun Mao, National University of Defense Technology, China
Beatriz Marin, Universidad Politecnica de Valencia, Spain, Chile

Riccardo Martoglia, University of Modena and Reggio Emilia, Italy
Baojun Ma, Shanghai International Studies University, China

Andre Menolli, Universidade Estadual do Norte do Parana (UENP), Brazil
Hind Milhem, University of Ottawa, Canada

Ran Mo, Central China Normal University, China
Eduardo Moraes, Federal Institute of Alagoas, Brazil

Hiroyuki Nakagawa, Osaka University, Japan
Alex Norta, Tallinn University of Technology, Estonia

Kazuhiro Ogata, JAIST, Japan
Edson OliveiraJr, State University of Maringa, Brazil

Carlos Pantoja, Federal Center for Technological Education (CEFET-RJ), Brazil
George Papadopoulos, University of Cyprus, Cyprus
Hyungbae Park, University of Central Missouri, USA

Rong Peng, Wuhan University, China
OscarMortagua Pereira, University of Aveiro, Portugal

Angelo Perkusich, Federal University of Campina Grande, Brazil
Chen Qian, Donghua Universit in Shanghai, China
Rick Rabiser, Johannes Kepler University, Austria

Claudia Raibulet, University of Milan, Italy
Rajeev Raje, IUPUI, USA

Marek Reformat, University of Alberta, Canada
Robert Reynolds, Wayne State University, USA
Daniel Rodriguez, Universidad de Alcala, Spain

Azouzi Sameh, Laboratory RIADI-GDL, ENSI, Tunisia
Claudio Sant'Anna, Universidade Federal da Bahia, Brazil

Abdelhak-Djamel Seriai, University of Montpellier 2 for Sciences and Technology, France
Kaize Shi, Beijing Institute of Technology, China

Michael Shin, Texas Tech University, USA

 vii

Kazi Sultana, Montclair State University, USA
Xin Sun, Ball State University, USA
Meng Sun, Peking University, China

Yanchun Sun, Peking University, China
Zhenzhou Tian, Xi'an University of Posts and Telecommunications, China

Fadel TourÃ©, UQTR, Canada
Mark Trakhtenbrot, Holon Institute of Technology, Israel
Christelle Urtado, LGI2P Ecole des Mines d'Ales, France

Dalton Valadares, IFPE Caruaru, Brazil
S. Vasanthapriyan, Sabaragamuwa University of Sri Lanka, Sri Lanka

Sylvain Vauttier, Ecole des mines d'Ales, France
Gleifer VazAlves, Federal University of Technology - Parana (UTFPR), Brazil (EEAS)

Gennaro Vessio, University of Bari, Italy
JosÃ© Viterbo, Fluminense Federal University (UFF), Brazil (EEAS)

Jiaojiao Wang, China Communication University of Zhejiang, China (IPA)
Zhongjie Wang, Harbin Institute of Technology, China

Jian Wang, Wuhan University, China
Ye Wang, Zhejiang Gongshang University, China

Hironori Washizaki, Waseda University, Japan
Lingwei Wei, Chinese Academy of Sciences, China

Michael Weiss, Carleton University, Canada
Guido Wirtz, Bamberg University, Germany

Franz Wotawa, TU Graz, Austria
Ji Wu, Beihang Universityy, China

Peng Wu, Institute of Software, Chinese Academy of Sciences, China
Xi Wu, The University of Sydney, Australia

Lai Xu, Bournemouth University, UK
Haiping Xu, University of Massachusetts Dartmouth, USA

Weifeng Xu, University of Baltimore, USA
Koji Yamamoto, Fujitsu Laboratories Ltd., Japan

Guowei Yang, Texas State University, USA
Huiqun Yu, East China University of Science and Technology, China

Jiang Yue, Fujian Normal University, China
Dongjin Yu, Hangzhou Dianzi University, China

Fiorella Zampetti, University of Sannio, Italy
Pengcheng Zhang, Hohai University, China

Du Zhang, Macau University of Science and Technology, China
Yong Zhang, Tsinghua University, China

Yongxin Zhao, East China Normal University, China
Yongjie Zheng, California State University at San Marcos, USA

Nianjun Zhou, IBM, USA
Huibiao Zhu, East China Normal University, China

Hongming Zhu, Tongji University, China
Eugenio Zimeo, University of Sannio, Italy

BEST DEMO AWARD COMMITTEE
Nazlie Shahmir, Canadian Pacific Railway, Canada, Chair

 Tobias Hecking, German Aerospace Center, Germany
 Tom Hill, Fellows Consulting Group, USA

PUBLICITY CHAIR AND CO-CHAIRS
Rong Peng, Wuhan University, China; Publicity Chair

Michael Bosu, New Zealand; Publicity Co-Chair

 viii

Patrick Cook, Texas Tech University, USA; Publicity Co-Chair
Carlos Eduardo Pantoja, Federal Center for Technological Education, Brazil; Publicity Co-Chair

ASIA LIAISON

Hironori Washizaki, Waseda University, Japan

EUROPE LIAISON
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

INDIA LIAISON
Swapan Bhattacharya, National Institute of Technology Karnataka, Surathakl, India

Table of Contents

Keynote: "Software Engineers Don't Care about Models, but They Want Automated Tests" by Dr.
Jeff Offutt, George Mason University, USA

xvii

Plenary Talk: "Quantum Software Models: Instantiating Abstractions" by Dr. Iaakov Exman,
Jerusalem College of Engineering, Israel

xviii

Keynote: "Declarative Debugging: Past, Present and Future" by Dr. Adrian Riesco, Universidad
Complutense de Madrid, Spain

xix

Plenary Talk: "How Can Metaheuristics Help Software Engineers" by Dr. Enrique Alba, University
of Malaga, Spain

xx

Session SAMS: Software Architecture Models and Systems
Refactoring Java Code to MapReduce Framework (S) 1

Junfeng Zhao and Rui Feng
ArchiNet: A Concept-token based Approach for Determining Architectural Change Categories 7

Amit Kumar Mondal, Banani Roy, Sristy Sumana Nath and Kevin Schneider
Analyzing Open-Source Serverless Platforms: Characteristics and Performance (S) 15

Junfeng Li, Sameer Kulkarni, Ramakrishnan and Dan Li
I-CMOMMT: A multiagent approach for patrolling and observation of mobile targets with a
continuous environment representation (S) 21

Jamy Chahal, Assia Belbachir and Amal El Fallah Seghrouchni
NVMSorting: Efficient Sorting on Non-Volatile Memory 25

Zhaole Chu, Yongping Luo, Peiquan Jin and Shouhong Wan
HHML: A Hierarchical Hybrid Modeling Language for Mode-based Periodic Controllers 31

Zhiming Hu, Zheng Wang, Hongjian Jiang, Yuyuan Zhang and Yongxin Zhao
Patterns for Reuse in Production Systems Engineering 37

Kristof Meixner, Arndt Lüder, Jan Herzog, Dietmar Winkler and Stefan Biffl
Software Design Pattern Analysis for Micro-Service Architecture using Queuing Networks (S) 45

Shikuo Chang, Hanzhong Zheng and Justin Kramer
Correctness Arguments for an SDN MAC Learning Algorithm (S) 51

Liang Hao, Xin Sun and Lan Lin
Multiclass Classification of Four Types of UML Diagrams from Images Using Deep Learning 57

Sergei Shcherban, Peng Liang, Zengyang Li and Chen Yang

ix

Session ESR: Ethic Security and Reliability
On Integrating Ethicality in User Stories (S) 63

Pankaj Kamthan and Nazlie Shahmir
A Collaborative Forensic Framework for Detecting Advanced Persistent Threats 67

Weifeng Xu, Jie Yan and Daryl Stone
An Empirical Study on the Impact of Class Overlapin Just-in-Time Software Defect Prediction (S) 75

Minyang Yi, Guisheng Fan, Huiqun Yu and Xingguang Yang
FSSRE: Fusing Semantic Feature and Syntactic Dependencies Feature for threat intelligence
Relation Extraction 79

Xuren Wang, Mengbo Xiong, Famei He, Peian Yang, Binghua Song, Jun Jiang, Zhengwei Jiang
and Zihan Xiong

AAMR: Automated Anomalous Microservice Ranking in Cloud-Native Environment 86
Zekun Zhang, Bing Li, Jian Wang and Yongqiang Liu

Unsupervised Anomaly Detection Based on System Logs 92
Hao Chen, Ruizhi Xiao and Shuyuan Jin

From Vulnerability Anti-Patterns to Secure Design Patterns (S) 98
Alok Ratnaparkhi, Onyeka Ezenwoye and Yi Liu

Session FV: Formal Verification
Formal Modeling and Verification of ICN-IoT Middleware Architecture (S) 102

Hongqin Zhang, Jiaqi Yin, Huibiao Zhu and Ningning Chen
AnB2Murphi: A Translator for Converting Alice&Bob Specifications to Murphi 108

Yongxin Zhao, Hongjian Jiang, Jin Lv, Sijun Tan and Yongjian Li
Formal verification of multitask hybrid systems by the OTS/CafeOBJ method 114

Masaki Nakamura, Kazutoshi Sakakibara, Yuki Okura and Kazuhiro Ogata
Formal verification of IFF & NSLPK authentication protocols with CiMPG (S) 120

Thet Wai Mon, Shuho Fujii, Duong Dinh Tran and Kazuhiro Ogata
Formal verification of Anderson mutual exclusion protocol by introducing an auxiliary variable (S) 126

Naoki Asae, Duong Dinh Tran and Kazuhiro Ogata
Using LSTM to Predict Tactics in Coq 132

Xiaokun Luan, Xiyue Zhang and Meng Sun
Formal specification and model checking of a recoverable wait-free version of MCS 138

Duong Dinh Tran, Kentaro Waki and Kazuhiro Ogata
Fine-Grained Neural Network Abstraction for Efficient Formal Verification 144

Zhaosen Wen, Min Zhang and Weikai Miao
Modeling and Verification of CKB Consensus Protocol in UPPAAL (S) 150

Yi-Chun Feng, Yuteng Lu and Meng Sun
Formalization and Verification of Dubbo Using CSP 154

Zhiru Hou, Jiaqi Yin and Huibiao Zhu
Conv-Reluplex : A Verification Framework For Convolution Neural Networks (S) 160

Jin Xu, Zishan Li, Miaomiao Zhang and Bowen Du
Tree Ensemble Property Verification from A Testing Perspective 166

x

Bohao Wang, Zhe Hou, Gelin Zhang, Jianqi Shi and Yanhong Huang
DeepAuto: A First Step Towards Formal Verification of Deep Learning Systems (S) 172

Yuteng Lu, Weidi Sun, Guangdong Bai and Meng Sun
Evaluating the Impact of Vaccination on COVID-19 Using Model Checking 177

Xin Li
A Novel Approach of CTL Model Checking Based on Probe Machine 183

Dong Wang, Jing Liu, Jin Xu, Haiying Sun and Jiexiang Kang

Session SEPDSM: Software Education Project and Development and Software
Maintenance
How MOOC Videos Affect Dropout? A Lightweight Pipeline Making Student Dropout
Interpretable From Several Levels 189

Deming Sheng, Jingling Yuan and Xin Zhang
Development of an Automated Machine Learning Solution for Educational Data Mining (S) 195

Raniel Silva, Vitória Mendes, Rodrigo Rodrigues and Alexandre Maciel
Towards the integration of the GDPR in the Unified Software Development Process (S) 199

Elena Gómez-Martínez, Miguel Marroyo and Silvia Acuña
Remaining Activity Sequence Prediction for ongoing process instances 205

Xiaoxiao Sun, Yuke Ying, Siqing Yang and Hujun Shen
Studying the Impact of the User Subscription Times in Different Cloud Configurations 211

Hernán-Indibil De la Cruz, María-Emilia Cambronero, Valentín Valero, Pablo Cañizares,
Adrián Bernal and Alberto Núñez

An Analysis of the State of the Art of Machine Learning for Risk Assessment in Software Projects
(S) 217

André Sousa, João Faria and João Moreira
Towards a Comprehensive Understanding of Agile Teamwork: A literature-based Thematic
Network 223

Arthur Freire, Manuel Neto, Mirko Perkusich, Alexandre Costa, Kyller Gorgônio, Hyggo
Almeida and Angelo Perkusich

A Comparative Study of Psychometric Instrumentsin Software Engineering 229
Gleyser Guimarães, Mirko Perkusich, Danyllo Albuquerque, Everton Guimaraes, Danilo
Santos, Hyggo Almeida and Angelo Perkusich

Evaluating a Bayesian Network to Predict Customer Satisfaction in Scrum Software Development
Projects: An Empirical Study with One Company 235

Mirko Perkusich, Gleyser Guimarães, Kyller Costa Gorgônio, Hyggo Almeida and Angelo
Perkusich

Towards Automatically Generating Release Notes using Extractive Summarization Technique 241
Sristy Sumana Nath and Banani Roy

Understanding the Impact of COVID-19 on Github Developers: A Preliminary Study 249
Liu Wang, Ruiqing Li, Jiaxin Zhu, Guangdong Bai, Weihang Su and Haoyu Wang

Analyzing Program Comprehensibility of Go Projects 255
Moumita Asad, Rafed Muhammad Yasir, Shihab Shahriar Khan, Nadia Nahar and Md Nurul
Ahad Tawhid

xi

What Do Developers Reply To? An Empirical Study of the Top Unmanned Aerial Vehicles (UAVs)
Apps (S)

261

Fatma Outay, David Dampier and Haroon Malik
Quantifying Synergy between Software Projects using README Files Only (S) 265

Roxanne El Baff, Sivasurya Santhanam and Tobias Hecking
Evaluating a Tool for Creating Bug Report Assignment Recommenders (S) 271

Disha Devaiya, John Anvik, Meher Bheree and Farjana Yeasmin Omee
Session RPC: Requirements and Program Comprehension

A family of experiments for evaluating the usability of a collaborative modelling chatbot 275
Ranci Ren, John Castro and Silvia Acuña

Evaluation of Chatbots Usability Experimentation (S) 281
Ranci Ren, John Castro and Silvia Acuña

From word embeddings to text similarities for improved semantic clustering of functional
requirements (S) 285

Takwa Kochbati, Shuai Li, Sébastien Gerard and Mraidha Chokri
Investigating Process Algebra Models to Represent Structured Requirements for Time-sensitive
CPS 291

Mathilde Arnaud, Boutheina Bannour, Arnault Lapitre and Guillaume Giraud
Risk Analysis for Collaborative Systems during Requirements Engineering (S) 297

Kirthy Kolluri, Robert Ahn, Tom Hill and Lawrence Chung
Requirements Formality Levels Analysis and Transformation of Formal Notations into Semi-formal
and Informal Notations (S) 303

Aya Zaki Ismail, Mohamed Osama, Mohamed Abdelrazek, John Grundy and Amani Ibrahim
Session RC: Recommendation and Classification

Spatial-Temporal Forecast of the probability distribution of Oceanic Nino Index for various lead
times 309

Jahnavi Jonnalagadda and Mahdi Hashemi
Recurrent Neural Graph Collaborative Filtering 315

Beichuan Zhang, Zhijiao Xiao and Shenghua Zhong
Deep Self-Attention for Sequential Recommendation (S) 321

Beichuan Zhang, Zhijiao Xiao and Shenghua Zhong
A recommender system to assist conceptual modeling with UML 327

Maxime Savary-Leblanc, Xavier Le Pallec and Sebastien Gerard
Evaluating Visual Explanation of Bug Report Assignment Recommendations (S) 334

Shayla Bhuyan and John Anvik
A Practical User Feedback Classifier for Software Quality Characteristics 340

Rubens dos Santos, Karina Villela, Diego Avila and Lucineia Heloisa Thom
Improved Multiple Part Algorithm (IMPA) to extract multiple solutions for RNA sequence
classification problem 346

Naoual Guannoni, Faouzi Mhamdi and Mourad Elloumi
Attention Guided Filter for Jointly Extracting Entities and Classifying Relations 352

Shaoze Chen, Su Wang and Wenxin Hu

xii

Multi-Label Classification of Parrott’s Emotions 359
Abhijit Mondal and Swapna Gokhale

Special Session SEKEEO: Software Engineering and Knowledge Engineering
Education
On Conducting Tests in Software Engineering Courses during the COVID-19 Pandemic (S) 365

Pankaj Kamthan
Revisiting UML Class Relationship Recovery for Online Education (S) 369

Dionysis Athanasopoulos
Extracting Prerequisite Relations among Concepts from the Introduction of Online Courses (S) 375

Zesong Wang, Kui Xiao, Zeqing Qin and Shihui Wang
A Technical Capability Evaluation Model Based Concept and Prerequisite Relation in Computer
Education (S) 381

Jiwen Luo, Tao Wang, Junsheng Chang and Xiaoting Guo

Session KO: Knowledge and Ontology
Triangle Counting by Adaptively Resampling over Evolving Graph Streams 387

Wei Xuan, Huawei Cao, Mingyu Yan, Zhimin Tang, Xiaochun Ye and Dongrui Fan
Influence Maximization with Consideration of PageRank Centrality and Propagation Probability 393

Qi Chen and Rong Yan
Grasping or Forgetting? MAKT: A Dynamic Model via Multi-head Self-Attention for Knowledge
Tracing 399

Deming Sheng, Jingling Yuan and Xin Zhang
Deep Similarity Preserving and Attention-based Hashing for Cross-Modal Retrieval 405

Shubai Chen, Song Wu, Yu Chen and Yuan Yuan
An Efficient ROS Package Searching Approach Powered By Knowledge Graph 411

Long Chen, Xinjun Mao, Yinyuan Zhang, Shuo Yang and Shuo Wang
KatGCN: Knowledge-Aware Attention based Temporal Graph Convolutional Network for Multi-
Event Prediction 417

Xin Song, Haiyang Wang, Kang Zeng, Yujia Liu and Bin Zhou
SolDetector: Detect Defects Based on Knowledge Graph of Solidity Smart Contract 423

Tianyuan Hu, Zhenyu Pan and Bixin Li
SMART: Towards Automated Mapping between Data Specifications 429

Safia Kalwar, Mersedeh Sadeghi, Alireza Javadian Sabet, Alexander Nemirovskiy and Matteo
Giovanni Rossi

Incorporating Presuppositions of Competency Questions into Test-Driven Development of
Ontologies (S) 437

Jedrzej Potoniec, Dawid Wiśniewski and Agnieszka Ławrynowicz
Session ML: Machine Learning

Ride Hailing Service Demand Forecast by Integrating Convolutional and Recurrent Neural
Networks 441

Zinat Ara and Mahdi Hashemi
Transfer Learning-based City Similarity Measurement: A Case Study on Urban Hotel (S) 447

xiii

Ganghua Zhang and Xiaoping Che
A hierarchical RNN-based model for learning recommendation with session intent detection 451

Jinyang Liu, Chuantao Yin, Xiaoyan Zhang, Kunyang Wang and Hong Zhou
Intelligent Preprocessing Selection for Pavement Crack Detection based on Deep Reinforcement
Learning 458

Yan Lin, Guosheng Xu, Guoai Xu, Siyi Li, Jie Deng and Jiankun Cao
Inspect Defect of Power Equipment via Deep Learning Method 464

Qi Zhang, Qingsong Cai and Jianhui Zheng
A method for generating various style Chinese fonts in the absence of training data (S) 470

Kang Shi and Tian-Ming Bu
Multi-Fusion with Attention Mechanism for 3D Object Detection 475

Ning Wang and Ping Sun
SADA: Improved Data Symbolization and Optimization Method on HAR from Microscopic
Perspective 481

Men Huichao and Wang Botao
HARP Pro: Hierarchical Representation Learning based on global and local features for social
networks 487

Wei Zhang, Jing Yang and Fanshu Shang
A Volume-Aware Positional Attention-Based Recurrent Neural Network for Stock Index Prediction 493

Xinpeng Yu and Dagang Li

Session STPTA: Software Testing Program Test and Analysis
DeepSCC: Source Code Classification Based on Fine-Tuned RoBERTa (S) 499

Guang Yang, Yanlin Zhou, Chi Yu and Xiang Chen
Multi-Granularity Code Smell Detection using Deep Learning Method based on Abstract Syntax
Tree 503

Weiwei Xu and Xiaofang Zhang
FCEP: A Fast Concolic Execution for Reaching Software Patches 510

Meng Fan, Wenzhi Wang, Aimin Yu and Dan Meng
Leveraging Compiler Optimization for Code Clone Detection 516

Shirish Singh, Harshit Singhal and Bharavi Mishra
Which Factors Affect Q-Learning-based Automated Android Testing? – A Study Focusing on
Algorithm, Learning Target, and Reward Function – 522

Yuki Moriguchi and Shingo Takada
MACA: A Residual Network with Multi-Attention and Core Attributes for Code Search (S) 528

Lian Gu, Zihui Wang, Jiaxin Liu, Yating Zhang, Dong Yang and Wei Dong
Dynamically Detecting Invariants for Automatic Testing PLC Programs (S) 532

Zeyu Lu, Xia Mao, Yanhong Huang, Jianqi Shi and Yang Yang
Optimal Conjunctive Normal Form Encoding for Symbolic Execution 538

Weiyu Pan, Ziqi Shuai, Ke Ma and Luyao Liu
Graph queries for analyzing the coverage of requirements by test cases 544

Shingo Ariwaka, Hiroyuki Nakagawa and Tatsuhiro Tsuchiya

xiv

Using the Normalized Levenshtein Distance to Analyze Relationship between Faults and Local
Variables with Confusing Names: A further Investigation (S)

550

Carmine Gravino, Alessandra Orsi and Michele Risi
A Framework for Mutation Testing of Machine Learning Systems (S) 554

Raju Singh and Mukesh Kumar Rohil
A Case Study of Testing an Image Recognition Application (S) 560

Chuanqi Tao, Dongyu Cao, Hongjing Guo and Jerry Gao

Session NLTPDM: Natural Language and Text Processing and Data Mining
A Novel Text Classification Approach based on Meta-path Similarities and Graph Neural Networks 564

Huan Wang, Jiang Li, Qing Zhou and Liang Ge
Model-Agnostic Local Explanations with Genetic Algorithms for Text Classification 570

Qingfeng Du and Jincheng Xu
Towards a Better Understanding of Gradient-Based Explanatory Methods in NLP 576

Qingfeng Du and Jincheng Xu
Relation Extraction Model Based on Keywords Attention (S) 582

Yu Chen, Jianxia Chen, Chang Liu and Qi Liu
Chinese Sentence Semantic Matching With Multi-Granularity Based on Siamese Neural Network 586

Xuan Wen, Jianxia Chen, Yu Chen and Shirui Sheng
Complementary Representation of ALBERT for Text Summarization 592

Wenying Guo, Bin Wu, Bai Wang, Lianwei Li, Junwei Sun and Maham Nazir
BEHIND: a 4W-oriented Method for Event Detection from Twitter 598

Kang Zeng, Yujia Liu, Xin Song and Bin Zhou
ATFE: A Two-dimensional Feature Encoding-based Sentence-level Attention Model for Distant
Supervised Relation Extraction 604

Shiyang Li and Qianqian Ren
Extracting information from driving data using k-means clustering (S) 610

Nour Chetouane, Lorenz Klampfl and Franz Wotawa
RoBF: An Auto-Tuning Bloom Filter for Mixed Queries on LSM-Tree 616

Ruicheng Liu, Peiquan Jin, Shouhong Wan and Bei Hua
Using Surrounding Text of Formula towards More Accurate Mathematical Information Retrieval 622

Cheng Chen, Yifan Dai, Yuqi Shen, Jinfang Cai and Liangyu Chen
Automatic Comprehension of Geometry Problems using AMR Parser (S) 628

Anca-Elena Iordan

Special Session DEMO: Technial Demos
AutoCom: Automatic Comment Generation for C Code (D) 632

Zhikang Tian and Yuekang Li
Water-Wheel: Real-Time Storage with High Throughput and Scalability for Big Data Streams (D) 634

Yanqi Lv, Ruicheng Liu and Peiquan Jin
MT4ImgRec:A Metamorphic Testing Tool for Image Recognition Software (D) 636

Dongyu Cao, Hongjing Guo and Chuanqi Tao

xv

Post2Event: Extracting Key Events from Microblogs (D) 637
Chongwei Wang, Xujian Zhao, Peiquan Jin, Hui Zhang, Chunming Yang and Bo Li

CASTR: Assisting Bug Report Assignment Recommender Creation (D) 639
Disha Thakarshibhai Devaiya, John Anvik, Farjana Yeasmin Omee and Meher Bheree

Notes: (S) denotes a short paper. (D) denotes a demo description.

xvi

 xvii

Keynote

Software Engineers Don't Care about Models, but They Want Automated Tests

Jeff Offutt, PhD
Professor of Software Engineering
Director, MS Software Engineering

Associate Chair of Graduate Studies, CS Department
George Mason University

USA

Abstract

Specification-based testing has roots in the mid-1970s, when Huang suggested testing telecommunications software
by covering nodes in FSMs. More criteria for generating tests were invented during the 1980s and 1990s. Practicing
software engineers seldom used formal specifications, so scientists developed informal modeling languages, which led
to model-based testing (MBT), which features abstract tests on the model and concrete tests on the implementation.
Although these techniques have great value, academic researchers need to remember that, to practitioners, models are
simply a means to an end--a way to create high quality software. To focus our research on realistic industry problems,
we need focus on the end result of high quality, well tested software, and use as much automation as possible to
reduce the human cost of creating models, creating tests, and running tests. Software engineering research is at its best
when it helps real software engineers create better software, cheaper.

 About the Speaker

Dr. Jeff Offutt is a Professor of Software Engineering at George Mason University. In his 30+ year career in academia,
he has led numerous collaborative research projects with funding from government and industry; designed and taught
courses and degree programs at all levels; mentored dozens of students and junior faculty; succeeded in leadership
roles at university and internationally in research; and won awards that reflected teaching, research, and service. His
research results are used widely, and his teaching innovations are copied by many university educators. He has
received several awards, including the Outstanding Faculty Award from the State Council of Higher Education for
Virginia in 2019, GMU's Teaching Excellence Award in 2013, and Faculty of the Year award from GMU's alumni
association for 2020. Offutt earned the PhD in Computer Science from Georgia Tech in 1988. He is on the web at
cs.gmu.edu/~offutt/

 xviii

Plenary Talk
Quantum Software Models: Instantiating Abstractions

Iaakov Exman

Software Engineering Department
The Jerusalem College of Engineering

 Jerusalem, Israel

Abstract

Assuming that sooner or later quantum computing will materialize as a practical addition to classical computing, we
foresee desirable features and design procedures for quantum and hybrid software systems. However, we claim that it
is not reasonable to have totally distinct modular design procedures, one for classical software systems and another
for quantum software systems. We argue in favor of a single unified design procedure for quantum, classical and
hybrid software systems, reasoning that: (1) Classical software systems are classical limits of quantum systems – as
usual in physics; (2) Software Systems instantiate Abstractions – any kind of abstractions, from numbers to higher-
level conceptual systems; (3) Quantum and Classical Software have State/Operator duality – a quantum Density
Matrix is both a state and a projection operator; a classical program is both a “readable code” state and a “runnable”
operator on states. Our previous Linear Software Models enable formal linear algebraic procedures for modular
design of classical software systems. Modularization has been performed by a spectral approach applied to matrix
representations, e.g. the Laplacian of the software system. This approach clearly hints toward a single unified design
procedure: (1) Linear Algebra – the basic objects of Linear Algebra also are the basic objects of quantum
computation; (2) Laplacian Matrix – the Laplacian, a useful representation of classical software systems, is easily
modified into a Density Matrix, a single unified representation of both classical and quantum software systems. We
first point out the nature of problems that may occur while designing whole software systems involving quantum
computation. Then we describe a proposal for a common design procedure starting point for both classical and
quantum software systems, viz. Von Neumann’s quantum notion of Density Matrix. This proposal formulates modular
design in terms of projection operators obtained from a design Density Matrix. We show, in the classical case, their
equivalence to the Linear Software Models results obtained from the Laplacian matrix spectrum. The application in
practice of the design procedure for classical, quantum and hybrid software systems is illustrated by case studies.

 About the Speaker

Prof. Iaakov Exman is a faculty member of the Software Engineering Department at The Jerusalem College of
Engineering, JCE, Azrieli, in Jerusalem, Israel. He got his M.Sc. degree from the Technion Institute of Technology,
in Haifa, Israel, with a thesis on “Calculations with Gaussian Functions and a Model Hamiltonian”. His Ph.D. degree
at the Hebrew University of Jerusalem was obtained with a thesis in the area of “Information Theory”. He has done
post-doctoral research at Stanford University, CA, USA, working on “Computational Drug Discovery and Design”.
After a long term industrial experience, in large industries in the AeroSpace area and in a small agile start-up in the
Software Parallel Processing area, Prof. Exman returned to the academia to dedicate himself to Software Engineering.
He has published a series of papers entitled “Linear Software Models” in international conferences, journals and book
chapters. These papers focus on a formal and practical mathematical theory of software system design, based on
algebraic structures, such as the Modularity Matrix, the Laplacian Matrix and conceptual Lattices. Recently, inspired
by the Linear Software Models, a paper has been accepted for presentation in an international conference workshop,
opening a new series on “Quantum Software Models”, which is the basis of the current plenary lecture. Iaakov Exman
has collaborated with research groups in Spain, Germany, Sweden and Italy, and has scientific interactions with
researchers in the USA. He is an editor in the area of Theory of Software Engineering in the Board of the International
Journal of Software Engineering and Knowledge Engineering.

 xix

Keynote

Declarative Debugging: Past, Present, and Future

Adrián Riesco
 Associate Professor

 Department of Software systems and computation
Universidad Complutense de Madrid

Spain

Abstract

Declarative debugging, also known as algorithmic debugging, is a semi-automatic debugging technique that abstracts
the execution order to focus on results. It proceeds by asking questions to an external oracle, usually the user, and has
been successfully applied in programming languages such as Java, Haskell, and SQL. However, despite the nice
properties of declarative debugging, it has not been widely used beyond Academy. In this talk we present the story
and main features of declarative debugging, the projects currently in development, and the challenges it faces.

 About the Speaker

Adrián Riesco is Associate Professor at Department of Software systems and computation from Universidad
Complutense de Madrid, Spain (UCM). He received his PhD in Computer Science from UCM with his PhD thesis
"Declarative Debugging and Heterogeneous Specification in Maude". His research interests are formal methods in
rewriting logic and declarative debugging. He has published more than 60 papers on these topics, most of them in
collaboration with national and international research centers. In particular, he has contributed in the field of
declarative debugging for both imperative and declarative languages, in the theoretical and practical aspects, and in
the integration with other paradigms, in particular with testing. Regarding teaching, he coordinates the Master studies
in Computer Engineering and has taught several topics in the Mathematics and Computer Science faculties. More
information is available at http://maude.sip.ucm.es/~adrian/

http://maude.sip.ucm.es/%7Eadrian/

 xx

Plenary Talk

How Can Metaheuristics Help Software Engineers

Enrique Alba
Professor of Software Engineering
Director, MS Software Engineering

Associate Chair of Graduate Studies, CS Department
George Mason University

USA

Abstract

This presentation focuses on the potential benefits that metaheuristics (Genetic Algorithms, Ant Colonies, Particle
Swarm, etc.) can bring to the field of Software Engineering (SE). For this to happen, we first need that a proper model
of the SE problem is done in the form of an optimization, search or learning task. This is actually quite often the case
in SE and other domains, thus allowing the utilization of powerful tools that can solve open problems in software
testing, staff management for software projects, automatic tuning of communication protocols, model checking, next
release problems, and a big amount of new challenges that can be now investigated thanks to the cross fertilization
between these two domains. The talk will raise the main open questions in this new field as well as discuss on best
practices, characterization, theory, and actual application of advanced search algorithms for software engineering.

 About the Speaker

Prof. Enrique Alba had his degree in engineering and PhD in Computer Science in 1992 and 1999, respectively, by the
University of Málaga (Spain). He works as a Full Professor in this university with varied teaching duties: data
communications, distributed programing, software quality, and also evolutionary algorithms, bases for R+D+i and
smart cities, both at graduate and master/doctoral programs. Prof. Alba leads an international team of researchers in
the field of complex optimization/learning with applications in smart cities, bioinformatics, software engineering,
telecoms, and others. In addition to the organization of international events (ACM GECCO, IEEE IPDPS-NIDISC,
IEEE MSWiM, IEEE DS-RT, smart-CT…) Prof. Alba has offered dozens postgraduate courses, more than 70
seminars in international institutions, and has directed many research projects (9 with national funds, 7 in Europe, and
numerous bilateral actions). Also, Prof. Alba has directed 12 projects for innovation in companies (OPTIMI,
Tartessos, ACERINOX, ARELANCE, TUO, INDRA, AOP, VATIA, EMERGIA, SECMOTIC, ArcelorMittal,
ACTECO, CETEM, EUROSOTERRADOS) and has worked as invited professor at INRIA, Luxembourg, Ostrava,
Japan, Argentina, Cuba, Uruguay, and Mexico. He is editor in several international journals and book series of
Springer-Verlag and Wiley, as well as he often reviews articles for more than 30 impact journals. He is included in the
list of most prolific DBLP authors, and has published 130 articles in journals indexed by ISI, 11 books, and hundreds
of communications to scientific conferences. He is included in the top ten most relevant researchers in Informatics in
Spain (fifth position in ISI), and is the most influent researcher of UMA in engineering (webometrics), with 14 awards
to his professional activities. Pr. Alba’s H index is 62, with more than 18,000 cites to his work.

Refactoring Java Code to MapReduce Framework

Rui Feng
 Inner Mongolia University

 Hohhot,China
15506597902@163.com

Junfeng Zhao*
 Inner Mongolia University

Hohhot,China
cszjf@imu.edu.cn

Abstract—Cloud computing has evolved into an infrastructure tool
for scientific research and computing application. For many
enterprises, it has become a trend to migrate their applications
from the local to cloud. To leverage cloud computing
infrastructure, some legacy code for special business process need
to be refactored to the programming models of cloud computing.
The desired approach is to design an automatic tool for refactoring
legacy code to the target code that can execute on cloud computing
platform effectively. In this paper a new approach is proposed,
which can automatically refactor Java sequential program into
MapReduce paradigm. The approach works by first translating
input code into functional representation, with loops succinctly
encapsulated by fold operations. Then, guided by the transforming
rules, the approach generates equivalent MapReduce programs.
The rules use group-by operations to enable greater parallelism.
Finally, a series of mapping rules is applied to map immediate code
to the target code running on Spark. A new tool designed using this
approach, JMRT, was evaluated using real world benchmarks.
The experimental results show that the approach can generate the
desired MapReduce program and the business execution efficiency
can be improved.

Keywords-Automatic Refactoring;MapReduce;Fold Operation；
Parallelism;Program Transformation

I. INTRODUCTION

In the past decade, MapReduce [1] has attracted interest as a
parallel programming model, independent of difficulties of
distributed computation [2]. Main-stream MapReduce
frameworks equip average developers with the tools that can
instantly transform them into distributed system developers
[3,4,5]. Specifically, we can select the appropriate variation by
looking at the type information of the λm function used by map.
The tool provides developers with abstract data-parallel
operators map and reduce that shield them from the complexity
of distributed computing. Therefore, the use of cloud platforms
is increasing rapidly. In addition to developing new applications
directly on the cloud, more and more applications are being
migrated from local servers to cloud servers.

There is a problem in the process, how to reduce the
migration cost. To maximize the performance of cloud
applications, the code migration method needs to transform their
programming model from sequential to parallel. This
transformation is the most difficult part of the code migration
procedure because it requires analyzing data dependency and
then refactoring the source code. Sometimes, it is impossible to
transform legacy code due to data dependency and the costs.
Therefore, it is necessary to find a way to automatically translate
sequential code into executable code under the MapReduce
programming model.

In the current research, most of the work aim to refactor the
code using traditional parallel transformation methods. A
common method is to obtain the code data access pattern and
determine the order of retrieving data values during the program
runtime, and then use the data reordering method to complete
code transformation [6]. However, this method is not suitable for
the transformation of Java code to MapReduce programming
model, and many extensions to this method cannot effectively
solve this problem. In addition, there is work aimed at
refactoring code using design code templates. Paper [7]
classifies the source code according to business logic, and then
proposes corresponding reconstruction rules for each type. The
approach is limited to specific access patterns, without
considering all the code scenarios, it is necessary to propose a
more comprehensive method to achieve effective reconstruction
of Java code. To sum up, the existing refactoring methods are
not perfect, and the refactoring tools are not mature enough. It is
necessary to propose a more comprehensive method to achieve
effective reconstruction of Java code in cloud migration.

In this paper, a comprehensive automatic translation method
for sequential code to MapReduce programming model is
proposed, which can effectively implement Java code to
MapReduce code refactoring. A tool that implements our
method is generated, which can handle complex input programs.

Fig. 1 illustrates the design of our method, which translates
sequential code into equivalent MapReduce programs. The
method includes the following steps. The first step of the method
is to translate the input program into a functional representation
via GSA (Gated Single Assignment) form [8]. Although the
functional form is semantically equivalent to the original
imperative code, unfortunately exposes no parallelism. since a
simple data-parallel program consists of at least a map followed
by a reduce. To address these problems, the transforming rules
are designed to govern where map functions can be introduced
in a semantics-preserving manner. In more complex cases where
loop iterations access overlapping locations, this method uses
Spark's groupByKey operation to group operations by access,
exposing more fine grained parallelism than the previous
method. Final, a series of mapping rules are designed to map the
executable MapReduce program to the target Spark platform.

The structure of the article is as follows. In the approach
presented in this article, code under two different programming
models needs to be transformed, an IR (intermediate
representation) is needed to assist in the transformation.
Therefore, the generation process of functional IR is described
in the chapter 2. Since Java sequential code cannot be
transformed directly to intermediate code, a representation that
helps Java code to be transformed to IR is needed. In the first
section of the second chapter, this form is briefly described; in

DOI 10.18293/SEKE2021-059

1

the second section, the algorithm for translating sequential code
to this form is shown; in the third section, the functional IR used
in this paper is described; and in the fourth section, the rules for
generating intermediate code are described. Once the functional
IR has been got, the next step is to generate the executable code
under the MapReduce programming model. Therefore, in
chapter 3, we first introduce the transformation rules that
introduce parallelism into intermediate code, and then introduce
the mapping rules that generate executable code on the target
platform. The refactoring tools and experimental validation are
presented in chapter 4.

Figure 1. Overview of the method

II. GENERATING FUNCTIONAL IR

A. Introduction of GSA Form
Since the source code cannot be directly transformed to the

IR, a form is needed to help the transformation. GSA form is a
representation based on static single value assignment (SSA)
[9,10], which is a representation generated by static code
analysis [11，12]. The GSA form assigns unique names to
variables in the program and embeds the gated predicate
information φ function, so as to realize the analysis of program's
data flow and control dependency information. Specialized
gating functions (γ, η and µ) are introduced in GSA to include
the predicate of conditional branches. Different pseudo-
functions replace the φ functions at different confluence nodes
in the program control flow graph.

A program in GSA form is essentially a functional program,
which facilitates program transformation. The functional
intermediate form is derived from program in GSA form. GSA
form is the basis for converting imperative loops to a
MapReduce style.

B. Construction of GSA Form
An algorithm of translating source code to GSA form is

proposed in this paper. Two steps are required to translate source
program to GSA form. The first step is to insert the special
assignment statement φ functions into certain places of the
program and replace the φ function with µ, γ and η function. In
the second step, each reference to v in the program is replaced
by a reference to one of the new names vi.

In order to transform sequential code to GSA form, the data
structure CFG [13] and the dominance relation [14] between
nodes exists in the CFG are used in this paper.

Dominance Frontiers are used to find where φ functions are
needed. The dominance frontier DF(X) of a CFG node X is the

set of all CFG nodes Y such that X dominates a predecessor of
Y but does not strictly dominate Y.

The method for placing φ functions is: Whenever node X
contains a definition of some variable v, any node in the
dominance frontier of X needs insert a φ function for v. The
following code shows how to insert φ functions. The input of the
algorithm is the CFG information of the source program. Then,
the output of the algorithm is a CFG which contain the φ function.
Several data structures are used: P is an array that stores the CFG
nodes being processed. Process is an array of flags, one for each
CFG node. When node X is currently added to P, the Process(X)
is 1. DomFron is an array of flags, one for each node. When the
φ function about variable v has been inserted in node X,
DomFron(X) is 1.

Algorithm: Insert φ functions.
1 for each v do // Assign each variable as follows
2 P←0
3 Process←0
4 DomFron←0
5 for each X Î S(v) do //Iterate the node that contains the

assignment statement for the variable v
6 Process (x) ←1
7 P←P∪{x}
8 end
9 while P >=1do
10 take (x,p) //Fetch node X from the collection of nodes being

processed
11 for each Y Î DF(X) do //Iterates through the nodes in the

DF set of node X
12 if DomFron (Y)=0
13 then do
14 add φ-function for v to Y //Inserts the φ function of

the variable v in the node Y
15 DomFron (Y) ← 1
16 if Process(Y)=0
17 then do
18 Process (Y) ← 1
19 P ← P∪{Y}
20 end
21 end
22 end
23 end
24 end

Use a more precise control predicate function in the code of
the GSA form. The use of three functions improves the analysis
accuracy of variables, and ultimately improves the accuracy of
parallelization. The third step uses the following rules to replace
the φ function in the program to complete the transformation of
Java source code to GSA form.

µ function: Replaces those φ functions at the head of a loop.
Each µ function combines the index value initialized by the loop
with the index value calculated in the loop body. In the first
iteration, the µ function returns the first argument i0, which is the
value assigned before entering the loop, otherwise, it returns the
second argument i1, which is the value from the previous
iteration. It involves the change of loop index and places it in the
loop header.
γ function: Replaces those φ functions located at the

confluence nodes that have no incoming back edges. The back
edge is the edge from the descendants to the ancestors in DT.
The γ function selects the value of a variable computed by the if
statements, and the condition in if statements as the parameter.
η function: Replaces φ functions at the nodes that contain

loop exit edges as incoming edges. It selects the last value at the
end of the loop. The function is placed where the loop exits. The

2

GSA form is derived from the CFG of the source program, so
the semantic equivalence is verified.

The following code shows the construction of the GSA form.
S is a stack that stores every write operation of variable v, one
for each variable. Count is an integer, one for each variable. The
Count value of any v represents how many assignments to v have
been processed. The algorithm uses a depth-first search method
to access the Dominator Tree (DT)，which contains information
about variables and is directly generated by existing algorithms,
and the search starts with Entry, where the entry value of v is
represented by an empty assignment on the right. In DT, the
children of a node X are all immediately dominated by X. After
renaming each variable v to vi, the search will continue to other
nodes. When the statement of each node on the variable v is
processed, the stack of the current variable v is cleared. The
words predecessor and successor refer to CFG. The words parent,
child, ancestor, descendant refer to the DT.

Algorithm: Construct GSA form.
1 Count←0
2 S is empty
3 call Visit (Entry) //Start the search with the entry node
4 Visit(X): //When you search for node X
5 for each assignment A in X do //Do the following for the

assignment statement in the node
6 for each variable v in RHS(A)
7 rename v with vi where i = top(S(v))
8 end
9 for each variable v in LHS(A)
10 i ← the Count value of v
11 rename v with vi in A
12 push (S, i)
13 the Count value of v ← i+1
14 end
15 end
16 for each φ function in X do //Rename a variable in a function

within a node
17 rename j-th variable v in φ with vi where
18 i = top(S(v))
19 end
20 for each YÎ children (X) do //Continue to call the children

of the current node
21 call Visit(Y)
22 end

C. Functional IR
In current work, the intermediate representation is typed

lambda calculus. Lambda calculus is the basic mathematical
theory of functional programming language [15]. It can describe
and analyze programming language and use λ expression to
represent programming language. The current IR is a typed
functional language based on lambda calculus. Typed lambda
calculus assigns each item in the lambda calculus a type, which
can be int, string, etc. A simple example: if the variable x has
type σ and there is an expression M, then λ x:σ.M defines a
function that maps any x in σ to the value given by M. For
translating an entire program block to λ expression, a reasonable
typed grammar is let x = M in N, which means to constrain x to
M within N. In other words, the value of let x = M in N is the
value obtained by setting x to M in N. a[b] and a [b: =c] are read
and write access at index b of a map(array) a. Table 1 lists the
set of operations in our IR. These expressions are well-known.

TABLE 1.IR
IR operations Description

var a | b |c |… | <var,var,…> variable declaration

Exp 𝜆 Var[:Type].Exp|
let Var=Exp in Exp |

Exp Exp | <Exp,Exp,…> | expression declaration
Exp[Exp] | Exp[Exp:=Exp]

Type A | B | C|…| Type	⟶Type|
 <Type,Type,…> | Type[Type] type declaration

Figure 2 shows the data structure in the intermediate code
and the functions operating on it. Most of these structures are
well known, and they are described as needed in the article.

(data structures)
𝑀[𝐴]: multiset with values of type A

𝑀[𝐾, 𝑉]：map with keys of type K and values of type V
(functions)

𝑚𝑎𝑝: (𝐴 → 𝐵) → (𝑀[𝐴] → 𝑀[𝐵])
𝑚𝑎𝑝: (< 𝐾, 𝑉 >→ 𝑊) → (𝑀[𝐾, 𝑉] → 𝑀[𝐾,𝑊])
𝑔𝑟𝑜𝑢𝑝𝐵𝑦𝐾𝑒𝑦: (𝐴 → 𝐾) → (𝑀[𝐴] → 𝑀[𝐾,𝑀[𝐴]])

Figure 2. Built-in data structures and functions.

D.Transform GSA Form to Functional IR
New transformation rules are proposed to transform GSA

form code into an IR. Transformation rules transform loop and
non-loop statements in code, respectively.

1) Non-loop Rules
The method transforms GSA form to the functional IR by

applying the rules in Fig. 3. Simple rules are discussed first. Each
non-GSA assignment statement is directly converted to the
corresponding let ... in ... statement. Any branch instruction is
skipped, left to be handled when reaching its associated node.
The return instruction is replaced with the returned variable,
which eventually sits at the innermost level of the let nest.
Transform each γ instructions into a functional if statement
whose condition comes from a branching instruction, and the
branches being the arguments of the γ instruction. As the
instructions are visited in topological order, the variables
holding the result for each of the two branches are already
available in scope.

𝑥 = 𝐸 ≺ 𝑅 → 𝑙𝑒𝑡	𝑥 = 𝐸	𝑖𝑛	𝑅
𝑎[𝑥: = 𝑦] → 𝑎[𝑥: = 𝑦]

𝑟𝑒𝑡𝑢𝑟𝑛		𝑥 → 𝑥	
𝑥 = 𝜂 𝐶, 𝑥I, 𝑥J ≺ 𝑅 → 𝑙𝑒𝑡	𝑥 = 𝑖𝑓	𝐶	𝑡ℎ𝑒𝑛	𝑥I	𝑒𝑙𝑠𝑒	𝑥J	𝑖𝑛	𝑅

Figure 3. Non-loop Rules.

2) Loop Rules
The transformation of loops is essential to introduce

parallelism, so it is very important to translate the loop structure.
Fold operation is introduced to solve this problem. In functional
programming, fold is a standard operator that encapsulates a
pattern of function for processing recursive calls. Moreover, the
fold operator is equipped with a proof principle called
universality, which provides a mathematical principle for
solving rule proofs. Fold has been introduced to ensure the
correctness and availability of loop transformations.

 𝑓𝑜𝑟 𝑖 = 𝜑 𝑖O, 𝑖OO , 𝑖 < 𝑙, 𝐸 𝑥J = 𝜑 𝑥JO , 𝑥JOO . . . →
 				𝑙𝑒𝑡	𝑓 = 𝜆	𝑥J, 𝑥Q, … , 𝑥S. 𝐸	𝑖𝑛
 				𝑙𝑒𝑡		𝑥S = 𝑓𝑜𝑙𝑑U VWX ,VY

X ,…,VZX 𝑓 	𝑖𝑛	𝑟𝑎𝑛𝑔𝑒(𝑖, 𝑙)
Figure 4. Loop Rules

The more complex rule translates loops to applications of the
fold operator. In Fig.4, a loop is specified in terms of its φ

3

variables, which include the index variable i and other variables
	𝑥J, 𝑥Q ,updated in the loop body. These variables characterize
all possible effects of the loop visible to subsequent code. For
each φ variable 𝑥S , we use	𝑥S′ to refer to the value coming from
outside the loop, and 𝑥S′′ for the new value produced by the loop.
The loop gets translated to a fold over the domain of values for
the index variable, from 𝑖 to l. The function 𝑓 takes as arguments
the current 𝑥S values, runs the body of the loop E once for those
values, and returns the new 𝑥Svalues. The initial value for the
fold is a tuple of the 𝑥S′ values coming from outside the loop.

To obtain the fold operation over different types of input
variables, the function E must first be obtained. The code is then
transformed using the definition of the fold operation.

The definition of the functor of the following expression is
used to construct the function E. Functor	E associated with each
constructor		C]: (t],J, . . . , t],_`) → T(𝛼J, . . . , 𝛼c) is a (p+1)-adic function
(Where p is the number of universally quantified type variables
in the left-hand side of T’s type equation):

E]U 𝑓J, … , 𝑓U = 𝜆(𝑥],J, . . . , 𝑥],_`). (𝑘[𝑡],J]𝑥],J, . . . , 𝑘[𝑡],_`]𝑥],_`)
where the bound variable 𝑥]e has type, 𝑡]e and

𝑘 𝑡],f 	 represents a function that can be obtained by the
following rules：

𝐾 𝑇 𝛼J, … , 𝛼c = 𝑓U
𝑘 𝑡J, 𝑡Q = 𝜆	𝑥J, 𝑥Q. (𝑘[𝑡J]𝑥J, 𝑘[𝑡Q]𝑥Q)

𝑢 → 𝑣 = 𝜆	ℎ. 𝑘 𝑢 ∘ 𝑘 𝑣 ∘ ℎ
Now, it is possible to describe the fold operator for any loop

with expression and functions. The fold function over
T	(αJ. . . αk) is defined by the following equations.

𝑓𝑜𝑙𝑑U(𝑓) = 𝑓𝑜𝑙𝑑U(𝐸]U(𝑓J, . . . , 𝑓S), . . .)
where	𝑓 = (𝑓J, . . . , 𝑓S). Each 𝑓] in 𝑓	is a function.
The functional intermediate form is semantically equivalent

to the original imperative code but unfortunately exposes no
parallelism, since the loop operation is still sequential.

III. GENERATING EXCUTABLE MAPREDUCE CODE

A. Parallelize transformation rules
In the previous chapter, a functional IR with fold operations

that is semantically equivalent to sequential code is generated.
However, the current IR is still sequential and does not show any
parallelism. Therefore, the parallelization transformation rule
shown in Fi.6 is proposed to reveal the parallelism.

(extract map from fold)
𝑓𝑜𝑙𝑑l VW

m,…,VZm 𝜆	𝑇 𝑥I, … , 𝑥S . 𝐸U

𝑓𝑜𝑙𝑑l VW
m,…,VZm 𝜆	𝑇S 𝑥I, … , 𝑥S . 𝑓S

UZ ∘ 𝑚𝑎𝑝	𝜆	𝑇n 𝑥I, … 𝑥S . 𝑓n
Uo

(extract groupByKey)
𝑓𝑜𝑙𝑑pm𝜆	𝑟	𝑣. 𝑟[𝐸: = 𝐵]

(𝑚𝑎𝑝	𝜆	𝑘	𝑙. 𝑓𝑜𝑙𝑑pm q 	𝜆	𝑔	𝑣. 𝐶 𝑙) ∘ (𝑔𝑟𝑜𝑢𝑝𝐵𝑦𝐾𝑒𝑦	𝜆	𝑣. 𝐸)

Figure 5. Rules Revealing parallelism.

The transformation that reveals parallelism is the “extract
map from fold” rule in Fig.5. It transforms a fold by extracting
independent computations from the function f and transform it
into a (parallelizable) map operation. An independent function
must make no reference to an accumulator parameter. For
example, foldl(λ	r	k	v. r, f	k	v) is transformed to	foldl(λ	r	k	vz. r + vz) ∘
(map	λ	k	v. f	k	v), as (f	k	v) is independent. After the transformation,
the purely functional map can be easily parallelized.

The “extract map from fold” rule, shown in Fig.5, matches
on any fold taking any type variables and functions. The fold

operation E is split into the composition of functions 𝑓S ∘
𝑓n.	such that 𝑓n is independent of other “iterations” of the fold's
execution. If the fold is seen as a loop, 𝑓n does not have any loop
carried dependencies. 𝑓n is pulled out into a map.

While the “extract map from fold” rule exposes significant
parallelism, it cannot handle the situation when distinct loop
iterations can update the same array location. MapReduce
applications like word count mentioned earlier often work
around such issues by using a shuffle operation to group inputs
by some key and then process each group in parallel.

The transformation used for grouping by word is an
application of the “extract groupByKey” rule shown in Fig. 5.
The groupByKey operation clusters the elements of a collection
of type M[A] according to the result of the function A to K. It
returns a map from keys K to lists M [A] of elements in the
original collection that map to a specific key. The rule matches
any fold with a body which is an update of a collection at an
index E.

The output code first groups the elements of the collection
by the index expression (groupBy	λ	v. E), and then it folds each
of the groups using the update expression B from original body
of the loop. groupByKey's output is a Map from each distinct
value of E to the corresponding subset of the input collection.
The map operation's parameters are k, which bounds to the keys
of the grouped collection), and l which contains subset of the
input collection. The fold starts from the k value of r�, and folds	l
using the operation C , which is original expression B with
accesses to index E of the old reducer replaced with g, the new
parameter corresponding only to the k-index of r.

B. Object Code Generation
When the program is translated, IR with MapReduce

programming logic is generated. The mapping of the
intermediate code to the target platform only involves the
transformation of syntax in different programming languages
and does not involve the conversion of semantics. Therefore, the
corresponding mapping rules are constructed according to the
syntax structure of the target platform and API calls. We list a
subset of such mapping rules for the Spark RDD API [16].

map(Input,λm:T→list(Pair)) = Input.flatToPair([[λm]]);
map(Input,λm:T→list(U)) = Input.flatMap([[λm]]);

map(Input,λm:T→U) = Input.map([[λm]]);
reduce(Input:list(U),λr) = Input.reduce([[λr]]);

reduce(Input:list(Pair),λr) = Input.reduceByKey([[λr]]);

An expression in the IR language is used as input, and the
output is an equivalent expression in Spark. Since Spark
provides multiple variations for the operators defined in our IR,
such as a map, we can select the appropriate variation by looking
at the type information of the λm function used by the map. For
example, if λm returns a list of Pairs, we translate to
JavaRDD.flatMapToPair.

IV. REFACTORING TOOL AND EXPERIMENTAL EVALUATION

A. Refactoring Tool
Although there are many loops in legacy code, not all of

them can be refactored in parallel based on the MapReduce
model. Another work by our research group has proposed a way
to identify parallelizable loops and annotate them with specific

4

parallel tags [17]. Based on the refactoring method proposed in
this paper, a tool named JMRT supporting refactoring is
designed. The tool obtains the code in the program according to
the parallel mark, and then uses the components designed by the
above method to refactor the code. The working process of the
tool is shown in Fig.6.

Figure 6. Working process of JMRT.

As seen in the picture, the components of JMRT comprise:
receiving processor receives the sequential program that needs
to be process; obtaining processor obtains the GSA
representation of the source code; transforming processor
translates the GSA representation to lambda representation;
replacing processor replaces the loop with rules to generate
executable parallel programs; and generating processor
generates the executable MapReduce program on spark. In one
example, any steps may be carried out in the order or the steps
may be carried out in another order.

B. Experimental Verification and Result Analysis
1) Refactoring Experiment

In this section, a benchmark is used to test the feasibility of
JMRT. Phoenix [18] is a standard MapReduce benchmark suite
that provides both MapReduce and corresponding sequential
implementations. It contains the main calculations from the
application domain, such as enterprise computing (Word Count,
Reverse Index, String Match), scientific computing (Matrix
Multiply), artificial intelligence (KMeans, PCA, Linear
Regression), and image processing (Histogram). Table 2 shows
the number of loops and loop nests in the original programs, and
whether the translation is successful or not.

TABLE 2. Program information and results.
Program Loop nests Loops Translation

Word Count 1 1 √
Histogram 1 1 √

String Match 1 1 √
Linear Regression 1 1 √

Matrix Product 3 2 √
PCA 2 5 √

KMeans 2 6 √

A concrete example is used to demonstrates how JMRT
translates sequential code into MapReduce programs. Fig. 7
shows the sequential Java code, our starting point. The program
iterates through a list of documents inputs, accumulating the
word counts into the map.

1 static Map<String, Integer> wordCount(List<String> inputs) {
2 Map<String, Integer> map = new HashMap< > ();
3 for (int i=0; i<inputs.size (); i++) {
4 String [] inputSplit = inputs.get(i). split (" ");
5 for (int j=0; j<inputSplit.length; j++) {
6 String word = inputSplit[j];
7 System.out.printLn("value"+word);
8 Integer value = map.get(word);
9 System.out.printLn("key"+map.get(word));
10 if (value == null)

11 value = 0;
12 map.put (word, value+1);
13 System.out.printLn(map.values ());}
14 }
15 return map;
16 }

Figure 7. Java sequential code.
The section “construction of GSA form” explains how

translate the inner loop part of input program into a GSA form.
Fig. 8 gives the obtained GSA form using the algorithm.

1 j0 = 0
2 do j1 = µ (j0, j2) ,inputSplit.length
3 word = inputSplit[j2]
4 value0 = map0[word]
5 value2 = γ (value0 == null, value0, value1)
6 count = value2 + 1
7 map1 = map0[word: = count]
8 j2 = j1 + 1
9 enddo
10 j3 = η (j0, j2)
11 map2 = η (map1, map0)

Figure 8.GSA form for the inner loop of the code.

Then the program is translated into the functional IR. Thus,
the code in Fig. 8 is converted to:

 foldm ({λ m word.
 let value = map[word] in

map [word: = (if value == null then 0 else value) + 1]
 }) inputSplit

JMRT generates a solution for parallelization. Rather than
directly avoiding non-linear variables in the code, the program
can examine them to reveal parallelism. Therefore, use the
parallelization rule to transform the above example into code
like the following:

 map (λ k l. foldm(λ g w.g+1)l)	∘(groupByKey λ word.word)
Finally,the tool generates the code as follows:

 . mapl ({(i, inputs) => inputs.Split (" ")})

 . mapl ({(key, value) => (key, 1)})

 . reducel ({(value0, value1) => value0 + value1})
Each document is divided into multiple words, and then they

are processed into (word, 1) pairs using the map function. The
reduce function groups "1" values by their key, and then reduces
the grouping by the add operation, thereby effectively counting
the number of words. In this way, it reaches a form similar to the
traditional MapReduce solution for the WordCount problem.
The documents are split into words, which are then shuffled and
the numbers of elements in each word package is counted.
Finally, the corresponding Spark code is shown as follws.
 val wordCount = inputs.split(inputs=>inputs. Split (" "))
 val pairs =wordCount.map (word=> (word, 1))

 val results = pairs.reduceByKey((value1,value2)=>value1+ value2)

2) Result Analysis
In terms of the experimental environment, the experiments

were run on a quad-core Intel i7 at 2.6GHz with 16GB of RAM.
One of the defining characteristics of translation results is
performance, especially execution speed. We create a
performance test experiment to test the performance of this
translation method.

Fig.9 compares the execution time of the sequential code
and refactored code on Spark. The Spark translations the tool
generated for this benchmark performed 10.9× faster on
average than the sequential versions. When the input data set is

5

small, the execution efficiency of sequential code is better than
the executable code under the reconstructed MapReduce
programming model. When the input data set is gradually
enlarged, the advantages of the reconstructed code are gradually
highlighted, and the corresponding execution efficiency is also
continuously improved. This is because it takes a certain
amount of time for each cluster to start and load data. When the
input data set is small and there are many nodes, the time
overhead brought by communication far exceeds the time
advantage brought by parallel computing. Therefore, the
execution efficiency of sequential code is better than that of the
reconfigured code. However, the size of the input data set when
the two types of code execution efficiency are demerged is not
measured in this article, because it depends on many factors
such as the network of the cloud platform.

Figure 9. Runtime comparison

V. RELATED WORK
Source-to-Source Compilers. MOLD [19] is a compiler that
relies on syntax-directed translation rules to translate Java
programs into executable code under the cloud computing
programming model.
Program Refactoring. M2M (Matlab-to-MapReduce) [20] is a
refactoring tool for scripting languages. This tool can be used
for basic numerical calculations. It can translate Matlab code to
MapReduce code in a short time, far exceeding programmer
Efficiency of hand coding. YSmart [21] is also a scripting
language refactoring tool that can provide a general framework
to transform complex SQL queries into optimized MapReduce
jobs and efficiently execute them in distributed cluster systems.
J2M [7] is a refactoring tool for programming languages. It
needs to design function templates related to MapReduce, fill
the template with code fragments extracted from the source
program, and complete the conversion. In [22], a refactoring
method is proposed, which divides the types of businesses that
can be processed by MapReduce, and defines corresponding
refactoring rules for different business types. This method
realizes the automatic generation of target code.

VI. CONCLUSION
This article describes a method for translating sequential

Java code snippets into executable code under the MapReduce
framework. Code snippets are transformed by defining a
transformation rule in the method, which introduces the map
and groupByKey functions to introduce parallelism. Our

experiments show that JMRT can transform benchmarks in
real-world applications. The generated code executes faster
than the original code and is competitive with handwritten code.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (No.61962039) and Inner Mongolia
Natural Science Foundation of China (No.2019MS0632).

REFERENCES
[1] Ieffrey Dean and Sanjay Ghemawat. “MapRedcue: simplified data

processing on large clusters”, in OSDI,2008, pp.107-113.
[2] Smith C, Albarghouthi A. “MapReduce program synthesis”,Acm Sigplan

Notices,vol.51,no.6,pp. 326-340,2016.
[3] Apache Hadoop 2021. http://hadoop.apache.org, last accessed 2021/03/11.
[4] Apache Spark 2021. https://spark.apache.org, last accessed 2021/03/11.
[5] Yuan Yu, Michael Isard, Dennis Fetterly,et al. “Dryadlinq: A system

forgeneral-purpose distributed data-parallel computing using a high-
levellanguage”, in OSDI, 2009,pp.1-14.

[6] M. Ravishankar, J. Eisenlohr, etc. “Code generation for parallel execution
of a class of irregular loops on distributed memory systems”,in SC ’12,
2012,pp.1–11.

[7] B.Li,J.B.Zhang,N.Yu,etc. “J2M:a Java to MapReduce translator for cloud
computing”,SuperComputing,vol.72,no.5,pp. 1928–1945,2016.

[8] Peng Tu and David Padua. “Gated SSA-based demand-driven symbolic
analysis for parallelizing compliers”, in Proceedings of the 9th
International Conference on Supercomputing, 1995, pp.414-423.

[9] L.R, J.B. “SSA-based MATLAB-to-C compilation and optimization”，
in SIGPLAN，2016 pp. 55-62.

[10] S.J, P. H. “Constructing HPSSA over SSA” ，in SCOPES,2017，pp. 31-
40.

[11] Louridas P. “Static code analysis”, IEEE Software, vol. 23, no.4,pp. 58-
61,2006.

[12] Ferrante J, Ottenstein K J, Warren J D. “The program dependence graph
and its use in optimization”, ACM Transactions on Programming
Languages and Systems , vol.9,no.3,pp. 319-349,1987.

[13] Orailoglu, Alex, and Daniel D. Gajski. “Flow graph representation” ，
in Proceedings of the 23rd ACM/IEEE Design Automation Conference.
1986,pp.503-509.

[14] R. E. Tarjan.“Finding dominators in directed graphs”， SIAM J.
Computing, vol.3,no.1,pp.62-89,1974.

[15] Sebesta, Robert W. Concepts of programming languages. Pearson
Education, 2012.

[16] Maaz Bin Safeer Ahmd, Alvin Cheung. “Automatically leveraging
MapReduce framework for data-Intensive applications”, in SIGMOD,
2018,pp. 1205-1220.

[17] ZhiMei Zhao.Distributed Parallel Analysis of Legacy Code[D].Inner
Mongolia University, 2019.

[18] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
“Evaluating MapReduce for multi-core and multiprocessor systems”,in
HPCA ’07, 2007,pp. 13–24.

[19] Cosmin Radoi, Stephen J. Fink, Rodric Rabbah, and Manu Sridharan.
“Translating imperative code to MapReduce”in OOPSLA’14,2014，
pp.909–927.

[20] Zhang J, Xiang D, Li T, “M2M: a simple Matlab-to-MapReduce translator
for cloud computing”, Tsinghua Science and Technology, vol. 18, no. 1,
pp. 1-9, 2013.

[21] Lee R, Luo T, Huai Y, “Ysmart: yet another SQL-to-MapReduce
translator,” in ICDCS, 2011, pp. 25-36.

[22] J.F.Zhao and W.M.Wang, “Creative combination of legacy system and
MapReduce in cloud migration”, International Journal of Performability
Engineering, vol. 15, no. 2, pp. 579-590, 2019

6

ArchiNet: A Concept-token based Approach for
Determining Architectural Change Categories

Amit Kumar Mondal Banani Roy Sristy Sumana Nath Kevin A. Schneider
University of Saskatchewan, Canada

{amit.mondal, banani.roy, sristy.sumana, kevin.schneider }@usask.ca

Abstract—Causes of software architectural change are clas-
sified as perfective, preventive, corrective, and adaptive. Change
classification is used to promote common approaches for address-
ing similar changes, produce appropriate design documentation
for a release, construct a developer’s profile, form a balanced
team, support code review, etc. However, automated architectural
change classification techniques are in their infancy, perhaps due
to the lack of a benchmark dataset and the need for extensive
human involvement. To address these shortcomings, we present
a benchmark dataset and a text classifier for determining the
architectural change rationale from commit descriptions. First,
we explored source code properties for change classification
independent of project activity descriptions and found poor
outcomes. Next, through extensive analysis, we identified the
challenges of classifying architectural change from text and pro-
posed a new classifier that uses concept tokens derived from the
concept analysis of change samples. We also studied the sensitivity
of change classification of various types of tokens present in
commit messages. The experimental outcomes employing 10-
fold and cross-project validation techniques with five popular
open-source systems show that the F1 score of our proposed
classifier is around 70%. The precision and recall are mostly
consistent among all categories of change and more promising
than competing methods for text classification.

Index Terms—Architectural change; text classification; concept
extraction; code review

I. INTRODUCTION

Software architecture is concerned with the partitioning
of a software system into parts, with a specific set of
relations among the parts [10]. A meaningful architectural
document helps reduce the cognitive load and maintenance
activities of the software development team [16]. Moreover,
appropriate architectural formulation is becoming more critical
to circumvent software bloat, scalability, and security backdoors
[11]. However, elements of architecture can be changed [20]
continuously as code components of a software system changes
to support continuous development and maintenance [29] such
as adding new features, restructuring the design models, and
fixing flaws. Architectural change can affect many aspects
of a software system and, for this, change analysis is a
crucial task. Development team can group architectural changes
leveraging change classification process based on the cause of
the change, type of change, location of the change, the size of
the code modification, and impact of change [40], [15]. For
example, four major causes of architectural changes have been
defined explicitly in the literature [40], [8], [29]: (i) perfective

DOI reference number: 10.18293/SEKE2021-060

– adjusting new behaviour, (ii) preventive – prevent bad design,
(iii) corrective – correct discovered problems, and (iv) adaptive
– adapting to new platform.

Grouping causes of change is beneficial for post-release
analyses, where design change activities are not explicitly an-
notated [8]. Change classification is also required for composing
a developer’s profile, building a balanced team, and handling
anomalies in the development process [21]. Furthermore, code
review process involving architectural change is complex
than local or atomic change [38], which is dependent on
determining change type. Moreover, an automated technique
can be employed to produce design documentation for every
release recording types of structural changes happened and
associated components [17]. Automated architectural change
classification technique [40], [32] can be used to develop strate-
gies for implementing a system change, support continuous
architecture, augment DevOps and Model-Driven Engineering
tools [6], [12], [11]. Existing active software projects (even if
we consider a tiny portion of the 100 million repositories
in GitHub [1]) could immediately benefit if a structural
change classification technique is available to help develop an
architectural versioning schema.

However, while architectural change can be identified from
source code change, identifying the design decision, reason,
and categories of changes requires analyzing the development
team’s intention. The intention can be extracted from textual
description of the developer’s tasks and discussions [6], [29].
Literature has focused on classifying typical software changes,
architectural design concerns and design solutions [41], [28],
[14]. Yet, supporting architectural change classification is still
in its infancy [29], [11], perhaps, due to lack of benchmark data
and requirements of laborious human analysis. Nevertheless,
a few of the studies explored for both manual [8], [32] and
semi-automated [29] techniques for classifying architectural
changes. In these studies, a small collection of samples is being
experimented where challenges are not identified properly,
which leads to developing infeasible models. Besides, the
traditional text classification techniques [7], [42] might not
handle the scenario when keywords are present among multiple
concepts within the description of a task.

To address the shortcomings, we design a benchmark data
and propose a text classifier called ArchiNet for architectural
change classification. In particular, we focus on the two
research questions: RQ1: How can source code properties
that are independent of the description of project activities

7

classify the rationale of architectural changes?, and RQ2: How
can we improve text classification to predict the rationale of
architectural changes leveraging commit descriptions?

To answer RQ1 and RQ2, we collect around 1,133 archi-
tectural change instances from 5K commits of five popular
projects (shown in Table I). After extensive analysis of the
created dataset, we have successfully identified the challenges
of categorizing the architectural changes both from the source
code and the texts. One of the challenges is that typical
operations in the source code do not have a significant number
of distinguishing patterns in various changes, and classification
performance is not promising (F1 score is 33%). A major
challenge in the commit description is that multiple concepts
are presented, whereas only one or two concepts indicate the
intention. Furthermore, many words are common for expressing
the reasons for changes, such as keyword update is used
to describe both perfective and adaptive changes. Such a
phenomenon is not acute in many other text classification tasks
[19]. All things considered, we propose a new technique for
classifying the changes from the text where trained keywords
from concept analysis of different changes play a crucial role.
The training process of our proposed technique is different
from the traditional NLP training process. For training, we first
define the relevant concepts (contextual occurrence of words
and tokens such as {update,API, version} indicate adaptive
change more confidently) within each sample. Next, all tokens’
weights appeared within all the concepts for a relevant change
class are calculated. These weights are distributed among all of
the classes leveraging a statistical model. Thus, our technique
does not consider all the words within a description. Finally,
a given commit is predicted to one of the four classes using
a probability model from the trained database. Experimental
outcome of our classifier with different datasets shows that
the F1 score is around 70% and promising compared to the
competing techniques (including deep learning).

The paper continues as follows. In Section II we discuss the
background of architectural change detection and classification.
Section III describes our dataset creation process. Section IV
explains the challenges of change classification. Our proposed
classifier is presented in Section V. Section VI reports our
experimental outcome and Section VII discusses threats to
validity. Section VIII discusses related studies and Section IX
concludes our paper with future direction.

II. BACKGROUND

Architectural Change Instance: Studying typical changes
from version control systems does not require a change
detection strategy as it provides differences. However, archi-
tectural change detection [20], [24], even from the version
control system (diff), is challenging. Some of the widely used
change metrics are DSM [5], MoJo [39], MoJoFM [39], graph
kernel structure [30], A2A [20], C2C [24] and include-symbol
dependencies [24]. These metrics are calculated based on the
following operations: adding components, removing compo-
nents, replacing components, splitting components, merging
components, relocating, module dependency graph, and usage

Fig. 1: Two commits of Hadoop where new components are
added, dependency added and deleted.

dependency. We focus on intermediate-level architecture for col-
lecting change samples and employ A2A and include+symbol
dependency metrics for change detection. A2A considers
component addition, removal and moves; include+ symbol
dependency considers including/removing header file, program
file, importing class, and importing interface. Causes for
architectural changes are grouped as follows.

Adaptive (A) change: This change would be a reflection [40],
[22], [37] of system portability, adapting to a new platform
such as commit 1© in Fig. 1. Adaptive change also happen for
imposing new organisational and governmental policies.

Corrective (C) change: A corrective change is the reactive
modification of a software product performed after deployment
to correct discovered problems [40]. Specifically, this change
refers to defect repair, and the errors in specification, design
and implementation.

Preventive (PV) change: Preventive change [37], [40] refers
to actionable means to prevent, retard, or remediate code decay.
In other meanings, preventive changes happen to improve file
structure or to reduce dependencies between software modules
and components may later impact quality attributes such as
understandability, modifiability, and complexity.

Perfective (PF) change: Perfective changes are the most
common and inherent in development activities. This change
mainly focuses on adjusting new behaviour or requirements
changes [37]. Also, these changes are aimed at improving
processing efficiency and enhancing the performance of the
software (such as commit 2© in Fig. 1) that is both functional
and non-functional optimizations.

This classification is essential to deal with various challenges
(discussed in the Introduction) since different types of change
influence them in different ways. Among the change categories,
preventive and corrective changes are directly related to major
design debt management. A few of the change types in the two
commits in Hadoop is shown in Fig. 1. Commit descriptions
simply express their intentions. Commit 1© is an adaptive change
in 2015 and commit 2© is a perfective change in 2018. It is
noticeable from commit 2© that a dependency change between
two components (htrace and hdfs) increases performance by
reducing CPU usage, which is also an architectural change.
Both of the changes happen almost a decade later of the first

8

TABLE I: Candidate projects for our study (in inspection time).

Project All A. Domain Source
Hadoop 22631 266 Distributed Computing gt/apache/hadoop
HibernateORM 9811 261 Object/Relational Mapping gt/hiber../hibernate-orm
LinuxTools 10630 265 C&C++ IDE for Linux gt/eclipse/linuxtools
JavaClient 1477 136 Java bind for Appium Tests gt/appium/java-client
JVMcouchbase 914 205 JVM core for Couchbase

Server
gt/couchbase/couchbase-
jvm-core

Total 45463 1133

A: architectural changes in selected 1K commits; gt: github.com

release of Hadoop. Components of the htrace module are at
the center of these two changes (commit 1© and commit 2©)
although the second change occurred after three years of the
occurrence of the first change.

III. DATASET PREPARATION

A few of the studies [8], [29] created datasets for archi-
tectural change classification from the development history.
The recent dataset created by Mondal et al. [29] consists
of 362 samples of four projects (26 of them are adaptive).
This dataset might be insufficient for detecting some of the
text classification challenges such as various concept tokens
including code elements and framework name. Created dataset
by Pixao et al. [32] contains architectural change only for new
features and other categories are not annotated (recently they
updated their dataset with fixing issues but not specifically
annotated to four groups discussed widely in the literature
[40], [8], [29]). Another dataset is constructed by Ding et al.
[8] which is not publicly available (thanks to the authors for
providing us 37 samples). Therefore, we prepare a new dataset
containing a large collection of commits (shown in Table I).

1) Architectural Change Commits Filtering: We selected five
open source projects that are widely experimented in literature
for software change and architectural analysis [28], [20], [17],
[32], ensuring a diversity of domains. We also ensure that the
projects are in active development for at least several years. The
selected projects are: Hadoop, Hibernate ORM, Linux Tools,
Java Client, and Couchbase JVM Core have 45,463 commits
which are infeasible to analyze manually. Since determining and
categorising architectural change instances require huge human
efforts, in our dataset creation process, we restrict primary
selection of commit samples into 5K. We randomly choose 1K
commits from each of the projects containing more than two
words in the messages excluding stop words, non-alpha words
(that contains non-letters such as issue-110) along with the
words having Change-Id: or Signed-off-by: and so on as shown
in Fig. 1. We separate the architectural change samples from the
primary collection (around 5K) if A2A and include+ symbol
dependency metrics are changed. However, as suggested by
the literature [25], we do not consider system library usage
from native (Java, Python) framework for dependency change.
In this way, we get around 1133 samples (distribution of them
is shown in Table I) as architecturally changed commits.

2) Architectural Change Category Annotation: In the next
step of our study, we manually label those samples by two
authors independently into one of the four categories described

TABLE II: Training and test samples in the golden set.

Split Perfective Corrective Preventive Adaptive Total
Train 425 122 185 68 800
Test 173 49 73 39 333
Total 598 171 258 107 1133

in the existing studies [29], [8]. There are ambiguities in some
of the descriptions of four types of changes. We review most
of the relevant papers referred by [40], [8], [29] for more
explanation to resolve the ambiguity (details are discussed in
Section II). Our manual annotation process has two iterations.
In the first iteration, two of the authors having three years of
average software industry experience, categorized the samples
separately. In this step, we get many samples mismatched in
annotation. In the second iteration, we recheck the mismatch
samples and resolve the disagreements by discussion. Total
number of samples in each of the annotated categories from
the candidate projects is shown in Table II. The finalization
of our dataset took one month of two person-hours, indicating
that manual change analysis is expensive. In the next section,
we investigate the automatic change classification challenges.

IV. CHANGE CLASSIFICATION CHALLENGES

For examining the challenges of classification, we divide
the samples into two parts: training and test sets. As empirical
study [18] suggests that 30% test samples are ideal for real
data, we split around 70% of the architectural commits for
training purposes and around 30% for testing purposes with
random sampling. However, we could not extract meaningful
concepts (Section IV-B2) for some of the samples due to lack
of information, and skip those during the training and testing
phases. Distribution of change types in the train and test sets
are shown in Table II. Both the train and test sets contain the
conflicted samples accordingly.

A. Classification from Source Code

First, we explore classification options leveraging source
code operations. Yamauchi et al. [41] cluster the change
commits based on source code modifications: identifiers,
method name, and class name into as many groups dependent
on component-requirement relations. Their technique cannot
be used for a fixed number of classes. The clustering basically
groups the commits into related components attached to an
implemented functional requirement, not the reason for changes.
Therefore, we explore a technique utilizing the distribution of
change operations of the architectural components (static). We
examine the abstract operations (O) occurred in the source
code of a commit: import added or deleted, class file added or
deleted, file or package rename, and function added or deleted
as properties of change classification since they are universal
and independent of project context.

Considering these properties, we design a classifier us-
ing Ci(wO) in (1) as described in Section V to evaluate
how significant the prediction is using these operations as
metrics and has the following outcome with 10 fold cross-
validation. The best F1 score (among different combinations
of the operation types) for perfective, preventive, corrective,

9

adaptive, and all combined are 0.33, 0.53, 0.08, 0.13, and
0.33 respectively. F1 for the corrective and adaptive classes
are negligible. In summary, source code properties are not
promising for architectural change classification; this answers
our RQ1. In the next section, we explore existing change
classification techniques from commits messages.

B. Change Classification from Text

1) Explored Models: Next, we examine the explored models
of Mondal et al. [29], where the best model produces 39% F1
scores with our dataset. Following these approaches, we also
develop a discriminating feature selection (DFS) model from
the distribution of words in our training dataset. Similar to
Mondal et al., our DFS model has many common keywords in
the top list. Considering such overlapping of keywords, existing
techniques based on the DFS model discussed in DPLSA [42],
LLDA [34], and SemiLDA [9] predict more false positives
since such a model also considers the words that might be
irrelevant to the original intentions. With our new collection,
the best DFS model produces 46% F1 score with precision
45.6% which is similar to the outcome of the best method in
[29]. Our DFS model for the dataset in [29] produces an F1
score of 20% that is significantly lower than the previous model.
In summary, the DFS models are not promising and possibly
biased to the project contexts. Therefore, we focus on a more
advanced classifier identifying the challenges within the textual
descriptions. We discuss classifiers from traditional machine
learning and neural word embedding models in Section VI.

2) Concept Analysis: As we have a large number of samples,
we are able to identify the specific challenges within the
message description. One of the significant challenges present
in many commit messages is developers express more than one
concept (contextual occurrence of words) for a single intention.
An N-gram model might capture continuous sequences of n-
words involved in such concepts within a sentence [35], [36].
However, in multiple iterations of our inspection, we find that
concept words are scattered among multiple sentences in many
commit descriptions. We also prioritize such scattered words
while categorizing the commits. Traditional text classification
techniques do not address this particular scenario (including the
n-gram model). We also attempt to determine the dominating
concepts from multiple concept tokens. Lets consider the
corrective change message “adding more support for services
down..”; here adding support and down keywords will
influence to predict a category by tf − idf [31], LLDA,
SemiLDA, and DPLSA techniques. Unfortunately, adding
and support keywords will measure more weight to other
categories because they are present among the list of the top
keywords. However, if we prioritize the down keyword as the
dominating concept, it is more likely to be a corrective category.
We annotated such keywords for the dominating categories.

In the list from Section IV-B1, some dominating words
(such as issue and leak) for this corrective category are hardly
used for others. But, many samples contain negative words
which are not meant faults, such as -“...This changeset moves
the responsibility of sending into the locators, which has two

TABLE III: Ambiguity of concepts appeared in description.

Base words Not failure Faults
Not complex
Doesn’t need work, release
Error message −network, −fix
Can’t change

Symbol ‘−’ indicates located before the base word.

benefits:- No Node[] allocations since nothing needs to be
signalled back.- The code doesn’t need to iterate through the
list again ...” is more likely to be a preventive change despite
too many negative words. This is significantly an opposite
concept in the sentiment analysis [4], which would treat this
as negative for such words. The existing techniques falsely
classify such a description as a corrective one. However, in
many samples, when the word not co-locates with the word
working, it indicates flaws in the system. Therefore, we should
not skip such keywords during concept extraction. Furthermore,
some code elements are used for assuming a corrective
concept such as NullPointerException and LinkedError. For
the adaptive category, the dominating concept is indicated
by mostly multiple words. From the example in Fig. 1, we
notice that update, and version form a dominating concept
together where domain specific terms (such as htrace, API,
library, and so on) need to be included. Again, these words
are present in other categories. We have manually re-analyzed
all the training samples to find such concepts containing the
minimal number of words. Overall, there are ambiguities of
concepts (and top keywords) among all the categories. The most
ambiguities are found in the perfective category to define the
related concept uniquely with the minimum number of words.
While manual annotation is easier for the perfective categories,
defining the dominating concept, as discussed previously, is
the most difficult. We have seen that a word might indicate
different concepts with co-occurring different terms as shown
in Table III. In the next section, we describe our proposed
solution based on this finding.

V. OUR PROPOSED CLASSIFIER: ARCHINET

From the empirical observations, it is evident that handling
overlapping words among the descriptions is the key to develop
a promising solution. We conjecture that no word should be in
the distinguishing list to a single category. Instead of the logic
of the previous techniques, we assign a strength of a word for
each of the categories. For example, for the strength of the
words presented in Table IV for different concepts, if the words
add, support, down appear within a text description, then the
total value for the category C1 is 0.52 + 0.38 + 0 = 0.90, and
the total value for the category C2 is 0.03 + 0 + 1 = 1.03. As
1.03 > 0.90, the sample would be for the category C2. For
simplicity, we explain with weight addition; more complex
situations (with various token strengths) are handled with a
probabilistic prediction technique described in Section V-3.
Therefore, this gives more importance to the co-occurrence of
the words add and down, and such a solution might handle
the described challenges in a promising way. In our solution,
the crucial point is to get the concept tokens and their weights

10

distribution efficiently, and then predict a class confidently. We
describe our proposed method in three steps.

TABLE IV: Strength of words within the concepts C1 and C2.

Word Strength in C1 Strength in C2

add 0.52 0.03
support 0.38 0
down 0 1

1) Concepts Extraction: In this stage, we define and extract
concepts from the commit messages of all the annotated
samples that express the corresponding intention of a task
(as discussed in Section IV-B2). Even, the top words (such as
support) among the defined concepts contain many overlapping
words. However, we have found some patterns in many samples
for expressing different concepts when these terms are co-
occurred with other tokens which are stop words, code elements,
and API, library or framework name. Some of the examples are
discussed in earlier sections. Before training, natural words are
stemmed with PorterStemmer. In the next section, we discuss
our training and weight distribution process from the extracted
concept tokens.

2) Training Model Generation: In this phase, we train a
model by assigning weights to the concept tokens using (1)
from a set of preclassified commits into four change categories.
This is motivated by the core idea of how the model for a
word’s sentiment is generated [2]. These weights represent the
strengths while present within the concepts of the categories.
The trained model produces a collection of unique concept
tokens denoted by S having weights wi to the classes Ci:

Ci(wS) ⇒
⋃
tεS

wi(t)
i∑
1
wi(t)

∪ Ci(wO), S = {tw, tp, ts, ta} (1)

wi(tw) =
f(tw)

Ni
, wi(tp) =

F (tp)

Ni
, wi(ts) =

F (ts)

Ni
, (2)

wi(ta) =
F (ta)

Ni
, wi(to) =

F (to)

Ni
where O = {to} (3)

Here, f(t) frequency of a token t within the concepts S of all
samples in a category Ni, and Ci(wO) is the weight of the
tokens defined with source code change operation types (O)
associated with S, Ciε{PF, PV,C,A}. wi(t) can be calculated
by adopting various metrics such as frequency value or tfidf .
A concept S consists of various types of tokens such as tw
is natural words without stop words, tp is some specific stop
words such as negation words, ts is some special code elements
such as NullPointerException and LinkedError, ta is api, library
or framework name, and to is code operation types treated
as tokens; each of these types has a collection of tokens.
We utilized frequency normalized sum for calculating the
probability value. We calculated the frequency values differently
represented by bold F in (2) and (3): F (tp) considers only
inclusive stop words, F (ts) consider the issue related token
parts (such as Exception and Error from the mentioned tokens)
extracted from a code element using camel case parsing, F (ta)
is calculated by converting all the api names into a unique token
(“AA/BB” in our experiment), and F (to) consider one or
more instances of each token in to as value 1 within a commit.

All the values in (1) and (2) are adjusted when new concepts
are defined with new trained samples. Then, we employ a
classifier from these trained weights.

3) Classification: During the classification phase, the gen-
erated models (M) from the training phase (in (1)) are used
to evaluate the probability (Pm(C)) that a given class C is
associated with the commit m. Only the tokens identified in
the concepts (S) from phase one and tokens as the source code
operations (O) in Section IV-A are considered from commit
message and code change. The classification score is then
defined as follows.

Pm(C) =

∑
tε(S∪O)∩C

M(w(t))∑
tε(S∪O),Ci

M(w(t))
(4)

where the numerator is computed as the sum of the token
weights (w(t)) of all types that are contained in C, and the
denominator is the sum of the token weights for all types
for all classes (Ci). The probabilistic classifier for a given
commit m will assign a higher score Pm(C) to class C that
contains several strong tokens for concept S and operation
O. However, if the probabilities Pm(Ci) are same for more
than one class, ArchiNet considers the class which contains
the highest weighted word.

VI. PERFORMANCE EVALUATION

Our created dataset contains both an architectural change set
three times larger than that of [29] and a list of concept-words
with strength. Our proposed classifier ArchiNet is designed
to handle the overlapping words and includes various tokens
discussed in Section IV-B2 within the change description. We
compare the performance of ArchiNet based on recall (R) –
quantitative correctness of retrieving relevant categories; preci-
sion (P) – the rate of accuracy among the predicted samples,
and the F1 score – 2PR/(P +R) calculated from precision
and recall. We have also compared with the published dataset
and classifiers [29], [42]. The performance is also compared
with other promising techniques in literature [14], [28], [36],
[23] for text classification. These techniques include RCNN-
LSTM the state-of-the-art Deep Neural Learning (DNL), Naive
Bayes (NB), Bag-of-words (BoW) model, Decision Tree (DT),
Random Forest (RF), DPLSA, LLDA, and SemiLDA. Our
training model is significantly faster than RF and DNL, but
we will not discuss time complexity since it is less critical
if a model is built once for application. We evaluated the
performance of ArchiNet in the following four phases.

1) Testing with the Golden Set: We train our proposed
method (ArchiNet) and other methods with the training set.
Train and test set partitioning is described in Section IV. Then,
the classification performance is tested with the test set (from
Table II); comparison of the outcome is presented in Fig. 2.
Please note that only methods having close performance are
shown here. The most promising method in the baseline work
by Mondal et al. is DPLSA, where discriminating keywords
for the individual classes are used as features in a probabilistic
model. The difference in the percentage of F1 score between

11

Perfective Preventive Corrective Adaptive Total
20

40

60

80
65 68

58
51

63

37

63

46

16

39

74

60

18

40

58
70 66 66

35

61

F1
Sc

or
e

%

ArchiNet DPLSA RF DNL

Fig. 2: F1 score comparison of ArchiNet with the most
promising classifiers explored in [29], [36], [14].

ArchiNet and DPLSA for all classes is 24 points higher, while
this difference is 35 points higher for the adaptive category.
The F1 score of our model for the test data in [29] is 63%
(shown in Table VI), which is 18 points higher compared to
their best model (45% gain in performance). We have employed
a DNL based text classifier [19], [36] with Google Tensorflow
[3]. The DNL network where encoded words are embedded
with the RCNN-LSTM strategy shows a 61% F1 score, which
is 2 points lower than ArchiNet. The configuration of our DNL
model has 64 layers, 64 units, epoch size 10, relu activation
function, and cross-entropy as loss function [36].

Furthermore, we adopted the best algorithms suggested by
Hindle et al. [14] to classify large change commits into five
categories, and Soliman et al. [35] to classify architectural
discussions. We also explore Naive Bayes (NB), Decision
Trees (DT), and Random Forest (RF) [23], [14], [35] for
our dataset with the WEKA [13] tool utilizing word-to-vector
features [27]. Among them, the most promising classifiers such
as NB, and DT have less than 55% F1. However, Random
Forest (RF), which forms a group of DT s, produces around
58% F1 score for our dataset. The F1 score produced by our
technique for the adaptive category is much higher than the
competing methods. The ranges of precision and recall rate of
ArchiNet among the individual categories are 42.4–77.8% and
64–73.7% respectively, which are more consistent than other
classifiers. Notably, from the graph, we can see that F1 scores
of RF and DNL for the perfective category is higher than
ArchiNet, while significantly lower in the adaptive category
because many samples from adaptive might be falsely predicted
(high recall rate) into the perfective category (due to lack of
handling mechanism of the overlapped concepts). We also see
this pattern in the 10-fold validation phase. In this evaluation
phase, the distribution of P, R, and F1 scores to all the classes
with the test sets indicates a better and stable outcome of
ArchiNet with the concept-words.

2) 10-folds Validation: In this phase, we show how our
classifier is performing with cross-fold validation since it
provides a more accurate evaluation against the over-fitting
problem [14], [28]. However, we experiment with the promising
methods proven in the first phase. We compare the performance
of ArchiNet with DNL and RF by 10-fold cross-validation
technique. In 10 iterations, we take 90% samples as the training
set, and 10% as the test set exclusively for each of the iterations
[28]. The performance comparison is presented in Table V. The
F1 score of ArchiNet is around 69%, which is 7 points better

TABLE V: Performance (%) comparison of ArchiNet (A),
Random Forest (RF), and Deep Neural Learning (DNL).

M
et

ri
c Perfect Correct Prevent Adapt Combined

A R
F

D
N

L

A R
F

D
N

L

A R
F

D
N

L

A R
F

D
N

L

A R
F

D
N

L

P 77.5 62.7 77.6 63.4 88 50.3 77.8 91 66.5 42.4 96 40.1 69.1 76 62

R 73.7 99 69 66.25 19 62 63.8 43 62.1 64 25 28 69 67 62.1

F1 76 77 73 63 30 50 70 58 64 51 40 33 69 62.2 62

Ar DNLr RFr
20

40

60

80

100

Ap DNLp RFp

20

40

60

80

100

Fig. 3: Range of Recall (r) and precision (p) rate of all classes

than the two classifiers. Deep learning with RCNN-LSTM
[19], [36] shows 62% F1 score; RF has a similar outcome
as of DNL. F1 scores for some other classifiers are between
50 to 60% with the word-to-vector [27] features. From the
median and range values in box plots in Fig. 3, it is observed
that the precision and recall rate of ArchiNet (in the ranges
40.1–77.8% and 63.8–73.7% represented by Ap and Ar) are
consistent with all the classes (recall is highly consistent than
others indicated by DNLr and RFr). For the adaptive and
corrective categories, the outcome of ArchiNet is significantly
higher. Poor recall rate of RF and DNL (marked with circles in
Table V) for the adaptive category and high recall rate for the
perfective category indicates that many samples from adaptive
are falsely retrieved into perfective by both of the classifiers. A
similar trend is observed with the corrective category except for
lower precision for DNL. Since RF and DNL do not distinguish
and select words based on concepts/semantics, they produce
more unstable outcomes. In summary, our proposed classifier
has better performance for all metrics (F1, P, and R scores)
compared to other classifiers because concept-words handle
various influential tokens from a commit message efficiently.
This exploration answers the research question RQ2.

3) Project-wise Validation: We also conduct cross-projects
validation of our proposed approach. We train the classifier
with four projects and test with the remaining project in each
iteration for the five projects. The project-wise outcomes for
both ArchiNet and DNL are presented in Fig 4. Combined F1
scores of each of the projects produced by ArchiNet are better
than that of DNL. None of the project’s F1 scores is below 60%
for ArchiNet, while the highest is 69%. The highest precision
is 85%, and the recall is 80% (for the perfective and preventive
category) for our method. However, the precision and recall
can be low for the adaptive category as can be seen in the Fig
4. On the other hand, the adaptive category’s F1 score reaches
62 for the ArchiNet (whereas 23 for DNL). Performance of
some of the projects is lower than 10-fold validation because
of insufficient training data. Overall, Hadoop’s outcome for

12

Perfective Preventive Corrective Adaptive Total

20

40

60

80 77
69 65

17

6973 70

49 44

65
72

44
51

62 60
71

49
56

7

6166 66
54

14

60
A

rc
hi

N
et

Hadoop Hibernate JClient JVM LnxTools

DNL−− 64,53,51,59,59

Fig. 4: F1 score for individual projects.

tw +tp +ts +ta +to
30

40

50

60

70

31.4 33.5 33.5

42.4
37.5

43 41 41

64 6466 67 67.2 69
66

Sc
or

e
%

Precision P(A) Recall R(A) F1 (all)

Fig. 5: Performance sensitivity of terms. ‘+’ means including
all others terms from left. P,R are from the Adaptive(A) class.

both ArchiNet and DNL is the most promising because the
commit messages in Hadoop might contain a less ambiguous
explanation compared to other projects.

4) Sensitivity of Tokens: The performance sensitivity of
ArchiNet (for 10-folds) for various token-weights (w(t))
combination (in (1) and (2)) is shown in Fig. 5. The best
performance is shown for the combination {tw, tp, ts, ta} which
is three points (69% F1) better than only considering natural
terms (tw) (66% F1). Including API, library, and framework
name (ta) increments the performance by two points as there
is more likely to be an adaptive category for those compared
to others. As can be observed from precision and recall in Fig.
5, the adaptive category is the most sensitive. However, we
notice that combining source-code operations (to) affects the
performance slightly negatively (66% F1, whereas it is 65%
with tw); therefore, source code operations are not promising
features for classifying the architectural change.

VII. THREATS TO VALIDITY

One of the greatest threats to the validity of our result is that
annotating the intention of change is subject to human bias. To
reduce this threat, two of the authors independently annotated,
and then conflicts are resolved by discussion. Any classifier
may suffer an over-fitting problem. To overcome this, we
experimented with our classifier with a tenfold cross-validation
technique and found a promising result. Another concern of
our classification model is how general it predicts change from
different programming languages and cross-projects. One of our
test sets is collected from Mondal et al. [29] that also contains
projects of Python language, and have similar outcome as
shown in Table VI. A few of the projects such as Hadoop has

TABLE VI: F1 of ArchiNet with our data and data in [29].

Dataset Perfective Corrective Preventive Adaptive All
Our data 65 58 68 51 63
Data [29] 55 61 80 16 63

substantial industrial participation [17]. Therefore, our study
also mitigates generalizability threat to some extent.

Our model can be trained with different metrics. Therefore,
for (2) in Section V, we also have trained our model with
the tf-idf metrics. However, the result is not as promising
as the direct probability value, but still shows a better result
than DPLSA, LLDA, and SemiLDA. With this metric, the
best F1 scores for the data in [29] are 47% and 51% for our
benchmark data. Yan et al. [42] utilized DPLSA for predicting
multiple categories of usual changes (three types). We found
only a few of the samples in our data have multiple intentions
when architectural changes happened. ArchiNet can handle
such scenarios to some extent as we experiment on that mode;
when the predicted sample is in Hit@2 [35], [33] (within the
top 2 ranks), the F1 score is 83.5%. Notably, our proposed
classifier is versatile and does not require parameter tuning,
unlike others. Our dataset and trained models are available in
github.com/akm523/archinet for further investigation.

VIII. RELATED WORK

1) Architectural Design Issues and Solutions Classification:
Yamauchi et al. [41] proposed a technique considering program
identifiers to group the large commits into related components
having relations with the functional requirements. An early
approach of committed code classification was studied for
architectural tactics (design solutions such as resource pooling,
secure session management, and so on) [28] based on code
identifiers (such as heartbeat) mapped with text description
(heartbeat emitter and receiver) from a set of trained samples,
and commits are predicted using a term-frequency based
classifier. Solaiman et al. [35] reported Bayesian Network
and Naive Bayes as the best algorithms to classify architectural
discussions related to six ontology classes (such as technology)
into three design steps focusing ambiguous concepts (such as
server has different meanings for different cases), concepts
expressing reasons of architectural changes are different than
those. However, although these classes were either subset or
irrelevant to architectural changes, they were not specialized
in four architectural changes. In our work, we explore both
source code features and concept-token properties to predict
the reasons for architecture changes.

2) Architectural Change Classification: We are aware of
only one study by Mondal et al. [29] to categorize four
architectural changes from the text. Their model was generated
by popular discriminating feature selection techniques DPLSA
[42], SemiLDA [9], and LLDA [34] originally proposed [42]
for classifying all software changes into three groups, and
none of the techniques could handle the twists and challenges
of architectural change classification properly. Consequently,
the outcome of their proposed technique is poor. Another
study by Hindel et al. [14] close to ours explored various
machine learning techniques for classifying large commits
(commits with many files changed) into five groups. We also
explore the promising classifiers reported by them: Naive Bayes,
Decision Trees, and so on. However, Random Forest (RF),
an advanced version of Decision Trees, produces promising

13

outcomes with our dataset (but 7 points lower F1 than
ArchiNet). Recently, word embedding technique that captures
contextual and semantic information with deep learning is
being successfully used for software artifacts analysis and
classification [19], [36], [26]. However, due to the overlapping
of concept words, deep learning might not produce the best
outcome, which is mostly inexplicable when multiple intentions
are required to extract from a single message. Our proposed
classifier ArchiNet handles these concerns considering other
tokens and gains in performance.

IX. CONCLUSION

In this paper, we present a dataset collected from five popular
projects and a promising classifier for architectural change
categorization from texts. Our study identifies the challenges
of classifying changes from both source code properties and
textual properties. We address those challenges with a concept
analysis approach that indicate the developers’ intentions. Both
10-fold cross-validation and cross-projects validation show
that our technique is promising in all aspects compared to
traditional methods (F1 score is 70%). We also explore the
sensitivity of the performance of our classifier for various
tokens. Besides, we extract around 237 keywords (with trained
weights for each change category) from the training set. Given
the success, many of the text analysis approaches to support
the ten activities of software architecture discussed by Bi et
al. [6] might be enhanced by adopting our proposed technique.
In future, we will explore automatic design documentation
generation and architectural versioning schema applying our
change classification technique.

ACKNOWLEDGMENT
This research is supported by the Natural Sciences and Engineering Research

Council of Canada (NSERC), and by two Canada First Research Excellence
Fund (CFREF) grants coordinated by the Global Institute for Food Security
(GIFS) and the Global Institute for WaterSecurity (GIWS).

REFERENCES

[1] Github projects:. https://thenextweb.com/news/
github-now-hosts-over-100-million-repositories.

[2] Sentiwordnet: http://sentiwordnet.isti.cnr.it/. June, 2019.
[3] Tensorflow: www.tensorflow.org/tutorials/text.
[4] S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: an enhanced

lexical resource for sentiment analysis and opinion mining. In Proc. of
LREC, 2010.

[5] C. Y. Baldwin and K. B. Clark. Design rules: The power of modularity,
volume 1. MIT press, 2000.

[6] T. Bi, P. Liang, A. Tang, and C. Yang. A systematic mapping study on
text analysis techniques in software architecture. JSS, 2018.

[7] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3:993–1022, 2003.

[8] W. Ding, P. Liang, A. Tang, and H. Van Vliet. Causes of architecture
changes: An empirical study through the communication in oss mailing
lists. In SEKE, pages 403–408, 2015.

[9] Y. Fu, M. Yan, X. Zhang, L. Xu, D. Yang, and J. D. Kymer. Automated
classification of software change messages by semi-supervised latent
dirichlet allocation. IST, 57:369–377, 2015.

[10] D. Garlan, F. Bachmann, J. Ivers, J. Stafford, L. Bass, P. Clements, and
P. Merson. Documenting Software Architectures: Views and Beyond.
Addison-Wesley Professional, 2nd edition, 2010.

[11] N. Ghorbani, J. Garcia, and S. Malek. Detection and repair of architectural
inconsistencies in java. In Proc. of ICSE, 2019.

[12] P. Haindl and R. Plösch. Towards continuous quality: Measuring and
evaluating feature-dependent non-functional requirements in devops. In
Proc. of ICSA-C, pages 91–94. IEEE, 2019.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. SIGKDD, 2009.

[14] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt. Automatic
classication of large changes into maintenance categories. In Proc. of
ICPC, pages 30–39, 2009.

[15] A. Hindle, D. M. German, and R. Holt. What do large commits tell us?
a taxonomical study of large commits. In Proc. of MSR, 2008.

[16] M. I.S.O. Systems and software engineering–architecture description.
Technical report, ISO/IEC/IEEE 42010, 2011.

[17] R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and G. Valetto.
Evaluating the effects of architectural documentation: A case study of a
large scale open source project. Transactions on SE, 2016.

[18] K. Korjus, M. N. Hebart, and R. Vicente. An efficient data partition-
ing to improve classification performance while keeping parameters
interpretable. PloS one, 11(8):e0161788, 2016.

[19] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent convolutional neural
networks for text classification. In Proc. of AAA, 2015.

[20] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic. An empirical study of architectural change in open-source
software systems. In Proc. of MSR, 2015.

[21] S. Levin and A. Yehudai. Boosting automatic commit classification into
maintenance activities by utilizing source code changes. In Proc. of
PROMISE, pages 97–106, 2017.

[22] I.-H. Lin and D. A. Gustafson. Classifying software maintenance. In
Proc. of CSM, 1988.

[23] D. Liparas, Y. HaCohen-Kerner, A. Moumtzidou, S. Vrochidis, and
I. Kompatsiaris. News articles classification using random forests and
weighted multimodal features. In Proc. of IRFC, 2014.

[24] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovic,
and R. Kroeger. Comparing software architecture recovery techniques
using accurate dependencies. In Proc. of ICSE, 2015.

[25] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner.
Using automatic clustering to produce high-level system organizations
of source code. In Proc. of IWPC, 1998.

[26] R. Messina and J. Louradour. Segmentation-free handwritten chinese
text recognition with lstm-rnn. In Proc. of ICDAR, 2015.

[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv, 2013.

[28] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar. A tactic-centric
approach for automating traceability of quality concerns. In Proc. of
ICSE, 2012.

[29] A. K. Mondal, B. Roy, and K. A. Schneider. An exploratory study on
automatic architectural change analysis using natural language processing
techniques. In Proc. of SCAM, 2019.

[30] T. Nakamura and V. R. Basili. Metrics of software architecture changes
based on structural distance. In Proc. of METRICS, 2005.

[31] K. Oskina. Text classification in the domain of applied linguistics as
part of a pre-editing module for machine translation. In SPECOM, 2016.

[32] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman. Are
developers aware of the architectural impact of their changes? In Proc.
of ASE, 2017.

[33] M. M. Rahman and C. K. Roy. Improving ir-based bug localization with
context-aware query reformulation. In Proc. of ESEC/FSE, 2018.

[34] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled lda: A
supervised topic model for credit attribution in multi-labeled corpora. In
Proc. of EMNLP, 2009.

[35] M. Soliman, A. R. Salama, M. Galster, O. Zimmermann, and M. Riebisch.
Improving the search for architecture knowledge in online developer
communities. In Proc. of ICSA, 2018.

[36] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In NIPS, 2014.

[37] E. B. Swanson. The dimensions of maintenance. In Proc. of ICSE, 1976.
[38] M. Wang, Z. Lin, Y. Zou, and B. Xie. Cora: decomposing and describing

tangled code changes for reviewer. In ASE, 2019.
[39] Z. Wen and V. Tzerpos. An effectiveness measure for software clustering

algorithms. In Proc. of IWPC, 2004.
[40] B. J. Williams and J. C. Carver. Characterizing software architecture

changes: A systematic review. IST, 2010.
[41] K. Yamauchi, J. Yang, K. Hotta, Y. Higo, and S. Kusumoto. Clustering

commits for understanding the intents of implementation. In Proc. of
ICSME, 2014.

[42] M. Yan, Y. Fu, X. Zhang, D. Yang, L. Xu, and J. D. Kymer. Automatically
classifying software changes via discriminative topic model: Supporting
multi-category and cross-project. JSS, 2016.

14

https://thenextweb.com/news/github-now-hosts-over-100-million-repositories
https://thenextweb.com/news/github-now-hosts-over-100-million-repositories

Analyzing Open-Source Serverless Platforms:
Characteristics and Performance

Junfeng Li1, Sameer G. Kulkarni2, K. K. Ramakrishnan3, Dan Li1
1Tsinghua University, 2IIT, Gandhinagar, 3University of California, Riverside

Email: hotjunfeng@163.com, sameer.sameergk@gmail.com, kk@cs.ucr.edu, tolidan@tsinghua.edu.cn

Abstract—Serverless computing is increasingly popular be-
cause of its lower cost and easier deployment. Several cloud
service providers (CSPs) offer serverless computing on their
public clouds, but it may bring the vendor lock-in risk. To avoid
this limitation, many open-source serverless platforms come out
to allow developers to freely deploy and manage functions on
self-hosted clouds. However, building effective functions requires
much expertise and thorough comprehension of platform frame-
works and features that affect performance. It is a challenge for
a service developer to differentiate and select the appropriate
serverless platform for different demands and scenarios. Thus,
we elaborate the frameworks and event processing models of
four popular open-source serverless platforms and identify their
salient idiosyncrasies. We analyze the root causes of performance
differences between different service exporting and auto-scaling
modes on those platforms. Further, we provide several insights
for future work, such as auto-scaling and metric collection.

Index Terms—cloud computing, serverless, function-as-a-
service, characteristic, performance

I. INTRODUCTION

Serverless computing has ushered in a new era in cloud
computing. Cloud computing seeks to provide computing and
storage services at large scale and low cost to end-users
through economies of scale and effective multiplexing [2].
Serverless computing puts multiplexing and scalability to the
next level by allowing providers to commit just the required
amount of resources to a particular application and utilize
the resources for just the time needed to execute an invoked
function. Resources are scaled dynamically to meet the de-
mand of user requests. Unlike traditional cloud deployment
models, where a number of computing instances are deployed
well in advance, serverless computing achieves nearly zero
resource cost when there is no demand, and scales to as
many instances as needed to meet the traffic demand. Thus,
serverless computing could be both scalable and cost effective.

In addition to scalability and multiplexing, serverless com-
puting allows developers to build, deploy and run the ap-
plication on demand without focusing on server manage-
ment, according to the Cloud Native Computing Foundation
(CNCF) [3]. When an event is triggered, a piece of in-
frastructure is allocated dynamically for function execution.

In this paper, we significantly add the following work based on a previous
workshop version [1] published at WoSC’19: (1) We describe the salient
characteristics of four serverless platforms in more detail in §III, including
new figure illustration; (2) We elaborate resource/workload-based auto-scaling
frameworks in §III; (3) We evaluate four serverless frameworks with more
experiments in §IV; we also add detailed analysis about the root cause of
performance differences among these serverless frameworks in §IV; (4) We
provide insights and future work for serverless platforms in §V.
DOI reference number: 10.18293/SEKE2021-129

The underlying details of resource management, i.e., resource
allocation, data transmission and function execution, are de-
coupled from the user. Many cloud service providers (CSPs)
offer serverless computing platforms on their public clouds,
such as Amazon Web Services (AWS) Lambda, which is an
event-driven serverless platform that enables to implement and
deploy application in any supported languages and execute on-
demand as docker containers. Since public serverless platforms
may incur vendor lock-in risk, many open-source serverless
platforms spring up and allow developers to freely deploy and
manage functions on self-hosted clouds. However, building
effective functions requires much expertise and in-depth un-
derstanding of platform frameworks and characteristics that
affect performance. It is a challenge for a service developer
to differentiate and select the proper serverless platform in
different scenarios.

To help developers choose suitable open-source platforms
to deploy efficient services, we systematically identify and
analyze the salient characteristics of several popular open-
source serverless platforms (i.e., Knative1, Kubeless2, Nuclio3

and OpenFaaS4) and compare their performance. Our key
contributions include:
• We provide an understanding of the platform frameworks

and interaction between different components of four pop-
ular open-source serverless platforms.

• We analyze the salient features of each platform, such as
the built-in workload-based auto-scaling mechanism and the
event processing model inside the function pod.

• We evaluate the performance of different service exporting
and auto-scaling modes, and analyze the root cause of
performance gap among different serverless platforms.

• We give several insights for future work, such as auto-
scaling and metric collection.

II. BACKGROUND

Many cloud service providers (CSPs) offer serverless com-
puting platforms on their public clouds, such as Amazon
Web Services (AWS) Lambda, Google Cloud Functions, Azure
Functions and Alibaba Cloud Function Compute. The develop-
ers are required to design and deploy their serverless functions
based on the supporting services provided by CSPs, such as
message queuing, storage and database. Thus it incurs the
risk of vendor lock-in. The deployed serverless functions rely

1 https://github.com/knative 2 https://kubeless.io 3 https://nuclio.io
4 https://www.openfaas.com

15

Feature Nuclio OpenFaaS Knative Kubeless

Queue inside Function Pod Ë Ë Ë é

Support for Multiple Workers
in Function Pod

Ë é Ë é

Function Startup Policy Warm Start Cold/Warm Start Cold/Warm Start Cold Start

Service Export Method Ingress Gateway/NodePort API Gateway/Ingress Gateway Ingress Gateway Ingress Gateway

Runtime Metric Collection Metric Server Metric Server/API Gateway Metric Server/Queue-proxy Metric Server

Auto-scaling Mode CPU/Memory CPU/Memory/RPS CPU/Memory/Concurrency/RPS CPU/Memory

Scale-to-zero é é Ë é

TABLE I: Comparision of popular open-source serverless platforms

heavily on specific CSPs, and it is difficult to migrate existing
functions to either self-hosted clusters or other public clouds.

The open-source serverless platforms bring more flexibility
and allow developers to freely deploy and manage functions
on self-hosted clouds. However, there are still some challenges
for open-source serverless platforms: (1) it requires a deep
understanding of platform features to build effective functions;
(2) the developers should manage and maintain serverless
platforms by themselves, which requires much expertise of
platform frameworks and infrastructures; (3) the performance
of open-source serverless platforms may vary in different
scenarios, and it is difficult to choose the proper platforms for
a specific usage scenario. Therefore, it is necessary to analyze
the salient characteristics of popular open-source serverless
platforms and compare their performance to help developers
choose suitable platforms to deploy efficient services.

III. PLATFORM CHARACTERISTICS

Based on recent popularity, community vibrancy and feature
richness, we specifically select four open-source serverless
frameworks, i.e., Knative, Kubeless, Nuclio and OpenFaaS,
to analyze their characteristics.

A. Dependency on Kubernetes

Kubernetes [4] is a portable and extensible open-source
system that facilitates declarative configuration, automating
deployment and management for containerized workloads.
Most of open-source serverless platforms rely on Kubernetes
for orchestration and management of function pods, which are
the atomic deployable units in Kubernetes. Fig. 1 shows the
pivotal Kubernetes services that serverless platforms depend
on. These Kubernetes services are used for: (1) configuration
management, (2) service discovery, (3) auto-scaling, (4) pod
scheduling, (5) traffic load balancing, (6) network routing and
(7) service roll-out and roll-back.

Thanks to the horizontal pod auto-scaler (HPA) feature
from Kubernetes, the Kubernetes-based serverless platforms
support resource-based auto-scaling. The framework of HPA
is shown in Fig. 2. The Kubelet on each node collects the
resource metrics of each pod. HPA gets these metrics from
the API server. The auto-scaling threshold could be a raw
value or a percentage of the pod requested amount for that
resource. When the CPU or memory usage of a given function

Kubernetes
Network RoutingAuto-scaling Traffic Distribution

Load-balancing

Orchestration and Management Logs, Debug and Monitoring

Scheduling

Serverless Platforms

Fig. 1: Serverless platforms and underlying Kubernetes ser-
vices.

pod exceeds the threshold, HPA automatically triggers the
Development controller to scale the pod number.

Deployment

Metric
Server

HPA

Kubelet API
Server

Function Pods

Resource
Metrics

Auto-scaling
Decision

Create/
Recycle Pods

Collect
Metrics

Fig. 2: Horizontal pod auto-scaling framework.

B. Salient Features of Serverless Platforms

Table I summarizes salient features of four widely-known
open-source serverless platforms.

1) Nuclio: The main components of Nuclio are shown
in Fig. 3. In each function pod, there is one event listener
and multiple worker processes. The event listener receives
new events and redirect them to worker processes. Multiple
worker processes could work in parallel and improve the
performance significantly on a multi-core worker node. The
worker process number is set to be static and specified by the
configuration file. The open-source version does not have a
built-in workload-based auto-scaling feature, but the resource-
based auto-scaling is supported by Kubernetes HPA.

Nuclio supports two ways to trigger functions: (1) invoking
the function by name through ingress controller, which can
distribute the traffic to different back-end pods according to
the pre-set load balancing rule (e.g., round-robin, random

16

and least connection first) and (2) sending requests directly
to function pods by NodePort, which is a unique allocated
cluster-wide port for the function. In the NodePort method,
incoming requests are load balanced at random by Netfilter.

(Third Party)
Ingress Controller

Event Listener
(HTTP Trigger)

Workers/Function Processes

Nuclio Function Pods

1.1

1.2

2
Clients

Fig. 3: Nuclio framework.
2) OpenFaaS: The key components of OpenFaaS are

shown in Fig. 4. The API gateway provides access to the
functions and collects traffic metrics. Faas-netes is the con-
troller for managing OpenFaaS function pods. Prometheus5

and AlertManager6 are used for auto-scaling.

OpenFaaS
API Gateway

Of-watchdog

Function Process

OpenFaaS Function Pods

Clients

Create/Recycle Pods

Prometheus

AlertManager

Faas-netes

Auto-scaling
Decision

Fig. 4: OpenFaaS framework.
Each function pod contains a single container running two

type of processes, namely of-watchdog and function process.
Of-watchdog is a tiny server that works as the entry-point for
incoming requests and forwards them to the function process.
Of-watchdog can operate in three modes, i.e., HTTP, streaming
and serializing. In HTTP mode, the function process is forked
only once at the beginning and kept warm for the entire life
cycle of the function pod. In both the streaming and serializing
mode, a new function process is forked for every request,
resulting in significant cold-start latency and adverse impact on
performance. Our evaluation results show that the throughput
of the streaming or serializing mode is about 10× lower than
that of HTTP mode.

OpenFaaS has a built-in requests-per-second (RPS) based
auto-scaling feature. Prometheus scrapes the traffic metrics
from API gateway. AlertManager reads the RPS metric from
Prometheus and fires an alert to the API gateway according to
the auto-scaling rule defined in the configuration file. Then the
API gateway handles the alert and invokes the Faas-netes to
scale up or scale down function replicas. Note that the open-
source version does not support scale-to-zero feature, which is
only available in the commercial version, i.e., OpenFaaS Pro.

3) Knative: Fig. 5 shows the Knative framework. Each
function pod consists of two containers, namely queue-proxy
container and function container. The queue-proxy is a sidecar
container to queue incoming requests and forward them to
the function container. The queue-proxy provides a buffer to
handle traffic burst in spite of incurring queuing latency. In

5 https://prometheus.io/ 6 https://github.com/prometheus/alertmanager

Deployment

Create/
Recycle Pods

Auto-scaling
Decision

Auto-scaler

Knative Function Pods

Clients

Metrics

Queue-proxy Container
User

Container Internal Metric
Server

(Third Party)
Ingress Controller

Activator

Fig. 5: Knative framework.

addition, the queue-proxy collects metrics and expose them
via a simple HTTP server, i.e., internal metric server. Multiple
workers reside in the user container to process requests in
parallel. The communication overhead between queue-proxy
container and function container is higher than the process
model of Nuclio and OpenFaaS, and thus results in lower
performance.

The Knative built-in auto-scaling, i.e., Knative pod au-
toscaler (KPA), supports both RPS mode and concurrency
mode. The auto-scaler scrapes metrics from function pods
and computes the replica number based on the auto-scaling
algorithm. The deployment controller gets the auto-scaling de-
cision and adjusts the pod number. Knative supports scale-to-
zero functionality which recycles all pods of inactive functions.
When a new request arrives for an idle function, the ingress
controller redirects the request to the activator to buffer it.
Then the activator triggers the autoscaler which could scale up
the idle function from zero. Once the function is running again,
the activator sends the buffered request to the pod. Although
scale-to-zero reduces resource usage, it leads to extra cold start
latency.

4) Kubeless: Kubeless is another open-source platform
built on top of Kubernetes. Fig. 6 describes the key compo-
nents and the working model of Kubeless. There are several
options for ingress controllers. We experiment with Nginx
ingress controller7 and Traefik ingress controller8, and opt
for Traefik due to better performance. Kubeless leverages
Kubernetes HPA for auto-scaling and does not support scale-
to-zero.

Function Container

Kubeless Function Pods

(Third Party)
Ingress Controller

Clients

Fig. 6: Kubeless framework.

C. Service Exporting and Network Routing

1) Service Exporting: The function pods are dynamic en-
tities that can be created and destroyed at any time due to
auto-scaling, failures, etc. Hence, Kubernetes provides service
as an abstraction to access the pods of the same function.
There are several ways to export services: (1) the service
could be assigned a NodePort, which is used to route the

7 https://kubernetes.github.io/ingress-nginx 8 https://traefik.io

17

incoming traffic to the entry node and let kernel stack control
load-balancing of the traffic across active pods; (2) the API
gateway/ingress controller works as the entry point and the
services are exported with specific URLs. The API gate-
way/ingress controller component of the serverless platform
can be accessed from outside the cluster by a external public
IP address. Once the API gateway/ingress controller receives
an incoming request, it determines the service for the request
according to the URL, and then load-balances and routes the
packet to a back-end active pod instance.

Kubernetes Cluster

NIC

Client

NIC

Kube-Proxy Kube-Flannel

Kernel
Space

User
Space

Netfilter

Config TCP UDP

Worker NodesMaster Node

Netfilter

Kube-Flannel Kube-Proxy

 Function Pods
Event Listener
(HTTP Trigger)

Workers/Function Processes
Flannel Tun-Tap

Flannel Tun-Tap

UDP TCP Config User
Space
Kernel
Space

API Gateway/
Ingress Controller

Control Flow
Data Flow

Flannel Overlay Network

Function Pod
Queue
Timer

Fig. 7: Network routing (Flannel mode) to export the services.

2) Network Routing: Fig. 7 describes Flannel – a sim-
ple Kubernetes overlay networking framework to route the
traffic to function pods. The Kube-Proxy pod is responsible
for setting up the routing and load-balancing rules, i.e., the
netfilter destination network address translation (DNAT) rules
to change the destination IP of incoming request packets [5].
The Kube-Flannel pod is responsible for intercepting the
packets and performing UDP encapsulation/decapsulation for
the traffic exiting/entering the physical network interface.

IV. PERFORMANCE EVALUATION

We first compare the overall performance of different open-
source serverless platforms. Based on the performance results
of multiple service exporting modes and auto-scaling modes,
we analyze the root cause of performance gap among different
serverless platforms.

A. Experimental Setup and Workload Description
We evaluate the serverless platforms on the CloudLab

testbed [6] consisting of one master and two worker nodes,
each of them equipped with Intel CPU E5-2640v4@2.4GHz
(10 physical cores), running Ubuntu 16.04.1 LTS (kernel
4.4.0-154-generic). We build all four serverless platforms on
Kubernetes (v1.20.0), using the latest version available at the
time of writing9. Several serverless functions of Python 3.6
runtime are implemented. We use wrk10 to generate HTTP
workloads for invoking serverless functions.
9 Nuclio (v1.6.1); OpenFaaS (v0.20.11) with HTTP mode of-watchdog;
Knative (v0.21) with Istio ingress controller (v1.8.4); Kubeless (v1.0.8) with
Traefik ingress controller (v2.4). 10 https://github.com/wg/wrk

B. Performance
1) HTTP Workload: To evaluate the baseline performance

of different serverless platforms, we implement a HTTP work-
load function that could fetch a four-byte static webpage from
a local HTTP server on the master node. For a fair comparison,
we limit to a single instance of the function pod, disable
auto-scaling and configure the same queue size and timeout
parameters (50K requests, and 10s timeout) at the ingress
gateway and function pod components across all the platforms.
For Nuclio and Knative, we further restrict it to a single
worker in one pod. Every experiment lasts for two minutes
and we measure for one minute after one-minute warm-up.
The experiment is repeated for 20 times. Fig. 8 shows the
throughput for varying number of concurrent connections and
the latency profile for concurrency level of 100. Nuclio has
the least 99%ile latency within 500ms, as it allows queuing
only within the function pod, while OpenFaaS and Knative
can queue requests at ingress/gateway components. OpenFaaS
shows heavy tail due to queuing at both the gateway and of-
watchdog components. Kubeless drops the connections at the
ingress, resulting in additional retries from the client and hence
lower throughput. The latency with Kubeless is lower because
there is no queue inside the Kubeless function pod.

1 10 100 1000
Number of Concurrent Requests

0

1

2

3

4

T
h

ro
u

g
h

p
u

t
(R

P
S

)

×102

Nuclio

OpenFaaS

Knative

Kubeless

(a) Throughput.

0 1 2 3 4 5
Latency (ms) ×103

0.00

0.25

0.50

0.75

1.00

C
D

F

Nuclio

OpenFaaS

Knative

Kubeless

(b) Latency (concurrency = 100).

Fig. 8: Performance of HTTP workload function. Error bars
indicate standard deviation over 20 runs.

2) Latency Breakdown of Single Request: We analyze the
delay overheads incurred in processing serverless functions
for different platforms. We breakdown the processing delays
within the function pod. For this experiment, we use curl to
send one request for hello-world function11 and use tcpdump
to capture the packets on the worker node of the function
pod. We record four timestamps, i.e., (1) when the request
reaches the function pod; (2) start of the function runtime; (3)
end of the function runtime; (4) when the response is sent
out of function pod. The experiment is repeated for 20 times
and the average time intervals between these timestamps are
shown in Fig. 9. In all frameworks, the actual run-time of
the function (0.001ms) is the same. However, the function
initiation time (time taken for request to be forwarded to the
function instance) and function response delay (time taken for
the response of the function to be sent out of the pod) vary.
This depends on how the data is packaged and shared with
the function instance. Due to forking-per-request, Kubeless

11 It is a no operation function that returns four bytes of static text in the
response.

18

incurs very high delay in forwarding the packet to the function
instance.

Function Pod

Function
Runtime

1

2 3

4 Process 1→2 2→3 3→4
Nuclio 0.63 0.001 0.54

OpenFaaS 1.32 0.001 0.93
Knative 1.30 0.001 0.62

Kubeless 4.96 0.001 2.63

Fig. 9: Latency breakdown of function execution (ms).

C. Auto-scaling

To study the auto-scaling capabilities provided by different
serverless platforms, we compare the features of both the
workload-based and resource-based auto-scaling under differ-
ent workload characteristics. We use the same HTTP workload
function as in §IV-B1.

1) Workload-based Auto-scaling: Both Knative and
OpenFaaS support workload-based auto-scaling. While the
workload-based auto-scaling metric of OpenFaaS is RPS, the
metric in Knative is concurrency, i.e., the concurrent request
number. For a fair comparison, we set equivalent auto-scaling
configuration parameters for these platforms12. We use wrk
to send a steady flow of requests (with concurrency of 100
and RPS of 100) and run the experiment for 60s. Periodically
every 2s, we monitor the number of pod instances, CPU and
memory usage, and throughput. From Fig. 10, we observe
that Knative scales multiple instances at a time to reach 10
instances quickly (in 12s), while OpenFaaS just scales up
one instance at a time, taking 26s to scale up to 10 instances.
Due to the longer process chain of auto-scaling in OpenFaaS
(i.e., API gateway → Prometheus → AlertManager → API
gateway → Faas-netes), the scaling latency of OpenFaaS is
higher than that of Knative. Although the CPU usage for
the scaled instances looks identical, the memory pressure of
Knative is higher. This stems from the differences in python
runtimes and proxies (i.e., the queue-proxy in Knative and
of-watchdog in OpenFaaS).

0 5 10 15 20 25 30 35
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 ×103

0

2

4

6

8

10

12

14

16
Throughput (RPS)

Memory (MB)

Pod Num

CPU Num

(a) Knative.

0 5 10 15 20 25 30 35
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 ×103

0

2

4

6

8

10

12

14

16
Throughput (RPS)

Memory (MB)

Pod Num

CPU Num

(b) OpenFaaS.

Fig. 10: Workload-based auto-scaling.

2) Resource-based Auto-scaling: All these Kubernetes-
based platforms support resource-based auto-scaling. In this
experiment, we use CPU usage as the metric of HPA and

12 In Knative, we set the minScale and maxScale instances as 1 and 10,
target to 10, max-scale-up-rate to 100, tick interval to 2s, and stable window
to 10s. Likewise, for OpenFaaS, we set scale-factor to 10 and configure the
alert-notification window to 2s, and RPS threshold to 10.

the CPU threshold is set to be 50%. The other experiment
configurations are the same as those in §IV-C1. As Fig. 11
shows, except for Kubeless, the auto-scaling behavior is simi-
lar across all the platforms i.e., auto-scaling tries to double the
instances at each step until it reaches the maximum. However,
the duration of each step depends on the CPU utilization factor,
which in turn depends on the serverless platform specific
components, such as event-listener, of-watchdog and queue-
proxy. Nuclio, being relatively more CPU hungry, is able to
scale more rapidly (in 40s) than Knative and OpenFaaS. For
Kubeless, the fork-per-request and no queuing of function pods
result in high latency and packet loss, which in turn contributes
to lower throughput and lower CPU utilization [7]. Thus it
leads to poor auto-scaling performance.

0 10 20 30 40 50 60 70 80 90100
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 ×103

0

2

4

6

8

10

12

14

16
Throughput (RPS)

Memory (MB)

Pod Num

CPU Num

(a) Nuclio.

0 10 20 30 40 50 60 70 80 90100
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 ×103

0

2

4

6

8

10

12

14

16
Throughput (RPS)

Memory (MB)

Pod Num

CPU Num

(b) OpenFaaS.

0 10 20 30 40 50 60 70 80 90100
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 ×103

0

2

4

6

8

10

12

14

16
Throughput (RPS)

Memory (MB)

Pod Num

CPU Num

(c) Knative.

0 10 20 30 40 50 60 70 80 90100
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 ×103

0

2

4

6

8

10

12

14

16
Throughput (RPS)

Memory (MB)

Pod Num

CPU Num

(d) Kubeless.

Fig. 11: Resource-based auto-scaling.

V. INSIGHTS AND FUTURE WORK

1) Promising Platform: In spite of the moderate perfor-
mance compared with other open-source platforms, Knative
has many useful features, such as scale-to-zero and multiple
auto-scaling modes, and active community that can provide
lots of help for users and developers. Thus Knative is a suitable
platform for further development and innovation in serverless
computing.

2) Auto-scaling: For current auto-scaling mechanisms, such
as workload/resource-based auto-scaling, the auto-scaling met-
ric and threshold are set by tenants. Because the tenants
may not really know the runtime characteristics of their
functions (i.e., resource usage and execution time), they easily
mis-configure the auto-scaling settings. In addition, it is not
always easy to predict the correct indicators that could show
whether the current function pods are under-resourced or
under-utilized. Thus a more smart auto-scaling algorithm is
needed to be designed to both properly meet the workload
demand and save the resources in different scenarios.

19

3) Function Startup Policy: There are two options for
function startup policy, i.e., cold start and warm start. For
the functions with low invocation rates, cold start policy
could help reduce resource usage in the case of no incoming
requests, but it leads to extra cold start latency. Therefore, the
cold start is not appropriate for time-sensitive functions [8].
We should carefully choose the function startup policy in
accordance with the scenarios and user demands.

4) Metric Collection: The on-demand provisioning feature
of serverless computing depends on several mechanisms, such
as auto-scaling, scheduling and load balancing. All these
mechanisms leverage metrics to make the decision. Many plat-
forms, such as Knative and OpenFaaS, use scraping method to
fetch metrics from pods. In our experiments, we find that the
scraping method may leads to large traffic overhead when there
are a large number of pods. Using sampling to only scrape a
section of pods can partly decrease the overhead. However,
sampling may miss out the abnormal pods and reduce the
accuracy of metrics. Hence, a more efficient metric collection
mechanism is worth studying further.

5) Service Export and Network Routing: There are many
ways to export services and route incoming requests to back-
end function pods, such as cluster IP, NodePort, function
name/URL. All of them have both strengths and weaknesses,
and should be chosen with caution.

6) Function Chain: It is useful to chain multiple functions
for stateful workflows and complex services. How to make
function chain more efficient and powerful needs to be ex-
plored in future work.

VI. RELATED WORK

In work [9]–[11], the authors conducted several measure-
ments on different cloud serverless platforms (AWS Lambda,
Microsoft Azure, Google Cloud), and found the AWS to be
better in terms of throughput, scalability, cold-start latency.
The work [12], [13] investigates the different factors that
influence the performance of AWS Lambda, namely the impact
of the choice of language of the function, memory footprint
of the function, etc. Work [14] evaluates the performance of
Fission, Kubeless and OpenFaaS serverless frameworks and
characterizes the response time and the ratio of successfully
completed requests for different loads. However the work fails
to characterize the throughput of these platforms and accounts
for the mean latency (response time) and successful responses
at different load characteristics, which is debatable, without
the proper consideration and configuration of the serverless
platform specific configuration parameters, resulting in in-
accurate results. Work [15] quantitatively evaluates Apache
OpenWhisk, OpenFaaS, Kubeless, and Knative platforms. The
results for Kubeless are similar, but for the other platforms,
we feel the presented results are inaccurate. This could be due
to the usage of Kubernetes. In contrast, our work focuses on
discerning the architectural blocks that impact the performance
of Kubernetes-based open-source serverless platforms.

VII. CONCLUSION

We elaborate the working models of different popular open-
source serverless platforms and identify their key characteris-
tics. In addition, we analyze the root causes of performance
gap of different service exporting and auto-scaling modes on
those platforms. Further, several insights are proposed for
future work, such as auto-scaling, service export and metric
collection.

Acknowledgment: This work was supported by National
Key Research and Development Program of China under Grant
2018YFB1800500, and US NSF grants CRI-1823270, CNS-
1763929, and grants from Hewlett Packard Enterprise Co.,
Futurewei Technologies Inc., and China Scholarship Council.
Dan Li is the corresponding author.

REFERENCES

[1] J. Li, S. G. Kulkarni, K. Ramakrishnan, and D. Li, “Understanding Open
Source Serverless Platforms: Design Considerations and Performance,”
in Proceedings of the 5th International Workshop on Serverless Com-
puting (WoSC), 2019, pp. 37–42.

[2] J. Li, D. Li, Y. Yu, Y. Huang, J. Zhu, and J. Geng, “Towards Full
Virtualization of SDN Infrastructure,” Computer Networks, vol. 143, pp.
1–14, 2018.

[3] S. Allen and et al., “CNCF Serverless Whitepaper,” https://github.com/
cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf
serverless whitepaper v1.0.pdf, 2018, [ONLINE].

[4] B. Burns and et al, “Borg, Omega, and Kubernetes,” Commun. ACM,
vol. 59, no. 5, pp. 50–57, 2016.

[5] J. Li, D. Li, Y. Huang, Y. Cheng, and R. Ling, “Quick NAT: High Per-
formance NAT System on Commodity Platforms,” in IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN).
IEEE, 2017, pp. 1–2.

[6] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb et al., “The Design and
Operation of CloudLab,” in USENIX Annual Technical Conference
(ATC), 2019, pp. 1–14.

[7] J. Li, D. Li, W. Wu, K. Ramakrishnan, J. Geng, F. Gui, F. Wang, and
K. Zheng, “Sphinx: A Transport Protocol for High-Speed and Lossy
Mobile Networks,” in IEEE 38th International Performance Computing
and Communications Conference (IPCCC). IEEE, 2019, pp. 1–8.

[8] Y. Huang, J. Geng, D. Lin, B. Wang, J. Li, R. Ling, and D. Li, “LOS: A
High Performance and Compatible User-level Network Operating Sys-
tem,” in Proceedings of the First Asia-Pacific Workshop on Networking
(APNet), 2017, pp. 50–56.

[9] G. McGrath and P. R. Brenner, “Serverless Computing: Design, Imple-
mentation, and Performance,” in IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW). IEEE, 2017, pp.
405–410.

[10] L. Wang and et al, “Peeking Behind the Curtains of Serverless Plat-
forms,” in USENIX Annual Technical Conference (ATC), 2018, pp. 133–
146.

[11] J. Wen, Y. Liu, Z. Chen, Y. Ma, H. Wang, and X. Liu, “Understanding
Characteristics of Commodity Serverless Computing Platforms,” arXiv
preprint arXiv:2012.00992, 2020.

[12] W. Lloyd and et al, “Serverless Computing: An Investigation of Factors
Influencing Microservice Performance,” in IEEE International Confer-
ence on Cloud Engineering (IC2E). IEEE, 2018, pp. 159–169.

[13] C. Yan, “How Does Language, Memory and Package Size Affect
Cold Starts of AWS Lambda?” https://read.acloud.guru/does-coding-
language-memory-or-package-size-affect-cold-starts-of-aws-lambda-
a15e26d12c76, 2017, [ONLINE].

[14] S. K. Mohanty, G. Premsankar, and M. di Francesco, “An Evaluation of
Open Source Serverless Computing Frameworks,” in IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
2018, pp. 115–120.

[15] A. Palade, A. Kazmi, and S. Clarke, “An Evaluation of Open Source
Serverless Computing Frameworks Support at the Edge,” in IEEE World
Congress on Services (SERVICES), vol. 2642. IEEE, 2019, pp. 206–
211.

20

I-CMOMMT: A multiagent approach for patrolling and observation of mobile
targets with a continuous environment representation

Jamy Chahal 1, 3 Assia Belbachir 1, 3 Amal El Fallah Seghrouchni 1, 2

1 Sorbonne Université, LIP6 - UMR 7606 CNRS
2 Université Mohammed VI Polytechnique

Ai Movement - International Artificial Intelligence Center of Morocco
3 Institut Polytechnique des Sciences Avancées,

Department of Aerospace System, Ivry-Sur-Seine, France

Abstract

Agent-based modelling has been widely studied for ob-
serving moving targets and patrolling. However, in general,
the studies are interested either in observation in a continu-
ous environment or patrolling in a graph representation. In
order to deal jointly with observation and patrolling, a com-
mon representation of the environment is required. In this
paper, we firstly proposed a new environment representa-
tion’s formalism, merging both agent-based distributed pa-
trol and observation method. Secondly, we implemented a
new approach called I-CMOMMT to cope with a trade-off
between observation and patrolling using our new formal-
ism. The obtained results are compared with other methods
to show the efficiency of our approach.

1. Introduction

Multiagent paradigm is widely used for mobile tar-
gets observation and patrolling. The observation prob-
lem consists in positioning agents to maximize the num-
ber of viewed targets by at least one agent. The Coopera-
tive Multi-Robot Observation of Multiple Moving Targets
(CMOMMT) is a well defined problem [1]. It is composed
by a team of m robots, supervising n targets into an en-
closed spatial region, where the number of robots is greater
than the number of targets. To maximize the number of
viewed targets, the author [1] proposed a distributed solu-
tion called A-CMOMMT. This solution is based on local
force vector, where each agent is attracted by all the tar-
gets within its sensor range, and repulsed by all other agents
within a protection range. The authors in [2] proposed the
Behavior CMOMMT (B-CMOMMT) to improves the tar-
get’s distribution among the agents, by adding for instance
the ability for the agents to ask for help if they are facing a
potential loss of target tracking.

The patrolling problem consists of positioning agents to
minimize the idleness, which represents the time difference
between two visits of a same location by at least one agent.

Idleness was formalized using a graph representation by
the authors in [3]. An area is represented by a node and
an idleness to be minimized. The authors [4] put forward
the use of Long short-term memory (LSTM) to learn a pa-
trolling strategy. In [5], the authors consider an open sys-
tem, where agents can enter/leave the system. The coor-
dination is based on auctions, where agents can trade their
belonging nodes.

On one hand, the observation problem uses a continuous
spatial representation to incorporate the motion of targets
and agents. On the other hand, the patrolling problem is
based on graph representation to evaluate the idleness of a
node. To deal with both observation and patrolling prob-
lem, we developed a conceptual framework unifying the
two representations into a continuous environment repre-
sentation. Besides, we developed a method called Idleness
CMOMMT (I-CMOMMT), to consider both patrolling and
observation, and we assess it through new patrolling evalu-
ation tools.

The paper is organized as follows. Section 2 explains
our conceptual framework. Section 3 defines our developed
method I-CMOMMT. Section 4 describes our experiments
and the obtained results. Section 5 concludes our work.

2. Conceptual framework

We define the patrolling and target tracking problem as
follows: S is a two dimensional enclosed area, where S ⊂
R2. A is a set of m patrolling agents. O is a set of n targets.

Each patrolling agent ai ∈ A (with i ∈ [1,m]) is defined
by a set of three parameters (state, obs, com): state con-
tains the Cartesian position pai ∈ S of the agent ai, and the
speed vai , where vai < vamax . obs is described by an ob-
served surface so ∈ S and the sensor’s description. The sen-
sor’s description includes the percentage of false positive
and false negative detection and the time processing. com
defines the agent’s communication capabilities, described
by a surface sc and the communication’s limitation. The
latter includes the delay and the bandwidth’s constraint.

Each target oj ∈ O (with j ∈ [1, n]) is defined by a

DOI reference number: 10.18293/SEKE2021-135

21

state. For the whole mission of patrolling and observation,
the objective is to minimize the average idleness (eq. (4)),
as well as the maximum idleness, defined in eq. (5), and
to maximize the target’s observation through the A metric
(eq. (7)). The following subsections will describe in detail
these metrics and our work on changing the environment
representation into a continuous one.

2.1. From a graph to a continuous environment repre-
sentation In a graph representation, we define ik(t) the
idleness of a node nk at a time t. At each time step ∆t:
ik(t + 1) = ik(t) + ∆t. If, at a time t, the node nk is ob-
served by at least one agent ai, then ik(t) = 0. However,
the graph representation is not suitable for agents and tar-
gets evolving in a continuous environment. We propose to
create a continuous idleness function called It(x, y). This
function returns the idleness of a position in two dimen-
sions (x, y) defined by: R2 → R+ | x, y 7→ It(x, y) . At
the beginning of the mission, the idleness of the whole map
is equal to 0:

It=0(x, y) = 0 (1)

Then, at each time step ∆t, the idleness of each position
changes such as:

It+1(x, y) = It(x, y) + ∆t (2)
When a patrolling agent ai observes an area so, then the
region’s idleness changes to 0:

∀(x, y) ∈ so : It(x, y) = 0 (3)

2.2. Evaluation criteria In order to compare different de-
veloped approaches for patrolling and observation, several
evaluation criteria need to be defined. In the following sec-
tions, we define them for the patrolling and then for the ob-
servation context.

2.2.1. Patrolling problem In [3, 6], the authors propose
several criteria resulting from the notion of idleness. They
are represented on the left side of the table 1. In order to
lighten the memory of the agent, we propose to discretize
the continuous idleness function into multiple cells. Let df
be the discretization factor and Me the chosen metric (e.g.
meter, km). Then each surface M2

e is transformed into d2f
cells.

The discretization factor df has to take into account
the surface’s observation so of the agents. We propose to
choose a df such as so covers at least 3 × 3 cells. The size
of df must also be dimensioned considering the processing
capacity of the agent. This discretized representation is on
the right side of the table 1.

The objective of a patrolling method is to minimize the
idleness’s average, which can be done in the continuous rep-
resentation case with the defined equation (4). However,

Graph Discrete map
Worst graph’s idleness

imG (t) = maxnk∈N ik(t)

with ik(t) the idleness of the
node nk and N the set of
nodes in the environment.

Worst map’s idleness

imM (t) = maxck∈Cik(t)

with ik(t) the idleness of the
cell ck and C the set of cells
in the environment.

Instantaneous graph idleness

iG(t) =
1

|N |
∑
nk∈N

ik(t)

with |N | the number of nodes
in the environment.

Instantaneous map idleness

iM (t) =
1

|C|
∑
ck∈C

ik(t)

with |C| the number of cells
in the environment.

Graph idleness

iavG =
1

|N | × T

T∑
t≥0

∑
nk∈N

ik(t)

with T , the mission duration.

Idleness map

iavM =
1

|C| × T

T∑
t≥0

∑
ck∈C

ik(t)

(4)
with T , the mission duration.

Table 1: Idleness’s definition using a graph (left) and a dis-
crete map (right) representation.

this criterion is an average, and does not reflect whether a
region has been neglected for a long time.

In [7], the author underlined other different patrolling
evaluation criteria, in particular to consider the maximum
idleness of a node during the whole duration T : imaxG =
maxt∈[0,T]i

m
G (t) We propose to use the same definition in

the context of a discrete map as follows:
imaxM = maxt∈[0,T]i

m
M (t) (5)

However, this criterion is still not significant. Indeed, by
using a discretized map idleness, a node (which represents
an area) cannot be compared to a cell (which represents the
smallest surface unit). Therefore, the maximum cell idle-
ness (eq. 5) can easily reach the mission duration T . Thus,
instead of evaluating the maximum idleness of a cell, we
propose in this paper to consider a new criteria: the maxi-
mum idleness of a set of cells, called region. In order to fit
the aggregation of cells with the agent’s observation capa-
bilities, we set the region’s surface equals to the observation
surface so. As mentioned in [8], for the image processing
field, getting the average intensity of pixels in an area is per-
formed by filtering. This transformation is done by using a
two-dimensional convolution, based on a kernel ω. By anal-
ogy, the mapM is a matrix, composed by intensities (in this
case, idleness), that we can filter using the following equa-
tion: Mr = ω ∗M . With Mr the regional map, containing
the region’s idleness irk(t) for the cell ck. Then, we can
compute the maximum region idleness imaxMr

by:
imaxMr

= maxt∈[0,T] maxck∈C irk(t) (6)
In order to perform an average, the kernel ω is a square ma-

22

trix, with the size of the observation surface in the discrete
representation, made only by ones over the sum of element.

Therefore, a good patrolling strategy tends to minimize
the idleness of regions through the minimization of the
equation (6).

2.2.2 Observation problem The observation evaluation
criteria has already been defined in the formalization of the
CMOMMT [1]. We propose to use the same notation and
definition. The metric A represent the number of targets
seen on average by at least one agent during evaluation time
T . Therefore, the objective of an observation strategy is to
maximize the metric A.

3. I-CMOMMT Proposal

We propose to combine observation and patrolling
by developing a distributed method called Idle-
ness CMOMMT (I-CMOMMT), based on the force
field of the A-CMOMMT. In this method, an agent ai, at
a time t, undergoes a force from each target j under its
observation surface (weighted by ωik) and from each other
agent k within its communication range :

F (ai, t) =
n∑
j=1

ωijf
t
ij +

m∑
k=1

frik (7)

The magnitudes of f tij and frik are defined in the figure
2 and 3 of the paper [1], alongside with the parameter
do1, do2, do3, dr1, dr2 and the concept of predictive track-
ing range. The weights ωik depends on the strategy design.

Based on the equation (7), we propose to add a force fpi
related to the patrol problem. This force is weighted by the
value λ(t) ∈ [0; 1], implying that λ(t) is the patrolling level
priority over the observation at a time t. Then, the sum of
the force is defined by :

F (ai, t) = (1− λ(t))
n∑
j=1

ωijf
t
ij +

m∑
k=1

frik + λ(t)fpi (8)

If the agent ai has no target under its observation surface
so at a time t, then ai is doing only patrolling with λ(t) = 0.
Besides, we consider the weights ωij = 1.

Because each scenario is unique, we let the experimenter
define the idleness’s indicator σ (in seconds) from which the
idleness of a region is considered to be high. The desired
agent’s behavior of the I-CMOMMT is to perform obser-
vation as long as the idleness of regions is low. When the
idleness of at least one region approaches the σ value, λ (t)
increases to prioritize the patrolling.

Therefore, λ (t) has to evolve according to the maximum
idleness of region at a time t : maxck∈C irk(t). We propose

the following definition, by using the tanh function to keep
λ(t) ∈ [0; 1]: λ(t) = tanh

(
maxck∈C irk(t)

σ

)
With irk(t) the region’s idleness at the cell k and C the

set of cells in the environment. The force fpi is directed
toward the highest region’s idleness only, with a constant
magnitude of 1. This direction is changed when another
region has a greater idleness. In case of multiple regions
having the same idleness, the agent randomly selects only
one among them.

To improve the patrolling strategy, we propose that each
agent shares its own map with all the others agents belong-
ing to its communication surface. During the reception, the
agent updates its map by choosing the most up to date in-
formation, which is the minimum between its own cells and
the ones received.

4. Experimentation

Several simulations have been carried out to evaluate the
effectiveness of our proposed I-CMOMMT method in the
context of patrolling and observation mission. For this pur-
pose, we defined a random target’s behavior. The target is
randomly choosing a position from the environment S with
a constant velocity, and then randomly selects a new posi-
tion. We also suppose that there is no communication be-
tween the targets, nor collision consideration.

The experiments have the following configuration: An
environment’s surface of 75m × 75m, which is discretized
by a factor df = 3 cells/m. The experiment duration is
T = 1 800s. Agents have an observation’s range of 4m
and a communication’s range of 5m. Besides, the target’s
maximum speed vomax

= 0.5m/s and the agent’s maxi-
mum speed vamax

= 1m/s. Finally, we set σ = 0.8 × T ,
do1 = 1m, do2 = 2m, do3 = 4m, dr1 = 1m, dr2 = 2m
and a predictive tracking range of 5m.

In our experiments, we consider that communication and
observation are only limited by the range (implying no de-
lay, nor bandwidths constraint and perfect target’s detec-
tion). We compare the I-CMOMMT method with the ob-
servation’s strategy A-CMOMMT and three other patrolling
strategies. Inspired by the work of [3], we adapt these strate-
gies in our continuous idleness function case:
Random Reactive (RR) : The agent randomly selects a
position, goes there, and randomly selects a new one. In [3],
the agent randomly selected a node.
Closest Idleness (CI) : The agent chooses, among the sur-
rounding cells, the one with the highest idleness. The agent
can perform a map sharing with other agents under its com-
munication range. In [3], the agent selected the surrounding
nodes, without communication. The behavior was called
the Conscientious Reactive.
Highest Idleness (HI) : The agent chooses, among all the
cells, the one with the highest idleness. The agent can per-

23

form a map sharing with other agent under its communica-
tion range. In [3], the agent selected among all the nodes,
without communication. The behavior was called the Con-
scientious Coordinated.
We have run 15 experiments for each set of agents and tar-
gets configuration. The statistical obtained results of the
evaluation criteria are shown in Figure 1 and Figure 2.

Figure 1: Illustration of the obtained results from the Map
idleness and the ratio number of agents and targets.

The map idleness for the aforementioned five methods
are shown in Figure 1. Through this figure, we can see
that the highest average idleness is obtained from the A-
CMOMMT. In contrast, we obtained a better minimization
from the patrol-oriented methods (such as CI and HI). The
I-CMOMMT method is an in-between, it improves the map
idleness compared to the A-CMOMMT, but it is not as effi-
cient as the patrol-oriented methods.

Figure 2: Illustration of the obtained results comparing A
metric according to agent and target ratio.

Figure 2 compares the A metric for the aforementioned
five methods. On one hand, the patrol-oriented methods
have no interest in the observation objective, leading to a
low value of A. On the other hand, A-CMOMMT is fo-
cusing on the observation, with a high value of the metric
A. Therefore, the I-CMOMMT is an in-between method,
by considering observation as well as patrolling. In our sce-
narios, on average, the I-CMOMMT reaches 71% of the A-
CMOMMT observation’s efficiency. While it reduces, still
in comparison with the A-CMOMMT, 25% of the average
map idleness.

From these experiments we can consider I-CMOMMT
as a method that makes a compromise between both obser-
vation and patrolling problem.

5. Conclusion and future work

In this paper we are interested on combining approaches
related to observation and patrolling. The patrolling repre-
sentation and analysis tools are based on graph whereas the
observation problem uses a continuous representation. In
this work, we proposed to merge both representations into
a uniform continuous representation. This transformation
has been achieved through the use of a continuous idleness
function It(x, y).

A new patrolling and observation method called Idleness
CMOMMT (I-CMOMMT) was proposed. This method
weights patrolling and observation forces to find a good bal-
ance between the two problems. We evaluate I-CMOMMT
with different methods. Our result shows that the I-
CMOMMT approach is successfully achieving its goal to
consider both patrolling and observation, by being more ef-
ficient for patrolling than observation-oriented method and
observing more targets than patrolling-oriented methods.

References

[1] L. E. Parker, “Distributed algorithms for multi-robot observa-
tion of multiple moving targets,” Autonomous Robots, vol. 12,
p. 231–255, 2002.

[2] A. Kolling and S. Carpin, “Cooperative observation of multi-
ple moving targets: An algorithm and its formalization,” In-
ternational Journal of Robotics Research, vol. 26, no. 9, pp.
935–953, 2007.

[3] A. Pamponet Machado, A. De Luna Almeida, G. Ramalho,
J.-D. Zucker, and A. Drogoul, “Multi-Agent Movement Coor-
dination in Patrolling,” in First Workshop on Agents in Com-
puter Games, 2002.

[4] M. Othmani-Guibourg, J. Farges, and A. El Fallah
Seghrouchni, “LSTM path-maker: a new lstm-based strategy
for the multi-agent patrolling,” 52nd Annual Hawaii Interna-
tional Conference on System Sciences, pp. 1–10, 2019.

[5] C. Poulet, V. Corruble, and A. El Fallah Seghrouchni,
“Auction-based strategies for the open-system patrolling
task,” 15th International Conference on Principles and Prac-
tice of Multi-Agent Systems, pp. 92–106, 2012.

[6] A. Machado, G. Ramalho, J.-D. Zucker, and A. Drogoul,
“Multi-agent patrolling: An empirical analysis of alternative
architectures,” MABS’02, p. 155–170, 2002.

[7] A. De Luna Almeida, G. Ramalho, H. Santana, P. Tedesco,
T. Menezes, V. Corruble, and Y. Chevaleyre, “Recent ad-
vances on multi-agent patrolling,” 17th Brazilian Symposium
on Artificial Intelligence, vol. 3171, pp. 474–483, 2004.

[8] M. Poulose, “Literature Survey on Image Deblurring Tech-
niques,” International Journal of Computer Applications
Technology and Research, vol. 2, no. 3, pp. 286–288, 2013.

24

NVMSorting: Efficient Sorting on Non-Volatile
Memory

Zhaole Chu, Yongping Luo, Peiquan Jin, Shouhong Wan
1School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

2Key Lab. of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei, China
jpq@ustc.edu.cn

Abstract—Non-volatile memory (NVM) as a new type of stor-
age technology has many advantages such as non-volatility, byte
addressability, high storage-density, and low energy consumption.
Meanwhile, NVM has some limitations, e.g., asymmetric read
and write latency, limited write endurance, and high price.
Therefore, at present, it is not realistic to completely replace
DRAM with NVM in computer systems. A more feasible scheme
is to adopt the hybrid memory architecture composed of NVM
and DRAM. Following the assumption of hybrid memory archi-
tecture, this paper proposes an NVM-friendly sorting algorithm
called NVMSorting. Particularly, we introduce a new concept
called natural runs to improve the existing MONTRES algorithm
and present the cost analysis of the algorithm in the hybrid
memory architecture. In order to verify the performance of
our proposal, we implement six existing sorting algorithms as
baselines, including the MONTRES algorithm, and conduct
comparative experiments on an unsorted dataset and a partially
sorted dataset. The experimental results suggest the efficiency
of NVMsorting in terms of execution time and NVM writes.
Especially, on the partially sorted dataset, NVMSorting has
6.2% improvement on time performance and 5.7% reduction on
NVM writes compared to MONTRES, and 13.0% performance
improvement and 27.1% NVM-write reduction compared to the
traditional merge sorting algorithm.

Keywords—Non-Volatile Memory, Hybrid Memory, Sorting
Algorithm

I. INTRODUCTION

Non-volatile memory (NVM) such as Phase Change Mem-
ory (PCM) is one of the research hotspots in recent years, and
is also considered as a hot candidate for the next generation of
storage technology. NVM has some special properties [1]–[3].
First of all, differing from DRAM, it is non-volatile, meaning
that all data written into NVM will not be lost when the
host computer is shut down. Second, differing from magnetic
disks or solid-state drives (SSD) that only support block-based
data accesses, NVM is byte addressable, which is similar to
DRAM. Third, the density of NVM is generally higher than
that of DRAM and is comparable to that of SSD. To this
end, NVM has the advantages of both disks and DRAM.
However, NVM also has some limitations compared to DRAM
and disks. Firstly, the read and write latency of NVM is not
balanced. Particularly, NVM has the similar read latency as
DRAM, but its write latency is higher than that of DRAM.

DOI reference number: 10.18293/SEKE2021-141

TABLE I
COMPARISON OF SSD, DRAM, AND NVM

SSD DRAM NVM
Read Latency 25µs 20− 50ns 50ns

Write Latency 500µs 20− 50ns 1µs

Endurance 105 ∞ 108

Density High Low High
Non-Volatile Yes No Yes

Byte-Addressable No Yes Yes

In addition, the endurance of NVM is limited, meaning that
after a certain number of writes (108 at present), NVM will
become unstable. Thus, algorithms running on NVM have to
be write-friendly. In summary, we list the main features of
SSD, DRAM, and NVM in Table I.

Due to the limitations of NVM, currently it is not realistic
to completely replace DRAM with NVM. A more feasible
scheme is to adopt the hybrid memory architecture composed
of NVM and DRAM.There are two kinds of hybrid memory
architectures. The first type is the hierarchical architecture [2],
which takes DRAM as the cache of NVM. In this architecture,
only the DRAM space is recognized by the operating system
as main memory and does not utilize the high density of NVM.
In addition, it will introduce additional cost of data migration
and consistency. The second type is parallel architecture [3], in
which NVM and DRAM are both used as the main memory.
In this way, we can make good use of the advantages of NVM,
such as byte addressability and persistence. In addition, we can
reduce the write operations to NVM by devising appropriate
algorithms. Therefore, so far, the parallel architecture has
received much attention in NVM-related research. In this
study, we also adopt the parallel architecture.

Because of the emergence of NVM with high storage
density, we can use NVM to replace the traditional disk as the
persistent storage device and build a hybrid memory system
without disk. Based on this inference, this paper studies the
sorting algorithm in hybrid memory. At the same time, due
to the read/write asymmetry of NVM, we need to reduce the
writing operations of sorting as much as possible. Briefly, we
make the following contributions in this study:

(1) We improve the existing MONTRES algorithm to make
it suitable for NVM. MONTRES was designed as an external
sorting algorithm on SSD. In this paper, we propose a new

25

concept of natural runs and devise a new NVM-friendly
memory sorting algorithm called NVMSorting. Compared to
the original MONTRES algorithm, the proposed NVMSorting
can detect partially ordered runs and reduce the sorting cost.

(2) We present cost analysis of the NVMSorting algorithm
to theoretically demonstrate that NVMSorting has a lower cost
than existing sorting algorithms.

(3) We experimentally compare the time performance and
the number of NVM writes of the NVMSorting algorithm
with six existing sorting algorithms. The experimental results
show that NVMSorting has better time performance and less
NVM writes than existing sorting algorithms. In addition,
NVMSorting achieves better performance on the partially
ordered dataset, indicating that it can effectively detect the
partially ordered runs.

II. RELATED WORK

To the best of our knowledge, few studies have been focused
on the improvement of fundamental sorting algorithms on
NVM.

The first study [4] presented a write-limited sorting al-
gorithm within the context of database query processing.
It proposed three write limited sorting algorithms, namely
segment sort, hybrid sort and lazy sort. These algorithms are
all based on trading writes for reads to achieve an optimal
NVM memory cost. They either offer a knob to adjust the
read and write ratio of an algorithm, or use a lazy mechanism
to delay result materializing until the penalty outweighs the
gains.

The second work [5] proposed a cost model for sorting on
storage devices with asymmetric read and write latency. In
this literature, the authors presented three sorting algorithms
(merge sort, sample sort, and heap sort using buffer trees) for
the asymmetric external memory model and gave a detailed
cost analysis. However, this work is toward page-based storage
devices, such as flash-memory-based SSDs. Although flash
memory also has limited write endurance and low write
latency, it is much different from NVM, because NVM can
be used as main memory while flash memory can only be
used as secondary storage.

In the literaure [6], the authors proposed a write-once sort-
ing algorithm, named B*-sort. Differing from previous work,
this work focused on pure NVM-based embedded system.
Unlike the commonly used array-based sorting algorithms,
the B*-sort adopts a new concept, tree-based sort which is
inspired by the binary search tree that has the write-once
property during tree construction. The algorithm can guarantee
O(n) writes. Because of the tunnel-list structure proposed
by the author, B*-sort can also guarantee O(n

√
n) reads.

Although the pure NVM memory system could be realistic in
the future, many studies have reported that the hybrid memory
architecture will be more realistic in next years. This is mainly
because that the DRAM’s speed is higher than that of NVM.
Our study is also towards the hybrid memory architecture.
Therefore, we will not compare the B*-sort algorithm in the
experiment.

Recently, Luo et al. [7] proposed an optimal data placement
model for solving the data placement issue on DRAM-NVM-
based hybrid memory. They also developed a new sorting
algorithm that adopted heap structures to accelerate the sorting
process. However, this sorting algorithm was an in-memory
sorting one that ran on the parallel memory architecture
composed of DRAM and NVM, which is different from the
memory architecture of this study.

III. DESIGN OF NVMSORTING

A. Motivation

NVM and flash memory have similar defects, which is
the read/write asymmetry and the limitation of endurance .
Based on this observation, we can infer that a write efficient
algorithm designed for SSD may have the same effect when
it is transplanted to NVM. At present, the research of sorting
algorithms for SSD has made great progress, and a state-of-art
sorting algorithm for SSD is called MONTRES [8]. Therefore,
this study aims to improve MONTRES to make it suitable for
NVM-based hybrid memory architecture.

MONTRES was designed as an external sorting algorithm
on SSD. Its main idea is to persist data to SSD as early as
possible so that we need not partially write data to intermediate
runs. To achieve this, they proposed the merge-on-the-fly
mechanism and the run-expansion mechanism to generate runs
as large as possible. MONTRES has been demonstrated to be
helpful for accelerating the phase of merging runs. However,
MONTRES was designed for paginated SSDs and is not
suitable for byte-addressable NVM.

In the literature [9], researchers proposed the MONTRES-
NVM algorithm to optimize MONTRES for NVM, which
offers to detect all the sorted pieces in the original data set.
Each sorted piece is treated as a sorted run and it is ignored
in the run generation phase, to reduce useless NVM writes.
However, in real world applications, sorted pieces tend to be
short at length, which will lead to many tiny sorted runs and
then end up with poor performance.

B. Natural run

To address the problem mentioned above, we introduce a
new concept of natural run, which is defined in definition
1. A natural run is composed of several blocks (items in
a block need not to be sorted , while any two items in
consecutive blocks are ordered). Figure 1 shows an example
of a natural run. In this figure, 3 blocks of items which have
no overlap value range are grouped together to be a natural
run. A natural run can be treated as a sorted run in the merge
phase but the actual sort procedure of each block is delayed
until the last block is drained at merging. The concept of
natural run exploits much longer pieces that can be ignored in
run generation phase, so it can significantly reduce the NVM
writes and improve overall performance.

Following this idea, we propose the NVMSorting algorithm
leveraging natural runs. We will show that our NVMSorting

26

5 1 2 10 7 11 19 25 14

5 1 28 4 1910 7 11 19 25 14 3 15 10

natural run

Fig. 1. Example of a natural run

can achieve better sorting performance than the MONTRES-
NVM algorithm theoretically.

Definition 1: (Natural Run) A natural run is a sequence
of blocks S = {b1, b2, ...bx}. Each block b contains identical
number of items in value range [bmin, bmax]. For ∀i, j that
have i < j, it must hold that bimax < bjmin.

C. The NVMSorting Algorithm

The basic idea of NVMSorting algorithm is to detect natural
runs first and then perform merge sort for the natural runs and
normal runs. NVMSorting consists of three phases: (1) natural
run detection, (2) run generation, and (3) run merge. Below,
we will detail these phases.

(1) Natural Run Detection. This phase is designed to find
the natural runs in the input data. This can avoid loading all
input data into DRAM for sorting and then writing them back
to NVM. As writes to NVM are much costly, the detection of
natural runs help to reduce loading and writing back blocks
into NVM. The definition of natural run indicates that an
actual run tends to be longer than already sorted pieces used
in MONTRES-NVM. So we can infer that natural runs are
more common and useful than MONTRES-NVM.

Differing from the MONTRES algorithm that scans the
data to build a Min-Index before generating runs, we record
both the maximum and minimum values of each block when
scanning the data to build a MinMax-Index. Each element of
the MinMax-Index consists of the minimum and maximum
value of one data block, and elements are sorted in ascending
order. This index is then used to detect natural runs. The
algorithm of detecting natural runs is shown in Algorithm 1.
Specially, we detect the natural run with the first n elements
as the starting point, and select the longest run as the result.

(2) Run Generation. In the run generation phase, we also
use the merge-on-the-fly mechanism and the run expansion
mechanism. Due to the existence of natural run, this phase is
different from that of MONTRES. Here, we set block size to
M, the size of the whole memory work space of N · M, and
divide the DRAM memory into two areas, namely Wn and
Ws, where Wn is the work space for loading the natural run
whose size is M and Ws is the work space for loading other
data whose size is (N-1) · M. Algorithm 2 shows the process
of run generation.

Before run generation phase, we have scanned the data to
get the MinMax-Index and natural run index. The algorithm
loads the data into the work space in the order of the
smallest elements until the data block in the MinMax-Index
is exhausted (line 1). Only one block will be loaded to Wn

Algorithm 1: FindNaturalRun
input : MinMax-Index
output: NaturalRun-Index

1 for i← 1 to n do
2 s=MinMax-Index[i];
3 TempResult={};
4 while s 6= NULL do
5 TempResult.insert(s);
6 Locate the first t holds t.min > s.max;
7 s ← t;
8 end
9 if TempResult.size > NaturalRun-Index.size then

10 NaturalRun-Index ← TempResult;
11 end
12 end
13 delete elements which were inserted to

NaturalRun-Index from MinMax-Index;

Algorithm 2: Run Generation
input : original data S, MinMax-Index,

NaturalRun-Index

1 while Not Empty(MinMax-Index) do
2 if Wn is empty or the element in Wn is exhausted

then
3 Load data from natural run to Wn and sort;
4 end
5 Load data to Ws and sort;
6 next-min ←next min value from MinMax-Index;
7 Merge on fly with Wn,Ws and already generated

runs;
8 Write the rest element in Ws to the current run;
9 Expand the current run;

10 end

at a time for sorting. When the element is exhausted, the next
block will be loaded(line 2). Figure 2 illustrates the process
of the merge on-the-fly mechanism. During the process, Wn,
Ws, and all the previously generated runs are involved in the
merge process (line 7). After merging, we will expand the
current run. Because of the existence of natural run, we will
use one block of DRAM memory as natural run work space,
which leads to the shorter length of the generated run, while
the run expansion will reduce this effect and avoid generating
too many runs.

(3) Merging Runs. In the run merge phase, we will exploit
the byte addressable feature of the NVM to merge the runs.
Unlike MONTRES and the traditional external sorting algo-
rithm, which require loading a block of data into memory each
time, we can load only one value from each run.

We assume that there are k generated runs. Due to the
existence of natural run, in the merge phase, we use a min-
heap containing each run’s minimum element with size of k+1.

27

Fig. 2. Example of the merge-on-the-fly mechanism

TABLE II
SYMBOLS USED IN COST ANALYSIS

Symbol Definition
N Number of the elements to be sorted
Nn Size of the natural run
Nnl Number of the elements that are loaded into the work

space from natural run during run generation phase
Ns Number of the elements that are directly written into

the final result
r Cost of one read operation
w Cost of one write operation
λ r/s

Pr Additional reads during the merge on-the-fly
Pw Additional writes during the merge on-the-fly

On each iteration, we write the minimum value in the min-
heap into the final result and delete it. Then, we extract the
next value from the run containing the lowest value. When a
run is exhausted, we will reduce the size of the min-heap by
1 and continue the merge until all the runs are exhausted.

D. Cost Analysis

Table II gives the symbols used in cost analysis. In the run
generation phase, first we need scan the input data to build the
MinMax-Index, so the read/write cost of the scanning process
is: N · r.

After the scanning, we begin to generate runs. All data that
is not in the natural run will be loaded into DRAM memory,
sorted, and written back to NVM. Some of the data will be
written back directly to the result. We assume that the total
amount of this part of data is Nn. The read and write cost
of this section is (N −Nn) · (r + w). While a portion of
the data in the natural run is loaded into DRAM memory,
we assume that the total amount of data loaded into DRAM

memory at this stage is Nnl, resulting in a read-write cost of
Nnl · r. Due to the existence of merge on-the-fly mechanism,
during the run generation phase, we will also read the runs
that have been written back before and the qualified data will
be written back to the final result. The data that participates in
the merge process in the natural run and the qualified data will
also be written back to NVM. We assume that the additional
reading operation generated in this process is Pr, resulting
in an additional write operation of Pw. For the convenience
of later calculation, Pw is divided into two parts: The first
part is created by writing back natural run data, set to Pw1;
the second part is created by writing back other data, set to
Pw2, Pw = Pw1 + Pw2.The resulting read and write cost is
(Pw · w + Pr · r). To sum up, we can get the total cost of
reading and writing in the run generation phase by Eq.1:

Crg = N · r + (N −Nn) · (r + w) +Nnl · r
+Pw · w + Pr · r

= (2 ·N +Nnl + Pr −Nn) · r + (N + Pw −Nn) · w
= ((2 + λ) ·N +Nnl + λ · Pw + Pr − (1 + λ) ·Nn)

·r (1)

During the run merge phase, all the data not loaded in the
natural run will be loaded into DRAM for merging and then
written back to NVM. The resulting read-write cost is (Nn −
Nnl) · (r+w). The elements in the natural run that have been
loaded into DRAM memory but have not been written back
in the process of run generation also need to be written back
to NVM. The total number of data in this part is Nnl − Pw1.
Thus, the read and write cost of this part is (Nnl−Pw1)·w. At
the same time, the remaining elements in the generated runs
will also be loaded into DRAM memory for merging and then
written back to NVM. The total number of remaining elements
is N −Nn−Ns−Pw2. Therefore, the read-write cost of this
part is (N −Nn −Ns − Pw2) · (r + w). To sum up, we can
get the total read-write cost in the run merge phase by Eq. 2.

Crm = (Nn −Nnl) · (r + w) + (Nnl − Pw1) · w
+(N −Nn −Ns − Pw2) · (r + w)

= (N −Nn1 −Ns − Pw2) · r
+(N − Pw1 −Ns − Pw2) · w

= ((1 + λ) ·N −Nn1 − (1 + λ) ·Ns − Pw2 − λ · Pw)

·r (2)

Based on Eq. 1 and Eq. 2, we can get the total cost of the
algorithm by Eq.3. In Eq. 3, Pw2 approximately equals Pr.
Eq. 3 shows that the cost of NVMSorting is associated with
the size of natural run and the data that can be written into
the result directly.

Cm = Crg + Crm

= ((3 + 2 · λ) ·N − (1 + λ) · (Nn +Ns)− Pw2 + Pr)

·r (3)

28

For the traditional external merge sort algorithm, it is easy
to get the total read-write cost by Eq.4.

Ce = 2 ·N · (r + w)

= (2 + 2 · λ) ·N · r (4)

Therefore, we can get the cost reduction of our NVMSorting
compared with traditional external merge sort by Eq.5.

Cdec = Ce − Cm

= ((1 + λ) · (Nn +Ns) + Pw2 − Pr −N) · r (5)

Eq. 5 shows that NVMSorting has lower cost than the
external sort when the value of Nn and Ns is larger, which is
consistent with the experimental results that will be discussed
in Section IV.

IV. PERFORMANCE EVALUATION

In this section, we report the experimental results of NVM-
Sorting. As sorting algorithms are fundamental in computer
science and there are a number of existing sorting algorithms,
we will compare NVMSorting with several representatives of
sorting algorithms. Below, we first introduce the experimental
settings in Section IV-A, then we present the results in Section
IV-B.

A. Settings

So far, there is one industrial NVM module supplied by
Intel in 2019, which is called the Intel Optane DC Persistent
Memory [10]. However, in this paper, we still use a simulation
way to simulate the hybrid memory using DRAM. There are
two reasons for the simulation. First, it is hard to use the Intel
DC Persistent Memory to construct various kinds of hybrid
memory architecture. Thus, we will not be able to conduct
experiments on different configurations of DRAM and NVM.
Although it is possible to build multiple servers with different
NVM and DRAM capacities, it is too costly because of the
high price of the Intel Optane DC Persistent Memory . Second,
we mainly focus on the count of NVM writing operations
in the experiments. Such a metric can be measured correctly
in the simulation environment. In other words, the count of
NVM writes of a sorting algorithm will not be impacted by
the underlying hardware.

In order to simulate the hybrid memory, we use the same
method as [4] to simulate NVM. In particular, We insert delays
after cacheline reads and writes. In the experiment, we add
20ns latency for a cacheline read operation and 500ns for a
cacheline write to simulate NVM reads and writes.

All algorithms are run on a PC with an Intel CPU i5
8265U@1.6GHz. The CPU has 6MB of L3 cache associated
with 12-way groups, and each core has 256KB of L2 cache
associated with 4-way groups. The cacheline size is 64 bytes.
The memory device is 4 GB LPDDR Sumsung memory. We
use C++ on Ubuntu 18.04 to implement all sorting algorithms.

The Intel Optane DC Persistent Memory of 512GB costs over ten thousand
U.S. dollars.

Fig. 3. Time performance (MNS is our NVMSorting algorithm, the others
are MONTRES (MS), Hybrid Sort (HyS), External Sort (ExS), Segment Sort
(SegS), Heap Sort (HS) and Quick Sort (QS)).

TABLE III

TIME-PERFORMANCE IMPROVEMENT OF NVMSORTING

MS HyS ExS SegS HS QS

Random 1.1% N/A N/A 42.4% 66.6% 84.1%

Partially sorted 6.2% 2.5% 13.0% 43.5% 68.9% 89.1%

The source code was compiled using g++ version 8.3.0 with
the -O3 optimization.

We use two datasets, including an unsorted random dataset
(denoted as random in the results) and a partially sorted
dataset (denoted as partial). In general, we expect that our
NVMSorting algorithm will perform better on the partial
dataset than on the random dataset.

The performance metrics include execution time t and the
number of NVM writes w. Also, We compare NVMSorting
it with six existing sorting algorithms, including quick sort,
heap sort, external merge sort, hybrid sort [4], segment sort
[4], and MONTRES [8]. And we focus on the comparison of
execution time and the number of NVM writes.

B. Results

In the experiment, we set the available DRAM memory size
to 10% of the total size of the data, and six sorting algorithms
are compared with NVMSorting.

Figure 3 shows the execution time of all sorting algorithms
, where MNS, MS, HyS, ExS, SegS, HS, and QS represent
NVMSorting, MONTRES, Hybrid sort, External sort, Segment
sort, Heap sort, and Quick sort, respectively. We can see
that the time performance of NVMSorting is far better than
that of SegS, HS and QS in both case. Table III shows
the time performance improvement ratio of the NVMSorting
algorithm compared with other algorithms. It can be seen
that in the case of completely random data, our algorithm
has little improvement in time performance compared with
MONTRES, even weaker than Hybrid sort and External sort.
While in the case of partially sorted data, the time performance

29

Fig. 4. NVM writes (MNS is our NVMSorting algorithm)

TABLE IV

REDUCTION OF NVM WRITES OF NVMSORTING

MS HyS ExS SegS HS QS

Random 0.1% 0.3% 0.4% 23.4% 60.4% 91.9%

Partially sorted 5.7% 27.1% 27.1% 43.9% 74.1% 94.3%

improvement of the NVMSorting algorithm compared with the
MONTRES and the External sort is relatively obvious, with
the improvement ratio reaching 6.2% and 13.0% respectively.

Figure 3 shows the number of NVM writes for all sorting
algorithms. We can see that NVMSorting has the least number
of NVM writes. Table IV shows the reduction ratio of NVM
writes of the NVMSorting algorithm compared with other
algorithms. As shown in Table IV, for the completely random
data, NVMSorting has slight improvement in terms of NVM
writes, but when running on the partially sorted data, NVM-
Sorting has reduced 27.1% more NVM writes than Hybrid
sort and External sort, and 5.7% more NVM writes than
MONTRES. This indicates that NVMSorting is particularly
suitable for partially sorted data.

We can see from the experimental results that when run-
ning on the partially sorted dataset, NVMSorting achieves
significant improvement over other sorting algorithms in terms
of time performance and NVM writes. When the dataset is
completely randomly unsorted, NVMSorting has comparable
performance with MONTRES, hybrid sort, and external sort.
This implies that NVMSorting is more efficient for partially
sorted datasets. For partially sorted datasets, there is high
probability of the occurrence of natural run, meaning that Nn

in Eq. 3 is large. At the same time, there are a large proportion
of elements in one data block that are less than the minimum
value in the next data block. Thus, there will be more elements
that can be written into the final result directly, i.e., Ns in Eq.
3 is large. When the data is completely random, the probability
of the occurrence of natural run becomes low, and the merge-
on-the-fly mechanism does not work effectively, resulting in
little performance improvement. To sum up, NVMSorting is
more suitable for partially sorted datasets.

V. CONCLUSIONS

In this paper, we studied the optimization of sorting al-
gorithms for NVM-based hybrid memory architecture and
presented a new NVM-friendly sorting algorithm called NVM-
Sorting. NVMSorting is motivated by the MONTRES algo-
rithm that was designed for flash memory. Differing from the
original MONTRES algorithm, NVMSorting proposed a new
technique called natural run. We developed efficient algorithms
for detecting the natural runs in a dataset and sorting data
items according to natural runs. We theoretically analzyed the
sorting cost of NVMSorting and demonstrated its superiority
over the external sorting algorithm. Finally, we verified the
performance of NVMSorting on two kinds of datasets and
compared NVMSorting to six existing sorting algorithms.
The experimental results showed that NVMSorting had higher
time performance and fewer NVM writes than MONTRES
and other sorting algorithms. In particular, it achieved better
performance when running on the partially sorted dataset than
on the randomly unsorted dataset.

In the future, we will integrate NVMSorting into database
join algorithms [11] to develop efficient sort-join algorithms
for NVM-based DBMSs.

ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion of China (No. 62072419). Peiquan Jin is the correspond-
ing author.

REFERENCES

[1] Z. Wu, P. Jin, C. Yang, and L. Yue, “APP-LRU: A new page replacement
method for pcm/dram-based hybrid memory systems,” in Proc. of NPC,
2014, pp. 84–95.

[2] K. Chen, P. Jin, and L. Yue, “A novel page replacement algorithm for
the hybrid memory architecture involving PCM and DRAM,” in Proc.
of NPC, 2014.

[3] R. Liu, P. Jin, Z. Wu, X. Wang, S. Wan, and B. Hua, “Efficient wear
leveling for pcm/dram-based hybrid memory,” in Proc. of HPCC, 2019,
pp. 1979–1986.

[4] S. D. Viglas, “Write-limited sorts and joins for persistent memory,”
Proceedings of the VLDB Endowment, vol. 7, no. 5, pp. 413–424, 2014.

[5] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun,
“Sorting with asymmetric read and write costs,” in Proc. of SPAA, 2015,
pp. 1–12.

[6] Y.-P. Liang, T.-Y. Chen, Y.-H. Chang, S.-H. Chen, H.-W. Wei, and W.-
K. Shih, “B*-sort: Enabling write-once sorting for nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 12, pp. 4549–4562, 2020.

[7] Y. Luo, Z. Chu, P. Jin, and S. Wan, “Efficient sorting and join on nvm-
based hybrid memory,” in Proc. of ICA3PP, 2020, pp. 15–30.

[8] A. Laga, J. Boukhobza, F. Singhoff, and M. Koskas, “Montres: merge
on-the-run external sorting algorithm for large data volumes on ssd based
storage systems,” IEEE Transactions on Computers, vol. 66, no. 10, pp.
1689–1702, 2017.

[9] M. B. A. Khernache, A. Laga, and J. Boukhobza, “Montres-nvm: An
external sorting algorithm for hybrid memory,” in Proc. of NVMSA.
IEEE, 2018, pp. 49–54.

[10] H. Bu, M. Dong, J. Yi, B. Zang, and H. Chen, “Revisiting persistent
indexing structures on intel optane DC persistent memory,” Journal of
Computer Science and Technology, vol. 36, no. 1, pp. 140–157, 2021.

[11] L. Yang, P. Jin, and S. Wan, “Bf-join: An efficient hash join algorithm
for dram-nvm-based hybrid memory systems,” in Proc. of ISPA, 2019,
pp. 875–882.

30

HHML: A Hierarchical Hybrid Modeling Language
for Mode-based Periodic Controllers

Zhiming Hu1, Zheng Wang2, 3, Hongjian Jiang1, Yuyuan Zhang2 and Yongxin Zhao1∗
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

2 Beijing Sunwiseinfo Technology Ltd, China
3 Beijing Institute of Control Engineering, China

Abstract—In cyber-physical systems, the controllers are widely
designed into mode-based periodic modules, which are used to
control physical plants. Such a system can be modeled as a
hybrid one, i.e., one of the real-time controller programs and
interactive continuous plants that obey dynamical laws. In this
work, to facilitate the modeling and analysis of periodic hybrid
control systems in the field of aerospace and smart cities, a
hierarchical hybrid modeling language (HHML) is proposed,
which contains a two-hierarchy structure, i.e., mode-hierarchy
and module-hierarchy. The former supports modeling a hybrid
system at the abstraction level, while the latter is used to
describe the behavior of the modules. The operational semantics
is investigated for formal analysis, and the translation rules to
hybrid automaton are explored for formal verification. A case
study is conducted with the lunar lander to demonstrate the
effectiveness of the approach.

Index Terms—Hybrid systems, Cyber-physical system, Formal
semantics, Model verification

I. INTRODUCTION

A hybrid system [1] is an interactive system of real-time
controllers programs and continuous plants that obey dynamical
laws. Such systems are pervasively applied in aerospace, smart
cities, and automotive industry, etc. In cyber-physical systems
[2], the embedded software and its operating environment have
the characteristics of high complexity, uncertainty and high
real-time requirements. In general, the controllers are designed
into mode-based periodic modules to monitor and control the
evolution of physical plants. Formal analysis for such mode-
based periodic controllers is still an enormous challenge due
to very complicated combinations of computation and control,
and high safety requirements of system designs.

Recently, there are a number of formal methods developed
for hybrid systems, which can be divided into three main
categories: automata [3], process algebra [4] and state diagrams
[5]. In automata model, each state contains a large number of
differential equations, invariants, and transitions with reset
operations. However, the automata model cannot achieve
good scalability and composability. In cyber-physical systems,
however, a practical model may have hundreds of controllers
and sensors. Therefore, automata may not be the suitable choice.
As a theoretical basis of formal analysis, process algebra
is difficult to be accepted by a wide range of practitioners
due its complicated symbols and mathematical logic. The

*Corresponding author: yxzhao@sei.ecnu.edu.cn
DOI reference number: 10.18293/SEKE2021-149

lack of good readability causes even simple controllers to
require the help and guidance from experts in the formal
field. Hence, the method based on process algebra still needs
more improvements. State diagram is a commonly modeling
method in the industry of which the typical representative is
Simulink/Stateflow. In general, it has the characteristics of a
high-level programming language. With the support of tools,
the modeling, simulation, verification of hybrid systems can be
effectively achieved. However, there are few related researches
on its formal semantics.

In this paper, we are motivated by the above methods to
put forward a hierarchical hybrid modeling language HHML
for the mode-based periodic controllers, which contains
mode-hierarchy and module-hierarchy to make the model more
scalable and composable. Mode-hierarchy supports modeling
a hybrid system at the abstraction level and facilitates the
graphical representation of the model that is easy to understand.
Module-hierarchy is used to describe the behaviors of the
modules, which contains the time predicates unique to the
period model. The operational semantics is investigated for
formal analysis, and the translation rules to hybrid automaton
are explored for formal verification. The contributions of this
work are the followings:
• Hierarchical hybrid modeling language. The language

provides hierarchy model to support the hybrid systems.
The discrete mode has periodicity and supports nesting
to describe the control system. The continuous mode
represents the physical world by ordinary differential
equations. Furthermore, the operational semantics in
the mode-hierarchy and module-hierarchy are explored
respectively, which helps developers to understand and
ensures the correctness of the model built.

• End-to-end translation. Several translation rules of trans-
formation from HHML models to hybrid automata are
provided to support property verification in tool Flow*.
An illustrative example of a lunar lander is used to
demonstrate the feasibility of translation rules.

The rest of the paper is organised as follows. Related work
of hybrid system modeling and verification is introduced in
Section II. A modeling language HHML is proposed in Section
III. In Section IV, the operational semantics is presented. The
hybrid automatic translation rules are given in Section V. An
example of lunar lander is shown in Section VI. Section VII
concludes the paper and introduces the future work.

31

II. RELATED WORK

This section mainly gives some brief introduction to typical
hybrid system modeling methods and common verification
tools, which provides a reference for this work.

A. Hybrid system modeling methods
Formal methods to model hybrid systems are in progress for

many years. The two which have most influenced our language
are hybrid action system [6] and Zélus [7].

Hybrid action system was proposed by Mauno et al. It
maps continuous-time events to model variables in the form
of data flows, so that the overall system behavior can be split
into independent differential equations. However, hybrid action
system does not support the stepped refinement development
methods in action systems, which limits the types of modeling
systems. Our discrete mode is hierarchical, so it is suitable for
modeling large-scale hybrid systems.

Zélus was a synchronous language with ordinary differential
equations proposed by Benveniste et al. It reuses the principles
and compilation techniques developed for synchronous lan-
guages, extending them to deal with models that mix discrete
and continuous-time. However, it uses the type systems to
separate discrete and continuous calculations, while we use
a clearer discrete mode and continuous mode to distinguish,
which makes the interaction between the controller and physical
world easier. On the other hand, our language is aimed
at periodic controllers, and each discrete mode can have
periodicity and use periodicity-related predicates.

B. Hybrid system verification tools
There are many tools that can model and verify specific

types of hybrid systems nowadays. Traditional tools include
d/dt [8], HyTech, etc., and newer tools contain Flow* [9],
SpaceEx [10], etc. They mainly use hybrid automata as the
underlying semantic model of hybrid systems. In order to
enable the proposed hybrid modeling method to complete the
verification of the property in these verification tools, there are
many researches on translating from hybrid modeling languages
to hybrid automata. For example, in [11], a subset of Simulink
language was proposed to translate into hybrid automata. In
[12], the conversion rule from ECML to SpaceEx model was
proposed. Its essence is the translation of part of ECML to
linear hybrid automata.

The HHML model was translated into the above four tools
respectively, with requirements being satisfied potentially, to
verify the common examples of hybrid system. Taking the
running time, running scale and supported operation format
into consideration, Flow* is finally chosen.

III. HYBRID DESCRIPTION LANGUAGE

This section proposes the hybrid description language HHML
to provide the rich control logic, and events that can drive the
conversion among different modes. HHML is a two-hierarchy
structure containing mode-hierarchy and module-hierarchy. The
former one supports to model a hybrid system at the abstraction
level, while the latter one describes the detailed behavior of
modes.

A. Mode-hierarchy syntax
The following syntax elements are in support of the modeling

of the hybrid system architecture at an abstract level:

HModel ::= (Dictionary,Modes)
Dictionary ::= {var | var = (name, attri, type, initval)}
Modes ::= (dModes, cModes)
dMode ::= (name, period, (dflow | dModes), dTrans)
cMode ::= (name, cflow, cTrans)
dTran ::= (dm, priority, dguard, dm′)
cTran ::= (cm, priority, cguard, cm′)
dguard ::= cond | Duration(cond, c) | After(cond, c)
cguard ::= When(cond)

HModel indicates the hybrid model which is composed of
Dictionary and Modes. Dictionary is the set of four-tuple
variables var, where, name is the label of the variable, attri
is the attribute which can be continuous, discrete and constant,
type is the basis type such as Boolean, int, float, and intval
means the initial value.
Modes illustrates the behavior of the hybrid system which

is made up of discrete modes dModes and continuous modes
cModes. A discrete mode dMode is used to describe the
control system which consists of label name, period, discrete
control flow dflow or sub-modes dModes, and discrete
transitions dTrans. A continuous mode cMode denotes the
changes in the physical world with the differential equations,
which consists of name, continuous statements cflow and
continuous transitions cTrans.
dTran is the transfer relationship between discrete modes

including the source mode dm, priority, guarded conditions
dguard, and target mode dm′. Duration and After are
HHML’s special time predicates in dguard to express the
property of periodicity based on the basic Boolean expression
cond and constant c. Duration(cond, c) is true in a period
p if the first c periods within the current period meet cond.
After(cond, c) is true in a period p if there is another period
p′ such that cond can be satisfied in period p′ and it travels c
periods from p′ to p.
cTran is similar to dTrans, where cguard denotes the

continuous guarded condition, cm and cm′ denote the source
and target continuous mode. cguard uses When(cond) to
mean that the system will always wait for cond to be satisfied.
The difference between dTrans and cTrans is that cTrans
is not controlled by the period. Therefore the transition occurs
immediately when cguard is met, and time predicates are
missing in cguard.

B. Module-hierarchy syntax
Module-hierarchy is divided into discrete flow dflow and

continuous flow cflow, which denotes the calculation process
of the hybrid model, and the following elements are used to
specify the behavior of the hybrid system.

dflow ::= declare | stmts | dflow; dflow
stmts ::= pstmt | cstmt
pstmt ::= x := stmt | x← cv | call func | skip | ⊥
cstmt ::= stmt; stmt | while cond do stmts |

if cond then stmts else stmts
cflow ::= eq until cond
eq ::= der v = expr | eq ‖ eq | Idle

32

dflow represents the execution task and calculation process
of the discrete mode, including local declarations declare,
control statements stmts and the combinations of dflow. The
control statements stmts consist of primitive statements pstmt
and compound statements cstmt. pstmt has the following
types: assignment x := stmt, sampling of continuous variables
x ← cv, function call call func, nil statement skip and
divergence ⊥. cstmt contains three basic control structures,
namely sequential composition, iteration and conditional.
cflow describes changing laws of the physical world in

continuous modes, which is constructed by until operator
inserted between differential equation eq and termination
conditions cond. eq uses explicit ordinary differential equations
der v = expr to express the changing laws. Furthermore, eq
can be a combination of multiple equations, where Idle is
a special case denoting that the continuous variables remain
unchanged.

IV. OPERATIONAL SEMANTICS OF HHML

This section displays the operational semantics of HHML
according to the transition system. They are divided into
two semantics based on the mode-hierarchy and the module-
hierarchy respectively.

A. Operational semantics of the mode-hierarchy

HHML supports periodic modeling of hybrid systems where
the discrete mode will be executed at a specific point in time,
and the continuous mode will change with time. It is assumed
that there is an operating system that supports a hybrid system’s
modes to be executed. The semantics of the mode-hierarchy
can be described into a five-tuple shown as below:

mode config ::= (cm, dm, l, per, T r)

where:
- cm represents the continuous mode of the system.
- dm stands for the discrete mode of the system.
- l ∈ {Begin,Execute, End} indicates the stage of the

discrete mode which the system is in. Begin means the
beginning of the period which is mainly used for data
sampling. Execute expresses the preparation to perform
periodic tasks, and End determines whether a transition
occurs at the end of the period.

- per denotes the counter of period.
- Tr represents the historical value sequence of the variable

in the discrete mode, which is used to judge the guarded
condition of the transition.

State transition rules of the mode-hierarchy are listed in
TABLE I.

(Sample) indicates that in the initial stage of each period
of the discrete mode, the system will sample the continuous
variables required in the mode and Tr is updated to Tr′. Then
system phase will change from Begin to Execute.

(Enter sub) means that if the discrete mode contains sub-
modes, the system will immediately enter the sub-modes from
the current mode.

TABLE I: State Transition Rules at the Mode-Hierarchy

(Sample)
dflow(dm) 6= empty

(cm, dm,Begin, per, T r)→ (cm, dm,Execute, per, T r′)

(Enter Sub)
dflow(dm) = empty

(cm, dm,Begin, per, T r)→ (cm, dm′, Begin, per, T r)

(Excute)
execute(dm.dflow, Tr) = Tr′

(cm, dm,Exceute, per, T r)→ (cm, dm,End, per, T r′)

(no dTran)
∀tran ∈ dTrans · ¬(Tr |= tran.dguard)

(cm, dm,End, per, T r)→ (cm, dm,Begin, per + 1, T r)

(dTran)
∃tran ∈ dTrans · ((Tr |= tran.dguard) ∧Hpri(tran))

(cm, dm,End, per, T r)→ (cm, dm′, Begin, 1, T r)

(cTran)
∃tran ∈ cTrans · ((Tr |= tran.cguard) ∧Hpri(tran))

(cm, dm, l, per, T r)→ (cm′, dm, l, per, Tr)

(Execute) describes that when the discrete mode enters the
execution phase, the system processes the variables according
to the discrete control flow and then changes from the Execute
phase to the End phase. execute(dm.dflow, Tr) = Tr′

means the result of the execution.
(no dTran) indicates that when none of the discrete tran-

sition conditions can be met, the discrete mode which the
system is in remains unchanged, and the phase of the system
is updated from End to Begin. Then the period is increased
by 1.

(dTran) shows that when at least one discrete transition
condition is met, the system will select the highest priority for
transition. The current discrete mode dm will transfer to the
target discrete mode dm′, and the operating period will be reset
to 1. Hpri(tran) = ∀tran′ ∈ dTrans·(tran′ 6= tran∧Tr |=
tran′.dguard ∧ tran′.priority > tran.priority) is defined
to denote the highest priority for transition.

(cTran) expresses that the continuous mode will only
transfer to the target continuous mode cm′ with the highest
priority Hrpi(tran) when the transfer conditions are met. The
transition will occur immediately when the cguard is met,
because the cguard is always in a wait state.

B. Operational semantics of the module-hierarchy

A triple module config is used to represent the semantics
of the module-hierarchy as shown below.

module config ::= (σ, stmts, status)

where:

- σ stands for the set of variables.
- stmts represents the statements to be executed.
- status denotes the states of the module layer, and it

includes three states: term, wait and div. State term
expresses that the previous statement runs successfully
and you can continue to execute the current statement.
State wait indicates that the previous statement is blocked
and a guard event is needed to activate the system. State
div means that the system has an error and cannot execute
subsequent programs.

33

TABLE II: State Transition Rules of the Module-Hierarchy

(Assign)
(σ, x := stmt, term)→ (σ[stmt/x], ε, term)

(Sample)
(σ, x← v, term)→ (σ[v/x], ε, term)

(Div)
(σ,⊥, term/wait)→ (σ,⊥, div)

(Loop1)
σ |= cond

(σ,while cond do stmts, term)→ (σ, stmts;while cond do stmts, term)

(Func)
excute(func)(σ) = σ′

(σ, call func, term)→ (σ′, ε, term)
(Loop2)

σ 2 cond
(σ,while cond do stmts, term)→ (σ, ε, term)

(Skip)
(σ, skip, term)→ (σ, ε, term)

(Cond1)
σ |= cond

(σ, if cond then stmt1 else stmt2, term)→ (σ, stmt1, term)

(Seq)
(σ, stmt1)→ (σ′, stmt′1)

(σ, stmt1; stmt2, term)→ (σ′, stmt′1; stmt2, term)
(Cond2)

σ 2 cond
(σ, if cond then stmt1 else stmt2, term)→ (σ, stmt2, term)

(EQ1)
σ |= cond

(σ, eq until cond,wait)→ (σ, ε, term)
(EQ2)

σ 2 cond
(σ[v(t)], eq until cond, term/wait)→ (σ[v(t+ δ)], eq until cond,wait)

The state transition rules of the Module-Hierarchy are given
in Table II.

(Assign) and (Sample) respectively denote the assignment
of discrete variables and the sampling of continuous variables.
If the current state is term, the operation can be performed, and
the variables in the variable set σ are modified. (Func) means
that calling the function func which makes the current variable
set σ become σ′ and sets the currently executed statement to
empty. (Skip) means doing nothing. (Div) indicates that the
system lies in a divergent state when ⊥ holds.

(Seq) describes the systems executing the sequential state-
ments. (Loop1) and (Loop2) respectively represent that the
loop statement holds or not. (Loop1) denotes that the statements
are in the loop and the entire loop will be executed as sequential
statements, while (Loop2) denotes the termination of loop.

(Cond1) and (Cond2) are two transition rules to denote the
if statement, where the former holds when the condition is true
and the latter holds with false condition.

(EQ1) denotes the condition is meet and the until statement
is executed. While the condition is unsatisfied, (EQ2) denotes
the system must wait for δ periods till the condition holds.

V. TRANSLATIONS OF HHML

This section introduces the modeling essence of Flow*
and proposes some translation rules to translate the model
established by HHML into a hybrid automaton. According
to the generated automaton, formal verification of safety and
reachability has been successfully implemented by the tool
Flow*.

A. Hybrid automata

Flow* [9] works on systems that can be modeled by hybrid
automata. Hybrid automata can be expressed as:

(loc, var, inv, flow, trans, guards, resets, init)

where:
- loc is a finite set of continuous states, also called modes.
- var consists of several real-valued variables.
- inv means the invariant of each mode.
- flow represents the continuous dynamics defined by

ordinary differential equations of each mode.

- trans is the set of possible transition between modes.
- guards is the set of transition conditions between modes.
- resets assigns a reset map to a jump. After a jump occurs,

the values of the continuous variables will be updated
according to the reset mapping.

- init denotes the initial of the automaton.

B. Translation rules

To simplify the expression of hybrid automata, we use the
jumps set to denote the union set of guards, resets and
trans. jump represents an execution of system resets.

jumps ::= {jump | jump = {lbegin, lend, guard, reset}}

Therefore, hybrid automata can be expressed as a six-tuple .

(loc, var, inv, flow, jumps, init)

Now, the translation rules containing the variables, discrete
modes, continuous modes and some flows in module-hierarchy
are shown in turn.

1) Variables: Variables v are translated by the below rule
where using ”−” to denote the unchanged elements.

Tr(v) = (−, var ∪ v,−,−,−, init ∪ v.inival)

The variables in HHML are divided into continuous, discrete
and constant. The types include integer, floating-point and
Boolean. The variables in Flow* are unified as floating-point
continuous state variables. Therefore, the Boolean variables
are transformed to 1/0 and other variables are converted into
floating-point. Then these variables can be converted into
state variables in the hybrid automaton directly. To reduce the
number of translated variables, we will change the constants to
values. Assigning initial values inival to variables in HHML is
corresponding to the initial variables init in hybrid automata.

Since there is no discrete modes in hybrid automata, the
names of discrete modes are added as variables into var. We
use flag 1/0 to distinguish whether the system lies in the discrete
mode. Finally, time term t is added to record the period in
automata whose initial value is set to 0.

2) Discrete modes: The discrete mode supports mode
nesting in HHML which may contain several sub-modes. So
before translating, the discrete mode has to be flattened, i.e.,

34

all discrete modes after simplification do not contain sub-
modes, and keep the semantic consistency during the translation.
Flattened discrete modes can be described as below.

dmodes′ = {dm | dm.dflow 6= empty ∧ dm ∈ dmodes}

Since loc is a set of states in the hybrid automata, the discrete
modes need to be translated into each state. A certain state
l ∈ loc is used in the translation rules and other states are
the same. The following rule is about when the discrete mode
transfers.

Tr(dm) = (−,−,−, f low ∪ t′ = 1, jumps ∪ jps,−)
where jps = {jp | jp = (l, l, (t ≥ dm.period; dm.name
== 1; dguard), (dm.name = 0; dm′.name = 1; dm′.dflow;
t = 0)) ∧ (dm,−, dguard, dm′) ∈ dm.dTrans}

In order to translate dm.period, t′ = 1 is added to each flow
to represent the periodic process. Condition t ≥ dm.period is
attached to guard, and t will be set to 0 in resets to indicate
the end of the period. dguard is converted into guards to
translate the conditions of discrete transfer process. Once the
transition occurs, the discrete control flow of the target mode
df.dflow is executed, and the current mode is modified to dm′.
There is no transition between continuous modes, hence the
target state is still the source state l.

The following rule is about when the discrete mode does
not transfer.

Tr(dm) = (−,−,−, f low ∪ t′ = 1, jumps ∪ jps,−)
where jps = {jp | jp = (l, l, t ≥ dm.period;

dm.name == 1, dm.dflow; t = 0)}
The rule indicates that when the discrete mode does not

transfer, it will execute dm.dflow and then enter the next
period at the end of the period.

3) Continuous modes: Continuous modes are translated by
the rule as follows.

Tr(cm) = (loc ∪ cm.name,−, inv ∪ cm.cond,
flow ∪ cm.eq, jumps ∪ cm.cguards,−)

As mentioned above, the continuous mode is a triple in
HHML. The corresponding translation is performed between
the hybrid automata and the continuous mode. The continuous
modes’ name, differential equation eq and termination condi-
tion cond will be translated to loc, flow and inv in hybrid
automata respectively. The transfer between continuous modes
is equivalent to the jumps behavior in the hybrid automaton,
while resets in jumps does nothing during the transfer.

4) Some flows in module-hierarchy: Since Flow* only
supports part of the discrete control flow, conditional statement
along with the time predicates Duration and After is
translated to enable expressive models to be verified.

First, the translation rule of conditional statement if cond
then stmt1 else stmt2 in dflow can be expressed as:

Tr(dflow.cd) = (−,−,−,−, jumps ∪ jps,−)
where jps = (l, l, cond, stmt1) ∪ (l, l,¬cond, stmt2)
dflow that contains the conditional statement will be split

into two, and conditional statements will be replaced with

stmt1 and stmt2 and set to the reset respectively. The
corresponding cond and ¬cond are added to the guards.

Next, rules of time predicates Duration and After nec-
essary for modeling periodic hybrid systems are introduced.
They only focus on changing the guards and resets in the
jumps behavior.

Tr(dflow.Duration(cond, c)) = (−, var ∪ cnt,−,−,
jumps ∪ jps, init ∪ cnt = 0)
where jps = (−,−, cond, cnt = cnt+ 1) ∪ (−,−,

¬cond, cnt = 0) ∪ (−,−, cnt ≥ c,−)

Tr(dflow.After(cond, c)) = (−, var ∪ cnt,−,−,
jumps ∪ jps, init ∪ cnt = 0)
where jps = (−,−, cond, cnt = cnt+ 1) ∪ (−,−,

cnt > 0, cnt = cnt+ 1) ∪ (−,−, cnt ≥ c,−)
An additional count variable cnt is introduced here. For

Duration, when a period of the discrete mode ends, if cond
is true, cnt will increase by 1, otherwise it will be reset to 0.
When cnt ≥ c, the expression of Duration(cond, c) is true.
Similarly, for After(cond, c), when cond is true or cnt > 0,
cnt will increase by 1 at the end of the period, and when
cnt ≥ c, the expression is true.

VI. CASE STUDY

In this section, the process of lunar lander’s slow descent is
modeled into the hybrid system by HHML. Then, the model
is translated into a hybrid automaton and Flow* carries out
the reachability analysis towards it.

A. Model

The model analyzed in this case study is taken from the
descent guidance control program of a lunar lander in [13]. In
brief, it is a sampled data control system composed of physical
devices and control programs. The thrust exerted on the lander
is constantly adjusted by the system to ensure that the lander
remains stable during the slow descent phase. So that it enters
the free fall phase smoothly and completes the landing. For
the specific meaning and value of each parameter, please refer
to [13]. This paper only models from the parameter level.

The hybrid system is divided into the current stage of the
guidance program and the lander dynamics. The guidance
program (i.e. discrete mode) modeled by HHML is shown in
top half of Figure 1. The slow descent phase of the guidance
program is executed periodically in a sampling period. At each
sampling point, various sensors will sample the current state
of the lander. The sampled values will be calculated in the
guidance program, and the control command will be output,
which will then affect the dynamics of the lander. When more
than 10 seconds have passed during the slow descent phase
(approximately 80 periods), and the height of the lander is less
than 6 meters, the system will switch from the slow descent
phase to the free fall phase and send out the signal.

Furthermore, the lander dynamic (i.e. continuous mode)
modeled by HHML is shown in bottom half of Figure 1 which
is considered only in the vertical direction. dynamic 1 and
dynamic 2 indicate the change of the lander under different

35

thrusts. After receiving the signal to change to free fall, the
dynamics will change to dynamic 3 to indicate free fall.

Fig. 1: Lunar Lander Modeled in HHML

B. Translation and verification

The translated model shown as Fig.2 will be verified with
regard to three properties [13] in the following.

First, the speed fluctuation of model is supposed to satisfy
|v − vlsw| < 0.05. Then, the lander will eventually reach the
surface of the moon. Finally, the speed of the lander should
not exceed vMax when arriving at the destination.

Fig. 2: Translated Mode in Hybrid Automata

The computation costs 9 minutes on the platform with 2.4
GHz Intel Core i5 CPU and 16GB RAM running macOS. The
reachable sets of the translated model are given in Figure 3.

VII. CONCLUSION AND FUTURE WORK

This paper has introduced a hierarchical hybrid modeling
language (HHML) for periodic controllers. The language uses
periodic and hierarchical discrete modes to formalize the
control system, and continuous modes to model the physical
environment. In addition, translation rules help translate the

(a) T v plot (b) T r plot

Fig. 3: Reachable Sets Given by Flow*

model into hybrid automata, and implement verification of
the properties on the verification tool Flow*. The verification
results show that the lander can finally reach the lunar surface
smoothly and safely.

In the future, we plan to apply HHML to more cases in
smart cities, and support more verification tools.

ACKNOWLEDGEMENTS

This work is supported by National Key Research and Devel-
opment Program (2019YFB2102600), Lab of High Confidence
Embedded Software Engineering Technology, Beijing Insititue
of Control Engineering, No: HCESET-2019-1.

REFERENCES

[1] L. P. Carloni, R. Passerone, and A. Pinto, Languages and tools for hybrid
systems design. now Publishers Inc, 2006, vol. 1.

[2] K. Ghorbal, J.-B. Jeannin, E. Zawadzki, A. Platzer, G. J. Gordon, and
P. Capell, “Hybrid theorem proving of aerospace systems: Applications
and challenges,” Journal of Aerospace Information Systems, vol. 11,
no. 10, pp. 702–713, 2014.

[3] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems,” in Hybrid systems. Springer, 1992, pp. 209–229.

[4] F. Wang, Z. Cao, L. Tan, and Z. Li, “Formal modeling and performance
evaluation for hybrid systems: a probabilistic hybrid process algebra-
based approach,” arXiv preprint arXiv:2012.12716, 2020.

[5] J. B. Dabney and T. L. Harman, Mastering simulink. Pearson, 2004.
[6] M. Rönkkö, A. P. Ravn, and K. Sere, “Hybrid action systems,” Theoretical

Computer Science, vol. 290, no. 1, pp. 937–973, 2003.
[7] T. Bourke and M. Pouzet, “Zélus: A synchronous language with odes,”

in Proceedings of the 16th international conference on Hybrid systems:
computation and control, 2013, pp. 113–118.

[8] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification of hybrid
systems,” in International Conference on Computer Aided Verification.
Springer, 2002, pp. 365–370.

[9] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 2013, pp. 258–263.

[10] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable
verification of hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 2011, pp. 379–395.

[11] A. Agrawal, G. Simon, and G. Karsai, “Semantic translation of
simulink/stateflow models to hybrid automata using graph transforma-
tions,” Electronic Notes in Theoretical Computer Science, vol. 109, pp.
43–56, 2004.

[12] S. Yoon and J. Yoo, “Formal verification of ecml hybrid models with
spaceex,” Information and Software Technology, vol. 92, pp. 121–144,
2017.

[13] H. Zhao, M. Yang, N. Zhan, B. Gu, L. Zou, and Y. Chen, “Formal
verification of a descent guidance control program of a lunar lander,”
in International Symposium on Formal Methods. Springer, 2014, pp.
733–748.

36

Patterns for Reuse
in Production Systems Engineering

Kristof Meixner∗†, Arndt Lüder‡‖, Jan Herzog§, Dietmar Winkler∗†, Stefan Biffl†‖
∗Christian Doppler Laboratory SQI, †Inst. of Information Sys. Eng., TU Wien and ‖CDP, Austria

E-Mail: [first].[last]@tuwien.ac.at
‡Inst. of Ergonomics, Manufacturing Sys. and Automation, Otto-von-Guericke U., Germany

E-Mail: arndt.lueder@ovgu.de
§Department PPG-M/D, Volkswagen AG, Wolfsburg, Germany

E-Mail: [first].[last]@volkswagen.de

Abstract—In Production Systems Engineering (PSE), domain
experts aim at reusing production processes implemented as
Industry 4.0 assets and software. However, the knowledge on
reusable assets is often scattered on multi-disciplinary engineer-
ing artifacts and domain experts, making it hard to find suitable
reusable assets and map them to requirements. In this paper,
we (i) identify challenges and requirements for reuse in PSE
based on a domain analysis; (ii) introduce the Industry 4.0 Asset
Network (I4AN) that integrates multi-disciplinary dependencies
between the assets and exposes recurring patterns; and (iii)
present four patterns for reuse in PSE that aim at improving
reuse efficiency and risk. We evaluate the I4AN with reuse
scenarios in a feasibility study. The study results indicate that the
I4AN model satisfies the elicited requirements and enables PSE
domain experts to identify patterns for reuse in their contexts.

Keywords—Reuse, Production Systems Engineering, Industry
4.0 asset, Industry 4.0 component.

I. INTRODUCTION

The Industry 4.0 (I4.0) initiative1 has led to an increased
focus on research related to Production Systems Engineering
(PSE) in various research fields [1]. The I4.0 initiative en-
visions flexible and highly customizable production systems
that interconnect modern manufacturing with the latest in-
formation and communication technology, so-called Cyber-
Physical Production Systems (CPPSs) [2] that can self-adapt
to particular conditions. These CPPSs incorporate I4.0 assets
representing objects of perceived or actual value, such as
products, processes, or resources [3]. The Asset Administration
Shell (AAS), their standardized digital representation [3], can
describe their skills [4] and adapt the I4.0 assets to changes in
the production environment. The aim is to fulfill business de-
mands for increased flexibility and distribution of production,
i.e., production as a service, and to react to shorter product
life-cycles with reduced PSE project duration and effort [5].

These demands require the (partial) reuse of process and
resource solutions from previous projects or standardized
catalogues [6], [7]. Examples in automotive manufacturing are
position and screw tasks, like screwing a dashboard into a car.
In such cases, product type variants and their parameters vary,

DOI: 10.18293/SEKE2021-150
1Industry 4.0 Initiative: https://www.plattform-i40.de

e.g., where and how tightly to screw which kind of screw
to a dashboard. Yet, the processes and production resources
executing these tasks, like robot arms, are quite similar. In
addition, parts of the software controlling the resources and
orchestrating the overall production system can be reused.

Reuse in PSE depends on efficiently identifying recurring
patterns that can be integrated into a production system. These
patterns need to follow reference architectures [8], [9] of
(i) product types, e.g., car types, (ii) production processes, e.g.,
screwing processes, and (iii) production resource types and
instances, e.g., screwing robots. Reuse also requires a pattern
description on type and instance levels to facilitate referring
to vendor catalogues or previous projects [6], [10].

The engineering of a production system is a collaborative
effort of experts coming from many disciplines, like me-
chanical, electrical, and software engineering [11]. However,
traditionally much of the engineering information is hidden
in scattered engineering artifacts and much of the knowl-
edge is implicit domain knowledge of engineering experts [5]
(cf. Section IV). Furthermore, there is insufficient interdis-
ciplinary exchange between the domains, leading to hard
to extract/collect/validate dependencies from heterogeneous
engineering artifacts and domain experts [12]. Hence, it is
crucial in this multi-disciplinary environment to thoroughly
model the (interdisciplinary) dependencies and boundaries in
pattern analysis to reduce the risk of broken reusable assets.

Hence, we raise the main research question: What approach
can PSE experts use to efficiently identify patterns from
existing engineering knowledge for reusing Industry 4.0 assets
and related artifacts?

In this paper, we (i) identify challenges and requirements for
knowledge reuse in PSE, (ii) introduce the Industry 4.0 Asset
Network (I4AN), a model to integrate the scattered knowledge
and enable engineers to identify patterns for reuse to improve
the effectiveness and efficiency of the PSE life-cycle, and
(iii) present four recurring high-level patterns in PSE as a basis
for identifying applied solution patterns for similar problems.
We evaluate these contributions with an instance of an I4AN.
Therefore, we investigate to what extent typical reuse scenario
questions can be answered as queries to the I4AN.

The remainder of this paper is structured as follows: Sec-

37

tion II summarizes related work. Section III presents the
research questions and method. Section IV introduces an
illustrative use case and identifies requirements for reuse in
PSE. Section V introduces the Industry 4.0 Asset Network
(I4AN) for reuse in PSE and four high-level reusable patterns.
Section VI reports on a feasibility study to evaluate the I4AN
capabilities and discusses the results and limitations of the
research. Section VII concludes and outlines future work.

II. RELATED WORK

This section summarizes related work on Production Sys-
tems Engineering (PSE), knowledge management, and reuse.

A. Production Systems Engineering

PSE is a multi-disciplinary process that involves various
disciplines, like mechanical, electrical, and software engineer-
ing [11]. Engineering teams iteratively perform tasks, like me-
chanical design or implementation of the control software [13],
to engineer the desired production system.

In PSE, engineers create various types of engineering arti-
facts and models [5], [14]. However, the used formats and tools
have traditionally been optimized for a single discipline, and
while engineers are well connected within their domains, there
is often an insufficient interdisciplinary exchange. Further, the
engineering artifacts and information are scattered through-
out the engineering landscape [5]. Much of the engineering
knowledge is implicit knowledge of the domain experts. These
issues pose an increasing challenge related to information
management and reuse within PSE projects [15].

Yet, for the suitable and correct production system design,
it is crucial to exchange information and knowledge between
the disciplines effectively and efficiently [16]. In addition, the
reuse of designs and specifications for recurring problems, e.g.,
using a robot type for similar tasks, improves the quality and
helps to reduce PSE project duration, effort, and risk [8].

In this paper, we introduce a network, based on explicitly
linked assets and artifacts, to provide the foundation for do-
main experts to link their specific knowledge representations.

Industry 4.0 (I4.0) addresses the overall digitalization and
networking of production system elements, i.e., I4.0 assets,
towards Cyber-Physical Production Systems (CPPS). I4.0 as-
sets are physical or immaterial objects of perceived or actual
value [3]. An increasing focus can be recognized on product,
process, and resource-related I4.0 assets, which we mainly
refer to. An Asset Administration Shell (AAS) provides a digital
representation [3] of I4.0 assets with their property views
and skills. These descriptions should include the information
and knowledge for an automated orchestration, which requires
explicit knowledge on the I4.0 assets and their dependencies.

Pfrommer et al. [17] define a skill as the ability of a
resource to perform a process, while a production skill gives
the requirements [4]. Candidio et al. [18] understand a skill
as ability to perform actions that are needed to support the
production process. Meixner et al. [10] described how to
abstract skills of resources from process requirements. Hence,
models must represent the required skills of processes and the

provided skills of resources [17], [19]. However, the identifi-
cation of reusable I4.0 Asset candidates requires representing
skills as I4.0 Assets to provide the abstraction for the digital
representation of boundaries between reusable patterns.

In this paper, we represent skills for the first time as I4.0
Asset, as an abstraction between processes and resources to
foster the identification of reusable I4.0 Asset candidates.

B. Modeling Engineering Knowledge in PSE

Sabou et al. [20] introduced a knowledge graph for reuse
in the software engineering domain, but without multi-model
links that facilitate reuse in PSE.

For modeling Cyber-Physical Production Systems (CPPSs),
two main research and development directions have been
pursued. First, IT systems engineering uses CASE tools based
on UML [21]. As a result, systems engineering methodologies
have been created utilizing domain-crossing modeling stan-
dards like SysML2 [22]. Second, engineering data exchange
preserves the multi-model nature of PSE knowledge and builds
on standardized data formats like AutomationML3 [16] to make
data integration more efficient. In this paper, we build on
cross-linking assets and engineering artifacts as a basis for
an improved reuse considering dependencies.

Both directions require for explicitly modeling PSE knowl-
edge to reflect the specifics of this domain, including (i)
modeling part-whole relations, (ii) connections between com-
ponents [23], and (iii) technical dependencies of the vari-
ous involved technical disciplines [24] The authors observed
in PSE containment hierarchies to be well-established and
frequently used to organize assets in PSE models. Further-
more, discipline-specific dependencies are often represented
in discipline-specific models as interfaces.

Feldmann et al. [25] introduced an approach for managing
inconsistencies in a multi-disciplinary multi-model environ-
ment using links between objects in PSE. However, the
approach by Feldmann et al. [25] does not consider I4.0
assets and skills as first-class citizens in PSE. However, this
integration is a foundation for better identifying reusable assets
based on the digital representation of their skills. In this paper,
we build on their meta-model [25] to integrate links between
I4.0 assets coming from several engineering disciplines.

C. Reuse in Production Systems Engineering

Main approaches to reuse are (i) clone and own [26] and
(ii) reuse of components, such as software libraries. However,
these general reuse approaches do not sufficiently cover re-
quirements in multi-disciplinary environments, like PSE.

In PSE, several reference frameworks address the reuse of
assets. The guideline VDI 2206 [27] describes the V-Model
as a procedure for structured PSE. It encourages to reuse re-
quirements and partial implementations in later phases, like the
test phase, without mentioning how. Jazdi et al. [8] provided
first methodologies related to the systematic identification of

2SysML: https://www.sysml.org
3AutomationML: https://www.automationml.org

38

reusable system components. Most of them are based on the
idea of mechatronic systems [28] following the VDI 2206 [27].

The guideline VDI 3695 [29] understands reuse as a method
for engineering optimization and defines five types of reuse,
i.e., Reuse Levels (RL): Reuse (i) by employees on their
own accord (RL-A), (ii) controlled within the project (RL-B),
(iii) controlled from a central point across all projects (RL-C),
(iv) based on a reference model (RL-D), and (v) based on
internal and external standards (RL-E). The effectiveness and
efficiency of reuse of assets depends on the level of reuse
maturity [29] and the relations between assets [9]. Yet, this
information is insufficiently available in PSE due to scattered
artifacts and information.

In software engineering, one specific domain in the PSE
engineering process, design patterns [30] are a widely adopted
standard for reuse. Design patterns aim at developing software
faster and in better quality while reducing risks and cost [30].
Therefore, design patterns provide adaptable design solution
templates to general problems that software developers face. A
design pattern consists of (i) a pattern name, (ii) a description
of a problem that should be solved, (iii) a solution description
with its elements and dependencies, and (iv) implications of
the pattern, such as benefits and limitations. Software design
patterns can serve as a blueprint for PSE design patterns but
need to be adapted to the multi-disciplinary context of PSE.

In this paper, we build on the guideline VDI 3695 to
describe the reuse maturity in PSE and the idea of mechatronic
units as reusable entities [28]. Furthermore, we build on design
patterns as a concept to identify reusable patterns in PSE.

III. RESEARCH QUESTIONS AND APPROACH

In this paper, we follow the Design Science methodol-
ogy [31] to investigate how to improve identifying I4.0 assets
for reuse in PSE. Therefore, we (i) conducted a domain anal-
ysis in the automotive industry, (ii) condensed a representative
use case, and (iii) elicited requirements on I4.0 asset reuse with
domain experts at medium-to-large European PSE companies
(cf. Section IV).

Considering identified gaps in the related work and require-
ments in PSE, we formulate the following research questions.

RQ1a. What model and elements facilitate identifying I4.0
assets for reuse in PSE? The systematic reuse of I4.0 assets
in engineering fosters quality and efficiency [8]. However, in
PSE, the knowledge required for reuse often consists of hetero-
geneous information and implicit knowledge, scattered across
the engineering landscape. To address RQ1a, we investigated
recurring engineering artifacts from the domain analysis to
identify knowledge elements that help engineers in efficiently
identifying reusable assets. Our contribution is the Industry
4.0 Asset Network (I4AN) as a foundation to explore assets
suitable for reuse.

RQ1b. What connections between system parts and en-
gineering artifacts represent dependencies in an I4.0 asset
network as a foundation for identifying sets of reusable assets?
Connections and relationships between I4.0 assets provide data
to understand internal and external dependencies of CPPS

assets. These dependencies are crucial to coherently identify
and explain which potentially reusable assets can be reused
as-is or require further assets to be included to correctly reuse
them. To address RQ1b, we build on the Industry 4.0 Asset
Network (I4AN) , coming from RQ1a, and investigated which
links represent internal and external dependencies that are
relevant to facilitate the reuse of assets. Our contributions
focus on the classification of dependencies in the I4AN that
are crucial to identify sets of reusable assets.

RQ2. Which basic patterns for reuse facilitate identifying
best-practice pattern candidates for PSE? For identifying
patterns for reuse, engineers require a starting point in their
particular context. For instance, engineers are likely to recog-
nize a pattern as an initial set of assets and their dependencies
to other assets. Basic patterns, which occur independently
from the particular context of the PSE project, can represent
such a starting point. From domain analysis and discussions
with engineers, we identify basic patterns that regularly occur
in PSE. These patterns provide blueprints to help engineers
identify reusable assets in I4AN instances.

Each research question addresses parts of the overarching
question (cf. Section I) tying together model elements, their
dependencies, and patterns for the efficient reuse of CPPS
knowledge. We evaluate the I4AN in a feasibility study for the
use case “Car Body with Screwed-on Parts” (cf. Section IV).
Therefore, we use data from a sample of artifacts from the
domain analysis. We investigate to what extent advanced reuse
scenario questions can be answered by queries to the I4AN.

IV. ILLUSTRATIVE USE CASE

This section introduces the use case “Car Body with
Screwed-on Parts”. We condensed the use case from a domain
analysis in the automotive manufacturing domain. The analysis
was conducted in a setting with 80 types of screwing robot
cells and 27 robot types.

In automotive manufacturing, human workers collaborate
with industrial robots in mounting lines to place and screw
various components onto a car body using screwdrivers. Typ-
ical mid-class cars contain screws of 80 screw types at 1,500
to 1,800 screw positions. Figure 1 shows the use case with its
I4.0 assets and their connections. The left-hand side shows
a screwing process consisting of two steps: (i) positioning
the dashboard and the screws and (ii) fastening the screws.
Both steps are characterized by process requirements, defining
the necessary skills of the resources including technical or
economic parameters. In PSE, relevant resources, i.e., resource
hierarchies, (see right-hand side of Figure 1) are selected and
orchestrated to provide the required skills [17], [19].

In theory, one can engineer an optimized robot-screwdriver
combination for each screw type to maximize production
effectiveness and efficiency. Yet, this approach might lead to
around 80 different robot and screwdriver types, adding signifi-
cant costs for installation, maintenance, and expert knowledge.

In practice, PSE aims at cost-optimized system designs [32].
Hence, a sufficiently effective and efficient robot-screwdriver
combination to each screw type can be assigned, minimizing

39

Work Cell 2

Work Cell 1

Products & Processes

Position

Screw &

Dashboard

Screw

Positioning

Cell

Car Body

Dashboard

Fasten

Screw &

Measure

Drive Transformer

Bit

Transport

Resource

Drive

Drive

Electric

Screwdriver

Car Body with

screwed on

Dashboard

PLC

Drive Transformer

Bit

Robot

Electric

Screwdriver

Robot

Controller

IPC

Skill

Skill

Screwer

Controller

Engineering

Artifacts

«trace»

«trace»

«trace»

«trace»

«trace»

Legend:

Process Resource
Product Asset/Artifact

Types:
Skill

Link
Types:

Tracelink

«trace»

Technical

FunctionalProcess-Resource

Product-Process

Resource

Data Sheet

Robot

Program

Comm. Protocol

Configuration

I40 comp.

Orchestrat. Program

Business Workflow

Coordination

Robot
Robot

Controller

Car Body

with

Dashboard

A

B

C

D

Screwer

Controller

Robot

Program

«trace»

Fig. 1. Reuse Patterns (dashed boxes) in an asset network for the use case “Car Body with Screwed-on Parts” (in adapted VDI 3682 notation [10], [29]).

the number of robot types and investments in spare parts and
know-how. This approach may significantly reduce costs in
comparison to a high-variety approach.

Identifying an optimized set of robot-screwdriver combi-
nations for the high number of different screws types and
positions requires the identification of (i) resources that can
execute several varying screwing tasks and (ii) engineering ar-
tifacts that can be reused, such as control programs. However,
identifying suitable solutions is difficult due to the scattered
information and the engineers’ implicit knowledge.

Achieving these advantages requires a set of reusable pat-
terns. This set of patterns can be completed by (i) identifying
similar components within existing engineering projects, (ii)
mapping these components to expected future requirements,
and (iii) abstracting these components with respect to possible
adaptations for application-case related parameterization [8].

Requirements for I40 Asset Reuse. From the domain
analysis, we elicited the following requirements Rx towards
asset reuse in PSE with eight domain experts from five
medium-to-large European PSE companies4.

R1. I40 Asset Map. Domain experts require an Industry

4The experts rated their company’s maturity level of asset reuse, using the
VDI 3695 classification, at reuse levels RL-C (controlled from a central point)
or RL-E (reuse based on internal and external standards).

4.0 Asset Map, i.e., an overview on the assets in the planning
phase to explicitly represent implicit knowledge and relevant
information as a context for reuse, currently scattered across
various engineering artifacts. This requirement is adapted from
software engineering, i.e., documenting the project structure
and software artifacts, to multi-disciplinary PSE assets in the
Product-Process-Resource (PPR) scope.

R2. I40 Dependency Network. As a basis to identify
patterns for reuse in PSE, domain experts require an explicit
representation of the links and dependencies of and be-
tween assets coming from several engineering disciplines. This
concerns mainly three different views. Product engineering
requires links between product components, processes, and
their required skills that a process requires from a resource to
automate the process. Systems engineering concerns relation-
ships between resources and their provided capabilities. The
assets and dependencies can be represented in an Industry 4.0
Dependency Network that adds information and knowledge
required for reuse to the Industry 4.0 Asset Map.

R3. System Boundary. For reuse, a system or subsystem
containing the reusable assets needs to have a clearly defined
boundary. System boundaries are a means to group assets into
a meaningful set of assets that can be reused. A boundary also
allows to investigate incoming and outgoing dependencies.

40

Thus, system boundaries serve as a basis for systematically
reusing (parts of) a solution that was used in previous projects.
Without a clear boundary, it is unclear which elements can,
should, or have to be included in a set of reusable assets.
Furthermore, system boundaries enable developing and using
metrics, like complexity, to compare patterns.

R4. Solution Design Abstraction. As a foundation to iden-
tify reusable patterns, domain experts need a representation of
solution design candidates at a suitable level of abstraction.
This abstraction is required to allow the adaptability and
portability of a pattern to similar problems with varying
characteristics. For example, to make a solution for a posi-
tion task reusable requires hiding unnecessary attributes and
dependencies. In the use case, the robot positioning accuracy
is a relevant characteristic, while the way how the robot moves
might be irrelevant. Solution Design Abstraction facilitates (i)
generalizing from a particular solution instance to a more
general level of problems and (ii) finding reusable solution
candidates in similar or historic designs.

The following section builds on this use case to illustrate a
novel knowledge representation model for Industry 4.0 Assets
for identifying patterns for reuse.

V. PATTERNS FOR REUSE IN PSE

This section presents the Industry 4.0 Asset Network and
four basic patterns to identify concrete patterns for reuse.

A. I40 Asset based Network with Dependencies

To address RQ1a and RQ1b, we investigated the data of
robot cells with up to two robots from the use case context with
domain experts. From this data, we determined knowledge
elements that we can use for identifying abstract patterns
for reuse. These elements were used to build a condensed
metamodel as the foundation for the I4AN. This section
illustrates the metamodel and the I4AN using the car body
with screwed-on parts use case from Section IV.

is-a is-part-of

1

* incoming

target1

* incoming

targetsource

outgoing *

1source

outgoing *

1

sourceoutgoing

* 1

sourceoutgoing

* 1

targetincoming

* 1

targetincoming

* 1
Link Artifact

Asset

Dependency

Boundary

1

* part

contains1

* part

contains

containerpart

* 1

containerpart

* 1

Fig. 2. Asset, (Engineering) Artifact and Link meta model, based on [33]

Figure 2 shows the metamodel (in UML notation) contain-
ing the Asset class, one of the Industry 4.0 Asset types product,
process, resource, or skill. An Asset can be a specialization (is-
a relation, e.g., an electric screwdriver is a type of screwdriver)
and/or a part (is-part-of relation, e.g., a bit is part of a
screwdriver) of another asset. An Artifact is an engineering
object created during design time, e.g., an electrical plan or

robot program, or during runtime, e.g., a set of qualitative
data. A particular Link can connect assets with each other
or to artifacts. Links can have different forms (cf. Figure 1)
realized using typed properties (not shown in the meta-model):
Functional links between production resources may represent
a resource composition. Technical links may represent a wired
connection from an Industrial PC (IPC) to a robot. To model
a connection between an Asset and an Artifact, we use Trace
Links, e.g., a robot controller requires a robot program. A
Link can be manifested as Dependency, if the link is strictly
required by an Asset. Assets, Artifacts, and Links can have
attributes that describe characteristics of the particular object.
These properties follow the I4.0 Asset Administration Shell
(AAS) [3] design to facilitate the standardized representation
of property views coming from several engineering disciplines.
A Boundary object represents a pattern boundary that contains
Assets and Artifacts, e.g., boundary (A).

These concepts provide the foundation to build an I4AN
that explicitly represents PSE information and knowledge for
a wide range of applications, such as change impact analysis.
Figure 1 illustrates an I4AN with the relevant engineering
artifacts and the links between the assets. This model can be
created automatically by exploiting appropriate engineering
data logistic systems [12]. This overall model can be the
starting point to identify common reusable patterns [19].

B. Patterns for I40 Asset Reuse

This section describes four basic patterns for identifying
best-practice candidates for reuse in their context. These
identification patterns can be used as a starting point to identify
patterns in the particular PSE contexts of domain experts.

The reuse of assets requires considering the asset itself
and, beyond that, its embedding in the surrounding system
and functional intentions [6], [9], [28]. As described, PSE
comprises two main phases, rough and detail planning.

The rough planning phase consists of matching process
skills required by products and provided by resources. This
comparison shall be based on product creation (P1) and
process execution (P2) patterns.

P1. Product-Process-Skill Pattern. Product creation in
PSE aims at providing the combination of products with their
requirements and processes to manufacture them. Aim: The
Product-Process-Skill pattern (cf. Figure 1, tag A) supports
product engineers in selecting appropriate processes for their
products. This product creation pattern contains production
processes with their input and output materials, boundary
conditions, and required skills. Solution: The pattern can be
identified by collecting all assets connected to the related
processes by product-process-related links: For an output
product isolate the input products and determine their relevant
properties. For each input product determine the required
process steps and build the aggregated required skills of the
steps according to [10]. Group the products, process steps, and
skills into a boundary object. For the outgoing and incoming
links, determine whether they are strict dependencies. For de-
pendencies, decide if you need to either expand the boundary

41

or create a depending pattern object. Example: An example
are screw-screwing combinations. We identified different reuse
patterns from equivalence classes based on the screwing bit,
the applicable torque, and the screw material (magnetic vs.
non-magnetic) with industry partners.

P2. Skill-Resource Pattern. Process execution in PSE is to
identify resources able to execute a production process based
on their functional skills. Aim: The Skill-Resource pattern (cf.
Figure 1, tag B) helps to select appropriate resources matching
to the Product-Process-Skill pattern. This process execution
pattern contains resources with their properties, boundary
conditions, and provided skills. Solution: The pattern can be
identified by collecting all assets connected to the related
resource links: For a set of connected resources, determine
their provided skills and properties. From the skills, build
the aggregated provided resources skills according to [10].
Group the resources and skills into a boundary object and
determine the dependencies. For dependencies, decide if you
need to either expand the boundary or create a depending
pattern. Example: The pattern supports the definition of skills,
e.g., positioning, with predefined attributes, like positioning
accuracy, which are fulfilled by a set of resources.

The main concern within the detail planning phase is
realizing production resources providing all necessary func-
tionalities to fulfill the required skills. Here, patterns related to
resource structuring and functionality are relevant. Thus links
shall be considered depending on the use case.

P3. Resource-Resource Composition Pattern. The goal of
detailed engineering in PSE is detailing and programming the
selected resources. Aim: The Resource-Resource composition
pattern (cf. Figure 1, tag C) represents the composition of a re-
source from sub-components, with the knowledge on technical
parameters and dependencies on the type and instance levels.
A quality ensured resource tree pattern could be applied at
this point, reflecting the optimized orchestration of resources.
Solution: For a group of connected resources (part-of relation)
determine which resources are required to either fulfill a
particular skill or if they require each other for functionality.
Group the strictly required resources into a boundary. For de-
pendencies, decide if you need to either expand the boundary
or create a depending pattern object. Example: Screwdrivers
can be driven, e.g., electrically or pneumatically. Depending
on the drive, the screwdriver requires a transformer for the
current or not, which can be expressed in an RR pattern.

P4. Resource-Artifact Pattern. Within the commissioning
phase of PSE the detailed resource system is established
according to the relevant engineering artifacts, e.g., relevant for
operation. Aim: The Resource-Artifact pattern (cf. Figure 1,
tag D) aims at binding the required engineering artifacts to the
resources used in the production system. This helps engineers
to reuse resources and their corresponding data or programs as
a bundle. Solution: From a resource, follow the trace links to
the engineering artifacts. For the resource and the necessary
engineering artifacts, use a boundary object to group them.
For incoming or outgoing dependencies from resources or
engineering artifacts, decide whether to expand the boundary

or create a depending pattern object. Example: Screwdrivers
have a minimum, maximum, and yield torque for a screwing
process. The screwdrivers and function blocks controlling the
torque of the screwdrivers can be expressed as a pattern and
reused in future projects.

The use case Car Body with screwed-on parts can benefit
from reuse patterns in (at least) four ways: (i) The product-
process-skill pattern can support product engineers in selecting
appropriate screwing processes for their car body parts (see
tag A in Figure 1). (ii) The skill-resource pattern facilitates
selecting appropriate screwdrivers to screwing processes (see
tag B in Figure 1). (iii) The resource-resource composition
pattern can be applied for the optimized combination of
screwing resources, e.g., robots and robot controllers (see
tag C in Figure 1). (iv) The resource-artifact pattern can be
applied for reusing engineering artifacts, e.g., robot controllers
and robot control programs (see tag D in Fig. 1).

VI. FEASIBILITY STUDY AND DISCUSSION

This section presents a preliminary feasibility study and
discusses the contributions with a focus on the research
questions raised in Section III.

A. Preliminary Feasibility Study

As a proof of concept, we used a part of the production
system for the investigated use case “Car Body with Screwed-
on Parts” from the initial domain analysis to design and
instantiate the Industry 4.0 Asset Network (I4AN) in a Neo4J5

graph database. The I4AN was found easy to extract from
existing engineering information, which has to be integrated
according to the the I4.0 AAS design [3].

The graph database facilitated the effective and efficient
exploration, querying, and visualization of the linked assets.
In addition to the technical links between assets coming from
engineering models, we instantiated dependency links between
the assets. Deep domain expert knowledge has to be added
to the I4AN manually. The concepts in the I4AN facilitated
adding previously implicit domain knowledge to the graph.

The I4AN instance associated to Figure 1 enables identify-
ing I4.0 Assets that belong to a pattern for I4.0 Asset reuse
(cf. Section VI-B). To investigate the functionality, we issued
queries onto the I4AN to track the dependencies. We used
iterative queries, similar to cause-effect graph exploration [33],
starting at a selected I4.0 Asset, such as a skill, and followed
the multi-model links to neighboring assets of a specified type
until reaching a stopping condition. We were able to efficiently
isolate parts of the I4AN that correspond to the basic patterns
introduced in Section VI-B. This approach also worked for the
reuse scenario system boundary analysis that can be translated
into the question: Which set of dependency links connects a
selected set of assets to their immediate neighboring assets?
This capability indicates that engineers can utilize the I4AN to
investigate the network to identify familiar patterns of assets
as candidates for reuse.

5Graph database Neo4J: https://neo4j.com

42

B. Discussion

We conducted a domain analysis with 80 types of robot
cells and 27 robot types. Further, we elicited requirements
from domain experts at five European PSE companies. The
requirements showed that a key aspect is modeling the multi-
disciplinary dependencies between assets and engineering ar-
tifacts that need to be considered to identify reusable asset
patterns. It is also essential to thoroughly model the boundaries
of the patterns to allow suitable reuse in practice among the
involved engineering disciplines.

RQ1a and RQ1b concerned models and dependencies that
facilitate the identification of assets suitable for reuse. To
address RQ1a and RQ1b, Section V-A introduced the Industry
4.0 Asset Network (I4AN) that addresses requirements R1 to
R3 identified in Section IV. The I4AN builds on I4.0 assets
and uses their administration shell to integrate property views
from several engineering disciplines. In comparison to patterns
in software engineering, this multi-disciplinary aspect adds
complexity to identifying patterns for reuse in PSE.

We go beyond the state of the art [4], [18] by modeling
skills as I4.0 assets using their digital representation for
linking multi-disciplinary assets and identifying boundaries for
reusable assets. We build on and go beyond [25] by integrating
multi-disciplinary multi-model links between I4.0 Assets.

RQ2 asked which basic patterns for reuse facilitate the
identification of patterns for reuse. To address RQ2, Section
identified four basic patterns addressing requirement R4 (cf.
Section IV). These patterns specifically incorporate regularly
occurring connected assets in PSE that can be reused for
similar problems. Therefore, they provide guidance for reuse
design and management with the I4AN. In this sense, the I4AN
provides designers with the capability to describe partial so-
lutions and integrate partial solutions into a complete solution
from production processes to automation devices that automate
the production process.

Limitations. The following limitations require further in-
vestigation. The research in this paper focused on the reuse
of production processes and associated automation system
elements in a typical use case of automotive manufacturing,
the Car Body with Screwed-on Parts use case. As we assume
the findings of this paper to be relevant in the broader scope of
production processes and automation system elements, e.g., for
discrete production and continuous production, the approach
should be investigated in a broader range of application areas.

The domain analysis was conducted by one of the paper
authors with consultation from domain experts and checked
for plausibility by the author team. While the feasibility study
focused on a I4AN for a robot cell of typical complexity, the
authors of this paper, consulting with domain experts in car
manufacturing, conducted the design of the I4AN including
dependencies that are missing in traditional PSE design. This
reflects the current practice of PSE engineering only partially
and introduced bias to the study, requiring validation in a range
of traditional and advanced PSE environments.

VII. CONCLUSION AND FUTURE WORK

The Industry 4.0 (I4.0) vision of production systems that
are easy to adapt depends on advanced capabilities for
reusing proven production processes, I4.0 assets and software-
intensive components that automate these production pro-
cesses. In Production Systems Engineering (PSE), the reuse of
I4.0 assets requires understanding the dependencies of these
assets in multi-disciplinary systems-of-systems engineering
with heterogeneous models.

This paper investigated the information requirements for ad-
vanced multi-disciplinary reuse scenarios, such as process and
resource identification and for system boundary analysis. To
address the challenges of scattered and implicit domain expert
knowledge that may lead to overlooking risky dependencies
of reusable system elements, we introduced the Industry 4.0
Asset Network (I4AN). The I4AN builds on the I4.0 Asset
Administration Shell [3] design to integrate system element
properties and dependencies from several engineering disci-
plines, such as mechanical, electrical, and software interfaces
and technical links.

Therefore, the I4AN enables designing a knowledge
graph that represents for a reuse scenario important multi-
disciplinary dependencies between system elements as neigh-
borhoods of I4.0 Assets. Further, the I4AN concepts facilitate
representing domain expert knowledge that was implicit, e.g.,
to recommend using a resource type with a process type.

We presented the use case “Car Body with Screwed-on
Parts” to illustrate typical I4.0 Assets and links in production
processes and robot cells widely used in car manufacturing.
In the I4AN of the use case (cf. Figure 1), we identified four
types of patterns for reuse.

In a feasibility study, we evaluated the I4AN with reuse
scenarios by instantiating an I4AN knowledge graph formu-
lating scenario concepts and questions as data in and queries
to the knowledge graph. The study results indicate that the
I4AN model is a good foundation for PSE domain experts to
identify patterns for reuse in their contexts.

The research results advance the state of the art in knowl-
edge engineering in PSE by modeling the Skill concept as an
I40 Asset. The I4AN provides a lens for analyzing similarities
and differences in production process and system designs. To
this end, we are providing the foundations for advanced reuse
design and management with the I4AN and patterns.

The research results advance the state of the art by adapting
blueprints for design pattern to a multi-disciplinary engineer-
ing environment where multi-model links are crucial. The
I4AN provides designers with the capability to describe partial
solutions and integrate these partial solutions into a com-
plete solution, from production process to automation devices
that automate the production process. The I4AN facilitates
identifying risky external systems dependencies across several
engineering disciplines as input to assess the reuse effort and
risk of candidate solution designs.

Future Work. Validation of patterns for reuse. We plan to
investigate I4AN applications for reuse to improve PSE tools,
e.g., with knowledge on multi-model dependencies.

43

Scalability. We see the need to investigate the scalability of
the I4AN in a larger context and with additional engineering
disciplines to evaluate the impact on the multi-disciplinary
dependencies and boundaries beyond the scale of work cells.

Skills. We consider examining the extended use of skills
as an advanced method to abstract from process requirements
to resource capabilities and their role in reusable process and
resource assets, e.g., using standardized catalog search.

Extension of the I4AN with Semantic Web content. For the
PSE domain, the I4AN seems well represented in a graph
database as this technology is increasingly well accepted
in PSE, while Semantic Web technology is mainly used in
research. We envision extending the I4AN with knowledge
organized with Semantic Web technologies, e.g., issues, rec-
ommendations as natural text. The I4AN knowledge graph can
collect knowledge instances that can be converted efficiently to
Semantic Web technologies to facilitate research on industrial
data for Semantic Web researchers.

Security. Aggregating domain knowledge in an I4AN creates
a high-value knowledge graph. This graph requires research on
security concerns, e.g., theft of intellectual property or using it
to plan attacks on systems that represent critical infrastructure.

ACKNOWLEDGMENT

The financial support by Christian Doppler Research Asso-
ciation, Austrian Federal Ministry for Digital and Economic
Affairs, and National Foundation for Research, Technology
and Development is gratefully acknowledged. The competence
center CDP is funded within the framework of COMET –
Competence Centers for Excellent Technologies by BMVIT,
BMDW, and the federal state of Vienna, managed by the FFG.

REFERENCES

[1] B. Vogel-Heuser, T. Bauernhansl, and M. Ten Hompel, “Handbuch
Industrie 4.0 Bd. 4,” Allgemeine Grundlagen, vol. 2, 2020.

[2] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Rein-
hart, O. Sauer, G. Schuh, W. Sihn, and K. Ueda, “Cyber-physical systems
in manufacturing,” CIRP Annals, vol. 65, no. 2, pp. 621 – 641, 2016.

[3] Plattform Industrie 4.0 and ZVEI, “ Part 1 - The exchange of information
between partners in the value chain of Industrie 4.0 (Version 3.0RC01
Review),” German BMWI, Standard, Nov. 2020, https://bit.ly/37A002I.

[4] J. Pfrommer, D. Stogl, K. Aleksandrov, V. Schubert, and B. Hein,
“Modelling and orchestration of service-based manufacturing systems
via skills,” in 19th IEEE ETFA, 2014, pp. 1–4.

[5] A. Lüder, N. Schmidt, K. Hell, H. Röpke, and J. Zawisza, Identification
of Artifacts in Life Cycle Phases of CPPS. Cham: Springer International
Publishing, 2017, pp. 139–167.

[6] H. Johannesson, Emphasizing Reuse of Generic Assets Through Inte-
grated Product and Production System Development Platforms. New
York, NY: Springer New York, 2014, pp. 119–146.

[7] A. Lüder, N. Schmidt, K. Hell, H. Röpke, and J. Zawisza, Fundamentals
of Artifact Reuse in CPPS. Cham: Springer International Publishing,
2017, pp. 113–138.

[8] N. Jazdi, C. R. Maga, P. Göhner, T. Ehben, T. Tetzner, and U. Löwen,
“Improved Systematisation in Plant Engineering and Industrial Solutions
Business - Increased Efficiency through Domain Engineering,” Automa-
tisierungstechnik, vol. 58, no. 9, pp. 524–532, 2010.

[9] F. Stallinger, R. Neumann, R. Plosch, P. Hehenberger, B. Bohm,
A. Kohlein, and N. Gewald, “Improving mechatronical engineering: An
artifact-assessment-based approach,” in 16th IEEE ETFA. IEEE, 2016,
pp. 813–820.

[10] K. Meixner, A. Lüder, J. Herzog, H. Röpke, and S. Biffl, “Modeling
expert knowledge for optimal CPPS resource selection for a product
portfolio,” in 25th IEEE ETFA. IEEE, 2020, pp. 1687–1694.

[11] A. Lüder, N. Schmidt, K. Hell, H. Röpke, and J. Zawisza, Description
means for information artifacts throughout the life cycle of CPPS.
Cham: Springer International Publishing, 2017, pp. 169–183.

[12] A. Lüder, A. Behnert, F. Rinker, and S. Biffl, “Generating industry 4.0
asset administration shells with data from engineering data logistics,” in
25th IEEE ETFA. IEEE, 2020, pp. 867–874.

[13] A. Strahilov and H. Hämmerle, “Engineering Workflow and Software
Tool Chains of Automated Production Systems,” in Multi-Disciplinary
Engineering for Cyber-Physical Production Systems. Springer, 2017.

[14] K. Paetzold, Product and Systems Engineering/CA* Tool Chains. Cham:
Springer International Publishing, 2017, pp. 27–62.

[15] R. Drath, M. Barth, and A. Fay, “Offenheitsmetrik für engineering-
werkzeuge,” atp edition, vol. 54, no. 09, pp. 46–55, 2012.

[16] A. Lüder, N. Schmidt, and R. Drath, Standardized Information Exchange
Within Production System Engineering. Cham: Springer International
Publishing, 2017, pp. 235–257.

[17] J. Pfrommer, M. Schleipen, and J. Beyerer, “PPRS: Production skills
and their relation to product, process, and resource,” in 18th IEEE ETFA.
IEEE, 2013, pp. 1–4.

[18] G. Cândido and J. Barata, “A multiagent control system for shop floor
assembly,” in Holonic and Multi-Agent Systems for Manufacturing,
V. Mařı́k, V. Vyatkin, and A. W. Colombo, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 293–302.

[19] J. Herzog, H. Röpke, and A. Lüder, “Allocation of PPRS for the plant
planning in the final automotive assembly,” in ETFA. IEEE, 2020, pp.
813–820.

[20] M. Sabou, F. J. Ekaputra, T. Ionescu, J. Musil, D. Schall, K. Haller,
A. Friedl, and S. Biffl, “Exploring enterprise knowledge graphs: A use
case in software engineering,” in European Semantic Web Conference.
Springer, 2018, pp. 560–575.

[21] G. Booch, The Unified Modeling Language Use Guide. Addison-Wesley
Object Technology, 2017.

[22] D. F. Eugenio Brusa, Ambra Calà, Ed., Systems Engineering and Its
Application to Industrial Product Development. Springer, 2018.

[23] C. Legat, C. Seitz, S. Lamparter, and S. Feldmann, “Semantics to the
shop floor: Towards ontology modularization and reuse in the automation
domain,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 3444–3449,
2014, 19th IFAC World Congress.

[24] U. Lindemann, M. Maurer, and T. Braun, Eds., Structural complexity
management: An approach for the field of product design. Springer,
2009.

[25] S. Feldmann, M. Wimmer, K. Kernschmidt, and B. Vogel-Heuser, “A
comprehensive approach for managing inter-model inconsistencies in
automated production systems engineering,” in 2016 IEEE International
Conference on Automation Science and Engineering (CASE), 2016, pp.
1120–1127.

[26] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Enhanc-
ing Clone-and-Own with Systematic Reuse for Developing Software
Variants,” in 2014 IEEE International Conference on Software Mainte-
nance and Evolution, sep 2014, pp. 391–400.

[27] VDI Guideline 2206: Design methodology for mechatronic systems,
VDI-Verlag, Düsseldorf Std., 2004.

[28] A. Lüder, L. Hundt, M. Foehr, T. Holm, T. Wagner, and J. Zaddach,
“Manufacturing system engineering with mechatronical units,” in 2010
IEEE 15th Conference on Emerging Technologies Factory Automation
(ETFA 2010), 2010, pp. 1–8.

[29] VDI Guideline 3695: Engineering of industrial plants - Evaluation and
optimization, Beuth Verlag Std., 2009.

[30] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education India,
1995.

[31] R. J. Wieringa, Design science methodology for information systems and
software engineering. Springer, 2014.

[32] R. Mehr and A. Lüder, Managing Complexity Within the Engineering
of Product and Production Systems. Cham: Springer International
Publishing, 2019, pp. 57–79.

[33] S. Biffl, A. Lüder, K. Meixner, F. Rinker, M. Eckhart, and D. Winkler,
“Multi-view-model risk assessment in cyber-physical production systems
engineering,” in MODELSWARD. SCITEPRESS, 2021, pp. 163–170.

44

 Software Design Pattern Analysis for Micro-services
Architecture using Queuing Networks

Hanzhong Zheng, Justin Kramer, Shi-Kuo Chang
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA

{victorzhz@cs.pitt.edu, jpk91@pitt.edu, schang@pitt.edu}

Abstract—Software design patterns are used to identify
simple ways of realizing relationships among software
entities or components for solving a commonly occurring
problem. Design patterns allow the final software system
to support different realized, non-functional requirements.
In this paper, we are interested in three popular design
patterns in Micro-services architecture: Fan (distributed),
Chain, and Balanced, and study the influence of different
system parameters to system performance. The
simulation mimics system behaviors under specified
design requirements for assisting software developers to
select appropriate design pattern in software development
life cycle (SDLC). In order to enable multi-pattern code
generation, we extended our previous research on an
automated modularity enforcement framework [1] from
design pattern analysis to pattern evaluation.

Keywords – Micro-services, Design Pattern Analysis, Software
Architecture Evaluation, Queuing Network Modelling

I. INTRODUCTION

Architectural patterns and design patterns are usually
employed in the software development life cycle (SDLC).
Software design patterns are “general and reusable
solutions to a commonly occurring problem in software
design within the context of software system design”. It
helps the developers to communicate software
architectural knowledge, bypass traps and pitfalls during
the development process [2]. Usually, design pattern can
only provide the templates or descriptions to the
developers about how to solve problems in the process of
designing an application or system, but cannot be directly
transformed into code. To ensure the continuous delivery
of trustworthy and high-quality software systems while
reducing the burdens on programmers, design patterns
become critical in the software development process. The
current approach on employing design patterns has been
focusing on object-oriented software design with
emphasis on the relationship and interactions between
classes or objects [2] [3] [4]. There have been a lack of
emphasis on the design pattern for service-oriented
architecture, especially for Micro-services. Micro-services

DOI Reference Number: 10.18293/SEKE2021-180

consider an application to be a collection of loosely
coupled, interconnected modular services, where
individual services communication through REST APIs,
and lightweight messages.

In this paper, we put focus on three popular design
patterns in micro-service architecture. A software system
is usually divided into several modules during the design
phrase. To explicitly enforce the modularity in design
patterns becomes very important in software system
design. We extend previous work (automated modularity
enforcement framework) for those design patterns in
Micro-service architecture. The formal definitions of three
top design patterns are [6]:

Chain: A “pipeline” layout of all components in the
execution process. Clients establish one-to-one
relationship with servers.

Fan (Distributed): All clients establish many-to-one
relationship with a central database server. All the
information will be stored into the central server.

Balanced: also known as Shared Data Pattern. Each
client establishes one-to-one relationship with its database
server. Multiple servers share their data.

We have conducted a comprehensive simulations using
Queueing Network Modelling based tool, named Java
Modelling Tool (JMT). The simulation results indicate
that each design pattern has its own advantages for
building appropriate software system products for
satisfying proposed design requirements. The
contributions of this paper are as followings:

1. We developed the automated design pattern
analysis in Micro-service architecture from system
pattern design to pattern evaluation.

2. We build a mathematical estimation model
through parameterizing the expected cost for
software system development

3. We conducted comprehensive simulation
experiments and analysis for better understanding
of each design pattern’s properties.

45

II. RELATED WORK

Micro-services Architecture. Micro-service architecture
is a type of service-oriented architectural type, in which
an application is constructed as a set of loosely coupled
small services. The current practice of micro-service
architecture mostly concentrates on the business
enterprises such as Netflix, Amazon, e-commerce, etc.
The next generation of micro-services requires ad-hoc
tools for the creation of design patterns [5]. Sahiti
Kappagantula introduces the several design patterns in
Microservices architecture for providing reusable
solutions to overcome common problems and improve
application performance [6]. However, it is lack of the
instructive and qualitative analysis among different
patterns. In our work, we aimed to provide
comprehensive analysis for different design patterns
based on the performance quality attributes under a
specific application scenario.

Queueing Network Modelling. Software architecture
evaluation ensures an appropriate architecture is chosen
for building complex software-intensive systems to any
organization. Hence, architecture evaluation helps
developers to ensure all stakeholders’ requirements have
been satisfied. Commonly, software architecture
evaluation can be classified into experience-based,
simulation-based, mathematical modeling, and scenario-
based [7]. The simulation-based evaluation approach
usually is combined with mathematical modeling for
estimating a more accurate system performance. However,
it is not easy for evaluating system performance during
the design process. Queueing Network Modelling
represents the computer system as a network of queues,
and analytically evaluates the system performance [8]. It
can simulate a group of service centers, which can make
use of our three different patterns. Macro Bertoli et al.
presented Java Modelling Tools (JMT) suite for
evaluating system performance using queueing models
[8]. JTM integrates a graphic user interface and other
methodologies such as discrete event simulation,
bottleneck identification in multiclass environment, etc.
We simulated the performance results of our three
different design patterns using JMT with the same initial
parameters setting.

III. MATHEMATICAL MODELLING OPTIMIZATION

The software cost estimation not only can minimize
the total cost of software development cost, but it also
ensures the final product can satisfy the requirements,
which generally refer to the quality attributes such as
performance, functionalities, etc. Many estimation

models have been developed and widely used. In general,
there are two major categories of existing models:
algorithmic and non-algorithmic.

Algorithmic cost modelling uses mathematical
expressions to predict the development costs based on the
estimations of system size, complexity, and other process
and product factors. Finding the most appropriate
expression can estimate software development costs,
which are important for analyzing the performance of our
three different structural patterns with keeping a relatively
low development cost. The general form of an algorithmic
cost estimation can be expressed as:

 (1)

where A is constant factor that depends on the type of final
software product, S is the code size of the software or
functionalities of certain components, B is the exponential
factor that usually lies in range of [1, 1.5], indicating the
fact that costs do not linearly increase with project size,
and M is a constant multiplier for combing process such
as dependability requirements. Our automatic code
generation tool is built based on Micro-service
applications. The service reliability is critical for service-
oriented system. We added a reliability modeling term to
the cost estimation expression as following:

 (2)

where the term is the simplified probability model

of estimating service reliability from, is the number of
services executions without exceptions occurrence; is
the total number of service invocations. is the
anticipated cost of executing service. During the
simulation, we assume that the probability of software
system failure as a stochastic process. In most
logarithmic cost models, the code size (S) is usually
difficult to estimate when the specifications are not
available. Since factors B and M are usually subjective,
we are mainly interested in their relations to the cost
estimate model during the optimization process. To study
the relation between M and we take the partial
derivative with respect to M:

 (3)

Similarly, we take the partial derivative with respect to B:

 (4)

E [e f for t] = A * SB * M

E [e f for t] = A * SB * M +
n

∑
i=1

(1 − fi
ti

) * ci + ϵ

1 − fi
ti

fi
ti

ci

E [e f for t]

∂E [e f for t]
∂M

= A * SB

∂E [e f for t]
∂B

= A * M * SB * ln(S)

46

Therefore, in the simulation experiment section, we study
the changing of M or B variables, while keeping other
variables to be constant to determine their effects to the
cost and system performance.

IV. EXPERIMENT TOOL
we extend our previous work by adding extra

functionalities and input parameters to support the three
patterns. This allows software developers select their
preferred architecture after testing the performance of
each design pattern. Our key objective was to add a layer
of experimentation and design to our automatic code
generation. We added a cleaning functionality to
AutoGenerator, which allows users to experiment with
combinations of design patterns and service creation
without the risk of damaging their templated product.
Therefore, our ‘cleaning’ function provides users with
flexibility in their designs and improve software
development process. After we established our ‘cleaning’
functionality, we started on the creation of each micro-
service architecture design pattern. The first stage of
production was analysis of each design pattern. The
results of our design pattern analysis led to formulated
architecture diagrams. In Fig. 1, we demonstrate the
balanced design pattern for our micro-service architecture
in medical application. In the architecture diagram, a
balanced design pattern is followed by combining the fan
and chain design patterns. In the figure 1, the doctor and
patient services act as examples of the fan design pattern.
The doctor and patient services connect to our centralized
registration service through HTTP communication via
their localized micro-service servers. Within the fan
design pattern, each micro-service will contain its own
database, server to communicate with the central
registration server, and controller layer. Also, the
prescription service acts as an example of the chain design
pattern. In the chain design pattern, our AutoGenerator
establishes the formation of a new micro-service
consisting of a service layer and a database. The chain
design pattern demonstrates the pipeline execution
pattern, so prescription service acts as an addition to the
functionality of the fan structure’s patient service. In this
example, the patient service will query the prescription
service directly through a public interface to acquire
information about the prescriptions of a specific patient.
IServices are assigned a unique probability to appear as
micro-services within the fan or chain design patterns.
The element of probability in the balanced design pattern
allows for permutations of samplings to appear as the
result of the auto generation. Thus, basic analysis of each

design pattern allowed for translation into a micro-service
architecture for our AutoGenerator.

Fig. 1: A balanced micro-service architecture utilizing
both chain and fan pattern design.

Our process begins with IC cards, which define the
service interactions witnessed in the architecture being
designed [1]. Once the IC cards are defined, the ICMS can
output an XML specification as shown in Fig. 2. The
XML specification specifies the structure of different
software components and initial system parameters,
which all are used in the system simulations.

<?xml version="1.0" encoding="UTF-8"?>
<icCardList
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <icCardEntry icEntryId="2788" icEntryName="ex3">

47

 <icCard icId="10265"
icName="drug_drugs_service" icDescription="Serves
information about the drug" icIntPattern="quietstate"
icMyTask="Serve information about the drug "
icTimeCriticalCondition="< 30 minutes and
Begin_Table T_DRUG(number, name, address)
End_Table" icNumberCurrent="1" icNumberTotal="1">
 …

</icCardEntry>
<configOptions>
 <arrivalRate value="Normal"/>
 <queueingDiscipline value="FCFS"/>
 <routing value="RoundRobin"/>
 <serviceTimeSeconds value="50"/>
 <serviceDemandSeconds value="30"/>
 <designPattern value="fan"/>
 <userPreference value = "Chain">
 </configOptions>

</icCardList>

Fig 2. The XML specification for the architecture
structure.

 Based upon the XML specification of the IC cards,

the AutoGenerator can then create the output modules.
Fig. 3 demonstrates a portion of the code to generate these
modules, which allows for several key variations. The
first variation is the parameter that designates the design
pattern to utilize. The input parameter may be selected as
“balanced”, “fan”, or “chain” depending on the use case.
Furthermore, each design pattern follows a set of
generation rules which establishes modularity and
provides a basis to fill in implementation details for the
architecture. For the chain pattern, our AutoGenerator
builds a simplified micro-service layer composed of the
necessary modules to connect a Micro-service to its
database and to another Micro-service. The necessary
modules are comprised of a data repository interface and
a method-layer interface to interact with the service. For
our balanced pattern, we follow the directed creation of a
fan or chain implementation of the auto generation based
upon probability. The same skeleton of our
AutoGenerator now contains flexibility in its design
pattern and the ability to enable hypothesis testing
through cleaning function.

for i, service in enumerate(services):

 if tables[i]:
 separated_table = tables[i].split('(')

 adjusted_columns =
adjust_columns(separated_table[1])

TABLE_NAME = separated_table[0]

 TABLE_COLUMN_1 = adjusted_columns[0]
 TABLE_COLUMN_2 = adjusted_columns[1]
 TABLE_COLUMN_3 = adjusted_columns[2]

 NEW_SERVICE = service
 NEW_SERVICE_PLURAL = services_plural[i]

 if DESIGN_PATTERN == 'balanced':
 choices = ['chain', 'fan']

 choice = random.choice(choices)
 if choice == 'chain':

 run_generation_chain(SRC_PATH,
NEW_SERVICE_PLURAL)

 else:
 run_generation_fan(SRC_PATH,

NEW_SERVICE_PLURAL)
 elif DESIGN_PATTERN == 'chain':

 run_generation_chain(SRC_PATH,
NEW_SERVICE_PLURAL)

 elif DESIGN_PATTERN == 'fan':
 run_generation_fan(SRC_PATH,

NEW_SERVICE_PLURAL)
 else:

 print("Please enter a valid design pattern!")

Fig. 3 Code to generate each of the architecture
structures.

V. QUEUING NETWORK MODELLING ANALYSIS
We decide to use Queuing Network simulation for
evaluating the different patterns’ performance. The layout
designs of the patterns are illustrated in Fig. 4 using the
JMT simulation software. All the simulation layouts
reflect the definition of different design patterns in the
beginning of the paper. JMT contributes to perform
system evaluation studies in the following two ways: 1.
Statistically analysis such as confidence interval analysis,
variance estimation, etc. 2. A friendly user interface for
the description of system and parameters analysis. The
main parameters related to the interested variables:
system size (B) and multiplier of system combining
process (M). Since we assume that the micro-service
design patterns are targeted to medical application, so that
M can be reflected the requirements of patients’ service
demand time, and B is the doctor service time. The S is
the application that handles the number of patients in the
system evaluation (Arrival rates): Exponential, Normal,
Uniform, etc. In this paper, we use the normal distribution
for better modelling the number of patients in real case.
Service Demand: the average amount of time (workload)
that each user/patient required for the doctor’s service (on
user/patient side). Queueing disciplines: 1. Non-
preemptive: First Come Frist Served (FCFS), Last Come

48

First Served (LCFS), Random (RAND), etc. 2.
Preemptive: Server sharing, Discriminatory Server
sharing, etc. Routing of the users/patients in the system:
the current setting is the Round Robin, which simulates
that there is a waiting room for the patient to visit doctor
in our system. Service Time: the maximum amount of
time that doctor to diagnose each patient (on doctor side).
User Preference: the developers’ inclining towards to
specific structure patterns. This allows the user to select
its own desired patterns.

Fig. 4 The top, middle, and button figures are the
simulation layouts for distributed, balance, and chain
pattern.

We converted the design of patterns into well-structured
XML code to input of simulation with specified

components layout and system parameters. The
simulation settings are: (1) The number of users is
continuously increasing; (2) All the servers have the
limited amount of disk capacity; (3) Each user submits the
jobs according to a normal distribution with parameters
different parameters; (4) The evaluation metrics are
Throughput (# of jobs /second), Queuing Time (sec/user),
Response Time (second/job), System utilization (# of
working jobs/second); (5) Each simulation lasts until the
model converges and we conducted 15 repeat runs
making sure the accurate final performance results of
each pattern. The experiment results are fall into with
relative error < 0.03. Our purpose of the simulation is to
find an appropriate structural design pattern, which plays
a critical role in software development process. We
alternate different parameters for different patterns during
the simulation. Figures 5, 6, and 7 show the performance
results of the 3 different patterns under the different
simulation inputs. The alternations of the desired
variables enable to reflect the behaviors of different
patterns. The simulation can see the fluctuations of
different patterns under the different parameters’ setting.
This allows the developers to decide appropriate design
pattern during the development process.

Figure 5: the performance of three patterns with the
increase of service demand from 30, 50, 100.

Figure 6: the performance of three patterns with the
increase of service time from 50, 100, 200.

49

Figure 7: the performance of three patterns with the
increase of normal distribution mean (15, 30, 60) for
modelling the increase number of users in the system.

We treat each user is managed by a process in the system,
which is related to the system requirements in operating
and combing user processes. The simulation results show
that the throughput of all patterns decreases with the
increase of all the parameters. The FAN pattern largely
impacted by the service time and the Chain pattern largely
influenced by the number of users in the system. The FAN
pattern has a higher and higher value in the System
utilization, which represents that there are increasing
number of working jobs in the system. The increase of the
service time surprisingly decreases the system utilization
of Balanced pattern, while the rest of two patterns both
increase. Our explanation is the routing problem due to
the number of data servers and components. Since there
are multiple servers in the Balanced pattern, it brings the
higher capacity to handle the dramatically increase of
users in the system. However, the data replication and
synchronization become the main challenge in this design
pattern.

As for the FAN (distributed) pattern, it maintains a
comparatively reasonable performance under different
parameters setting, but it can easily be influenced by the
alternations of parameters. The centralized data server
avoids problems in other two patterns but requires a more
intelligent routing and queuing discipline for handing
users in “burst” situation. The choice of different design
patterns depends on the design requirements and also
takes the user’s preference into the consideration. The
Chain pattern involves the structure of “pipeline” design.
The execution of each process is strictly followed the
order, which unavoidably cause the “stalls” inside the
execution pipeline. However, certain applications such as
online patient diagnosis in medical domain has the
preferences on chain pattern.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new software design approach
using the Micro-service architecture. The extended

automated code generation framework enables code
generation under three different design patterns. We
compared our design patterns using Queuing Network
modelling for performance analysis. The queuing
network allows for analytic study on the software system,
which is represented as a network of queues with
collections of service centers. We compared the
performances of the different design patterns under
different parameters settings and provided an analytical
evaluation for them. Our next goal is to study the
influence of parameters (such as the capacity of the
servers, data usage volume, user preferences of specific
patterns and so on) to the performance of different design
patterns.

REFERENCES
[1] H. Zheng, J. Kramer, and S. Chang, “Auto-Modularity
Enforcement Framework Using Micro-Service Architecture”,
in Journal of Visual Language and Computing, pp. 17-22, 2020.

[2] H. Mu and S. Jiang, “Design patterns in software
development,”2011 IEEE 2nd International Conference on
Software Engineering and Service Science, pp. 322–325, 2011

[3] P. Kuchana, Software architecture design patterns in Java.
Auerbach Publications, 2004.

[4] S. Jiang and H. Mu, “Design patterns in object-oriented
analysis and design,” in 2011 IEEE 2nd International
Conference on Software Engineering and Service Science, pp.
326–329, 2011.

[5] L. Safina, M. Mazzara, F. Montesi, and V. Rivera, “Data-
driven workflows for microservices: Genericity in Jolie,” in
2016 IEEE 30th International Conference on Advanced
Information Networking and Applications (AINA),pp. 430–
437, 2016.

[6] Kappagantula, S. (2020, November 25). Everything You
Need To Know About Microservices Design Patterns. Edureka.
https://www.edureka.co/blog/microservices-design-
patterns#Database

 [7] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattsson,
“A method for understanding quality attributes in software
architecture structures,” in Proceedings of the 14th
International Conference on Software Engineering and
Knowledge Engineering, SEKE ’02, New York, NY, USA, p.
819–826, 2002.

[8] M.Bertoli, G.Casale, G.Serazzi.
“JMT: performance engineering tools for system modeling,”
ACM SIGMETRICS Performance Evaluation Review,
Volume 36 Issue 4, New York, US, 10-15, 2009.

50

Correctness Arguments for an SDN MAC Learning Algorithm

Liang Hao, Xin Sun, Lan Lin

Department of Computer Science

Ball State University

Muncie, IN 47306, USA

{lhao, xsun6, llin4}@bsu.edu

Abstract

The emerging software-defined networking (SDN)
paradigm is a radical departure from the traditional net-

working architecture as it decouples the control plane and
the data plane and also centralizes the control plane. While
SDN has proven to provide an unprecedented opportunity
for creating advanced control functions that are capable
of optimizing global properties of a network, recent works
including our own have shown that the implementation of
such control functions is a software engineering challenge
on its own due to the unique architecture of SDN. In our re-

cent work [7], we have taken the first step towards tackling
this challenge by presenting a preliminary case study of im-

plementing the classic Media Access Control (MAC) learn-

ing algorithm for SDN. A major discovery we made is that,
for a proper implementation of the algorithm, the algorithm
itself must be modified to account for the architectural dif-

ferences of SDN. This paper builds upon and advances our
prior work, by presenting a detailed description and anal-

ysis of the SDN version of the MAC learning algorithm, to
justify the modifications as necessary for a correct and effi-

cient implementation. As such this paper sheds light on the
interplay between the algorithm design and software imple-

mentation of control functions for SDN, which we believe is
an important contribution to both the software engineering
community and the networking community.

1 Introduction

Software-defined networking (SDN) is a new paradigm
in the networking landscape that transforms the way net-

works are constructed and managed. A defining architec-

tural feature of SDN is the centralized control plane, which
is a radical departure from the traditional networking archi-

tecture where the control plane is fully decentralized. The
control plane serves as the brain of a network: it controls
how packets are forwarded by producing the necessary for-

DOI reference number: 10.18293/SEKE2021-184

Figure 1. The decoupling of the control and
the data planes in the SDN architecture

warding tables. The data plane, in contrast, handles the

packet streaming by looking up those tables.

In the traditional networking architecture, both the con-

trol and the data planes are implemented on every network-

ing device (e.g., routers and switches), and hence they are

fully decentralized and tightly coupled. In contrast, the

SDN control plane is implemented by a logically central-

ized software platform, called the network OS or the con-

troller, with all the application programs (called SDN apps)

running on top of it. The controller, together with all the

SDN apps, runs on a PC server that connects to the network-

ing devices (called SDN switches). The SDN data plane is

implemented by the packet forwarding hardware on all the

SDN switches. A communication protocol, called Open-

Flow [16], is used for the controller to communicate with

the SDN switches and vice versa. The SDN architecture is

illustrated in Figure 1.

The unique architecture of SDN provides an unprece-

dented opportunity for creating advanced control functions,

but at the same time poses a significant challenge to the im-

plementation of such functions as SDN apps. On the one

hand, the centralized control plane oversees the entire net-

work and offers a global view for creating control functions

51

capable of global optimization. On the other hand, the de-

coupling results in the control plane’s limited visibility into

the data plane. In particular, only a small subset of packets

being streamed in the data plane are copied to the controller,

so as not to overload the controller or the network. This

poses challenges to the implementation of SDN apps.

SDN research has largely focused on the algorithm de-

sign of control functions. However, relatively little attention

has been given to the software engineering aspect, which

we believe is an important research problem worth address-

ing on its own. As a first step, in our recent paper [7]

we presented a case study of implementing the classic Me-

dia Access Control (MAC) learning algorithm (an essential

link-layer forwarding algorithm implemented by every tra-

ditional Ethernet switch) in the SDN architecture. A ma-

jor discovery we made in [7] is that an efficient implemen-

tation requires modifications to the algorithm itself due to

the architectural differences of SDN. We presented in [7]

such an implementation following rigorous software speci-

fication and design methodologies. However, a detailed de-

scription of the modified algorithm itself or an analysis of

the algorithm to justify the modifications was not presented

in [7], due to the fact that the focus of that paper was on ap-

plying rigorous software specification and modular design

to derive an implementation through stepwise refinement.

Building upon and advancing our prior work, the pri-

mary contributions of this paper include a detailed descrip-

tion of the SDN version of the MAC learning algorithm,

and a detailed analysis that shows why the modifications are

necessary for the SDN architecture. We hope this paper will

shed light on the interplay between the algorithm design and

the software implementation of SDN control functions.

The rest of the paper is organized as follows. Section 2

presents a description of the classic MAC learning algo-

rithm. Section 3 explains why a direct and straightforward

migration of the classic algorithm to SDN is impractical,

presents the SDN version of the algorithm, and argues why

the modifications are necessary for achieving a correct and

efficient implementation. Section 4 discusses related work

and Section 5 offers concluding remarks.

2 The Classic MAC Learning Algorithm in

Traditional Networks

MAC learning is the classic link-layer algorithm that en-

ables an Ethernet switch to perform two essential functions:

(i) constructing and updating the switch table (a control

plane function), and (ii) using the table to forward pack-

ets toward their destinations (a data plane function) [8]. In

the traditional networking architecture, this algorithm runs

on every Ethernet switch.

The switch table produced by the algorithm is stored in

the switch memory. An entry in this table contains the MAC

Figure 2. The classic MAC learning algorithm

working in a traditional network

address of some device in the network, the switch port be-

lieved to lead toward that device, and a timer. The MAC

address is used as the key for indexing the table (MAC ad-

dresses are all unique), and the timer is used to remove the

entry in the future in case it becomes stale.

On each Ethernet switch, whenever a packet is received

on a port p, the algorithm performs the following two steps

(illustrated in Figure 2):

Step 1: the algorithm extracts the source MAC address s

from the packet header. If s is not in the switch table, it

creates a new table entry (s, p, t) where p is the incoming

port (which must lead toward s) and t is a timer set to

expire after some period of time. If such an entry already

exists, the timer will be reset. If there exists an entry

with the same MAC address s but with a different port,

the port will be updated to p and the timer be reset.

Step 2: the algorithm uses the destination MAC address

d in the packet header to look up the switch table. If an

entry with d exists, the packet will be sent out the asso-

ciated port. If such an entry does not exist, the algorithm

will flood the packet out all active ports except the in-

coming port p.

In addition, the algorithm will delete a table entry when

the associated timer expires. This is to get rid of any poten-

tially stale entry due to topology changes, e.g., hosts being

removed or relocated.

We note that the proper functioning of Step 1, specifi-

cally the resetting of timers, relies on the fact that the algo-

rithm sees every incoming packet. As we will explain next,

this is not the case in the SDN architecture.

3 The SDN Version of the MAC Learning Al-

gorithm and Correctness Arguments

We first describe the key difference of the SDN architec-

ture and explain why a direct and straightforward migration

of the MAC learning algorithm to SDN will not work. We

52

then describe several modifications to the algorithm and ar-

gue why those modifications are necessary for achieving a

correct and efficient implementation. Lastly we use an ex-

ample to illustrate the operation of the new algorithm.

3.1 A Direct Migration Is Inefficient

The control plane and the data plane are completely de-

coupled in the SDN architecture. The control plane is im-

plemented by the software controller running on a central-

ized server; and the data plane is implemented by all the

decentralized SDN switches. Implementation of the MAC

learning algorithm will involve the controller and all the

SDN switches, as Step 1 of the algorithm is a control plane

function and Step 2 a data plane function. The two parts of

the algorithm will need to interact via the OpenFlow com-

munication protocol [16]. A direct migration of the classic

MAC learning algorithm to SDN would work as follows.

On the controller: Step 1 of the algorithm would be im-

plemented as an SDN app running on the controller. The

app constructs and updates the switch table for every switch.

For each switch s, the app collects every incoming packet

together with the incoming port information. For each

packet the app either creates a new switch table entry or

updates an existing entry. It then sends the new or updated

table entry to s in an OpenFlow protocol message. (The

OpenFlow protocol messages are called “FlowMods.”)

On every SDN switch: Whenever a switch receives a new

packet, it sends the packet together with the incoming port

information to the controller. The switch then receives a

new or updated table entry from the controller and caches

it locally. The switch uses the destination MAC address in

the packet header to look up its locally cached table, and

either forwards the packet to the associated port if an entry

is found, or floods the packet on a table miss.

In addition, the SDN app is responsible for creating and

resetting all the timers. When a timer expires, the SDN app

deletes the associated table entry and informs the switch to

delete the same entry from its locally-cached table.

This direct and straightforward migration of the MAC

learning algorithm to SDN unfortunately will not work for

two reasons. First, requiring every switch to send every

packet to the controller creates substantial traffic overhead;

for every packet the controller will send a FlowMod mes-

sage back to the switch, further increasing the overhead.

Second, the controller will receive and process every packet;

the amount of link bandwidth and CPU power required to

implement such a controller is simply beyond practicality.

3.2 Necessary Algorithm Modifications

To address the above-mentioned efficiency issues, our

prior work [7] made several important modifications to the

MAC learning algorithm when implementing it for SDN.

First, the modified algorithm requires that, whenever an

SDN switch receives a packet, it should first look up its

locally-cached table1 using the source and destination MAC

addresses in the packet header and information regarding

the incoming port. Note that each entry of the locally-

cached table maps a three-tuple (source address, incoming

port, destination address) to a destination port. If a table

entry is found to match the three-tuple (source address, in-

coming port, destination address), the switch should for-

ward the packet out the associated port without sending the

packet to the controller. Only upon a table miss should the

switch send the packet and information regarding the in-

coming port to the controller.

Second, the MAC learning app running on top of the con-

troller will construct and update the forwarding tables for

all the switches. Whenever the app receives a packet and

incoming port information from a switch s, it either creates

a new entry in the table of s if the source MAC address of

the packet does not exist in the table, or updates the exist-

ing entry based on the new port information. It then uses

the destination MAC address of the packet to look up the

table of s. If an entry exists, it will send the entry to s in a

FlowMod message; otherwise, it will instruct s to flood the

packet, also in a FlowMod message.

While these changes dramatically reduce the number of

packets sent to the controller, they create two new problems

for the implementation, which we discuss below.

Implementation of the timers associated with table en-

tries: the controller no longer sees all the packets being

forwarded on all the switches, and thus it is unable to

properly reset the timers in the switch tables. This means

that the timers cannot be maintained by the controller.

Synchronization of table entries between the controller

and the switches: even after the controller deletes an en-

try (h, p) in the forwarding table of switch s as the en-

try may become stale (e.g., the host with MAC address

h may have relocated and no longer be reachable from

switch s through its port p), s may still have a locally-

cached table entry containing (h, p) as the destination

address and outgoing port; this will cause s to continue

to forward any packet destined to host h out of port p,

resulting in permanent loss of those packets.

To solve both problems, several additional modifications

to the MAC learning algorithm are necessary. First, when-

ever the controller sends a FlowMod message to a switch

that contains a table entry, it also creates and sends a re-

versed FlowMod message, in which it flips source address

with destination address, and flips incoming port with out-

going port. For instance, if a FlowMod message (to be sent

1The locally-cached switch table is also called the FlowMod table.

53

Figure 3. An illustrating case: Initial State

Figure 4. An illustrating case: Step 1

to switch s) with source address sh, incoming port sp, des-

tination address h, and outgoing port p is created, the con-

troller also creates a reversed FlowMod message (to be also

sent to switch s) with source address h, incoming port p,

destination address sh, and outgoing port sp. By the time

they are created, it must be the case that (h, p) and (sh, sp)
are both valid table entries, i.e., neither (h, p) nor (sh, sp)
is a stale host-port pair.

Second, switches maintain the timers for all the locally-

cached table entries, as switches see all the packets and can

thus properly reset the timers. The controller on the other

hand does not maintain any timer.

Third, whenever a locally-cached FlowMod table entry,

with (sh, sp) as (source address, incoming port) and (h, p)
as (destination address, outgoing port), gets deleted due to

timer expiring, the switch sends a FlowRemoved message

notifying the controller. The controller then deletes (sh, sp)
from the lookup table, and sends a FlowMod message in-

structing the switch to delete the reversed entry with (h, p)
as (source address, incoming port) and (sh, sp) as (destina-

tion address, outgoing port) from its locally-cached table.

Therefore, in case any host-port pair (h, p) goes stale, i.e.,

host h is no longer reachable from port p, for any locally-

cached table entry with (h, p) as (destination address, out-

going port), its reversed table entry, in which (h, p) is the

(source address, incoming port) pair will eventually expire

and get removed, leading to the former table entry with

a stale (destination address, outgoing port) pair being re-

moved as well.

Figure 5. An illustrating case: Step 2, without

reversed FlowMod messages

Figure 6. An illustrating case: Step 3, without

reversed FlowMod messages

3.3 Illustrating the Algorithm

We illustrate this subtlety of the SDN MAC learning al-

gorithm using an example. Assume there are two hosts in

the network with two SDN switches (Figure 3). Host H1 is

connected to switch S1 through port a. Host H2 is con-

nected to switch S2 through port d. S1 connects to S2

through port b on S1 and port c on S2. The SDN con-

troller maintains lookup tables for S1 and S2, which are

initially both empty. The two switches each maintain their

own FlowMod tables, which are also initially empty.

Assume H1 first sends a packet to H2 (Figure 4 sub-step

(1)). S1 consults the SDN controller for how to handle this

packet (sub-step (2)). The controller adds (H1, a) to S1’s

lookup table (sub-step (2)). The controller instructs S1 to

flood the packet (sub-step (3)). The flooded packet arrives

at S2 though port c (sub-step (4)). S2 consults the controller

resulting in (H1, c) being added to S2’s lookup table (sub-

step (5)). The controller instructs S2 to flood the packet

(sub-step (6)). The flooded packet gets to H2 (sub-step (7)).

Now assume H2 sends a packet back to H1 (Figure 5

sub-step (1)) and assume the migrated algorithm didn’t en-

force reversed FlowMod messages to handle the subtlety

introduced by stale (host, port) entries. (H2, d) is added

to S2’s lookup table as S2 consults the controller for how

to handle this packet (sub-step (2)). Since the destination

54

Figure 7. An illustrating case: Step 2, with re-
versed FlowMod messages

Figure 8. An illustrating case: Step 3, with re-
versed FlowMod messages

address H1 is already in S2’s lookup table, the controller

instructs S2 to forward this packet to port c (sub-step (3)).

S2 caches this instruction in its FlowMod table (sub-step

(3)). The forwarded packet gets to S1 through port b (sub-

step (4)). Now it’s S1’s turn to consult the controller, which

leads to another entry being added to S1’s lookup table (sub-

step (5)). The controller instructs forwarding, and the in-

struction is cached in S1’s FlowMod table (sub-step (6)).

Finally, the forwarded packet gets to H1 (sub-step (7)).

Next we assume H1 is disconnected from S1 and con-

nected to S2 through port f , while H2 continues sending

more packets to H1 (Figure 6). This topology change is

not observed by either switch, as packets are being received

through the same (source address, incoming port) pair, and

forwarded to the same destination using the cached Flow-

Mod table entries. Notice that all such packets from H2 to

H1 will be lost with neither the switches nor the SDN con-

troller being aware of the underlying topology change of the

network and the resulting permanent packet loss.

With the correct algorithm that enforces reversed Flow-

Mod messages, in Step 2 any forwarding instruction from

the controller to the switch enforces a FlowMod table entry,

together with its reversed FlowMod table entry, to be simul-

taneously cached on the switch (Figure 7 sub-steps (3) and

(6) and shaded FlowMod table entries). In Step 3 after H1

moves to the new location (Figure 8), although there will

Figure 9. An illustrating case: Step 4, with re-

versed FlowMod messages

Figure 10. An illustrating case: Step 5, with

reversed FlowMod messages

be a little packet loss at the beginning, soon this will be

fixed. This is because in Step 4 (Figure 9) the FlowMod ta-

ble entries on both switches for the reversed FlowMod mes-

sages (sent earlier by the controller) will expire (after H1

changes the switch it is connected to). This results in two

lookup table entries being deleted from the controller, and

instructions from the controller to both switches to delete

the remaining two FlowMod table entries. Finally in Step

5 (Figure 10) subsequent packets from H2 to H1 are con-

sulted with the controller and flooded, reaching H1 through

port f . The first packet from H1 through port f will be seen

by the controller, which will add an updated lookup table

entry for both switches with H1 as the source address. Fu-

ture packets from H2 to H1 will be forwarded correctly by

the controller using the updated lookup table entries.

4 Related Work

Since the inception of SDN around a decade ago [9], the

research in SDN has primarily focused on (i) creating novel

control functions, such as load balancing [6], power sav-

ing [1], anomaly detection [14], etc.; these works mostly

focused on designing the algorithms and protocols, and not

on the implementation; (ii) the orchestration of multiple

control functions running on the same software-defined net-

work [2, 3, 10, 15, 17], and (iii) improving the performance,

55

reliability, and security of both SDN switches [5, 11, 12]

and controllers [4, 13]. However, relatively little attention

has been given to the software engineering aspects of SDN

apps. Our recent work [7] took the first step in tackling

the software engineering challenges of implementing con-

trol functions as SDN apps, through implementing the clas-

sic MAC learning algorithm for the SDN architecture. In

contrast, this paper presents a detailed analysis of the SDN

version of the algorithm that looks deeper into the subtleties

in algorithm design required for a correct and practical im-

plementation. To the best of our knowledge, this is a first

work that explicitly studies the interplay between algorithm

design and software implementation of SDN apps.

5 Conclusion

This paper presents a detailed analysis of the MAC learn-

ing algorithm and its implementation in the context of SDN.

We show that a direct and straightforward migration of the

classic MAC learning algorithm to SDN will not work, due

to its substantial bandwidth overhead and the impractical

workload placed on the controller. We then present a modi-

fied version of the algorithm that takes into account the SDN

architecture. Through a detailed analysis we show that the

modifications are necessary for a correct, practical and ef-

ficient implementation without impacting network perfor-

mance. We believe this work will be of interest to both

the software engineering and the networking communities.

We plan on applying the new understanding developed in

this study to migrating more algorithms and protocols to

the SDN environment.

Acknowledgments

This work was generously funded by Air Force Re-

search Laboratory through the National Science Foundation

(NSF) Security and Software Engineering Research Center

(S2ERC), and by the NSF under Grants CNS-1660569 and

1835602.

References

[1] B. G. Assefa and Ö. Özkasap. A survey of energy efficiency

in SDN: Software-based methods and optimization models.

Journal of Network and Computer Applications, 137:127–

143, 2019.

[2] A. AuYoung, Y. Ma, S. Banerjee, J. Lee, P. Sharma,

Y. Turner, C. Liang, and J. C. Mogul. Democratic resolu-

tion of resource conflicts between SDN control programs.

In Proc. of ACM CoNext, 2014.

[3] A. Bairley and G. Xie. Orchestrating network control func-

tions via comprehensive trade-off exploration. In Proc. of

IEEE NFV-SDN, 2016.

[4] T. Das, V. Sridharan, and M. Gurusamy. A survey on con-

troller placement in SDN. IEEE Communications Surveys

& Tutorials, 22(1):472–503, 2019.

[5] R. Durner, C. Lorenz, M. Wiedemann, and W. Kellerer. De-

tecting and mitigating denial of service attacks against the

data plane in software defined networks. In 2017 IEEE

Conference on Network Softwarization (NetSoft), pages 1–

6, 2017.

[6] M. Hamdan, E. Hassan, A. Abdelaziz, A. Elhigazi, B. Mo-

hammed, S. Khan, A. V. Vasilakos, and M. Marsono.

A comprehensive survey of load balancing techniques in

software-defined network. Journal of Network and Com-

puter Applications, 2020.

[7] L. Hao, X. Sun, L. Lin, and Z. Peng. Correct software

by design for software-defined networking: A preliminary

study. In Proceedings of the 32nd International Confer-

ence on Software Engineering & Knowledge Engineering

(SEKE), pages 127–134, Virtual Conference, 2020.

[8] J. Kurose and K. Ross. Computer Networking: A Top-Down

Approach. Pearson, 7th edition, 2016.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. Open-

flow: Enabling innovation in campus networks. SIGCOMM

Comput. Commun. Rev., 38(2):6974, 2008.

[10] J. Mogul, A. AuYoung, S. Banerjee, L. Popa, J. Lee,

J. Muidgonda, P. Sharma, and Y. Turner. Corybantic: To-

wards the modular composition of SDN control programs.

In Proc. of ACM HotNets, 2013.

[11] P. M. Mohan, T. Truong-Huu, and M. Gurusamy. Fault tol-

erance in TCAM-limited software defined networks. Com-

puter Networks, 116:47–62, 2017.

[12] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,

M. Alizadeh, V. Jeyakumar, and C. Kim. Language-directed

hardware design for network performance monitoring. In

Proceedings of the Conference of the ACM Special Interest

Group on Data Communication, page 8598, 2017.

[13] Y. E. Oktian, S. Lee, H. Lee, and J. Lam. Distributed SDN

controller system: A survey on design choice. computer

networks, 121:100–111, 2017.

[14] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad. Sur-

vey on SDN based network intrusion detection system using

machine learning approaches. Peer-to-Peer Networking and

Applications, 12(2):493–501, 2019.

[15] X. Sun and L. Lin. Leveraging rigorous software specifica-

tion towards systematic detection of SDN control conflicts.

In Proceedings of the 31st International Conference on Soft-

ware Engineering & Knowledge Engineering(SEKE), Lis-

bon, Portugal, 2019.

[16] The Open Networking Foundation (ONF), 2015. The Open-

Flow switch specification. https://opennetworking.org/wp-

content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

[17] D. Volpano, X. Sun, and G. Xie. Towards systematic detec-

tion and resolution of network control conflicts. In Proc. of

ACM HotSDN, 2014.

56

Multiclass Classification of Four Types of UML
Diagrams from Images Using Deep Learning

Sergei Shcherban and Peng Liang∗
School of Computer Science

Wuhan University, China
k1myriel@yandex.ru, liangp@whu.edu.cn

Zengyang Li
School of Computer Science

Central China Normal University, China
zengyangli@ccnu.edu.cn

Chen Yang
IBO Technology (Shenzhen) Co., Ltd.

Shenzhen, China
c.yang@ibotech.com.cn

Abstract—UML diagrams are a recognized standard mod-
elling language for representing design of software systems. For
academic research, large cases containing UML diagrams are
needed. One of the challenges in collecting such datasets is
automatically determining whether an image is a UML diagram
or not and what type of UML diagram an image contains.
In this study, we collected UML diagrams from open datasets
and manually labeled them into four types of UML diagrams
(i.e., class diagrams, activity diagrams, sequence diagrams, and
use case diagrams) and non-UML images. We evaluated the
performance of five popular neural network architectures using
transfer learning on the dataset of 3231 images that contains 700
class diagrams, 454 activity diagrams, 651 use case diagrams,
706 sequence diagrams, and 720 non-UML images, respectively.
We also proposed our neural network architecture for multiclass
classification of UML diagrams. The experiment results show
that our proposed neural network architecture achieved the
best performance amongst the algorithms we evaluated with an
accuracy of 98.65%, a precision of 96.76%, a recall of 96.48%,
and an F1-score of 96.62%. Moreover, among the neural network
architectures that we have evaluated, our proposed architecture
has the least parameters (around 2.4 millions) and spends the
least time per image (0.0135 seconds per image using GPU) for
classifying UML diagrams.

Keywords—UML Diagrams, Neural Network, Deep Learning,
Multiclass Classification

I. INTRODUCTION

To define and communicate the design and architecture of
systems, software engineers are challenged by the increasing
complexity of software systems, especially when groups of
developers use different modelling notations in distributed
development. Software developers, in particular architects and
designers, are therefore using Unified Modeling Language
(UML) [1] diagrams as a universal set of notations to promote
the concept description and collaboration in the development
of software systems. UML was stemmed as the union of three
object-oriented design practices: the Booch method [2], the
object modelling technique [3], and the Objectory method
[4]. The UML standard was published and maintained by
the Object Management Group (OMG). In addition, both in
industry and academia, the use of UML diagrams as a standard
for developing software [5]. Class diagrams, activity diagrams,
sequence diagrams, and use case diagrams are the most com-
mon four types of UML diagrams used in industry [6]. UML

* Corresponding author
DOI reference number: 10.18293/SEKE2021-185

class diagrams demonstrate the classes in a system, attributes
and operations of each class, and the relationship between
classes, and act as a focal role in defining software structure.
Activity diagrams explain how activities are organized to
deliver a service that can be at different levels of abstraction.
Sequence diagrams are diagrams of interaction that detail
how operations are done, and they capture the interaction
between objects. Use case diagrams provide description of the
interactions between users and the system.

In the research concerning UML modeling, researchers
need repositories with a large number of samples of UML
diagrams [7] [8] [9], such as the Lindholmen dataset [10].
These datasets can also be used to create helpful tools for
developers, such as creating UML diagrams by using natural
language specifications [7] or using UML diagrams to produce
code [8]. Images are one of the most used ways of storing
and sharing UML diagrams. Therefore, identifying whether
an image belongs to UML diagrams or not is the issue of
constructing such repositories. Non-UML images are often
found, especially in large datasets, such as the Lindholmen
dataset [10]. Sorting through thousands of pictures manually
requires a significant amount of time and effort. It is therefore
necessary to identify various UML diagrams from images
automatically. Recently, many researches have been focused
on classifying images by applying deep learning techniques
(e.g., [11] [12] [13]), and practitioners and researchers are
making these techniques accessible for use. Besides, in terms
of precision of image classification, deep learning algorithms
outperform classical machine learning algorithms [14]. Also,
modern deep learning frameworks (such as Tensorflow or
PyTorch) include the ability to use the GPU for neural network
training and inference, which accelerates the use of deep
learning-based image classification approaches.

In this paper, we presented an approach to identify various
types of UML diagrams automatically from images using deep
learning algorithms. Initially, we gathered a dataset of 3231
images (700 class diagrams, 454 activity diagrams, 651 use
case diagrams, 706 sequence diagrams, and 720 non-UML im-
ages). An experiment was then performed with several popular
neural network architectures [15] [16] that can be found in
current deep learning frameworks [17] [18] and are widely
used for applying neural networks (i.e., MobileNet [19],
DenseNet [20], NasNet [21], ResNet [22], Inception [23]). We

57

evaluated these selected neural networks with semi-trainable
transfer learning (the convolutional part of pre-trained neural
networks was not trained) and fully-trainable transfer learning.
Also, we proposed a new neural network architecture for
multiclass classification UML diagrams.

The contribution of this paper is threefold: (1) a dataset
which contains UML class diagrams, activity diagrams, use
case diagrams, sequence diagrams, and non-UML images,
serving as a starting point for researchers to further investigate
the UML diagram identification and classification problem, (2)
an approach to automatically identify various types of UML
diagrams by using deep learning techniques, and (3) a neural
network architecture which can fast and effectively classify
various types of UML diagrams from images.

The rest of the paper is organized as follows: Section II
introduced related works. Section III describes the research
questions, the data collection, the classification process, and
the evaluation process, and the experimental setup. Section
IV provides the experiment results. Section V presented the
threats to validity. Section VI describe concludion of this work
with further work directions.

II. RELATED WORK

Recently, various techniques to extract features from dia-
grams have been introduced. Karasneh and Chaudron [24]
introduced a process to extract UML class diagrams from
images and transform them into XMI format. Fu and Kara
[25] proposed a method for converting engineering diagrams
into connected graphs. Ho-Quang et al. proposed an approach
to classifying UML class diagrams from images automatically
by using machine learning algorithms and different feature
extraction techniques [9]. Despite its effectiveness, this method
to image classification consumes 5.84 seconds per image,
which can be problematic when using it with big datasets.
Mohd Hafeez Osman et al. showed that reverse-engineered and
forward-engineered UML class diagrams can be classified by
using machine learning [26]. Ahmed and Huang also applied
machine learning to classify role stereotypes of UML class
diagrams in order to quickly get the knowledge about role
stereotypes for developers [27]. They achieved an accuracy
of 89.6% in the multiclass classification of role stereotypes
of UML class diagrams using Random Forest with SMOTE
oversampling. Rashid classified UML sequence diagrams by
applying machine learning and computer vision algorithms
to facilitate the creation of repositories containing UML di-
agrams [28]. His work achieved an accuracy of 90.8% using
the methods from the OpenCV framework, such as Canny
edge, probabilistic Hough lines transform, and FindCountors
as feature extraction methods. Bian et al. proposed an ap-
proach to automatically grade students’ UML class diagrams
by using semantic, structural, and syntactic matches between
the teacher’s solutions and the students’ solutions [29]. They
received a variation of 14% between the teacher’s grade and
the grade received by using their tool by grade 20 students.

Because neural networks do not demand additional feature
extraction algorithms for classification and preform feature

extraction automatically using convolution layers [11], their
classification speed is higher than that of approaches that used
combination of feature extraction algorithms and classical ma-
chine learning algorithms. Moreover, in some computer vision
tasks, such as object recognition, modern neural networks
outperform humans in terms of accuracy [12].

In deep learning, the idea of reusing the acquired knowledge
from one task to another is called transfer learning [13]. It has
been proven as an effective way to implement neural networks
without using a lot of resources on training and searching
for a neural network’s architecture. Transfer learning means
applying the neural network’s weights obtained within one
task to complete or partially complete training on a new task.

To the best of our knowledge, there are no works that are di-
rectly aimed at the automatic multiclass classification of UML
diagrams. Thus we open this line of research by proposing an
approach to UML diagram classification and making available
to the public the dataset used for the experiments.

III. RESEARCH DESIGN

This research aims to study how we can automatically
classify multiclass UML diagrams by using deep learning
algorithms. In this study, we investigated four Research Ques-
tions (RQs):

RQ1: What is the best performance of semi-trainable
transfer learning for multiclass classification of UML
diagrams?

Rationale: This RQ aims to get the best classification
algorithm (in terms of performance) when training algo-
rithms to recognize UML diagrams. Various deep learn-
ing algorithms can produce different results, depending on
the architecture, configurations, and datasets used. Our se-
lection fell on five deep learning architectures, including
MobileNet, DenseNet169, NasNetMobile, ResNet152V2, and
InceptionV3, because they are commonly applied in image
classification and can be founded in modern deep learning
frameworks. We evaluate the performance of semi-trainable
transfer learning of each algorithm using accuracy, precision,
recall, and F1-score metrics.

RQ2: What is the best performance of fully-trainable
transfer learning for multiclass classification of UML
diagrams?

Rationale: The process of training all layers of neural
networks takes more time and computation resources. The pur-
pose of this RQ is to understand whether the cost of training all
layers of neural networks will improve performance in the task
of classifying UML diagrams. We evaluate the performance of
fully-trainable transfer learning on the algorithms from RQ1
with all trainable layers.

RQ3: Is transfer learning essential for multiclass classi-
fication of UML diagrams?

Rationale: Transfer learning can speed up the process of
training algorithms and can improve the accuracy of classi-
fication. However, images from the most popular dataset for
transfer learning (ImageNet [30]) are not like UML diagrams
from our dataset. This RQ aims to understand whether transfer

58

learning is better for classifying UML diagrams than training
neural networks from scratch. We measure the performance
of MobileNet and our proposed neural network without using
transfer learning, and compare them with the best results from
RQ1 and RQ2.

RQ4: What is the best performance on time per image
of neural networks for multiclass classification of UML
diagrams?

Rationale: The aim of this RQ is to investigate the perfor-
mance of classification on time per image based on various
neural networks. Since image classification can be used to
collect datasets, refine search results, etc., the use of a clas-
sification algorithm should not be too time-consuming. The
performance time is measured by using the GPU.

A. Data Collection

For the experiments, we created a dataset based on several
existing datasets [10] [31] [9] [26], in which the Lindholmen
dataset [10] is the largest one. We scrapped more than 10000
images from these datasets, and we then manually removed
the duplicates and labeled four types of UML diagrams: class
diagrams, activity diagrams, use case diagrams, sequence dia-
grams. Non-UML images were collected from [31] and man-
ually filtered to remove UML diagrams. Overall we collected
3231 images (inlcluding 700 class diagrams, 454 activity
diagrams, 651 use case diagrams, 706 sequence diagrams, and
720 non-UML images). Our dataset has been provided online
for replication and reproduction purposes [32].

B. Image Classification Process

The process of classifying UML diagrams is composed of
four phases:

Phase 1: Input Data. The input is the dataset which
contains 700 class diagrams, 454 activity diagrams, 651 use
case diagrams, 706 sequence diagrams, and 720 non-UML
images, and we further split the dataset into a training set, a
testing set, and a validation set.

Phase 2: Preprocess Images. The images were converted
to a JPG format and to a size of 224x224 or 299x299.

Phase 3: Train Classification Algorithms. We trained dif-
ferent pre-trained neural networks and some neural networks
without pre-trained weights.

Phase 4: Evaluate Trained Classification Algorithms. We
evaluated the performance of each algorithm from Phase 3
using multiple performance measures.

In Phase 1 (i.e., input data), we split the dataset into
validation, testing and training sets: 10% of images (323) as
the validation set, 20% of images (646) as the testing set,
and 70% of images (2262) as the training set. Deep learning
frameworks often do not work with all image formats, so
we converted all images to a JPG format. Also, for pre-
trained models, we needed to bring all the images to the
particular size, in this case, we brought the images to the
size of 299x299x3 for InceptionV3 and 224x224x3 for the
rest of the neural networks that we used (recommended image
sizes for transfer learning). All the images were normalized

by changing the range of pixel intensity values between 0 to
1. The training dataset was augmented with a horizontal flip,
slight shifts in the horizontal and vertical axis (up to 20%).

To raise the accuracy and decrease the training time in
Phase 3, we trained neural networks with and without using
transfer learning, which is a method to reuse the information
received during training on one task to new tasks. We used
models pre-trained on the ImageNet task [30], including
MobileNet, DenseNet169, NasNetMobile, ResNet152V2, and
InceptionV3. Convolutional layers were not trained during the
semi-trainable transfer learning process and all layers were
trained during the fully-trainable transfer learning process. The
output from pre-trained models was fed to a fully-connected
layer with 1024 neurons and the relu activation function, then
through dropout layer to the next fully-connected layer with
512 neurons and the relu activation function, and after the last
dropout layer to a fully-connected layer with five neurons and
a softmax activation function.

Our proposed neural network was inspired by Mo-
bileNetV3 [33] and ResNet [22]. Figure 1 provides the details
about our proposed neural network architecture. The input
layer is a convolutional layer with kernel size 3x3, 32 filters
and ReLU as an activation non-linear function. Next are
the architecture blocks, which are repeated throughout the
architecture. The input of each logical block is a convolutional
layer with twice as many filters as the previous layer and
ReLU as an activation function. The next layer is the batch
normalization layer. The output of the batch normalization
layer is then split into two single outputs, one of which is
called a shortcut which goes directly to the end of the logic
block. Shortcut was made by using a maximum pooling layer.
The second output goes through a separable convolution layer
with half as many filters as the input layer and a 1x1 kernel size
with ReLU activation function. It then goes into a convolution
layer identical to the input layer of the logic block with stride 2
and the HardSwish activation function. Then goes to a similar
layer but with LeakyReLU activation function. And after the
batch normalization layer is concatenated with the shortcut
output to the next logical block. Each logic block of our
architecture contains convolution layers with different kernel
size and stride, separable convolution layer [34]. We also
used ReLU, LeakyReLU, and HardSwish [35] as activation
functions. Following the sequential use of several logical
blocks, the Global average pooling layer is used. Instead of
using classical fully-connected layers at the end of the neural
network, we used two convolutional layers with 1x1 kernel
and the numbers of filters are 1024 and 5 (i.e., number of
classes in the dataset). This allows us to reduce the number
of parameters and speed up the neural network.

C. Performance Evaluation

We measured the performance of each algorithm by using
accuracy, precision, recall, and F1-score, which are usually
used in performance evaluation of image classification. The
images from one class that have been correctly classified by
a classifier are considered as True Positive (TP), while the

59

ReLU

Batch Normalization

ReLU

HardSwish

Batch Normalization

LeakyReLU

ReLU

HardSwish

ReLU

HardSwish

LeakyReLU

Batch Normalization

Avarage Pooling, pool size = 4

Softmax

Batch Normalization

ReLU

Batch Normalization

LeakyReLU

Batch Normalization

ReLU

shortcut

shortcut

shortcut

Conv2d, kernel size = (3, 3),
strides = 1, lters = 64

SeparableConv2D, kernel size = (1, 1),
strides = 1, lters = 32

Conv2d, kernel size = (3, 3),
strides = 2, lters = 64

Conv2d, kernel size = (3, 3),
strides = 2, lters = 64

Conv2d, kernel size = (3, 3),
strides = 1, lters = 128

SeparableConv2D, kernel size = (1, 1),
strides = 1, lters = 64

Conv2d, kernel size = (3, 3),
strides = 2, lters = 128

Conv2d, kernel size = (3, 3),
strides = 2, lters = 128

Conv2d, kernel size = (3, 3),
strides = 1, lters = 256

SeparableConv2D, kernel size = (1, 1),
strides = 1, lters = 128

Conv2d, kernel size = (3, 3),
strides = 2, lters = 256

Conv2d, kernel size = (3, 3),
strides = 2, lters = 256

Conv2d, kernel size = (1, 1),
strides = 1, lters = 1024

Conv2d, kernel size = (1, 1),
strides = 1, lters = 5

Conv2d, kernel size = (3, 3),
strides = 1, lters = 32

ReLU

Fig. 1: Specification for our neural network architecture

images from another class that have been incorrectly classified
are considered as False Positive (FP). The images from one
class incorrectly identified as images from other classes are
considered as False Negative (FN). The images from another
class that have been correctly identified by a classifier are
considered as True Negative (TN).

Accuracy (ACC) is the proportion of accurately predicted
set from the whole observations. Precision is the ratio of
images correctly identified as one class to all images identified
as this class. Recall is the fraction of all images of one class
correctly demarcated. The harmonic mean of precision and
recall is called F1-score or F1 Measure. We calculated those
metrics using the following equations:

ACC =
TP + TN

TP + TN + FP + FN
(1)

F1− score =
2TP

2TP + FP + FN
(2)

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

To measure the time spent, we used the free version of
Google Colaboratory. This will make the results reproducible
and verifiable. The free version of Google Colaboratory uses
Nvidia Tesla T4 as the GPU device.

IV. RESULTS AND ANALYSIS

To answer the RQs, we used deep learning algorithms. Over-
all, we experimented with 12 (5 classification algorithms as a
semi-trainable transfer learning + 5 classification algorithms as
a fully-trainable transfer learning + 2 classification algorithms
without pre-trained weights) experiment configurations. These
configurations were applied on a training set of 2262 images,
a testing set of 646 images, and a validation set of 323 images.
Since the neural networks have some bias in performance
results, each experiment configuration was evaluated 5 times
and the results bellow are an average of the 5 times when the
experiment configuration is repeated.

RQ1: What is the best performance of semi-trainable
transfer learning for classification of UML diagrams?

To answer RQ1, we applied several pre-trained neural
networks such as MobileNet, DenseNet169, NasNetMobile,
ResNet152V2, and InceptionV3 without training convolution
layers. Table I shows the precision, recall, and F1-score for
each algorithm. The best performed algorithm was MobileNet
(accuracy = 96.79%, precision = 92.77%, recall = 91.06%,
and F1-score = 91.91%). In the five classification algorithms,
MobileNet outperforms other algorithms.

TABLE I: Performance in precision, recall, and F1-score by
using semi-trainable transfer learning

Recall Precision Accuracy F1-score
ResNet152V2 88.28% 91.87% 96.09% 90.04%
InceptionV3 89.52% 91.88 96.32% 90.69
MobileNet 91.06% 92.77% 96.79% 91.91%

DenseNet169 89.41% 92.26% 96.38% 90.81%
NasNetMobile 85.41% 89.26% 95.03% 87.29%

RQ2: What is the best performance of fully-trainable
transfer learning for classification UML diagrams?

To answer RQ2, we applied all pre-trained algorithms from
RQ2 with training all layers. Table II shows the precision,
recall, and F1-score for each algorithm. The best performed
algorithm was DenseNet169 (accuracy = 97.76%, precision
= 94.44%, recall = 94.35%, and F1-score = 94.40%). In
the five classification algorithms, DenseNet169 outperforms
other algorithms. Moreover, DenseNet169 with all trainable
layers outperforms all semi-trainable algorithms from RQ1.
However, the training process for all layers takes more time
than the training process of semi-trainable transfer learning.

RQ3: Is transfer learning essential for multiclass classi-
fication of UML diagrams?

Since the images from the ImageNet dataset [30] used
for transfer learning are not similar to the images from our

60

TABLE II: Performance in precision, recall, and F1-score by
using fully-trainable transfer learning

Recall Precision Accuracy F1-score
ResNet152V2 93.11% 93.50% 97.33% 93.31%
InceptionV3 94.14% 94.24 97.68% 94.19
MobileNet 93.83% 94.22% 97.62% 94.03%

DenseNet169 94.35% 94.44% 97.76% 94.40%
NasNetMobile 87.15% 90.21% 95.54% 88.65%

dataset, the question arises about the need for transfer learning.
To answer RQ3, we compared the best results from RQ1
(MobileNet (STTL)) and RQ2 (DenseNet169 (FTTL)) with
the results of MobileNet and our proposed neural network ar-
chitecture, which were trained without using transfer learning
(WPW). The comparison shows that the pre-trained out-of-the-
shelf neural networks are better than the out-of-the-shelf neural
networks that are trained without using transfer learning, but
worse than our proposed neural network at classifying UML
diagrams. Table III shows the comparison between the pre-
trained and not pre-trained neural networks. Moreover, it is
possible to pick up a custom neural network architecture that
will cope almost as well as off-the-shelf neural networks, but
the process of picking architecture parameters takes time.

TABLE III: Comparison between pre-trained and not pre-
trained neural networks (STTL = semi-trainable transfer learn-
ing, FTTL = fully-trainable transfer learning, WPW = training
without pre-trained weights)

Recall Precision Accuracy F1-score
MobileNet (STTL) 91.06% 92.77% 96.79% 91.91%

DenseNet169 (FTTL) 94.35% 94.44% 97.76% 94.40%
MobileNet (WPW) 88.59% 89.23% 95.58% 88.90%

Our Solution (WPW) 96.48% 96.76% 98.65% 96.62%

RQ4: What is the best performance on time per image
of neural networks for multiclass classification of UML
diagrams?

We measured time per image by using Google Colaboratory
to answer RQ4. Table IV shows the measured time for our
approach and comparison with the solution from [9]. For the
transfer learning approach, MobileNet is the most effective
algorithm in term of performance time (0.014 second per
image). For all the approaches, our proposed neural network
showed the best performance time (0.0135 second per image).

TABLE IV: Performance in time per image (seconds) and
required parameters (millions)

ResNet
152V2

Incepti
onV3

Mobile
Net

Dense
Net169

NasNet
Mobile

Our So-
lution

GPU 0.0206 0.0183 0.0140 0.0151 0.0142 0.0135
Num of
params 60.9 24.4 4.8 14.8 5.8 2.4

Summing up the results of the RQs, we can say that the
DenseNet169 with all trainable layers is a good and out-of-

the-shelf choice to classify UML diagrams from images. We
have also found that it is possible to find an architecture that
performs better than the pre-trained out-of-the-shelf neural net-
works, but that architecture selection takes time. Our proposed
neural network architecture showed the best results (accuracy
= 98.65%, precision = 96.76%, recall = 96.48%, and F1-score
= 96.62%) and it also has the least parameters (2.4millions)
and spends the least time per image (0.0135 seconds per image
using GPU) for classifying UML diagrams.

V. THREATS TO VALIDITY

Internal validity concentrates on whether the results can
be drawn from the data, and one of the threats to the internal
validity of this study are the overfitting of neural networks and
the manual labelling of the dataset used in the experiment.
Since pre-trained models are trained on a complex multi-
class task of 1000 classes, they can be retrained when we
move on to five class classification. To avoid overfitting, we
used a Dropout layer after each fully connected layer. This
allows us to ignore some of the information coming from fully
connected layers and increases the stability of models. The
images used in the experiment were manually labelled, which
may introduce selection bias. It is possible that images were
incorrectly labelled, leading to incorrect classification results.
To mitigate this threat, the labeled data was manually checked
by the first author, and for any unsure labels the first author
discussed with the second author to get a consensus.

External validity reflects the extent to which the study
results and findings can be generalized in other cases with sim-
ilar characteristics. The potential threat to the external validity
is about the diversity of the dataset used in the experiment,
which was created based on several existing datasets [10]
[31] [9] [26], in which the Lindholmen dataset [10] is the
largest UML models repository from OSS projects and the
other three datasets were retrieved by Google Images search.
We believe that the experiment results can be applicable to the
classification of UML digrams in practice to a large extent.

Construct validity in this work focuses on whether the
evaluation metrics are suitable and measured correctly. A
set of metrics (i.e., accuracy, recall, precision, and F1-score)
were used to measure the performance of the classification
algorithms, which have been widely used in assessing the
quality of algorithms in image classification.

Reliability refers to whether the experiment yields the
same results when it is replicated. In this work, this validity
is mainly related to the dataset and the execution of the
experiment. We defined the protocol for the classification
process and evaluation metrics, which were confirmed and
followed by all the researchers. We also made our experiment
dataset available for replication purposes [32].

VI. CONCLUSIONS AND FUTURE WORK

In this work, we automatically identify four most popular
types of UML diagrams (class diagrams, use case diagrams,
activity diagrams, and sequence diagrams) and non-UML

61

diagrams from images by using five popular neural network ar-
chitectures (including MobileNet, DenseNet, NasNet, ResNet,
and Inception) using transfer learning. We scrapped over
10000 images from open datasets and manually labelled it
into four types of UML diagrams. In total, we have collected
a dataset that contains 3231 images (700 class diagrams,
454 activity diagrams, 651 use case diagrams, 706 sequence
diagrams, and 720 non-UML images). Then, we used transfer
learning to classify UML diagrams by applying the neural
network architectures. We also proposed our neural network
architecture for multiclass classification of UML diagrams.
The experiment results show that our proposed neural network
architecture outperformed the existing neural network archi-
tectures with an accuracy of 98.65%, a precision of 96.76%,
a recall of 96.48%, and and F1-score of 96.62%. To measure
the time spent for the classification, we used a free version
of Google Colaboratory. We found that the most efficient
algorithm by using GPU is our proposed neural network
architecture with 0.0135 seconds per image for classifying
UML diagrams and our proposed neural network architecture
also has the least parameters (around 2.4 millions).

In the next step, we plan to (1) construct cost-effective
neural network architectures for classifying major types of
UML diagrams from images; and (2) automatically recover the
relationships between various types of UML diagrams from
images within a project in order to establish the tractability
between UML models.

REFERENCES

[1] OMG, “About the unified modeling language specification version
2.5,” 2015. [Online]. Available: https://www.omg.org/spec/UML/2.5/
About-UML

[2] J. Aranda, S. Easterbrook, and G. Wilson, “Requirements in the wild:
How small companies do it,” in Proc. of the 15th IEEE International
Requirements Engineering Conference (RE). IEEE, 2007, pp. 39–48.

[3] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[4] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach. Pearson Education, 1993.

[5] M. R. Chaudron, W. Heijstek, and A. Nugroho, “How effective is uml
modeling?” Software and Systems Modeling, vol. 11, no. 4, 2012.

[6] W. Lynch, “A comprehensive guide to 14 types of UML diagram,”
2019. [Online]. Available: https://medium.com/@warren2lynch/
a-comprehensive-guide-to-14-types-of-uml-diagram-affcc688377e

[7] P. More and R. Phalnikar, “Generating uml diagrams from natural
language specifications,” International Journal of Applied Information
Systems, vol. 1, no. 8, pp. 19–23, 2012.

[8] M. Usman and A. Nadeem, “Automatic generation of java code from
UML diagrams using ujector,” International Journal of Software Engi-
neering and Its Applications, vol. 3, no. 2, pp. 21–37, 2009.

[9] T. Ho-Quang, M. R. Chaudron, I. Samúelsson, J. Hjaltason, B. Karas-
neh, and H. Osman, “Automatic classification of UML class diagrams
from images,” in Proc. of the 21st Asia-Pacific Software Engineering
Conference (APSEC), vol. 1. IEEE, 2014, pp. 399–406.

[10] R. Hebig, T. H. Quang, M. R. Chaudron, G. Robles, and M. A.
Fernandez, “The quest for open source projects that use UML: mining
github,” in Proc. of the 19th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems (MoDELS). IEEE,
2016, pp. 173–183.

[11] Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech,
and Time Series. MIT Press, 1998, vol. 3361, pp. 255–258.

[12] R. Geirhos, D. H. Janssen, H. H. Schütt, J. Rauber, M. Bethge, and F. A.
Wichmann, “Comparing deep neural networks against humans: object
recognition when the signal gets weaker,” arXiv abs/1706.06969, 2017.

[13] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in Proc. of the 28th International Conference
on Artificial Neural Networks (ICANN). Springer, 2018, pp. 270–279.

[14] S. Loussaief and A. Abdelkrim, “Deep learning vs. bag of features in
machine learning for image classification,” in Proc. of the International
Conference on Advanced Systems and Electric Technologies (IC ASET).
IEEE, 2018, pp. 6–10.

[15] J. Jordan, “Common architectures in convolutional neural
networks,” 2018. [Online]. Available: https://www.jeremyjordan.me/
convnet-architectures/

[16] M. Hollemans, “New mobile neural network architectures,” 2020.
[Online]. Available: https://machinethink.net/blog/mobile-architectures/

[17] T. Contributors, “Torchvision.models,” 2019. [Online]. Available:
https://pytorch.org/docs/stable/torchvision/models.html

[18] TensorFlow, “Module: tf.keras.applications,” 2019. [Online]. Available:
https://www.tensorflow.org/api docs/python/tf/keras/applications

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv abs/1704.04861, 2017.

[20] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.

[21] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2018, pp. 8697–8710.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2016, pp. 770–778.

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2016, pp. 2818–2826.

[24] B. Karasneh and M. R. Chaudron, “Img2UML: A system for extracting
UML models from images,” in Proc. of the 39th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). IEEE,
2013, pp. 134–137.

[25] L. Fu and L. B. Kara, “From engineering diagrams to engineering
models: Visual recognition and applications,” Computer-Aided Design,
vol. 43, no. 3, pp. 278–292, 2011.

[26] M. H. Osman, T. Ho-Quang, and M. Chaudron, “An automated approach
for classifying reverse-engineered and forward-engineered UML class
diagrams,” in Proc. of the 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 2018.

[27] J. Ahmed and M. Huang, “Classification of role stereotypes for classes
in UML class diagrams using machine learning,” Master’s thesis, Uni-
versity of Gothenburg, 2020.

[28] S. Rashid, “Automatic classification of UML sequence diagrams from
images,” Bachelor of Science Thesis, University of Gothenburg.

[29] W. Bian, O. Alam, and J. Kienzle, “Automated grading of class
diagrams,” in Proc. of the 22nd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion
(MODELS-C). IEEE, 2019, pp. 700–709.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2009, pp. 248–255.

[31] SunEdition, “Graphs dataset,” 2010. [Online]. Available: https:
//www.kaggle.com/sunedition/graphs-dataset

[32] S. Shcherban, P. Liang, Z. Li, and C. Yang, “Dataset of the
paper: Multiclass classification of four types of UML diagrams
from images using deep learning,” March 2021. [Online]. Available:
http://doi.org/10.5281/zenodo.4595956

[33] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proc. of the IEEE International Conference on Computer Vision (ICCV).
IEEE, 2019, pp. 1314–1324.

[34] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2017, pp. 1251–1258.

[35] R. Avenash and P. Viswanath, “Semantic segmentation of satellite
images using a modified cnn with hard-swish activation function.” in
Proc. of the International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (VISIGRAPP), 2019.

62

https://www.omg.org/spec/UML/2.5/About-UML
https://www.omg.org/spec/UML/2.5/About-UML
https://medium.com/@warren2lynch/a-comprehensive-guide-to-14-types-of-uml-diagram-affcc688377e
https://medium.com/@warren2lynch/a-comprehensive-guide-to-14-types-of-uml-diagram-affcc688377e
https://www.jeremyjordan.me/convnet-architectures/
https://www.jeremyjordan.me/convnet-architectures/
https://machinethink.net/blog/mobile-architectures/
https://pytorch.org/docs/stable/torchvision/models.html
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.kaggle.com/sunedition/graphs-dataset
https://www.kaggle.com/sunedition/graphs-dataset
http://doi.org/10.5281/zenodo.4595956

On Integrating Ethicality in User Stories

Pankaj Kamthan
Computer Science and Software Engineering

Concordia University
Montreal, Canada

pankaj.kamthan@concordia.ca

Nazlie Shahmir
Information Services Governance
Canadian Pacific Railway Limited

Calgary, Canada
nazlie_shahmir@cpr.ca

Abstract—In recent years, software has increasingly become
anthropomorphic, even autocratic. For example, software is
being used exclusively for activities, such as decision-making,
question-answering, or recommending, that in the past were
either partly or entirely human. This has only contributed to the
enduring issue of software ethics. In that regard, this paper
models ethicality as a meta-quality attribute and proposes an
ethically-sensitive, standards-based, technology-and-tool-
independent, semi-formal framework, comprising interrelated
conceptual (meta-)models that provide an understanding of
ethicality, user story environment, and user story process. It
outlines an approach of integrating ethicality naturally and
systematically in the user story process, and provides illustrative
and representative examples in support of this approach. Finally,
it presents the results of a preliminary survey of students and
professionals on their knowledge and experience of ethics in
(agile) software projects.

Keywords-axiology; conceptual modeling; ethical dilemma; human-
centered agile methodology; interactive system; software quality

I. INTRODUCTION

The history of computer ethics predates that of software
engineering [1, 2]. Fig. 1 gives an approximate timeline of
different types of ethics that have been a subject of attention in
relation to computing, as the role of computing itself evolved
based on the needs of the society. However, increasing
‘softwareization’ of a variety of application domains, along
with essentially uncontrolled and unlimited malleability of
software, including those for unscrupulous or maleficent
purposes, has made the issue of software ethics as exigent as
ever. The consequences have ranged from innocuous and
reversible, albeit at the cost of time and effort, to extremely
nocuous and irreversible [3]. This situation is clearly untenable.

Figure 1. A panorama of different types of ethics over different decades.

It is known that requirements engineering (RE) is one of the
earliest and most crucial phases in software development,
primarily because of the tremendous responsibility it places on
the stakeholders, and the considerable control they can exercise
during this phase. The user stories are being deployed
increasingly in recent years in agile software projects that adopt
a scenario-oriented requirements engineering (RE) approach
[4]. Therefore, the interest in this paper is providing the
necessary basis for a conceptual framework for integrating
ethicality naturally and systematically in the user story process.

The rest of the paper is organized as follows. In Section II,
necessary background is provided and related work is
discussed. The specifics of the construction of elements of the
framework, along with rationale and description are presented
in Section III. In Section IV, directions for future research are
outlined. Finally, in Section V, concluding remarks are given.

II. BACKGROUND AND RELATED WORK

A. Nature of Ethicality from a Software Engineering
Perspective

This paper distinguishes among actions or inactions that are
prudential, ethical, and legal [5]. Fig. 2 illustrates the
interrelationship between these concepts by means of a Venn
Diagram. An action or inaction is prudential if it is in a
person’s interest; an action or inaction is legal if it is not
explicitly prohibited by law of a jurisdiction; and an action or
inaction is ethical if it does not violate certain (personal,
organizational, and/or societal) codes of ethics. Furthermore,
ethics could be either deontological (an action or inaction is
ethical or unethical in itself) or teleological (an action or
inaction is ethical or unethical depending on its consequences).

Figure 2. The ethical, legal, or prudential actions or inactions in context.

DOI reference number: 10.18293/SEKE2021-001

63

For example, while booking a flight it may be prudential for
a traveler to have travel insurance, but it is teleologically
unethical for a flight reservation system to add the cost of
travel insurance to the cost of the flight automatically without
the traveler’s consent, and it may be illegal for the traveler to
try to get travel insurance by providing incorrect, inconsistent,
or incomplete information.

From the perspective of applicability, ethics could be
classified into macroethics (large-scale, generic, coarser, and
applies to organizations) and microethics (small-scale, specific,
granular, and applies to individuals) [6]. The two are
complementary, usually coexist, and are necessary for the
practice of software engineering. It is possible to have one
without the other. For example, the management of a software
development company may engage in so-called ‘ethics
washing’, but its requirements engineers may still act ethically.

B. Previous Work on Ethics in Software Requirements
Engineering

The interest in integrating ethics in software RE and related
areas is relatively recent and, in part, motivation for this paper.
In [7], scenarios of unethical practices and their negative
impacts on the users are given, and in [8] the need for
requirements to reflect “socially responsibility” is underscored.
To increase awareness of the ethical implications of software
from a RE perspective [9], a systematic literature review and
grey literature review was conducted in [10], and as number of
ethical issues are highlighted. The ACM/IEEE Software
Engineering Code of Ethics and Professional Practice
(SECEPP) lists generic principles, each of which is refined into
specific clauses, related to the behavior of and decisions made
by professional software engineers as well as students of the
profession. Finally, the IEEE Standard 7010 provides
guidelines for Ethically Aligned Design (EAD).

III. AN OVERVIEW OF A CONCEPTUAL FRAMEWORK FOR

ETHICALITY IN USER STORIES

A. Ethicality as a Meta-Quality Attribute

A meta-quality attribute is a quality attribute about quality
attributes. In this sense, ethicality is an anthropomorphic,
extrinsic, meta-quality attribute, aiming to mimic certain
aspects of sentience considered much desirable among humans.

There can be degrees of ethicality as an extrinsic property.
For example, the severity of ethicality is especially acute in
mission-critical applications, such as those that are high-risk
safety-, privacy-, or security-critical, as opposed to low-risk
casual applications.

As per model-based software quality engineering [11, 12],
it is acknowledged that the notion of ethicality in and of itself is
at a rather high a level to be useful, and therefore it needs to be
decomposed into multiple, low levels to be meaningfully
practical. This decomposition lends a hierarchical structure, as
shown in Fig. 3. The mapping between extrinsic and intrinsic
properties, as well as between intrinsic properties and entities
of knowledge, is many-to-many (as evident also by Table 1).
The knowledge entities could, for example, include principles,
guidelines, patterns, and metrics.

Figure 3. An abstract conceptual model for ethicality.

For example, identifiability (intrinsic quality attribute)
contributes to traceability (extrinsic quality attribute) that, in
turn, contributes to transparency (extrinsic quality attribute),
and that, again, in turn, contributes to ethicality.

B. A Conceptual Meta-Model for User Story Environment

Fig. 4 shows a conceptual meta-model of a part of the user
story environment from a managerial perspective. A user story
is an aggregation of role, goal, and value, in that spatial order,
and is associated with a priority and acceptance criteria. A
user story together with its acceptance criteria is used to
estimate the time and effort needed for completing it. The
priority and estimate of a user story are based on the risk
associated with that user story, which is of concern to both the
users and the product owner [13, 14].

Figure 4. A conceptual meta-model of a part of the user story environment.

C. The Outline of an Ethically-Sensitive User Story Process

It is understood that certain desirable external quality
attributes, such as safety, privacy, and security, cannot be
addressed properly, if at all, at the end of development. It is
therefore important that ethicality be considered at the
beginning of a software development process, and remains an
explicit concern throughout all stages of development.

64

Fig. 5 shows a conceptual meta-model for a minimal,
continuous user story process [15], the activities and artifacts of
which are aimed to be ethically-sensitive.

Figure 5. A conceptual meta-model for ethically-sensitive user story process.

The user story process proceeds as follows. The relevant
stakeholders participate in ethics poker, following which the
user stories are prioritized based on risk, and user stories that
pose high risk with respect to ethicality are placed at high
priority. The result of this step is a collection of ethicality
stories for the current iteration. This is followed by the creation
of a value-centered [16] and responsibility-driven [17]
prototype for the ethicality stories by following the principles
and patterns of Design Thinking [18] and Systems Thinking
[19]. This experimental prototype could after a demonstration
prompt a refinement of the user stories and possibly the
elicitation of new user stories. Finally, there is an evaluation of
the prototype involving actual users, for example, through
crowdsourcing, observation, and/or survey, subject to informed
consent. This could lead to feedback about ethicality of the
product (which could prompt a refinement of the user stories
and/or the prototype), as well as about the process (which could
prompt an improvement of the user story process).

Table 1 lists a compendium of classical as well as novel
quality attributes that are necessary for ethicality as identified
by a number of recent studies [8-10, 20-22], and examples of
corresponding user stories for a variety of application domains.
It could be noted that the mapping between the set of quality
attributes and the set of user story examples is many-to-many.

The challenges to the user story process include being able
to elicit tacit or implicit knowledge from potential users, to
mitigate cognitive biases (such as Representativeness Bias),
and to be aware of ethical dilemmas (such as Mission
Impossible) [23], and being able to control the accrual of user
story debt, a type of technical debt.

TABLE I. EXAMPLES OF USER STORIES FOR ETHICALITY

Privacy,
Security,
Well-Being

 US1. A visitor can access the cookie policy of a
Web Site to make an informed decision about the
data related to his or her visits.

 US2. A member can mark his or her profile as
private to limit the information that can be shared.

Axiology,
Fairness,
Utility

 US3. A customer can contact the administrator of
the shopping system about the item return policy to
be able to shop with surety and serenity.

 US4. A reader can distinguish between content and
advertisement on the media portal to be able to
discern accordingly.

Accessibility,
Sustainability,
Well-Being

 US5. A patron with achromatopsia can navigate
through the library system to be able to seek the
books of his or her choice.

 US6. A student can report the presence of a
malfunctioning critical user interface element on the
course registration system so as to save time and
effort of other students.

Responsibility,
Transparency

 US7. A project manager can check on the enterprise
information system the daily calendar of all team
members to be able to monitor their engagements.

Accountability,
Explainability,
Traceability,
Transparency

 US8. A maintainer can see on the source code
management system the rationale associated with
the status of (say, accepting or rejecting) a defect to
be assured that the defect management process is
being followed properly.

 US9. An auditor can independently access data used
for performance benchmarks of a simulation system
so that he or she can be assured of the correctness of
the results and the consistency of the claims.

Competency,
Traceability

 US10. A programmer can independently access on
the source code management system the review
checklist against which his or her source code was
reviewed so as to improve his or her programming
capabilities.

D. A Survey on Software Engineering Ethics

To better understand the current state of knowledge and
experience of software engineering ethics, including its relation
to software quality, by those in academia and industry, a small-
scale survey was conducted between Winter 2019 and Winter
2021. The respondees were from Canada, and consisted of
graduate students in computer science or software engineering
programs, and professionals in multiple software-intensive
organizations, some of whom had been exposed to software
engineering ethics. The survey had 16 items, each based on a 5-
point Likert Scale ranging from Strongly Disagree (1) to
Strongly Agree (5). Fig. 6 shows the results of 20 complete
responses. It can be concluded from Fig. 6 that a majority of
respondees understood the nocuous (I6) and innocuous (I11)
impact of unethical behavior, and believed ethical behavior
could change over time through guidance and training (I16),
but there was no agreement on the responses on the issue of
whether software engineering waste is unethical (I15).

Figure 6. The distribution of selected responses from an ethics survey.

65

IV. DIRECTIONS FOR FUTURE RESEARCH

A. “Who Dunnit?”: Causal Analysis of Violations of
Ethicality

There can be a number of underlying causes of violations of
ethicality: scarcity of resources, inadequate education in the
application domain or ethicality engineering, inadequate
elicitation of user needs, short-term expediency due to the
pressure of time-to-market [24], lack of foresight, presence of
(meta-)cognitive biases such as the Dunning-Kruger Effect,
resorting to logical fallacies, gender inequity, politics, or
deficiency of soft skills necessary for interviewing, negotiating,
or reporting. Indeed, knowing the origins (or root causes) of
such violations could be useful for a preventive approach
towards ethicality, and is therefore of research interest.

B. “Get ’em Early”: Ethicality in Requirements Engineering
Education

The education that the students receive as learners of today
creates, directs, and shapes their attitudes, habits, and
temperaments as practitioners or researchers of tomorrow and
beyond. For these traits to be socially-acceptable, ethics needs
to be, as with the user story process, introduced as early as
possible in the RE curriculum and emphasized throughout by
lessons from history of software ethics, examples of ethical
dilemmas, and case studies of ethical violations as per at least
the SECEPP along with their potentially adverse consequences
for society-at-large [25]. Indeed, a strong commitment to
ethicality needs be a part of lifelong learning of all the students,
and such “ethics literacy” needs to go beyond educational and
professional contexts [26]. To investigate suitable approaches
for doing so are therefore also of research interest.

V. CONCLUSION

The reasons for and the aspirations of software ethics are at
least as relevant today as they were ~ 70 years ago. To be able
to view ethicality as an extrinsic property of a software system
lends itself to the established preventive as well as corrective
knowledge in conceptual modeling, (agile) RE, and software
quality engineering, as this paper has attempted to show.

The COVID-19 pandemic has led to a sobering reminder
that a sole-effort of prevention or vaccination is insufficient,
and that “it will take all of us”. In a similar vein, ethicality may
be realized to a notable extent only if it is perceived, discerned,
and approached as a collectively-shared responsibility by all
those who impact or are impacted by software. Having in place
policies, processes, and procedures for ethicality is useful,
perhaps even necessary, but these instruments have their
inevitable limits [13, 26], even with the best of intentions and
executions. In the end, the society may have to learn to live
with the degrees of ethicality of software, of its own making.

ACKNOWLEDGMENT

This paper is dedicated to the indelible memories of Terrill
Fancott and Peter Grogono, who passed away in 2020 and
2021, respectively. The authors are grateful to CUPFA for a
Professional Development Grant, and to respondees of the
survey for their interest and participation.

REFERENCES
[1] T. W. Bynum, Computer Ethics: Its Birth and its Future. Ethics and

Information Technology, 3(2): 109-111, 2001.

[2] C. Whitbeck, Ethics in Engineering Practice and Research, Second
Edition. Cambridge University Press, 2011.

[3] T. Tamai, Social Impact of Information System Failures. Computer,
42(6): 58-65, 2009.

[4] D. Leffingwell, Agile Software Requirements: Lean Requirements
Practices for Teams, Programs, and the Enterprise. Addison-Wesley,
2011.

[5] A. E. Abbas, Next-Generation Ethics: Engineering a Better Society.
Cambridge University Press, 2020.

[6] I. Nair and W. M. Bulleit, Pragmatism and Care in Engineering Ethics.
Science and Engineering Ethics, 26: 65-87, 2020.

[7] B. Begier, Users’ Involvement may Help Respect Social and Ethical
Values and Improve Software Quality. Information System Frontiers,
12: 389-397, 2010.

[8] J. Cleland-Huang, Requirements That Reflect Social Responsibility.
IEEE Software, 33(1): 109-111, 2016.

[9] F. B. Aydemir and F. Dalpiaz, A Roadmap for Ethics-Aware Software
Engineering. The International Workshop on Software Fairness
(FairWare 2018), Gothenburg, Sweden, May 29, 2018.

[10] A.-J. Aberkane, Exploring Ethics in Requirements Engineering. M.Sc.
Thesis, Utrecht University, Utrecht, The Netherlands, 2018.

[11] W. Suryn, Software Quality Engineering: A Practitioner’s Approach.
John Wiley and Sons, 2014.

[12] S. Goericke, The Future of Software Quality Assurance. Springer Open,
2020.

[13] D. Hall, The Ethical Software Engineer. IEEE Software, 26(4): 9-10,
2009.

[14] P. Kamthan and N. Shahmir, A Characterization of Negative User
Stories. The Twenty Eighth International Conference on Software
Engineering and Knowledge Engineering (SEKE 2016), Redwood City,
USA, July 1-3, 2016.

[15] P. Kamthan and N. Shahmir, A Framework for the Semiotic Quality of
User Stories. The Twenty Seventh International Conference on Systems
Engineering (ICSEng 2020), Las Vegas, USA, December 14-16, 2020.

[16] B. Friedman and D. G. Hendry, Value Sensitive Design: Shaping
Technology with Moral Imagination. The MIT Press, 2019.

[17] R. Wirfs-Brock and A. McKean, Object Design: Roles, Responsibilities,
and Collaborations. Addison-Wesley, 2003.

[18] H. Plattner, C. Meinel, and L. Leifer, Design Thinking: Understand –
Improve – Apply. Springer-Verlag, 2011.

[19] J. E. Kasser, Systems Engineering: A Systemic and Systematic
Methodology for Solving Complex Problems. CRC Press, 2020.

[20] V. Vakkuri, K.-K. Kemell, J. Kultanen, and P. Abrahamsson, The
Current State of Industrial Practice in Artificial Intelligence Ethics. IEEE
Software, 37(1): 50-57, 2020.

[21] R. Guizzardi, G. Amaral, G. Guizzardi, and J. Mylopoulos, Ethical
Requirements for AI Systems. The Thirty Third Canadian Conference on
Artificial Intelligence (Canadian AI 2020), Ottawa, Canada, May 13-15,
2020.

[22] M. D. Dubber, F. Pasquale, and S. Das, The Oxford Handbook of Ethics
of AI. Oxford University Press, 2020.

[23] B. Berenbach and M. Broy, Professional and Ethical Dilemmas in
Software Engineering. Computer, 42(1): 74-80, 2009.

[24] N. Patrignani and D. Whitehouse, Slow Tech and ICT: A Responsible,
Sustainable and Ethical Approach. Palgrave Macmillan, 2018.

[25] J. Herkert, J. Borenstein, and K. Miller, The Boeing 737 MAX: Lessons
for Engineering Ethics. Science and Engineering Ethics, 26: 2957-2974,
2020.

[26] K. Ryan, We Should Teach Our Students What Industry Doesn’t Want.
The Forty Second International Conference on Software Engineering
(ICSE 2020), Seoul, South Korea, May 23-29, 2020.

66

DOI reference number:10.18293/SEKE2021-052

A Collaborative Forensic Framework for Detecting

Advanced Persistent Threats

Weifeng Xu

Forensic Science: Cyber Investigations

University of Baltimore

Baltimore, USA

wxu@ubalt.edu

Jie Yan

Department of Computer Science

Bowie State University

Bowie, USA

jyan@bowiestate.edu

Daryl Stone

Department of Technology and Security

Bowie State University

Bowie, USA

dstone@bowiestate.edu

Abstract—An advanced persistent threat (APT) is one type of

cybercrime that steals valuable information over an extended

period through malicious activities. The paper proposes a

collaborative framework to systematically detect APTs by

analyzing the Cyber Forensic Evidence (CFE) collected from a

System Under Investigation (SUI). It is a post-compromise

analysis based on Forensic-Evidence-Driven Finite State Machines

(FED-FSM) modeled from an SUI. A FED-FSM extends an FSM

by defining a set of forensic evidence patterns as guided conditions

that trigger the state changes of FSM. The approach consists of

three tasks (1) collecting shared CFE and formalizing patterns of

CFE, (2) modeling the security status of an SUI in a FED-FSM,

and (3) building a Threat Activity Detection Engine to match the

observed CFE from SUI logs with the CFE patterns in the FED-

FSM. An empirical study shows the framework can be used to

detect malicious activities of Poison Ivy, which utilizes a remote

access tool to control computers.

Keywords—advanced persistent threat, Structured Threat

Information Expression, finite state machine, threat detection,

ATT&CK framework, digital forensics

I. INTRODUCTION

An advanced persistent threat (APT) is one of the
cybercrimes, which typically refers to a state-sponsored hacking
group and cyberattacks associated with the group. APT
strategizes its way to infiltrate an organization’s network and
exfiltrates valuable information. For example, one common
attack executed by APTs is to place custom malicious code on
one or multiple computers for specific stealth tasks. Various
approaches have been proposed to study and detect APT
activities, either through scanning signatures of malicious code
[1] [2] [3] or analyzing evidence that malicious programs are left
on systems or networks activity logs [4] [5]. A common issue of
these approaches is that they act alone during the whole
investigation process: they set their environments, collect
evidence, observe patterns, and make conclusions based on their
judgments. It is hard for the cybersecurity community to recreate
their environments, verify their observations, and reuse their
observation results. MITRE [6][7] has proposed an Intelligence-
sharing-based approach to fight against cybercrimes with
collaborative efforts. It developed a concept called shared Cyber
Threat Intelligence (CTI) to facilitate knowledge sharing. For
example, Figure 1 shows a shared scenario which consists of two
predefined objects indicator and malware. The figure means that
a cybercrime investigator has reported that he/she has found

malware, named Poison Ivy (PIVY). PIVY is a remote access
tool used by many APTs and cybercriminals for information
infiltration. To support his/her findings, the investigator attaches
the hash code of the malware to the indicator object, which
defines the possible threat patterns of malware, e.g., the SHA
hash code of the PIVY executable file.

Figure 1. A simple indicator uses a file hash to indicate the presence

of Poison Ivy

Shared CTI sounds promising for collaborative threat
detection and therefore, has attracted much attention in
cybersecurity communities. However, there are major
challenges to apply them directly in practice due to: (1) Current
CTI framework does not support presentable CTI in terms of
forensic investigations. Detecting APT threats is the process of
investigating cybercrimes with supporting digital evidence. A
presentable shared CTI has to describe how threat evidence is
acquired, preserved, identified, and validated to meet the
requirements of the law, (2) the lack of a systematical approach
to discover digital forensic evidence for a System Under
Investigation (SUI). Current CTI only describes the evidence
and the patterns of threat evidence using Indicator, it doesn’t
provide practical guidelines of how evidence can be extracted
for a given SUI, and (3) Current CTI cannot describe the
dynamical behaviors of an APT. Current CTI is a threat data
model, which only describes static objects. To detect APTs, a
dynamical model is needed to describe the known behaviors of
APTs so that the model can be used for matching a given SUI.

The paper demonstrates a framework to detect APTs
imposed on an SUI over time using Forensic-Evidence-Driven
Finite state machines (FED-FSM). The approach first enhances
CTI to Cyber Forensic Intelligence (CFI) and enables indicator
objects to capture the properties of digital forensic evidence. The
enhanced indicator object is called Cyber Forensic Evidence
(CFE) object. We then propose a systematic approach to extract
CFE-objects from an SUI and specify the SUI as a collection of
CFE objects. Finally, we model the SUI in a FED-FSM with
CFE objects as the model’s guided conditions. We build a Threat
Activity Detection Engine (TADE) to detect APTs that impose
on the SUI by comparing the observed CFE objects with the

67

CFE objects defined in FED-FSM. The contribution of the paper
includes: (1) the formalization of CFE by leveraging ATT&CK
knowledge model [6][7] (2) inferring dynamical behaviors of an
APT using FED-FSM, and (3) designing a scalable threat-
activity detection framework for detecting real-world APTs
systematically.

The rest of the paper is outlined as follows: Sections II and
III describe the difference between CTI and CFE and how CEF
can be discovered systematically. Section IV shows the
proposed architecture for detecting APT activities. Section V
formally defines FED-FSM. Section VI describes an empirical
study. Section VII summarizes the related work. Finally, Section
VIII concludes this paper.

II. SHARED-CYBER THREAT INTELLIGENCE AND CYBER

FORENSIC EVIDENCE

Intelligence-sharing is a critical strategy for cybersecurity
defenders because it allows them to avoid the missteps of their
peers within the security community and to deploy proven
defensive measures. To systematically and effectively share
security Intelligence, research groups [6][7] have realized that
cybersecurity-related terminologies, measurements, and
standards need to be defined to understand the security and share
CTI. For example, to better understand security problems,
MITRE has created an ATT&CK framework to document
common Tactics, Techniques, and Procedures (TTP) based on
real-world observations of adversaries’ operations against
computer networks. To share CTI, OASIS CTI technical
committee [8] has developed Structured Threat Information
Expression (STIX) to formalize CTI and enable interoperable
sharing of CTI across organizational, technology, and
geographic boundaries. STIX is considered a de facto standard
for many industries and organizations [9]. Figure 2 shows a
shareable CTI expressed in STIX objects based on Fireeye's

Poison Ivy (PIVY) Report [10]. Colored icons in the figure
represent various types of objects defined in STIX. Each STIX
object defines various attributes to specify the object. For
example, the indicator object shown in Figure 1 has two
attributes, the type of indicator, e.g., malware activity, and the
pattern of the indicator, i.e., the hash code of the malware file.
Note that the PIVY data model shown in Figure 2 primarily
relies on 25 indicator objects (i.e., blue circles with fingerprint
symbols) to represent suspicious or malicious cyber activities.
These indicators are spread out all over the model and there are
no pre-defined semantic relations among them.

We extend shared CTI to CFE to align with the general

process model of digital forensic investigation, including

evidence collection, analysis, interpretation, and validation.

Figure 3 shows the CFE object extends the Indicator object in

CTI. The hollow arrow represents the extended relationship and

the solid diamonds indicate collection tool, media, investigator,

etc. are components of forensic evidence object. We use CFE

object and its components to answer the questions related to the

legal aspects of digital forensics [11] [12]:

• Where is forensic evidence collected, e.g., memory or

disks? It can be addressed by Collection Tool and Media

objects, which are used to describe the source of the

evidence and how evidence is extracted and stored.

• Who does collect the evidence? When did a person

access the original digital evidence? Is the person

forensically competent? This information can be

addressed by an investigator object.

• How does the analysis carry out? How to interpret the

results? A solid forensic evidence analysis should be

based on math and science. Besides the pattern match

method defined in the Indicator object, we propose the

Identification objects in CFE to record other methods

Figure 2. A threat data model based on Fireeye's PIVY report

68

and algorithms used for evidence analysis and

explanation. For example, evidence patterns or new

evidence can be discovered by artificial intelligence

(AI).

• Most importantly, how the above process and results are

validated? Why should courts trust the process and

results? For example, upon seizing digital evidence,

action should not change that evidence. We propose

Preservation and Interpretation objects to validate the

authenticity of evidence and explain the. For example,

if evidence patterns or new evidence is discovered by

artificial intelligence (AI), then explainable AI

algorithms may show investigators and courts how

much they can trust evidence.

Figure 3. CFE object extends Indicator object in CTI

III. CYBER FORENSIC EVIDENCE DISCOVERY

We propose a systematic approach to search for possible
CFE for an SUI. The main idea of the approach is based on the
fact that all CFE is generated by software and hardware of the
SUI that was used by cybercriminals. Figure 4 shows a bottom-
up layered architecture to discover CFE. Layer one represents
any cybercrimes involving computing-related devices. Layer
two is called a forensic evidence generator layer. It represents a
computing-related device used by cybercriminals and is
considered a forensic evidence generator. All system
components of the device, such as software and hardware, will
either generate CFE or store generated CFE. Layers three and
four classify CFE objects in a tree-like structure. In the structure,
all CFE is the root of the CFE tree, layer three represent CFE
categories, and layer four contains all CFE objects. The first
level of layer three has three types of CEF, including
application-generated CFE, operating system (OS)-generated
CFE, and hardware-generated CFE.

The application-generated CFE has two sub-types, the
application function-generated CFE and application non-
function-generated CFE. From the software engineering
perspective, an application is developed based on two types of
requirements, functional and non-functional requirements. A
functional requirement is a description of the service that the
software must offer. It defines a function of a system or its

component, where a function is described as a specification of
behavior between outputs and inputs [13]. Non-functional
requirements are often referred to as "quality attributes" of a
system, including usability requirements, security requirements,
reliability requirements, etc. For example, an online chatting
application that is built from functional requirements will
generate CFE objects related to the chat functions, such as chat
text messages, images, audio, and videos. To meet the usability
requirements, the online chat application may cache credentials
in cookie or memory and the cookie is considered a classic CEF
object. The security requirements may save the private key of
the application in a folder. The key is a CFE too. These identified
CFE objects are in layer four. Similarly, OS-generated CFO also
can be classified into two sub-categories, OS-function and non-
function generated CFE objects. A typical operating system has
three main functions: (1) manage the computer's resources, such
as the Central processing unit (CPU), memory, and disk drives,
(2) provide a user interface, and (3) execute and provide services
for applications software. The non-functional features of an OS
can also have usability, security, reliability requirements, etc.
Note that layer three can be further refined to form sub-types as
needed.

Figure 4. A systematical approach to discover digital forensic

evidence for a system under the investigations

The hardware-generated CFE is different from the software-
generated CFE, including the application- and OS-generated
CFE. It contains three sub-types of CEF related to the hardware
components of commuting devices, CPU-generated CFE, hard
drive-generated CFE, and memory-generated CFE. Memory
forensics is a vital form of cyber investigation that allows an
investigator to identify unauthorized and even malicious activity
on a target computer or server. This is usually achieved by
running special software, known as a memory dump, which
captures the current state of the system's memory as a snapshot
file. The memory-generated CFE presents some special states in
memory dumps. There are two types of memory-generated CFE,
volatile memory generated CFE and non-volatile memory
generated CFE. Volatility Framework [14], a volatile memory
extraction utility framework, can extract many CFE objects,
such as clipboard, cmdline, and iehistory. The non-volatile

69

memory CFE refers to firmware generated CFE. Firmware is a
specific class of computer software that provides low-level
control for a device's specific hardware. Typical firmware CFE
objects include Basic Input/Output System (BIOS), hard driver,
and routers and firewall firmware. These CFE objects are in
level four and the leaves of layer three.

Formally, we can model the relations between cybercrimes
and their associated CFE.

• All committed cybercrimes C in layer one is a
collection of crime C= {c1, c2, …, cn}, where each
cybercrime ci 𝜖 𝐶 and 1 ≤ i ≤ n.

• All CFE objects E in layer four is a collection of CFE
E = {e1, e2, …, en} , where ei 𝜖 𝐸 and 1 ≤ i ≤ n.

• CFE generated from a crime c under the investigations
is a set of CFE object V = g(c) ⸦ E where g is a CFE
generation function, which represents how the crime c
is committed.

IV. AN ARCHITECTURE FOR DETECTING APT CYBERCRIME

ACTIVITIES

Figure 5 shows the architecture of detecting APT
cybercrimes. The architecture has three main components
shown inside of the dashed rectangle: a CFE model repository,
a FED-FSM model repository, and a TADE. The system takes
shared APT CFI, SUIs, and observable CFE objects from the
SUI as inputs to infer possible malicious activities.

Figure 5. The architecture for detecting APT Crime activities with

FED-FSM

A. A CFE Model Repository

A CFE model repository is a collection of sharable CFI from
APTs expressed in JSON. Each CFE model consists of a list of

CFE objects. Formally, let define c = PIVY and g is the function
that generates all the CEF objects, i.e., V = g(c) = {PIVY file, IP
address, Running process,…}. PIVY file is a CFE object, which
refers to the existence of the malware file itself (i.e., the static
executable file). The IP address refers to the IP address of
attackers, i.e., the client of PIVY is a CFE object because
attackers need to communicate with the PIVY server. Also, the
running process is another CFE object that indicates PIVY is
running on victims’ devices.

The following JSON file defines the PIVY file CFE object.
The CFE object defines CFE attributes that are associated with
a threat activity. These attributes include the CFE type, id, name,
pattern, etc. Patterns are designed to assert suspicious or
malicious cyber activities. Specifically, patterns use observable
objects and their attributes to describe forensic evidence that is
associated with known malicious activities. For example, the
pattern [file: name = 'Poison_Ivy_2.3.2.exe'] is to

assert the existence of the PIVY file. Logic operations can be
applied to multiple observable objects as well. For example, in
addition to asserting the existence of the specific file, the
following pattern can check the identity of the file (e.g., an SHA-
256 hash) with the logical operator AND, [file: name =

'Poison_Ivy_2.3.2.exe' AND file: hashes='SHA-

256' = '…e9f5']. Note that STIX defines a cyber-

observable object dictionary. Indicators containing cyber
observable objects can be collected from threat data model
repositories available publicly or created to support the
flexibility of the framework.

1

2

3

4

5

6

7

8

9

10

11

12

Poison Ivy file CFE object in JSON

{

"type": "CFE-file obect",

"id": "PIVY-CFE-file-1",

"created": "2014-02-20T09:16:08.989Z",

"modified": "2014-02-20T09:16:08.989Z",

"name": "PIVY 2.3.2",

"description": "Assert the exists of

 PIVY process.",

"labels": "malicious-activity",

"pattern":"[file:name=

 'Poison_Ivy_2.3.2.exe']"

}

Figure 6. Code Snippet of a CFE object in PIVY

B. A FED-FSM Model Repository

A FED-FSM model repository contains a collection of FED-
FSM models. The main design idea of the repository is that (1)
FED-FSM models in the repository describe potential APT
activities imposed on SUIs and (2) any CFI we have observed in
SUIs to infer and monitor the potential APT activities in terms
of FED-FSM models can be used.

Traditional FSM is a well-studied mathematical model of
computation, and these mathematical models are suitable for
process automation. Unlike static threat data models for CTI
sharing, which only describe static threat information, FSM is
commonly used for capturing dynamical behaviors of
synchronous sequential machines or software systems, and it has
been utilized for detecting security vulnerabilities
[15][16][17][18]. A state in FSM models is a description of the
status of a system. An FSM model often contains a list of its

70

states and one initial state. A state of an FSM model can change
from one state to another in response to some activities or
external events. Such a change is called a transition.

However, traditional FSM models cannot be used for SUI
threat detection directly because their transitions, such as
attacking or threat activities, are unknown or unpredictable for
threat analysis. Without knowing these threat activities, it will
be very challenging for analysts to monitor and understand the
status of SUI and to detect threat activities. To address the issue,
we extend FSM by only allowing FSM states to change in
response to forensic evidence left by APTs and patterned CFE
objects. These CFE objects are from the CFE model repository.
The status of a FED-FSM model is inferred by CFE objects
instead of triggered by unknown threat activities. The formal
definition of FED-FSM is discussed in the next section for
process automation.

C. A Threat Activity Detection Engine

TADE shown in Figure 7 is another key component of the
APT detection system. TADE consists of three different data
types and threat activity detecting algorithms. These data types
include CFE, cyber observed data, and sightings. The idea of the
TADE is to use algorithms to infer the existence of malicious
based on observed forensic evidence CFE extracted from an SUI
and shared CFE fed on other cybersecurity intelligence
resources, such as Anomali [19].

Figure 7. The APT activity detection engine (TADE) for detecting

threat activities using CFE (e.g., Indicator), Cyber observed data,

and Sightings

The detection engine has defined the following major
functions:

• Collecting evidence logs. The log files include APT
activity forensic evidence collected from files, disks,
networking, and host system events as well as processes
and signature strings in memory (Figure 4).

• Preprocessing logs. Logs will be cleaned, checked,
organized, integrated, and stored in an evidence data
repository or in memory for better performance.

• Formalizing observed evidence data. Similarly, the
observed evidence data collected from an SUI will be
specified in supporting STIX Domain Objects (SDO),
named Observed Object or Observed CFE objects. Note
that while CFE objects represent intelligence assertions
behind attacks, raw observed information helps
formulate the basis behind this intelligence, the
observed CFE objects convey information that was
observed on systems and networks. Multiple observed
CFE objects can be used for crosschecking evidence and
therefore increase the confidence of inferring results.
The following code snippet shows an observed CFE file
object, including its name, size, hash codes, etc.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

An observed file object in PIVY

{

“type": "observed CEF Object",

"id": "observed-data--1",

…

"objects": {

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "CF7AB60B7948232C4

 47F284FC695A868",

 "SHA-256": "6cd85b478066

 …

 479d8f9f198be9f5"

 },

 "name": "Poison_Ivy_2.3.2

 .exe",

 "size": 54824

 }

}

Figure 8. Code Snippet of an observed file object in PIVY

• Determining threats. To detect a threat activity, we first
use the STIX Relationship Object (SRO), i.e., Sighting
object, to report observations of both CFE objects and
observed CFE objects. Sighting objects use two
references to capture: what indicator was sighted (i.e.,
sighting_of_ref) and what was seen on an SUI,

(i.e., observed_data_ref). SROs are also specified

in JSON to facilitate the threat detection automation
process. Based on information collected by Sighting
objects, various detecting algorithms can be used for
determining whether threat activities exist by using
patterns in CFE objects against observed data attributes.

V. FORENSIC-EVIDENCE-DRIVEN FSM MODEL

A FED-FSM model extends an FSM model by integrating a
CFE model into the FSM model. Specifically, transitions of an
FSM are determined by threat indicators specified by CFE
objects. Formally, a FED-FSM model is defined as a tuple <S,
T, F, I, L, 𝜑, s0>, where the elements of the tuple are defined as
follows:

1) S is a set of states of an SUI.
2) T is a set of transitions of an SUI.
3) F is a finite set of arcs from one transition to another,

i.e., 𝐹 ⊆ 𝑆 × 𝑆.
4) I is a set of threat indicators specified by CFE objects.
5) L is a threat indicators-selecting function on T and I, i.e.,

𝐿(𝑡, 𝐼) ⊆ 𝐼 and 𝑡 ∈ 𝑇.
6) 𝜑 is a guard function on T and L. The guard condition

of transition t, 𝜑(𝑡, 𝐿), is a first-order logical formula,
which can be evaluated as true or false. The element of
the formula is a list of STIX patterns that represent CFE
objects.

7) s0 is an initial state. It is often defined as Secure, i.e., s0

= Secure and s0 ∈ 𝑇.

Figure 9 shows two states (i.e., Secure and Penetrated) and
one transition of the PIVY FED-FSM model based on Fireeye's
PIVY report [10]. The state Secure is an initial state and it

71

indicates a system has not been compromised. Penetrated state
indicates malicious code that has been successfully executed on
an SUI by an attacker. The tuple t = (Secure, Penetrated) is a
transition. The threat indicator-selecting function 𝐿(𝑡, 𝐼) selects
a CFE object with a process ID, e.g., observed-data—2, from I,
where I represents all available CFE objects in the CFE model
repository. The guard function 𝜑(𝑡, 𝐿) on the transition t defines
the pattern formally, i.e.,

[pattern":"[process:name=

 myPoisonIvy_HK’]"]

TADE will use the pattern to evaluate observed CEF objects
collected from an SUI and return true if the pattern matches
observed CEF objects or false if it doesn’t. The Boolean value
determines whether the current state will change from Secure to
Penetrated.

Figure 9. Two states and one transition from Poison Ivy FED-FSM

model

FED-FSM models can also be expressed in Amazon States
Language (ASL) in JSON format [20]. The following code
snippet shows two states, Secure and Penetrated, as well

as the lambda pseudo function (called resource),

DetectProcess, for determining whether a threat exists in

an SUI.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

{

 "Comment": "A partial code snippet of

 Poison Ivey FED-FSM model

 in ASL",

 "StartAt": "Secure",

 "States": {

 "Secure": {

 "Type": "Task",

 "Resource": "DetectProcess",

 "Next": “Pentrated”

 },

 “Penetrated”: {…}

 }

};

DetectProcess lambda pseudo

function as a transition

exports.handler =

 function(event, context) {

 context.succeed(

 indicator.match(

 observedData));

};

VI. EMPIRICAL STUDY

The empirical study demonstrates the use of the framework
to detect an APT that utilizes a customized PIVY against an SUI.
We describe the following three artifacts related to the case
study.

A. Case Study Environment Setting

The case study is conducted in a VirtualBox with two
Windows virtual machines (VMs) and one security onion
(https://securityonionsolutions.com/) Linux VM. One Windows
VM acts as a PIVY client and another one acts as a PIVY server.
The security onion is to monitor network traffics among three
VMs. The client that is controlled by an attacker is configured
on the attacker’s machine. It will accept the server’s connection
and act as a command and control center of the server. The
server or payload is created by the attacker using Poison Ivy
2.3.2 and then distributed to one victim’s machine. Once the
victim executes the payload, the payload will infect its machine
and connect to the computer running the PIVY Client. Malicious
activities, including internal reconnaissance and data exfiltration
[21], will be carried out after the victim’s machine has been
infected. The environment setting instructions for the empirical
study can be accessed at GitHub [22]. Figure 10 shows the PIVY
client and a victim’s machine that has been infected by a PIVY
server. The PIVY client is listening on its port 3460.

Figure 10. A PIVY client is listening on its port 3460

B. PIVY FED-FSM Model

Figure 11 shows the PIVY FED-FSM model of an SUI.
Besides the two aforementioned states, Secure and Penetrated,
the FED-FSM model has two states: Explored and Exfiltrated.
The state Explored indicates an SUI has been explored by
attackers to gain a better understanding of the environment for
future actions. The state Exfiltrated indicates the SUI has an
unauthorized movement of data.

Figure 11. A Poison Ivey FED-FSM model of an SUI

The model has three types of guard functions on ten
transitions. Each guard function contains multiple comparison
expressions. For example, the guard function 𝜑3 indicates that
at any state except Secure, the destination state will be
Exfiltrated if both comparison expressions c8 and c9 are
evaluated as true.

Table 1 lists ten representative comparison expressions used
in the model for matching possible threat evidence collected
from logs. The types of evidence include file, directory, process,
Windows registry, IP address, and network traffic.

72

Table 1. Ten comparison expressions used in the FED-FSM
model

I

D

Comparison Expressions Matches

c

1

file: name =

‘myPoisonIvy_HK.exe’

the name of

PIVY Sever

c

2

file: name MATCHES

‘BG.bat.lnk’

a created file

c

3

Directory: path LIKE

‘c:\\Windows\\%\\dfed’

a created

folder

c

4

Process: name =

‘myPoisonIvy_HK’

a running

process

c

5

win-registry-key: key =

‘^HKEY_LOCAL_MACHINE\\S

OFTWARE\\Microsoft\\

Windows\\CurrentVersion

\\Run\\

myPoisonIvy_autorun’

a created

registry key

for auto run

c

6

ipv4-addr:

value=’10.0.2.12’

an IP address

c

7

ipv4-addr:

value=’10.0.2.12/24’

a subset of IP

address

c

8

network-

traffic:dst_ref.value =

'10.0.2.12'

network traffic

to IP

‘10.0.2.12'

c

9

network-

traffic:dst_port =

‘3460'

network traffic

to port '3460’

Note that (1) the nine observable objects are a subset of 102

objects described on the PIVY report [10] and Trend Micro [23].
(2) The empirical study uses lightweight command-line tools
(CLT) to collect observable data. These tools include netstat,
Windows Management Interface Command (wmic),
PowerShell, Logparser, and Sysinternals Utilities. For
demonstration, Figure 12 shows the observable evidence
detected on the Windows registry, which indicates PIVY has
created a registry key for autorun, which maintains the
persistence of threats.

Figure 12. Observable evidence showing on Windows registry

C. Framework Deployment Diagram

The deployment diagram for detecting APTs is shown in
Figure 13, which describes the system components after
implementation. To facilitate the discus, we have added two
teams in the diagram. A red team (red icon on the figure) is an
independent group that challenges an organization to improve
its effectiveness by assuming an adversarial role or point of
view. The red team will: (1) Simulate APTs. Set up a controlled
environment, e.g., using virtual machines, to simulate attacking
scenarios, e.g., APT uses Poison Ivy. (2) Set up a Trusted
Automated Exchange of Intelligence Information (TAXII)
server [9]. It stores PIVY data models in a local repository [24].
(3) Serialize and de-serialize STIX JSON content using a TAXII
client and Python APIs [25]. A blue team (black icon on the
figure) is a group of individuals who perform an analysis of
information systems to ensure the security of SUIs. Specifically,
the blue team sets up a FED-FSM server to host FED-FSM

execution frameworks, an observable data server to collect logs
from an SUI and a TAXII/FED-FSM client [26] that executes
the TADE and visualizes FED-FSM models. The empirical
study adopts a Python framework for developing and running
FSM-based workflows on AWS Lambda [27]. The framework
provides a means to check a state machine's logic and monitor
executions.

Figure 13. The deployment diagram for detecting APTs

VII. RELATED WORK

There have been many attempts to develop frameworks to
systematically detect APTs. Bhatt et al. presented a framework
[28] that models multi-stage attacks in a way that both describes
the attack methods as well as the anticipated effects of attacks.
The foundation to model behaviors is by the combination of the
Intrusion Kill-Chain attack model and defense patterns. Haq et
al. [29] described a computerized method in which one or more
received objects are analyzed by an APT detection center to
determine if the objects are APTs. The analysis may include the
extraction of features describing and characterizing features of
the received objects. The extracted features may be compared
with features of known APT malware objects and known non-
APT malware objects to determine a classification or probability
of the received objects being APT malware. Wan et al. proposed
a network gene-based framework [30] to describe the semantic-
rich network behavior patterns of network applications. It took
advantage of the latest advances in the fields of protocol reverse
analysis, cloud computing, and big data processing, with
automatic analysis and extraction of network genes, and data
stream computing-based network gene real-time processing.
Vert et al. [31] applied an advanced state machine engine to the
analysis of state variables that can detect the presence of APTs
and other malware. The Finite Angular State Velocity Machine
(FAST-VM) can model and analyze large amounts of state
information over a temporal space. The approach can analyze
and model large amounts of data over time. Friedberg et al.
applied a kind of black-list approach and only considered actions
and behavior that match well-known attack patterns and
signatures of malware traces [32]. They proposed an anomaly
detection technique that keeps track of system events, their
dependencies, and occurrences, and thus, the technique can learn
the normal system behavior over time and report all actions that
differ from the created system model.

None of the aforementioned APT detection frameworks are
practical since they lack the essential characterizations of a
framework for automation, including the scalability of

73

architecture [28][31][32], the formalization attacks of APT
features [28][29][31], and the diversity of observable objects of
SUI [30][32].

VIII. CONCLUSION

The paper presents a new formal approach that uses FED-
FSM to detect APTs. The FED-FSM models are driven by real-
world knowledge of adversary tactics and techniques stored in a
shared repository. Instead of monitoring APTs directly, the
approach infers the APT's status by analyzing the forensic
evidence that malicious actors left on digital devices. The
approach requires us systematically collecting crime activity
logs, extracting evidence from logs, and formalizing digital
forensic evidence. Two types of digital forensic evidence are
defined in the paper, shared CFE objects, and observed CFE
objects. These two objects are the drive force of FED-FSM. A
demo program that is implemented in Java can be accessed at
[33]. Note that the guided conditions of transitions in FED-FSM
are predefined in FED-FSM using patterns. In future work, we
are interested in investigating artificial intelligence-based
approaches to discover patterns from shared CFE objects
automatically and match patterns with observed CFE objects.

ACKNOWLEDGMENT

The work is supported in part by the National Science
Foundation 1714261, 2039289, and the Office of Justice
Programs 2019-DF-BX-K00.

REFERENCES

[1] R. S. Hoefelmeyer and T. E. Phillips, “System and method for malicious
code detection,” May 9, 2006, US Patent 7,043,757.

[2] P. Szor and P. Ferrie, “Detecting malicious software through process dump
scanning,” Jul. 28 2009, US Patent 7,568,233.

[3] S. Ji, “Computer network malicious code scanner method and apparatus,”
Aug. 2001, US Patent 6,272,641.

[4] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, “Deep
learning for unsupervised insider threat detection in structured
cybersecurity data streams,” in Workshops at the Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[5] C.-H. Hsieh, C.-M. Lai, C.-H. Mao, T.-C. Kao, and K.-C. Lee, “Ad2:
Anomaly detection on active directory log data for insider threat
monitoring,” in 2015 International Carnahan Conference on Security
Technology (ICCST). IEEE, 2015, pp. 287–292.

[6] B. E. Strom, J. A. Battaglia, M. S. Kemmerer, W. Kupersanin, D. P.
Miller, C. Wampler, S. M. Whitley, and R. D. Wolf, “Finding cyber threats
with att&ck-based analytics,” Technical Report MTR170202, MITRE,
Tech. Rep., 2017.

[7] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pennington,
and C. B. Thomas, “Mitre att&ck: Design and philosophy,” Tech. Rep.,
2018.

[8] “Sharing threat intelligence just got a lot easier,” https://oasis-
open.github.io/cti-documentation/, Dec. 2019.

[9] “Oasis cyber threat intelligence technical committee,” https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=cti, Dec. 2019.

[10] N. M. Bennett, James T. and N. Villeneuve, “Poison ivy: Assessing
damage and extracting intelligence,” FireEye Threat Research Blog, Tech.
Rep., 2013.

[11] D. J. Ryan and G. Shpantzer, “Legal aspects of digital forensics,” in
Proceedings: Forensics Workshop, 2002.

[12] K. Nance and D. J. Ryan, “Legal aspects of digital forensics: a research
agenda,” in 2011 44th Hawaii International Conference on System
Sciences. IEEE, 2011, pp. 1–6.

[13] R. Fulton and R. Vandermolen, Airborne Electronic Hardware Design
Assurance: A Practitioner’s Guide to RTCA/DO-254. CRC Press, 2017.

[14] V. Foundation, “Volatility framework - volatile memory extraction utility
framework,” Web: https://github.com/volatilityfoundation/volatility, May
2020.

[15] K.-T. Cheng and A. S. Krishnakumar, “Automatic functional test
generation using the extended finite state machine model,” in The 30th
ACM/IEEE Design Automation Conference, 1993.

[16] P. C. Hershey, D. B. Johnson, A. V. Le, S. M. Matyas, J. G. Waclawsky,
and J. D. Wilkins., “Network security system and method using a parallel
finite state machine adaptive active monitor and responder.” U.S. Patent
5,414,833, May 1995.

[17] D. Xu, W. Xu, and M. Tu, “Automated generation of integration test
sequences from logical contracts,” in The 38th International Computer
Software and Applications Conference Workshops (COMPSACW).
Sweden: IEEE, Jul. 2014, pp. 632–637.

[18] D. Xu, W. Xu, M. Kent, L. Thomas, and L. Wang, “An automated test
generation technique for software quality assurance,” IEEE Transactions
on Reliability, vol. 64, no. 1, pp. 247–268, 2015.

[19] Anomali, “Anomali,” Web, Jun. 2020,
https://www.anomali.com/resources/what-are-stix-taxii.

[20] Amazon, “Amazon states language,” https://docs.aws.amazon.com/step-
functions/latest/dg/concepts-amazon-states-language.html, Dec. 2019.

[21] FireEye, “Red team operations (RTO) - FireEye,”
https://www.fireeye.com/content/dam/fireeye-
www/services/pdfs/pf/ms/ds-red-team-operations.pdf, Dec. 2019.

[22] “Poison ivy lab,”
https://github.com/frankwxu/Ubalt/tree/master/EthicalHacking/Labs/Posi
onIvy, Jan. 2020.

[23] TrendMicro, “Poisonivy,” https://www.trendmicro.com/vinfo/us/threat-
encyclopedia/malware/poisonivy, Jan. 2020.

[24] “Oasis TC open repository: Taxii 2 client library written in python,”
https://github.com/oasis-open/cti-taxii-client, Dec. 2019.

[25] “Oasis TC open repository: Python APIs for STIX 2,”
https://github.com/oasis-open/cti-python-stix2, Dec. 2019.

[26] “Oasis TC open repository: Taxii 2 server library written in python,”
https://github.com/oasis-open/cti-taxii-server, Dec. 2019.

[27] “A python framework for developing finite-state machine-based
workflows on AWS lambda.” https://github.com/Workiva/aws-lambda-
fsm-workflows, Dec. 2019.

[28] P. Bhatt, E. T. Yano, and P. M. Gustavsson, “Towards a framework to
detect multi-stage advanced persistent threats attacks,” in 8th IEEE
International Symposium on Service-Oriented System Engineering, SOSE
2014, Oxford, United Kingdom, April 7-11, 2014. IEEE Computer Society,
2014, pp. 390–395.

[29] T. Haq, J. Zhai, and V. K. Pidathala, “Advanced persistent threat (apt)
detection center,” Apr. 18 2017, US Patent 9,628,507.

[30] Y. Wang, Y. Wang, J. Liu, and Z. Huang, “A network gene-based
framework for detecting advanced persistent threats,” in 2014 Ninth
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing. IEEE, 2014, pp. 97–102.

[31] G. Vert, A. L. Claesson-Vert, J. Roberts, and E. Bott, “A technology for
detection of advanced persistent threat in networks and systems using a
finite angular state velocity machine and vector mathematics,” in
Computer and Network Security Essentials. Springer, 2018, pp. 41–64.

[32] I. Friedberg, F. Skopik, G. Settanni, and R. Fiedler, “Combating advanced
persistent threats: From network event correlation to incident detection,”
Computers & Security, vol. 48, pp. 35–57, 2015.

[33] W. Xu, “A FED-FSM implemented in squirrel framework state machine,”
Web, Jun. 2020,
https://github.com/frankwxu/Ubalt/tree/master/Research/APT_FSM.

74

An Empirical Study on the Impact of Class Overlap
in Just-in-Time Software Defect Prediction

Minyang Yi∗, Guisheng Fan∗�, Huiqun Yu∗‡�, Xingguang Yang∗†
∗Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

†Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China
‡Shanghai Engineering Research Center of Smart Energy, Shanghai, China

Abstract—Just-in-time software defect prediction (JIT-SDP) is
an active research topic in the field of software engineering,
aiming at identifying defect-inducing code changes. Most of the
current JIT-SDP work focused on model construction. It is often
ignored that the performance of classifiers often depends on high
quality data. In this paper, we first investigate the impact of
the class overlap problem on the performance of the classifiers
in JIT-SDP, and propose a new effective preprocessing method
(IKMCCA-TL) combining improved K-Means clustering clean-
ing approach and Tomek-link method. In order to objectively
estimate the impact of class overlap on the classifiers in JIT-
SDP, we conduct a large-scale empirical study on the data sets
of six open source projects and compare the performance of LR,
RF and KNN classifiers by using IKMCCA or KMCCA or NCL
and without cleaning data. Experimental results show that after
removing overlapping instances, the performance of the classifiers
is significantly improved in terms of balance, recall and AUC and
our proposed method achieves the best performance.

Index Terms—Just-in-time software defect prediction, class
overlap, K-Means clustering, Tomek-link

I. INTRODUCTION

Software defect prediction technology is one of the most
popular research topics among academic and industrial or-
ganizations [1]. In the development process of large-scale
software, developers cannot avoid software defects. Defects in
the software cause great harm and loss to users, customers and
enterprises. In order to minimize the defects in the software
system, developers will put a lot of effort into testing the
software.

Just-in-time software defect prediction (JIT-SDP) is a spe-
cial software defect prediction (SDP), which is at the soft-
ware change level instead of the module level (for example,
function, file, or class level) and it refers to the technology
that predicts whether there are defects in each code change
submitted by the developer [2]. Once the software change that
caused the defect is implemented, it will be identified in JIT-
SDP.

In SDP, researchers have done a lot of research on class
imbalance and noise cleaning, and they have begun to study
the problem of class overlap. Tang et al. [3] proposed a K-
Means clustering cleanup method to clean noise instances by

Corresponding Authors: Guisheng Fan (gsfan@ecust.edu.cn), Huiqun Yu
(yhq@ecust.edu.cn) DOI reference number: 10.18293/SEKE2021-076

calculating the noise factor value (NFt) of each instance for
each cluster, and deleting the top p%. Chen et al. [4] applied
Neighbor Clean Learning (NCL) rules to remove overlapping
instances for SDP. Gong et al. [5] proposed an improved K-
Means clustering cleanup method (IKMCCA) to solve the
problem of class overlap and class imbalance in SDP.

The main research work in JIT-SDP includes model con-
struction and feature selection. In order to investigate the
impact of the class overlap problem in JIT-SDP, we firstly
uses the NCL, KMCCA and IKMCCA methods to process
the data, and check whether the performance of the three
classifiers is affected. Considering that overlap usually occurs
near the decision boundary and removing important boundary
instances will reduce the learning process, we propose an
effective cleaning approach (IKMCCA-TL) combining IKM-
CCA method and Tomek-link pair method.

The rest of this article is organized as follows. Section II
introduces related work. Section III introduces the proposed
algorithm IKMCCA-TL. Experimental setup is described in
section IV. Experimental results and discussion are presented
in section V. Section VI describes the threats to validity. The
conclusion and future work are presented in section VII.

II. RELATED WORK

A. Just-in-time Software Defect Prediction

The idea of JIT-SDP was proposed by Mockus et al. [6]
and scores of change metrics to predict whether changes are
defect-inducing or clean was designed by them. Kamei et
al. [2] performed a large-scale empirical study in JIT-SDP.
They collected eleven data sets which include six open-source
projects and five commercial projects.

Subsequently, various methods were proposed to improve
the performance of the prediction model for JIT-SDP. Yang
et al. [7] validated the availability of progressive sampling in
the JIT-SDP issue which can reduce the size of the defect
data sets and reduce the cost of data sets acquisition. Chen
et al. [8] proposed a JIT-SDP model MULTI based on multi-
objective optimization algorithm NSGA-II to generate optimal
solutions. The two goals of MULTI optimization are designed
through the benefit-cost analysis. Yang et al. [9] proposed
three optimal solutions selection strategies: benefit priority
(BP), cost priority (CP), and a compromise between cost

75

and benefit (CCB) to improve the performance of MULTI.
Yang et al. [10] proposed a differential evolution (DE) based
supervised method DEJIT to build JIT-SDP models which can
significantly improve the effort-aware prediction performance
in the three evaluation scenarios.

B. Class overlap

Class overlap means that some instances of different classes
in the training data are close or even overlapped in the
distribution space and often results in poor class boundaries
and affects the performance of the learner. In the current
SDP research, the problem of class overlap is mainly re-
garded as data quality or noise detection. Tang et al. [3]
proposed a cluster-based noise detection method, which uses
the outlier detection method to calculate the noise factor (NF),
and removed the top p% of NF. Chen et al. [4] proposed
Neighborhood Clean Learning (NCL) to solve the problems
of class overlap and class imbalance. The experimental results
show that, compared with the existing learning methods, the
new learning model can obtain the best values in terms of G-
mean and AUC. In order to take into account the effects of
class overlap and class imbalance, Gong et al. [5] proposed
an improved K-Means clustering cleanup method (IKMCCA)
to solve the problem of class overlap and class imbalance
in SDP. Experiments have proved that compared to KMCCA
and NCL methods, the IKMCCA method can obtain the best
performance.

III. IKMCCA-TL

The evaluation model of IKMCCA-TL is shown in Fig 1. In
the following section, we elaborate on the details of IKMCCA-
TL.

Fig. 1. The evaluation model of IKMCCA-TL

A. IKMCCA

In order to consider both the impact of class overlap and
class imbalance at the same time, Gong et al. [5] proposed
an improved K-Means clustering cleanup method (IKMCCA)

to solve the problem of class overlap and class imbalance in
traditional defect prediction. In the step of deleting overlapping
instances in the IKMCCA algorithm, if the percentage of
defective instances in the cluster i is lower than p%, delete
the defective instances in the cluster. On the contrary, instances
without defects in this cluster will be deleted.

B. Tomek-link pair

The Tomek-link undersampling algorithm is used to elim-
inate boundary instances [11] . Given two instances ti ∈ T
and tj ∈ T belonging to different classes, let distance (ti, tj)
be the distance between them. If a pair of instances
(ti, tj) does not exist distance (ti, tl) < distance (ti, tj) or
distance (tl, tj) < distance (ti, tj) for any other instance
tl ∈ T , then this pair of instances is called a Tomek-link
pair.

C. IKMCCA-TL

The overlap often occurs near the decision boundary in the
case of class overlap. In this case, the excessive elimination of
boundary instances will drift the decision boundary between
the minority class and the majority class, which in turn
will reduce the learning process. Therefore, we improve the
IKMCCA algorithm and combines the Tomek-link pair to
make it possible to balance the data distribution, without
distorting the decision boundary, and remove only unimportant
boundary instances and unimportant redundant most instances.
The pseudo code of IKMCCA-TL is shown as Algorithm 1.

IV. EXPERIMENTAL SETUP

In this paper, the problem of class overlap is studied in JIT-
SDP, and the following two research questions are designed.

• RQ1: How does class overlap influence the prediction
performance of the basic classifiers in JIT-SDP?

• RQ2: Why our proposed method (IKMCCA-TL) is more
effective in reducing the impact of class overlap on the
classifiers?

The experimental hardware environment is Intel(R) Core(TM)
i7-10875 CPU@ 2.30GHz; RAM 16.00GB. The experimental
code is written in Python.

A. Data Sets

The experiment considers the data sets of six open source
projects shared by Kamei et al. [2], which have been widely
used in JIT-SDP studies. The data set comes from 6 open
source projects, which is shown in the Table I.

The data sets contains 14 change metrics. These char-
acteristics are briefly introduced in [2], which involve five
dimensions: diffusion, size, purpose, history, and experience.

B. Performance Indicators

In order to explore the influence of class overlap on
the learner, we use three performance measures including
Balance, Recall and AUC.

76

Algorithm 1: IKMCCA-TL
Input: training set: T , the parameter m.
// m is used to determine the number of clusters
Output: a clean training set: Tnew

1 begin
2 n = the number of instances in T
3 d = the number of defective instances in T
4 p = d/n
5 k = [n/m]
6 using K-means algorithm to divide T into k

clusters
7 for i = 1 → k do
8 find the instance pairs that are the Tomke-link

pairs in cluster i
9 compute the ratio r of of defective instances to

all instances in cluster i
10 if r > p then
11 delete the non-defective instances of the

Tomke-link pairs in cluster i
12 else
13 delete the defective instances of the

Tomke-link pairs in cluster i
14 end
15 Tnew is the set combining the remaining instances

in each cluster
16 end

TABLE I
THE INFORMATION OF DATA SETS

Project Period #defective
changes #changes %defect

rate

BUG 1998/08/26∼2006/12/16 1696 4620 36.71%
COL 2002/11/25∼2006/07/27 1361 4455 30.55%
JDT 2001/05/02∼2007/12/31 5089 35386 14.38%
MOZ 2000/01/01∼2006/12/17 5149 98275 5.24%
PLA 2001/05/02∼2007/12/31 9452 64250 14.71%
POS 1996/07/09∼2010/05/15 5119 20431 25.06%

C. Parameter Setting

In IKMCCA and IKMCCA-TL methods, we set the percent-
age p% to the ratio of defective instances, and the parameter
m is set as 20, which is the same as the references [5]. The
parameter settings of KMCCA and NCL methods are the same
as references [3] and [4]. 85% of the instances are randomly
selected as training data, and rest instances are used as test
data. For eliminating the randomness of the experiment, the
experiment is repeated 20 times.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section answers the questions raised in Section IV
through experiments. And data processing is the same as [2].

A. Analysis for RQ1

In order to test the degree of impact of overlapping in-
stances in software defect data sets on the performance of the

classifiers, we adopt RF, KNN and LR classifiers.
As shown in the table II, through the experimental results,

we can find that after using the NCL method to remove
overlapping instances, the value of Recall increased by 2.9%,
4.6% and 5% respectively on LR, RF and KNN classifiers.
The value of AUC increased by 1%, 1.8% and 2.2% respec-
tively. The value of Bal increased by 1.9%, 3.1% and 3.4%
respectively. KMCCA method which only remove the noise
instances doesn’t achieve much improvement. The IKMCCA
method which solves the problem of class overlap and class
imbalance achieves better performance than the NCL method.

As shown in experimental result, the class overlap problem
will have a serious impact on the performance of the classifier
in JIT-SDP. When the overlapping instances of the class are
removed, the performance of the classifier will be greatly
improved. Considering the problem of class overlap and class
imbalance at the same time, the classifier will perform better.

B. Analysis for RQ2

The existence of important boundary instances is also im-
portant for accurately defining the decision boundary. In the
case of class overlap, the overlap often occurs near the decision
boundary. In this case, the excessive elimination of boundary
instances will drift the decision boundary between the minority
class and the majority class, which in turn will reduce the
learning process. In order to solve the above problems, we
propose IKMCCA-TL method which only removes unimpor-
tant boundary instances and unimportant redundant instances.
Compared with the IKMCCA method, the Recall value of the
IKMCCA-TL method is increased by 5.5%, 5.4% and 5.4%
respectively on LR, RF and KNN classifiers. The value of
AUC is increased by 0.7%, 0.8% and 0.6% respectively. The
value of bal is increased by 1.9%, 2.5% and 1.4% respectively.

As shown in experimental result, when we only delete unim-
portant overlap instances of the decision boundary instances,
the performance of classifiers can be better.

VI. THREATS TO VALIDITY

External validity. The results of the experiment can’t be
guaranteed to apply to all other defect data sets. More data sets
should be mined to verify the generalization of experimental
results.

Construct validity. Three indicators, including Recall,
AUC and bal, are used to reflect the performance of the
classifier, which is also widely used in [5].

Internal validity. The threats to internal validity are mainly
from experimental code. The mature python libraries are used
and the code is checked to reduce the errors.

VII. CONCLUSIONS AND FUTURE WORK

In JIT-SDP, the performance of the classifier often depends
on high-quality data. In the past, the impact of overlapping
classes on learning models was ignored. Therefore, we propose
a method IKMCCA-TL that can better remove unimportant
boundary instances and unimportant redundant instances, and

77

TABLE II
EXPERIMENTAL RESULTS OF THE ABOVE METHODS ON THE CLASSIFIERS LR, RF, KNN

project method Logistic regression Random forests K-nearest neighbor
Recall AUC Bal Recall AUC Bal Recall AUC Bal

BUG

Without removing 0.408 0.634 0.569 0.408 0.679 0.625 0.448 0.615 0.579
NCL 0.458 0.652 0.561 0.553 0.700 0.666 0.523 0.650 0.627

KMCCA 0.394 0.631 0.636 0.490 0.677 0.626 0.458 0.620 0.586
IKMCCA 0.495 0.646 0.612 0.583 0.680 0.665 0.546 0.623 0.613

IKMCCA-TL 0.676 0.658 0.656 0.697 0.692 0.689 0.685 0.630 0.624

COL

Without removing 0.334 0.6284 0.526 0.387 0.639 0.560 0.364 0.603 0.536
NCL 0.399 0.649 0.569 0.450 0.666 0.602 0.435 0.634 0.583

KMCCA 0.361 0.635 0.543 0.405 0.643 0.570 0.372 0.604 0.540
IKMCCA 0.489 0.662 0.619 0.517 0.661 0.630 0.501 0.621 0.601

IKMCCA-TL 0.592 0.674 0.662 0.634 0.678 0.674 0.601 0.629 0.627

JDT

Without removing 0.041 0.516 0.322 0.098 0.541 0.362 0.128 0.546 0.382
NCL 0.059 0.524 0.335 0.149 0.564 0.398 0.177 0.566 0.417

KMCCA 0.045 0.518 0.324 0.100 0.542 0.363 0.131 0.548 0.385
IKMCCA 0.152 0.559 0.400 0.274 0.605 0.484 0.298 0.594 0.498

IKMCCA-TL 0.156 0.561 0.403 0.283 0.607 0.490 0.316 0.599 0.509

MOZ

Without removing 0.029 0.514 0.314 0.054 0.526 0.331 0.080 0.536 0.349
NCL 0.031 0.515 0.315 0.065 0.531 0.339 0.098 0.544 0.362

KMCCA 0.031 0.515 0.315 0.055 0.526 0.332 0.082 0.537 0.350
IKMCCA 0.059 0.527 0.334 0.130 0.560 0.358 0.163 0.570 0.408

IKMCCA-TL 0.061 0.528 0.336 0.134 0.562 0.387 0.167 0.572 0.411

PLA

Without removing 0.079 0.535 0.349 0.162 0.571 0.407 0.145 0.553 0.395
NCL 0.092 0.540 0.358 0.202 0.589 0.435 0.205 0.579 0.437

KMCCA 0.081 0.535 0.350 0.152 0.567 0.401 0.146 0.553 0.395
IKMCCA 0.223 0.590 0.449 0.336 0.633 0.528 0.325 0.603 0.515

IKMCCA-TL 0.225 0.591 0.451 0.355 0.639 0.541 0.338 0.605 0.523

POS

Without removing 0.339 0.641 0.530 0.391 0.662 0.567 0.369 0.633 0.548
NCL 0.363 0.650 0.547 0.435 0.678 0.597 0.400 0.644 0.568

KMCCA 0.326 0.636 0.522 0.392 0.663 0.567 0.377 0.637 0.553
IKMCCA 0.493 0.685 0.631 0.536 0.700 0.658 0.512 0.664 0.631

IKMCCA-TL 0.532 0.693 0.653 0.594 0.712 0.689 0.565 0.669 0.653

Average

Without removing 0.205 0.578 0.435 0.263 0.603 0.475 0.256 0.581 0.465
NCL 0.234 0.588 0.454 0.309 0.621 0.506 0.306 0.603 0.499

KMCCA 0.206 0.579 0.436 0.265 0.603 0.477 0.261 0.583 0.468
IKMCCA 0.318 0.611 0.508 0.396 0.640 0.554 0.391 0.612 0.544

IKMCCA-TL 0.373 0.618 0.527 0.450 0.648 0.579 0.445 0.618 0.558

investigate whether NCL, KMCCA, IKMCCA and IKMCCA-
TL methods can improve the performance of the classifiers.
We conduct a large-scale empirical study on data sets of six
open source projects. Experimental results show that using
these methods to eliminate overlapping instances can achieve
significantly better performance in terms of bal, Recall, and
AUC. And our proposed method IKMCCA-TL can better
improve the performance of the classifiers by eliminating class
overlapping instances.

In the future, more data sets from commercial projects will
be mined to verify the generalization of experimental results.

ACKNOWLEDGMENT

This work was partially supported by the National Natural
Science Foundation of China under Grant nos. 61702334 and
61772200, Shanghai Municipal Natural Science Foundation
under Grant nos. 17ZR1406900 and 17ZR1429700.

REFERENCES

[1] X. Chen, Q. Gu, W. Liu, S. Liu, C. Ni, Survey of static software defect
prediction, Journal of Software, 27 (1) (2016).

[2] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
N. Ubayashi, A large-scale empirical study of just-in-time quality
assurance, IEEE Transactions on Software Engineering, 39 (6) (2013)
:757–773.

[3] W. Tang, T. M, Khoshgoftaar, Noise identification with the k-means
algorithm, in: Proceedings of the 16th International Conference on Tools
with Artificial Intelligence, ICTAI, 2004, 2004, pp. 373–378.

[4] L. Chen, B. Fang, Z. Shang, Y. Tang, Tackling class overlap and
imbalance problems in software defect prediction, Software Quality
Journal, 26 (1) (2018) :97–125.

[5] L. Gong, S. Jiang, R. Wang, L. Jiang, Empirical evaluation of the impact
of class overlap on software defect prediction, in: Proceedings of the
34th International Conference on Automated Software Engineering, ASE
2019, 2019, pp. 698–709.

[6] A. Mockus, D. M. Weiss, Predicting risk of software changes, Bell Labs
Technical Journal, 5 (2) (2000) :169–180.

[7] X. Yang, H. Yu, G. Fan, K. Yang, K. Shi, An empirical study on
progressive sampling for just-in-time software defect prediction, in:
Proceedings of the 26th Asia-Pacific Software Engineering Conference,
APSEC, 2019, 2019, pp. 12–18.

[8] X. Chen, Y. Zhao, Q. Wang, Z. Yuan, MULTI: multi-objective effort-
aware just-in-time software defect prediction, Information & Software
Technology, 93 (2018) :1–13.

[9] X. Yang, H. Yu, G. Fan, K. Yang, An empirical study on optimal
solutions selection strategies for effort-aware just-in-time software defect
prediction, in: Proceedings of the 31st International Conference on
Software Engineering and Knowledge Engineering, SEKE, 2019, 2019,
pp. 319–324.

[10] X. Yang, H. Yu, G. Fan, K. Yang, Dejit: A differential evolution
algorithm for effort-aware just-in-time software defect prediction, In-
ternational Journal of Software Engineering, 31 (3) (2021) :289–310.

[11] T. I, Two modifications of CNN, IEEE Transactions on Systems, Man,
and Cybernetics, 7 (2) (1976) :769–772.

78

FSSRE: Fusing Semantic Feature and Syntactic

Dependencies Feature for Threat Intelligence Relation

Extraction

Xuren Wang, Mengbo Xiong*

Information Engineering College

Capital Normal University

Beijing, China

{wangxuren,
2181002015}@cnu.edu.cn

Famei He*

Liabrary

Beijing Instiuite of Technology

Beijing, China

hefm@bit.edu.cn

Peian Yang*, Binghua Song, Jun

Jiang, Zhengwei Jiang

Institute of Information

Engineering

Chinese Academy of Sciences

School of Cyber Security

University of Chinese Academy of

Sciences

Beijing, China

{yangpeian, songbinghua,

jiangjun, jiangzhengwei}
@iie.ac.cn

Zihan Xiong

Information Engineering College

Capital Normal University

Beijing, China

2181002064@cnu.edu.cn

Abstract—Threat intelligence relation extraction plays an

important role in threat intelligence text analysis and processing.

To extract the relation between two threat entities in a sentence,

we develop a novel framework called FSSRE which fuses sematic

feature and syntactic dependencies feature for threat intelligence

relation extraction. We utilize graph convolutional networks

(GCN) to extract syntactic dependencies features, and utilize

Sentence-BERT to extract contextual semantic features. To keep

vital information with irrelevant content removed

to the most extent, we further apply a novel pruning strategy,

SDP-VP, to the input trees. With retaining the shortest path and

nodes that are 𝑲 hops away from nodes on the shortest path, we

give the edge connected to the verb nodes a weight of 𝒘 times. We

create an advanced persistent threat (APT) intelligence entities

and intra-sentence relations dataset, APTER-SENT, for that there

is no public dataset can be used for relation extraction research in

the threat intelligence field. Experimental results on APTER-

SENT demonstrate improved performance over competitive

baselines. At the same time, we also conducted experiments on the

SemEval-2010 dataset. The results of the experiment indicate that

our method is still effective on this dataset.

Keywords—relation extraction, threat intelligence, APTER-

SENT, GCN, Sentence-BERT, SDP-VP

I. INTRODUCTION

With the rapid development of network and information
technology, new types of threats and attacks represented by
Advanced Persistent Threat (APT) are showing a continuous and
expanding development trend. APT attacks mainly use special
Trojan to target computers to steal confidential information,
commercial information of important enterprises, and destroy
network infrastructure. Threat intelligence is a kind of evidence-
based knowledge, including context, mechanism, labeling,
meaning, and recommendations that can be implemented. Threat
intelligence reports usually describe a malicious organization
using some malicious software to launch an attack. That is, the
report contains information such as attacker, target, purpose, and
approach. The report also contains file HASH (e.g.

356A192B7913B04C54574D18C28D46E6 395428 AB),
encryption algorithm (e.g. AES128-ECB), counter measure
(keep CMS plugins up-to-date), etc. Security companies release
massive amounts of threat intelligence every day. Most of threat
intelligence is presented in text, which cannot visually show the
connections between the attack events. It is not conducive to the
rapid perception of abnormalities by security operators.

In order to help researchers quickly understand the
connection between new threat events and previous threat events,
it is very important to design algorithms that can extract the
relationships between threat intelligence entities from a large
number of documents. And the task of extracting threat
intelligence relation is one of the key tasks in constructing a
knowledge graph of threat intelligence. Although the effect of
relation extraction in the general field is good, there are still
some problems in relation extraction in the field of threat
intelligence: (1) There is no public dataset that can be used for
relation extraction research in the threat intelligence field; (2)
The longer sentence length of threat intelligence text makes it
difficult to fully and efficiently extract sentence features and not
all tokens in the sentence are related to the relation between the
entity pair of target. (As shown in TABLE Ⅰ, the sentence length
of threat intelligence text is longer than that of general domain
text); (3) Because the threat intelligence text contains file HASH,
encryption algorithm, counter measure and other professional
domain information, the Out-Of-Vocabulary (OOV) problem
will inevitably occur in the word embedding process. However,
the existing relation extraction model cannot solve the above
problems.

TABLE I. SENTENCE LENGTH STATISTICS FOR OUR DATASET APTER-
SENT (THREAT INTELLIGENCE TEXT) AND THE SEMEVAL-2010 DATASET

dataset
Average Sentence

Length(Token)

Average Sentence

Length(Char)

SemEval-2010 19 85

APTER-SENT 29 184

DOI reference number: 10.18293/SEKE2021-088

79

We regard the threat intelligence relation extraction task as a
multi-classification task and construct a new model to extract
relation. This model fuses semantic feature and syntactic
dependencies feature for threat intelligence relation extraction.
Graph convolutional networks (GCN) is used to capture the
syntactic dependencies of the text. We observe that the longer
sentence length of threat intelligence text makes it difficult to
extract sentence features sufficiently and effectively, and not all
tokens in the sentence are related to the relation between the
entity pairs of target. In order to solve this problem, we need a
pruning method to incorporate relevant information with
maximally removing irrelevant content. We also found that the
verbs in the text often play a decisive role in the classification of
the relation between entities, so we propose a new pruning
method of verb-based shortest dependent path pruning (SDP-
VP). SDP-VP keeps the shortest dependent path and its K-hop
nodes, and gives the edge connected to the verb nodes a weight
of 𝑤 times to form a new dependency graph, which help extract
relation between entities more efficiently. But at the same time,
there are new problems. If we only use structural information to
extract the relations between entities in the longer text, we will
lose semantic information, but semantic information is also very
important for the task of relation extraction. Therefore, we use
Sentence-BERT [1] to capture contextual semantic information,
and at the same time alleviate the Out-Of-Vocabulary (OOV)
problem caused by special text like HASH value, encryption
algorithm and counter measure in the field of threat intelligence.
Finally, semantic feature and syntactic dependencies feature are
fused to classify the relation.

II. RELATED WORK

Existing general domain relation extraction methods can be
divided into two categories, sequence-based and dependency-
based.

Sequence-based methods mainly rely on word sequences.
This method uses the entire text as input, and uses convolutional
neural networks (CNN), long and short-term memory networks
(LSTM), etc. to capture the con-textual information of the text,
and then extract the relation. Zhang et al. [2] first combines the
LSTM sequence model with an entity position attention
mechanism that is more suitable for relation extraction. Verga et
al. [3] used Transformer to encode the context, and each encoded
word generated two position-specific representations through
the head and tail multi-layer perceptron (MLP) to achieve
relation extraction. The above methods all promote the progress
of relation extraction, but the above models only uses the
contextual semantic information in the text and cannot capture
the dependency information of the sentence.

The dependency-based model incorporates the dependency
tree into the model. For example, Song et al. [4] proposed a
graph-state LSTM model, which uses parallel state to model
each word, and enriches state values through messaging to
achieve entity extraction. Zhang et al. [5] proposed an extended
graph convolutional network. In order to hold relevant
information and remove irrelevant content to the maximum, the
model further applies a new pruning strategy to the input tree.
The pruning method is to retain the K-hops nodes that are the
shortest dependent path between two entities. This pruning
strategy can be visually called "hard pruning". Its advantage is

to reduce the nodes with less information, reducing the size of
the dependent graph, and improve the efficiency of model
processing. Guo et al. [6] proposed an Attention Guided Graph
Convolutional Networks (AGGCNs) model that directly takes
completely dependent trees as input. However, a "soft pruning"
method is proposed, which automatically learns how to
selectively focus on the relevant substructures that are useful for
the relation extraction task. The advantage of this method is that
it does not sub-tract any node on the dependency graph, but
assign different weight values to the edges on the graph, so that
the model extracts text representations that are more beneficial
to the relation extraction task. Can [7] proposed a novel model,
which is based on the basic information in the SDP enhanced
with information selected by several attention mechanisms with
kernel filters, namely RbSP (Richer-but-Smarter SDP). But the
extracted context information and the extracted dependency
structure information are both extracted based on the input
pruned dependency graph, and the original context information
of the text is not obtained. In essence, Can’s work is a
dependency-based method. Context semantic information is
very important for relation extraction, which is ignored in the
above methods. Moreover, the above papers all propose relation
extraction models for general domain datasets, which are
directly used to extract the relationship between entities in threat
intelligence domain. For example, threat intelligence sentences
are usually longer than general domain sentences, and it is not
easy to extract sentence features for relation extraction. It is
necessary to propose a suitable pruning method to solve this
problem, and pruning method can also improve the efficiency of
model processing.

Threat intelligence entity relation extraction is relations’
extraction for specific fields. [8] proposed a system for creating
semantic triples on cyber security text, using deep learning
methods to extract possible relation. Du et al. [9] propose a
knowledge graph for People-Readable Threat Intelligence
recommendation (PRTIRG) and incorporates knowledge graph
representation into PRTI recommender system for click-through
prediction. Wang et al. [10] propose a distant supervision
relationship extraction method RL-ET-PCNN-ATT based on the
PCNN-ATT model. Verbs are very important for judging the
relationship between threat intelligence entities, which is not
discussed in the above methods.

III. DATASET

In order to solve the problem that there is no public dataset
that can be used for relation extraction research in the threat
intelligence field, we constructed threat intelligence entities and
intra-sentence relations dataset, APTER-SENT, through manual
annotation. APTER-SENT includes annotations for
cybersecurity-related entities and relations. The APT reports we
marked come from web. They have been issued by major
security vendors (such as Kaspersky, FireEye, etc.) since 2008.
We have marked 12,906 sentences in reports published between
2015 and 2020. After preprocessing, 23225 triples are obtained.
To ensure the quality of the dataset, a three-person cross-check
is used in manual annotation. We did not use automatic and
semi-automatic annotation solutions, although they are better at
facing texts in general domains, they will generate a lot of noise
data when facing texts in the threat intelligence domain.
According to STIX2.0, "National Standard of the People's

80

Republic of China-Information Security Technology -
Cybersecurity Threat Information Format Specification" and
domain experts' knowledge, we predefined 36 entity categories.
And we predefined 8 relation types. TABLE Ⅱ shows 36
predefined entity types and their corresponding examples and
quantities. And we predefined 8 relation types as shown in
TABLE III. The example is only one case in the instance
relationship but not all, such as "located" which can also indicate
that the file is located in the operating system such as "The
"d3d9.dll" file is malicious and is loaded into memory of
Windows".

TABLE II. ENTITY TYPE AND EXAMPLE TABLE

Entity type Example Counts

threatActor_name APT10 1447

threatActor_aliases MenuPass 62

program_language JavaScript 81

security_team AntiyCERT 349

vulnerability_cve CVE-2014-0160 43

vul_aliases Heartbleed 38

encryption_algo AES128-ECB 157

sample_name control.exe 711

sample_function Delete files 513

government FBI 103

target_crowd military 181

attack_activity Watering hole 270

counter_measure Keep CMS plugins up-to-date 118

sub_activity encrypts this data 771

OS_name Windows 149

email_evil acc.signnin.send@gmail.com 31

malware Reaver 1439

string VIEWS0018x 342

domain_evil www.tashdqdxp.com 331

domain https://www.proofpoint.com 18

attack_goal steal e-mail and contacts 230

location Western Europe 543

industry maritime industries 111

company Microsoft 170

function postDown() 201

protocol HTTP 170

person Tom Smith 445

IP 192.168.1.206 6

IP_evil 98.126.156.210 71

md5 292843976600e8ad2130224d70356bfc 167

sha1
356A192B7913B04C54574D18C28D46E6

395428AB
16

sha2
12dedcdda853da9846014186e6b4a5d6a82b

a0cf61d7fa4cbe444a010f682b5d
421

url
https://support.google.com/mail/answer/703

6019
15

url_evil
http://download.data-

server.cloudns.club/GAZA2017.mdb
261

time November 2017 417

tool Nmap 2475

TABLE III. RELATION TYPE AND EXAMPLE TABLE, THE RED ENTITY

REPRESENTS THE HEAD ENTITY, AND THE BLUE ENTITY REPRESENTS THE TAIL

ENTITY.

Relation type Example Counts

attack

The Gaza cybergang’s attacks have never slowed

down and its typical targets include government

entities/embassies , oil and gas.

652

located
The energy sector in Europe and North America

is being targeted by a new wave of cyber attacks.
555

part_of

Costin Raiu , director of Global Research and

Analysis Team at Kaspersky Lab , was the first

to find a code connection between APT17 and the

backdoor in the infected.

2290

occur_time

WhiteBear focused on various embassies and

diplomatic entities around the world in early

2016.

501

use

Gaza cybergang started using the CVE 2017-

0199 vulnerability which enables direct code

execution.

1638

launch

Proofpoint detected and blocked spearphishing

emails from Leviathan targeting a US

shipbuilding company

657

goal

Gaza cybergang started using the CVE 2017-

0199 vulnerability which enables direct code

execution.

1360

find

CVE-2017-8759 is the second zero-day

vulnerability used to distribute FINSPY

uncovered by FireEye in 2017.

459

APTER-SENT and SemEval-2010 dataset are both focused
on annotating intra-sentence relations. The difference is that
APTER-SENT is a threat intelligence field dataset and
SemEval-2010 is a general field dataset. The former contains at
least one relation in each sentence, while the latter contains only
one relation ((1.8 vs. 1.0 relations per sentence). TABLE IV
gives a comparison of statistics among the two datasets.
SemEval-2010 dataset only marked entity position but did not
define the entity type. For the convenience of comparison, we
counted the number of entities, the entities counted contain the
entity types in Table Ⅱ. The statistics of the number of relations
in the two datasets includes the "Other" type.

TABLE IV. DATASET STATISTICS FOR OUR DATASET APTER-SENT AND

THE SEMEVAL-2010 DATASET

Statistics APTER-SENT SemEval-2010

Entities 12873 21434

Relations 23225 10717

Sentences 12906 10717

Relations/Sentence 1.8 1.0

81

IV. MODELS

The overall architecture of the proposed FSSRE is illustrated
in Fig. 1. It is mainly composed of four parts: (1) Word
Processor which extracts word-level semantic features; (2)
Regional Dependency Feature Extractor that learn syntactic
dependencies information; (3) Semantic Feature Extractor that
learn contextual Semantic information; (4) Relation Classifier
that classifies relation between entity pairs into predefined
categories.

A. Word Processor

In order to fully capture the threat intelligence text features, we

use four features to form the final word embedding:

a. We use the pre-trained 300-dimensional GloVe vectors.

b. We use the BERT [11] model to embed words in the text

to alleviate the OOV problem.

c. Part-of-speech (POS) being very important for the relation

extraction task.

d. Entity tags are beneficial for relation extraction between

entities.

t1 t2 t3 t4 t5 tn-1 tn

Sentence-BERT

GCN

Ehead Gsentence Etail

R1 R2 R3 R4 R5 R9

g1 g2 g3 gm-1 gm

MLP
(2)MLP

(1)

softmax

SDP-VP

BiLSTM

p1 p2 p3 pm-1 pm

l1 l2 l3 l4 l5 ln-1 ln

...

...

...

...

...

Relation Classifier

Regional

Dependency

Feature

Extractor

Word Processor

Semantic

Feature

Extractor

Fig. 1. Overview of FSSRE

As shown in Fig. 1, the input is a sequence of sentences S =
{𝑡1, 𝑡2, ⋯ , 𝑡𝑛}, where 𝑡𝑛 represents the n-th token in the sentence.
Our final input representation for token 𝑡𝑛 is:

𝑡𝑛 = 𝐺𝑛 + 𝐵𝑛 + 𝑃𝑛 + 𝐸𝑛 (1)

Where 𝐺
𝑛
 is the GloVe token embedding vector, 𝐵

𝑛
 is the

BERT embedding vector，𝑃
𝑛
 is the POS embedding and 𝐸

𝑛
 is

the NER embedding. Some modules in Word Processor can be
replaced with a wide range of different neural network designs.
For example, FastText [12] can be used to replace GloVe. It is
very flexible and can be adjusted according to needs.

B. Regional Dependency Feature Extractor

a) SDP-VP: To capture the regional dependency feature

of threat intelligence text, we use graph convolutional networks

(GCN) to process the dependency graph generated by the text.

We have noticed that tokens of the verb part are crucial in

determining the relation between entities, which plays a decisive

role in judging the relation between entities. We propose a new

pruning method SDP-VP. SDP-VP keeps the shortest dependent

path and the nodes that are 𝐾 hops away from the node above it,

and gives the edge of the verb part-of-speech node a weight of

𝑤 times to form a new dependency graph. As shown in the Fig.

2, assuming that nodes 𝑁
1
, 𝑁

5
 and 𝑁

7
 are verb nodes, the red

path represents the shortest dependent path between entity 𝐸
1

and entity 𝐸
2
. After SDP-VP pruning, in addition to the nodes

on the shortest path will be retained, nodes that are 𝐾(𝐾 = 1)

hops away from the shortest path will also be retained. And the

weight of the edge with the verb part of speech node is 𝑤(𝑤 =
2) times the weight of other edges. Finally, the pruning result as

shown in the Fig. 2 is obtained.

This method holds the advantages of "hard pruning" and
"soft pruning", which can not only reduce the size of the
dependent graph, improve the efficiency of model processing,
but also give higher weight to the edges of the verb part of
speech, making the model more concerned information that is
more favorable to relation extraction. Following Zhang et al [5],
we further merge the input sentence sequence S through the
bidirectional long short-term memory network (BiLSTM) to
obtain the word embedding with context information to obtain a
new sentence sequence 𝑆𝐿 = {𝑙1, 𝑙2, ⋯ , 𝑙𝑛} . This BiLSTM
contextualization layer is trained jointly with the rest of the
network.

N1

N3 N4

N7N6

N2

N9

N5

N8

N13

N12

N14 N15

N10 N11

V

V

V

N1

N3 N4

N7

N2

N9

N5

N8

N13

N12

N14 N15

VV

V

2 2 2

2
2

22 2

1 1 1

E1 E2E1E2

Fig. 2. The Processing of SDP-VP (𝐾 = 1,𝑤 = 2)

ℎ⃗ 𝑛 = 𝐿𝑆𝑇𝑀𝑓𝑤(𝑡𝑛, ℎ⃗ 𝑛−1) (2)

ℎ⃖⃗𝑛 = 𝐿𝑆𝑇𝑀𝑏𝑤(𝑡𝑛, ℎ⃖⃗𝑛−1) (3)

𝑙𝑛 = [ℎ⃗ 𝑛; ℎ⃖⃗𝑛] (4)

For each word 𝑡
𝑛
 of the sentence, the hidden layer state ℎ⃗ 𝑛

is obtained through the forward LSTM, and the hidden state ℎ⃖𝑛
is obtained through the backward LSTM, and the two are

connected to obtain the hidden layer states 𝑙
𝑛

. 𝑙
𝑛
 is the word

embedding to indicate the state of the hidden layer obtained after

𝑡
𝑛
 passing BiLSTM.

82

The sentence sequence 𝑆
𝐿
 is pruned by SDP-VP to obtain a

new sequence 𝑃 = {𝑝
1
, 𝑝

2
, ⋯ , 𝑝

𝑚
} , 𝑝

𝑚
 represents the m-th

token in the sequence after pruning.

b) Extract Dependency Graph Regional Dependency

Feature: In order to explicitly use structural information to

further improve the model, we propose to use Stanford

dependency parser creating a dependency tree for the input

sentence. We use the dependency tree as the input sentence’s

adjacency matrix and use GCN extracting regional dependency

features. Graph convolutional network (GCN) was proposed by

Kipf and Welling [13] in 2017. A GCN layer retrieves new node

features by considering neighboring nodes’ features with the

following equation:

ℎ𝑣
𝑙+1 = 𝑅𝑒𝐿𝑈 (∑ (𝑤𝑙ℎ𝑣

𝑙 + 𝑏𝑙)

𝑉∈𝑁(𝑣)

) (5)

Where 𝑣 is the target node and 𝑁(𝑣) represents the

neighborhood of 𝑣 , including 𝑣 itself; ℎ
𝑣

𝑙
 denotes the hidden

feature of node 𝑣 at layer 𝑙 ; 𝑊 and 𝑏 are learnable weights,
mapping the feature of a node onto adjacent nodes in the graph.

After applying an L-layer GCN over word vectors, we obtain

hidden representations of each token 𝑆
𝐺

= {𝑔
1
, 𝑔

2
, ⋯ , 𝑔

𝑚
}. To

make use of these word representations for relation extraction,
following Zhang et al [5], we first obtain a sentence
representation as follows:

𝐺𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 = 𝑓(𝑆𝐺) (6)

Where 𝑓 is a max pooling function that maps from n output

vectors to the sentence vector, and 𝐺
𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

 is the sentence

representation through the GCN network. Similarly. We can
obtain the entity representations. For the head entity and the tail

entity, their representation 𝐸
ℎ𝑒𝑎𝑑

 、𝐸
𝑡𝑎𝑖𝑙

 can be computed as:

𝐸𝑥 = 𝑓(𝑔𝑥) (7)

Where 𝑥 is "head" or "tail", 𝑔
𝑥
 represents the head entity

representation (tail entity representation) after passing through
the GCN.

We obtain the regional dependency feature representation by
concatenating the sentence and the entity representations, and
feeding them through a Multi-layer Perceptron (MLP):

ℎ𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 = 𝑀𝐿𝑃([𝐺𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ; 𝐸ℎ𝑒𝑎𝑑; 𝐸𝑡𝑎𝑖𝑙]) (8)

C. Semantic Features Extractor

In order to capture the Semantic Features of threat
intelligence text, we use Sentence-BERT [1] to process the input
threat intelligence text to obtain the semantic information of the
text. At the same time, Sentence-BERT is used to alleviating one
of the key obstacles, Out-Of-Vocabulary (OOV) problem, to
processing threat intelligence texts. Sentence-BERT (SBERT),
a modification of the pre-trained BERT network that use siamese

and triplet network structures to deriving semantically
meaningful sentence embeddings that can be compared using
cosine-similarity. Sentence-BERT can be flexibly replaced with
other language model such as RoBERTa [14].

B𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 = SBERT(𝑆) (9)

We obtain the semantic features representation by feeding
B𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 through a Multi-layer Perceptron(MLP):

ℎsemantic = 𝑀𝐿𝑃(B𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒) (10)

D. Relation Classifier

After obtaining dependent feature representation and
semantic feature representation, we obtain the syntactic-
semantic representation used for classification by concatenating
them. This syntactic-semantic representation is then fed into a
linear layer followed by a softmax operation to obtain a
probability distribution over relations.

V. EXPERIMENTS

In this section, we present the experimental results of the
proposed FSSRE. We first describe the experimental setup, the
baselines we compare with, and experimental results. Finally,
we also do experiments on the SemEval-2010 Task 8 dataset.

A. Experimental Setup

The BERT pre-training model we use is 768-dimensional
BERT-Base-Cased. We concatenate together the last 4 hidden
layers and sum them to get the final BERT word vector. We use
the pre-trained 300-dimensional GloVe vectors to initialize
word embeddings, and use embedding size of 30 for all other
embeddings (i.e., POS, NER). We use the dependency parse
trees, POS and NER sequences in our dataset (APTER-SENT).
NER sequences are generated by manual annotation. POS
sequences and the dependency parse trees were generated with
Stanford Core NLP. We use 2 GCN layers and employ the ReLU
function for all nonlinearities in the GCN layers and the standard
max pooling operations in all pooling layers. In GCN model, we
use the hidden layer of 200 as the output feed-forward layer. We
set LSTM hidden size to 200. The APTER-SENT dataset
contains many triples with the relation "Other", resulting in data
imbalance. In order to mitigate the impact of data imbalance on
the experimental results, we use the Undersampling method
dividing the positive instances (the relation is pre-relation) and
negative instances (the triple with the relation "Other") of the
data. The ratio is adjusted to 1:1. We use cross-entropy as the
loss function in Eq. (11). In the experiment, we tried the
following four optimization functions: sgd, adagrad, adam, and
adamax, which were verified by experiments: the adagrad
optimization function was selected in the final model to achieve
the best results.

𝑓𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑗 log �̂�𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1
 (11)

Where N represents the number of samples in a batch, M

represents the number of relationship categories, �̂�
𝑖𝑗

 represents

the predicted value, 𝑦
𝑖𝑗

 represents the true value.

83

B. Results on APTER-SENT dataset

We compared FSSRE with two baselines:

 C-GCN [5]: A new pruning method keeps the nodes
which are 𝐾 hops away from the shortest path on the
basis of the shortest dependent path. This model use
LSTM+GCN network to extract text features for relation
extraction.

 AGGCN [6]: This paper proposes a soft pruning method
to automatically learn and selectively focus on related
substructures for relation extraction.

As shown in Table V, for model C-GCN, We experimented

with 𝐾 ∈ {−1,0,1,2,⋯ ,10} on our dataset (APTER-SENT),
where when the number of pruning 𝐾 = 2, the F1 value is the
largest. For the model AGGCN, We experimented on our dataset
(APTER-SENT). FSSRE surpasses the AGGCN model by
1.585% (F1). Our model is an improvement based on the model
C-GCN and surpasses the C-GCN model by 2.274%. For a fair
comparison with the compared model, we removed the BERT
word embedding from our model, namely FSSRE (-BERT), and
the experimental results are still better than the compared model,
e.g., surpassing the AGGCN model by 1.139% (F1). Although
our model (FSSRE) precision is 0.25% lower than AGGCN, but
recall increased by 3.525% and F1 increased by 1.585%.

TABLE V. RESULTS ON THE APTER-SENT DATASET

Model
Precision

(%)

Recall

(%)
F1 (%)

C-GCN (K=2) (Zhang et al.,

2018)[5]
76.062 81.860 78.855

AGGCN (Guo et al.,

2019)[6]
79.363 79.726 79.544

FSSRE(-BERT) 79.170 82.255 80.683

FSSRE (ours) 79.113 83.251 81.129

We examine the contributions of three components: BERT,
SDP-VP and Sentence-BERT. We removed Sentence-BERT,
SDP-VP and BERT from FSSRE model successively and
cumulatively for ablation experiment. Table VI shows the
results. We can observe that adding either SDP-VP or Sentence-
BERT improves the performance of the model. This suggests
that both layers can assist FSSRE to learn better information
aggregations, where the SDP-VP seems to be playing a more
significant role. And we find that: (1) The Sentence-BERT
contribute F1 with 0.233%. (2) The SDP-VP layers improve F1
with 0.723%. (3) The BERT layers improve F1 with 1.318%.

TABLE VI. AN ABLATION STUDY FOR FSSRE MODEL ON THE APTER-
SENT DATASET

Model Precision (%) Recall (%) F1 (%)

FSSRE(ours) 79.113 83.251 81.129

- Sentence-BERT 78.880 83.018 80.896

- SDP-VP 77.379 83.177 80.173

- BERT 76.062 81.860 78.855

In order to show the effect of pruning number 𝐾 and weight
𝑤 on the experimental results in our pruning method, we
experimented with 𝐾 ∈ {−1,0,1,2,⋯ ,10} on our dataset
(APTER-SENT), where 𝐾 = −1 means input full tree. The

experimental results are shown in Fig. 3. And we experimented
with 𝑤 ∈ {1.0,1.5,2.0,2.5,⋯ ,5.5,6.0} on APTER-SENT, the
experimental results are shown in Fig. 4. It can be seen from Fig.
3 that when the pruning number 𝐾 = 1, the F1 value is the
largest. It can be concluded from Fig. 4 that the F1 value is the
largest when the weight 𝑤 = 2.0.

Fig. 3. Influence of pruning number 𝐾 on experimental results (𝑤 = 2)

Fig. 4. Influence of weight 𝑤 on experiment results (𝐾 = 1)

C. Results on the SemEval-2010 Task 8 dataset

We also conducted experiments on the general domain
public dataset SemEval-2010 Task 8. We use Stanford CoreNLP
to preprocess the SemEval-2010 Task 8 dataset to generate
dependency parse trees, POS and NER annotations. The other
experimental settings are consistent with APTER-SENT. The
experimental results are shown in Table VII. For a fair
comparison with the baseline model, we removed the BERT
word embedding from our model, namely FSSRE (-BERT)
which still surpasses the AGGCN model by 1.5% (F1).
Compared with AGGCN, our model (FSSRE) improves by 2.2%
(F1). Experimental results prove that our method is still effective
on this dataset.

TABLE VII. RESULTS ON THE SEMEVAL-2010 TASK 8 DATASET

Model F1 (%)

PA-LSTM (Zhang et al., 2017)[2] 82.7

C-GCN (Zhang et al., 2018)[5] 84.8

AGGCN (Guo et al., 2019)[6] 85.7

MVC(Veyseh et al, 2020)[15] 86.1

RbSP (Can et al., 2019)[7] 86.7

FSSRE(-BERT) 87.2

FSSRE (ours) 87.9

72.000

74.000

76.000

78.000

80.000

82.000

84.000

86.000

88.000

90.000

-1 0 1 2 3 4 5 6 7 8 9 10

F1

K

APTER-SENT dataset

SemEval-2010 Task 8 dataset

72.000

74.000

76.000

78.000

80.000

82.000

84.000

86.000

88.000

90.000

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

F1

w

APTER-SENT dataset

SemEval-2010 Task 8 dataset

84

For the SemEval-2010 Task 8 dataset, we also examine the
contributions of three components: BERT, SDP-VP and
Sentence-BERT. Similarly, we removed Sentence-BERT, SDP-
VP and BERT from FSSRE model successively and
cumulatively for ablation experiment. Table VIII shows the
results: (1) The Sentence-BERT contribute F1 with 0.221%. (2)
The SDP-VP layers contribute F1 with 0.554%. (3) The BERT
layers contribute F1 with 1.990%.

TABLE VIII. AN ABLATION STUDY FOR FSSRE MODEL ON THE SEMEVAL-
2010 TASK 8 DATASET

Model Precision (%) Recall (%) F1 (%)

FSSRE(ours) 87.957 87.811 87.884

- Sentence-BERT 86.393 88.972 87.663

- SDP-VP 85.475 88.806 87.109

- BERT 83.952 86.318 85.119

In order to show the influence of the pruning number 𝐾 and
weight 𝑤 on the experimental results in our pruning method.
The experimental results are shown in Fig. 3. From the Fig. 3, it
can be concluded that when the pruning number K=1, the F1

value is the largest. And we experimented with 𝑤 ∈
{1.0,1.5,2.0,2.5,⋯ ,5.5,6.0} on the SemEval-2010 Task 8
dataset, the experimental results are shown in Fig. 4, from which
we can draw a conclusion: when the weight 𝑤 = 2.0, the F1
value is the largest.

VI. CONCLUSIONS

In this paper, we propose a new dataset APTER-SENT,
which contains annotations for cyber security-related entities
and intra-sentence relations. We have presented FSSRE, a novel
model of relation extraction between two entities in a sentence
that can simultaneously contain contextual semantic features
and syntactically dependent features. We use GCN to extract
syntactically dependent features and use Sentence-BERT to
extract contextual semantic features, and then fuse the two to
extract relation. In order to obtain the most useful information,
we propose a new pruning method SDP-VP. We evaluated our
model on APTER-SENT and SemEval-2010 task 8 dataset, then
compared the results with very recent state-of-the-art models.
The results demonstrated the advantage and robustness of our
model. We aim to improve this model so that it can extract inter-
sentence relations in future works.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their
valuable comments and suggestions to significantly improve the
quality of this paper. This work is supported by the National Key
Research and Development Program of China (Grant No.
2018YFC0824801).

REFERENCES

[1] Nils Reimers, Iryna Gurevych, “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks,” In: Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 3982–3992. Association for Computational
Linguistics, Hong Kong, China, 2019.

[2] Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, Christopher D.
Manning, “Position-aware Attention and Supervised Data Improve Slot
Filling,” In: Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pp. 35–45. Association for
Computational Linguistics, Copenhagen, Denmark, 2017.

[3] Patrick Verga, Emma Strubell, Andrew McCallum, “Simultaneously Self-
Attending to All Mentions for Full-Abstract Biological Relation
Extraction,” In: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 872–884. Association for
Computational Linguistics, New Orleans, Louisiana, 2018.

[4] Linfeng Song, Yue Zhang, Zhiguo Wang, Daniel Gildea, “N-ary Relation
Extraction using Graph-State LSTM,” In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp.
2226–2235. Association for Computational Linguistics, Brussels,
Belgium, 2018.

[5] Yuhao Zhang, Peng Qi, Christopher D. Manning, “Graph Convolution
over Pruned Dependency Trees Improves Relation Extraction,” In:
Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 2205–2215. Association for Computational
Linguistics, Brussels, Belgium, 2018.

[6] Zhijiang Guo, Yan Zhang, Wei Lu, “Attention Guided Graph
Convolutional Networks for Relation Extraction,” In: Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics,
pp. 241–251. Association for Computational Linguistics, Florence, Italy,
2019.

[7] Duy-Cat Can, Hoang-Quynh Le, Quang-Thuy Ha, Nigel Collier, “A
Richer-but-Smarter Shortest Dependency Path with Attentive
Augmentation for Relation Extraction,” In: Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 2902–
2912. Association for Computational Linguistics, Minneapolis,
Minnesota, 2019.

[8] Aditya Pingle, Aritran Piplai, Sudip Mittal , et al, “RelExt: relation
extraction using deep learning approaches for cybersecurity knowledge
graph improvement,” In: Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining, pp. 879–886. Vancouver, Canada , 2019.

[9] Du M., Jiang J., Jiang Z., Lu Z., Du X. PRTIRG: A Knowledge Graph
for People-Readable Threat Intelligence Recommendation. In: Douligeris
C., Karagiannis D., Apostolou D. (eds) Knowledge Science, Engineering
and Management. KSEM 2019. Lecture Notes in Computer Science, vol
11775. Springer, Cham. 2019.

[10] Xuren Wang, Jie Yang, Qiuyun Wang, Changxin Su. Threat Intelligence
Relationship Extraction Based on Distant Supervision and Reinforcement
Learning. In: The 32nd International Conference on Software Engineering
and Knowledge Engineering, SEKE 2020, KSIR pp. 572-576. Virtual
Conference Center, USA, 2020.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, “BERT:
Pre-training of Deep Bidirectional Transformers for Language
Understanding,” In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 4171–4186. Association for
Computational Linguistics, Minneapolis, Minnesota, 2019.

[12] Bojanowski P , Grave E , Joulin A , et al. “Enriching Word Vectors with
Subword Information,” Transactions of the Association for
Computational Linguistics, 5:135-146, 2017.

[13] Thomas N Kipf and Max Welling, “Semi-supervised Classification with
Graph Convolutional Networks.” In: International Conference on
Learning Representations. Toulon, France, 2017.

[14] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
“RoBERTa: A robustly optimized BERT pretraining approach,” arXiv
preprint arXiv:1907.11692, 2019.

[15] Amir Veyseh, Franck Dernoncourt, My Thai, Dejing Dou, Thien Nguyen.
Multi-View Consistency for Relation Extraction via Mutual Information
and Structure Prediction.In Proc of AAAI. pp.9106-9113 Online, 2020.

85

AAMR: Automated Anomalous Microservice

Ranking in Cloud-Native Environment

Zekun Zhang, Bing Li, Jian Wang, Yongqiang Liu

School of Computer Science,

Wuhan University,

Wuhan, China

e-mail: jianwang@whu.edu.cn

Abstract— Recently, it has become a trend for developers to

build applications using the microservice architecture. The

functionality of each application is divided into multiple

independent microservices, which are interconnected to others.

With the emergence of cloud-native technologies, such as Docker

and Kubernetes, developers can achieve a consistent and scalable

delivery for complex software applications. However, it is

challenging to diagnose performance issues in microservices due

to the complex runtime environments and the numerous metrics.

In this paper, we propose a novel root cause analysis approach

named AAMR. AAMR firstly constructs a service dependency

graph based on real-time metrics. Next, it updates the anomaly

weight of each microservice automatically. Finally, a PageRank-

based random walk is applied for further ranking root causes, i.e.,

ranking potential problematic services. Experiments conducted on

Kubernetes clusters show that the proposed approach achieves a

good analysis result, which outperforms several state-of-the-art

methods.

Keywords—Microservice, Anomaly detection, Root cause

analysis, Cloud-native system

I. INTRODUCTION

Nowadays, microservice architectures (MSA) have become
increasingly popular in large-scale software development
following different computing paradigms like cloud computing,
mobile computing, and edge computing. MSA-based software
applications are decomposed into light-weighted,
interconnected, independently deployed, and scalability-enabled
microservices [1]. With the decomposition, the process of
testing, deploying, and releasing becomes faster. However, as
user requirements change, software code commits, and version
updates become increasingly frequent. Many unexpected issues
may arise, which have a significant impact on service quality
and user experience. It is important for developers to figure out
the root causes of system failures and mitigate them.

Traditionally, system failures are usually pinpointed by
checking the log and event tracking, and then the performance
issues are analyzed based on monitoring tools [2]. With the
increasing scale and complexity of software, service
dependencies also become increasingly complex, making these
tools hard to achieve the needs of troubleshooting and diagnosis.
In general, when an anomaly occurs in microservice systems,
the anomaly detected is merely a symptom, and the root cause
often hides from a larger underlying issue. Particularly, if a
microservice becomes abnormal, e.g., response time delay or

interruption of work, most of the microservices collaborated
with it will be implicated. Therefore, it is necessary to detect
undesirable performance problems and pinpoint the underlying
anomalous microservice (root cause).

At present, the challenges of locating potential root causes
are (i) Large volume of metrics: Communications between
services are plenty and frequent, which cause a large volume of
monitoring metrics (e.g., OpenStack exposes 17,608 metrics
[3]). It is challenging to pinpoint the bottleneck from numerous
and diverse metrics. (ii) Different failure sources: The failures
might be caused by upstream or downstream tasks in the
propagation direction. Besides, the wrong deployments and
insufficient resource utilization can also cause failures. (iii)
Highly dynamic in runtime: Due to the flexibility of
microservices, the IP address of a microservice may
dynamically change in creating a replica. The scalability of
replicas further enlarges the service correlation and the
complexity of locating anomalies.

Many existing works on root cause analysis have been
reported. Most of these works [4-8] localize the root cause by
constructing a service dependency graph (SDG) [10] based on
monitored metrics. With the SDG, the anomalous microservices
are commonly ranked by the similarity between back-end
services and front-end services. However, services that have
little impact on front-end services are missing in the diagnosis.
As for metrics, parts of these works [5, 6] only use application-
level metrics, which is insufficient for analysis. Some works [7,
8] consider multiple metrics while missing the key metrics
ranking. To address these limitations, we propose a novel
approach to detect anomalies and locate the root cause in
microservice systems.

If there is an anomalous node in the service network, the
nodes associated with it are likely affected. Inspired by the
mRank [9] algorithm, we use adjacent nodes to represent the
anomaly score of the target node. As for input, we collect
multiple metrics, including system utilization and application-
level metrics. Our goal is to localize the root cause and highlight
the key anomalous metric, which helps developers diagnose
system failures. We evaluate our approach on Kubernetes
clusters and inject several common failures that occur in cloud-
native systems. The results show that our approach outperforms
several state-of-the-art methods in localizing accuracy. In
summary, our contributions include:

• We extend the mRank algorithm for root cause analysis in
microservices. Our method can automatically update the
anomaly weights in SDG. ___

DOI reference number: 10.18293/SEKE2021-091

86

• We evaluate our method in a cloud-native environment.
The experimental results show that our approach has
higher accuracy and faster than other baseline methods on
the benchmark.

The remainder of this paper is organized as follows. Related
works are summarized in Section II. Section III formulates the
problem. We elaborate on our proposed approach in Section IV.
Experiments and evaluations are included in Section V. The
conclusion and future work are given in Section VI.

II. RELATED WORK

Root cause analysis for distributed systems has been devoted
in the industry and academia for years. Existing approaches in
this area can be approximately classified into four types.

Trace-based methods. Many tools and systems on end-to-
end tracing like Dapper [11], Pinpoint [12], and EagleEye [13]
collect the trace information. These tools can accurately record
the execution path of programs and then locate the failure by
detecting the source code or binary code. However, a large-scale
system is usually developed by many teams with different
languages over the years, and the overhead of modifying its
source code is often too high [14].

Log-based methods. The system log is an important clue for
analysis [2]. By parsing patterns and extracting features from
event logs, Xu et al. [15, 16] built anomaly detection and
identification models from historical data and used these models
to analyze root causes. However, as the application flexibility
increases, these methods are less effective in analyzing the
anomalies in real-time.

Machine learning-based methods. Some researchers use
the metrics collected as training data, instead of logs, to train
models. Brandón et al. [17] constructed fault patterns from
several fault injection methods. The anomalies are classified by
comparing the similarity between the anomaly graph and fault
patterns. Moreover, Du et al. [18] collected real-time
performance data such as CPU, memory, response time, and
package loss to build a model for anomaly detection. GRANO
[19] created an anomaly analysis model and visualized the
analysis result. But these approaches require collecting a large
amount of data for model training, and these models cannot
cover all anomalous patterns.

Graph-based methods. Many graph-based approaches are
also proposed based on real-time performance metrics. For
example, CloudRanger [6] constructed an impact graph based
on the dynamic causal relationship. Microscope [5] added
anomalous nodes into a candidate group and then ranked the
anomalous nodes in the candidate group based on the correlation
coefficients between nodes. But only application-level metrics
are included in their works, which is insufficient for analysis. To
solve such problems, MicroCause [20] used multi-metric and
captured the sequential relationship of time series data, and MS-
Rank [7] updated the weights of different metrics dynamically.
These methods used forward, self, and backward random walk
to heuristically locate root causes. Besides, Weng et al. [21]
found that anomalies occur on both the service and physical
level. MicroRCA [8] correlated anomalous performance
symptoms with relevant resource utilization to represent service
anomalies. However, MicroRCA cannot update the anomaly
detection confidence (i.e., weights in SDG) automatically.

Similar to graph-based approaches, we also use a graph
model and rank the anomalies using a random walk algorithm.
In our approach, we automatically update the anomaly weights
in SDG and output a two-phase ranking list that contains the
anomalous nodes and metrics.

III. PROBLEM DEFINITION

To generalize the problem, we treat the microservice system
as a “black box” that requires no domain knowledge, and the
root cause analysis process is running independently. Many
reasons can cause abnormal events in microservices, such as
sudden increases in throughput, errors in code logic, and
insufficient allocation of host resources. We refer to the process
of diagnosing those anomalous nodes and the metrics
responsible for the abnormal events as root cause analysis. The
identification of anomalous nodes is regarded as root cause
localization. We monitor the metrics change of all microservices
in the system by default. These metrics are collected as a matrix
in time window T. We denote the matrix as M, and Mk stands for
the metrics in column k. Our objective is to identify a set of root
causes Vrc and rank the associated metrics for each root cause.
The notations used in the paper are listed in Table I.

TABLE I. NOTATIONS

Notation Definitions

G(V, E, W) Service dependency graph with weight matrix W

M, Mk Metrics collected in T and metrics in column k

Vi, hi Microservice node i and the host node of Vi

P, pij

[P]ij = pij, transition probability from Vi to Vj

RTi Response time series of Vi in T

∆t, T Time unit for metric collection and the time window

 Vfe, Vrc Front-end service and root cause services

ADs, AS The clustering result of RTi and the anomaly score

IV. APPROACH DESIGN

This section introduces the detail of the proposed root cause
analysis approach.

A. Overall Framework

To address the above issues, we propose a novel root cause
analysis approach named AAMR (short for Automated
Anomalous Microservice Ranking). Fig. 1 shows the overall
framework of AAMR, which consists of five stages:

S1: Collect system and application-level metrics as the input;
S2: Detect anomalies;
S3: Construct the service dependency graph;
S4: Update the anomaly weights in SDG;
S5: Rank the anomalous nodes and metrics.
S1 and S2 run continuously by default. Once anomalies are

detected, the following stages are triggered. We discuss the
components of AAMR in detail in the following parts.

B. Data Collection

Root cause analysis is based on performance metrics
obtained by monitoring applications. Since a single metric is
insufficient to reflect the anomalous degree [7], similar to [4, 5,

87

8], we collect metrics at different levels: (i) System-level
Metrics. These metrics are resource utilization metrics
monitored at the physical server or virtual machine layer (e.g.,
CPU, memory, and network utilization of the host node). (ii)
Application-level Metrics. Application-level metrics include
performance metrics observed at the application layer, such as
response time, workload, and network connection.

Figure 2. An example of AANs and NHANs

C. Anomaly Detection

 Anomaly detection is the beginning of root cause analysis.
We use the BIRCH [22] clustering algorithm for anomaly
detection, which is simple but effective. We continually monitor
the response time of each microservice by default. BIRCH takes
the RTi collected of each microservice in T as input. As a result,
the RTi is divided into n clusters without predefined. It is noticed
that the response time of different microservices varies with
different business processes. For example, if Va handles a single
business process and Vb handles compound business processes.
The response time of Va is shorter than Vb in most cases. So we
cluster RTi for each microservice instead of overall
microservices. If the cluster result ADs of a microservice
exceeds 1, it indicates this node is anomalous. Instead of simply
detecting anomalies [8], we further define the anomaly score (AS)
of this node as ADs-1 to represent the basic anomalous degree
of each microservice.

D. Service Dependency Graph Construction

We construct a service dependency graph based on the
network connection between services to represent the anomaly
propagation. If service Va sends a connection request to service
Vb, we add a directed edge from Va to Vb. As for duplicate edges,
only one connection is counted to avoid redundancy. By

integrating all network connections, we end up with a service
dependency graph G(V, E, W). It is a weighted DAG (Directed
Acyclic Graph) that describes the dependency between services.
Here V, E, W indicate microservice nodes, SDG edges, and the
anomaly weights, respectively. Considering that some
microservice connections may fail due to anomalies at the
current moment, we choose the network connection details from
the moment before time window T for the SDG construction.

E. Automated Anomaly Weight Updating

Once the SDG is constructed, the following processes start
to locate the root cause. According to the mRank algorithm [9],
if there is an anomalous node in the service network, then the
nodes associated with the anomalous node are likely affected.
However, it is also possible that other nodes cause the anomalies
of these nodes. Therefore, to infer the possibility of a node being
abnormal, we need to consider the nodes related to its neighbors.
We define AAN(Vi) as the anomalous-adjacent nodes of node Vi.
Further, we define NHAN(Vi) as the next-hop-anomalous nodes
of node Vi, that is, the anomalous nodes that directly connect to
AAN(Vi). For example, for node A in Fig. 2, AAN(A) consists of
B, D, E, and F. And NHAN(A) includes all the anomalous nodes
that are connected to B, D, E, and F. Then we define two
measurements to quantify the anomaly of a node in the
following.

 Definition 4.1 (iScore). iScore of a microservice Vi in SDG
is defined as:

𝑖𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) =
∑ 𝐴𝑆(𝑉𝑗)𝑁

𝑗=1

𝐷𝑒𝑔𝑟𝑒𝑒(𝑉𝑖)
 , 𝑉𝑗 ∈ 𝐴𝐴𝑁 (𝑉𝑖), (1)

where AS(Vi), Degree(Vi), and N denote the anomaly score of Vi,
the degree of Vi, and the number of AAN(Vi), respectively. As
for NHAN(Vi) we define:

Definition 4.2 (xScore). xScore of a microservice Vi in SDG
is defined as:

𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) = 𝑥(𝑉𝑖) −
∑ 𝐴𝑆(𝑉𝑗)𝑁

𝑗=1

∑ 𝐷𝑒𝑔𝑟𝑒𝑒(𝑉𝑗)𝑁
𝑗=1

, 𝑉𝑗 ∈ 𝑁𝐻𝐴𝑁(𝑉𝑖), (2)

where x denotes the average anomaly score of HNAN(Vi). Here
iScore indicates the anomalous degree of AAN(Vi), and xScore
reflects the normality of NHAN(Vi). We count the redundant
AS(Vi) and Degree(Vi) only once. For example, in Fig. 2,

Figure 1. The overall framework of AAMR

network connection

response time

container cpu

node memory

node I/O

…

S4: Weight Updating (d)S2: Anomaly Detection (b)

Anomaly Scores:

ms1: 0

ms2: 2

ms3: 1

RT of ms1

RT of ms2

RT of ms3

System-level Metrics

ms1 > ms2 (http)

ms2 > ms3 (http)

ms2 > ms4 (tcp)

ms3 > ms5 (http)

Rank1:ms3

CPU

Memory

Thoughput
I/O

Rank2:ms2

Throughput

Memory

I/
CPU

Rank3:ms1

Error Count
CPU

I/O
Throughput

S5: Two-phase Ranking (e)

Network Connections

Anomaly Scores

Weight Update PPR

S1: Metrics collection (a)

S3: SDG Construction (c)

SDGApplication-level Metrics

frontend 10 0.4 0.6 12 0.5 11 9 10.2 14

ms1 1.3 0.4 0.2 0.6 0.1 0.2 0.4 0.1 0.8

ms2 10 0 0 12 0 10 9.5 10 12.5

ms3 0.6 0.7 0.5 1.3 0.3 0.5 0.7 0.3 0.4

ms4 0.5 0 0.1 0.2 0.2 0.5 1 0.1 0.2

ms4 0.2 0.6 1 0.7 1.3 0.2 0.6 1 0.7

ms4 0.1 0.8 1.3 0.7 1.3 0.1 0.8 1 0.6

Anomalies Clustering

iScore

xScore

Weights

System Input

88

iScore(A), x(A), and xScore(A) are 1.5, 1.67, and 1, respectively.
Then we define ixScore(Vi) as:

𝑖𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) = 𝑖𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) + 𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖). (3)

Clearly, ixScore(Vi) is used to combine the multiple pieces
of evidence with node Vi itself and its neighbors. If most
neighbors of node Vi are anomalous and most neighbors of its
AAN(Vi) are normal, node Vi is more likely to be the root cause.

In addition, as presented in [8], the resource utilization of
host node hi and the response time of deployed microservices
(e.g., Vi) on hi are correlated. For simplicity, we calculate the
correlation between the response time metrics of Vfe (|M|fe) and
system utilization metrics of hi (|M|i) as follows:

𝐶𝑜𝑟𝑟(𝑉𝑓𝑒 , ℎ𝑖) =
∑ (|𝑀|𝑓𝑒 − |𝑀|𝑓𝑒)𝑇

𝑡=0 (|𝑀|𝑓𝑒 − |𝑀|𝑖)

√∑ (|𝑀|𝑓𝑒 − |𝑀|𝑓𝑒)
2

𝑇
𝑡=0

√∑ (|𝑀|𝑓𝑒 − |𝑀|𝑖)
2

𝑇
𝑡=0

. (4)

 This correlation function is the Pearson correlation
coefficient between the metrics of Vfe and hi. The value falls in
[0,1]. In normal cases, the correlation between Vfe and hi is closer
to 0. Besides, the system utilization of hi such as CPU, memory,
I/O, and network utilization are ranked as the second phase
ranking. The max value of Corr(Vfe, hi) indicates the key
anomalous metric. Finally, the anomaly weight w of Vi can be
updated as:

𝑤(𝑉𝑖) = 𝑖𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) × max 𝐶𝑜𝑟𝑟(𝑉𝑓𝑒 , ℎ𝑖). (5)

Each time an anomaly is detected based on real-time metrics,
the anomaly weight for each microservice in the SDG is
recalculated for automatically updating. As shown in Fig. 3, the
composition of w is the final anomaly weights W in the SDG.
Then we normalize W for the random walk algorithm.

Figure 3. Example of anomaly weights in the SDG

F. Root Causes Ranking

Some methods [5, 23] rank the anomalies by the nodes or
traces similarity. However, the microservices on root cause
embedded request trace would be treated as anomalous with
these methods. Moreover, the updated ixScore is based on its
neighbors, and it is limited in a small range. To solve the above
problems, we surfer from the whole SDG for further ranking the
anomalies with the Personalized PageRank (PPR) algorithm,
which performs well in the previous works [8, 20]. In the PPR
algorithm, we use Personalized PageRank vector v to represent
the anomaly weight in the SDG. And we define the transition
probability matrix as P. Those nodes with a higher AS would
have a higher access probability.

With PPR, we get the ranking list of root causes as the first
phase ranking. Then we associate the root causes with the
anomalous metrics ranking (the second phase) to get a two-
phase ranking list, which helps developers mitigate the
microservice failures, as shown in Fig. 1(e).

V. EXPERIMENTS

In this section, we conducted experiments to compare our
method with several state-of-the-art techniques. The
experiments were designed to answer three research questions:

• RQ1: Does the proposed method outperform the state-of-
the-art approaches in terms of different anomaly cases?

• RQ2: Is our approach effective enough to locate the root
cause with fast speed?

• RQ3: Can our approach adapt to large-scale systems?

A. Setup

1) Experiment Settings. We evaluated the prototype of

AAMR on two physical servers. Each physical server has an 8-

core 2.40GHz CPU, 16GB of RAM, and Ubuntu 16.04 OS. And

we installed Kubernetes 11.3.1, Istio1 1.4.5, Node Exporter2 1.41,

and Prometheus3 6.3 on these servers for environment

configuration. We used one server to run our system and another

server to simulate the workload.

2) Benchmark. The benchmark of experiments is an online

shop microservice system named Online-boutique4, which

contains 11 microservices. Particularly, since three

microservices are mocked and a microservice is used for load

generation, effects on these microservices are rather low, and

we deployed them on the Kubernetes clusters but excluded

them from the evaluation.

TABLE II. WORKLOAD GENERATION DETAIL

MS cart payment currency checkout catalog frontend recommendation

users 100 100 100 100 100 100 100

rate(/s) 30 10 20 10 100 10 20

3) Data Collection. The workload was generated by Locust5,

a distributed load testing tool that simulates concurrent users in

an application. Considering real user scenarios, we simulate

different request rates for different microservices as shown in

Table II. For system-level metrics, we used Node Exporter to

collect CPU, memory, I/O, and network utilization metrics. And

we used Prometheus, an open-source monitoring tool, to collect

response time metrics. These metrics are collected at five-

second intervals, and T is set as 150 seconds.

4) Fault Injection. To simulate real-world performance

issues, we injected the following three types of failures: (i)

Latency Delay. We used the feature of Istio to add a virtual

service to instances, which has the effect of increasing the

0.43

0
0.4

0.01

0.2

0.21

0.02

0.18

0.5

0

0

0

0.04

0

0

0.9

0

0.09

0

0.64

0

Normal

0

0

Anomalous

———————————————————————

1 https://istio.io
2 https://github.com/prometheus/node_exporter
3 https://prometheus.io
4 https://github.com/GoogleCloudPlatform/microservices-demo
5 https://locust.io

89

https://istio.io/

response time of a specified instance to 300ms. (ii) CPU Hog.

The performance issue may be caused by the insufficient CPU

allocated to the host. We used stress-ng1 to stress the system

CPU to 99% usage. As for container CPU usage, we limited the

utilization of the injected instance by setting Kubernetes

configurations. (iii) Container Pause: The “docker pause”

command triggers a pause operation on the specified container.

The container cannot be shut down directly because of the

protection mechanism of Kubernetes.

5) Evaluation Metrics. To quantify the performance of each

algorithm, we adopt the same evaluation metrics defined in [6]:

• Accuracy at top k (AC@k) indicates the probability that
the top k on the ranking list hits the real root cause for all
given anomaly cases. A higher AC@k score represents the
algorithm identifying the root cause more accurately. In
experiments, we choose k=1 and 3. Let R[i] be the rank of
each cause and Vrc be the set of root causes. AC@k is
defined on a set of anomalies A as:

𝐴𝐶@𝑘 =
1

𝐴
∑

∑ (𝑅[𝑖] ∈ 𝑉𝑟𝑐)𝑖<𝑘

(min(𝑘, |𝑉𝑟𝑐|))
𝑎∈𝐴

 (6)

• Average accuracy at top k (Avg@k) quantifies the overall
performance of an algorithm, where n is the number of
microservices. It is defined as:

𝐴𝑣𝑔@𝑘 =
1

𝐴
∑ ∑ 𝐴𝐶@𝑘

1≤𝑘≤𝑛𝑎∈𝐴

 (7)

6) Baseline Methods. To evaluate the performance of

AAMR, we compared it to the following baseline methods:

• Random Selection (RS): Random selection randomly
selects the possible anomalous microservices among all
nodes without any domain knowledge.

• Microscope: Microscope [5] is a graph-based method to
locate root causes. For Microscope implementation, we
used the 3-sigma principle to detect anomalies and then
added these anomalies into a candidate group. We
collected the response time for calculating the similarity
and ranking the anomalies in the candidate group.

• MicroRCA: MicroRCA [8] extracts an anomalous
subgraph based on the SDG. For root cause localization,
MicroRCA uses a Personalized PageRank algorithm,

which is extended in our approach. To implement
MicroRCA, we clustered the RTi of microservices to
extract the subgraph of anomalous nodes.

B. RQ1: Performance Comparison

We tested the performance of AAMR for different fault
injection cases. Table III shows the performance in terms of
AC@1, AC@3, and Avg@3 for all methods. We can observe that
AAMR outperforms the baseline methods in most cases. In 10-
round experiments, AAMR achieves an accuracy of 91% for
AC@1 and 94% for Avg@3 on average, which outperforms the
state-of-the-art methods. The result shows that AAMR gets
3.2% and 9.0% improvement than MicroRCA and Microscope
for AC@3, respectively. It is also noticed that the experimental
result of the CPU hog case is not as good as other cases because
only computation-sensitive microservices are affected in the
CPU hog case, e.g., the checkout service and recommendation
service in Online-boutique.

TABLE III. PERFORMANCE COMPARISON

Metric RS MicroRCA Microscope AAMR Improvement

to MicroRCA

Improvement

to Microscope

Overall

AC@1 24% 90% 85% 91% +1.1% +7.0%

AC@3 38% 94% 89% 97% +3.2% +9.0%

Avg@3 31% 92% 90% 94% +2.2% +4.4%

Latency Delay

AC@1 22% 92% 87% 94% +2.2% +8.0%

AC@3 43% 95% 90% 97% +2.1% +7.6%

Avg@3 37% 92% 90% 95% +3.3% +5.5%

CPU Hog

AC@1 25% 49% 39% 48% -2.0% +23.1%

AC@3 36% 68% 59% 70% +2.9% +18.6%

Avg@3 35% 69% 61% 70% +1.5% +14.7%

Container Pause

AC@1 33% 92% 90% 95% +3.3% +5.6%

AC@3 37% 100% 98% 100% 0% +2.0%

Avg@3 41% 97% 94% 98% +1.0% +4.3%

In Fig. 4, we compared the performance of each method on
different microservices. The result shows that AAMR
outperforms other methods in most fault injection cases.
MicroRCA performs better in some CPU hog cases because it
calculates the correlation between the anomalous node and the
host node, which is more accurate but has a higher overhead.
However, AAMR performs better on average.

Figure 4. Performances of RS, MicroRCA, Microscope, and AAMR on different microservices

———————————————————————

1 https://kernel.ubuntu.com/cking/stress-ng

90

https://kernel.ubuntu.com/cking/stress-ng

C. RQ2: Localization Time Comparison

Besides accuracy, developers expect to locate anomalies
quickly. We set all methods running continuously, and only the
top 1 ranking hits the root cause three times consecutively is
considered successful. Table IV shows that the execution time
of locating the root cause varies from methods, and AAMR takes
less time to locate the root cause, i.e., 78% and 72% faster than
Microscope and MicroRCA. Here the RS method is excluded in
the comparison because of low accuracy.

TABLE IV. LOCALIZATION TIME COMPARISON

MS cart payment currency checkout catalog frontend reco. Avg

MicroRCA 15.2s 28.1s 33.5s 12.8s 9.4s 9.7s 26.3s 19.3s

MicroScope 6.7s 39.4s 43.5s 8.8s 29.4s 11.9s 32.5s 24.6s

AAMR 3.3s 2.1s 2.0s 7.3s 2.1s 6.4s 14.2s 5.4s

D. RQ3: Scalability Comparison

 Scalability is the main feature of microservice systems. It is
noticed that scaling out service replicas will increase the size of
the SDG and make it more complicated to locate the root cause.
We evaluated the impact of scaling out replicas from 1 to 10 for
each microservice in Online-boutique. Fig. 5 shows that AAMR
consistently maintains an accuracy of 82-91% for AC@1, which
is higher than the state-of-the-art methods.

Figure 5. Comparison of scalability

VI. CONCLUSION AND FUTURE WORK

In this paper, we design a root cause analysis approach
named AAMR. We extend the mRank algorithm to measure the
anomaly weight of a node based on its adjacent nodes. After
detecting the anomalies by a simple but effective clustering
method, we give a two-phase ranking, which helps developers
quickly diagnose the system failures. Experiments show that
AAMR has an accuracy of 91% and an average accuracy of 94%,
which outperforms the state-of-the-art methods.

In the future, we plan to cover more anomaly patterns by
adding more metric types. Besides, we will try injecting more
faults to test the performance of AAMR in case that multiple
anomalies occur at the same time.

VII. ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China (No. 2018YFB1402800) and the National Natural
Science Foundation of China (Nos. 62032016 and 61832014).

REFERENCES

[1] S. Newman, Building Microservices, O’Reilly Media, Inc, 2015.

[2] M. Cinque et al, “Microservices Monitoring with Event Logs and Black
Box Execution Tracing,” IEEE Trans. Serv. Comput., pp. 1–1, 2019.

[3] J. Thalheim et al., “Sieve: actionable insights from monitored metrics in
distributed systems,” in IMC, Las Vegas Nevada, Dec. 2017.

[4] K. Myunghwan, S. Roshan, and S. Sam, “Root Cause Detection in a
Service-Oriented Architecture,” SIGMETRICS, 2013.

[5] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint Performance Issues
with Causal Graphs in Micro-service Environments,” ICSOC, p. 18, 2018.

[6] P. Wang et al., “CloudRanger: Root Cause Identification for Cloud Native
Systems,” in CCGRID, Washington, DC, USA, May 2018, pp. 492–502.

[7] M. Ma and W. Lin, “MS-Rank: Multi-Metric and Self-Adaptive Root
Cause Diagnosis for Microservice Applications,” ICWS, 2019.

[8] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “MicroRCA: Root Cause
Localization of Performance Issues in Microservices,” in NOMS,
Budapest, Hungary, Apr. 2020, pp. 1–9.

[9] Y. Ge, G. Jiang, M. Ding, and H. Xiong, “Ranking Metric Anomaly in
Invariant Networks,” ACM Trans. Knowl. Discov. Data (TKDD), vol. 8,
no. 2, pp. 1–30, Jun. 2014.

[10] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh,
“Using Service Dependency Graph to Analyze and Test Microservices,”
in COMPSAC, Tokyo, Japan, Jul. 2018, pp. 81–86.

[11] B. H. Sigelman et al., “Dapper, a Large-Scale Distributed Systems
Tracing Infrastructure,” GTR, p. 14, 2010.

[12] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
problem determination in large, dynamic Internet services,” in ICDSN,
Washington, DC, USA, 2002, pp. 595–604.

[13] Z. Cai, W. Li, W. Zhu, L. Liu, and B. Yang, “A Real-Time Trace-Level
Root-Cause Diagnosis System in Alibaba Datacenters,” Access, vol. 7, p.
11, 2019.

[14] P. Liu et al., “FluxRank: A Widely-Deployable Framework to
Automatically Localizing Root Cause Machines for Software Service
Failure Mitigation,” in ISSRE, Berlin, Germany, Oct. 2019, pp. 35–46.

[15] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles -
SOSP ’09, Big Sky, Montana, USA, 2009, p. 117.

[16] T. Jia, P. Chen, L. Yang, Y. Li, F. Meng, and J. Xu, “An Approach for
Anomaly Diagnosis Based on Hybrid Graph Model with Logs for
Distributed Services,” in 2017 IEEE International Conference on Web
Services (ICWS), Honolulu, HI, USA, Jun. 2017, pp. 25–32.

[17] Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and V. Muntés-
Mulero, “Graph-based root cause analysis for service-oriented and
microservice architectures,” Journal of Systems and Software (JSS), vol.
159, p. 110432, Jan. 2020.

[18] Q. Du, T. Xie, and Y. He, “Anomaly Detection and Diagnosis for
Container-Based Microservices with Performance Monitoring,” ICA3PP,
p. 13, 2018.

[19] H. Wang et al., “GRANO: interactive graph-based root cause analysis for
cloud-native distributed data platform,” Proc. VLDB Endow., vol. 12, no.
12, pp. 1942–1945, Aug. 2019.

[20] Y. Meng et al., "Localizing Failure Root Causes in a Microservice
through Causality Inference," 2020 IEEE/ACM 28th International
Symposium on Quality of Service (IWQoS), 2020, pp. 1-10.

[21] J. Weng, J. H. Wang, J. Yang, and Y. Yang, “Root Cause Analysis of
Anomalies of Multitier Services in Public Clouds,” TON, p. 14, 2018.

[22] A. Gulenko, F. Schmidt, A. Acker, M. Wallschlager, O. Kao, and F. Liu,
“Detecting Anomalous Behavior of Black-Box Services Modeled with
Distance-Based Online Clustering,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), 2018, pp. 912–915.

[23] L. Meng, F. Ji, Y. Sun, and T. Wang, “Detecting anomalies in
microservices with execution trace comparison,” FGCS, vol. 116, pp.
291–301, Mar. 2021.

91

Unsupervised Anomaly Detection Based on System
Logs

Hao Chen, Ruizhi Xiao and Shuyuan Jin∗
School of Data and Computer Science, Sun Yat-sen University, Guangzhou,China
Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China
{chenh529, xiaorzh3}@mail2.sysu.edu.cn, jinshuyuan@mail.sysu.edu.cn

Abstract—The anomaly detection based on rich and descriptive
system logs is critical to securing information systems. Existing
techniques rarely consider semantic information of logs in the de-
tection, resulting in their incapability to handle unseen log events,
neither further improve their detection rates. This paper proposes
a CNN and LSTM based anomaly detection approach. It utilizes
the meaning of log entries — the semantic information of logs
in the detection, where the relations among short sequences are
automatically learned. The results of comparative experiments
demonstrate the effectiveness of the proposed approach on both
stable(fixed format) and unstable(unseen, unfixed format) logs.

Index Terms—anomaly detection, log analysis, deep learning

I. INTRODUCTION

Large-scale systems, such as cloud-based online service
systems, play a core role in a various critical industries.
However, as the large-scale systems get increasingly larger
and more complex than ever before, they face more security
threats. Small system anomalies could lead to huge losses. In
order to build a secure system, accurate and timely anomaly
detection is needed.

System log is an important resource for troubleshooting
and diagnosis of systems. Since system log contains rich
and descriptive information, such as timestamp, system states
and events, engineers can examine recorded logs for anomaly
detection. Traditionally, engineers search keyword in system
logs to find indicative anomalies, such as ‘error’, ‘fail’, etc.
However, in lager-scale system, a great number of logs are
generated every day. It is impracticable and time-consuming
to diagnose problems through logs manually. Furthermore,
both normal and abnormal logs contain words such as ‘fail’
and ‘error’. Therefore, using only keywords search will cause
many false positives.

In recent years, many automated log-based anomaly detec-
tion approaches have been proposed [1]–[5] , some methods
[2], [3], [6] treat anomaly detection as a binary classification.
In general, these approaches convert logkey(log event indexes)
sequences into log count vectors, and then apply data mining
methods to detect anomalies. With the prevalence of deep
learning, those methods [1], [7] have widely used to detect
anomalies. However, the above methods ignore the semantic
meaning in the log sequences, and not consider the instability
in real-word log. In recent studies, some semantic-based

DOI reference number: 10.18293/SEKE2021-126

methods have been published [8], [8]–[10]. LogAnomaly [9]
proposes the template2vec method, which encodes log tem-
plate to a semantic vector, and utilizes LSTM to train anomaly
detection model. Even though they get good results in certain
scenarios, the performance of their methods could be further
improved.

The log based anomaly detection faces the following chal-
lenges.

1) Semantic meaning of system logs is not utilized well
in the detection. Some existing detection techniques do not
take semantic information into consideration, while others
only calculate semantic information based on all words in
the log entry, ignoring that some words have no semantic
meanings or even reduce real meanings to some extends. For
example, an entry in HDFS logs is “10.250.11.100:50010
Served block blk -3544583377289625738 to /10.250.19.10”.
It contains words ‘served block to’, where the word ‘to’ has
little meanings in fact.

2) Log is unstable in real-word [10], in other words, many
unseen logs are existing in the information systems. In the
process of software developers insert or delete certain words
to update the logging statements, lots of unseen log events
will be generated. Normally the existing techniques only use
known logkeys and ignore unseen log events, where unseen
log events is only treated as new events. Therefore, they fail to
work with unseen log events and cause many false positives.

To address the above challenges, we propose an unsuper-
vised anomaly detection method, which can detect anomalies
automatically and achieve high detection accuracy. The pro-
posed method encodes logs into fixed-length semantic vectors.
Two logs with similar meanings have similar semantic vectors.
Note that a LSTM itself cannot extract enough features to
make a good detection, the proposed method employs a CNN
and LSTM combined model to detect anomalies. It has the
advantages of automatically extracting log short sequence
relationship and log quantitative features simultaneously.

We evaluated our proposed method on stable and unstable
log dataset. The experimental results show that the proposed
approach outperforms the state-of-art techniques with 98% F-
measure and only uses 1% normal datasets for training. We
also evaluated the proposed method on unstable log dataset.
The experimental results demonstrate the effectiveness of the
proposed method.

92

Fig. 1. The overview of the proposed method

The main contributions of this paper are as follows:
• A novel semantic information embedding technique is

proposed to detect anomalies in system logs. The basic
idea of extracting semantic information in the detection
comes from that system administrators usually use key-
word search to find anomalies. Thus, some keywords in
the log entries may represent the meanings of the entire
log entries.

• A CNN and LSTM combined detection approach is
proposed. It has the capabilities of not only learning
semantics from system logs, but also learns the quan-
titative feature from log count vector. It can achieve high
detection rates on both stable and unstable logs.

The rest of this paper is organized as follows: Sec. II
introduces related work. Then, Sec. III describes the proposed
method, and the experiment results are discussed in section
IV. Finally, in Sec. VI we conclude our work.

II. RELATED WORK

Logs contain abundant information, such as computer status,
making them a valuable resource for anomaly detection. A
significant amount of studies have been published in log-based
anomaly detection [4], [5]. The current methods are mainly
divided into four categories: rule-based methods, data mining-
based methods, deep learning-based methods and NLP-based
methods.

Rule-based methods use keywords or regular expressions
to find anomalies in logs. Marcello [5] proposes a rule-based
methods to analyze software failures from logs. Rule-based
methods have high accuracy, but they require domain expertise
and are very time-consuming in production environment. In the
past few years, data mining and deep learning methods have
been proposed.

There are many methods based on data mining [2], [3],
[6]. These methods generally first parse log messages into
logkey. Then they convert the logkey sequences into a log
count vectors, and finally apply data mining methods to
detect anomalies. Data mining methods can be divided into
unsupervised methods and supervised methods. Compared
with unsupervised methods, supervised methods have better
results. However, supervised method requires a large quantity
of labeled data, which need massive manual effort in large
system. Furthermore, in real environments, abnormal data is
rare compared with normal datasets, which make it impractical

for supervised method training. Therefore, our method only
uses normal logs for training.

In recent years, deep learning-based methods have been
widely studied [1], [7]. Deeplog [1] uses normal datasets to
train an anomaly detection model. It uses LSTM to predict
the next logkey and compares it with the actual logekey to
detect anomalies. These methods do not consider the semantic
information in log entries, and they have poor performance
on the unseen log data. In real-word log data, logs are
unstable because the evolution of logging statements and noise
generated during log data pre-processing [10]. For example,
developers often add or delete certain words when they update
a logging statement. Many unseen log events will be produced.
Existing approaches have poor performance on this issue due
to the wrong classification. DeepLog uses a user feedback
mechanism to update anomaly detection models. However, it
needs lots of manual feedback which is infeasible in real-
time systems. We propose a method to handle with unseen
log events without the need of manual feedback.

The latest studies [8]–[10] use NLP techniques to analyze
log-based anomaly detection. LogAnoamly [9] extracts the
semantic information form log, and then use LSTM to train the
anomaly detection model. LogRobust [10] can also represent
log message as semantic vectors, and utilizes the attention-
based Bi-LSTM model to detect anomalies. However, these
methods only use LSTM to train anomaly detection models.
Our method combines CNN and LSTM, which can extract the
richer features.

III. METHOD

A. Overview

The overview of the proposed method is shown in Fig.
1, which mainly includes two parts, log vectorization and
anomaly detection model. First, we leverage Drain [11] to
parse the log into logkey and group logkey by identifiers(such
as block id in HDFS dataset). After that, the proposed method
does not rely on logkey sequences(Lsequences) for anomaly
detection like exiting methods. Instead, it encodes logkey
sequences into semantic vector sequences(Ssemantic) and log
count vector(Vcount). Then, we propose an anomaly detection
model that can detect semantic vector sequences and logkey
count vectors simultaneously. The model has the ability to
extract short sequence relationship among log entries, which
is suitable for analyzing log sequences data. In the end, an

93

alarm message could be sent to system administrator if an
anomaly is detected.

B. Semantic Embedding

Fig. 2. The workflow of semantic vectorization

The proposed method can extract semantic informa-
tion from log entries and encode each logkey into a
fixed-dimension vector. The design of converting logkey
into a semantic vector is based on the assumption that
some keywords in a log entry can represent the meaning
of whole log entry. For example, a log entry “081109
203521 145 INFO dfs.DataNode$DataXceiver: Receiving
block blk -3544583377289625738 src: /10.250.19.102:39325
dest: /10.250.19.102:50010” from HDFS dataset, which con-
tains rich information, such as timestamp, pid, IP address ,
block id etc. The meaning of this log entry can be represented
as two keywords “receiving block”. The manual effort to
find keywords is unpractical in large system, so we need
an automatic method to determine which words in a log
entry are keywords and how to convert the keywords to a
semantic vector. As shown in Fig. 2, the workflow of semantic
embedding consists of three phases, keyword search, word
vectorization and concatenation.

1) Keywords Search: Get keywords from the log template.
First we need pre-processing. In this step we filter non-
words(such as ‘*’ ,‘:’) in the template entry, and split the
template into individual word. Then, we use TF-IDF [12]
to calculate the importance of each word in the template
entry, which can effectively measure importance of words in a
document. For each word in template entry, its TF-IDF weight
is calculated by TF*IDF. The term frequency(TF) represents
the frequency of words in the template entry. For example, the
word ‘block’ appears multiple times in the template, which
means that word ‘block’ has a high TF weight. However,
if the word ‘block’ appears in all template entries, it means
that it can not distinguish between those template entries, so
its weight should be reduced. Therefore, we also calculate
the inverse document frequency(IDF). If the word appears
multiple times in the template entry, it has low IDF weight.
We calculate words importance by the following formula.

TF =
Nword

Nword total
(1)

IDF = log(
Ntemplate

Ntemplate toatl
) (2)

TF − IDF = TF ∗ IDF (3)

Nword represents the number of target word in the log
template. Nword total is the total number of word in a log
template. Ntemplate is total the number of log template con-
taining target words. Ntemplate toatl is the total number of log
template. After getting the TF-IDF weight of each word, we
sort the word importance according to their TF-IDF weight.
And we set the parameter g, which represents the number of
keywords used. As the Fig. 2 shows, g=3 and we can get top
3 keywords in the template.

2) Word Vectorization: In this phase, we convert each word
in log into a semantic vector. We use Glove [13] algorithm
encodes each word to a word semantic vectorwhich map
each word to a fixed dimension vector. Two words that are
semantically close have similar word semantic vector.

3) Concatenation: As we get keywords and word semantic
vector, we can convert log into a semantic vector. As the Fig.
2 shows, we convert the keywords into word vectors according
to the Glove model, and then we concatenate the word vectors
to get semantic vector. The dimension of semantic vector is
w*g, in which w is the word semantic dimension and g is the
number of keywords.

C. Model
Our anomaly detection model combines CNN and LSTM.

CNN is used for capture patterns from semantic vector se-
quences(a list of semantic vector), because our CNN model
has strong ability to extract the short sequence relationships.
As for LSTM [14], it can learn the quantitative patterns from
log count vector. The combination of CNN and LSTM model
can improve the accuracy, which is demonstrated in Sec. VI.

Due to the fact log is a kind of text, it can take a benefit of
natural language processing (NLP). Our CNN model refers to
the sentence classification model in the NLP field [15]. The
CNN neural network contains several layers. The input layer
we use semantic vector sequence as input, which is a m*n
matrix, where m represents the size of the sliding window, and
n represents the dimension of the semantic vector. The next
layer is CNN convolutional layers, which is the core layer of
CNN. It uses three different one-layer filters to convolute over
the input layer. These filters have same width but different
heights. The filters width is the same as the dimension of
semantic vector, so these filters can only move in the height
direction. And then we use 1-max-pooling layers to obtain the
maximum feature from feature vector. In this way, we get the
semantic vector sequence feature.

LSTM is a kind of recurrent neural networks that designed
for sequential data. Thus, we use LSTM neural network to
capture quantitative patterns from log count vector. The LSTM
neural network consists of an input layer, a hidden layer and
an output layer. The LSTM unit to calculates the new state
and output uses the input data and the previous unit state. A
series of LSTM unit form an LSTM neural network.

Finally we concatenate the CNN and LSTM feature map,
and add a softmax function in the output layer. The softmax
function outputs the probability of the next logkey.

94

D. Detection
The proposed method uses the normal execution path to

train the anomaly detection model. If the log execution path
deviates from the model prediction, we can send an alarm
message. The Logkey sequence represents the execution path
of log. Let k=(k1,k2,k3 ... kn) as the whole set of distinct
logkey and there are n different logkeys. The main idea is
using the most recent m logkey to predict the next m+1
logkey, so we treat anomaly detection as a multi-classification
problem, where each logkey is a class. We use a sliding
window of m to split the logkey sequence. A subsequence is
obtained as (kj ,kj+1 ... kj+m−1), The next logkey is kj+m. For
example, there has a logkey sequence (1,2,3,4,5). First we set a
sliding window size as 3. Dividing the log sequence according
to the sliding window, we can get logkey subsequences as
(1,2,3),(2,3,4) and their next logkey is 4,5 respectively.

The proposed method converts logkey sequence to semantic
vector sequence and log count vector. The log count vector is
wildly used in anomaly detection. It represents the number of
occurrences of each logkey in a sliding window. The entire
logkey can be expressed as k=(k1,k2,k3 ... kn) and there have
n distinct logkey. Thus, the log count vector is n dimension.
Log count vector is denoted as (c1,c2 ... cj ... cn), where cj is
the number of j-th logkey in the sliding window. Finally, the
proposed method inputs the semantic vector sequence and log
count vector into the anomaly detection model.

In anomaly detection, taking the most recent logkey as input
value, the anomaly detection model returns a prediction result,
that is, the probability of next logkey. The proposed method
select top g probabilities as candidates. If the next logkey is
not in the top g candidates, it can be considered abnormal.

IV. EXPERIMENT

A. Dataset
1) Stable Dataset: We conduct our experiment on stable

log dataset HDFS [2] and BGL [16]. Tab. I shows summary
of stable log data set.

The HDFS dataset is a benchmark dataset for log anomaly
detection. It is generated by Hadoop-based map-reduce jobs on
Amazons EC2 with more than 200 nodes. In total, 11,197,954
log messages are collected. Since HDFS data set is labeled by
block id, we use block id as identifier to group log entries and
get 558,221 normal sessions and 16,838 abnormal sessions.
The data set is unbalanced, only 2.9% of the datasets are
abnormal sessions. The proposed method only uses less than
1% normal sessions for training, which is a grouping of the
first 100,000 log entries of original dataset.

BGL is a open source dataset used in Blue Gene/L super-
computer system at Lawrence Livermore National Labs. The
BGL dataset contains 4,747,963 logs, in which each log is
labeled as abnormal or normal, and 348,460 logs are labeled
as abnormal. We use a window size of 10 to slice logs into
log sequences, and randomly take 20% for training the others
for testing.

2) Unstable Dataset: In order to evaluate the robustness of
the proposed method. We create unstable log event datasets

TABLE I
SUMMARY OF STABLE LOG DATA SET

dataset Train data Test data
HDFS 4,855 normal 553,366 normal
dataset 0 abnorma 16,838 abnormal
BGL 949,592 normal 3,7983,704 normal

dataset 0 abnormal 348,460 abnormal

Fig. 3. Synthetic log events

based on the BGL dataset, with randomly adding or deleting
words in the BGL dataset as shown in Fig. 3.

B. Parameter Setting

Our proposed method uses the following parameters: w=10,
g=8, k=(2,3,4), t=4, l=2, m=64, n=150. w is the window size,
and g is the number of candidates. If the next logkey is in the
top g of the prediction candidates, it is considered normal. k is
the convolution kernel of CNN. For example, k=(2,3,4) means
that there have three different convolution kernels and their
heights are 2, 3, 4 respectively. n and t denote the number of
feature maps of CNN and the number of keywords to represent
a log entry. l and m is the number of layers and number of
neurons in LSTM. For other methods, we use the parameters
with their best results.

C. Evaluation Metrics

In order to measure the prediction accuracy and recall rate,
we introduce four indicators: true positive (TP) is anomalous
block predicted to be anomalous , false positive (FP) is normal
block predicted to be abnormal, true negative(TN) is normal
block predicted as normal, and false negative (FN) means a
abnormal block predicted to be normal.

The calculation formulas of precision, recall and F-measure
are as follow.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F −measure =
2 ∗ Precision

Precision+Recall
(6)

D. Comparison

We compare the proposed method with four unsupervised
baseline methods PCA [2], LogCluster [6], DeepLog [1] and
LogAnomaly [9].

1) Compared The Proposed Method with Exiting Methods
on stable dataset: Fig. 4 shows the comparison of results

95

Fig. 4. Evaluation on HDFS

Fig. 5. Evaluation on BGL

of the proposed method and the other four baseline methods
on HDFS dataset. Apparently, the proposed method achieves
best result, with F-meaure 0.98. Both PCA and LogCluster
methods achieves good results on precision, with the price
of low recall. The state-of-art method LogAnomaly encodes
log template to semantic vector for anomaly detection, and
has better performance compared with DeepLog. However,
the performance of LogAnomaly could be further improved.
The proposed method gets F-measure 0.98, which higher than
LogAnomaly with F-measure 0.97.

Fig. 5 shows the performance of our method and other four
baseline method on BGL dataset. Among those methods, our
method achieves the best F-measure 0.954, and LogAnomaly
has an F-measure 0.945 as second. The reason why our
method has better performance than LogAnoamly, is as follow.
First, LogAnomaly extracts the semantic vector based on all
words in the log entry, but our method only considers the
keywords in log entry to calculate semantic vector. In addition,
LogAnomaly uses LSTM model to extract patterns from
logkey sequence, which can not extract log short sequence
relationship well. Our proposed method uses a LSTM and
CNN combined model that has ability to extract log short
sequence relationship.

2) Compared The Proposed Method with Exiting Methods
on Unstable Log Events: As the log system evolve and log
parsing error, many new log events will be produced. These

TABLE II
EXPERIMENT RESULTS ON BGL DATASET OF UNSTABLE LOG EVENT

Injection Metric LogCluster DeepLog the proposed
Ratio method

Precision 0.77 0.88 0.94
0% Recall 0.99 0.99 0.97

F-measure 0.86 0.93 0.95
Precision 0.68 0.59 0.94

5% Recall 0.99 0.97 0.97
F-measure 0.80 0.74 0.95
Precision 0.62 0.44 0.94

10% Recall 0.99 0.99 0.96
F-measure 0.76 0.61 0.95
Precision 0.63 0.38 0.94

15% Recall 0.99 0.95 0.96
F-measure 0.77 0.54 0.95
Precision 0.62 0.27 0.94

25% Recall 0.99 0.96 0.94
F-measure 0.76 0.42 0.94

methods such as DeepLog and LogCluster cannot effectively
handle these unseen log events.

Our method is based on the assumption that most of the
new logs are variants of the original logs and will not change
the meaning of the original logs, so the proposed method can
match the new logs with the original logs significantly. First
the proposed method use Drain extract the new log to the
template, then search for keywords in the log based on TF-IDF,
and finally calculate its similarity by the following formula:

similarity =
2 ∗Nsame

Nnew +Nexist
(7)

Nsame means the number of keyword both in new template
and exist template. Nnew means the number of word in new
template and Nexist means the number of word in exist
template. After obtaining the similarity between new template
and exist template, the proposed method can match new
template to an existing one.

We evaluated the proposed method on unstable BGL log
dataset. The experimental results on the unstable log event
datasets are shown in Tab. II. The injection ratio represents the
ratio of the number of randomly adding and deleting logs to the
total number of logs. Note that PCA is omitted from this table
because of its very poor performance. Clearly, our method has
achieved the best performance. As the injection ratio increases,
the performance of our method decreases slowly (F-measure
from 0.95 to 0.94). And the performance of the DeepLog
method has declined a lot (F-measure from 0.93 to 0.42).
LogCluster achieves better F-measure than DeepLog with F-
measure declined from 0.86 to 0.76 as the injection ratio
increases. The reason is that LogCluster and DeepLog treat
unseen log events as a new log events, which may cause false
alarms.

E. Discussion

1):Impact of CNN and LSTM in Proposed Method: Our
CNN and LSTM combined model can extract patterns from
semantic vector sequences and log count vectors simultane-
ously. Tab. III, demonstrates the impact of CNN and LSTM

96

TABLE III
THE IMPACT OF CNN AND LSTM IN PROPOSED METHOD

method Precision Recall F-measure
without (w/o) CNN 0.91 0.99 0.95
without(w/o) LSTM 0.96 0.98 0.97

CNN and LSTM 0.97 0.99 0.98

TABLE IV
THE IMPACT OF KEYWORD NUMBER

Number of keywords Precision Recall F-measure
1 0.963 0.986 0.973
2 0.965 0.991 0.978
3 0.963 0.993 0.978
4 0.966 0.993 0.980
5 0.959 0.993 0.975
6 0.960 0.990 0.975

in proposed method. We calculate the precision, recall and F-
measure of the proposed method without (w/o) LSTM, and the
proposed method without(w/o) CNN. The proposed method
without CNN has a much low F-measure, which demonstrates
semantic vector sequences are important for the anomaly
detection model. The proposed method without LSTM has a
lower F-measure. By combining CNN and LSTM model, the
proposed method obtains best results.

2):Impact of Keyword Numbers in Proposed Method: In Sec.
IV, we describe the semantic vectorization, which can capture
the semantic information from log. We want to verify the
impact of keyword numbers on the accuracy of the proposed
method. We consider 6 distinct numbers from 1 to 6. We
follow the same parameters and utilize the same training and
testing dataset.

Intuitively, we think that the more keywords are used, the
more semantic information will be captured from the log.
However, Tab. III shows as the number of keywords increases.
The value of F-measure first increases and then decreases,
the value of F-measure is the highest when the number of
keywords is 4. This is mainly because as the number of
keywords increases, some unimportant words(such as ‘of’,
‘the’) will also be converted into semantic vectors, which
may add noise to semantic vector and reduce the F-measure.

V. CONCLUSION

To address the challenges caused by unstable system logs,
this paper proposes a CNN and LSTM based anomaly de-
tection approach. The proposed approach can automatically
learn the semantic information among system log sequences
and embed the semantic information in the detection. As a
result, the proposed approach obtains high detection rates on
both stable and unstable logs, in comparison to the existing
methods in the experiments.

However, our present method has a major limitations. The
proposed approach gets better results than exiting methods,
with the price of it takes more time for anomaly detection.
One of the future directions of our work is to reduce the time
for model anomaly detection.

ACKNOWLEDGMENTS

This work is supported by the Key Research and De-
velopment Program for Guangdong Province (Grant No.
2019B010136001) and the National Natural Science Founda-
tion of China (Grant No. 61672494). The corresponding author
is Shuyuan Jin.

REFERENCES

[1] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017, pp. 1285–1298.

[2] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles,
2009, pp. 117–132.

[3] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants
from console logs for system problem detection.” in USENIX Annual
Technical Conference, 2010, pp. 1–14.

[4] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
“Fingerprinting the datacenter: automated classification of performance
crises,” in Proceedings of the 5th European conference on Computer
systems, 2010, pp. 111–124.

[5] M. Cinque, D. Cotroneo, and A. Pecchia, “Event logs for the analysis
of software failures: A rule-based approach,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 806–821, 2012.

[6] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log cluster-
ing based problem identification for online service systems,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 2016, pp. 102–111.

[7] S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data
system logs using convolutional neural network,” in 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl
Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp.
151–158.

[8] S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, and Z. Luan,
“Hitanomaly: Hierarchical transformers for anomaly detection in system
log,” IEEE Transactions on Network and Service Management, vol. 17,
no. 4, pp. 2064–2076, 2020.

[9] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs.” in IJCAI, vol. 7, 2019,
pp. 4739–4745.

[10] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 807–817.

[11] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 2017, pp. 33–40.

[12] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information processing & management, vol. 24, no. 5,
pp. 513–523, 1988.

[13] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[15] Y. Zhang and B. Wallace, “A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1510.03820, 2015.

[16] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07). IEEE, 2007, pp. 575–
584.

97

From Vulnerability Anti-Patterns to Secure Design
Patterns

Alok Chandrakant Ratnaparkhi
Dept. of Computer & Information Science

University of Massachusetts Dartmouth
Dartmouth, MA, U.S.A.
aratnaparkhi@umassd.edu

Onyeka Ezenwoye
Computer and Cyber Sciences

Augusta University
Augusta, GA, USA

oezenwoye@augusta.edu

Yi Liu
Dept. of Computer & Information Science

University of Massachusetts Dartmouth
Dartmouth, MA, U.S.A.

yliu11@umassd.edu

Abstract—A secure design pattern is a well-proven reusable
solution to a recurring security problem that arise in specific
contexts. Using secure design patterns properly can help tackle
software vulnerabilities during software development. However,
the lack of selection guidance of secure patterns makes it
more difficult for developers to use secure design patterns than
conventional design patterns. To address this issue, this paper
presents a methodology of selecting the appropriate secure design
patterns for software vulnerabilities formalized in anti-patterns.
This methodology bridges the gap between the vulnerabilities
and secure design patterns to produce a useful tool for secure
software development.

Index Terms—software vulnerabilities, anti-patterns, secure
design patterns

I. INTRODUCTION

Software vulnerabilities are weaknesses in a system’s ar-
chitecture, design, or code that can cause violations of the
system’s security policy. Its existence is the primary cause of
attacks on software systems [1]. Even though security is a crit-
ical quality attribute, security is often seen as an afterthought.
Many research studies on software vulnerabilities focus on
testing methodologies, such as using machine learning [2] to
identify the common vulnerabilities.

Although software testing is absolutely mandatory and
necessary in locating the vulnerabilities, security needs should
be emphasized throughout the entire software development
process and the vulnerabilities should be identified as early
as possible. After software has been deployed, it becomes
more expensive to remove vulnerabilities by patching. Thus,
software developers should elicit security expectations during
the requirements analysis stage and consider them during the
stages that follow. Citing research by Software Engineering
Institute (SEI), the U.S. Department of Homeland Security
(DHS) states in its Software Assurance information sheet
that “90% of reported security incidents result from exploits
against defects in the design or code of software” [4]. Most
of the vulnerabilities reported in software are the results of
bad decisions made during the implementation stage, however,
many of them actually originate in the previous software
development stage, the design stage. ”Secure by design” is
not a new concept and has been explored by many researchers.

DOI reference number: 10.18293/SEKE2021-179

Deogun et al. [5] introduced the good practices for implement-
ing essential software features using design as the primary
driver for security. Several researchers have published various
secure design patterns to address security vulnerabilities at
the design level [8], [9]. However, very few research studies
have explored the methodology of selecting appropriate secure
design patterns to mitigate security vulnerabilities.

This research proposes a methodology for selecting the
appropriate secure design patterns for addressing software
security vulnerabilities. The rest of the paper is organized as
follows. Section 2 briefly discusses the security vulnerabilities,
secure design patterns, and anti-patterns. Section 3 presents the
methodology of selecting appropriate secure design patterns
for addressing the security vulnerabilities. Section 4 discusses
the related works, and section 5 concludes the work.

II. BACKGROUND

A. Software Vulnerabilities

A software vulnerability is an exploitable flaw in any part
of a system’s artifact or component. Cross-site scripting (XSS)
is an example of a commonly recurring security vulnerability
in web applications. With the advent of scripting languages
such as JavaScript, it has become feasible for attackers to
inject malicious scripts into a victim’s browser. By injecting
the script, attackers can read private data, hijack the user
session, or delete essential data. Fig.1, 2 & 3 show an example
of a DOM-based XSS attack, which is found in OWASP’s
Juice Shop application [13]. The application’s search product
function is intentionally developed in such a way that user
input is not validated or sanitized before execution. An attacker
can enter malicious script (Fig.1) as user input in the search
field. The malicious script entered into the search field (Fig.
2) is then submitted to the server and gets executed on the
client side. In this example, code from a different domain
(soundcloud.com), in the form of a soundtrack, is inserted
instead of legitimate search results (Fig. 3).

B. Anti-Patterns

Anti-patterns are commonly occurring solutions to a prob-
lem that generates negative consequences [3]. Software de-
velopment is a complicated process and many decisions may
cause a project to fail. Formal documentation of the decisions

98

Fig. 1. XSS malicious script

Fig. 2. The malicious script is entered into the search field

or processes that lead to failure can guide future software
engineers on what to avoid. Anti-patterns can help developers
capture the causes of security vulnerabilities in architecture,
design, or source code. Dougherty [8] discussed the need
for anti-patterns to describe bad decisions, causing software
security failures in a formal way. Nafees et al. [12] proposed
the format of documenting vulnerability into anti-patterns.

C. Secure Design Patterns

Secure design patterns help to prevent the occurrence of
vulnerabilities [8]. Secure design patterns address security
issues in the architectural design and implementation phases
of the development life cycle [8]. Many secure patterns have
been proposed and a good number of significant work have
been published [8], [9].

III. METHODOLOGY

The approach we designed for selecting secure design pat-
terns to address security vulnerabilities include 3 steps: 1) for-
malizing a software vulnerability using anti-pattern description
model; 2) selecting the secure design pattern candidates that
can address the vulnerability’s anti-pattern; and 3) testing the
selected secure design pattern(s) for the anti-pattern problem.

A. Formalizing Vulnerability to Anti-Pattern Description

The first step is to identify and formalize the vulnerability
using an anti-pattern description. We adopt the anti-pattern
description model [12] with the following modifications:

• Our model follows conventional anti-pattern description
model to include elements Context, Problem, Solution,
and Consequences. These elements are important to help
the audience understand what the actual vulnerability is.

• Our model introduces the element Root Causes, which is
an essential factor in identifying appropriate solutions.

The elements Problem, Context, Root causes, and Solution
are the major factors to address in mapping the anti-pattern
to appropriate secure design patterns. Our vulnerability anti-
pattern description model has ten elements. The following is an

Fig. 3. The malicious script injects code from another domain when submitted

example of using the anti-pattern description model to specify
Cross-Site Scripting (XSS) anti-pattern.

1) Anti-pattern Name: Cross-Site Scripting Anti-pattern
2) Also Known as: Improper Neutralization of Input During

Web Page Generation, XSS
3) Context: Any web application that uses JavaScript, VB-

Script, ActiveX, CSS, or any other scripting language
4) Anti-pattern problem: Cross-site scripting (XSS) is an

injection attack in which attackers can execute malicious
scripts on the victim’s browser.

5) Root causes:
• Lack of input validation: Vulnerable applications trust
the data from input without validating it. Without vali-
dation, malicious content can be executed in the victim’s
browser.
• Lack of data sanitization: The victim’s browser misin-
terprets external malicious data as a part of the script and
executes it without sanitization.

6) Example: A DOM-based XSS attack example is found
in OWASP’s Juice Shop application [13], as shown in
Section II-A.

7) Consequences: Private data breach; User session hijack-
ing; Identity theft; Phishing Attacks; Web site deface-
ment; Port scan; Keylogging; Trojan Attack

8) Solution:
•Data sanitization: Sanitize the external inputs via en-
coding or escaping. The encoding must be applied to all
potential vectors.
•Input validation: Validate the inputs using blacklist or
whitelist validation (preferable).
•Miscellaneous solutions: Using process level,
technology-specific or configurational solutions, such as
implementing Content Security Policy, using HTTPOnly
cookie flag, SameSite cookie parameter, etc.

9) Attack Types: Reflected/non-persistent XSS attack,
Stored/persistent XSS attack DOM-based XSS attack,
Self-XSS, Mutated XSS, and Universal XSS attack

10) Common Weakness Enumeration: CWE-79 [18]

B. Selecting secure patterns for addressing the anti-pattern

The second step of the approach is to go through the pool
of secure design patterns and select the best-fit candidates
that can address a vulnerability anti-pattern. Two phases,
Collection Phase and Analysis Phase, are involved in this step.

1) Collection Phase: Secure patterns are often published in
conferences, academic literature, books,repositories, and the
internet [8], [9]. The collection phase begins with searching

99

for published secure design patterns. The most crucial problem
in the pattern community is, there is no single comprehensive
secure pattern repository that exists today. This step can be
skipped after a secure pattern repository is developed.

Below are the samples from our collected secure patterns
for addressing the XSS anti-pattern. They are categorized
into architecture, design and implementation levels.
• Architectural level: Application Firewall, Broker, Roles [15]
• Design level: Secure Strategy Factory, Secure Chain
of Responsibility, Intercepting Filter, Controlled Object
Monitor,Secure Logger [8]
• Implementation level: Account lockout, Client Input Filters,
Input Validation [8]

2) Analysis Phase: The analysis phase is to analyze the
collected patterns from the previous phase. The approach is to
find potential solutions by mapping the elements Root causes,
Problem, Context, Solution of a vulnerability anti-pattern de-
scription to the essential elements of secure design patterns.
These elements include Intent, Problem, Context, Forces,
Motivation, Applicability, Solution,Structure/Participants, and
Collaborations. The following questions should be asked and
answered during the mapping process:

1) Question1: Does the Intent element is present or sufficient
in capturing the pattern’s purpose?

2) Question2: Does the Intent of the secure pattern help
address the vulnerability anti-pattern’s root cause(s)?

3) Question3: In case the Intent element is not present
or insufficient in capturing the purpose of the pattern,
Do Problem/Context/Forces/Motivation/Applicability are
relevant to the vulnerability anti-pattern’s root cause(s)?

4) Question4: Does Solution/Structure/Participants and Col-
laborations of the secure pattern help deliver the Solution
of the anti-pattern?

Fig. 4. Flow chart of Mapping Process

The workflow of the mapping process is illustrated in Fig.
4. The analysis begins with scanning of the pattern description
model’s Intent element to understand the purpose of the pattern
and check if it can map to the root cause(s) of the targeted

vulnerability anti-pattern. If the Intent element is absent or
insufficient, explore other elements (such as forces) of the
secure pattern description model. If the secure pattern’s Intent
or solution does not address the root cause, the pattern is ruled
out; otherwise, add the pattern in the selected pattern list.

TABLE I
SECURE DESIGN PATTERNS AND THEIR INTENT

Secure Patterns Intent
Application Fire-
wall [A]

To filter calls and responses to/from enterprise appli-
cations, based on an institution access control policy

Broker pattern [A] Coordinates communication between client and server
via requests and responses

Roles [A] Organizing the users with similar security privileges
Controlled Object
Monitor[D]

To control access to objects by processes

Intercepting Filter
[D]

To provide mechanism for centrally intercepting the
requests and pass them through series of filters before
forwarding them to intended destination

Secure Chain of
Responsibility[D]

To preprocess or postprocess requests/responses using
series of handlers

Secure Logger [D] To facilitate in centralized logging mechanisms
Secure Strategy
Factory [D]

To facilitate easy creation of security objects and use
of interchangeable security strategies

Account Lockout
[I]

Lock the user’s account after limited number of
incorrect password attempts

Client Input Fil-
ters [I]

All incoming requests from the client should be
filtered at the server.

Input Validation
[I]

To validate all external inputs from untrusted data
sources

The mapping process of secure patterns’ Intent to XSS anti-
pattern’s root causes are illustrated in Table 1. It lists the
Intent of each of the collected secure design patterns from
the Collection phase. The intent of each secure pattern is
then compared with the root cause of the XSS anti-pattern
to find a mapping. Table II gives the reasoning of whether a
secure pattern is considered fitting to solve the anti-pattern’s
root causes. Several secure patterns are ruled out at this point.

Same strategy is used in the analysis of other collected
secure patterns. Due to the page limit, the complete analysis
process is not presented. Table III presents the selected secure
patterns to address the XSS anti-pattern without considering
additional requirements on the solution space, such as per-
formance and flexibility. However, additional requirements or
attributes required in the design are not avoidable. They should
be carefully analyzed in this phase.

C. Testing the suggested secure design patterns

The final step is to apply the selected secure design pattern
on the already vulnerable application to test whether the secure
design patterns can tackle the anti-pattern problem. Any false
positives from the final list are eliminated at this stage. We
redesigned the OWASP Juice Shop [13] with Secure Strategy
Factory pattern, Input Validation pattern and Intercepting
Filter pattern at the design and implementation level [17].
Manual security testing was performed on [13]. The malicious
script shown in Fig. 1 was not executed by browser after the
redesign. Results show that the selected secure design patterns
can be adopted to address XSS anti-pattern problem.

100

TABLE II
SECURE PATTERN INTENT VS. ROOT CAUSE(S) OF XSS ANTI-PATTERN

Secure Pattern Addressing root causes of XSS Anti-pattern ?
Application
Firewall[A]

The pattern supports the usage of firewalls to detect
possible attacks by scanning for malicious signatures
using Input Validation. It is most relevant to our anti-
pattern problem.

Broker
pattern[A]

This pattern may help if a separate component is
placed between client and server to validate or sanitize
the external data.

Roles [A] Ruled out: The pattern is related to organizing the
users with same role, which is irrelevant to the anti-
pattern problem.

Controlled Ob-
ject Monitor[D]

Ruled out: This pattern is for controlling objects,
which is irrelevant to our anti-pattern problem

Intercepting
Filter[D]

The pattern may be used to intercept all web requests
and pass them through filters to eliminate malicious
requests using Input Validation.

Secure Chain
of Responsibil-
ity[D]

May be used for preprocessing the web requests using
Input Validation and/or Sanitization.

Secure Logger
[D]

Ruled out: Logging can not help in addressing the
anti-pattern problem

Secure Strategy
Factory [D]

The pattern allows interchangeable strategies and sep-
arate them from client who uses it. May help in
designing Input Validation/ Sanitization strategies

Account Lock-
out [I]

Ruled out: The pattern is related to authentication,
which does not help in Input Validation/Sanitization.

Client Input
Filters [I]

This pattern may help if the good inputs are filtered
from bad inputs using Input Validation

Input
Validation[I]

This pattern is most relevant to our anti-pattern prob-
lem.

TABLE III
MAPPING ANTI-PATTERNS TO SECURE DESIGN PATTERNS

Vulnerability Secure Design Pattern
Anti-Pattern Architectural Design Implementation
XSS Anti-
pattern

Broker;
Application
Firewall

Intercepting Fil-
ter; Secure Strat-
egy Factory; Se-
cure Chain Of
Responsibility;

Input Validation;
Client Input Fil-
ters

IV. DISCUSSION

The research on security pattern is an active and growing
field across the globe [14]. Much research has been done
on the secure design pattern classification, but little research
has considered selecting appropriate secure design patterns
for a given problem. The pattern selection approach proposed
in [15] was generalized and not intended for security goals.
Alvi et al. [1] proposed a security pattern selection technique
based on security objectives and security flaws. However,
security flaws do not formally capture what bad decisions
can cause the vulnerability in the applications.Different from
Alvi’s [1] approach, our methodology is based on the anti-
pattern model, which presents not only the result but the causes
of a vulnerability. Our research does not aim for suggesting
the best pattern for a given context like the other approaches
[1], [16], but on selecting potential pattern(s) for an anti-
pattern problem. In addition to the secure patterns discussed
in this paper, other patterns, such as the process patterns

and technology patterns [3], can also be used to address
vulnerability anti-pattern problems. Our methodology can be
easily extended to involve such patterns in the solution.

V. CONCLUSION

Majority of the security vulnerabilities are in software and
many security weaknesses in software originate in the design
stage during the software development process. It is critical to
tackle the vulnerabilities in the software design. This research
demonstrates a novel approach of selecting appropriate secure
design patterns based on the vulnerability anti-pattern model
to mitigate common software vulnerabilities in the design. The
future work will be focused on two directions. One direction
is to track published up-to-date secure patterns and develop a
web-based repository of these patterns for the researchers and
developers. Another direction is to develop a recommendation
tool that applies this approach to identify the anti-patterns of
the top eight most common web application vulnerabilities
[11] and recommend appropriate secure design patterns.

REFERENCES

[1] A. K. Alvi and M. Zulkernine, ”A Natural Classification Scheme for
Software Security Patterns,” 2011 IEEE Ninth International Conference
on Dependable, Autonomic and Secure Computing, 2011

[2] X. Xie, C. Ren, Y. Fu, J. Xu and J. Guo, ”SQL Injection Detection for
Web Applications Based on Elastic Pooling CNN”, IEEE Access, vol(7)

[3] W. J. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray,
”AntiPatterns: Refactoring Software, Architectures, and Projects in Cri-
sis”, Wiley, 1998.

[4] The U.S. Department of Homeland Security (DHS), ”Software Assur-
ance,” https://www.us-cert.gov/sites/default/files/publications/ infosheet-
SoftwareAssurance.pdf, last accessed: March, 2021.

[5] D. Deogun, D. Johnsson and D. Sawano, ”Secure by Design,” Manning,
2019.

[6] J. Yoder and Jeffrey Barcalow, ”Architectural Patterns for Enabling
Application Security,” Proceedings of Fourth Conference on Patterns
Languages of Programs, 1998.

[7] C.Steel, R. Nagappan and R. Lai, Core Security Patterns: Best Practices
and Strategies for J2EE(TM), Web Services, and Identity Management,
Prentice Hall, 2005.

[8] C. Dougherty, K. Sayre, R. C. Seacord,D. Svoboda and K. Togashi,
Secure Design Pattern, Software Engineering Institution, Carnegie-
Mellon University, 2009.

[9] E. B. Fernandez, Security Patterns in Practice: Designing Secure Archi-
tectures Using Software Patterns, John Wiley & Sons, 2013.

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley, 1995.

[11] O. Ezenwoye, Y. Liu and W. Patten, ”Classifying Common Security
Vulnerabilities by Software Type,” Proceedings of the 32nd International
Conference on Software Engineering and Knowledge Engineering, 2020.

[12] T. Nafees, N. Coull, I. Ferguson, and A. Sampson, ”Vulnerability anti-
patterns: a timeless way to capture poor software practices (vulnerabil-
ities),” In 24th Conference on Pattern Languages of Programs, 2018.

[13] OWASP, ”Juice shop application,” https://github.com/bkimminich/juice-
shop, last accessed: March, 2021.

[14] A. Jafari and A. Rasoolzadegan, Security patterns: A systematic mapping
study, Journal of Computer Languages, vol 56, 2020.

[15] F. Buschmann, R. Meunier,H.Rohnert, P. Sommerlad, M.Stal,”A System
of Patterns: Pattern-Oriented Software Architecture”, Wiley Series in
Sotware Design Patterns, 2002.

[16] N. Nahar and K. Sakib, ”ACDPR: A Recommendation System for
the Creational Design Patterns Using Anti-patterns,” IEEE International
Conference on Software Analysis, Evolution, and Reengineering, 2016.

[17] Alok Ratnaparkhi, ”Repositories”, https://github.com/AlokRatnaparkhi,last
accessed: March, 2021.

[18] Cross-Site Scripting, https://cwe.mitre.org/data/definitions/79.html,last
accessed: May, 2021.

101

Formal Modeling and Verification of ICN-IoT
Middleware Architecture

Hongqin Zhang, Jiaqi Yin, Huibiao Zhu∗, Ningning Chen
Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China

Abstract—As a key technology of the Internet of Things (IoT),
middleware plays an important role in managing virtualized re-
sources and services. However, traditional Internet architectures
cannot ensure adequate data security and efficient data delivery
for IoT middlewares. Therefore, Information-Centric Networking
(ICN), a paradigm of the future network, is introduced into IoT
middlewares. Since ICN-IoT middleware is attracting more and
more attentions, its security is worth discussing.

In this paper, we adopt Communicating Sequential Processes
(CSP) to model the ICN-IoT middleware architecture. Five prop-
erties (deadlock freedom, data availability, action keys leakage,
device faking and user faking) of the model are verified by utiliz-
ing the model checker Process Analysis Toolkit (PAT). According
to the verification results, the model cannot guarantee the security
of data. To solve the problems, we encrypt messages with the
receiver’s public key, and improve the model by introducing
a method similar to the digital signature. The new verification
results demonstrate that our study can assure the security of the
ICN-IoT middleware architecture.

Index Terms—ICN, IoT Middleware, CSP, PAT, Modeling,
Verification

I. INTRODUCTION
The Internet of Things (IoT) [1] is an emerging paradigm,

which connects heterogeneous devices with the Internet. As
a crucial technology of IoT, IoT middleware [2] manages
the integration of devices and provide interested users IoT
services. The effectiveness of information retrieval and secu-
rity of the transmitted information are two key challenges of
IoT middlewares. To cope with the challenges, several IoT
middleware solutions have been proposed [3]–[5]. Park et
al. put forward a cloud-based middleware for self-adaptive
IoT collaboration services, which improved the feasibility and
performance of IoT systems [3]. Sicari et al. proposed a
quality-aware IoT architecture aiming to deal with the data
security and quality [4]. Shi et al. came up with an SDN-
like publish/subscribe middleware architecture [5]. It used
a machine learning method based on the eXtreme Gradient
Boosting (XGBoost) model to improve the efficiency of IoT
systems [5]. However, the above solutions cannot support the
effectiveness and security of IoT systems at the same time.
Hence, a solution called ICN-IoT middleware architecture [6]
was proposed by introducing Information-Centric Networking
(ICN) [7] into IoT. ICN identifies a network object by the name
instead of the IP address, which supports content-oriented
security and effectiveness [8]. Whereas, there are few works
on the verification of the ICN-IoT middleware architecture.
∗Corresponding author: hbzhu@sei.ecnu.edu.cn (H. Zhu).

In this paper, the ICN-IoT middleware architecture is for-
mally modeled using the process algebra CSP [9]. Model
checking tool PAT [10] is adopted to verify its functional and
security properties. The verification results demonstrate that
the architecture may cause action keys leakage and device
faking. Therefore, we improve the original architecture by
encrypting the messages with the receiver’s public key to
protect action keys, and introduce a method similar to digital
signature to avoid device faking. Then we verify the improved
architecture using PAT. The new verification results show that
our work can enhance the security of the architecture.

The rest of this paper is organized as follows. Section II
briefly introduces the ICN-IoT middleware architecture and
CSP. Section III is devoted to the modeling of the ICN-
IoT middleware architecture. In Section IV, we analyse the
verification results and give the improvement that can address
the vulnerabilities of the architecture. Finally, conclusions and
future work are given in Section V.

II. BACKGROUND

In this section, we give a brief description of the ICN-IoT
middleware architecture. After that, we introduce the syntax
of the process algebra CSP.

A. ICN-IoT Middleware Architecture

ICN-IoT middleware architecture is designed to build a uni-
fied IoT platform using ICN. The schema of the architecture
is illustrated in Fig. 1.

Fig. 1: ICN-IoT middleware architecture (simplified from [7])

The architecture involves five entities:
• Device: It collects data from the environment and pub-

lishes them to the aggregator.
• Aggregator: It deals with the data received from devices.

For simplicity, we use Agg to represent the aggregator.

DOI reference number: 10.18293/SEKE2021-003
102

• Local Service Gateway (LSG): It serves to connect the
local IoT system to the global one and handle the local
name assignment.

• ICN-IoT Server: It manages the subscriptions within the
IoT system, provides subscribers services and enforces
data access policies.

• User: The user interacts with the ICN-IoT server to get
the data for subscribed services.

The core functions supported by the architecture are: (i)
device discovery aiming to connect a new device with the
system and establish relationships between nodes; (ii) service
discovery meaning to subscribe to IoT services; (iii) naming
service denoting assigning persistent names to devices; (iv)
content delivery representing forwarding data to subscribers.
The related notations and descriptions are listed in TABLE I.

TABLE I: Notations and descriptions
Notation Description

pukx/prkx
Public/Private key of the device/user/intruder,
x ∈ {d, u, i}

akx
Action key of the device/user/intruder,
x ∈ {d, u, i}

cerx
Certificate of the device’s name/public key,
x ∈ {n, k}

Before publishing data, the device must finish device dis-
covery and naming service phases. Fig. 2 shows the actions.
• a1: A device sends an encrypted discovery request along

with cerk to the aggregator.
• a2: When receiving the request, the aggregator decrypts

it using pukd acquired from cerk, and then verifies the
device’s identity. If the device is legal, the aggregator
sends akd encrypted with prkd to the device.

• a3: The device obtains akd through decryption, and then
requests a name from the aggregator.

• a4: The aggregator sends a name request to the LSG
via a secure channel which can prevent intruders from
obtaining the request.

• a5: The LSG sends cern to the aggregator.
• a6: The aggregator encrypts cern using akd, and then

provides it to the device.
• a7: The device gets cern through decryption, and then

publishes the data encrypted with akd to the aggregator.
In order to improve the security, the device also sends
cern encrypted with prkd to the aggregator.

Before getting data, the user needs to pass user registration
and service discovery phases. The actions are given in Fig. 3.
• b1: A user initiates a registration request to the server.
• b2: When the request is received, the server sends a

temporary password to the user via a secure channel.
• b3: Once receiving the password, the user changes it first,

and then sends an action key request to the server.
• b4: The server assigns aku encrypted by prku to the user.
• b5: The user decrypts the message to get aku using puku,

and then sends the server a service request encrypted with
aku and prku.

Fig. 2: Overview of publishing data

Fig. 3: Overview of getting data

• b6: The server decrypts the service request through two
layers of decryption to verify the user’s identity. If the
user is honest, the server requests the corresponding data
from the LSG. If not, the service request is rejected.

• b7: The LSG requests the data from the aggregator.
• b8: The aggregator provides the data to the LSG.
• b9: The LSG forwards the received data to the server.
• b10: The server sends a message to the user who can

obtain the data by decrypting the message with aku.

B. CSP
Communicating Sequential Processes (CSP) is a process

algebra proposed by C. A. R. Hoare [?]. Here we briefly
introduce part of the CSP syntax used in this paper.

P,Q ::= Skip | a→ P | c?x→ P | c!v → P | P ;Q |
P ||Q | P�Q | P C bBQ | P [[a← b]]

• Skip means that a process terminates successfully.
• a → P indicates that a process performs action a first,

and then acts like process P .
• c?x → P represents that a process receives a message

via channel c and assigns the received message to x, and
then behaves like process P .

• c!v → P denotes that message v is sent through channel
c, and then process P is executed.

• P ;Q is the sequential execution of processes P and Q.
• P ||Q describes that processes P and Q run in parallel.
• P�Q stands for the general choice of processes P and

Q, and the selection is made by the environment.
• P C bBQ shows that if the condition b is true, process

P is executed, otherwise process Q is executed.
• P [[a ← b]] means renaming action. Event a in process

P is replaced by event b.

103

III. MODELING
In this section, we focus on the formal modeling of the

ICN-IoT middleware architecture.

A. Sets, Messages and Channels

Before we investigate the formal model, we introduce some
preparatory notations including sets, messages and channels.

First, we describe the related sets in this model. Entity set
denotes entities including devices, aggregators, LSGs, ICN-
IoT servers and users. Req set involves the request messages of
entities. Key set represents all the keys including public key set
Puk, private key set Prk and symmetric key set Smk. Data
set contains the data published by devices. Con set means
other message contents involving certificate set Cer, feedback
message set Ack and password set Pwd.

Besides, we define the encryption function E and decryption
function D to model the messages:

E(k, m); D(k, E(k, m)); D(k−1, E(k,m))

Function E(k,m) means that we encrypt the message m
using k. D(k,E(k,m)) denotes that we use a symmetric key
k to decrypt the message which is encrypted by k. D(k−1,
E(k,m)) indicates that we use the corresponding decryption
key k−1 to decrypt the message encrypted by k.

Based on the sets and functions defined above, we abstract
and classify the messages as follows:

MSGreq = {msgreq.a.b.req,msgreq.a.b.E(k1, req).cer,

msgreq.a.b.E(k2, E(k3, req)) | a, b ∈ Entity,

k1, k2, k3 ∈ Key, req ∈ Req, cer ∈ Cer}
MSGkey = {msgkey.a.b.E(k1, k2) | a, b ∈ Entity,

k1 ∈ Prk, k2 ∈ Smk}
MSGcon = {msgcon.a.b.p,msgcon.a.b.E(k, c) |

a, b ∈ Entity, p, c ∈ Con, k ∈ Key}
MSGdata = {msgdata.a.b.E(k1, d),

msgdata.a.b.E(k2, c).E(k3, d) | a, b ∈ Entity,

d ∈ Data, k1, k2, k3 ∈ Key, c ∈ Cer}
MSG = MSGreq ∪MSGkey ∪MSGcon ∪MSGdata

MSGreq represents the set of request messages. MSGkey

means the set of messages containing action keys encrypted by
private keys. MSGcon set involves messages containing name
certificates, feedback messages and passwords. MSGdata is
composed of messages containing the data published by de-
vices. MSG consists of all the messages in the model.

Then we give the definitions of communication channels:
• Channels between devices, aggregators, LSGs, ICN-IoT

servers and users described by COM PATH:
ComDA,ComAL,ComSL,ComUS

• Channels for intruders to intercept or fake the transmitted
messages denoted by INTRUDER PATH:

FakeAD,FakeDA,FakeSU, FakeUS

The declaration of channels is shown as follows:

Channel COM PATH, INTRUDER PATH : MSG

Fig. 4: Communication in the Model

B. Overall Modeling

In this section, we give the whole model of the ICN-
IoT middleware architecture. System0 represents the system
consisting only of legal entities. In order to simulate the real
environment, we consider behavior of intruders. System de-
notes the system which introduces the attacks from intruders.

System0 =df Device‖Agg‖LSG‖Server‖User

System =df System0[|INTRUDER PATH|]Intruder

Device, Agg, LSG, Server and User are processes de-
scribing the behavior of devices, aggregators, LSGs, ICN-
IoT servers and users respectively. Besides, Intruder process
represents the actions of intruders such as intercepting and
faking the messages transmitted among legal entities. The
channels between processes are shown in Fig. 4.

C. Device Modeling

We formalize the process Device0 to describe the behavior
of the device without intruders as below:

Device0

=df ComDA!msgreq.D.A.E(prkd, req).cerk →
ComDA?msgkey.A.D.E(prkd, akd)→

ComDA!msgreq.D.A.reqName→
ComDA?msgcon.A.D.E(akd, cern)→
 ComDA!msgdata.D.A.E(prkd, cern).

E(akd, d)→ ComDA?msgcon.A.D.suc
→ Device0

C(D(akd, E(akd, cern)))B (fail→ Device0)

C(D(pukd, E(prkd, akd)))B (fail→ Device0)

reqName denotes the device’s name request. d means the

collected data. First, the device initiates a discovery request
req signed with prkd to the aggregator and then receives an
action key akd. Then, the device sends the request reqName
to the aggregator, and obtains the name certificate cern. After
acquiring akd and cern, the device publishes the data d
encrypted with akd to the aggregator. In order to improve the
confidentiality and integrity of the system, the message for
publishing data also contains cern encrypted with prkd. The
above actions correspond to a1− a7 in Fig. 2.

Now we consider the attacks from intruders. The process
Device with intruders is formalized via renaming as follows:

104

Device =dfDevice0[[

ComDA!{|ComDA|} ← ComDA!{|ComDA|},
ComDA!{|ComDA|} ← FakeDA!{|ComDA|},
ComDA?{|ComDA|} ← ComDA?{|ComDA|},
ComDA?{|ComDA|} ← FakeAD?{|ComDA|}]]

{|ComDA|} means the set of all communication over
the channel ComDA. The first two lines mean that when-
ever Device0 transmits a message on the channel ComDA,
Device can transmit the same message on channel FakeDA
or ComDA. The same is true for the last two lines.

D. Aggregator Modeling
The formal model of the aggregator abbreviated as Agg0

without intruders is shown below:
Agg0

=df ComDA?msgreq.D.A.E(prkd, req).cerk →

ComDA!msgkey.A.D.E(prkd, akd)→
ComDA?msgreq.D.A.reqName→
ComAL!msgreq.A.L.reqDname→
ComAL?msgcon.L.A.cern →
ComDA!msgcon.A.D.E(akd, cern)→
ComDA?msgdata.D.A.E(prkd, cern).E(akd, d)→
 ComDA!msgcon.A.D.suc→

ComAL?msgreq.L.A.reqData→
ComAL!msgdata.A.L.E(akd, d)→ Agg0

C(D(pukd, E(prkd, cern))) ∧D(akd, E(akd, d))B
(fail→ Agg0)

C(D(pukd, E(prkd, req)))B (fail→ Agg0)

When receiving the device’s discovery request, the aggre-

gator verifies its identity using the signature signed by prkd.
If the device is legal, the aggregator allows the device to
join the system and assigns akd to it. Once the collected
data are received from the device, the aggregator first verifies
the authenticity of the device using the name certificate cern
signed by prkd. If the device is honest, the aggregator sends a
positive feedback message suc to the device. The actions on
the channel ComDA mean a1 − a3 and a6 − a7 in Fig. 2.
When receiving the LSG’s data request, the aggregator sends
the requested data to the LSG via the channel ComAL. The
actions on the channel ComAL represent a4 − a5 in Fig. 2
and b7− b8 in Fig. 3.

The model of Agg with intruders can be drawn via renaming
similar to the process Device, we omit the details here.

E. User Modeling
The model of User0 without intruders is given as below:

User0

=df ComUS!msgreq.U.S.reqReg →
ComUS?msgcon.S.U.pwd→ modifyPwd→
ComUS!msgreq.U.S.reqKey →
ComUS?msgkey.S.U.E(prku, aku)→
ComUS!msgreq.U.S.E(aku, E(prku, reqS))→(

ComUS?msgdata.S.U.E(aku, d)→ User0
C(D(aku, E(aku, d)))B (fail→ User0)

)
C(D(puku, E(prku, aku)))B (fail→ User0)

modifyPwd is a function to change the password. First,
the user sends a registration request reqReg to the server and
receives a temporary password. After the user changes the
password using modifyPwd, it sends an action key request
reqKey to the server. When receiving aku, the user sends the
service request reqS encrypted by aku and signed with prku
to subscribe to interested services. Finally, the user obtains the
data for subscribed services through decryption. These actions
denote b1− b5 and b10 in Fig. 3.

The model of User with intruders can also be acquired by
renaming, we leave out the details here.

F. Server Modeling
We give the model of process Server0 to describe the

behavior of the ICN-IoT server without intruders as follows:
Server0

=df ComUS?msgreq.U.S.reqReg →
ComUS!msgcon.S.U.pwd→
ComUS?msgreq.U.S.reqKey →
ComUS!msgkey.S.U.E(prku, aku)→
ComUS?msgreq.U.S.E(aku, E(prku, reqS))→
ComSL!msgreq.S.L.E(aku, req data)→
ComSL?msgdata.L.S.E(aku, d)→(

ComUS!msgdata.S.U.E(aku, d)→ Server0
C(D(aku, E(aku, d)))B (fail→ Server0)

)
C(D(aku, puku, E(aku, E(prku, reqS))))B
(fail→ Server0)

pwd is the temporary password sent to the user. req data is

the data request sent to the LSG. When the server receives the
encrypted service request reqS, it checks if the user is legal
using the signature signed by prku. If the user is legal, the
server allows its service request, and then requests the corre-
sponding data from the LSG. Otherwise, the service request is
rejected by the server. After receiving the message containing
requested data, the server first decrypts the message, and then
sends the data encrypted with aku to the user. The actions on
channel ComUS correspond to b1−b5 and b10 in Fig. 3. The
actions on channel ComSL denote b6 and b9 in Fig. 3. The
model of Server considering intruders can be formalized via
renaming as well, the details are omitted here. Similarly, we
can define the model of process LSG.

G. Intruder Modeling
In order to better simulate the ICN-IoT middleware architec-

ture in the real environment, we model the Intruder process
which can intercept and fake messages among honest entities.

Firstly, we define the set of facts that the intruder can learn.
Fact =df Entity ∪ Puk ∪ Cer ∪ {E(k, d) | k ∈ Key,

d ∈ Data} ∪MSG ∪ {puki, prki}
Through the known facts, the intruder can deduce new facts.

The symbol F 7→ f means that the intruder can deduce a fact
f from the fact set F .

{k, c} 7→ E(k, c)

{k−1, E(k, c)} 7→ c, {sk,E(sk, c)} 7→ c

F 7→ f ∧ F ⊆ F ′ =⇒ F ′ 7→ f

105

The first rule means encryption. The second and third rules
denote the decryption in asymmetric and symmetric encryption
forms respectively. The last rule shows that if the fact f can
be derived from a fact set F , and F is a subset of F ′, then
the intruder can also deduce f from the larger set F ′.

Moreover, we use a function Info(m) to imply the facts
that the intruder can learn through intercepted messages.

Info(msgreq.a.b.E(k1, req).c) =df {a, b, E(k1, req), c}
Info(msgkey.a.b.E(k1, k2)) =df {a, b, E(k1, k2)}
Info(msgcon.a.b.E(k1, con)) =df {a, b, E(k1, con)}
Info(msgdata.a.b.E(k1, d)) =df {a, b, E(k1, d)}

Besides, we introduce a channel DEDUCE for the intruder
to deduce new facts. Its definition is given as below:

Channel DEDUCE : Fact.P (Fact)

Then the process Intruder0 can be modeled as follows:

Intruder0(F)

=df �m∈MSGFake.m→ Intruder0(F ∪ Info(m))

��f∈Fact,f /∈F,F 7→fInit{kl = false} → Deduce.f.F

→

 (
kl = true→ Intruder0(F ∪ {f})

)
C(f == akd) ∨ (f == aku)B(

kl = false→ Intruder0(F ∪ {f})
)

When intercepting a message m, the intruder adds Info(m)
to its knowledge. If the intruder can decrypt m, it can falsify
m and send m to the original receiver. If the receiver does not
recognize that the message has been modified, it means that the
intruder successfully fakes as the original sender. Furthermore,
the intruder can deduce new facts from its knowledge via
the channel DEDUCE and add them to its knowledge. If
the intruder successfully deduces action keys of the entities,
action keys leakage occurs. Now we give the formal model of
Intruder, including its initial knowledge IK.

Intruder =df Intruder0(IK)

where, IK =df Entity ∪ Puk ∪ {prki}

IV. VERIFICATION AND IMPROVEMENT

In this section, we analyse the verification results of the
architecture. Based on the verification results and the analysis
of attacks, we improve the original model and give the new
verification results of the improved model.

A. Properties Verification

System() means the model with intruders. We use Linear
Temporal Logic (LTL) formulas to verify its properties.
Property 1: Deadlock Freedom

#assert System() deadlockfree;

The architecture should not run into a deadlock state. We
verify this property by means of a primitive in PAT.
Property 2: Data Availability

#define Data Availability data success == true;

#assert System() reaches Data Availability;

The property means that a legal user should get the required
data. The assertion is used to check the property.

Property 3: Action Keys Leakage

#define ActionKeys Leak Success kl == true;

#assert System() | = []! ActionKeys Leak Success;

As a vital part of the architecture, the leakage of action
keys will cause a bad effect. We define a Boolean variable
kl to check if the intruder can get the action keys, using the
“always” operator [] in LTL.
Property 4: Device Faking

#define Device Fake Success device fake == true;

#assert System() | = []! Device Fake Success;

The property means that the intruder can pretend to be a
legal device without being recognized. We adopt a Boolean
variable device fake for the verification in PAT.
Property 5: User Faking

#define User Fake Success user fake == true;

#assert System() | = []! User Fake Success;

The architecture should prevent intruders from subscribing
to the services. If the intruder can fake as a legal user to
obtain the data, many security issues may appear. We define
a Boolean variable user fake to verify the property.

Fig. 5: Verification results of the model

B. Verification Results

The verification results are shown in Fig. 5:
• Property 1 is valid. It indicates that the proposed archi-

tecture will never get stuck in a deadlock situation.
• Property 2 is valid, which shows that the data can be

transmitted to the legal user who subscribes to the service.
• Property 3 is invalid. It illustrates that the architecture

can cause action keys leakage.
• Property 4 is invalid. It means that the intruder can

pretend to be a legal device to publish fake data.
• Property 5 is valid, which represents that the intruder

cannot disguise as a legal user successfully.

C. Attack Analysis

In this section, we discuss the reasons for the above insecure
results. When the aggregator assigns akd to a device, it uses
prkd to encrypt the message. Once getting pukd, the intruder
can use it to decrypt the message to acquire akd. Moreover,
the intruder can tamper with the collected data and fake as
the device to publish modified data. An example that leads to
Device Faking and the leakage of akd is given as follows:

106

A1. D −→ I : D.A.E(prkd, req).cerk

A2. I −→ A : D.A.E(prkd, req).cerk

A3. A −→ I : A.D.E(prkd, akd)

A4. I −→ D : A.D.E(prkd, akd)

A5. D −→ I : D.A.reqName

A6. I −→ A : D.A.reqName

A7. A −→ I : A.D.E(akd, cern)

A8. I −→ D : A.D.E(akd, cern)

A9. D −→ I : D.A.E(prkd, cern).E(akd, d)

A10. I −→ A : D.A.E(prkd, cern).E(akd, fakeD)

• A1: The device sends a request to the aggregator.
• A2: The intruder eavesdrops on the request and gets cerk.

Since the certificate is issued by CA and every entity has
its public key, the intruder can decrypt cerk to get pukd
using the public key of CA.

• A3: The aggregator uses prkd to encrypt akd and sends
the message to the device.

• A4: The intruder intercepts the message and decrypts it
to get akd using the acquired pukd. At this point, the
leakage of akd occurs.

• A5 − A8: The device requests for a name and receives
cern, during which the intruder intercepts the activities.

• A9: The device publishes collected data to the aggregator.
• A10: The intruder intercepts the message and gets the

data using akd. Then it disguises as the legal device to
send modified data fakeD along with the original cern
to the aggregator without being recognized.

Similarly, the intruder can get aku using puku. Hence, the
model cannot ensure the security of action keys and data.

D. Improved Model and Verification

In order to address the above issues, we improve the model
by using a method similar to the digital signature. When
distributing the action key, we use the receiver’s public key
to encrypt the message. Furthermore, we introduce a method
similar to digital signature for the aggregator to authenticate
the device. That is to say, the device needs to sign with its
private key when publishing the collected data. Therefore, the
intruder can neither get the action keys nor fake as a legal
device since it does not know prkd or prku. We modify the
message definitions of the model. MSGkey and MSGdata are
replaced by the following MSGkey1 and MSGdata1.

MSGkey1 = {msgkey1.a.b.E(k1, k2) | a, b ∈ Entity,

k1 ∈ Puk, k2 ∈ Smk}
MSGdata1 = {msgdata1.a.b.E(k,E(k1, d).c),

msgdata1.a.b.E(k, d) | a, b ∈ Entity, k ∈ Smk,

k1 ∈ Prk, d ∈ Data, c ∈ Cer}

Then we formalize the improved processes of Device1,
Agg1, LSG1, Server1 and User1 using the new message
definitions. The improved model is given as follows:

System1 =df Device1‖Agg1‖LSG1‖Server1‖User1

System =df System1[|INTRUDER PATH|]Intruder

The verification results are shown in Fig. 6. Property 3 and
Property 4 are valid. It means that Action Keys Leakage
and Device Faking problems are solved now.

Fig. 6: Verification results of the improved model

V. CONCLUSION AND FUTURE WORK

ICN-IoT middleware architecture is constructed by applying
ICN into IoT. In this paper, we formalized the architecture
using CSP. Feeding the model into PAT, we verified the func-
tional and security properties of the model including deadlock
freedom, data availability, action keys leakage, device faking
and user faking. The verification results show that action keys
leakage and device faking may occur once intruders appear.
Thus, we improved the model by encrypting messages with
the receiver’s public key. Moreover, we introduced a method
similar to digital signature to the model. The new verification
results indicate that the improved model can prevent intruders
from invading the architecture. In the future, we will focus on
more security issues of IoT systems. Formal methods will be
used to verify other security properties of IoT systems.
Acknowledgements. This work was partly supported by National
Key Research and Development Program of China (Grant No.
2018YFB2101300), National Natural Science Foundation of China
(Grant No. 61872145, 62032024), Shanghai Collaborative Innovation
Center of Trustworthy Software for Internet of Things (Grant No.
ZF1213).

REFERENCES

[1] Tewari A, Gupta B B. Security, privacy and trust of different layers
in Internet-of-Things (IoTs) framework. Future generation computer
systems, 2020, 108: 909-920.

[2] Ayoade G, El-Ghamry A, Karande V, et al. Secure data processing for
IoT middleware systems. The Journal of Supercomputing, 2019, 75(8):
4684-4709.

[3] Park S, Park S. A Cloud-based Middleware for Self-Adaptive IoT-
Collaboration Services. Sensors, 2019, 19(20): 4559.

[4] Sicari S, Rizzardi A, Miorandi D, et al. A secure and quality-aware
prototypical architecture for the Internet of Things. Information Systems,
2016, 58: 43-55.

[5] Shi Y, Zhang Y, Jacobsen H A, et al. Using machine learning to provide
reliable differentiated services for IoT in SDN-like Publish/Subscribe
middleware. Sensors, 2019, 19(6): 1449.

[6] Sicari S, Rizzardi A, Grieco L A, et al. A secure ICN-IoT architecture.
2017 IEEE international conference on communications workshops (ICC
workshops). IEEE, 2017: 259-264.

[7] Mars D, Gammar S M, Lahmadi A, et al. Using information centric
networking in internet of things: a survey. Wireless Personal Commu-
nications, 2019, 105(1): 87-103.

[8] Arshad S, Azam M A, Rehmani M H, et al. Recent advances in
information-centric networking-based Internet of Things (ICN-IoT).
IEEE Internet of Things Journal, 2018, 6(2): 2128-2158.

[9] Hoare C A R. Communicating sequential processes. Communications
of the ACM, 1978, 21(8): 666-677.

[10] PAT, Pat: Process Analysis Toolkit(2019), http://pat.comp.nus.edu.sg.

107

AnB2Murphi: A Translator for Converting
Alice&Bob Specifications to Murphi

Yongxin Zhao1, Hongjian Jiang1, Jin Lv1, Sijun Tan2, Yongjian Li2∗
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract—As an important part of Internet of Things and
5G network technology, security protocols play a critical role
in ensuring communication security. Formal analysis of security
protocol has been successfully applied to find design flaws in
recent years. Many formal verification tools have been used to
verify the security protocols, including Murphi model checker.
However, security protocols are often expressed in so-called
Alice&Bob notation to describe the messages exchanged between
honest principals. And security protocols defined by the A&B
specifications can not be applied to the formal verification tool di-
rectly. Therefore, there is a gap between Alice&Bob specifications
and the modeling languages of the formal tools. In this paper,
we propose AnB2Murphi, a novel and general translator which
compiles the Alice&Bob specifications of security protocols into
the input language of Murphi to bridge the gap. First, we specify
the Alice&Bob specifications of the security protocol. Then we
take the strand space as the intermediate form between A&B
specifications and Murphi formal model. Finally, we use the
Murphi model checker to verify the generated model of security
protocol. The case studies of security protocols like Needham-
Schroeder public key protocol and 5G EAP-TLS authentication
protocol demonstrate the efficiency of our translator.

Index Terms—Murphi, Alice&Bob specifications, Strand Space,
Security Protocol, Dolev-Yao

I. INTRODUCTION

As an important part of Internet of Things and 5G network
technology, security protocols play a critical role in ensuring
communication security. It simulates the communication pro-
cess of multiple entities in the complex network environment
and ensures the security of communication. When designing
security protocols, such security properties should be ensured,
including authentication, secrecy, et al., even with the presence
of an intruder who can perform malicious actions. However, the
design of these protocols is usually error-prone. This has led
to the development of many verification theories and automatic
verification tools such as ProVerif [1], Maude-NPA [2] and
Murphi [3]. Formal methods have been used to verify security
protocols for many years. However, it’s difficult for people
who have no profound insights into verification theories to
model the security protocols by these protocol analysis tools.

Alice&Bob specifications for security protocols ranges from
informal narrations of message flows to formal assertions
of protocol properties. These message flows provide secure
network communication by using the public key encryption.

*Corresponding author: lyj238@ios.ac.cn
DOI reference number: 10.18293/SEKE2021-028

In text-books, the Alice&Bob (abbr. A&B) notation [4] has
been often used to describe the message exchanged between
honest agents for the successful runs of security protocols. The
following example expresses that Alice intends a message to
Bob:

Alice −→ Bob : message

A&B notation is the most intuitive way to express the corre-
spondence between principals of security protocols. However,
the meaning of a protocol specification considered in a context
only represents the ideal cryptosystem without active saboteurs.
Moreover, A&B notation is too literary to be applied directly in
formal verification or code implementation of security protocols.
The modelling language of a formal verification tool is often
low-level and detailed. Therefore, it is a cumbersome and
time-consuming process to formally model security protocols.

The strand space model is a promising framework developed
by Guttman et al. to prove the correctness of security protocols.
The strand in strand space represents a sequence of events
which denote the execution of legitimate party in a security
protocol or else a sequence of actions by a penetrator. A strand
space is a collection of such strands. The graph structure is
generated by causal interaction between strands. With the help
of mathematically straightforward methods, strand space model
justifies the correctness of security protocols.

In this work, we are motivated to implement a translator
AnB2Murphi, which can convert A&B specifications of security
protocols to Murphi automatically. We take strand space model
as the intermediate form to ensure semantic consistency during
the conversion processes. The existence of the intruders in
the network and the attack ability of the intruders may pose
a challenge to the security of the protocol. Therefore, we
construct the deductive rules for intruders and model intruders’
behavioral capabilities based on Dolev-Yao model [5].

The main contributions of our work lies in the following
aspects:
• Automatic Translator. We implement a translator

AnB2Murphi to bridge the gap between high-level Al-
ice&Bob specifications and low-level detailed Murphi
model checker, which can convert the Alice&Bob spec-
ifications of security protocols to the input language
of Murphi. Finally, AnB2Murphi has been successfully
applied to several security protocols including typically 5G
EAP-TLS authentication protocol. The verification result
finds and reports the counterexample of errors in the design

108

of the 5G authentication protocol, which demonstrates the
efficiency of our translator.

• Intruder Generation. Based on Dolev-Yao model, we
construct the deduction rules for active intruders, which
can help simulate the possible attacks in an insecure
network, such as replay attack, man-in-the-middle attack,
etc. Besides, we have implemented the Diffie-Hellman
exchange in our work which supports the algebraic oper-
ations and digital signatures to verify the TLS protocol.

The remainder of this paper is organized as follows. In
Section II, we review the most related works. In Section III,
we give a brief introduction of A&B specifications, strand
space and Murphi model checker. In Section IV, we present the
architecture of AnB2Murphi and the corresponding relationship
between Alice&Bob specifications and Murphi model, then
we elaborate the implementation details. In Section V, we
report the verification results of the generated Murphi model.
In Section VI, we conclude this paper and discuss the future
work.

II. RELATED WORK

There has been a lot of discussion on formal verification of se-
curity protocols [6]. Besides, the research of A&B notation has
received considerable attention. In [7], the authors generalized
the formal protocol specification languages and gave the formal
semantics for a language based on Alice and Bob including
algebraic reasoning. But it was still not expressive enough.
In [8], the authors proposed a formal protocol specification
language based on the popular Alice&Bob notation, that
was AnBx. This specification language extended the formal
semantics of A&B notation with a novel notation of forwarding
channels. This inspires me to use specific term tmp to represent
the forward specific messages in the implementation process. In
[9], Omar and Sebastian et al. formalized the language SPS and
an automatic translation to robust real-world implementations
and corresponding formal models, whose translation was
effective.

Besides, there is also a lot of research work on converting
A&B specifications to detailed implementation. David Basin
et al. [10], they translated A&B protocol specifications to the
input language of Tamarin. However, Tarmin [11] is a prover
based on theorem proving, which verifies the correctness of
the protocol by using multiset rewriting. It requires the user
to understand the protocol and supply auxiliary lemmas by
heuristics, which is hard even for experts. In contrast, the
authors presented a methodology for using Murphi to analyze
security protocol in [12]. Murphi is a model checker that
supports verification with parameters and has been successfully
applied to several industrial protocols. Based on the previous
research work, we can see that it is significant to automatically
generate the Murphi formal model from the A&B protocol
specifications to verify these security protocols.

III. PRELIMINARIES

In this section, we present A&B specifications of security
protocols and introduce strand space and Murphi.

A. Formal A&B Specifications Syntax
In cryptography, Alice&Bob specifications are commonly

used to describe security protocols. The A&B specifications are
intuitive, succinct and yet expressive. The security protocol is
specified as a list of message exchange steps of the following
form:

A −→ B : message

where the initiator A sends the message to the responder B.
As shown in Fig.1, we take Needham-Schroeder public key

protocol [13] as the example. The A&B specifications consist
of the following parts:
• Types. This part declares all identifiers of the protocol

specification. In the example, we specify agents A and B,
PK is a function that we yield the public key for agents.

• Knowledge. This part specifies the initial knowledge
attached to each regular agent, consisting of a set of
messages. We define the term initKnwRole(Role) to
be the initial knowledge of the agent Role. For instance,
initKnwRole(A) = {A,B,Na} in the example.

• Agents. Agents is the core of A& specifications which
describes the ideal, safe run of the protocol. Every Agent
contains two parts: the agent’s knowledge and the list
of actions to exchange messages. Actions defines the
process of protocol execution.

• Environments. This part defines a protocol instance, in
which we need to give the actual parameters to instantiate
the formal atomic parameters in the Knowledge part. See
that Init[1] is an instance of agent A and the initial
knowledge of A[1] is < Alice, Intruder,Na >.

• Goals. We specify the security properties that the protocol
should achieve. In this work, we mainly focus on goals
such as secrecy and non-injective agreement.

Protocol : Needham-Schroeder public key
Types:(* Global Types*)
Agent: A,B;
Function: PK;

Knowledge:(* Intitial Knowledge*)
A : A,B,Na
B : B,Nb
Agents:
Init(A,B,Na)
[1]+, B, (Na,A,B) : {|Na,A|}PK(B)

[2]− {|Na,Nb|}PK(A)

[3]+, B, () : {|Nb|}PK(B)

Resp(B,Nb)
[1]− : {|Na,A|}PK(B)

[2]+, A, (Nb) : {|Na,Nb|}PK(A)

[3]− : {|Nb|}PK(B)

Environments: (*Protocol instance*)
[agent1]Init[1] :< Alice, Intruder,Na >
[agent2]Resp[1] :< Bob,Nb >

Goals: (*Security Goals*)
[secrecy] Nb secret of < A.B >
[weakB] B non− injectively agrees with A on Na

end

Fig. 1: The Needham-Schroeder Public Key Protocol in A&B
Specifications

109

B. Extended Strand Space

The A&B specifications is a relatively high-level language
without implementation details, which cannot be directly used
for verification with model checking tools. The strand space
[14], which is one of the most successful and widely used
formalizations, serves as the intermediate representation format
of A&B specifications.

The security protocol defines a sequence of message-
exchanged events for each agent. In strand space theory, an
action that agents can take during the execution of security
protocols includes sending a message and receiving a message.
We denote the sending and receiving action by a set of two
signs Sign = {+,−}, respectively. An event is a pair (σ,m),
where σ ∈ Sign and m is a message. For example, a node
in a strand is like (+,m) which means that the owner of the
strand sends a message m.

A strand represents a sequence of events of an agent in a
particular protocol run. A strand element is called a node. If
s is a strand, (s, i) denotes ith node in strand s. In NSPK
protocol, the strand of agent A specifies a sequence of events
which can be seen on the left of Fig.2. In this strand, the agent
A sends a message {|Na,A|}PK(B) to agent B, and expects
to receive back a message of the form {|Na,Nb|}PK(A), after
which it will send {|Nb|}PK(B).

A strand space Σ is a set of strands of the principals
participating in the running protocol. We have drawn the strand
space model of NSPK protocol as shown in Fig. 2, from which
we can see the following relationships:
• The relation n =⇒ n′ represents the inner-strand commu-

nication. It holds between nodes n and n′ if n = (s, i)
and n′ = (s, i+ 1).

• The relation n −→ n′ represents the inter-strand com-
munication. The inter-strand communication (sA, 1) −→
(sB , 1) represents that agent A is sending a message
{|Na,A|}PK(B) out, and agent B will finally receive a
message like this.

Init(A, B, Na) Resp(B, Nb)
(+, { 𝑁𝑎, 𝐴 }>?(B)) (-, { 𝑁𝑎, 𝐴 }>?(A))

(+, { 𝑁𝑎, 𝑁𝑏 }>?(*))(-, { 𝑁𝑎, 𝑁𝑏 }>?(*))

(+, { 𝑁𝑏 }>?(A)) (-, { 𝑁𝑏 }>?(A))

(𝑆*, 1)

(𝑆*, 2)

(𝑆*, 3)

(𝑆B, 1)

(𝑆B, 2)

(𝑆B, 3)

Fig. 2: Regular Strands of NSPK Protocol

Different from the aforementioned A&B specifications, the
strand form can be regarded as a state machine, which is more
close to the implementation level. It includes states and state
transitions with communication actions of messages. It also
demonstrates the asynchronous communication style of the
agents in the network.

C. Murphi

Murphi is an enumerative (explicit state) model checker with
its own input language, which supports the guard −→ action
notation. It can abstract the behavior of a system and simulate
the running rules of this system. Murphi model checker has a
formal verifier that is based on explicit state enumeration, which
has been successfully applied to several industrial protocols.
States encountered in this mode are saved in a global hash
table. States generated that exist in the hash table are not
expanded. The description of Murphi input language consists
of declaration part, transition rule part, initialization part and
property part.

Declaration Part
--Constant declarations
--Type declarations
--Global variable declarations
--Procedure and function declarations

TransitionRulePart
rule "ruleName"

guard part -- conjunction of predicates
==>

action part -- a set of statements
endrule

Initializationpart
startstates

--initial the value of variables
end

Propertypart
invariant "inv"

-- define the security property
end

Fig. 3: The Basic Structure of Murphi Model

The basic structure of a Murphi model can be seen in Fig.3,
among which the most important is the transition rule part
to describe the transition from one state to another state. A
transition rule mainly consists of two parts: guard and action.
Only if the predicates in the guard are satisfiable can the
statements in the action part execute. Given a Murphi model,
the model checker Murphi will enumerate the entire state space
explicitly until no new reachable state can be explored or the
properties fail to hold on to the protocol. Relatively, a set of
all possible reachable states is regarded as the reachable state
set (abbr. RS(P)). Murphi starts from the initial state, which
is prescribed in the initialization part. Then, it will randomly
choose a transition rule whose guard is satisfied and execute
the corresponding action.

IV. TRANSLATE TO MURPHI

In this section, we discuss how to translate A&B specifi-
cations to Murphi. Meanwhile, we take NSPK protocol as a
running example.

A. The Architecture of AnB2Murphi

First of all, The overall architecture of AnB2Murphi shown in
Fig.4 consists of two main phases: Converting and Verification.

110

• Converting. This phase aims at converting high-level
A&B specifications of security protocols into corre-
sponding Murphi model. It includes two important pro-
cesses: parsing and generating. The parsing process uses
Ocaml/menhir tools to analyze and transform the structure
of A&B specifications into the extended strand space. The
generating process is the focus of our framework. After
parsing the A&B specifications, we generate the transition
rule part and the built-in environment into the Murphi
model based on the extended strand space.

• Verification. This phase aims at checking the Murphi
model generated in the converting phase. Murphi compiler
first compiles the model into a C++ file, then uses the
compiling and executing mode of the C++ program to
perform the verification process, which accelerates the
speed of model detection.

C
on

ve
rt

in
g

Generating
Built-in

Environment

Ve
ri

fic
at

io
n

Verification
Result

Protocol
(A&B notation)

Parsing

Extended
Strand Space

Generating
Transition

Rule

Output
(result.m)

Murphi
Compiler

Result.cppResult.out

Fig. 4: The Architecture of AnB2Murphi

We have given the description of A&B specifications and the
structure of Murphi model in Section.III. The corresponding
relationship between the A&B specifications and Murphi
is shown in Fig.5. The rest of this section focuses on the
implementation phases, mainly including Converting and
Verification.

B. Converting

Converting is mainly constructed by Parsing and Generating
processes. The Parsing process transforms the A&B specifica-
tions into the extended strand space to ensure the consistency of
semantic during the conversion processes. And the Generating
process is used to generate transition rule part and built-in
environment in Murphi model.

1) Parsing: The main task of this process is to analyze the
structure of A&B specifications by tool Ocaml/Menhir. This
process is relatively simple and we will not elaborate on it
too much. The result of parsing A&B specifications is given
directly below.

type ProtocolContext = [
|Protocol of type ∗ knowledge ∗ agent ∗ environment ∗ goal
|Null]

A&B Specifications Murphi Model

Agents

Knowledge

Environments

Goals

Transition Rule Part

Initialization Part

Property Part

Declaration Part

Strand Space

Types

Fig. 5: Correspondence of A&B Specifications and Murphi

We translate the security protocol as a type of ProtocolContext,
which includes the following five parts: type, knowledge, agent,
environment and goal. The Protocol is the tag of a protocol.
Therefore, the A&B specifications of a protocol will be parsed
into Protocol(t, k, a, e, g), in which the element in the quintuple
are corresponding to the five parts of the A&B specifications,
respectively.

In addition, the possible messages which can be exchanged
between agents in security protocols are defined below:
type message = [
| Nonce of identifier (*Nonce*)
| Agent of roleName (*Agent Identifier*)
| Const of identisirt (*Const Number*)
| Pk of roleName (*Public Key*)
| Sk of roleName (*Secret Key*)
| K of roleName * roleName (*Symmetry Key*)
| Mod of message * message (*Mod*)
| Exp of message * message (*Exp*)
| Tmp of messageName (*Temporary*)
| Sign of message * message (*Signature*)
| Aenc of message * message (*Aencrypt*)
| Senc of message * message (*Sencrypt*)
| Concat of message list (*Concatenation*)

]

The message consists of atomic messages and compound
messages. Atomic messages are non-divisible messages, such
as Nonce,Agent,Pk and so on. Compound messages are
composed of multiple atomic messages, which are encrypted
symmetrically or asymmetrically, or combined by connections.

According to the Agents part of in A&B specifications, we
construct the extend strand space model of the protocol by
using the following methods.

(1) genStrand(agent, rolei): This method converts the
Agents in A&B specifications into a node of strand rolei.

genStrand(Agent(roleName,message list, action list), rolei)
= action list if roleName = rolei.

In the A&B specifications, Agents is expressed into the
form of Agent(roleName,message list, action list). If rolei is
the name of the agent, then the result of method genStrand is
the corresponding action list.

(2) genAction(action, sign): This method converts the action
of some node in strand space to the send action and the receive
action.

genAction(action, sign) =

 (+,M) if sign = +
(−,M) if sign = −
ε otherwise

The action has been shown in below, and consists of the
Send and Receive parts. If the sign is +, the result returns
the sending action; if sign is −, then the result returns the
receiving action; otherwise the result is ε.

type action = [
|Send of int ∗ sign ∗ roleName ∗message list ∗message
|Receive of int ∗ sign ∗message
|Null]

In Needham-Schroeder public key protocol, there are two
agents A and B. The strand space and actions between two
agents can be constructed by the above two methods.

2) Generating: This process generates the input language of
Murphi model based on the extended strand space constructed
at last process. Generating process consists of two sub-
processes: Generating Transition Rule and Generating Built-In
Environment.

As for Generating Transition Rule process, we first generate
the transition rules for regular principals. The strand of agents
can be regarded as a state machine. Each node in the strand
can be treated as a state of the state machine. When an agent
receives a message or sends a message, its state will be changed,
i.e., a state transition has occurred. For each regular principal,
we use a variable commit to record whether it has completed
the execution of the protocol. In Murphi, rule expresses the
state transition. After generating the strand of each agent from
agents, we use the method trans() to convert the ith node of
strand rolei into Murphi rule. The behavior of regular principal
is relatively simple. It only consists two parts: construct the
sent message and deconstruct the received message. The
function genSendAct() and genRecvAct() generate the action
of corresponding rule for sending or receiving message.

trans(act,M, i, rolei) =
let atoms = getAtoms(M) in
match act with
| (+,M) −→ genRuleName(rolei, i);

genSendGuard(rolei, i);
genSendAct(rolei, i, atoms)

| (−,M) −→ genRuleName(rolei, i);
genRecvGuard(rolei, i);
genRecvAct(rolei, i, atoms)

Then we generate deduction rules for active intruders. Based
on the Dolev-Yao model, we describe the behavior of intruders:
• Eavesdrop and intercept any message in the network;
• Participate in the operation of the agreement as a legal

principal or counterfeit legal principal;
• Deduce new knowledge from existing knowledge set;
• Forge messages according to the knowledge he obtained

and send them to the regular principal who may accept.

The intruder in the Murphi model can deduce the message
according to the deduction rule listed in Table.I. Besides,
it keeps the Knws which stores the initial and deductive
knowledge the intruder holds. As for the example, the public
keys of agents A and B are in the intruder’s knowledge set
initially. After intercepting a message from the network, the
intruder makes the deduction of the message based on the
knowledge, and adds the knowledge into his knowledge set
Knws.

TABLE I: Deduction Rules

Decryption (decrypt)
{|m|}K ∈ Knws ∧ inv(K) ∈ Knws

{|m|} ∈ Knws

Encryption (encrypt)
{|m|} ∈ Knws ∧K ∈ Knws

{|m|}K ∈ Knws

Separation (deconcat)
{|m1;m2|} ∈ Knws

{|m1|} ∈ Knws ∧ {|m2|} ∈ Knws

Concatenation (enconcat)
{|m1|} ∈ Knws ∧ {|m2|} ∈ Knws

{|m1;m2|} ∈ Knws

Signature (signature) m ∈ Knws ∧ SK ∈ Knws
{|m|}signSK ∈ Knws

Verify (verify)
{|m|}signSK ∈ Knws

m ∈ Knws
Hash (hash) m ∈ Knws

hash(m) ∈ Knws

After generating transition rules which include the transition
rules for regular principals and the potential intruders, the built-
in environment is then generated to define the procedures and
functions in Murphi. It mainly includes the construction proce-
dure and destruction procedure of the exchanged messages.

(1) Extracting the exchanged messages from actions and
generating the patlist consisting of the message patterns and
its sub-patterns:

patList = rmEquiv(delDup(getPatList(actions))

There are three methods involved in the derivation of this
process in Ocaml. Method getPatList(actions) extracts the
messages and their sub-messages from actions and returns
a pattern list. Then method delDup(list) is used to delete the
duplicate items in the list and return without replicas. Finally,
method rmEquiv(list) helps remove the equivalence class in
the list. For example, Agent(A) and Agent(B) belong to the
same class and just keep one.

(2) Generating the construction procedures of messages.
Based on the generated pattern list, we generate the correspond-
ing built-in construction and destruction procedure for each
pattern. In Murphi, we use a global array msgs to store message
generated during the protocol execution. During construction
process, we first find out whether the message exists in the
msgs. If it exists, we directly returns its index; if not, we
construct the message and add the index of message into
msgs.

C. Verification

In Converting phase, we generate the Murphi model of the
security protocol illustrated in A&B specifications, and we

112

output the results to the file result.m.
Murphi model checker will first check whether there exists

some errors in the Murphi model. If not, Murphi compiler
convert the result.m into a C++ program result.cpp. Then,
we compile the C++ program using GNU compiler g++, which
gives us the resulting executable, a verifier that computes
reachability for the specific problem. Finally, execute the
program result.out to verify the security protocols, and the
result of the verification will be output to the terminal.

V. EVALUATION

We have implemented several security protocols in A&B
specifications which come from the security protocols repos-
itory [15]. Significantly, we model the 5G EAP-TLS Au-
thentication protocol which plays a critical role of the first
safeguard in ensuring the communication security. There are up
to 17 messages-exchanged in the authentication protocol which
involves sophisticated cryptography terms. When verifying this
complicated model, Murphi needs to explore the whole state
space. Basing on cmurphi5.4.9.1 as the verification engine, we
find that the weak-agreement and secrecy prekey are violated.
Murphi generates counterexamples for these two properties.

The experiments are carried out on a PC equipped with the
macOS Catalina and Intel Core i7 with 2.6Ghz CPU and 16GB
RAM. The verification result of these security protocols are
shown in Table.II. The source code of translator AnB2Murphi
can be accessed at [16].

TABLE II: VERIFICATION RESULTS

Protocols Unsatisfied Time (sec.) Memory

NeedhamSchroder
secrecy(Nb) 0.10

56
weakB 0.15

Lowe′s NeedhamSchroder no error 0.10 58

Diffie–Hellman secrecy(Na) 0.10 64

Otway–Rees no error 2.13 117

CCITT X.509(1)

secrecy(Ya) 0.21
53weakB 0.84

weakA 0.84

CCITT X.509(1c) no error 0.45 69

Woo and Lam Pi secrecy(Nb) 0.10 69

Andrew Secure RPC secrecy(Kab) 2.77 54

EAPTLS authentication
secrecy(prekey) 1.21

1700
weakC 151.55

VI. CONCLUSION AND FUTURE WORK

In this paper, we have implemented an automatic translator
AnB2Murphi to bridge the gap between high-level Alice&Bob
specifications and low-level Murphi model checker, which
can help verify the security protocol described in the A&B
specifications. We design a scheme to translate the actions of
regular principals into strand space, which can well describe
the communication relationship between principals and the
state transition of themselves. Based on Dolev-Yao model,

we construct the deduction rules for intruders, which can
help simulate the possible attacks in insecure networks. The
translator is implemented in Ocaml/Menhir, which is a simple
but powerful parser generator for the Ocaml programming
language. AnB2Murphi has been successfully applied to several
typical security protocols. The results of verification are
consistent with those already proved.

For the weakness of the current work, we would like to
point out that the A&B specifications of a protocol are intuitive.
Because Murphi is a model checker, it is good at examine
multiple runs of protocol, and give us the counterexample trace
when the protocol does not satisfy the specification. But it
bothers us to specify the actual parameters in the environment
of A&B specifications. We will fix this question by integrating
machine learning into the work.

ACKNOWLEDGEMENTS

This work is supported by National Key Research and Devel-
opment Program (2020AAA0107800), Shanghai Science and
Technology Commission Program under Grant 20511106002,
Grant 61672503 from National Science Foundation in China.

REFERENCES

[1] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “Proverif 2.00:
automatic cryptographic protocol verifier, user manual and tutorial,”
Version from, pp. 05–16, 2018.

[2] S. Escobar, C. Meadows, and J. Meseguer, “Maude-npa: Cryptographic
protocol analysis modulo equational properties,” in Foundations of
Security Analysis and Design V. Springer, 2009, pp. 1–50.

[3] D. L. Dill, “The mur φ verification system,” in International Conference
on Computer Aided Verification. Springer, 1996, pp. 390–393.

[4] C. Caleiro, L. Vigano, and D. Basin, “On the semantics of alice&bob
specifications of security protocols,” Theoretical Computer Science, vol.
367, no. 1-2, pp. 88–122, 2006.

[5] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, pp. 198–208, 1983.

[6] V. Cortier and S. Kremer, Formal Models and Techniques for Analyzing
Security Protocols. IOS Press, 2011, vol. 5.

[7] S. Mödersheim, “Algebraic properties in alice and bob notation,” in 2009
International Conference on Availability, Reliability and Security. IEEE,
2009, pp. 433–440.

[8] M. Bugliesi, S. Calzavara, S. Mödersheim, and P. Modesti, “Security
protocol specification and verification with anbx,” Journal of Information
Security and Applications, vol. 30, pp. 46–63, 2016.

[9] O. Almousa, S. Mödersheim, and L. Viganò, “Alice and bob: Reconciling
formal models and implementation,” in Programming Languages with
Applications to Biology and Security. Springer, 2015, pp. 66–85.

[10] M. Keller and P. D. D. Basin, “Converting alice&bob protocol specifi-
cations to tamarin,” Ph.D. dissertation, Bachelor’s thesis, ETH Zurich,
2014. Available at http://www. infsec. ethz . . . , 2014.

[11] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover for
the symbolic analysis of security protocols,” in International Conference
on Computer Aided Verification. Springer, 2013, pp. 696–701.

[12] J. C. Mitchell, M. Mitchell, and U. Stern, “Automated analysis of
cryptographic protocols using mur/spl phi,” in Proceedings. 1997 IEEE
Symposium on Security and Privacy (Cat. No. 97CB36097). IEEE,
1997, pp. 141–151.

[13] R. M. Needham and M. D. Schroeder, “Using encryption for authenti-
cation in large networks of computers,” Communications of the ACM,
vol. 21, no. 12, pp. 993–999, 1978.

[14] F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman, “Strand spaces: Proving
security protocols correct,” Journal of computer security, vol. 7, no. 2/3,
pp. 191–230, 1999.

[15] security protocols open repository, http://www.lsv.ens-cachan.fr/spore.
[16] AnB2Murphi, https://github.com/AnB2Murphi/AnB2Murphi.

113

Formal verification of multitask hybrid systems by the OTS/CafeOBJ method

Masaki Nakamura 1 Kazutoshi Sakakibara 1 Yuki Okura 1 Kazuhiro Ogata 2

1Toyama Prefectural University,
Toyama, Japan

2Japan Advanced Institute of Science and Technology,
Ishikawa, Japan

Abstract- Hybrid systems combine both continuous and dis-
crete behaviors. Formal descriptions of hybrid systems may
help us to verify desired properties of a given system formally
with computer supports. In this paper, we propose a way to de-
scribe a formal specification of a given multitask hybrid system
as an observational transition system in CafeOBJ algebraic
specification language and verify it by the proof score method
based on equational reasoning implemented in CafeOBJ inter-
preter.

Keywords-component; hybrid system; algebraic specifica-
tion; observational transition system; proof score method

I. Introduction

Formal methods are mathematically based techniques for
specification and verification of software and hardware sys-
tems. Formal specification languages play important role
in formal methods. CafeOBJ is an executable formal spec-
ification language, which provides specification execution
based on a rewrite theory. The OTS/CafeOBJ method is a
formal method in which a system is modeled as an observa-
tional transition system (OTS), its specification is described
in CafeOBJ, and properties are verified formally by using
specification execution function implemented in CafeOBJ,
called the proof score method [1, 2]. In our previous work
[3], we have proposed a way to describe and verify mul-
titasking real-time systems in the OTS/CafeOBJ method.
A real-time system is regarded as a hybrid system where
only time is its continuous data. In the literature [4], a way
to describe and verify formal specifications of hybrid sys-
tems based on CafeOBJ has been proposed, however, only a
single-task system is considered. In this study, we propose a
way to describe a formal specification of a multitask hybrid
system as an observational transition system in CafeOBJ
algebraic specification language by extending the existing
results, and verify it by the proof score method based on
equational reasoning implemented in CafeOBJ interpreter.

This work was supported by JSPS KAKENHI Grant Number
JP19K11842.

DOI reference number: 10.18293/SEKE2021-029

II. Preliminaries

A Hybrid automata of a signal control system

In this article, we consider a hybrid automaton of a sim-
ple signal control system, represented in Fig.1. The system
consists of a signal and a car such that the car is prohibited
from being in a specific area, between cs0 and cs1, while the
signal is red. The specific area is called the critical section.
The signal has three modes indicating its color label. Each
color of the signal should be kept more than t0 time units.
The car has two modes: going and not-going. In the going
mode, the car moves forward according to time advancing.
The car stays there in the not-going mode. If the signal la-
bel is not green, the car cannot enter the critical section. If
the signal label is changed into yellow while the car exists
in the critical section, the car should keep the going mode,
that is, it should not stop. Thus, if the interval t0 is more
than the time which the car needs to go through the criti-
cal section (cs1 − cs0), the car does not exist in the critical
section while the signal is red.

Hybrid automata are models of hybrid systems with dis-
crete and continuous behavior. We give a model of our sim-
ple hybrid system according to the literature [5]. Figure 2
represents a hybrid automaton

(Loc, Lab, Edg, X, Init, Inv, Flow, Jump)

of our simple signal control system with a single car.
Locations Loc and edges Edg with labels lab are de-
picted as circles and arrows between them. X is given
as {pos, now, l}. The initial values are all zero, that is,
Init(pos) = Init(now) = Init(l) = 0, where pos and now
stand for the position of the car and the current time, and l is

𝑐𝑠! 𝑐𝑠"

Figure 1. A signal control system

114

(g,	0,	0) (g,	0,	1)

(g,	1,	0) (g,	1,	1)

𝑆𝑇𝑂𝑃

𝐺𝑂𝐼𝑁𝐺

𝑆𝑇𝑂𝑃

𝐺𝑂𝐼𝑁𝐺

𝐶𝑆 𝐶𝑆

𝐶𝑆 𝐶𝑆

𝑖𝑛

𝑜𝑢𝑡

𝑠𝑡𝑜𝑝 𝑔𝑜𝑠𝑡𝑜𝑝 𝑔𝑜

(r,	0,	0)

(r,	1,	0) (r,	1,	1)

𝑆𝑇𝑂𝑃

𝐺𝑂𝐼𝑁𝐺 𝐺𝑂𝐼𝑁𝐺

𝐶𝑆

𝐶𝑆 𝐶𝑆𝑜𝑢𝑡

𝑠𝑡𝑜𝑝 𝑔𝑜

(y,	0,	0)

(y,	1,	0) (y,	1,	1)

𝑆𝑇𝑂𝑃

𝐺𝑂𝐼𝑁𝐺 𝐺𝑂𝐼𝑁𝐺

𝐶𝑆

𝐶𝑆 𝐶𝑆𝑜𝑢𝑡

𝑠𝑡𝑜𝑝 𝑔𝑜

	𝐶𝑆 ∶ 𝑐𝑠! ≤ 𝑝𝑜𝑠 ∧𝑝𝑜𝑠 ≤ 𝑐𝑠"
𝐶𝑆 ∶ (0 ≤ 𝑝𝑜𝑠 ∧𝑝𝑜𝑠 ≤ 𝑐𝑠!) ∨ 𝑐𝑠" ≤ 𝑝𝑜𝑠

	𝐶𝐻 ∶ 𝑙 ≤ 𝑛𝑜𝑤 ∧ 	𝑙#= 𝑛𝑜𝑤 + 𝑡!

𝑐ℎ𝑎𝑛𝑔𝑒
𝐶𝐻

			𝑆𝑇𝑂𝑃 ∶ 	𝑝𝑜𝑠 $ = 0 ∧ 𝑛𝑜𝑤 $ = 1
𝐺𝑂𝐼𝑁𝐺 ∶ 	𝑝𝑜𝑠 $ = 1 ∧𝑛𝑜𝑤 $ = 1

𝑖𝑛

𝑜𝑢𝑡

init

Figure 2. A hybrid automaton of a signal control system

used for the signal interval control. Loc = {g, y, r} × {0, 1} ×
{0, 1} is the set of locations where (label, going, cs) ∈ Loc
represents the location where the color of the signal is label,
the car moves when going and the car exists in the critical
section when cs. The top, the middle and the bottom la-
bels in a location correspond to locations, flow conditions
and invariants of the location respectively. For example,
Flow(l) = S TOP and Inv(l) = CS for l = (g, 0, 0).

The flow conditions of locations are given by S TOP :
pos′ = 0 ∧ now′ = 1 or GOING : pos′ = 1 ∧ now′ = 1,
where x′ stands for the time derivative of x. Since now′ = 1
holds in each location, the value of now always increases
according to time advancing. Thus, now keeps the elapsed
time from the initial state. The value of pos is unchanged
when S TOP holds, and increases when GOING holds. The
invariants CS : cs0 ≤ pos ≤ cs1 and CS : (0 ≤ pos ≤
cs0) ∨ cs1 ≤ pos mean that the car exists and does not exist
in the critical section respectively.

The edges e between different color’s locations are la-
beled by change and the jump condition Jump(e) is given
as CH : l ≤ now ∧ l+ = now + t0, which means that the
edge can be executed when l ≤ now and then the value of l
is updated by now + t0. We omit some of change and CH
in Figure 2. We also omit unchanged variables in the jump
condition, that is, x+ = x for each variable x.

The state transition system is obtained by a hybrid au-
tomaton, where a state (l, v) ∈ S is a pair of a location and
values of variables. From the above conditions, there is no
path s0 → s1 → · · · → sn such that s0 is an initial state,
and sn = ((r, x, y), v) and cs0 < v(pos) < cs1, that is, the car
does not exist in the critical section when the signal is red.
We call it the safety property.

Hybrid automata of plural cars can be obtained by com-
posing the copies of the above hybrid automaton. Consider

the hybrid automaton with two cars. A location is a pair
(l1, l2) where li = (labeli, goingi, csi). There is an edge be-
tween (l1, l2) and (l′1, l

′
2) if there is an edge ei between li and

l′i and l j = l′j (i, j ∈ {1, 2}, i , j). When the number of cars
increases, the state space is exponentially increases, e.g., the
number of locations becomes 10n for n cars.

In the following sections, we describe OTS/CafeOBJ
specifications of the above hybrid automaton with a sin-
gle car and with plural cars, and give a formal proof of the
safety property.

B The OTS/CafeOBJ method

We introduce some notion and notation of the OTS/-
CafeOBJ method including the proof score method [1].

A CafeOBJ specification consists of modules. A
CafeOBJ module SP = (ΣSP, ESP) consists of its signature
and axioms. A signature ΣSP = (S SP,≤SP, FSP) consists of
a set of sorts, an ordering on the sorts and an S SP-sorted
set of operations. A ΣSP-algebra A is an algebra which
has a carrier set As for each s ∈ S SP and an operation
A f : As0×· · ·×Asn → As for each f ∈ (FSP)s0...sn s. An axiom
l = r if c ∈ E is a conditional equation whose both sides l
and r of the equation are terms of a same sort and condition
is a term of boolean sort constructed from the operations in
ΣSP and variables. A SP-algebra is a ΣSP-algebra which sat-
isfies all equations in ESP. When SP has tight denotation, it
denotes the initial SP-algebra. When SP has loose denota-
tion, it denotes all SP-algebras.

The following is a loose module specifying an arbitrary
set with a binary predicate.

mod* PID { [Pid]

op _=_ : Pid Pid -> Bool {comm} }

A loose module (mod*) denotes all models satisfying ax-
ioms. Module PID denotes an arbitrary set with a binary
relation. The following is a tight module specifying labels
of a traffic signal.

mod! LABEL{ [Label]

ops gr re ye : -> Label

pred _=_ : Label Label {comm}

op next : Label -> Label

eq (L:Label = L) = true . eq (gr = re) = false .

eq (gr = ye) = false . eq (re = ye) = false .

eq next(re) = gr . eq next(gr) = ye .

eq next(ye) = re . }

A tight module (mod!) denotes the initial model. In the ini-
tial mode, any elements of a carrier set is represented by a
term constructed from its signature, and no two elements of
a carrier set are equivalent unless the corresponding terms
can be shown to be equal using its axioms. Module LABEL
has three constant operators gr, ye and re of Label, a bi-
nary predicate = , and a unary operation next on Label.
The first four equations define the equality predicate, which

115

takes two labels and returns true if they are same, other-
wise false. The unary operation next returns a next label,
defined by re⇒ gr⇒ ye⇒ re.

An OTS/CafeOBJ specification consists of data modules
and a system module. Modules LOC and PID are examples
of data modules. A system module is given as a behavioral
specification of CafeOBJ. A behavioral specification has a
special sort, called a hidden sort, and special operations,
called behavioral operations, whose arguments include the
hidden sort. A behavioral operation whose returned sort is
not hidden is called an observation. A behavioral operation
whose returned sort is hidden is called a transition. Two el-
ements of the hidden sort are observationally equivalent if
their observed values are equivalent for each observation.
An OTS/CafeOBJ specification is a restricted behavioral
specification, where observational equivalence is preserved
by transitions.

The following is an OTS/CafeOBJ specification of a sig-
nal control system:

mod* SIGNAL{ pr(LABEL) *[Sys]*

op init : -> Sys bop color : Sys -> Label

bop change : Sys -> Sys

eq color(init) = gr .

eq color(change(S:Sys)) = next(color(S)) . }

Module SIGNAL imports module LABELwith the protect-
ing mode, where a model of the importing module includes
a model of the imported module as it is. Hidden sort Sys
is declared, which denotes the state space of a system to
be specified. Constant init is declared as an initial state.
Observation color observes a color, where term color(s)
represents the current color in state s of the signal control
system. Transition change changes a color, where term
change(s) represents the state obtained after changing.

The first equation color(init) = gr specifies the ini-
tial state through observation such that the initial color is
green. The second equation specifies the behavior of transi-
tion change through observation. Term change(S) repre-
sents the state obtained by applying change to S. The color
of change(S) is defined as the next color of S. For exam-
ple, color(change(change(init))) is equivalent to re.

III. OTS/CafeOBJ specifications of hybrid systems

In this section, we introduce a way to describe OTS/-
CafeOBJ specifications of hybrid systems. We model sig-
nal control systems with a single car and with plural cars as
hybrid automata, and describe them as OTS/CafeOBJ spec-
ifications.

A An OTS/CafeOBJ specification of a signal control sys-
tem with a single car

In our OTS model of the signal control system, there are
three observations for discrete locations and three observa-
tions for continuous variables. Observations color, going
and cs observe the value of elements of a location. Obser-
vations now, pos and l observes the value of those variables.
There are two kinds of transitions in OTS models: discrete
and continuous transitions. Discrete transitions go, stop, in,
out and change correspond to edges. A continuous transi-
tion tickt advances the system’s time by t ∈ Q∗.

Table 1 shows the correspondence between the hybrid
automaton in Section 1 and our OTS/CafeOBJ specification.

We give a system module SIGNAL which imports the
built-in module RAT of rational numbers and LABEL given
in the previous section. The following is a part of module
SIGNAL specifying the initial state.

eq now(init) = 0 . eq pos(init) = 0 .

eq going(init) = false . eq cs(init) = false .

eq color(init) = gr . eq l(init) = 0 .

The initial values of now, pos and l are defined as 0. The
initial values of going and cs are false. The initial color is
green. Module SIGNAL includes declaration ops cs0 cs1
t0 : -> Rat of constants cs0, cs1 and t0.

Transition change is specified as follows:

eq c-change(S) = l(S) <= now(S) .

ceq change(S) = S if not c-change(S) .

ceq color(change(S)) = next(color(S))

if c-change(S) .

ceq l(change(S)) = now(S) + t0 if c-change(S) .

eq now(change(S)) = now(S)

The effective condition c-change(S) is defined in the first
equation such that l ≤ now. The second (conditional) equa-
tion specifies that the state is unchanged if change is not ef-
fective. The third and fourth equations specify the updated
values of color and l such that color becomes the next color

Table 1. The correspondence between our hybrid automaton and OTS/-
CafeOBJ specification

Hybrid Automaton OTS/CafeOBJ specification
Loc color, going, cs

Edg go, stop, in, out, change

X now, pos, l

Init init

Inv c-tick

Flow observed values after tick
Jump effective conditions and

observed values after transitions

∗We assume a temporal domain is dense, that is, there is a point be-
tween any pair of points. We use rational numbers for the clock values.

116

and l is set to t0 time later. The remaining equations specify
other variables are unchanged.

Transition in is specified as follows:

eq c-in(S) = (cs0 = pos(S) and color(S) = gr) .

ceq cs(in(S)) = true if c-in(S) .

Transition in is effective when the car exists at cs0 and the
signal is green. When in is effective, cs(in(S)) becomes
true, that is, location (, , 0) is changed into location (, , 1).
The other discrete transitions are defined similarly.

Next, we specify the continuous transition. Time ad-
vancing tickr is described as follows:

ceq now(tick(X,S)) = now(S) + X if c-tick(X,S) .

ceq pos(tick(X,S)) =

(if going(S) then pos(S) + X else pos(S) fi)

if c-tick(X,S) .

Term tick(r,s) is the result state of applying tickr to state
s. Since now′ = 1, the value of now increases by 1 × r.
If we have more complex differential equations in Flow,
equations become larger.

For a given r ∈ Q, when tickr is done, the current time
now increases by r. The position pos increases by r if going
is true, that is, the car moves forward. The effective condi-
tion c-tick is given by invariants of the hybrid automaton.

eq c-tick(X,S) = 0 <= X and X <= cs1 - cs0

and (cs(S) and going(S) implies

cs0 <= pos(S) + X and pos(S) + X <= cs1)

and ...

and (cs1 < pos(S) + X implies not cs(S)) .

Invariants in hybrid automata should always hold, which
means that time cannot advance if the invariants do not hold.
Thus, the effective condition c-tick is given as the con-
junction of all invariants.

B An OTS/CafeOBJ specification of a signal control sys-
tem with plural cars

Consider the case that more than one cars appear in our
signal control system. The system is an example of multi-
task hybrid systems. In OTS models of multitask systems,
observations and transitions related to processes are param-
eterized, for example, posp and gop are an observation and
a transition for a process p respectively. In OTS/CafeOBJ
specifications, multitask systems are described with the im-
port of loose module PID. For example, posp is given by
pos : Pid Sys -> Rat.

We give a system module MS which imports data mod-
ules RAT, LABEL and PID for a signal control system with
plural cars. Observations and initial state of module MS are
specified as follows:

eq now(init) = 0 . eq going(P,init) = false .

eq pos(P,init) = 0 . eq cs(P,init) = false .

eq color(init) = gr . eq l(init) = 0 .

where observations pos, going, cs related to cars are pa-
rameterized. Equation pos(P,init) = 0 means that the
initial positions are zero for all cars P, for example. The
definition of discrete transitions are modified as follows:

eq c-in(P,S) =

(cs0 = pos(P,S) and color(S) = gr) .

ceq in(P,S) = S if not c-in(P,S) .

eq cs(P’,in(P,S)) = P’ = P or cs(P’,S)

In the third equation above, term cs(p′,in(p,s)) means
that the value of csp′ at the result state of applying inp to
state s for processes p and p′. Thus, when p = p′, it is true
otherwise it is unchanged.

The effective condition of tickr should check all
invariants for all processes. First, we parameterize
c-tick(P,X,S) by processes P as follows:

eq c-tick(P,X,S) =

(cs(P,S) and going(P,S) implies

cs0 <= pos(P,S) + X and pos(P,S) + X <= cs1)

and ...

and (cs1 < pos(P,S) + X implies not cs(P,S)) .

We give a way to describe multitask hybrid systems in
OTS/CafeOBJ specifications which denote hybrid automata
without fixed numbers of processes. We introduce a speci-
fication PSET of a set of processes:

mod* PSET{ [Pid < PSet]

op _ _ : PSet PSet -> PSet {assoc comm idem}

op nil : -> PSet pred _in_ : Pid PSet

vars P Q : Pid var PS : PSet

eq (P in (P PS)) = true .

eq (P in nil) = false . eq (P in Q) = (P = Q) .

eq (P in (Q PS)) = (P = Q) or (P in PS) . }

Sort PSet is declared as a super sort of Pid, and the se-
quence of two elements of PSet is also an element of PSet.
Thus, a sequence of Pid is a term of PSet, for example, p1
p2 p3 is a term of PSet when p1, p2 and p3 are terms of
Pid. Operation in denotes the membership predicate on
PSet.

We also introduce an observation ps which is a set of
active processes. A process becomes active when it moves.
After a process becomes active, it is active until it stops. The
initial value of ps is empty. When a car p starts to move, ps
is updated by p ps. The following is a part of description
related to ps:

eq ps(init) = nil . eq ps(go(P,S)) = P ps(S) .

The effective condition c-tick is defined for ps. The ef-
fective condition of tickr is defined on ps inductively:

eq c-tick(nil,X,S) = true .

eq c-tick(P PS,X,S) = c-tick(P,X,S) and

c-tick(PS,X,S) .

eq c-tick(X,S) = 0 <= X and X <= cs1 - cs0 and

c-tick(ps(S),X,S) .

For example, c-tick(p q r,x,s) = c-tick(p,x,s) and
c-tick(q,x,s) and c-tick(r,x,s).

117

IV. Verification of multitask hybrid systems

In this section we give a formal proof of the safety prop-
erty. We declare the relationship between constants cs0, cs1
and t0 such that 0 < cs0 < cs1 and cs1 − cs0 ≤ t0. Then, the
specification denotes all models satisfying the above condi-
tion including the test model in the previous section. First,
we give a state predicate inv1(p, s) such that the car p does
not exist in the critical section when the signal is red at s.

eq inv1(P,S) = not (color(S) = re and

cs0 < pos(P,S) and pos(P,S) < cs1) .

If we prove inv1(p,s) for all processes p and all reach-
able state s from the initial state, the safety property holds.
We denote the set of all reachable states by RS . We prove
∀s ∈ RS .∀p ∈ APid.inv1(p, s) by the induction on structure
of reachable terms.

A A proof passage for the induction on the reachable state
space

As the induction basis, we apply the reduction command
to inv1(p,init) to prove the initial state to satisfy inv1,
where p is a fresh constant as an arbitrary element. CafeOBJ
interpreter returns true, which implies the induction basis
holds, that is, inv1 holds at the initial state.

In the induction step, we prove that each transition pre-
serves the state predicate. We first assume an arbitrary state
s satisfies inv1(p,s) for all processes p. Then, under the
assumption we prove inv1(p,s’) for the state s’ obtained
by any transition. The following is a template module for
the induction step.

eq istep1(P:Pid) = inv1(P,s) implies inv1(P,s’) .

The proposition istep1(P) means that the proposi-
tion inv1(P,s’) holds under the induction hypothesis
inv1(P,s). The following is a part of the induction steps
with respect to tickt1 , where s’ is obtained by applying tickt1
to s.

eq s’ = tick(t1,s) . red istep1(p) .

If the above reduction returns true, it guarantees that
implication inv1(p, s) ⇒ inv1(tickt1 (p, s)) holds. Unfortu-
nately, it returns neither true nor false for the above proof
passage. We need to give more information for proofs. A
typical proof strategy is a case splitting by the effective con-
dition as follows:

eq c-tick(t1,s) = false . eq s’ = tick(t1,s) .

red istep1(p) .

eq c-tick(t1,s) = true . eq s’ = tick(t1,s) .

red istep1(p) .

If the above two proof passages both return true, the
original proof passage is satisfied, since (c − tick(t1, s) ⇒
istep1(p)) ∧ (¬c − tick(t1, s) ⇒ istep1(p)) ⇒ istep1(p). If
it does not so, we proceed case-splitting more.

B Lemma introduction

Repeating the process of case splitting, we may face
false as a returned value of the reduction command. The
following is such an example.

eq cs(p,s) = true

eq cs0 <= pos(p,s) = false . eq s’ = tick(t1,s) .

red istep1(p) .

Since csp is true, the position posp is greater than or equal
to cs0. The equation cs0 <= pos(p,s) = false contradicts
to it. Such a proof passage represents unreachable states.

For such a case, we introduce another appropriate safety
property, called a lemma. We add the following lemma to
the module INV and ISTEP:

eq inv3(P,S) = cs(P,S) implies

cs0 <= pos(P,S) and pos(P,S) <= cs1 .

eq istep3(P) = inv3(P,s) implies inv3(P,s’) .

The lemma inv3(P,S) denotes that the position of car p is
between cs0 and cs1 whenever csp is true. By replacing the
reduction command by adding the lemma, we obtain true
for the above proof passage.

red inv3(p,s) implies istep1(p) .

Proceeding the case splitting and introducing lemma, we
obtain true for all the remaining proof passages for inv1.

C Proving lemma

We proved invariant inv1 for all states reachable from
the initial state by the induction scheme under the assump-
tion of some lemmata. To complete the proof, we need to
show (1) the lemmata hold for the initial state, and (2) the
lemmata hold for result state of applying every transition to
states satisfying inv1 and the lemmata. In the other words,
we make a proof score of the conjunction of inv1∧· · ·∧invn,
where the induction base is represented by inv1(p, init) ∧
· · · ∧ invn(p, init) and the induction step is represented by
inv1(p, s′)∧ · · · ∧ invn(p, s′) under the induction hypothesis
inv1(p, s)∧· · ·∧invn(p, s). Note that in the previous section,
we prove inv3(p, s) ⇒ (inv1(p, s) ⇒ inv1(p, s′). The for-
mula is equivalent to (inv1(p, s) ∧ inv3(p, s)) ⇒ inv1(p, s′).
If we prove (inv1(p, s)∧ inv3(p, s))⇒ inv3(p, s′) for lemma
inv3, we obtain (inv1(p, s) ∧ inv3(p, s)) ⇒ inv1(p, s′) ∧
inv3(p, s′).

118

To complete a proof of inv1, we make seven lemmas and
136 proof passages†, all of which return true. The follow-
ing is the declaration of the lemmata inv2, inv3, inv4,
inv5, inv6 and inv7.

eq inv1(P,S) = not (color(S) = re and

cs0 < pos(P,S) and pos(P,S) < cs1) .

eq inv2(P,S) = not (cs(P,S) and

pos(P,S) < cs1 and color(S) = re) .

eq inv3(P,S) = cs(P,S) implies

cs0 <= pos(P,S) and pos(P,S) <= cs1 .

eq inv4(P,S) = cs(P,S) and not color(S) = gr

and l(S) <= now(S) implies cs1 <= pos(P,S) .

eq inv5(P,S) = cs(P,S) and not color(S) = gr

implies cs1 - pos(P,S) <= l(S) - now(S) .

eq inv6(P,S) = cs(P,S) or cs0 = pos(P,S) or

going(P,S) implies P in ps(S) .

eq inv7(P,S) = cs0 < pos(P,S) and pos(P,S) < cs1

implies cs(P,S) .

V. Related work

There are several tools for analyzing and/or verifying hy-
brid systems: MATLAB & Simulink‡ HSolver§, HyTech¶,
KeYmaera∥, PHAVer∗∗ and so on. See the literature [5]
for more details. One of the most relevant tools to our
study is Maude a language and tool supporting specifica-
tion description and verification based on rewriting logic
[6]. Both Maude and CafeOBJ are algebraic specification
languages and support user-defined abstract data type spec-
ifications, which is an advantage over the other tools for
hybrid systems. Real-time Maude [7] is an extension of
Maude which supports formal specification and analysis of
real-time and hybrid systems. HI-Maude [8] is another ex-
tension of Maude which deals with a wider range of hybrid
systems, called interacting hybrid systems. System modules
in Maude are based on rewriting logic, where systems tran-
sitions are described by rewrite rules. Verification in Maude
is based on exhaustive searching for reachable spaces ob-
tained by the rewrite rules. In Maude, systems with discrete
and continuous variables can be described, however, only
discrete time domains obtained by time sampling strategies
can be verified by search and model checking.

One of our advantages against these model checking ap-
proaches is that proof scores guarantee that verified prop-
erties hold for an arbitrary number of multiple processes.
To make state spaces finite, model-checking approaches
should restrict the size of the system to finite. Although
†Besides them, we need to add some lemmata which can be proved

without induction on reachable states, e.g. eq lemma1(P,X,S) = (P in
ps(S)) and c-tick(X,S) implies c-tick(P,X,S). We proved it by
the induction on structure of terms of sort PSet.
‡https://jp.mathworks.com/products/simulink.html
§http://hsolver.sourceforge.net/
¶https://ptolemy.berkeley.edu/projects/embedded/research/hytech/
∥http://symbolaris.com/info/KeYmaera.html
∗∗http://www-verimag.imag.fr/%7Efrehse/phaver web/index.html

model checking is fully-automated, the proof score method
is semi-automated and needs a human interaction to com-
plete proofs. In the literature [9], automated support of mak-
ing proof scores has been proposed. A case splitting phase
may be automated, however, lemma discovery is heuristic
and not easy to be automated.

VI. Conclusion

We described an observational transition system of a
simple signal control system with plural cars as an example
of multitask hybrid systems, and verified some safety prop-
erty by the proof score method. One of our future work is to
apply the proposed method to practical applications of mul-
titask hybrid systems, such as real-time operating systems,
automotive control systems, intelligent transport systems,
and so on.

References

[1] K. Ogata, and K. Futatsugi, Proof scores in the OTS/-
CafeOBJ method, FMOODS 2003, LNCS 2884, pp.170-
184. Springer, 2003.

[2] K. Ogata and K. Futatsugi, Modeling and verification of
real-time systems based on equations, Science of computer
programming, 66(2), pp.162-180, Elsevier, 2007.

[3] M. Nakamura, S. Higashi, K. Sakakibara and K. Ogata, For-
mal verification of Fischer’s real-time mutual exclusion pro-
tocol by the OTS/CafeOBJ method, SICE 2020, pp.1210-
1215, 2020.

[4] K. Ogata, D. Yamagishi, T. Seino and K. Futatsugi, Model-
ing and verification of hybrid systems based on equations,
DIPES 2004, pp.43-52, 2004.

[5] L. Doyen, G. Frehse, G. J. Pappas, and A. Platzer, Veri-
fication of hybrid systems, Handbook of model checking,
pp.1047-1110, Springer, 2018.

[6] P. C. Ölveczky and J. Meseguer, Semantics and pragmatics
of Real-Time Maude, Higher-order and symbolic computa-
tion 20, pp.161-196, Springer, 2007.

[7] D. Lepri, E. Ábrahám and P. C. Ölveczky, Timed CTL model
checking in real-time Maude, WRLA 2012, LNCS 7571,
pp.182-200, Springer, 2012

[8] M. Fadlisyah and P. C. Ölveczky, The HI-Maude tool,
CALCO 2013, LNCS 8089, pp.322-327, Springer, 2013.

[9] D. Gaina, D. Lucanu, K. Ogata, K. Futatsugi, On automation
of OTS/CafeOBJ method. SAS 2014, LNCS 8373, pp.578-
602, Springer, 2014.

119

Formal verification of IFF & NSLPK authentication protocols with CiMPG

Thet Wai Mon, Shuho Fujii, Duong Dinh Tran, and Kazuhiro Ogata
School of Information Science, Japan Advanced Institute of Science and Technology (JAIST)

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
Email: {thetwaimon,s1910186,duongtd,ogata}@jaist.ac.jp

Abstract—Proof scores are programs written in an algebraic
specification language, such as CafeOBJ, to conduct formal
verification. Thus, the proof score approach to formal verifi-
cation (PSA2FV) can be regarded as a kind of proving by
programming and then flexible. PSA2FV, however, is subject
to human errors. To address the issue, a proof assistant called
CiMPA was developed for CafeInMaude, the world’s second
implementation of CafeOBJ. Furthermore, a proof generator
called CiMPG was developed to benefit from the strong points
of both PSA2FV and CiMPA. Although some case studies
have been conducted with CiMPG, it is necessary to do some
more. The present paper reports on case studies in which it
is formally verified that two authentication protocols enjoy
desired properties with CiMPG.

Keywords-algebraic specification language; proof assistant;
proof generator; authentication protocol

I. INTRODUCTION

Theorem proving that systems enjoy some desired prop-
erties by writing proof scores have been intensively used.
This approach uses observational transition systems (OTSs)
[1] as state machines to formalize systems. Then, the OTSs
are specified in CafeOBJ [2], which is a formal specification
language. Formal verification is conducted by writing what
is called “proof scores” [1] in CafeOBJ and executing them
with CafeOBJ. Although writing proof scores is flexible to
conduct formal verification, the proof may contain some
flaws since proof scores are subject to human errors (e.g.,
users may overlook some cases during the proof).

CafeInMaude is the second implementation in Maude
of CafeOBJ in addition to the original implementation in
Common Lisp, where Maude [3] is a sibling language of
CafeOBJ. CafeInMaude introduces CafeOBJ specifications
into the Maude system. It comes with two extension tools
CafeInMaude Proof Assistant (CiMPA) and CafeInMaude
Proof Generator (CiMPG) [4]. CiMPA is a proof assistant
that allows users to write proof scripts in order to prove
invariant properties on their CafeOBJ specifications. CiMPG
provides a minimal set of annotations for identifying proof
scores and generating CiMPA scripts for these proof scores.
Using CiMPA to develop the formal verification by writing
proof scripts can help us to avoid the flaw made by human
users as in the proof score approach. However, it is often the

This work was supported by JST SICORP Grant Number JPMJSC20C2,
Japan.

DOI reference number: 10.18293/SEKE2021-037

case that CiMPA is not flexible enough to conduct formal
verification. CiMPG allows users to combine the flexibility
of the proof score approach and the reliability of CiMPA.
Given proof scores that should be slightly annotated, CiMPG
generates proof scripts for CiMPA. Feeding the generated
proof scripts into CiMPA, if CiMPA successfully discharges
all goals, the proof scores are correct for the goals.

This paper presents the formal verification with
CiMPA and CiMPG of two authentication protocols:
Identity-Friend-or-Foe authentication protocol (IFF) [5] and
Needham-Schroeder-Lowe Public Key authentication proto-
col (NSLPK) [6]. The former is a simple protocol used to
check if a principal (or an agent) is a member of a group.
The latter is an advanced authentication protocol, which is a
modification of NSPK protocol [7] made by Lowe. We use
CiMPA and CiMPG to formally verify that: (1) IFF enjoys
the identifiable property, and (2) NSLPK enjoys the nonce
secrecy property and one-to-many correspondence property.

Although it has been formally verified that NSLPK enjoys
the nonce secrecy property with CiMPG [4], we are the
first to formally verify that NSLPK enjoys the one-to-many
correspondence property with CiMPG as well as CiMPA.
IFF is a tiny protocol but nobody has formally verified that it
enjoys a desired property with either CiMPA or CiMPG. All
specifications and proofs presented in this paper are available
at https://github.com/twmon14/fvap.

II. FORMAL VERIFICATION OF IFF

IFF [5] is used to check if a principal is a member of a
group. The IFF protocol can be described as the following
two message exchanges:

Check p → q : r
Reply q → p : εk(r, q)

Each principal (or agent) such as p and q belongs to only
one group. A symmetric key is given to each group, whose
members share the key, and keys are different from group
to group. If a principal p wants to check if a principal q
is a member of the p’s group, p generates a fresh random
number r and sends it to q as a Check message. On receipt
of the message, q sends back to p a Reply message that
consists of r and ID q encrypted by the symmetric key k of
the q’s group. When p receives the Reply message, p tries
to decrypt the ciphertext received with the symmetric key of
the p’s group. If the decryption succeeds and the plaintext

120

https://github.com/twmon14/fvap

consists of r and q, p then concludes that q is a member of
the p’s group.

We suppose that the cryptosystem used is perfect, there
is only one legitimate group, all members of the group
are trustable, and there are also untrustable principals who
are not members. Trustable principals exactly follow the
protocol, but untrustable ones may do something against
the protocol as well. The combination and cooperation of
untrustable principals are modeled as the most general enemy
(or intruder). The enemy gleans as much information as
possible from messages flowing in the network and creates
fake messages based on the gleaned information, provided
that the enemy cannot break the perfect cryptosystem.

A. Formal Specification of the Protocol

We first declare the operator enc to specify the ciphertexts
used in the protocol as follows:
op enc : Key Rand Prin -> Cipher .

op k : Cipher -> Key . op r : Cipher -> Rand .
op p : Cipher -> Prin .

where Key is the sort (or type) representing symmetric keys,
Rand is the sort denoting random numbers, Prin is the sort
representing principals, and Cipher is the sort denoting
ciphertexts. Given a key k, a random number r and a principal
p, enc(k, r, p) denotes the ciphertext obtained by encrypting
r and p with k. Operators k, r and p return the first, second
and third arguments of enc(k, r, p), respectively.

We specify two messages Check and Reply by two
operators cm and rm as follows:

op cm : Prin Prin Prin Rand -> Msg
op rm : Prin Prin Prin Cipher -> Msg

where Msg is the sort denoting messages. The first, second
and third arguments of each of cm and rm are the actual
creator, the seeming sender and the receiver of the corre-
sponding message. The first argument is meta-information
that is only available to the outside observer and the principal
that has sent the corresponding message, and that can not be
forged by the enemy; while the remaining arguments may
be forged by the enemy.

The network is modeled as a multiset of messages, in
which the enemy can use as his/her storage. Any message
that has been sent or put once into the network is supposed
to be never deleted from the network because the enemy can
replay the message repeatedly, although the enemy can not
forge the first argument. Consequently, the empty network
(i.e., the empty multiset) means that no messages have been
sent.

The enemy tries to glean two kinds of values from the
network, which are random numbers and ciphertexts. The
collections of these values gleaned by the enemy are denoted
by operators rands and ciphers, which are declared as
follows:

op rands : Network -> ColRands

op ciphers : Network -> ColCiphers

where Network is the sort denoting networks, ColRands
is the sort denoting collections of random numbers, and
ColCiphers is the sort denoting collections of ciphertexts.
ciphers is defined by the following equations:

eq C \in ciphers(void) = false .
ceq C \in ciphers(M , NW) = true if rm?(M)
and C = c(M) .
ceq C \in ciphers(M , NW) = C \in ciphers(NW)
if not(rm?(M) and C = c(M)) .

where void denotes the empty multiset (or empty network),
operator rm? checks if a given message is a Reply message,
operator c takes a Reply message as a parameter and returns
its ciphertext (i.e., the fourth argument of rm operator), \in
is an infix operator checking the existence of an element in
a collection, and operator , in M , NW denotes the data
constructor of nonempty multisets. The equations say that
a ciphertext C is available to the enemy iff there exists a
Reply message whose content is C. rands can be defined
likewise.

Now, we are ready to specify the protocol. We use two
obsevational functions nw and ur to observe the network
and the set of used random numbers, respectively as follows:

op nw : Sys -> Network . op ur : Sys -> URands

where Sys is the sort denoting the state space of IFF,
URands is the sort denoting the sets of random numbers.

We use five transitions together with one constant of Sys
to represent an arbitrary initial state as follows:

op init : -> Sys {constr}
op sdcm : Sys Prin Prin Rand -> Sys {constr}
op sdrm : Sys Prin Msg -> Sys {constr}
op fkcm1 : Sys Prin Prin Rand -> Sys {constr}
op fkrm1 : Sys Prin Prin Cipher -> Sys {constr}
op fkrm2 : Sys Prin Prin Rand -> Sys {constr}

sdcm and sdrm formalize sending Check and Reply
messages exactly following the protocol, respectively. The
remaining actions fkcm1, fkrm1, and fkrm2 are the
enemy’s faking messages, which can be understood as
follows:

• fkcm1: a random number R is available to the enemy,
the enemy fakes and sends a Check message using R,

• fkrm1: a ciphertext C is available to the enemy, the
enemy fakes and sends a Reply message using C,

• fkrm2: a random number R is available to the enemy,
the enemy fakes and sends a Reply message using R.

sdcm is defined as follows:

ceq nw(sdcm(S,P1,P2,R)) = (cm(P1,P1,P2,R) ,
nw(S)) if c-sdcm(S,P1,P2,R) .
ceq ur(sdcm(S,P1,P2,R)) = (R ur(S))
if c-sdcm(S,P1,P2,R) .
ceq sdcm(S,P1,P2,R) = S
if not c-sdcm(S,P1,P2,R) .

121

where c-sdcm(S,P1,P2,R) is not(R \in ur(S)).
The equations say that if c-sdcm(S,P1,P2,R) is true
(i.e., R has not been used), then the Check message
cm(P1,P1,P2,R) is put into the network nw(S), R is put
into ur(S) in the state denoted by sdcm(S,P1,P2,R);
if c-sdcm(S,P1,P2,R) is false, nothing changes. The
remaining transitions can be defined likewise.

B. Formal Verification with CiMPA

One property of IFF we would like to confirm is whenever
p receives a valid Reply message from q, q is always a
member of the p’s group. Such property is called identifiable
property in this paper. The property is specified as follows:

op inv1 : Sys Prin Prin Prin Key Rand
-> Bool .
eq inv1(S,P1,P2,P3,K,R) = ((not(K = k(enemy))
and rm(P1,P2,P3,enc(K,R,P2)) \in nw(S))
implies not(P2 = enemy)) .

We describe how to prove that IFF enjoys the property by
writing proof scripts and running with CiMPA. In the proof
of inv1, we need to use a lemma inv2 that is as follows:

op inv2 : Sys Key Rand -> Bool .
eq inv2(S,K,R) = (enc(K,R,enemy) \in
ciphers(nw(S)) implies (K = k(enemy))) .

where k(enemy) denotes the symmetric key of the group
to which the enemy belongs to.

The proof starts with the goals we need to prove:

open IFF .
:goal{
eq [iff1 :nonexec] : inv1(S:Sys,P:Prin,
P1:Prin,P0:Prin,K:Key,R:Rand) = true .
eq [iff :nonexec] :
inv2(S:Sys,K:Key,R:Rand) = true . }

where IFF is the module in which the specification of IFF
together with inv1 and inv2 are available. :nonexec
instructs CafeInMaude not to use the equations as rewrite
rules.

Then, we select S with the command :ind on as the
variable on which we start proving the goals by simultaneous
induction:

:ind on (S:Sys) :apply(si)

The command :apply(si) starts the proof by simultane-
ous induction on S, generating six goals for fkcm1, fkrm1,
fkrm2, init, sdcm, and sdrm, where si stands for
simultaneous induction. Each goal consists of two equations
to prove, corresponding to inv1 and inv2. With the first
goal for fkcm1, we first apply theorem of constants by using
the command: :apply(tc). The command generates two
sub-goals as follows:

1-1.> TC eq [iff1 :nonexec]: inv1(fkcm1(
S#Sys,P#Prin,P0#Prin,R#Rand),P@Prin,
P1@Prin,P0@Prin,K@Key,R@Rand) = true .
1-2. TC eq [iff :nonexec]: inv2(fkcm1(S#Sys,

P#Prin,P0#Prin,R#Rand),K@Key,R@Rand) = true .

The command :apply(tc) replaces CafeOBJ vari-
ables with fresh constants in goals. S#Sys, P#Prin,
P0#Prin, and R#Rand are fresh constants introduced
by :apply(si), while P@Prin, P1@Prin, P0@Prin,
K@Key, and R@Rand are fresh constants introduced by
:apply(tc). To discharge goal 1-1, the following com-
mands are first introduced:

:def c1 = :ctf [R#Rand \in rands(nw(S#Sys)) .]
:apply(c1)

Goal 1-1 is split into two sub-goals 1-1-1 and 1-1-2
correspond to when R#Rand \in rands(nw(S#Sys))
holds and does not hold, respectively. Then, two sub-goals
are discharged by the following commands:

:imp [iff1] by {K:Key <- K@Key ;
P0:Prin <- P0@Prin ; P1:Prin <- P1@Prin ;
P:Prin <- P@Prin ; R:Rand <- R@Rand ;}
:apply (rd)
:imp [iff1] by {K:Key <- K@Key ;
P0:Prin <- P0@Prin ; P1:Prin <- P1@Prin ;
P:Prin <- P@Prin ; R:Rand <- R@Rand ;}
:apply (rd)

The induction hypothesis is instantiated by replacing the
variables with the fresh constants and the instance is used
as the premise of the implication. For example, P1:Prin
is replaced with P1@Prin. Then, :apply(rd) is used to
check if the current goal can be discharged. Two goals 1-1-1
and 1-1-2 are discharged in this case. The current goal is
changed to 1-2.

Goal 1-2 is split into two sub-goals and they are discharged
by the following commands:

:def c2 = :ctf [R#Rand \in rands(nw(S#Sys)) .]
:apply(c2)
:imp [iff] by
{K:Key <- K@Key ; R:Rand <- R@Rand ;}
:apply (rd)
:imp [iff] by
{K:Key <- K@Key ; R:Rand <- R@Rand ;}
:apply (rd)

We have all done with goal 1, the current goal moves to 2.
With goal 2, we first introduce the following commands to
conduct case splitting.

:def c3 = :ctf
[C#Cipher \in ciphers(nw(S#Sys)) .]
:def c4 = :ctf {eq P@Prin = enemy .}
:def c5 = :ctf {eq P#Prin = P1@Prin .}
:def c6 = :ctf {eq P0#Prin = P0@Prin .}
:def c7 = :ctf {eq k(C#Cipher) = K@Key .}
:def c8 = :ctf {eq r(C#Cipher) = R@Rand .}
:def c9 = :ctf {eq p(C#Cipher) = P1@Prin .}
:def c10 = :ctf {eq K@Key = k(enemy) .}
:apply(c3) :apply(c4) :apply(c5) :apply(c6)
:apply(c7) :apply(c8) :apply(c9) :apply(c10)

Case splittings are carried out based on one Boolean term
and seven equations. The first sub-goal in which the Boolean
term is true and seven equations hold can be discharged:

122

:imp [iff1] by {K:Key <- K@Key ;
P0:Prin <- P0@Prin ; P1:Prin <- P1@Prin ;
P:Prin <- P@Prin ; R:Rand <- R@Rand ;}
:apply (rd)

However, with the sub-goals in which the Boolean term is
true, first six equations hold and the last equation does not
hold, we need to conduct case splitting more as well as use
inv2 as a lemma:

:def c11 = :ctf {eq P1@Prin = enemy .}
:def c12 = :ctf [enc(K@Key,R@Rand,enemy)

\in ciphers(nw(S#Sys)) .]
:apply(c11) :apply(c12)
:imp [iff] by {K:Key <- K@Key ;
R:Rand <- R@Rand ;}
:imp [iff1] by {K:Key <- K@Key ;
P0:Prin <- P0@Prin ; P1:Prin <- P1@Prin ;
P:Prin <- P@Prin ; R:Rand <- R@Rand ;}
:apply (rd)

The lemma inv2 is instantiated by replacing the variables
K:Key and R:Rand with the fresh constants K@Key and
R@Rand, and the instance is used as the premise of the
implication. The induction hypothesis is instantiated by
replacing the variables with the fresh constants, and the
instance is used as the premise of the implication. Then,
:apply(rd) is used to discharge the current goal. The
remaining sub-goals of 2 can be discharged directly without
using any lemma. The remaining goals from 3 to 6 can be
discharged likewise.

C. Formal Verification with CiMPG

The following is the proof score for the case corresponding
to goal 1-1-1 in the last section:

open IFF .
op s : -> Sys . ops a b c d e : -> Prin .
op k : -> Key . ops r1 r2 : -> Rand .
eq (r2 \in rands(nw(s))) = true .
red inv1(s,a,b,c,k,r1)
implies inv1(fkcm1(s,d,e,r2),a,b,c,k,r1) .
close

where open makes the module IFF available, close stops
the use of the module and red reduces (computes) the given
term. s and k correspond to S#Sys and K@Key in the
last section, respectively. a, b, c, d, and e correspond to
P@Prin, P1@Prin, P0@Prin, P#Prin, and P0#Prin,
respectively. r1 and r2 correspond to R@Rand and R#Rand,
respectively. The details of the proof score approach as well
as how to write proof scores to conduct formal verification
can be found in paper [1]. In comparison with proof scripts,
proof scores are often easier to understand for human users,
and writing proof scores are also more flexible than writing
proof scripts. That is the reason why when conducting
formal verification, we prefer to write proof scores rather
than proof scripts. However, because of the flexibility, proof
scores are subject to human errors. For example, during the

verification users may overlook some cases, leading to the
flaw verification.

After writing proof scores that IFF protocol enjoys the
property, we can confirm that the proof scores are correct
by doing the formal verification with CiMPA as described in
the last section. Although we are able to conduct the formal
verification with CiMPA once we have completed formal
verification by writing proof scores in CafeOBJ, it would be
preferable to automatically confirm the correctness of proof
scores. CiMPG makes it possible to automatically confirm
the correctness of proof scores by generating proof scripts
for CiMPA from the proof scores.

To use CiMPG, we need to add :id(iff) into each
open-close proof score fragment. For example, the open-
close fragment shown above becomes as follows:

open IFF .
:proof(iff)
op s : -> Sys . ops a b c d e : -> Prin .
op k : -> Key . ops r1 r2 : -> Rand .
eq (r2 \in rands(nw(s))) = true .
red inv1(s,a,b,c,k,r1)
implies inv1(fkcm1(s,d,e,r2),a,b,c,k,r1) .
close

Moreover, we need to add one more open-close fragment
to the proof scores, which is as follows:

open IFF .

:proof(iff)

close

where iff is just an identifier, can be replaced by another
one that is more preferred.

Feeding the annotated proof scores into CiMPG, CiMPG
generates the proof script for CiMPA. The generated proof
script is quite similar to the one written manually. Feeding
the generated proof script into CiMPA, CiMPA discharges
all goals, confirming that the proof scores are correct.

III. FORMAL VERIFICATION OF NSLPK

NSLPK [6] is a modification of NSPK authentication
protocol [7] made by Lowe. The NSLPK protocol can be
described as the following three message exchanges:

Init p → q : εq(np, p)
Resp q → p : εp(np, nq, q)
Ack p → q : εq(nq)

Each principal such as p and q has a pair of keys: public
and private keys. εp(m) denotes the ciphertext obtained by
encrypting the message m with the principal p’s public key.
np is a nonce (a random number) generated by principal p.
A nonce is a unique and non-guessable number that is used
only one time. Again, we also suppose that the cryptosystem
used is perfect.

A. Formal Specification of the Protocol

We introduce the following three operators to represent
the ciphertexts used in the protocol:

123

op enc1 : Prin Nonce Prin -> Cipher1
op enc2 : Prin Nonce Nonce Prin -> Cipher2
op enc3 : Prin Nonce -> Cipher3

where Nonce is the sort denoting the nonce numbers;
Cipher1, Cipher2, and Cipher3 are the sorts denoting
three kinds of ciphertexts contained in Init, Resp, and Ack
messages, respectively. Given principals p, q and a nonce
np term enc1(q, np, p) denotes the ciphertext εq(np, p)
obtained by encrypting np and p with principal q’s public
key. enc2 and enc3 can be understood likewise.

We specify three messages used in NSLPK as follows:

op m1 : Prin Prin Prin Cipher1 -> Msg
op m2 : Prin Prin Prin Cipher2 -> Msg
op m3 : Prin Prin Prin Cipher3 -> Msg

Msg as well as the first three arguments of each operator
can be understood as in the specification of IFF explained
in the last section.

The intruder tries to glean four kinds of values from the
network, which are nonces and three kinds of ciphertexts.
Then, we use following four operators to denote those values:

op cnonce : Network -> ColNonce
op cenc1 : Network -> ColCipher1
op cenc2 : Network -> ColCipher2
op cenc3 : Network -> ColCipher3

where Network is the sort denoting networks (i.e., multisets
of messages) and ColX is a sort denoting collections of
values corresponding to the sort X . The equations defining
cenc1 are as follows:

eq E1 \in cenc1(void) = false .
ceq E1 \in cenc1(M,NW) = true if m1?(M) and
not(key(cipher1(M)) = intruder) and
E1 = cipher1(M) .
ceq E1 \in cenc1(M,NW) = E1 \in cenc1(NW)
if not(m1?(M) and E1 = cipher1(M))
and not(key(cipher1(M)) = intruder) .

where E1 is a CafeOBJ variable of Cipher1. m1? checks if
a given message is an Init message. Operator cipher1 takes
an Init message as an argument and returns its ciphertext (i.e.,
the fourth argument of m1 operator). Operator key takes a
ciphertext as an argument and returns the principal in which
the ciphertext is encrypted with its public key. void, M, NW,
as well as (M,NW) can be understood as explained in the last
section. The equations say that a ciphertext E1 is available
to the intruder iff there exists an Init message whose content
is E1 and E1 is not encrypted by the intruder’s public key.
Let us note that, if E1 is encrypted by the intruder’s public
key, E1 can be rebuilt by the intruder. cnonce, cenc2,
and cenc3 can be defined likewise.

We use two observers, nine transitions, together with one
constant that represents an arbitrary initial state to specify
NSLPK as follows:

op ur : Sys -> URand . op nw : Sys -> Network
op init : -> Sys {constr}

op sdm1 : Sys Prin Prin Rand -> Sys {constr}
op sdm2 : Sys Prin Rand Msg -> Sys {constr}
op sdm3 : Sys Prin Rand Msg Msg -> Sys
{constr}
op fkm11 : Sys Prin Prin Cipher1 -> Sys
{constr}
op fkm12 : Sys Prin Prin Nonce -> Sys {constr}
op fkm21 : Sys Prin Prin Cipher2 -> Sys
{constr}
op fkm22 : Sys Prin Prin Nonce Nonce -> Sys
{constr}
op fkm31 : Sys Prin Prin Cipher3 -> Sys
{constr}
op fkm32 : Sys Prin Prin Nonce -> Sys {constr}

where URand is the sort denoting sets of random numbers.
ur, nw, and init can be understood as in the last section.
The first three transitions formalize sending messages exactly
following the protocol, while the remaining formalize the
intruder’s faking messages, which can be understood as
follows:

• fkm11, fkm21, and fkm31: a ciphertext C is available
to the intruder, the intruder fakes and sends a/an Init,
or Resp, or Ack message using C, respectively.

• fkm12 and fkm32: a nonce N is available to the
intruder, the intruder fakes and sends an Init or Ack
message using N, respectively,

• fkm22: two nonces N1 and N2 are available to the
intruder, the intruder fakes and sends a Resp message
using N1 and N2.

Let S be a CafeOBJ variable of Sys, and P & Q are
CafeOBJ variables of Prin. fkm11 is defined as follows:

eq ur(fkm11(S,P,Q,E1)) = ur(S) .
ceq nw(fkm11(S,P,Q,E1)) = m1(intruder,P,Q,E1)
, nw(S) if c-fkm11(S,P,Q,E1) .
ceq fkm11(S,P,Q,E1) = S
if not c-fkm11(S,P,Q,E1) .

where c-fkm11(S,P,Q,E1) is E1 \in
cenc1(nw(S)), intruder is a constant of Prin
denoting the intruder. The equations say that if
c-fkm11(S,P,Q,E1) is true, then the Init message
m1(intruder,P,Q,E1) is put into the network
nw(S), ur(S) does not change in the state denoted by
fkm11(S,P,Q,E1); if c-fkm11(S,P,Q,E1) is false,
nothing changes. The remaining transitions can be defined
likewise.

B. Formal Verification with CiMPA and CiMPG

There are two properties of NSLPK that we would like
to verify namely nonce secrecy property and one-to-many
correspondence property. The former says that all nonces
available to the intruder are those created by the intruder or
those created for the intruder. Let N be a CafeOBJ variable
of Nonce, we specify the nonce secrecy property as follows:

eq inv130(S,N) = (N \in cnonce(nw(S))
implies (creator(N) = intruder or

124

forwhom(N) = intruder)) .

The one-to-many correspondence property is specified by
the following two equations:

eq inv170(S,P,Q,Q1,R,N) = (not(P = intruder)
and m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in nw(S)
and m2(Q1,Q,P,enc2(P,n(P,Q,R),N,Q)) \in nw(S)
implies
m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \in nw(S)) .

eq inv180(S,P,Q,P1,R,N) = (not(Q = intruder)
and m2(Q,Q,P,enc2(P,N,n(Q,P,R),Q)) \in nw(S)
and m3(P1,P,Q,enc3(Q,n(Q,P,R))) \in nw(S)
implies
m3(P,P,Q,enc3(Q,n(Q,P,R))) \in nw(S)) .

where P1 & Q1 are CafeOBJ variables of Prin, R is a
CafeOBJ variable of Rand. inv170 says that whenever
P successfully sent an Init message to Q, and received a
corresponding Resp seemingly from Q, the principal that
P is communicating with is really Q even though there are
malicious principals (e.g., Q1). inv180 can be understood
likewise.

To verify the nonce secrecy property, we prove that
inv130 is an invariant of the OTS formalizing NSLPK.
The formal verification is also conducted in two ways: by
writing proof scripts with CiMPA and by using CiMPG
to generate proof scripts from proof scores. Both of them
require the use of the following lemmas:

eq inv100(S,E1) = (E1 \in cenc1(nw(S))
implies not(key(E1) = intruder)) .
eq inv110(S,E2) = (E2 \in cenc2(nw(S))
implies not(key(E2) = intruder)) .
eq inv120(S,E3) = (E3 \in cenc3(nw(S))
implies not(key(E3) = intruder)) .
eq inv140(S,E1) = (E1 \in cenc1(nw(S)) and
principal(E1) = intruder
implies nonce(E1) \in cnonce(nw(S))) .
eq inv150(S,E2) = (E2 \in cenc2(nw(S)) and
principal(E2) = intruder
implies nonce2(E2) \in cnonce(nw(S))) .
eq inv160(S,N) = (creator(N) = intruder
implies N \in cnonce(nw(S))) .

where E2 and E3 are CafeOBJ variables of Cipher2 and
Cipher3, respectively.

In each way of verification, what we need to do is quite
similar to what we have described in the last section with
formal verification of IFF. However, with CiMPG, we also
need to make some modifications to the existing proof
scores. Let us consider an example in which we want to
split the current case into two sub-cases: (1) message m is
in nw(s), which is the network of the current state, and
(2) m is not in nw(s). CafeOBJ allows us to write proof
scores to conduct case splitting by introducing two equations:
(i) nw(s) = (m , nw’) to characterize (1) and (ii)
m \in nw(s) = false to characterize (2), where nw’
is a constant denoting an arbitrary network (or list of
messages). With CiMPA, if we declare equation (i) and

apply for case splitting, then it will automatically split the
current goal into two sub-goals in which (i) holds in the
first sub-goal, while it does not hold in the second one.
Thus, the second sub-goal is characterized by the equation
(nw(s) = (m , nw’)) = false. In this sub-goal, it
does not guarantee that m is not in nw(s) since m can be
in nw’. CiMPG also can not recognize that the use of two
equations (i) and (ii) for case splitting is correct. In the
existing proof scores of formal verification of NSLPK, there
are many times in which case splitting is “flexibly” applied
in the same way as based on two equations (i) and (ii)
mentioned above. This flexible case splitting is an advantage
of the CafeOBJ/proof score method but also is a disadvantage
because we need to ensure that the equations used for case
splitting cover every case and do not overlap each other.
However, to make it possible for CiMPG to generate the
proof scripts, the existing proof score needs to be modified.
With the example mentioned above, two equations used
for case splitting should be m \in nw(s) = true and
m \in nw(s) = false.

IV. CONCLUSION

This paper has presented the formal verifications with
proof assistant CiMPA and with proof generator CiMPG. In
comparison with the proof score approach, each verification
method has advantages as well as disadvantages. While
proof scores are flexible to write, they are subject to human
errors since human users can overlook some cases during the
verification. The proof scripts are reliable, but they are not
easy to develop, especially with non-expert users. CiMPG
combines the flexibility of the proof score approach and
the reliability of CiMPA. However, it often takes time for
CiMPG to generate proof scripts when the size of input proof
scores is large. Two case studies are presented in which
we formally verify that IFF protocol enjoys the identifiable
property, and NSLPK enjoys the nonce secrecy and one-to-
many correspondence properties.

REFERENCES

[1] K. Ogata and K. Futatsugi, “Proof scores in the OTS/CafeOBJ
method,” in FMOODS 2003, 2003, pp. 170–184.

[2] R. Diaconescu and K. Futatsugi, Cafeobj Report, ser. AMAST
Series in Computing. World Scientific, 1998, vol. 6.

[3] M. Clavel, et al., Ed., All About Maude, ser. Lecture Notes in
Computer Science. Springer, 2007, vol. 4350.

[4] A. Riesco and K. Ogata, “Prove it! Inferring formal proof
scripts from CafeOBJ proof scores,” ACM Trans. Softw. Eng.
Methodol., vol. 27, no. 2, pp. 6:1–6:32, 2018.

[5] R. J. Anderson, Security engineering - A guide to building
dependable distributed systems. Wiley, 2001.

[6] G. Lowe, “An Attack on the Needham-Schroeder Public-Key
Authentication Protocol,” Inf. Process. Lett., vol. 56, no. 3, pp.
131–133, 1995.

[7] R. M. Needham and M. D. Schroeder, “Using Encryption for
Authentication in Large Networks of Computers,” Commun.
ACM, vol. 21, no. 12, pp. 993–999, 1978.

125

Formal verification of Anderson mutual exclusion protocol
by introducing an auxiliary variable

Naoki Asae, Duong Dinh Tran, and Kazuhiro Ogata
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
Email: {s1910005,duongtd,ogata}@jaist.ac.jp

Abstract—The second and third authors of the present paper
have formally verified that A-Anderson protocol, which is an
abstract version of Anderson mutual exclusion protocol, enjoys
the mutual exclusion property in their previous work. The
reason why they did not conduct formal verification with the
original version of Anderson but with A-Anderson instead is
that Anderson uses a finite boolean array and the modulo
(or remainder) operation of natural numbers, causing the
challenge to conduct formal verification in a sense of theorem
proving. Since then, we have successfully completed formal
verification with Anderson to which an auxiliary variable is
introduced. The protocol is specified in CafeOBJ, an algebraic
specification language, and it is formally verified that the
protocol enjoys the property with CafeOBJ. The auxiliary
variable does not change the behavior of Anderson. We then
conclude that Anderson enjoys the mutual exclusion property
by proving that the property is an invariant of the specification.
We also informally discuss why it is necessary to introduce
auxiliary variables so that we can successfully complete formal
verification with some protocols or systems.

Keywords-algebraic specification language; mutual exclusion
protocol; auxiliary variable; proof score

I. INTRODUCTION

Mutual exclusion is the problem such that at most one
thread, process, node, or any execution entity is allowed
to enter its critical section to use some shared resources,
such as shared memory in concurrent and/or distributed
systems. Mechanisms or protocols that solve the problem
are called mutual exclusion protocols. Anderson protocol (or
Anderson) [1] is a mutual exclusion protocol. Thus, the most
important property the protocol should satisfy is the mutual
exclusion property. It is, however, challenging to formally
verify that Anderson protocol enjoys the mutual exclusion
property, in a sense of theorem proving. The reason is that
its algorithm uses a finite array and the modulo operation
of natural numbers. In the paper [2], the second and third
authors of the present paper have introduced an abstract
version of Anderson, which is called A-Anderson protocol
(or A-Anderson), and formally verified that A-Anderson
enjoys the mutual exclusion property.

This research was partially supported by JSPS KAKENHI Grant Number
JP19H04082.

DOI reference number: 10.18293/SEKE2021-038

Although as mentioned in the paper [2], the authors
have successfully proved that Anderson enjoys the mutual
exclusion property by showing that there exists a simulation
relation from Anderson to A-Anderson, and such simulation
preserves the property, directly proving that Anderson enjoys
the property still interests us. In Anderson, each process is
located at one of three locations: rs (Remainder Section), ws
(Waiting Section), or cs (Critical Section). Initially, each
process is located at rs, and when a process wants to
enter cs, it first moves to ws from rs. By introducing an
auxiliary variable to record a collection of processes currently
located at ws or cs, we have successfully completed the
proof that Anderson satisfies the mutual exclusion property
without using the abstract version A-Anderson but with an
auxiliary variable introduced. This modification only records
information in the current and past states but does not
affect the current or future values of any other variables
in the algorithm. Therefore, we can guarantee that adding
the auxiliary variable does not change the behavior of
Anderson. Originally, we got stuck in the formal verification
of Anderson because the proof requires a lemma that is
obvious but so tough to prove. Introducing the auxiliary
variable helps us to accomplish the proof of that lemma,
leading to the complete formal verification. The proof of the
lemma has not yet been completed as of the paper submission
without introducing any auxiliary variables, though.

Our verification in this paper uses observational transition
systems (OTSs) [3] as state machines. The OTS formalizing
Anderson is specified in CafeOBJ [4], which is a formal
specification language. Then, in the specification, we in-
troduce an auxiliary variable to store a list of processes
currently located at ws or cs. Formal proofs are conducted
by writing what is called “proof scores” [3] in CafeOBJ and
executing them with CafeOBJ. Proof scores are developed by
simultaneous structural induction on a state variable of the
OTS. We verify that Anderson enjoys the mutual exclusion
property by proving that the property is an invariant of
the OTS formalizing Anderson. The verification requires
the use of some additional lemmas, one of them is the
lemma mentioned above that makes us so stuck to prove its
correctness.

126

The rest of the paper is organized as follows: Sect. II
describes Anderson protocol. Sect. III presents how to for-
mally specify the protocol in CafeOBJ. Sect. IV presents
our proof attempt to formally verify that Anderson protocol
enjoys the mutual exclusion property and the reason why
we got stuck to complete the proof. Sect. V describes our
solution to complete the verification by introducing an
auxiliary variable and informally discusses why we need
to do so. Some related work is mentioned in Sect. VI.
Finally, Sect. VII concludes the paper. The specification
and proof scores presented in this paper are available at
https://gitlab.com/duongtd23/anderson-au.

II. ANDERSON PROTOCOL

We suppose that there are N processes participating in
Anderson protocol. The pseudo-code of Anderson protocol
for each process p can be written as follows:

Loop “Remainder Section”
rs : place[p] := fetch&incmod(next ,N);
ws : repeat until array [place[p]];

“Critical Section”
cs : array [place[p]],

array [(place[p] + 1)%N] := false, true;

We suppose that each process is located at rs, ws or
cs and initially located at rs. place is an array whose
size is N and each of whose elements stores one from
{0, 1, . . . ,N − 1}. Initially, each element of place can be
any from {0, 1, . . . ,N − 1} but is 0 in this paper. Although
place is an array, each process p only uses place[p] and
then we can regard place[p] as a local variable to each
process p. array is a Boolean array whose size is N .
Initially, array [0] is true and array [j] is false for any
j ∈ {1, . . . ,N − 1}. next is a natural number variable
and initially set to 0. fetch&incmod(next ,N) atomically
does the following: setting next to (next + 1)%N and
returning the old value of next . x, y := e1, e2 is a concurrent
assignment that is processed as follows: calculating e1 and e2
independently and setting x and y to their values, respectively.

III. FORMAL SPECIFICATION OF ANDERSON PROTOCOL

We use four observation functions pc, next, place,
array to store information about the location of each
process, the value of the global variable next , the value
stored in each element of place and the value stored in each
element of array , respectively:

op pc : Sys Pid -> Label .
op next : Sys -> SNat .
op place : Sys Pid -> SNat .
op array : Sys SNat -> Bool .

Sys is the sort that represents the state space of Anderson.
Pid is the sort denoting the set of process IDs. Label
is the sort that expresses the set of labels (rs, ws and cs).
SNat is the sort of natural numbers and Bool is the sort of

Boolean values. Observation function array observes the
value stored in each element of array by passing to array
the index of element as the second argument.

We also introduce the observer count to keep track of
the number of processes that would like to enter the Critical
Section and/or to be there (i.e., the number of processes
currently located at cs or ws):

op count : Sys -> SNat .

If N + 1 or more processes participate in the protocol, the
protocol does not enjoy the mutual exclusion property, which
we realzied when we were formally specifying the protocol
in CafeOBJ. This is implicitly assumed by the protocol but
it is necessary to make the assumption explicit so as to do
formal verification. This is tiny but important, demonstrating
worth formally specifying systems.

We have the declaration of N and its property as follows:

op N : -> SNzNat . eq (1 < N) = true .

SNzNat is the sort of non-zero natural numbers and a sub-
sort on SNat. N is expressed as the constant N of SNzNat.
The property says that N is greater than 1 because if there
is only one process, we do not need to use any mutual
exclusion protocols. In the formal specification, we declare
1 as a constant of SNzNat that equals s(0) (i.e., 1 is
successor of 0).

We use one constructor that represents an arbitrary initial
state as follows:

op init : -> Sys {constr} .

init is defined in terms of equations, specifying the values
observed by the four observation functions in an arbitrary
initial state as follows:

eq pc(init,P) = rs . eq next(init) = 0 .
eq place(init,P) = 0 . eq count(init) = 0 .
eq array(init,I)
= (if I = 0 then true else false fi) .

where P is a CafeOBJ variable of Pid and I is a CafeOBJ
variable of SNat.

We use three transition functions that are also constructors:

op want : Sys Pid -> Sys {constr}
op try : Sys Pid -> Sys {constr}
op exit : Sys Pid -> Sys {constr}

The three transition functions capture the actions that each
process moves to ws from rs, tries to move to cs from ws
and moves back to rs from cs, respectively. The reachable
states are composed of the four constructors.

Each of the three transition functions is defined in terms
of equations, specifying how the values observed by the four
observation functions change. Let S be a CafeOBJ variable
of Sys, P & Q be CafeOBJ variables of Pid and I & J be
CafeOBJ variables of SNat.
want is defined as follows:

127

https://gitlab.com/duongtd23/anderson-au

ceq pc(want(S,P),Q)
= (if P = Q then ws else pc(S,Q) fi)

if c-want(S,P) .
ceq place(want(S,P),Q)
= (if P = Q then next(S) else place(S,Q) fi)

if c-want(S,P) .
ceq next(want(S,P))
= (s(next(S)) rem N) if c-want(S,P) .
eq array(want(S,P),I) = array(S,I) .
ceq count(want(S,I)) = s(count(S))

if c-want(S,I) .
ceq want(S,P) = S if c-want(S,P) = false .

where c-want(S,P) is

pc(S,P) = rs and count(S) < N

s of s(next(S)) is the successor function of natural
numbers. x rem y calculates the remainder obtained by
dividing x by y. The equations say that if c-want(S,P)
is true, the location of P changes to ws, the location of each
other process Q does not change, the P’s place changes to
next , each other process Q’s place does not change, next
is updated to (next + 1)%N , count is incremented, and
array does not change in the state denoted want(S,P); if
c-want(S,P) is false, nothing changes.
try is defined as follows:

ceq pc(try(S,P),Q)
= (if P = Q then cs else pc(S,Q) fi)
if c-try(S,P) .
eq place(try(S,P),Q) = place(S,Q) .
eq array(try(S,P)) = array(S) .
eq next(try(S,P),I) = next(S) .
eq count(try(S,I)) = count(S) .
ceq try(S,P) = S if c-try(S,P) = false .

where c-try(S,P) is

pc(S,P) = ws and array(S,place(S,P)) = true

The equations say that if c-try(S,P) is true, the location
of P changes to ws, the location of each other process Q
does not change, place , next and count do not change in the
state denoted try(S,P); if c-try(S,P) is false, nothing
changes.
exit is defined as follows:

ceq pc(exit(S,P),Q)
= (if P = Q then rs else pc(S,Q) fi)
if c-exit(S,P) .
eq place(exit(S,P),Q) = place(S,Q) .
eq next(exit(S,P)) = next(S) .
ceq array(exit(S,P),I) =
(if I = (s(place(S,P)) rem N) then true
else (if I = place(S,P) then false
else array(S,I) fi) fi) if c-exit(S,P) .

ceq count(exit(S,I)) = (sd(count(S),1))
if c-exit(S,I) .

ceq exit(S,P) = S if c-exit(S,P) = false .

where c-exit(S,P) is pc(S,P) = cs. sd(x, y) re-
turns the difference of x and y. The equations say that if
c-exit(S,P) is true, the location of P changes to rs,

Figure 1. Case spliting for case (3) of the proof of mutex

the location of each other process Q does not change, place
does not change, next does not change, count is decreased
by one, the Ith element of array is set true if I equals
s(place(S,P)) rem N, the Jth element of array is set
false if J equals place(S,P), and each other element of
array does not change in the state denoted exit(S,P); if
c-exit(S,P) is false, nothing changes.

IV. FORMAL VERIFICATION BY PROOF SCORES

The mutual exclusion property is specified as follows:

eq mutex(S,P,Q) = ((pc(S,P) = cs and
pc(S,Q) = cs) implies (P = Q)) .

The equation says that if there are processes in the critical
section, there is one, namely that exists at most one process
in the critical section at any given moment.

We prove mutex(S,P,Q) for all reachable states S
and all process IDs P & Q by structural induction on S.
There are four cases to tackle: (1) init, (2) want, (3)
try and (4) exit. Let us consider case (3). What to
prove is mutex(try(s,r),p,q), where s is a fresh
constant of Sys representing an arbitrary state and p, q
and r are fresh constant of Pid representing arbitrary
process IDs. The induction hypothesis is mutex(s,P,Q)
for all process IDs P & Q. Let us note that s is shared
by mutex(try(s,r),p,q) and mutex(s,P,Q), while
the variables P and Q can be replaced with any terms of
Pid, such as p and q.

128

Figure 1 shows the case splitting strategy to prove
case (3). Case (3) is first split into two sub-cases: (3.1)
pc(s,r) = ws and (3.2) (pc(s,r) = ws) = false.
Case (3.2) can be discharged, its proof score fragment is as
follows:

open INV .
op s : -> Sys . ops p q r : -> Pid .
eq (pc(s,r) = ws) = false .
red mutex(s,p,q) implies mutex(try(s,r),p,q) .
close

where INV is the module in which the specification of
Anderson together with mutex are available, open makes
the module INV available, close stops the use of the
module and red reduces (computes) the given term. Feeding
this proof score fragment into CafeOBJ, CafeOBJ returns
true, meaning that the case is discharged.

Case (3.1) is applied case splitting several more times as
shown in the Figure. With case (3.1.1.1.2.1), it requires us to
use a lemma to discharge the sub-case. Case (3.1.1.1.2.1) says
that process p is located at cs, process r (or q since q = r)
is located at ws and array(s,place(s,r)) = true.
In this case, process r can move to cs, breaking the property
concerned because there are two processes p and r located
at cs. That is the reason why we need to conjecture a lemma
to discharge this case. Such a lemma can be conjectured
from the assumptions made in this case. We have conjectured
inv1 as such a lemma, which is as follows:

eq inv1(S,P,Q) = ((array(S,place(S,P)) = true
and pc(S,P) = ws and (P = Q) = false) implies
((pc(S,Q) = ws and array(S,place(S,Q)) = true)
or pc(S,Q) = cs) = false) .

Then, in the proof score of case (3.1.1.1.2.1), we use inv1
as a lemma:

open INV .
op s : -> Sys . ops p q r : -> Pid .
eq pc(s, r) = ws .
eq array(s,place(s,r)) = true .
eq p = r . eq (q = r) = false .
eq pc(s,q) = cs .
red inv1(s,r,q) implies mutex(s, p, q)
implies mutex(try(s, r), p, q) .
close

The remaining cases can be discharged likewise. The proof
of mutex does not require any other lemma except for
inv1. We need to prove that inv1 is an invariant of the
OTS formalizing Anderson to complete the verification. If
inv1 is not an invariant of the OTS formalizing Anderson,
there exists a state such that there are two different processes
P and Q where P can freely enter the critical section and
Q is locating at the critical section or can freely enter the
critical section. In both cases, the mutual exclusion property
is broken. That is the reason why inv1 must be an invariant
of the OTS formalizing Anderson.

In the proof of inv1, we need to use another lemma
inv7 that is as follows:

eq inv7(S,P) = (pc(S,P) = ws or pc(S,P) = cs)
implies (0 < count(S)) .

where S is a CafeOBJ variable of Sys, P & Q are CafeOBJ
variables of Pid. inv7 intuitively says that if there exists
a process located at ws or cs in a state S, count(S) is
greater than 0. Considering the roles of count that keeps
track of the number of processes that have moved to ws and
not yet left cs, namely the number of processes that are
located at ws or cs, inv7 must be an invariant of the OTS
formalizing Anderson.

In the proof of inv7, we need to use a lemma inv7-2
that is as follows:

eq inv7-2(S,P,Q) = ((pc(S,P) = ws or pc(S,P)
= cs) and (pc(S,Q) = ws or pc(S,Q) = cs) and
(P = Q) = false) implies (s(0) < count(S)) .

inv7-2 intuitively says that if there are two different
processes located at ws or cs in a state S, count(S)
is greater than 1.

In the proof of inv7-2, we need to use a lemma inv7-3
that is as follows:

eq inv7-3(S,P,Q,R) = ((pc(S,P) = ws or pc(S,P)
= cs) and (pc(S,Q) = ws or pc(S,Q) = cs) and
(pc(S,R) = ws or pc(S,R) = cs) and (P = Q)
= false and (P = R) = false and (Q = R)
= false) implies (s(s(0)) < count(S)) .

where R is a CafeOBJ variable of Pid. inv7-3 intuitively
says that if there are three different processes located at ws
or cs in a state S, count(S) is greater than 2.

It seems necessary to use an unlimited number of similar
lemmas to complete the proof of inv7. If CafeOBJ made
it possible to use an operator with a variable number of
parameters, we could generalize the lemmas:

eq inv7-k(S,P1,...,Pk) = ((pc(S,P1) = ws or
pc(S,P1) = cs) and ... and (pc(S,Pk) = ws or
pc(S,Pk) = cs) and (P1 = P2) = false
and ... and (P(k-1) = Pk) = false)
implies (sˆ{k-1}(0) < count(S)) .

where sˆ{k-1}(0) denotes k−1. k can vary like a variable
and the number k of parameters can change. It is, however,
impossible to deal with such an operator with a variable
number of parameters in CafeOBJ. That is the reason why
we got stuck several months to prove that Anderson enjoys
the mutual exclusion property. If we could complete the
proof of inv7, then the verification is accomplished.

V. INTRODUCING AN AUXILIARY VARIABLE

A. Introducing psInWsCs

The proof of inv7 seems so tough despite its obviousness.
We overcome the problem by introducing an observer (also
can be called an auxiliary variable) psInWsCs that records

129

Table I
CASE SPLITTING FOR THE PROOF OF INV7

(1.1.1.1) pc(s,p) = cs, csb1, csb2, csb3

(1.1.1.2) pc(s,p) = cs, csb1, csb2, ¬csb3
(1.1.2) pc(s,p) = cs, csb1, ¬csb2
(1.2) pc(s,p) = cs, ¬csb1
(2) pc(s,p) = rs

(3.1.1.1) pc(s,p) = ws, csb1, csb2, csb3

(3.1.1.2) pc(s,p) = ws, csb1, csb2, ¬csb3
(3.1.2) pc(s,p) = ws, csb1, ¬csb2
(3.2) pc(s,p) = ws, ¬csb1

all processes currently located at ws or cs. The observer is
declared as follows:

op psInWsCs : Sys -> SetPids .

where SetPids is the sort denoting the set of process IDs.
psInWsCs is defined in the initial states and each transition
as follows:

eq psInWsCs(init) = emp .
ceq psInWsCs(want(S,P)) =

insert(P,psInWsCs(S)) if c-want(S,P) .
eq psInWsCs(try(S,P)) = psInWsCs(S) .
ceq psInWsCs(exit(S,P)) =

delete(P,psInWsCs(S)) if c-exit(S,P) .

where emp is the constant of sort SetPids representing
the empty set. The equations say that initially, psInWsCs
is empty; when process P moves to ws from rs, P is inserted
into psInWsCs; when process P moves to rs from cs, P
is removed from psInWsCs; psInWsCs does not change
when P moves to cs from ws.

Then, we can complete the proof of inv7 by using the
following lemmas:

eq inv10(S) = #(psInWsCs(S)) = count(S) .
eq inv11(S,P) = (pc(S,P) = ws or pc(S,P) = cs)
implies P \in psInWsCs(S) .

eq inv12(SE,E) = E \in SE implies 0 < #(SE) .

where # is the operator taking a set as the parameter and
returning the size of it, \in is the infix operator checking
the existence of an element in a set, SE and E are CafeOBJ
variables denoting arbitray set and element, respectively. To
prove inv7, we do not need to apply structural induction, but
only case splitting is enough. Table I shows the case splitting
for the proof of inv7, where each csbi for i = 1, 2, 3 is as
follows:
csb1 , (count(s) = #(psInWsCs(s)))
csb2 , p \in psInWsCs(s)
csb3 , 0 < #(psInWsCs(s))

For example, the proof fragment of case (1.1.1.2) is as
follows:

open INV .
ops p r : -> Pid . op s : -> Sys .
eq pc(s,p) = cs .
eq count(s) = #(psInWsCs(s)) .
eq p \in psInWsCs(s) = true .
eq (0 < #(psInWsCs(s))) = false .
red inv12(psInWsCs(s),p) implies inv7(s,p) .
close

The proof of this case uses inv12 as a lemma. Let us
repeat again that, to prove inv7, we do not apply structural
induction, but only conduct case splitting. The proof of case
(3.1.1.2) also uses inv12 as a lemma. The proofs of cases
(1.1.2) and (3.1.2) use inv11 as a lemma. The proofs of
cases (1.2) and (3.2) use inv10 as a lemma. The remaining
cases are proved without any lemma.

To complete the verification, we also use the following
lemmas:

eq inv2(S,P) = ((pc(S,P) = cs)
implies (array(S,place(S,P)) = true)) .

eq inv3(S,G,H) = (((G = H) = false and
array(S,G) = true)
implies (array(S,H) = false)) .

eq inv4(S,P,Q) = (place(S,P) = place(S,Q) and
(pc(S,P) = rs) = false and (P = Q) = false)
implies (pc(S,Q) = rs) .

eq inv5(S,P,I) = (pc(S,P) = ws and
place(S,P) = ((I + next(S)) rem No))
implies ((I + count(S)) < No) = false .

eq inv6(S,P) = (place(S,P) < No) .
eq inv8(S,I) = (array(S,I) = true implies
next(S) = (I + count(S)) rem No) .

eq inv9(S) = (next(S) < No) .

The proof of inv1 uses mutex, inv4, inv8, and inv7
as lemmas. The proof of inv2 uses mutex as a lemma.
The proof of inv3 requires the use of inv2 as a lemma.
inv4 would be the most complicated invariant, its proof uses
inv1, inv2, inv5, inv6, inv7, and inv8 as lemmas.
To prove inv5, we need to use inv2, inv4, inv6, inv7,
and inv8 as lemmas. mutex and inv9 are used as a lemma
in the proof of inv6. The proof of inv8 uses inv2 and
inv3 as lemmas. We can prove inv9, inv11, and inv12
without using any other lemma. The proof of inv10 requires
to use inv11 as a lemma.

B. Discussion

To prove a property is an invariant of an OTS, we need to
conjecture some additional lemmas that are also invariants
on the fly during the proof. It is often the case such that
the lemma conjectured is not easy to prove such as inv7
in this paper. Sometimes, in some non-trivial sub-cases of
the induction proof, we do not have enough information
to verify that the lemma is preserved by a transition. Let
us return to inv7 and its lemmas inv7-2, inv7-3, etc.
in the last section to explain the difficulty made us could
not complete the proofs of them and the reason why it is
necessary to introduce auxiliary variables like psInWsCs.

130

The premise of inv7 or each inv7-k says that there exists
a set of processes that currently located at ws or cs, and its
corresponding conclusion concludes that count is greater
than or equal to the size of that set. However, we do not
have enough information to calculate the value of count
to make the comparison because we can not observe the
full set of all processes currently located at ws or cs. We
only know that there explicitly is/are one (P), or two (P
and Q), or three (P, Q, and R) process(es) currently located
at ws or cs corresponding to each inv7, or inv7-2, or
inv7-3, respectively. That is the reason why the proof of
inv7 or each of inv7-k becomes so tough or even almost
impossible. Since the difficulty comes from the impossibility
of observing the full set of all processes currently located at
ws or cs, we introduce the observer psInWsCs recording
the collection of processes that have entered ws and not yet
left cs. Consequently, we overcome the difficulty, accomplish
the proof inv7 as well as the complete verification.

VI. RELATED WORK

Tran and Ogata [2] have made an abstract version of
Anderson, which is called A-Anderson protocol, and for-
mally verified that A-Anderson enjoys the mutual exclusion
property. The verification is conducted in three ways: (1)
by writing proof scores in CafeOBJ, (2) with a proof
assistant CiMPA [5] for CafeOBJ and (3) with a proof
generator CiMPG [5] for CafeOBJ. The paper has also
mentioned how to formally verify that Anderson enjoys
the mutual exclusion property by showing that there exists
a simulation relation from Anderson to A-Anderson, and
such simulation preserves the property. The details of this
verification technique, however, were not presented in [2]
due to the page-limitation. They mentioned that they would
report that part in a longer version.

Lamport and Merz [6] has described how to introduce
auxiliary variables into TLA+ specifications to prove a
refinement mapping between two TLA+ specifications (i.e.,
the set of observable behaviors of the first specification is a
subset of the behaviors of the second one). Auxiliary variables
have been classified into three kinds: history, prophecy and
stuttering variables. History variables are used to record what
has happened in the past (including the present). Prophecy
variables are used to predict what will happen in the future.
Stuttering variables are used to introduce stuttering steps.
psInWsCs we have used in this paper corresponds to a
history variable. Lamport and Merz use auxiliary variables
to make it possible to find a refinement map from a TLA+
specification to another TLA+ specification. While we use
psInWsCs to complete the proof that a property is an
invariant of the OTS formalizing Anderson.

Auxiliary variables, go back to the past were originally
introduced by Owicki and Gries [7] in the form of history
variables. Later, Abadi and Lamport [8] have introduced the
idea of prophecy variables. In [8], Abadi and Lamport have

presented how to use both history and prophecy variables
to prove that one program is a correct implementation of a
specification, by showing that the former refines the latter.

VII. CONCLUSION

We have formally verified that Anderson protocol to
which an auxiliary variable is introduced enjoys the mutual
exclusion property. Consequently, we can conclude that
Anderson enjoys the property. Originally, we got stuck
several months in the verification attempt because the proof
requires a lemma that is so tough to prove the correctness
of it. Introducing an auxiliary variable psInWsCs helps
us to accomplish the proof of that lemma, leading to
the complete formal verification. psInWsCs records all
processes currently located at cs or ws, which means that
it does not affect the current or future values of any other
variables. Thus, it can be guaranteed that adding psInWsCs
does not change the behavior of Anderson.

Conjecture lemma has been considering as one of the
most challenging tasks to formally prove that a property
is an invariant of an OTS. Normally, we can not always
conjecture the best lemma every time we need to use a
lemma. Sometimes, the lemma is so tough or even almost
impossible to prove such as inv7 in this paper. Then,
introducing auxiliary variables into the specification can
help us to complete the lemma’s proof as well as the formal
verification such as psInWsCs in the present paper. We can
understand the reason why we need to introduce psInWsCs
in the formal verification of Anderson case study. However, in
general, we have not had a contented answer for the question:
when we need to introduce auxiliary variables to complete
formal verification of other case studies? That should be one
piece of our future work to answer such a question.

REFERENCES

[1] T. E. Anderson, “The performance of spin lock alternatives for
shared-memory multiprocessors,” IEEE Trans. Parallel Distrib.
Syst., vol. 1, no. 1, pp. 6–16, 1990.

[2] D. D. Tran and K. Ogata, “Formal verification of an abstract
version of Anderson protocol with CafeOBJ, CiMPA and
CiMPG,” in SEKE 2020, 2020, pp. 287–292.

[3] K. Ogata and K. Futatsugi, “Proof scores in the OTS/CafeOBJ
method,” in FMOODS 2003, 2003, pp. 170–184.

[4] R. Diaconescu and K. Futatsugi, CafeOBJ Report, ser. AMAST
Series in Computing. World Scientific, 1998, vol. 6.

[5] A. Riesco and K. Ogata, “Prove it! Inferring formal proof
scripts from CafeOBJ proof scores,” ACM Trans. Softw. Eng.
Methodol., vol. 27, no. 2, pp. 6:1–6:32, 2018.

[6] L. Lamport and S. Merz, “Auxiliary variables in TLA+,” CoRR,
vol. abs/1703.05121, 2017.

[7] S. S. Owicki and D. Gries, “An axiomatic proof technique for
parallel programs I,” Acta Informatica, vol. 6, pp. 319–340,
1976.

[8] M. Abadi and L. Lamport, “The existence of refinement
mappings,” Theor. Comput. Sci., vol. 82, no. 2, pp. 253–284,
1991.

131

Using LSTM to Predict Tactics in Coq
Xiaokun Luan, Xiyue Zhang, Meng Sun

School of Mathematical Sciences, Peking University, Beijing, China
{luanxiaokun,zhangxiyue,sunm}@pku.edu.cn

Abstract—Quality assurance of rapidly evolving systems is
increasingly important for their deployment to real-life applica-
tions. Despite the challenges posed by the increasing complexity
of these systems, various techniques have been developed to check
their correctness, such as theorem proving, which is a powerful
formal verification method that can provide a complete guar-
antee. However, the proving process in the interactive theorem
provers like Coq highly relies on human interactions, making the
proving process difficult and time-consuming. To automate the
proving process in Coq, we present a framework for predicting
tactics in Coq by using Long Short Term Memory (LSTM).
We take into account the effect of the dataset proof style on
machine learning and create a new dataset following a specific
proof style. We use the generated data to train an LSTM-based
neural network that could give tactic predictions based on the
proof context. This neural network reaches an accuracy of 58%
if we only use the first predicted tactic and reaches an accuracy
of 87% if we select the first three tactic suggestions, achieving a
15.2% and 12.8% improvement rate, respectively, compared to
the methods in previous work.

I. INTRODUCTION

In the last few decades, our reliance on software systems
has rapidly grown. Quality assurance of such systems is
thus necessary and crucial for their deployment to real-life
applications. Despite the challenges posed by the increasing
complexity of these systems, many techniques have been
developed to check their functional correctness, e.g., testing
and verification. Compared with testing techniques, formal
verification could provide a complete guarantee of the critical
properties of software systems. Theorem proving is one of
the most popular formal verification methods, where systems
are modeled in an appropriate mathematical logic, and critical
properties are represented as propositions to be proved and
verified in theorem provers. Up to present, theorem proving
has been successfully applied to various domains such as
computer science [1], artificial intelligence [2], economy [3],
biomedical [4] and self-adaptive systems [5].

Theorem provers are mainly categorized into two types:
Automated Theorem Provers (ATPs) such as Alt-Ergo [6], and
SPASS[7], and Interactive Theorem Provers (ITPs) such as
Coq [8], Isabella [9], and PVS [10]. Though the reasoning pro-
cess is automated in ATPs, they usually suffer from complexity
and expressive power problems. In contrast, the expressive
power of ITPs are usually stronger, which makes them more
suitable for the formalization of “most non-trivial theorems in
mathematics or computer system correctness” [11]. However,
they require human interaction with computer in the process of
proof construction, which is the reason that they are also called

DOI reference number: 10.18293/SEKE2021-047

proof assistants. Coq is one of the interactive theorem provers.
It allows users to declare propositions and prove them. When
users are proving propositions, they are actually constructing
proof terms with the help of commands called tactics. This
process of constructing proofs highly relies on human interac-
tions, which can make the proving process difficult and time-
consuming. It is quite often that some intuitively obvious facts
require tedious proofs in Coq. In general, proving process in
most ITPs is labor-intensive due to the lack of automation.

Many efforts have been made to improve the degree of
automation of interactive theorem provers. For example, the
Coq team provided Ltac [12] to support custom tactics and
a set of automatic tactics like auto and congruence that
realize partial automation in certain domains. Recently ma-
chine learning techniques have been investigated to automate
the proving process. [13] presented ML4PG that gathers
data from a general proof interface ProofGeneral, and used
clustering algorithms to learn and predict dependencies of
goals. [14] tried several machine learning techniques to learn
proof dependencies from formalization done with Coq system.
TacticToe was developed in [15] for HOL4 theorem prover,
which implements a modified A∗-algorithm to automate the
tactic selection in proof search. [16] presented a reinforcement
learning environment for theorem proving and a deep learning
driven automated theorem prover for higher-order logic. [17]
leveraged Recurrent Neural Network (RNN) to predict Coq
tactics for property verification in the domain of coordination
language. [18] used k-nearest neighbor algorithm to learn from
previous proof scripts for tactic proof search in Coq. [16], [17],
and [18] all work on tactic level learning, through which the
predicted tactics can be directly applied to proceed the proof
and custom tactics can also be supported. However, the focus
of most existing works has been more on the modeling design
than on the dataset construction, where the datasets are mostly
directly extracted from raw proof scripts such as standard Coq
libraries. We need to put more efforts on the construction of
dataset to obtain higher quality data so that, combined with
an effective learning model, we can achieve better automating
performance.

In this paper we present a framework for predicting tactics
in Coq using a Long Short Term Memory-based (LSTM-
based) neural network [19]. We re-prove a theorem library
following a specific proving style to create a new dataset, and
use this dataset to train an LSTM neural network to learn
and predict potential tactics with several hypotheses and a
proof-goal as input. The contributions of our work can be
summarized as follows:

1) We take a different approach to create training and test
data. The specific proving style we adopted to re-prove

132

theorems makes the learning task more consistent and
simple for LSTM-based networks.

2) We design an LSTM-based neural network to learn and
predict tactics in Coq. This new architecture could sta-
bilize hidden state dynamics and reduce overfitting, re-
sulting in better performance for automating the proving
process.

3) We perform experimental evaluation on the effectiveness
of our method, which reaches an accuracy of 58% if we
only use the first predicted tactic, and reaches an accuracy
of 87% if we use the top three tactic suggestions, achiev-
ing a 15.2% and 12.8% improvement rate, respectively,
compared to the baseline.

The rest of this paper is organized as follows: In Section II
we briefly introduce how tactics work in Coq. The construction
of our dataset and pre-processing steps are explained in
Section III. The design of our LSTM-based neural network
is elaborated in Section IV, and evaluation of our approach
is provided in Section V. Finally, Section VI concludes this
paper and discusses some future research directions.

II. BACKGROUND

A. Tactics in Coq

As an interactive theorem prover, Coq allows users to
declare and prove propositions and then to extract certified
programs from the certified proofs. After declaring a propo-
sition in Coq, users enter the proof mode. In this mode, the
proposition to be proved is called a goal, and users can apply
commands called tactics to decompose the goal into simpler
subgoals or to solve it directly. The decomposition process
ends when there are no more subgoals. An interaction in Coq
is a context-tactic pair as shown in Figure 1, where the context
contains hypotheses we currently have and a set of subgoals
we need to prove.

Fig. 1. An Interaction in Coq

Some tactics can be directly applied to the goal, others
require arguments. For example, the split tactic can be
directly applied to a conjunctive goal with no arguments, while

the apply tactic means applying a known theorem to the goal
and thus requires arguments, and the intros tactic can be
used either with or without arguments, only differing on the
names of the introduced hypotheses. In our framework, we
only consider predicting tactic names, with tactic arguments
excluded, since higher order logic is undecidable.

Different tactics may have the same effect on some goals.
For example, when there is only one hypothesis to be intro-
duced, the effects of the intro tactic and the intros tactic
are the same. Besides, in most cases there is more than one
way to construct the proof, that is to say, a proposition can be
proved by different sequences of tactics, different users may
have different proof styles of using tactics.

B. Assumptions

Several assumptions on proving process in Coq are made in
[17] based on the observations and expert experience, which
turns out to be effective in tactic prediction. We follow the
assumptions (1-3) made in [17] in our framework. Besides
that, we make an extra assumption (4). Basically, the first
two assumptions allow us to use only hypotheses and the
first subgoal to make predictions without considering all the
subgoals. The third and the forth assumptions serve as the basis
for data pre-processing and data augmentation respectively,
which we will describe in more details later on. All the
assumptions are summarized as follows:

1) Proofs of subgoals are independent of each other, which
means that tactics to prove a subgoal do not depend on
proofs of any other subgoals.

2) Rearranging the order of subgoals is not considered in
our proving process, so the tactic we use and suggest is
only applied to the first subgoal or current hypotheses.

3) When looking for a proper tactic to use, the structure of
a Coq term is more important than its content.

4) Tactics can be applied to either a subgoal or one or more
hypotheses.

III. DATASET AND DATA PRE-PROCESSING

A. Dataset Construction

Using a neural network to predict appropriate tactics for
proving process requires a dataset for training and testing. As
we mentioned in the previous section, proofs in Coq can be
written in different proof styles. There are good and bad proof
styles for neural network learning. Although it is difficult to
formally specify what a good proof style is, we provide several
heuristics to distinguish a good proof style from a bad one. A
good proof style for learning is supposed to be consistent,
otherwise it can cause confusion for the learning process.
For example, if we use different tactics in similar context,
in other words, we follow an inconsistent proof style, then the
minimization of loss function will be hindered, resulting in
poor prediction performance. Besides, we should also consider
the inherent learning difficulty of the proof style. A good proof
style should not use overly complicated tactic mechanism, nor
should it have tactics that are seldom used, so that it would be
more simplified and consistent for a machine learning model
to learn.

133

The standard Coq libraries constitute a large dataset for
machine learning, many approaches are developed based on
this dataset. However, according to the heuristics these theo-
rem libraries’ proof styles are not suitable for neural network
learning for the following reasons:

1) Inconsistency: Since these libraries are developed by
different authors, they usually have different proof styles.
For example, SSReflectis a collection of libraries for the
SSReflect [20] proof language and its proof style is quite
different from the others.

2) Complexity: Advanced tactics are intensively used for
conciseness and robustness, such as using tactical to
combine several tactics as a compound tactic, which
makes it more difficult to learn.

3) Infrequently used tactics: Some libraries define custom
tactics to reduce repetition, but these tactics will neither
be used in other libraries nor in practical proving process.

Therefore, we cannot utilize the standard Coq libraries as our
dataset, instead we need to create a new dataset with a specific
proof style that is not only consistent but also easy to learn.

Following the above heuristics, we manually create a theo-
rem library about the properties of Reo [21] connectors in the
domain of coordination language as our dataset. This domain-
specific theorem library is constructed based on the rough
proof scripts provided in [17]. The proof style we use when
building the theorem library is quite like that of a novice, so
we call this proof style the novice proof style, the benefits of
which are summarized as follows:

1) Consistency. All proofs are written in a consistent style,
we prioritize different tactics, so that for similar context
we always use the same tactic to proceed the proof.

2) Simplicity. We only use one tactic at a time, and we
avoid using unnecessary repeated tactics, for example, we
use a single intros to introduce all the hypotheses and
variables instead of a series of intros (Note that intro
and intros are two different tactics with similar names
and functions).

3) Restricted tactics. We restrict ourselves to a set of fre-
quently used tactics to write proofs, including 23 tactics
in total, as illustrated in Figure 2.

Fig. 2. Supported Tactics in Our Framework

When building our theorem library, we add a few new lem-
mas to complete the original proof. In the end, the constructed
dataset contains 31 theorems and lemmas, all of which are
fully proved, with a total of 830 lines of codes, while the
original one contains 1 fully proved theorem and 9 partially
proved theorems, with a total of 383 lines of codes.

B. Data Pre-Processing

We follow the pre-processing method in [17], which con-
tains three steps as follows:

1) Use a Python script to write the Coq proof scripts line by
line to SerAPI [22], which performs machine-to-machine
interaction with Coq through S-expressions and extracts
context-tactic pairs.

2) Refactor extracted Coq terms by adding corresponding
term types as structural information based on the assump-
tion (3).

3) Perform word encoding on hypotheses and the goal to get
fixed-length vectors, since Coq programming language
does not have finite dictionary nor semantics similarity.
We fix a maximal length of words, and for each word we
map its character to its ASCII code and fill the rest part
with zero.

4) Apply one-hot encoding on tactic names to get one-hot
vectors as sample labels.

However, we use different parameters for word encoding to
eliminate redundant zeros. The purpose of this adjustment is
to reduce input dimensions (dimensions of input are reduced
from 5120 to 1360) and computational complexity. Since we
use a restricted set of tactics, the dimension of the output is
also reduced.

In the end, we obtain 526 samples from the constructed
theorem library. These samples constitute a database in our
learning framework, each of which is composed of a variable
length sequence as input and a one-hot vector as output. The
sequence consists of the first subgoal and several hypotheses
if there is any, and the subgoal is always the last item in the
sequence. The dataset in [17] contains 173 samples, but there
are 12 samples labeled by the ‘admit’ tactic, which cannot
be used in a full proof, thus reducing the actual samples from
173 to 161.

IV. LEARNING TACTICS THROUGH LSTM

According to the assumptions, our problem can be regarded
as a sequence classification problem, for which the most
popular solution is RNNs. However, vanilla RNNs suffer
from issues of vanishing gradient. To reduce impacts of the
gradient vanish problem, LSTM (with cell memory and gate
control) [19] is proposed and widely adopted to deal with tasks
when long-term dependencies need to be captured. Therefore,
we choose to build an LSTM-based neural network in our
framework. The structure of our neural network is shown in
Figure 3, including an LSTM layer, a layer normalization layer,
a dropout layer and a fully-connected layer.
• LSTM Layer: The neural network has an LSTM layer

containing 512 self-connected hidden units. The activa-
tion function is tanh and the gate activation function is
Sigmoid function.

• Layer Normalization Layer: After the LSTM layer we add
a layer normalization layer where the output of LSTM
layer is normalized to zero mean and unit variance.

• Dropout Layer: Cells in this layer are randomly dis-
connected according to dropout rate (set as 0.5 in our
framework) when training.

134

Fig. 3. Network Architecture

30 40 50 60 70 80 90 100

Original Model on
Original Dataset

Our Model on
Original Dataset

Original Model on
Our Dataset

Our Model on
Our Dataset

50.31

50.93

56.2

57.97

68.32

68.94

78.48

80.46

77.64

79.5

86.97

87.58

n-corrnectness (%)

Cross Validation Results

n = 1

n = 2

n = 3

Fig. 4. Cross validation results of different models on original dataset and our dataset

• Fully-connected Layer: A fully-connected layer uses soft-
max as its activation function to normalize its output as
a probability distribution.

The loss function of our neural network is cross-entropy
function, which measures the difference between two proba-
bility distributions. For two probability distributions p and q,
their cross-entropy is defined as:

H(p,q) =−∑
x

p(x) · logq(x)

The layer normalization [23] can stabilize hidden state
dynamics for recurrent neural network and also help with
reducing training time. The normalization is not implemented
in unit-level but in layer-level, because the unit-level approach
is much more complicated and more computational expensive
but has roughly the same performance as layer-level approach.

In order to overcome the overfitting problem caused by the
limited data and high input dimensions, we add the dropout
layer. We also use label smoothing [24] technique, which
is another frequently used regularization method. With label
smoothing, the hard 0 and 1 classification targets in the ground
truth one-hot vector y will be replaced with targets of ε

k−1 and
1−ε respectively, where ε is the smoothing parameter and k is
the class number, thus prevents the pursuit of hard probabilities
without discouraging correct classification.

We also use data augmentation to generate more training
data to deal with the overfitting problem. In the pre-processing
step, the context in an interaction is transformed into a
sequence, where the last item is the goal to be proved and

the others are hypotheses. Users who are familiar with Coq
should be aware that the order of hypotheses is independent of
the tactic that can be used. This fact inspires us to perform data
augmentation by shuffling hypotheses. We perform shuffling
on the goal and hypotheses together, since tactics can be
applied to either a subgoal or any hypotheses according
to assumption (4), which means that there is no essential
difference between the goal and hypotheses for predicting
tactics. Each sample sequence in the training set is shuffled
440 times in a way that every synthetic sample is different
from other samples whenever possible. For those samples with
too few hypotheses to get enough distinct synthetic samples
(less than 5 hypotheses since 5! < 440≤ 6!), we use their full
permutations as the generated samples.

In the training process, the neural network is trained for 30
epochs with a batch size of 256, and we use the RMSprop
optimizer with learning rate set as 0.001, ρ set as 0.9, ε

set as 10−7 and clipnorm set as 0.8. The label smoothing is
0.1. Initial kernel weights of LSTM layer are set by Glorot
uniform initializer, initial recurrent weights of LSTM layer
are set orthogonally, and initial bias is set as zero vector.

V. EVALUATION

Our neural network is implemented in Keras [25], a high-
level neural networks API in Python. Multiple popular ma-
chine learning frameworks are supported by Keras, and we
use Tensorflow as its backend. We train the neural network on
our dataset and [17]’s dataset separately. Experiments are run

135

Fig. 5. The prediction for an validation sample and its true label

with an NVIDIA Tesla P100 GPU, 2 cores of Intel Xeon as
CPU and 13 GB memory.

As there are often multiple tactics that can help with the
proof process, the evaluation should not be constrained by a
single correct answer provided by the proof scripts. Instead,
we use n-correctness rate [17] to evaluate the tactic prediction
performance. n-correctness rate measures the likelihood that
the top n tactics predicted by the network are actually useful
for theorem proving, which is defined as follows.

Definition 5.1 (n-correctness rate): The output of the net-
work is a probability distribution, if the probability of the
targeted tactic (provided by the dataset) is in top n, we say that
this prediction is n-correct, and the corresponding correctness
rate is called n-correctness rate.

We use cross validation to evaluate the tactic prediction
performance of our approach, with the performance of the
method in [17] as comparison baseline. We perform ablation
experiments to evaluate the effectiveness of the constructed
dataset and network design. Specifically, the original neural
network is trained on our new dataset to evaluate the useful-
ness of the dataset. The proposed neural network is trained
on the original dataset to evaluate the effectiveness of the
network design. On our dataset, we evaluate neural network
performance by repeating 10-fold cross validation 10 times.
In other words, 10-fold cross validation procedure is repeated
10 times and the mean result across all runs is regarded as our
final evaluation. While on the original dataset, we use leave-
one-out cross validation to evaluate the performance, given

that this dataset is smaller. Data augmentation is applied when
training our model, but each sample in the original training set
is shuffled 130 times, not 440 times. We use this evaluation
method due to the limited size of the datasets, where the
train-test split method may result in different distributions of
training and test sets. The experiment results are shown in
Figure 4.

Compared to baseline, our approach achieves a 15.2%,
17.8%, and 12.8% improvement rate on the 1-correctness,
2-correctness, and 3-correctness rate. With regard to the ef-
fectiveness of the proposed network design, on the original
dataset the 1-correctness, 2-correctness, and 3-correctness rate
of our neural network is 0.62%, 0.62%, and 1.86% higher
than the original neural network, respectively. On our dataset,
the improvements are 1.77%, 1.98%, and 0.61%, respectively.
Regarding the usefulness of the constructed dataset, the 1-
correctness, 2-correctness, and 3-correctness rate of the orig-
inal neural network on our dataset is improved by 11.7%,
17.4%, and 12.0%, respectively, compared to the original
dataset. As for our neural network, the improvement rates are
13.8%, 16.7%, 10.2%, respectively.

The design of our neural network, including the archi-
tecture and the use of regularization techniques, has led to
improved performance. But the constructed dataset serves as
a major factor contributing to the performance improvement,
which significantly reduces the machine learning difficulty. In
summary, our LSTM-based neural network outperforms the
original neural network on both datasets, and our dataset is

136

easier for LSTM-based neural network to learn, both of which
together make our approach perform better.

After taking a closer look at how our neural network
performs on the validation set, we find an interesting phe-
nomenon. On some samples, our neural network gives dif-
ferent predictions from the ground truth. However, these
suggested tactics actually can solve the goal, which is exactly
the situation we mentioned before. Figure 5 is an illustration
for such phenomenon, where both the tactic we use and the
prediction of our network can solve the goal. This interesting
phenomenon indicates that our n-correctness-based evaluation
of our model performance is very pessimistic, the actual
performance should be even better.

VI. CONCLUSION

In this paper, we present a framework for predicting tactics
to automate the process of proving properties of a specific
domain in Coq. In order to automate the proving process
in Coq, we create a new dataset by re-proving a theorem
library used in [17] in the novice proof style, and train an
LSTM-based neural network on this dataset to predict tactics
based on proof context. Experiment results show that our
approach to creating dataset makes the learning task easier for
LSTM-based networks and that the proposed neural network
outperforms the baseline, where the correctness of our network
is almost 90% if we select first three suggested tactics. Besides,
we find that our model is capable of giving suggestions
which differ from ground truth in our dataset but can actually
proceed the proof. This phenomenon indicates that the actual
performance of the network is even better.

In the future, we plan to try reinforcement learning on
this problem and try more loss function design for higher
correctness rate. Gathering more data is another future work
to improve network performance. Since manually building
proofs is inefficient, we can try generating simple proofs from
existing complex proofs.

ACKNOWLEDGMENTS

This research was supported in part by the
Guangdong Science and Technology Department (Grant
No.2018B010107004); the National Natural Science
Foundation of China under grant No.61772038, 61532019.

REFERENCES

[1] J. H. Gallier, Logic for Computer Science: Foundations of Automatic
Theorem Proving. USA: Harper & Row Publishers, Inc., 1985.

[2] H. Wang, Computer Theorem Proving and Artificial Intelligence. Dor-
drecht: Springer Netherlands, 1990, pp. 63–75.

[3] M. Kerber, C. Lange, and C. Rowat, “An introduction to mechanized
reasoning,” Journal of Mathematical Economics, vol. 66, pp. 26–39,
2016.

[4] A. Rashid, O. Hasan, U. Siddique, and S. Tahar, “Formal reasoning
about systems biology using theorem proving,” PLOS ONE, vol. 12,
no. 7, pp. 1–27, 07 2017.

[5] D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T. Ahmad, “A survey
of formal methods in self-adaptive systems,” in Fifth International C*
Conference on Computer Science & Software Engineering, C3S2E ’12,
Montreal, QC, Canada, June 27-29, 2012. ACM, 2012, pp. 67–79.

[6] S. Conchon, A. Coquereau, M. Iguernlala, and A. Mebsout, “Alt-Ergo
2.2,” in SMT Workshop: International Workshop on Satisfiability Modulo
Theories, Oxford, United Kingdom, Jul. 2018.

[7] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and
P. Wischnewski, “Spass version 3.5,” in Automated Deduction – CADE-
22, R. A. Schmidt, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 140–145.

[8] “Coq proof assistant,” http://coq.inria.fr/.
[9] “Isabella, a generic proof assistant,” https://isabelle.in.tum.de/.

[10] “PVS specification and verification system,” https://pvs.csl.sri.com/.
[11] J. Harrison, J. Urban, and F. Wiedijk, “History of interactive theorem

proving,” in Computational Logic, ser. Handbook of the History of
Logic, J. H. Siekmann, Ed. Elsevier, 2014, vol. 9, pp. 135–214.

[12] D. Delahaye, “A tactic language for the system coq,” in Logic for
Programming and Automated Reasoning, 7th International Conference,
LPAR 2000, Reunion Island, France, November 11-12, 2000, Proceed-
ings, ser. Lecture Notes in Computer Science, vol. 1955. Springer,
2000, pp. 85–95.

[13] E. Komendantskaya, J. Heras, and G. Grov, “Machine learning in
proof general: Interfacing interfaces,” in Proceedings 10th International
Workshop On User Interfaces for Theorem Provers, UITP 2012, Bremen,
Germany, July 11th, 2012, ser. EPTCS, vol. 118, 2012, pp. 15–41.

[14] C. Kaliszyk, L. Mamane, and J. Urban, “Machine learning of Coq
proof guidance: First experiments,” in 6th International Symposium on
Symbolic Computation in Software Science, SCSS 2014, Gammarth, La
Marsa, Tunisia, December 7-8, 2014, ser. EPiC Series in Computing,
vol. 30. EasyChair, 2014, pp. 27–34.

[15] T. Gauthier, C. Kaliszyk, and J. Urban, “Tactictoe: Learning
to reason with HOL4 tactics,” in LPAR-21. 21st International
Conference on Logic for Programming, Artificial Intelligence and
Reasoning, ser. EPiC Series in Computing, T. Eiter and D. Sands,
Eds., vol. 46. EasyChair, 2017, pp. 125–143. [Online]. Available:
https://easychair.org/publications/paper/WsM

[16] K. Bansal, S. Loos, M. Rabe, C. Szegedy, and S. Wilcox,
“HOList: An environment for machine learning of higher order
logic theorem proving,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. PMLR, 09–15 Jun 2019, pp. 454–463. [Online]. Available:
http://proceedings.mlr.press/v97/bansal19a.html

[17] X. Zhang, Y. Li, W. Hong, and M. Sun, “Using recurrent neural network
to predict tactics for proving component connector properties in Coq,”
in 2019 International Symposium on Theoretical Aspects of Software
Engineering, TASE 2019, Guilin, China, July 29-31, 2019. IEEE, 2019,
pp. 107–112.

[18] L. Blaauwbroek, J. Urban, and H. Geuvers, “Tactic learning and proving
for the coq proof assistant,” in LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming, Artificial Intelligence and
Reasoning, ser. EPiC Series in Computing, E. Albert and L. Kovacs,
Eds., vol. 73. EasyChair, 2020, pp. 138–150. [Online]. Available:
https://easychair.org/publications/paper/JLdB

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[20] G. Gonthier, A. Mahboubi, and E. Tassi, “A Small Scale Reflection
Extension for the Coq system,” Inria Saclay Ile de France,
Research Report RR-6455, 2016. [Online]. Available: https://hal.inria.
fr/inria-00258384

[21] F. Arbab, “Reo: a channel-based coordination model for component
composition,” Mathematical Structures in Computer Science, vol. 14,
no. 3, pp. 329–366, 2004.

[22] E. J. Gallego Arias, “SerAPI: Machine-Friendly, Data-Centric
Serialization for Coq,” MINES ParisTech, Tech. Rep., Oct.
2016. [Online]. Available: https://hal-mines-paristech.archives-ouvertes.
fr/hal-01384408

[23] L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR,
vol. abs/1607.06450, 2016.

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Los Alamitos, CA, USA: IEEE Computer Society, jun 2016, pp.
2818–2826. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/CVPR.2016.308

[25] F. Chollet et al., “Keras,” https://keras.io, 2015.

137

Formal specification and model checking of
a recoverable wait-free version of MCS

Duong Dinh Tran, Kentaro Waki, and Kazuhiro Ogata
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Email: {duongtd,kentaro.waki,ogata}@jaist.ac.jp

Abstract—MCS is widely known as one of the most efficient
and influential spinning lock mutual exclusion protocols. The
protocol, however, only works under the assumption that
processes do not crash while acquiring/releasing the lock or
being in the critical section. Furthermore, the exit segment
pseudo-code of MCS’s algorithm is not wait-free since a
process releasing the lock needs to wait for the next process
in the virtual queue to perform some steps. A new version
of MCS has been proposed by S. Dhoked and N. Mittal
such that the new version is wait-free and recoverable (i.e.,
if some processes crash, the protocol can recover and work
normally). In this paper, we formally specify the recoverable
wait-free version of MCS and conduct model checking to check
whether the protocol enjoys the mutual exclusion property.
Our experiments say that: (1) the property is not satisfied
if crashes are allowed to occur without any restriction, (2) the
protocol enjoys the property if crashes never happen at all, or
(3) if crashes have not occurred recently. We also describe
the challenge of how to formally specify dynamic memory
allocation and present our solution to solve that problem.

Keywords-mutual exclusion; MCS protocol; wait-free algo-
rithm; recoverable; dynamic allocation

I. INTRODUCTION

Concurrent or distributed systems require efficient mech-
anisms to handle conflict between concurrent accesses to
resources shared among several processes. Mutual exclusion
locks are known as one of the most common techniques
to solve such problems. Mutual exclusion guarantees that a
process only can access the shared resources inside the critical
section, and at most one process is allowed to enter the critical
section at any time. In 1991, J. M. Mellor-Crummey and M.
L. Scott proposed MCS mutual exclusion protocol [1]. Since
then, MCS itself together with several variants of it were
implemented and used in various environments. For example,
variants of MCS have been used in Java Virtual Machines.
The numerous implementations and extensive uses imply
that the protocol is one of the most efficient and influential
mutual exclusion algorithms.

However, a drawback of the MCS algorithm is that its
exit segment pseudo-code is not wait-free. An algorithm

This research was partially supported by JSPS KAKENHI Grant Number
JP19H04082.

DOI reference number: 10.18293/SEKE2021-065

is wait-free if every action of it by a process completes
within a bound number of steps regardless of the behavior of
other processes. In MCS, when a process leaving the critical
section and releasing the lock, it needs to wait for the next
process in the virtual queue to perform some steps. MCS also
only works under the assumption that processes do not crash
while acquiring/releasing the lock or while in the critical
section. Failures or crashes, however, are often possible to
happen in real systems. In [2], R. Dvir and G. Taubenfeld
have proposed an extension to the original MCS to make
the exit segment code wait-free. Based on the augmented
MCS in [2], S. Dhoked and N. Mittal [3] have continously
proposed another new version such that it is recoverable and
wait-free. The recoverable property says that a process may
crash at any point during its execution, but the protocol is
able to recover and work as normal. Hereinafter, let us call
the recoverable & wait-free version of MCS as RWfMCS.

In this paper, we formal specify RWfMCS and conduct
model checking to confirm that when the protocol enjoys
the mutual exclusion property and when it does not. Our
experiments say that: (1) the protocol does not satisfy the
mutual exclusion property if there is not any restriction
to the occurrence of crashes; (2) the protocol enjoys the
mutual exclusion property if crashes never happen; and (3)
the protocol satisfies the mutual exclusion property if crashes
have not occurred recently.

Formal specification of RWfMCS has a challenge in
specifying dynamic memory allocation. When a process
wants to enter the critical section, it first requests for
allocating memory to initialize an empty node. Roughly
speaking, nodes associated with processes are dynamically
created. Unfortunately, modeling dynamic allocation in
particular or dynamic systems in general is a non-trivial
problem in formal method. P. C. Attie and N. A. Lynch [4]
have addressed this problem and presented dynamic I/O
automata, which is an extension of I/O automata to model
and analyze dynamic systems. In this paper, we overcome
that problem by providing a fixed list of “empty nodes” from
the beginning. Every time a process requests for allocating
memory to construct a new empty node, a top node of the
list is extracted and used.

138

II. PRELIMINARIES

A Kripke structure K is 〈S, I, T, P, L〉, where S is a set
of states, I ⊆ S is the set of initial states, T ⊆ S × S is a
total binary relation over S, P is a set of atomic propositions
and L is a labeling function whose type is S → 2P . Each
element (s, s′) ∈ T is called a state transition from s to s′ and
T may be called the state transitions (with respect to K). For
a state s ∈ S, L(s) is the set of atomic propositions that hold
in s. A path π is an infinite sequence s0, . . . , si, si+1, . . . of
states such that si ∈ S and (si, si+1) ∈ T for each i. Let πi

be si, si+1, . . . and π(i) be si. Let P be the set of all paths.
π is called a computation if π(0) ∈ I . Let C be the set of
all computations.

The syntax of a formula ϕ in LTL for K is ϕ ::=
> | p | ¬ϕ | ϕ ∧ ϕ | © ϕ | ϕ U ϕ, where p ∈ P . Let F
be the set of all formulas in LTL for K. An arbitrary path
π ∈ P of K and an arbitrary LTL formula ϕ ∈ F of K,
K,π |= ϕ is inductively defined as K,π |= >, K,π |= p iff
p ∈ L(π(0)), K,π |= ¬ϕ1 iff K,π 6|= ϕ1, K,π |= ϕ1∧ϕ2 iff
K,π |= ϕ1 and K,π |= ϕ2, K,π |=© ϕ1 iff K,π1 |= ϕ1,
and K,π |= ϕ1 U ϕ2 iff there exists a natural number i
such that K,πi |= ϕ2 and for all natural numbers j < i,
K,πj |= ϕ1, where ϕ1 and ϕ2 are LTL formulas. Then,
K |= ϕ iff K,π |= ϕ for each computation π ∈ C of K. The
temporal connectives© and U are called the next connective
and the until connective, respectively. The other logical
and temporal connectives are defined as usual as follows:
⊥ , ¬>, ϕ1 ∨ϕ2 , ¬(¬ϕ1 ∧¬ϕ2), ϕ1 ⇒ ϕ2 , ¬ϕ1 ∨ϕ2,
♦ϕ , > U ϕ, and �ϕ , ¬(♦¬ϕ). The temporal connectives
♦ and � are called the eventually connective and the always
connective, respectively.

In this paper, to express a state of S, we use an associative-
commutative collection of name-value pairs. Associative-
commutative collections are called soups, and name-value
pairs are called observable components. That is, a state
is expressed as a soup of observable components. The
juxtaposition operator is used as the constructor of soups.
Let oc1, oc2, oc3 be observable components, and then
oc1 oc2 oc3 is the soup of those three observable components.
A state is expressed as {oc1 oc2 oc3}. There are multiple
possible ways to specify state transitions. In this paper, we
use Maude [5], a programming/specification language based
on rewriting logic, to specify them as rewrite rules. Maude
makes it possible to specify complex systems flexibly and is
also equipped with model checking facilities (a reachability
analyzer and an LTL model checker). A rewrite rule starts
with the keyword rl, followed by a label enclosed with
square brackets and a colon, two patterns (terms that may
contain variables) connected with =>, and ends with a full
stop. A conditional one starts with the keyword crl and
has a condition following the keyword if before a full stop.
The following is a form of a conditional rewrite rule:

crl [lb] : l => r if . . . /\ ci /\ . . .

where lb is a label and ci is part of the condition, which may
be an equation lci = rci. The negation of lci = rci could
be written as (lci =/= rci) = true, where = true could
be omitted. If the condition . . . /\ ci /\ . . . holds under
some substitution σ, σ(l) can be replaced with σ(r).

Let init be the only initial state of K and ϕ be an LTL
formula. Then, the Maude LTL model checker checks that
K satisfies ϕ by the following command:

red modelCheck(init,ϕ) .

where red is an abbreviation of reduce. Executing this
command, Maude will return either true if ϕ is satisfied, or
a counterexample when ϕ is not satisfied.

III. THE RECOVERABLE WAIT-FREE MCS PROTOCOL

The pseudo-code of RWfMCS protocol for each process i
can be written as follows:

re : if state[i] = LEAVE then goto ex1;
else if state[i] = TRY and pred[i] = mine[i]

then goto ex1;
else if state[i] = FREE then {
state[i] := INIT; mine[i] := null; }

en1 : if state[i] = INIT {
en2 : if mine[i] = null then mine[i] := newNode();
en3 : nextmine[i] := null; lockmine[i] := true;

pred[i] := mine[i]; state[i] := TRY; }
en4 : if state[i] = TRY then {
en5 : if pred[i] = mine[i] {
en6 : temp := FAS(tail,mine[i]);
en7 : pred[i] := temp; | crash and goto re; }
en8 : if pred[i] 6= null
en9 : if CAS(nextpred[i],null,minei)
en10 : repeat while lockmine[i];
cs : state[i] := InCS; }
ex1 : state[i] := LEAVE; CAS(tail,mine[i], null);
ex2 : if not CAS(nextmine[i],null,mine[i])
ex3 : locknextmine[i]

:= false;
ex4 : state[i] = FREE; goto re;

RWfMCS maintains a queue of processes based on a linked
list. That is why we call the queue is the virtual queue. Each
element of the linked list is a node that contains the following
two fields:
• next: stores the address of its successor (or next) node

in the virtual queue if any and null otherwise.
• lock: stores a Boolean value. A process needs to spin to

wait for its turn while trying to enter the critical section
if its lock value is true.

nexti and locki can be regarded as the local variables of
process i. RWfMCS uses the following global variables (i.e.,
shared among all processes):
• pred: an array where each element pred[i] contains an

address referring to the predecessor node of process i
in the virtual queue if any and null otherwise.

139

• mine: an array where each element mine[i] stores an
address referring to the node associated with process i.

• state: an array where each element state[i] receives
one of the following values: FREE, INIT, TRY, InCS,
or LEAVE.

• tail: contains the address of the last node in the virtual
queue if the queue is not empty and null otherwise.

The algorithm consists of four segments code: recover
section (label re), entering section (labels en1 to en10),
critical section (label cs), and exiting section (labels ex1 to
ex4). The function newNode() at the label en2 dynamically
allocates memory, then initializes and returns an empty node.
The body of the loop at the label en10 (between repeat
and while) is empty. The algorithm uses the following two
non-trivial atomic instructions:

• FAS (fetch-and-store): FAS(x, y) atomically does the
following: x is set to y and the old value of x is returned.

• CAS (compare-and-swap): CAS(x, y, z) atomically
does the following: if x equals y then x is set to z
and true is returned, otherwise false is just returned.

We suppose that each process is located at one of the
sixteenth labels, such as re, ex1, cs. Initially, each process is
located at re; nexti is null; locki is false; mine[i], pred[i],
and tail are null; state[i] is FREE. When a process wants
to enter the critical section, it first moves to en1 from re.

To reduce the number of transitions so that to make it
possible to conduct model checking later, at some labels (e.g.,
en3, ex1), we combine multiple assignments or instructions
into only one transition. Furthermore, we suppose that crashes
can only occur at en7. When a process is located at en7, it
either performs assigning temp’s value to its pred or crashes
and goes back to the recover section non-deterministically.
As mentioned in [3], the algorithm has only one “sensitive
instruction” (i.e., the mutual exclusion property may not be
satisfied if a process crashes immediately after executing this
instruction) that is the one involving the FAS instruction at
the label en6. That is the reason why we suppose that crashes
can only be occurred at en7, after successfully performing
the FAS instruction, but not yet storing the result to pred[i].
Whenever a process crashes, it loses the information about its
local variables (i.e., next and lock), but the shared variables
do not be affected.

In the original MCS, when a process leaving the critical
section and releasing the lock, it first tries to set tail to null
if tail is still the process itself by using the CAS instruction.
If tail now refers to a different node (CAS return false), the
virtual queue must contain at least another process requesting
for the lock. In that case, the process releasing the lock needs
to wait until its next field contains a non-null reference (i.e.,
point to its successor in the virtual queue). However, the
link between the process releasing the lock and its successor
is created by the successor process, then the exit segment
code of the original MCS algorithm is not wait-free. To

overcome that problem, RWfMCS is augmented with some
modifications at labels ex2 and en9. At label ex2, a process
leaving the critical section sets the next field of it to itself if
the link from it to its successor process in the virtual queue
has not been created yet in order to inform the next process
in the queue that the lock is now free. While at label en9,
by performing the CAS instruction, the next process in the
queue checks the value of the next field of its predecessor
is null or not. If the value is null, indicating that the lock is
now free, then the process can enter the critical section. On
the other hand, it creates the link between its predecessor
and itself, and spins to wait until its lock becomes false.

IV. FORMAL SPECIFICATION THE PROTOCOL

In this paper, a state is expressed as a soup of observable
components. To formalize RWfMCS as a Kripke structure
KMCS, we use the following observable components:
• (tail : p) - it says that tail is p,
• (pc[p] : l) - it says that process p is located at label l,
• (next[p] : q) - it says that nextp refers to q,
• (lock[p] : b) - it says that lockp is b,
• (pred[p] : q) - it says that pred[p] refers to q,
• (state[p] : s) - it says that state[p] is s,
• (mine[p] : q) - it says that mine[p] refers to q,
• (temp[p] : q) - it says that tempp refers to q,

where p and q are two process IDs, l receives one of the
sixteenth label values, b is a Boolean value, s receives one
of five values of the state. Although in the pseudo-code,
temp is used as a temporary variable, in the specification,
we explicitly use different temp for each process to avoid
undesirable behavior caused by jointly reading/writing temp.

Each state in SMCS is expressed as {obs}, where obs is a
soup of those observable components. If two processes p1
and p2 participate in RWfMCS, one initial state of IMCS

namely init is defined as follows:

{(tail: null) (pc[p1]: re) (pc[p2]: re)
(next[p1]: null) (next[p2]: null)
(lock[p1]: false) (lock[p2]: false)
(pred[p1]: null) (pred[p2]: null)
(mine[p1]: null) (mine[p2]: null)
(temp[p1]: null) (temp[p2]: null)
(state[p1]: FREE) (state[p2]: FREE)} .

There are seventeenth transitions for each process p:
• rcv: p performs the recover action (if crashed before)

and moves to either en1 or ex1 from re,
• chsta: p checks the if condition at en1 and moves to

either en2 or en4 from en1,
• initmine: p moves to en3 from en2,
• init: p moves to en4 from en3,
• chsta2: p checks the if condition at en4 and moves

to either en5 or ex1 from en4,
• chprd: p checks the if condition at en5 and moves to

either en6 or en8 from en5,

140

• sttail: p moves to en7 from en6,
• stprd: p moves to en8 from en7,
• chprd2: p checks the if condition at en8 and moves

to either en9 or cs from en8,
• stnxt: p performs the CAS instruction at en9 and

checks the returned value to move to either en10 or cs
from en9,

• chlck: p tries to move to cs from en10,
• exit: p moves to ex1 from cs,
• ststa: p moves to ex2 from ex1,
• stnxt2: p performs the CAS instruction at ex2 and

checks the returned value to move to either ex3 or ex4
from ex2,

• stnxt2: p moves to ex4 from ex3,
• go2rcv: p goes back to re from ex4,
• crash: when p is located at en7, p crashes and goes

back to re.
Let OCs be a Maude variable of observable component

soups, P, Q, Q1 be Maude variables of process IDs, and S
be Maude variable receives one of five values of the state.
The rewrite rule exit is simply defined as follows:

rl [exit] : {(pc[P]: cs) (state[P]: S) OCs}
=> {(pc[P]: ex1) (state[P]: InCS) OCs} .

The rewrite rule says that when a process P is located at
cs, P moves to ex1; and state[P] changes to InCS; other
observable components do not change.

The rewrite rule rcv is defined as follows:

rl [rcv] : {(pc[P]: re) (state[P]: S)
(pred[P]: Q) (mine[P]: Q1) OCs}
=> {(pc[P]: (if S == LEAVE then ex1 else (
if S == TRY and Q == Q1 then ex1 else en1 fi)
fi)) (state[P]: (if S == FREE then INIT else S
fi)) (mine[P]: (if S == FREE then null else Q1
fi)) (pred[P]: Q) OCs} .

The rewrite rule says that when a process P located at re, if
its state is LEAVE or its state is TRY and its pred equals
to its mine, P then moves to ex1, otherwise, P moves to
en1; if its state is FREE, its state changes to INIT and
mine[P] is reset to null, otherwise, nothing changes; other
observable components do not change.

One challenge we need to deal with during formally
specifying RWfMCS is how to specify dynamic memory
allocation. In the algorithm, when the function newNode()
at label en2 is invoked, a new memory location is allocated
from which an empty node is constructed and assigns to
mine[i]. After the process i successfully enters the critical
section, releases the lock, and goes back to the recover
section, mine[i] is reset to null (at label re). This assignment
simply points mine[i] to a null pointer, but the memory
that contains the old node mine[i] is still alive without any
effect. Roughly speaking, the values returned by the function
newNode are different from time to time every time process
i requests for allocating memory to construct a new empty
node. Furthermore, resetting the value of mine[i] to null does

not affect the old value of mine[i]. It is, however, not simple
to make the formal specification satisfying those behaviors.

To solve the problem of formally specifying dynamic
memory allocation mentioned above, our solution is to
provide a fixed list of “empty nodes” from the beginning.
Every time a process requests for allocating memory to
construct a new empty node (i.e., calls to the function
newNode() at label en2), a top node of the list is extracted
and used. When a process makes a request for a new node
but the list of nodes now is empty, we let the process move
to the terminal state in which the process spins there forever.
We add one more observable component (nodes: lp), where
lp is a list of process IDs, to represents the list of “empty
nodes” used for dynamic allocation. Consequently, we add
the following observable component to init:

(nodes: (q1 q2 q3 q4 q5 q6))

where qk is a process ID for each k = 1, . . . , 6. Here
we provide six “empty nodes” for dynamic allocation. The
rewrite rule initmine now is defined as follows:

rl [initMine] : {(mine[P]: Q) (nodes: (Q1 LP))
(pc[P]: en2) OCs} => {(pc[P]: en3) (mine[P]:
(if Q == null then Q1 else Q fi)) (nodes:
(if Q == null then LP else (Q1 LP) fi)) OCs} .

where LP is a Maude variable whose value is a list of
process IDs (possibly empty). The rewrite rule says that
when a process P is located at en2 and nodes is not empty
(i.e., consists of Q1 and LP), P moves to en3; if mine[P]
is null then two assignments are performed: assigning the
top element of nodes (i.e., Q1) to mine[P], and updating
nodes by removing its top element.

We need to add a new rewrite rule to represent the
transition when a process requests for allocating a new node
but nodes now is empty. The rewrite rule is defined as
follows:

rl [terminate] : {(pc[P]: en2) (mine[P]: null)
(nodes: empty) OCs} => {(pc[P]: terminal)
(mine[P]: null) (nodes: empty) OCs} .

where terminal is a new process location in addition
to the sixteenth existing locations. When a process moves
to terminal, it will stay there forever by the stutter
rewrite rule that is defined as follows:

rl [stutter] : {(pc[P]: terminal) OCs}
=> {(pc[P]: terminal) OCs} .

The remaining transitions can be defined likewise.

V. MODEL CHECKING

A. Model checking without any restriction to crashes

To model check that KMCS satisfies some desired proper-
ties, we define PMCS and LMCS. PMCS contains an atomic
proposition namely inCs which takes a process IDs as its
argument. LMCS is initially specified as follows:

eq {(pc[P] : cs) OCs} |= inCs(P) = true .
eq {OCs} |= PROP = false [owise] .

141

Figure 1. A counterexample shows that RWfMCS does not enjoy the mutual exclusion property if there is not any restriction to the occurrence of crashes

where owise is the abbreviation of otherwise, indicating
that this equation will only be applied if all of the previous
equations above it can not be applied. The equations say that
inCs(P) holds in a state s iff s contains (pc[P] : cs).
We then specify the mutual exclusion property as the
following LTL formula:

eq mutex = ([] ∼(inCs(p1) /\ inCs(p2))) .

where [] is �, ∼ is ¬, and /\ is ∧. The equation (or
formula) says that it is always the case such that p1 and p2
are not located at cs at the same time. We use Maude model
checker to check that RWfMCS satisfies the mutual exclusion
property or not by using the following Maude command:

red modelCheck(init,mutex) .

Unfortunately, a counterexample was found, which is vi-
sualized as in Fig. 1. Note that, the Figure does not show
all observable components, but only depicts pc[p1] and
pc[p2], and uninteresting transitions are omitted (e.g.,
chsta, initmine). When the virtual queue consists of
two processes p1 and p2 such that p1 is located at cs, p2
is located at en7, and tail is p2, process p2 crashes and
goes back to re. Because state[p2] now is TRY, it then
jumps to ex1, completes the exit segment in which it sets
tail to null by the CAS instruction. p2 then tries to enter
the critical section one more time. Since tail is null now,
if only transitions of p2 are executed until it reaches en8
(without crash again), pred[p2] will be null. That time, p2
gets permission to directly enter cs, leading to the mutual
exclusion property is not satisfied since there are two different
processes p1 and p2 located at the critical section.

The first experiment says that if there is not any restriction
to the occurrence of crashes, RWfMCS does not enjoy
the mutual exclusion property. In the upcoming subsection,
we report model checking under some assumptions of the

occurrence of crashes.

B. Model checking under crash assumptions

First assumption: crashes never happen at all

We add the following observable component to keep track
of the occurrence of crashes: (crash: b), where b is a
Boolean value. Then, the rewrite rule crash is modified to
become as follows:

rl [crash] : {(pc[P]: en7) (next[P]: Q)
(lock[P]: B) (crash: B1) OCs}
=> {(pc[P]: re) (next[P]: null)
(lock[P]: false) (crash: true) OCs} .

where B and B1 are Maude Boolean variables. The rewrite
rule says that when a process P is located at en7, it may
crash then go back to re, crash is set to true, and P loses
all information about its next and lock. crash does not
change in other transitions, and initially, it is set to false.

One more atomic proposition namely crashed is added
into PMCS. LMCS is modified by adding the following
equation before the existing owise statement at the end.

eq {(crash: true) OCs} |= crashed = true .

The equation says that crashed holds in a state s iff
s contains (crash: true). Since crash never can be
changed back to false from true, we can say that when
there is not any crash so far, crashed will not hold,
otherwise, it will. We model check the mutual exclusion
property under the assumption that crashes never happen at
all by using the following command:

red modelCheck(init,([]∼ crashed) -> mutex) .

No counterexamples were found. It took about 13 seconds for
Maude to complete the model checking. Consequently, we
can conclude that the protocol enjoys the mutual exclusion
property if crashes never happen.

142

Second assumption: “crashes have not occurred recently”

The assumption that crashes never happen seems so strong,
we should check it under a weaker assumption. In this section,
we model check that RWfMCS enjoys the mutual exclusion
property under the assumption: “crashes have not occurred
recently”. The key idea of this assumption is that after a crash,
crash can be set back to false from true if all processes
have state FREE. It means that after a crash, all requests
for entering the critical section before are satisfied, implying
the behavior of the protocol backs to normal as without
failures. To check the condition whether all processes have
state FREE, we need to introduce one more observable
component namely (noPsFree: n), where n is a natural
number. noPsFree maintains the number of processes that
have state FREE. Initially, noPsFree is set to the number
of processes participating in the protocol. When a process
P is located at re and state[P] is FREE, the transition rcv
will change its state to INIT, then noPsFree needs to be
decreased by one. Thus, the rewrite rule rcv is modified to
become as follows:

rl [rcv] : {(pc[P]: re) (state[P]: S)
(pred[P]: Q) (mine[P]: Q1) (noPsFree: N) OCs}
=> {(pc[P]: (if S == LEAVE then ex1 else (
if S == TRY and Q == Q1 then ex1 else en1 fi)
fi)) (state[P]: (if S == FREE then INIT else S
fi)) (mine[P]: (if S == FREE then null else Q1
fi)) (noPsFree: (if S == FREE then dec(N)
else N fi)) (pred[P]: Q) OCs} .

where N is a Maude variable of natural numbers, and dec(N)
is a function that decreases N by one.
noPsFree needs to be increment when a process updates

its state to FREE. In the algorithm, transition go2rcv is
the only one that can change the state of a process to FREE.
Therefore, the rewrite rule go2rcv is revised as follows:

rl [go2rcv] : {(pc[P]: ex4) (state[P]: S)
(noPsFree: N) (crash: B) OCs} => {(pc[P]: re)
(state[P]: FREE) (noPsFree: s(N)) (crash:
(if s(N) == 2 then false else B fi)) OCs} .

In addition to updating noPsFree, the rewrite rule also sets
the value of crash back to true if the value of noPsFree
after increasing is equal to the total number of processes
participating in the protocol (i.e., 2 in our case).

One more atomic proposition namely ncr (not recently
crash) is added into PMCS to express the assumption that
crashes have not occurred recently. LMCS is modified by
adding the following equation before the existing owise
statement at the end.

eq {(crash: false) OCs} |= nrc = true .

The equation says that nrc holds in a state s iff s contains
(crash: false). We model check the mutual exclusion
property under the assumption that crashes have not occurred
recently by using the following Maude command:

red modelCheck(init,

[] (nrc -> (∼ (inCs(p1) /\ inCs(p2))))) .

No counterexamples were found. It took about 5 minutes for
Maude to complete the model checking. Consequently, we
can conclude that the protocol enjoys the mutual exclusion
property if crashes have not occurred recently.

VI. CONCLUSION

We have presented model checking the recoverable wait-
free version of MCS protocol. The recoverable property
indicating that the protocol still works under the assumption
that crashes may occur during the execution of processes.
The wait-free property says that exit segment code of the
new version is wait-free (i.e., always completes in a finite
step regardless of the behavior of other processes). The first
experiment shows a counterexample in which the protocol
does not satisfy the mutual exclusion property. Analyzing the
counterexample, we could understand the scenario leading
to two different processes located at the critical section at
the same time if crashes are allowed to happen without any
restriction. The second experiment says that the protocol
enjoys the mutual exclusion property if crashes never happen.
The last experiment says that the protocol enjoys the mutual
exclusion property if crashes have not occurred recently. We
have also described the challenge of how to formally specify
dynamic allocation and presented our solution to solve that
problem during formal specifying the protocol.

One piece of our future work is to model check the protocol
satisfies the lock-out freedom property in particular or other
liveness properties in general. Model checking such properties
usually requires some fairness assumptions. However, the
formula to model check often becomes very complicated if
some fairness assumptions are included, leading to the model
checker could not terminate after a reasonable amount of
time. One possible way to make it feasible is by using the
technique presented in [6].

REFERENCES

[1] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
scalable synchronization on shared-memory multiprocessors,”
ACM Trans. Comput. Syst., vol. 9, no. 1, pp. 21–65, 1991.

[2] R. Dvir and G. Taubenfeld, “Mutual exclusion algorithms with
constant RMR complexity and wait-free exit code,” in OPODIS
2017, ser. LIPIcs, vol. 95, 2017, pp. 17:1–17:16.

[3] S. Dhoked and N. Mittal, “An adaptive approach to recoverable
mutual exclusion,” in PODC 2020. ACM, 2020, pp. 1–10.

[4] P. C. Attie and N. A. Lynch, “Dynamic input/output automata:
A formal and compositional model for dynamic systems,” Inf.
Comput., vol. 249, pp. 28–75, 2016.

[5] M. Clavel, et al., Ed., All About Maude, ser. Lecture Notes in
Computer Science. Springer, 2007, vol. 4350.

[6] K. Ogata, “A divide & conquer approach to liveness model
checking under fairness & anti-fairness assumptions,” Frontiers
Comput. Sci., vol. 13, no. 1, pp. 51–72, 2019.

143

Fine-Grained Neural Network Abstraction for Efficient Formal Verification

Zhaosen Wen1, Weikai Miao1,2, Min Zhang1,2

1 Shanghai Key Laboratory for Trustworthy Computing, East China Normal University
2 Shanghai Institute of Intelligent Science and Technology, Tongji University

51184501057@stu.ecnu.edu.cn, {wkmiao,zhangmin}@sei.ecnu.edu.cn

Abstract

The advance of deep learning makes it possible to empower
safety-critical systems with intelligent capabilities. How-
ever, its intelligent component, i.e., deep neural network,
is difficult to formally verify due to the large scale and in-
trinsic complexity of the verification problem. Abstraction
has been proved to be an effective way of improving the
scalability. A challenging problem in abstraction is that it
is difficult to achieve a balance between the size reduced
and output overestimation caused by abstraction. In this
work, we propose an effective fine-grained approach to
abstract neural networks. Our approach is fine-grained
in that we identify four cases that should be abstracted
independently under a certain neuron prioritization strat-
egy. This allows us to merge more neurons in networks and
meanwhile maintain a relatively low output overestimation.
Experimental results show that our approach outperforms
other existing abstraction approaches by significantly
reducing the scale of target deep neural networks with
small overestimation.

1 Introduction
In recent years, Deep Neural Networks (DNNs) have

been achieving remarkable performance in many complex
tasks and are increasingly deployed in safety-critical sys-
tems, such as autonomous vehicle [2], face recognition [3],
airborne collision avoidance system [11]. However, it is
well known that DNNs are vulnerable to slight perturba-
tions, i.e., adding imperceptible perturbations to inputs may
cause DNN to make mistakes [17, 18, 8, 5]. Statistical re-
sults show that the accident frequency of autonomous vehi-
cles is much higher than that of conventional vehicles [7].
As safety-critical systems require strict safety and reliability
guarantees, it raises a new problem of certifying the trust-
worthiness of the intelligent components, i.e., DNNs.

Formal methods have been proved their effectiveness in
certifying DNNs. For rigorousness, formal methods guar-
antee a DNN satisfies a property if the property is proved

DOI reference number: 10.18293/SEKE2021-071

to be true, and otherwise counterexamples are computed as
witnesses to the violation. In the context of neural network
verification, a counterexample is called an adversarial ex-
ample that causes misclassification to DNN. The literature
on formal verification of neural network is booming in the
past several years. Details can be referred to the survey [10].

Most of the existing neural network verification ap-
proaches suffer from bad scalability issue due to the in-
trinsic complexity of neural networks. Katz et al. [12]
showed that the verification problem of even simple fully
connected feedforward neural networks taking ReLU ac-
tivation function is NP-complete. Abstraction is one of
the effective approaches to scale up verification algorithms.
The basic idea of abstraction is to tune concrete constraints
into abstract ones which can be solved more efficiently
[9, 15, 8, 1, 6, 13]. Abstraction must preserve soundness,
i.e., a property proved in the abstract system implies the
concrete system satisfies that property.

One promising abstraction technique for neural network
verification is to construct Interval Neural Networks (INNs)
[13] to abstract ordinary deep neural networks. Intuitively,
an INN takes intervals as inputs, unlike DNN whose inputs
are concrete values. An INN can be constructed by merg-
ing neurons in the same hidden layer [13]. The decrease
of neurons makes it faster to verify an INN than to verify
its corresponding DNN. There are two criteria for evaluat-
ing an abstraction approach, i.e., the number of neurons that
are merged, and the overestimation of output interval. An
approach that can merge more neurons with lower overes-
timation is more preferred than the one that merges fewer
neurons with larger overestimation.

In this paper, we propose a novel fine-grained abstrac-
tion approach to abstract feedforward neural networks that
take ReLU as activation function into INNs for the purpose
of improving the efficiency of their formal verification. In
our approach, we classify the merging of neurons into four
cases according to the signs of weights, and propose the
corresponding merging rules for each case. We also de-
vise a strategy for determining the priority of neurons to
be merged. Before the abstraction of neural network, we
compute an indicator for each pair of neurons and priori-

144

tize neurons according to the indicator. We prove that our
abstraction approach is sound. We implement the approach
into a tool called NNZipper, and evaluate it on the bench-
mark of neural networks trained on MNIST [16] and ACAS
Xu [11]. Experimental results show that our approach can
significantly reduce the scale of a neural network with low
overestimation induced, compared with the pioneering ab-
straction approach in [13].

2 Preliminaries
2.1 Deep Neural Network (DNN)

A deep neural network is a model consisting of an input
layer, several hidden layers and an output layer. Except for
input layer, each layer contains some neurons, which are
connected to the neurons in the preceding layer. Each edge
has a weight. The neurons in input layer receive input data,
and the neurons in the next layer get their values by comput-
ing a dot product of the values of preceding layer and edge
weights, with the addition of a bias, and then operated by
an activation function such as ReLU. After layer-by-layer
calculation, the output layer gives the result of DNN.

Definition 1 (DNN). An n-layer DNN is a triple
({S i}0≤i≤n, {Wi}1≤i≤n, {Bi}1≤i≤n), where

• S i is the set of neurons in the i-th layer. S 0 denotes the
input layer, S n denotes the output layer.

• Wi denotes the weight matrix between the i−1-th layer
and i-th layer.

• Bi denotes biases vector of the i-th layer.

2.2 Interval Neural Network (INN)

In an interval neural network (INN), the edge weights
and biases are not in value form but interval form.

Definition 2 (INN [13]). An n-layer INN is a triple
({S i}0≤i≤n, {W l

i ,W
u
i }1≤i≤n, {Bl

i, B
u
i }1≤i≤n), where

• S i is the set of neurons in the i-th layer. S 0 denotes the
input layer, S n denotes the output layer.

• W l
i ,W

u
i denote the lower weight matrix and upper

weight matrix respectively between the i − 1-th layer
and i-th layer, which satisfy W l

i ≤ Wu
i

1.

• Bl
i, B

u
i denote the lower biases vector and upper biases

vector respectively of the i-th layer, Bl
i ≤ Bu

i .

The input of INN is a set of intervals, as well as the
output. The output is computed by solving several maxi-
mization and minimization problems built on the lower and
upper weights and biases. It is proved that a DNN can be
abstracted to an INN with smaller size [13]. For an identical
input region, the output of the INN is an over-approximation
of the output range of the original DNN.

1For matrix A and B of the same size, A ≤ B means ∀i, j, ai, j ≤ bi, j.
Similarly for vector.)

1
𝑠0,1

𝑠0,2

𝑠1,1 𝑠2,1

𝑠1,2
-2

1

𝑠2,2
-2

𝑠0,1

𝑠0,2

𝑠2,1

𝑠2,2

𝑠1,1
′

Figure 1: A simple example for abstracting DNN into INN.

2.3 Neural Network Abstraction

Neural network abstraction is a technique for compress-
ing a neural network into a smaller one. Despite the loss
of some precision, a smaller network is usually preferred to
deploy on edge devices and to formally verify. To abstract
a DNN into a smaller INN, several neurons in the same hid-
den layer are merged with their weights and biases merged
into intervals. The state-of-the-art approach takes the con-
vex hull of the original weights as the weight interval for
the neuron abstracted from original neurons [13], which is
valid and fast but induces considerable imprecision in out-
put range computation.

Figure 1 gives a simple example of abstracting a DNN
into an INN by merging neurons and weights. When merg-
ing outgoing weights, the convex hull of original weights
needs to be multiplied by 2 (equal to the number of neurons
merged) to guarantee validity.

3 Fine-Grained Abstraction
In this section, we present our fine-grained abstraction

approach to transforming a DNN into an INN, and mean-
while guarantee that a constructed INN is an overapproxi-
mation of its original DNN. The property of the abstraction
guarantees the soundness of verifying abstracted INNs.

3.1 Abstracting DNN into INN

The complexity of the output range computation of a
DNN is strongly related to its size, i.e., the number of
all the neurons in the DNN. Our abstraction method aims
to decrease the size of the network, and get an over-
approximation of the network’s output range by comput-
ing the abstract network’s output range. To accomplish
this, several pairs of neurons in the same hidden layer are
merged into a single neuron with their weights and biases
also merged. The new neuron’s weights and bias are not val-
ues but intervals, which are calculated based on the weights
and biases of original neurons. Note that DNN can be re-
garded as a special kind of INN whose weights and biases
are degenerate intervals, i.e., the lower bound and upper
bound of the interval are the same. Hence we will describe
the details of the abstraction based on the semantics of INN.

Given an INN (n, {S i}0≤i≤n, {W l
i ,W

u
i }1≤i≤n, {Bl

i, B
u
i }1≤i≤n),

let si,p denote the p-th neuron in layer i, and wl
i,p,w

u
i,p denote

the lower weight vector and upper weight vector of neu-
ron si,p, and wl

i,p/q,w
u
i,p/q denote the lower weight and upper

145

𝑠𝑖-1,1 𝑠𝑖, α

𝑠𝑖, β

𝑠𝑖, γ

[-1, 1]

𝑠𝑖-1,2

𝑠𝑖-1,1

𝑠𝑖-1,2

[1, 1]

[-1, 1]

Figure 2: Example of merging biases and incoming edges

weight between the q-th neuron in layer i − 1 and the p-th
neuron in layer i. We use vi,p to denote the valuation inter-
val of the p-th neuron in layer i, and bl

i,p, b
u
i,p to denote the

lower bias and upper bias of the p-th neuron in layer i. The
problem of abstracting a DNN by an INN is merging two
neurons si,α and si,β into a new neuron si,γ (1 ≤ i ≤ n − 1).

Our first step is to merge the biases of si,α and si,β and
the edges between layer i − 1 and layer i. The requirement
of this step is guaranteeing the valuation interval of the new
neuron containing the valuation interval of the original neu-
rons, i.e., vi,α ⊆ vi,γ, vi,β ⊆ vi,γ. To reach this goal, the new
neuron’s bias interval is obtained by taking the convex hull
of the two original neurons’ bias intervals. Specifically, the
smaller of the original lower bounds will be the new lower
bound, and the greater of the original upper bounds will be
the new upper bound. The merging of the edge weights is
similar. For each new edge between layer i − 1 and layer i,
the new weight interval of the edge is obtained by taking the
convex hull of the corresponding original weight intervals.
Formally, we have the following equations:

Bias: bl
i,γ = min(bl

i,α, b
l
i,β), b

u
i,γ = max(bu

i,α, b
u
i,β);

Weights: ∀si−1,p ∈ S i−1,wl
i,γ/p = min(wl

i,α/p,w
l
i,β/p),

wu
i,γ/p = max(wu

i,α/p,w
u
i,β/p).

Figure 2 shows a simple example of the first step. After
the merging, the new weight interval [−1, 2] is the convex
hull of [−1,−1] and [1, 2], and the other new weight interval
[1, 3] is similar. The new bias interval [−1, 1] is also the
convex hull of the original bias intervals [1, 1] and [−1, 1].

Our second step is to merge the edges between layer i
and layer i + 1. The requirement of this step is guaran-
teeing the new valuation interval of each neuron in layer
i + 1 containing its original valuation interval, i.e., ∀si+1,q ∈

S i+1, v′i+1,q ⊇ vi+1,q. According to the sign of the weights
of original neurons, the merging in this step will follow dif-
ferent rules. Without loss of generality, we assume that the
lower bound of the weight interval for si,α is not greater than
that of si,β, i.e., wl

i+1,q/α ≤ wl
i+1,q/β. Then the merging can be

classified into four cases:

Case 1 We first consider the case when wl
i+1,q/α,w

l
i+1,q/β

have the same sign, and wu
i+1,q/α,w

u
i+1,q/β have the same sign.

The lower bound of the new weight interval is obtained by

𝑠𝑖+1,1

𝑠𝑖, α

𝑠𝑖, β

[-2, 3] 𝑠𝑖+1,1𝑠𝑖, γ

[-1, 1] [-1, 1]

(a) Case 1

𝑠𝑖+1,2

𝑠𝑖, α

𝑠𝑖, β

[-2, 2] 𝑠𝑖+1,2𝑠𝑖, γ

[-1, 1] [-1, 1]

(b) Case 2

𝑠𝑖+1,3

𝑠𝑖, α

𝑠𝑖, β

[-1, 3] 𝑠𝑖+1,3𝑠𝑖, γ

[-1, 1] [-1, 1]

(c) Case 3

𝑠𝑖+1,4

𝑠𝑖, α

𝑠𝑖, β

[-3, 1] 𝑠𝑖+1,4𝑠𝑖, γ

[-1, 1] [-1, 1]

(d) Case 4

Figure 3: Examples of merging outgoing edges in four cases

taking the sum of the two original lower bounds. The new
upper bound is computed likewise. Formally, we have

wl
i+1,q/γ = wl

i+1,q/α + wl
i+1,q/β, and

wu
i+1,q/γ = wu

i+1,q/α + wu
i+1,q/β.

Figure 3a shows an example of the case. The new lower
bound -2 is the sum of original lower bounds -1 and -1, and
the new upper bound 3 is the sum of 2 and 1.

Case 2 In the second case, we consider that wl
i+1,q/α < 0,

wu
i+1,q/α < 0, wl

i+1,q/β ≥ 0, and wu
i+1,q/β ≥ 0. In this case, the

lower bound of the new weight interval is equal to the lower
bound of the original weight interval for si,α. The upper
bound of the new weight interval is equal to the original
upper bound for si,β. Formally, they are defined as follows:

wl
i+1,q/γ = wl

i+1,q/α, and

wu
i+1,q/γ = wu

i+1,q/β

Figure 3b shows an example of this case. The new lower
bound -2 is derived from the lower bound of the weight in-
terval [-2,-1], and the new upper bound 2 is derived from
the upper bound of the weight interval [1,2].

Case 3 The third case considers wl
i+1,q/α < 0, wu

i+1,q/α ≥ 0,
wl

i+1,q/β ≥ 0, and wu
i+1,q/β ≥ 0. In this case, the lower bound

of the weight interval after merging is equal to the lower
bound of the original weight interval for si,α. The upper
bound of the new weight interval is set the sum of the two
original upper bounds. Formally, we have

wl
i+1,q/γ = wl

i+1,q/α, and

wu
i+1,q/γ = wu

i+1,q/α + wu
i+1,q/β.

Figure 3c shows an example of the case. The new lower
bound -1 is derived from the lower bound of the weight in-
terval [-1,1], and the new upper bound 3 is the sum of orig-
inal upper bounds 2 and 1.

Case 4 The last case is that wl
i+1,q/α < 0, wu

i+1,q/α < 0,
wl

i+1,q/β < 0, and wu
i+1,q/β ≥ 0. In this case, the lower bound

of the new weight interval takes the sum of the two original
lower bounds. And the upper bound of the new weight in-

146

𝑠0,1

𝑠0,2

𝑠1,1

𝑠1,3

𝑠2,1

𝑠3,1

𝑠3,2

𝑠1,2

𝑠2,3

-1

1

7

𝑠2,2

-1

1

2

-1

1

1

2

-1

(a) Original DNN

[-1,1]

7

𝑠0,1

𝑠0,2

𝑠1,1

𝑠1,2

𝑠1,3

𝑠2,1
′

𝑠2,2
′

𝑠3,1

𝑠3,2

[-1,1]

2

1

2

-1

-1

1

(b) The INN after merging s2,1 and s2,2

[-1,4]

7

𝑠0,1

𝑠0,2

𝑠1,1
′

𝑠1,2
′

𝑠2,1
′

𝑠2,2
′

𝑠3,2

𝑠3,1

[-1,1]

2

[1,2]

-1

-1

1

(c) Final INN

Figure 4: The process of merging two pairs of neurons for a small neural network

terval is equal to the original upper bound for si,β. Formally,
they are defined by the following equations:

wl
i+1,q/γ = wl

i+1,q/α + wl
i+1,q/β

wu
i+1,q/γ = wu

i+1,q/β

Figure 3d shows an example of the last case. The new
lower bound is -3, i.e., the sum of original lower bounds -2
and -1. The new upper bound is 1, which is derived from the
upper bound of the weight interval [-1,1] by the definition.

Example 1. Let us consider the neural network in Fig-
ure 4a. We want to merge s2,1 and s2,2, and then s1,1 and
s1,2. For both mergings, the new weight intervals of the pre-
ceding edges are obtained by taking the convex hull of the
corresponding original weights. We focus on the merging of
succeeding edges. In the merging of s2,1 and s2,2, because
1 > 0,−1 < 0, the weight interval [−1, 1] between s′2,1 and
s3,1 is obtained by applying the rules of case 2. And the
weight −5 between s′2,1 and s3,2 is obtained by applying the
rules of case 1 because −2 and −3 are both negative. Then
in the merging of s1,1 and s1,2, the weight interval [−1, 4] is
obtained by applying the rules of case 3, and the weight 4
by applying the rules of case 1.

Our method can abstract a DNN into an INN with arbi-
trary size. However, merging too many neurons will lead
to an excessive output range. We need to make a trade-off

between the abstraction scale and output overestimation.

3.2 Neuron Prioritization Strategy

The abstraction method above can merge any pair of neu-
rons in hidden layers. The inaccuracy induced by a merging
operation depends on the differences of the weights and bi-
ases of the original neurons. To get an overapproximation
with lower inaccuracy, we present a heuristic strategy for
prioritizing the pairs of neurons to merge.

Algorithm 1 sketches the overall process. For each pair
of neurons in hidden layers, we compute a value m, which
takes the sum of the absolute values of the differences of
corresponding incoming weights, with the addition of the
absolute value of the difference between the two biases.
Then we take m as the indicator and construct a min pri-

Algorithm 1 Neuron Prioritization

Require: a DNN D
Ensure: a min priority queue Q

1: Q← ⊥
2: for every pair of hidden neurons si,α,si,β do
3: m←

∣∣∣bi,α − bi,β

∣∣∣
4: for every neuron si−1,p do
5: m+ =

∣∣∣wi,α/p − wi,β/p

∣∣∣
6: end for
7: Add (m, si,α,si,β) to Q
8: end for

ority queue Q to guide the abstraction. When performing
the abstraction, We repeatedly pop the priority queue and
merge the corresponding pair of neurons in the network.

3.3 Overapproximation

We show an INN abstracted in our approach is an over-
approximation of its original DNN. It implies the soundness
of verifying the DNN by verifying the INN instead.

Definition 3 (Overapproxiamtion). Given an INN A and a
DNN D, A is an overappximation of D if and only if for any
input interval I, there is D(I, `) ⊆ A(I, `) for any label `.

According to the definition, it is apparent that overap-
proximation is transitive for the transitivity of ⊆.

Lemma 1 (One-step overapproximation). Given an INN A,
let Â be the INN abstracted from A by merging a pair of
neurons. Â is an overapproximation of A.

Proof. Consider merging si,1 and si,2 into ŝi,1. Let Vi de-
note the valuation vector of layer i, vi,q denote the valuation
interval of the q-th neuron in layer i, vl

i,q denote the lower
bound and vu

i,q denote the upper bound.
First we prove the correctness of the first step of merg-

ing. Initially, we have vl
i,1 = ReLU(wl

i,1Vi−1 + bl
i,1), vl

i,2 =

ReLU(wl
i,2Vi−1+bl

i,2). After merging, v̂l
i,1 = ReLU(ŵl

i,1Vi−1+

b̂l
i,1), ŵl

i,1 = min(wl
i,1,w

l
i,2), b̂l

i,1 = min(bl
i,1, b

l
i,2). Because

Vi−1 is non-negative and ReLU is monotonic, there are v̂l
i,1 ≤

vl
i,1 and v̂l

i,1 ≤ vl
i,2. Likewise, we have v̂u

i,1 ≥ vu
i,1, v̂

u
i,1 ≥ vu

i,2.
Consequently, vi,1 ⊆ v̂i,1, vi,2 ⊆ v̂i,1.

147

Then we prove the correctness of the second step. We
first consider Case 1, for an arbitrary neuron si+1,q, we use
ci+1,q and ĉi+1,q to denote the merged neurons’ contribu-
tion to its valuation interval, i.e., cl

i+1,q = ReLU(wl
i,q/1vl

i,1 +

wl
i,q/2vl

i,2 + bl
i+1,q). After merging, ĉl

i+1,q = ReLU((wl
i,q/1 +

wl
i,q/2)v̂l

i,1 + bl
i+1,q). Because v̂l

i,1 ≤ vl
i,1, v̂

l
i,1 ≤ vl

i,2 and the
monotonicity of ReLU, we have ĉl

i+1,q ≤ cl
i+1,q. Similarly,

ĉu
i+1,q ≥ cu

i+1,q. Thus, ci+1,q ⊆ ĉi+1,q. Because other neurons
connected to si+1,q are not altered, we have vi+1,q ⊆ v̂i+1,q.

We can prove that vi+1,q ⊆ v̂i+1,q holds in other three cases
likewise. Consequently, we have A(I, `) ⊆ Â(I, `) for any
label ` of A. Thus, Â is an overapproximation of A.

For the transitivity of overapproximation, it is straight-
forward to obtain the following theorem from Lemma 1.

Theorem 1 (Overapproximation). Given a DNN D, let A
be the INN abstracted from D in our approach. A is an
overapproximation of D.

Theorem 1 can be proved directly using Lemma 1 based
on the fact that the abstraction is a finite-step process. We
omit the proof due to space limitation.

4 Implementation and Evaluation
We implement our framework in Python and use a state-

of-the-art MILP solver Gurobi to solve the minimization
and maximization problems.

Evaluation Datasets. We consider two benchmarks,
ACAS Xu networks [11] which consists of 6 hidden layers
with 50 neurons in each layer and a 5×100 network trained
on MNIST in [16]. We generate a set of random valid input
regions as the evaluation dataset for the ACAS Xu network.
For the MNIST network, we choose the first 100 images in
the MNIST test set. Each input image can be perturbed in
an l∞ norm form ball with a bound ε.

Experimental Setup. All the experiments were con-
ducted on a workstation with a 32-core 3.7 GHz AMD
Ryzen Threadripper 3970X CPU and 128GB RAM. We set
a timeout one hour for the verification of each input region.

Evaluation Result. Firstly, we compare the performance
of our fine-grained INN abstraction to the original INN ab-
straction. Neuron prioritization strategy is applied to both
methods to ensure they merge the same neurons. The ab-
stractions are parameterized by n×k, where k is the number
of reduced neurons in each layer and n is the number of
hidden layers except the first hidden layer. We show the
result of one of the ACAS Xu networks in Figure 5a and
the result of the MNIST network in Figure 5b. The results
of other benchmarks are similar. Our fine-grained INN has
a great improvement in the precision of computation. The
average output range computed by fine-grained INN is over

(a) ACAS Xu network (6x50) (b) MNIST network (5x100)

Figure 5: Comparison with the abstraction approach in [13]

(a) Prioritization versus random (b) Global versus layer-by-layer

Figure 6: Comparison of different strategies

two orders of magnitude smaller than the output range com-
puted by original INN. With the increase of reduced neu-
rons, the growth of the output range of fine-grained INN
is much lower than that of original INN. In the cases with
fewer reduced neurons, e.g., the 4×50 case for MNIST net-
work, the average running time of fine-grained INN (77s) is
several times longer than that of original INN (30s). How-
ever, with the increase of reduced neurons, due to the sharp
fall in computation complexity, the average running time of
the both become almost the same.

To show the effectiveness of neuron prioritization strat-
egy, we compare our strategy with a random one. Both of
them are based on fine-grained INN abstraction. Figure 6a
shows the result. The output range of prioritization strategy
is several times smaller than that of random strategy, which
demonstrates our neuron prioritization strategy is very ef-
fective to improve the performance of INN abstraction.

When using neuron prioritization strategy, we have two
sub-strategies to estimate the neurons. One is layer-by-
layer, where we give a fixed number k as the number of
reduced neurons for each layer, and select the best k pairs
of neurons in each layer to be merged. The other is global,
where we give a number j as the total number of reduced
neurons, then select the top j pairs from all hidden lay-
ers. Figure 6b depicts the comparison between layer-by-
layer strategy and global strategy, which are based on fine-
grained INN abstraction for ACAS Xu networks. In our ex-
periments, the global strategy usually performs better than
layer-by-layer strategy. We find that in these cases, the

148

global strategy mainly merges the neurons in layer 6, 5 and
4. In few cases where layer-by-layer strategy performs bet-
ter, we find the global strategy merges more neurons in layer
2 and 3 than layer-by-layer strategy. Thus we deduce that
merging neurons in the front layers has more influence on
the output range computation than merging neurons in the
latter layers. That is because the over-estimation induced
by merging is amplified layer by layer.

5 Related Work
Our work is inspired by many pioneering neural network

abstraction approaches. Our approach is in line with but
outperforms the abstraction approach in [13] in terms of
the induced overestimation and the size of reduced neurons.
Katz et al. [6] proposed an abstraction technique for merg-
ing neurons in neural networks to accelerate the verification
of ACAS Xu networks. The difference is that in their ap-
proach the weights after merging are still values, unlike in-
tervals in our approach. Another approach merges the neu-
rons with similar behaviors, i.e., the neurons’ values are al-
ways similar for a given set of inputs [1]. This approach
relies on concrete inputs of the neural networks to abstract,
while our approach is independent of inputs.

Another class of abstraction-based neural network verifi-
cation approaches rely on the abstraction of the constraints
transformed from original neural networks, but not the ab-
straction of neural networks. Representative approaches in-
clude abstraction interpretation [9, 14] and linear relaxation
and overapproximation [4, 19]. After abstraction, they re-
sort to efficient linear programming solvers such as SMT
and MILP solvers to check the satisfiability of abstracted
constraints. Like our approach, all these approaches are
sound, but refinement is needed to achieve completeness.

6 Conclusion and Future Work
We have presented a fine-grained approach to abstract

neural networks for efficient formal verification. We identi-
fied four cases of merging neurons in neural networks and
defined corresponding merging rules. We also introduced a
neuron prioritization strategy to reduce the overestimation
induced by the abstraction. Compared with the pioneering
merging approach in the work [13], our approach can sig-
nificantly reduce the scale of original neural networks while
cause a relatively low output overestimation.

As for future work, we are planning to apply our ap-
proach to the formal verification of real-world large-scale
neural networks. Further, we consider extending it to other
network architectures and non-ReLU activation functions.

Acknowledgments
This work is supported by National Key Research and

Development Program (2020AAA0107800), Joint Funding
and AI Project (20DZ1100300) of Shanghai Science and
Technology Committee, NSFC general projects (61872146,

61872144), and Open Project Fund from Shenzhen Institute
of Artificial Intelligence and Robotics for Society. Weikai
Miao and Min Zhang are the corresponding authors.

References
[1] Pranav Ashok, Vahid Hashemi, Jan Kretı́nský, and Stefanie Mohr.

Deepabstract: Neural network abstraction for accelerating verifica-
tion. In ATVA 2020, volume 12302, pages 92–107, 2020.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, et al. End to end learning for
self-driving cars. CoRR, abs/1604.07316, 2016.

[3] Naser Damer, Yaza Wainakh, Olaf Henniger, Christian Croll, Benoit
Berthe, et al. Deep learning-based face recognition and the robust-
ness to perspective distortion. In 24th ICPR, pages 3445–3450, 2018.

[4] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish
Tiwari. Output range analysis for deep feedforward neural networks.
In NASA Formal Methods Symposium, pages 121–138, 2018.

[5] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip:
White-box adversarial examples for text classification. In ACL 2018,
pages 31–36, 2018.

[6] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. An
abstraction-based framework for neural network verification. In CAV
2020, pages 43–65, 2020.

[7] Francesca M. Favarò, Nazanin Nader, Sky O. Eurich, Michelle Tripp,
and Naresh Varadaraju. Examining accident reports involving au-
tonomous vehicles in california. Plos One, 12(9):e0184952, 2017.

[8] Samuel G. Finlayson, Isaac S. Kohane, and Andrew L. Beam. Ad-
versarial attacks against medical deep learning systems. CoRR,
abs/1804.05296, 2018.

[9] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar
Tsankov, Swarat Chaudhuri, and Martin Vechev. Ai2: Safety and
robustness certification of neural networks with abstract interpreta-
tion. In (S&P’18), pages 3–18. IEEE, 2018.

[10] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp,
Youcheng Sun, Emese Thamo, Min Wu, and Xinping Yi. A survey
of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev., 37:100270, 2020.

[11] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochen-
derfer. Policy compression for aircraft collision avoidance systems.
In IEEE/AIAA 35th DASC, pages 1–10, 2016.

[12] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. Reluplex: An efficient smt solver for verifying deep
neural networks. In CAV 2017, pages 97–117, 2017.

[13] Pavithra Prabhakar and Zahra Rahimi Afzal. Abstraction based out-
put range analysis for neural networks. In NeurIPS’19, 2019.

[14] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel,
and Martin T. Vechev. Fast and effective robustness certification. In
NeurIPS 2018, pages 10825–10836, 2018.

[15] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev.
An abstract domain for certifying neural networks. POPL’19, 3:1–
30, 2019.

[16] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev.
Boosting robustness certification of neural networks. In ICLR’19,
2019.

[17] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing prop-
erties of neural networks. In 2nd ICLR, 2014.

[18] Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta
Kwiatkowska. A game-based approximate verification of deep neural
networks with provable guarantees. Theoretical Computer Science,
807:298–329, 2020.

[19] Yiting Wu and Min Zhang. Tightening robustness verification of con-
volutional neural networks with fine-grained linear approximation.
In AAAI’21, 2021.

149

Modeling and Verification of CKB Consensus
Protocol in UPPAAL

Yi-Chun Feng, Yuteng Lu, Meng Sun
School of Mathematical Sciences, Peking University, Beijing, China

{yichunfeng,luyuteng,sunm}@pku.edu.cn

Abstract—The Nervos CKB (Common Knowledge Base) is
a public permissionless blockchain designed for a peer-to-peer
crypto-economy network. The CKB Consensus Protocol is a key
part of the Nervos CKB blockchain that improves the Consen-
sus’s performance limit of Bitcoin. In this paper, we develop a
formal model of the CKB Consensus Protocol and verify some
important properties of the protocol using the UPPAAL model
checker. Based on the formal model, the reliability of CKB
Consensus Protocol can be guaranteed.

Index Terms—CKB, Consensus Protocol, Model Checking,
UPPAAL.

I. INTRODUCTION

Blockchain can be viewed as a decentralized ledger that
allows direct peer-to-peer information transfer, and has nu-
merous benefits such as persistency, decentralization and
anonymity. It has been popularized since the introduction of
Bitcoin by Satoshi Nakamoto [8]. Developing a trustworthy
blockchain is a very challenging task due to the complexity of
the distributed execution environment and the existence of vul-
nerabilities. In fact, a lot of attacks on blockchains succeeded
in the past years, such as the famous DAO (Decentralized
Autonomous Organization) attack which results in the lost of
more than 50M USD [2]. Thus, many researchers conduct
investigations on blockchains’ security problems.

CKB blockchain [1] has a decentralized secure layer that
provides common knowledge for the peer-to-peer network.
CKB Consensus Protocol [11], a key part of the CKB
blockchain, is designed to overcome two Bitcoin Consensus’s
drawbacks: the low transaction processing throughput and
the vulnerability to selfish mining attacks. CKB Consensus
Protocol limits the time of connecting the sender in search
of a lost transaction. This restriction can improve transaction
processing efficiency without compromising the security of
the blockchain. In addition, CKB Consensus Protocol adopts
the “two-step confirmation”, which is used to prevent selfish
mining attacks.

In recent years, CKB has become very popular, and has
been successfully applied in different areas. This makes the
security properties of CKB more and more important. In this
paper, we make some attempts to provide a formal framework
for modeling CKB Consensus Protocol using timed automata
and verifying its security properties in the UPPAAL model
checker [4].

Formal verification has high assurance and coverage, so we
choose it to analyze CKB Consensus Protocol’s soundness

and reliability properties. In [6], UPPAAL has been used in
verification of the Bitcoin Protocol, and the probability of
success of double-spending attacks based on the formal model
is studied. A framework for modeling the Bitcoin contracts
in Promela and use SPIN to verify whether the logic of a
contract is correct is provided in [3]. The interface automata
model of computation is used in [7] as a semantic domain
to formalize smart contracts for detecting violations of the
contract agreements. The synchronization protocol is another
sub-problem for the verification of the CKB blockchain. It has
been discussed in [5], [10]. Based on the related works, we
could see practical meaning of combining formal verification
techniques and blockchain.

The main contributions of this paper are as follows:
• We propose a formal model of the CKB Consensus

Protocol in which the two-step confirmation, as well as
the miner, the full node, and the block propagation, are
modeled using timed automata.

• We define a family of the CKB Consensus Protocol’s
properties and formally verify them in the UPPAAL
model checker.

The rest of this paper is organized as follows: The Nervos
CKB and the CKB consensus protocol are briefly described in
Section II. The formal model of the CKB consensus protocol
is provided in Section III. Section IV proposes the verification
of properties in UPPAAL. Section V concludes the paper and
discusses possible future work.

II. A PRIMER ON CKB
Nervos Network [1] is proposed to improve scalability and

provide a better user experience. It uses the idea of off-chain
to create a two-layer environment. The first layer in Nervos
Network is the CKB layer. It is responsible for providing
decentralized and secure infrastructure. The second layer is
the environment for generating states and protecting privacy.
The encryption of the first layer will protect the activities in the
second layer. Under the security provided by the CKB layer,
the second layer’s operation can be expanded to a large extent.
The operation of the Nervos Network consists of three parts:
state generation executed, state verification, and storing states
in the cell. After the second layer generates a new state, the
state will be placed into the transaction. Later, the transactions
will be broadcasted to the whole network.

The block structures in CKB include the proposal zone and
the commitment zone [9], [11]. Miners put new transactions

DOI reference number: 10.18293/SEKE2021-072.
150

into the proposal zone after these transactions are generated.
When the transactions are put into the proposal zone, the
proposal step of the two-step confirmation starts. After the
proposal step, the miner will put the transaction into the
commitment zone and the commitment step begins. After
the two-step confirmation is completed, this transaction is
considered to be “valid”. CKB protocol specifies that all blocks
including orphan blocks that pass PoW will be broadcasted.
The block propagation mechanism in the consensus protocol
checks whether the transaction in the block is lost while
avoiding extra round trips.

III. THE MODEL OF THE CKB CONSENSUS PROTOCOL

Our formal model of the CKB Consensus Protocol is mainly
composed of four automata: Two-Step automaton, Miner au-
tomaton, Full Node automaton, and Block-Propagation au-
tomaton. The verification is modeled based on a single trans-
action subject in which not only the transaction process but
also the interaction among different nodes are presented.

In this model, all variables are used to mark whether the
corresponding operations are successful. The default values
of all variables are 0 initially. After the operations are com-
pleted, values will be assigned according to the results. The
assignment is always 1 if the operation is successful. When the
operation is abnormal, the variable assignment will be greater
than 1. The assigned variables are treated as parameters in the
constraint conditions of state transitions.

A. Two-step Automaton

The two-step confirmation consists of the “proposal” and
“commitment” step. Every transaction that passes two-step
confirmation will be regarded as legal. In Fig. 1, T0 is the
initial state, representing the generation of a new transaction.
The mining operation is simulated by channel collectP! which
is synchronous with channel collectP? in Miner automaton.
Variable cp is used to mark whether the transaction has been
written into the proposal zone. Variable c is the global time,
which represents the time interval of each mining epoch.

If a new transaction is processed by a miner, the variable
cp will be assigned in Miner automaton. T1 represents “start
of proposal confirmation”. The proposal confirmation includes
four operations: confirming the transaction exists in the pro-
posal zone, checking the txid of the transaction, confirming
the full node has received the transaction, and verifying the
content of the transaction. The variable checkT is used to mark
whether this transaction passes the txid check.

Channel checkTxid! is synchronized to checkTxid? in Full
Node automaton. Variable x is the height of block on
blockchain. Whenever a new block is added into blockchain,
the value of x will increase by 1. Variable hp records the height
of block where this transaction is located at.

In the entire two-step confirmation process, if any verifi-
cation fails, the state will transfer to T9, indicating that the
transaction cannot be broadcasted. State T2 means “verifi-
cation of transaction”. Variables checkR and checkV indicate
whether the full node successfully receives and verifies the

Fig. 1. The Two-step Automaton.

transaction respectively. Full Node automaton will assign
values to checkR and checkV after verification. State T3 means
that the transaction is ready for “mining of the second step”.
Variable cc is used to mark whether the transaction is written
into the commitment zone. If the transaction has been verified
in the first step of confirmation, it will be regarded as a
“Proposed Transaction”. At the same time, the transaction will
be marked as proposed at height hp if the transaction exists
in one block’s proposal zone with height hp.

All transactions completed the first step of confirmation can
be collected by miners and written into the commitment zone
of a new block. Channel collectC! is synchronized to collectC?
in Miner automaton. The difference in mining between the first
and the second steps lies in the location where the transaction
is written. The transaction will exist in two blocks with a
certain height interval. The height interval must be limited
within a defined range, and the interval will be checked in the
second step of confirmation.

After the transaction is marked as proposed and written into
the commitment zone, it will reach the state T4, which is
“start of the commitment confirmation”. This step includes two
operations: confirming the proposed transaction and checking
the height interval. Variable checkC presents whether this
transaction conflicts with others on the chain. Channel commit-
ted? in Full Node automaton will be synchronized. When the
proposed transaction enters this confirmation, it must meet the
transition constraint cc >= 1, which means that the transaction
has been written in the commitment zone. The variable hc
marks the current height of this block on the chain.

When the state transfers to T5, it must conform to its
invariant close <= hc-hp <= far. The setting of close is to
ensure the time interval is long enough for the transaction
to be propagated to the entire network. The value of far is
designed according to the number of proposed transactions that
its device can store. If the constraint condition checkC == 1 is
met, the state can transfer to T6, and the channel propagating!
will be triggered at the same time. All transactions are regarded

151

Fig. 2. The Miner Automaton.

as “Committed Transaction” when they reach state T6.
Channel propagate! is synchronized to propagate? in Block-

Propagation automaton. If the transaction exists in the commit-
ment zone of a certain block and is marked as proposed and
committed, then the transaction can be spread to the network.

State T7 and T8 represent “authorization of broadcast” and
“prohibition of broadcast” respectively. Variable p stands for
whether this transaction can be propagated. Value 1 indicates
that the transaction is legal and propagable, and value 2 indi-
cates that the propagation will be blocked. The assignment of
variable p will be completed by Block-Propagation automaton.

B. Miner Automaton

Fig. 2 demonstrates the behavior of a miner. M1 is the
standby state of the miner. After mining, the state transfers to
M2, which represents “new block generation”. If there is a
transaction missing during block propagation, the automaton
will go to channel connecting? through synchronization by
Block-Propagation automaton. Channel request? and query-
ing? describe the process of the miner being asked for the
missing transaction. The miner will send the requested transac-
tion back. Variable checkRe and checkQ represent the miner’s
reply. Variable cc is the operation result after putting the
transaction into the commitment zone. After two unsuccessful
requests for the transaction, the miner will be regarded as a
suspicious one and be blacklisted. This operation is simulated
by the synchronization channel disconnecting?. State M6
indicates “disconnection”.

C. Full Node Automaton

After the new block is generated, the full node will check the
legitimacy and the PoW of blocks before broadcasting them.
Fig. 3 depicts the Full Node automaton in which all operations
are aimed at a single transaction. In the first step of confirma-
tion, the full node will perform the checking of transaction txid
and the verification of contents, which are described by the
channels checkTxid? and ReceiveVerify? respectively. In the
second step of confirmation, the full node is responsible for
committing the transaction. F4 is the state after the two-step
confirmation automaton synchronizes the committed! channel.
When any operation fails, the state transfers to F5. At this
time, the transaction is deemed invalid.

Fig. 3. The FullNode Automaton.

Fig. 4. The Block-Propagation Automaton.

D. Block Propagation Mechanism

Fig. 4 describes the simulation of block propagation mecha-
nism. Starting from the standby state P0, the entire process is
started via the synchronous channel propagating! in Two-Step
automaton. The meaning of state P1 is to check whether the
transaction exists in the commitment zone. Variable p indicates
whether this transaction can be propagated. Value 1 means
that the transaction can be broadcast, and 2 means broadcast is
prohibited. When cc’s value is not equal to 1, it means that the
transaction does not appear in any public blocks’ commitment
zone.

State P2 represents “This transaction is previously un-
known.” If the transaction is not found in the commitment zone
of any public blocks, the synchronization channel connecting!
must be activated to contact the miner. When checkRe >= 2,
it means that the transaction is still not obtained. Then, state
transfers to P3, which means “failure in request”. Block-
Propagation automaton will trigger the channel querying! to
synchronize to the miner, and the miner must reply within a
short time t. Finally, if the missing part is still not known,
the automaton transfers to state P4. State P4 represents
“transaction invalidation”. When returning to the standby state,
channel disconnecting! simulates the operation of blacklisting
this miner and disconnecting him. At the same time, variable
p is assigned to 2, which tells Two-Step automaton that this
transaction should not be propagated.

IV. VERIFICATION IN UPPAAL

In this section, we provide a family of properties that should
be satisfied in two-step confirmation. All the properties have
been verified in the UPPAAL model checker.

152

Property 1. All new transactions will go through the process
of being placed in the proposal zone.

A <> TwoStep.T1

T1 means the transaction appears in the proposal zone. All
newly generated transactions will be put into the proposal
zone, then other nodes will receive the information about these
transactions. The validity of these transactions will not affect
the blocks’ legitimacy and the propagation’s legality.

Property 2. When a transaction is regarded as proposed, it
must pass the txid check. If the transaction does not finish the
txid check, it cannot become a “proposed transaction”.

A [] TwoStep.T4 imply (checkT == 1)

A [] not checkT == 1 imply not TwoStep.T4

Property 3. If a transaction is proposed, the full nodes must
have received and verified this transaction. If the full nodes
have not received this transaction or verified the contents, this
transaction cannot be regarded as proposed.

A [] TwoStep.T4 imply (checkR == 1 and checkV == 1)

A [] (not checkR == 1) or (not checkV == 1)

imply not TwoStep.T4

In the proposal step, the first task is processing the trans-
action txid, and the second task is sending a notification to
the full nodes. Before a transaction is regarded as proposed, it
must pass the process of checking txid (checkT == 1). If the
checking is unsuccessful, it will never be considered proposed.
In addition, the full nodes must have received (checkR == 1)
and verified (checkV == 1) this transaction. T4 indicates that
the transaction is proposed.

Property 4. When a transaction is placed in the commitment
zone, it must be received and verified by the full nodes. If the
full nodes have not received and verified this transaction, it
will not appear in the commitment zone.

A [] TwoStep.T5 imply checkR == 1 and checkV == 1

A [] not (checkR == 1 and checkV == 1)

imply not TwoStep.T5

T5 means the transaction is placed in the commitment zone.
To activate the second stage of two-step confirmation, the
transaction must be put into the commitment zone by miners.
Before being put in the commitment zone, the transaction must
pass the verification of the proposal step.

Property 5. When a transaction is committed, it must appear
in the commitment zone with height hc, and satisfies the
boundary: close <= hc− hp <= far.

A [] TwoStep.T6 imply checkC == 1

and (close <= hc− hp and hc− hp <= far)

T6 is a sign of transaction commitment. The value of
checkC indicates whether this transaction is in the commitment
zone.

Property 6. If the transaction is missing, and the miner cannot
obtain the transaction after requesting and querying, the miner
will be disconnected and blacklisted.

A [] BlockPropagation.P3 and BlockPropagation.P4

imply MiningNode.M6

Property 7. This model is repeatable and has no deadlock.

A [] not deadlock

V. CONCLUSION AND FUTURE WORK

In this paper, we formally illustrate the complete process
of the two-step confirmation of the CKB consensus protocol
in UPPAAL. It may lead to a better understanding of how
the CKB consensus protocol works. All the properties with
clear definitions are verified formally in UPPAAL. These
properties could serve as a reference for the CKB application
scenarios. The notion of two-step confirmation has impor-
tant implications for avoiding hiding information. This may
suggest various applications except for blockchain. Having
acknowledged the limitations of the scope, we offer the
framework of verifying the CKB consensus protocol.

In the future, we will investigate the formal model further
to determine whether the CKB consensus protocol could deal
with attacks. Also, the potential of its increasing throughput
needs further exploration. Additional research focusing on the
application scenarios would also be of great value and interest.
We are hopeful that more studies with detailed results could
be provided later.

ACKNOWLEDGMENT

This work has been supported by the Guangdong Science
and Technology Department (Grant no. 2018B010107004) and
the National Natural Science Foundation of China under grant
no. 61772038 and 61532019.

REFERENCES

[1] Nervos Network homepage, June 2020.
[2] The DAO (organization), May 2020.
[3] X. Bai, Z. Cheng, Z. Duan, and K. Hu. Formal modeling and verification

of smart contracts. In Proceedings of ICSCA 2018, pages 322–326.
ACM, 2018.

[4] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on Uppaal. In
Formal Methods for the Design of Real-Time Systems, volume 3185 of
LNCS, pages 200–236. Springer, 2004.

[5] H. Bu and M. Sun. Modeling and Verification of the CKB Block
Synchronization Protocol in Coq. In Proceedings of ICFEM 2020, pages
287–296. Springer, Dec. 2020.

[6] K. Chaudhary, A. Fehnker, J. van de Pol, and M. Stoelinga. Modeling
and verification of the bitcoin protocol. In Proceedings of MARS 2015,
EPTCS, pages 46–60. Open Publishing Association, 2015.

[7] G. Madl, L. A. D. Bathen, G. H. Flores, and D. Jadav. Formal
verification of smart contracts using interface automata. In Proceedings
of Blockchain 2019, pages 556–563. IEEE, 2019.

[8] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008.

[9] J. Xie. Nervos CKB: A Common Knowledge Base for Crypto-Economy,
Jan. 2018.

[10] Q. Zhang, Y. Lu, and M. Sun. Modeling and Verification of the Nervos
CKB Block Synchronization Protocol in UPPAAL. In Proceedings of
BlockSys 2020, pages 3–17. Springer, Nov. 2020.

[11] R. Zhang. CKB Consensus Protocol, June 2019.

153

Formalization and Verification of Dubbo Using CSP
Zhiru Hou, Jiaqi Yin, Huibiao Zhu⇤

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

Abstract—Dubbo is a high-performance, lightweight Java Re-
mote Procedure Call (RPC) framework developed by Alibaba,
which provides interface-oriented remote method call, intelligent
fault tolerance and automatic service registration. Since Dubbo
is extensively applied recently as an excellent representative RPC
framework, it is of great significance to formally analyze Dubbo.
In this paper, we use Communicating Sequential Processes (CSP)
to model and formalize Dubbo. In order to enhance the reliability
of the call, we use token authentication mechanism in the
modeling process. Moreover, we put the CSP description of the
established model into the model checker Process Analysis Toolkit
(PAT) for simulation and verification. We verify whether the four
properties are valid, including Deadlock Freedom, Connectivity,
Robustness and Parallelism. Our final verification results show
that the model can satisfy these properties, thus we can conclude
the framework can guarantee the highly available remote call.

Index Terms—Dubbo, Formalization, Verification, CSP

I. INTRODUCTION

With the development of the Internet, the architecture
for a large number of website applications is constantly
changing, from Monolithic Architecture, Vertical Architecture,
Distributed Service Architecture to Flow Computing Archi-
tecture. Now, more and more website technicians choose
to use Microservices [1], which is evolved from Service-
Oriented Architecture (SOA) [3]. As a means of communica-
tion, Remote Procedure Call (RPC) [2] still plays an important
role in Microservices, and Apache Dubbo is an excellent
representative of the RPC framework.

Dubbo [4] is an open source and high-performance RPC
call framework developed by Alibaba. It is a RPC remote call
service solution dedicated to providing high performance and
transparency. In recent years, some work has been done on
Dubbo [5, 6]. Zhang et al. [5] proposed a distribution network
state control system using Dubbo in order to improve the lean
management level of the distribution network. Xiong et al. [6]
designed a new type of think tank evaluation system based
on Microservices, and realized the communication between
services based on the RPC remote call of Dubbo distributed
framework. From these works, we can find that they focused
more on using Dubbo to implement remote calls between
services. Unfortunately, there is nearly no research conducted
to describe the interactions in Dubbo formally, thus it is a
challenge to give a formal model on the interactions between
the components in Dubbo.

In this paper, we propose a formal model of Dubbo using
Communicating Sequential Processes (CSP) [7], which aims
to reflect the interactions of Dubbo’s call process. In order

⇤Corresponding author: hbzhu@sei.ecnu.edu.cn (H. Zhu).

to better ensure the reliability of calling services, token au-
thorization mechanism is also formalized in this model. In
addition, we use Process Analysis Toolkit (PAT) [8, 11] to
verify whether the achieved model caters for some significant
properties or not, including Deadlock Freedom, Connectivity,
Robustness and Parallelism.

The remainder of this paper is organized as follows. Section
II gives a brief introduction to Dubbo and the process algebra
CSP. In Section III, we formalize the model of Dubbo using
CSP. Furthermore, in Section IV, we apply the model checker
PAT to implement the achieved model and verify four proper-
ties. Finally, we give a conclusion and make a discussion on
the future work in Section V.

II. BACKGROUND

In this section, we give a brief introduction to Dubbo’s call
service process, token authentication and process algebra CSP.

A. Dubbo

Dubbo is a distributed service framework. The architecture
of Dubbo is shown in Fig. 1. As we have seen in Fig. 1,
Dubbo architecture mainly has four components, including
provider, consumer, registry and monitor. Furthermore, Fig.
1 shows the main communications of Dubbo architecture, and
their respective functionalities are seen in Table I.

TABLE I
COMPONENTS AND FUNCTIONALITIES OF DUBBO

Components Functionalities
Provider Exposing remote services
Consumer Calling the remote services
Registry Service discovery and configuration
Monitor Counting the number of service invoca-

tions and time-consuming
Container Managing the services’ lifetime

In Fig. 1, when consumer wants to call the service it needs,
the following sequence of actions occurs:
(1) Container is responsible for launching, loading and run-

ning the provider.
(2) Provider registers its services to registry when it starts.
(3) Consumer subscribes the needed services from the reg-

istry when it starts.
(4) Registry returns a list of providers to consumer. When

the list changes, the registry will push the changed data
to consumer through long connection.

DOI reference number: 10.18293/SEKE2021-077

154

Fig. 1. Communications of Dubbo Module (Adapted from [4])

(5) Consumer selects one of the providers based on load
balancing algorithm and executes the invocation. If fails,
it will choose another provider.

(6) When monitor starts, it will subscribe all providers and
consumers that registered or called.

(7) Both consumer and provider count the number of service
invocations and time-consuming in memory, and send the
statistics to monitor every minute.

In Dubbo, if the provider wants to verify the identity of the
consumer before the consumer invokes its service, the system
can use token authentication between them. In this condition,
the consumer cannot bypass the registry and connect directly
to provider. The details of using token authentication in Dubbo
can be seen in Fig. 2.

Fig. 2. Token Authentication of Dubbo (Adapted from [4])

There are two types of tokens in Dubbo, which are random
token and fixed token. Random token is generated using a
UUID, and fixed token is equivalent to the password which is
used in this paper. The sequence of using token verification
[12] in Dubbo is:
(1) When provider registers its service, it generates a token

and publishes it with the service to registry.
(2) Registry has the right to decide whether to assign token

to consumer.
(3) Once the consumer obtains the URL of the provider from

registry, it can request to invoke the provider through the
token.

(4) The provider needs to verify whether this token is con-
sistent with the token generated by itself. If it is non-
consistent, this invocation will fail.

B. A Brief Introduction to CSP

CSP was proposed by C.A.R Hoare, which is the abbrevi-
ation of Communicating Sequential Processes [7]. It has been
successfully applied to model and verify diverse concurrent
systems and protocols [9, 10]. We use the following syntax to
define the processes in this paper.

P , Q ::= SKIP | STOP | a ! P | c?x ! P | c!e ! P |
PCbBQ | P⇤Q | P ||Q | P |||Q | P ;Q

• SKIP stands for a process which terminates success-
fully.

• STOP represents that the process does nothing and runs
into the deadlock state.

• a ! P performs action a firstly, then behaves like P .
• c?x ! P receives a message by channel c and assigns

the received message to variable x, then behaves like P
subsequently.

• c!e ! P sends a message e through channel c, then the
subsequent behavior is P .

• PCbBQ represents a conditional choice. If the expression
b is true, process P will be carried out; otherwise, process
Q is executed.

• P⇤Q is a general choice, it acts like either P or Q and
the environment decides the selection.

• P ||Q shows the parallel composition between P and Q.
The || means that actions in the alphabet of both operands
require simultaneous participation of them.

• P |||Q indicates that P interleaves Q which means P and
Q run concurrently without barrier synchronization.

• P ;Q executes process P and process Q in sequence.

III. MODELING DUBBO

In this section, we give a formal model of Dubbo’s call
service process, and this model includes five components.
The formalization proceeds based on the four components
described in Section II. In order to better describe the temporal
process of Dubbo, we propose a new component Clock.

A. Overall Modeling

For the whole system, there are four crucial processes
running in parallel through their own corresponding chan-
nels, including Provider, Consumer, Registry and Clock.
Monitor process interleaves with them. The behavior of
Dubbo system process is modelled as below.

DubSys =df Provider || Consumer || Registry || Clock;
System =df DubSys ||| Monitor;

Next, we give the formalization of Provider, Consumer,
Registry, Monitor and Clock, respectively.

155

TABLE II
THE EXPLANATIONS OF CHANNELS OF THE MODEL

Channels Functionalities
PiR Transmitting register messages between

providers and registry
CdR Transmitting subscribe messages between

consumers and registry
PiCd Transmitting call messages between con-

sumers and providers
CdM Transmitting consumers’ monitor mes-

sages between consumers and monitor
PiM Transmitting providers’ monitor messages

between providers and monitor
ComHearti Transmitting heartbeat messages between

providers and registry
T ime Transmitting time messages

B. Provider

In this system, there can be several providers. Each provider
has a unique ID marked as i, and I is the total number
about providers. Provider is mainly responsible for providing
services and generating tokens. In addition, Provider period-
ically sends a heartbeat to registry and a monitor message to
monitor. Thus, we formalize Provider as below.

Provider =df |||i2IServicei
Servicei =dfServProvider ||| ServPMon ||| ServHBeat

Before introducing the three processes of Provider, we first
explain messages and channels used here. The messages can
be described as follows, and the explanations of channels are
illustrated in Table II.

• ProInfo is sent from Provider to Registry, which
contains the ID, IP address, host name and the corre-
sponding information of the Provider.

• InvokeSuccess is a reply from Provider to
Consumer, which means that Consumer can call
the matched Provider successfully.

• InvokeFail is a reply from Provider to Consumer,
which represents that the invocation fails.

• TokenFail is a reply from Provider to Consumer,
which means that the token sent by Consumer and the
token of Provider are inconsistent.

• MonPro is transmitted from Provider to Monitor,
which owns the ID, the number of service invocations
and time-consuming of the Provider.

• request is used by asking Clock the current time.
• HeartBeat is sent from Provider to Registry, which

indicates the Provider is still running.
• ProListInfo is transferred from Provider to Monitor,

which contains the URL addresses of all providers.

ServProvider. ServProvider describes the details of pub-
lishing services and being called by consumers. At first,
Provider registers its services and token to Registry. When

Provider receives the call request from Consumer, it first
verifies whether the token provided by consumer matches
the token generated by itself. If the match is successful, the
authentication is passed; otherwise, the authentication fails
and TokenFail is sent to Consumer. In addition, when the
monitor starts, Provider sends ProListInfo to Monitor
asynchronously. The behavior of ServProvider is modelled
as below.

ServProvider =df0

BBBBBB@

0

BBBB@

Initial{PCounti = 0;OccupiedStatei,d = false};
PiR!ProInfo.Token ! PiCd?InvoRe.CToken !0

@
IvkProvider
C(CToken == Token)B
PiCd!TokenFail ! ServProvider

1

A

1

CCCCA

|||(PiM?StartM ! PiM !ProListInfo ! ServProvider)

1

CCCCCCA

For the process IvkProvider, since the authentication
passes, it is necessary to check whether the provider is
occupied by other services. If the provider is not occupied,
Provider sends InvokeSuccess to Consumer. It also in-
creases the number of service invocations and calculates time-
consuming using the process Clock; otherwise, the consumer
can wait timeout seconds. Suppose consumer can call the
provider within timeout seconds, the call is successful; oth-
erwise it fails. The detailed behavior is modelled as follows.

IvkProvider =df0

BBBBBBBBBBBBBBBBBBBB@

0

BBBBBBBBBB@

PiCd!InvokeSuccess(OccupiedStatei = true) !
Add(PCounti);T ime!request !
T ime?t{PStart := t} !
PiCd?end(OccupiedStatei = false) !
T ime!request ! T ime?t{PEnd := t} !
End{PTimei := PEnd� PStart} !
Calcul(MonPro a PCounti.PT imei);
ServProvider

1

CCCCCCCCCCA

C(OccupiedStatei == false)B0

BB@

WAIT (timeout);0

@
ServProvider
C(OccupiedStated == true)B
PiCd!InvokeFail ! SKIP

1

A

1

CCA

1

CCCCCCCCCCCCCCCCCCCCA

The following is the model of the WAIT function, where
the parameter t is the unit of time to wait, and the specific
model is as follows.

WAIT (t) =dfSKIPC(t == 0)B(tick!WAIT (t� 1))

ServPMon. ServPMon process is mainly used to send mon-
itor messages to monitor regularly. Once the monitor starts, it
asks the current time and waits MonInterval seconds. Then
it sends MonPro to Monitor and cycles continuously. Next
we give the formalization of ServPMon.

ServPMon =df T ime!request ! T ime?startT !
WAIT (MonInterval);PiM !MonPro !
ServPMon

156

ServHBeat. ServHBeat works in heartbeat mechanism,
which means that Provider needs to send a heartbeat
to Registry regularly. Then we formalize the process of
ServHBeat as below.

ServHBeat =df T ime!request ! T ime?start !
0

BB@

✓
ComHearti!HeartBeat !
Assign(last := start);ServHBeat

◆

C(start� last > HBeatInterval)B
ServHBeat

1

CCA

Provider asks Clock for the current time firstly. If the time
interval is less than HBeatInterval, Provider sends a re-
quest to Clock again; otherwise, Provider sends HeartBeat
to Registry directly and this process cycles continuously.

C. Consumer

Like Provider, each consumer has a unique ID marked as
d, and D is the total number about consumers. Consumer
mainly expresses subscribing service and calling service.
Moreover, Consumer sends a monitor message to monitor
regularly. Thus, we formalize Consumer as below.

Consumer =df |||d2DSubscriberd
Subscriberd =df ServConsumer ||| ServCMon

The messages in Consumer can be described as follows.

• SusRe is sent from Consumer to Registry, which
contains the ID, IP address and the corresponding in-
formation of the Consumer.

• InvoRe is transmitted from Consumer to Provider,
including the IDs of Consumer and Provider together
with invocation request.

• MonCon is sent from Consumer to Monitor, which
contains the ID, the number of service invocations and
time-consuming of the Consumer.

• end is transmitted from Consumer to Provider, which
means that Consumer wants to finish the call process.

• ConListInfo is transferred from Consumer to
Monitor, which owns the URL addresses of all con-
sumers.

ServConsumer. ServConsumer focuses more on sub-
scribing services and initiating the call processes. After
Consumer sends subscription to Registry, Consumer can
attain a list of providers and the tokens from Registry.
Then Consumer verifies whether the states of providers
are available or not. Consumer can select an available
provider to call via load balancing algorithm. Moreover we
use Random Load Balance algorithm here, which is selected
according to the provider’s weight and sets a random proba-
bility. Consumer sends invocation request to Provider and
waits the reply. In addition, if ProList changes, Registry
will notify Consumer asynchronously. Once monitor starts,

Consumer needs to send ConListInfo to Monitor. After
the above analysis, ServConsumer is formalized as below.

ServConsumer =df0

BBBBBB@

0

@
CdR!SusRe ! CdR?ProList !✓

IvkConsumer
C(statei == open)B SKIP

◆
1

A

|||(CdR?ModiProList ! SKIP)
|||(CdM?StartM ! CdM !ConListInfo !
ServConsumer)

1

CCCCCCA

For IvkConsumer, if reply is InvokeSuccess, it cal-
culates time and increases the number of invocations as
Provider; by contrast, it can have two opportunities to
try to call other providers. Then, we formalize the process
IvkConsumer as below.

IvkConsumer =df0

BBBBBBBBBBBBBBBBBBBBBB@

Initial{CCountd = 0};RanLoadBan(PID);
PiCd!InvoRe.CToken ! PiCd?reply !0

BBBBBB@

(Add(CCountd);T ime!request !
T ime?t{CStart := t} ! PiCd!end !
T ime!request ! T ime?t{CEnd := t} !
End{CTimed := CEnd� CStart} !
Calcul(MonCon a CCountd.CT imed);
ServConsumer

1

CCCCCCA

C(reply == InvokeSuccess)B0

BBBB@

8
<

:

x : num = 2;
(x > 0)
{IvkConsumer};x��;

9
=

;

C(reply == InvokeFail)B
ServConsumer

1

CCCCA

1

CCCCCCCCCCCCCCCCCCCCCCA

ServCMon. ServCMon process is mainly used by consumer
to send monitor messages to monitor regularly. Once the mon-
itor starts, Provider needs to send MonCon to Monitor.
Like ServPMon, we give the formalization of ServCMon.

ServCMon =df T ime!request ! T ime?startT !
WAIT (MonInterval); CdM !MonCon !
ServCMon

D. Registry

We use Zookeeper [13] to implement dynamic registration
and discovery of services in the registry. Registry serves as a
component for storing information and receiving the heartbeat
message from providers. Thus, we formalize Registry as
below.

Registry =df ServRegistry ||| RegHBeat

The messages in Registry can be described as follows, and
the channels are explained in Table II.

• ProList is sent from Registry to Consumer, and it is
a list which contains matching providers’ information.

157

• ModiProList is transferred from Registry to
Consumer, which owns modified matching providers’
information.

Next, we formalize the two processes, respectively.

ServRegistry. ServRegistry process is applied for describing
the registration and subscription processes. Firstly Registry
receives registration from Provider and subscription from
Consumer, respectively. Based on the information provided
by Consumer, Registry checks whether there is a matching
provider. If there is no matching provider, then it skips;
otherwise, Registry finds out the relevant providers according
to the matching algorithm SelectPro, and sends ProList
to Consumer. The behavior of ServRegistry process is
modelled as below.

ServRegistry =df Initial{ProList = null};
PiR?ProInfo.Token ! CdR?SusRe !

0

@

✓
SelectPro(ProList a ProInfo.IP.Token);
CdR!ProList ! ServRegistry

◆

C(SusRe.CInfo 2 ProInfo.PSer)B SKIP

1

A

RegHBeat. RegHBeat process mainly involves the heartbeat
mechanism. The process RegHBeat is formalized as follows.

RegHBeat =df0

BBBB@

�
ComHearti?HeartBeat ! RegHBeat

�

⇤

0

BB@

Initial{ModiProList = ProList};
set{statei = closed};
Modify(ModiProList a ProInfo.IP);
CdR!ModiProList ! SKIP

1

CCA

1

CCCCA

In case Registry receives heartbeat message from
Provider, it indicates the provider is running normally; on
the other hand, it means that the provider may be down, and
we can modify the provider’s information to ModiProList.

E. Monitor

Monitor is responsible for monitoring the status of the
service. Thus, Monitor can be formalized as below.

Monitor =df PiM !StartM ! PiM?ProListInfo !
CdM !StartM ! CdM?ConListInfo !
PiM?MonPon ! CdM?MonCon !
Monitor

When monitor starts, it needs to obtain the URL information
of all providers and consumers. It also receives MonPro from
Provider and MonCon from Consumer, respectively.

F. Clock

In order to better represent the temporal process of Dubbo,
we abstract Clock process, which is used to express the
global clock. Once other processes ask Clock for the time
via the channel T ime, Clock will send back the current time
t which is a positive integer. The processes of Clock(t) can
be described as follows.

Clock(t) =df (tick ! Clock(t+ 1))
⇤ (T ime?request ! T ime!t ! Clock(t))

IV. VERIFICATION

In this section, we implement CSP model mentioned in
Section III and verify some important properties using PAT.

A. Verification in PAT

Before verifying the properties, we define some significant
variables. I , D, R, M denote the number of the providers, the
consumers, the registry and the monitor. In the trial, we set I ,
D, R, M to be 2, 3, 1, 1, respectively.

Property 1: Deadlock Freedom

In Dubbo, we should avoid the situation that two or more
consumers are waiting the resources which have been occu-
pied by other consumers infinitely. In addition, System1()
should also meet Deadlock Freedom. For the explanation of
System1(), see Property 2. In the tool PAT, there is a primitive
to describe this situation:

#assert System() deadlockfree;
#assert System1() deadlockfree;

Property 2: Connectivity

Registry and monitor are optional, and consumer can con-
nect provider directly in Dubbo. However, we use token to
enhance identity authentication in this paper, so that consumers
need to go through registry to connect with the provider. Thus
we prove that monitor is optional here.

We hide the relevant channels of monitor to detect whether
the provider can successfully connect with consumer without
monitor, we use System1() to model this in PAT. If the moni-
tor is optimal, the variable CncStatePro and CncStateCon
should be True. Moreover, both System() and System1()
should satisfy this property. The assertion about this property
is defined as below:

System1() = System() \ {PiM,CdM};
#define Connectivity(CncStatePro == true &&

CncStateCon == true);
#assert System() reaches Connectivity;
#assert System1() reaches Connectivity;

Property 3: Robustness

The primary objective of Dubbo is to accomplish the
call of provider reliably even in the presence of failures. If
providers are stateless, one instance’s downtime does not affect
the usage. After all the providers of one service go down,
consumer infinitely reconnects to wait for service provider to
recover.

In this paper, we assume that the services called by con-
sumers are the same as those provided by providers. Here we
define that there are four valid conditions listed as follows.
The first and second conditions are that all providers can run
normally, the third condition is that the first provider is down

158

and the last condition is that the second provider is down. The
assertion is defined as below:

#define Robust1(PCount[0] == 1 &&
PCount[1] == 2);

#define Robust2(PCount[0] == 2 &&
PCount[1] == 1);

#define Robust3(PCount[0] == 0 &&
PCount[1] == 3);

#define Robust4(PCount[0] == 3 &&
PCount[1] == 0);

#define Robustness(Robust1||Robust2
||Robust3||Robust4);

#assert System() reaches Robustness;

Property 4: Parallelism

Parallelism means that the system allows multiple providers
publish services and consumers subscribe services concur-
rently, the processes do not interfere with each other. We
define two Boolean variables, aplPro means the number of
registration submissions of providers, and aplCon means the
number of subscription submissions of consumers. Our goal is
that the system can reach a state where the value of aplCon
and aplPro should be 1, which reflects the providers and
the consumers can involve calling processes parallelly. The
assertion about this property is defined as below:

#define Para1(aplPro[0] == 1 && aplPro[1] == 1)
#define Para2(aplCon[0] == 1 && aplCon[1] == 1

&& aplCon[2] == 1);
#define Parallelism(Para1 && Para2);
#assert System() reaches Parallelism;

B. Verification Results

The verification results are showed in Fig. 3. From Fig.
3, we can easily find that the four properties are all valid,
which represents that the constructed model caters for the
specifications and these properties.

1) Deadlock Freedom means that the constructed model
does not run into a deadlock state.

2) Connectivity is valid which means that the provider and
the consumer can connect successfully, even without
monitor.

3) Robustness represents that the framework has good fault
tolerances, which is an important property for RPC frame-
work.

4) Parallelism indicates that the providers can commit reg-
istrations and the consumers can commit subscriptions
concurrently.

V. CONCLUSION AND FUTURE WORK

Dubbo is a high-performance distributed service framework
from Alibaba, which can provide good remote call. In this
paper we analyzed Dubbo and used token mechanism to

Fig. 3. Verification Results

enhance identity authentication. We applied process algebra
CSP in formalizing Dubbo. Subsequently, we used PAT to
encode the CSP description and verified this model. In addi-
tion, we performed the validation of four properties, including
Deadlock Freedom, Connectivity, Robustness and Parallelism.
These properties are all valid. Therefore, we can conclude that
our model satisfies these properties and the framework can
realize effective remote calls from the perspective of process
algebra.

The formal verification of the distributed service framework
is still a challenge. In the future, we will formalize and verify
the Dubbo with Zookeeper [13] in more details and verify
whether the framework can resist attacks or not.

Acknowledgements. This work was partly supported by Na-
tional Key Research and Development Program of China
(Grant No. 2018YFB2101300), National Natural Science
Foundation of China (Grant No. 61872145, 62032024), Shang-
hai Collaborative Innovation Center of Trustworthy Software
for Internet of Things (Grant No. ZF1213).

REFERENCES

[1] Microservices, [Online] Available: https://martinfowler.com/articles /mi-
croservices.html.

[2] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls”,
ACM Transactions on Computer Systems, vol. 2, no. 1, pp. 39-59, 1984.

[3] N. M. Josuttis, SOA in Practice: The Art of Distributed System Design.
O’Reilly, 2007.

[4] Dubbo. [Online]. Available: http://dubbo.apache.org.
[5] Y. Zhang, Y. Liu, B. Li and L. Li, “Research on Distribution Network

Status Management System Based on Cloud Platform”, 2019 Interna-
tional Joint Conference on Information, Media and Engineering, pp.
391-395, 2019.

[6] S. Xiong and B. Huang, “A Novel Think Tanks Evaluation System Based
on Micro Service”, in Journal of Physics: Conference Series, 2021.

[7] C. A. R. Hoare, Communicating sequential processes. Prentice Hall
International in Computer Science, 1985.

[8] PAT: Process analysis toolkit, [Online] Available: http://pat.comp.
nus.edu.sg/.

[9] G. Lowe and B. Roscoe, “Using CSP to Detect Errors in the TMN
protocol”, IEEE Transactions on Software Engineering, vol. 25, no .10,
pp. 659-669, 1997.

[10] A. W. Roscoe and J. Huang, “Checking noninterference in timed CSP”,
Formal Aspects of Computing, vol. 25, no. 1, pp. 3–35, 2013.

[11] J. Sun, Y. Liu and J. S. Dong, “Model checking CSP revisited:
Introducing a process analysis toolkit”, International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation,
pp. 307–322, 2008.

[12] J. Yi and L. Lin, Deep understanding of Apache Dubbo and actual
combat. House of Electronics Industry, 2019.

[13] Zookeeper. [Online]. Available: https://zookeeper.apache.org.

159

Conv-Reluplex : A Verification Framework For
Convolution Neural Networks

Jin Xu∗, Zishan Li∗, Miaomiao Zhang∗(�), Bowen Du†(�)

∗School of Software Engineering, Tongji University, Shanghai, China
†Department of Computer Science, University of Warwick, Coventry, United Kingdom

Email: miaomiao@tongji.edu.cn; B.Du@warwick.ac.uk

Abstract—In recent years, machine learning has demonstrated
impressive performance in many real-world tasks, especially in
computer vision and natural language processing. However, to
apply them in safety-critical systems one needs formal guarantees
on the neural network outputs. The Reluplex tool is proposed
to verify the safety of deep neural networks (DNNs), and in
case the DNN fails to give a correct output, can generate
adversarial examples. Since the tool can only handle DNNs, it is
necessary to extend the tool to process image data. Therefore, in
this paper, we propose the Conv-Reluplex framework, which is
designed to verify the convolutional layer and pooling layer in
convolutional neural networks(CNNs), and generate adversarial
examples when classification is misguided. We conduct several
experiments on MNIST to evaluate our approaches. The results
show that the original CNN is improved using the adversarial
examples generated by our tool, and the precision of classification
can be increased significantly.

Index Terms—Reluplex Algorithm, Adversarial Robustness,
Verification Framework

I. INTRODUCTION

In recent years, machine learning [1] [2] has been widely
used in various fields, such as image recognition [3], speech
recognition [4] and autonomous vehicles [5]. Neural networks
are trained over a finite training set and are expected to
generalize, i.e., to behave correctly for previously-unseen
inputs. However, Szegedy et al. discovered that the input-
output mapping learned by neural networks is discontinuous
to a large extent [6]. It turns out that perturbed inputs similar
to a correctly classified input could be misclassified by deep
learning models with high confidence, which are generally
called adversarial examples [6]. There is an urgent need for
methods that can provide formal guarantees about neural
networks behavior. Unfortunately, manual reasoning about
large neural networks is impossible, as their structure renders
them incomprehensible to humans. Automatic verification
techniques are thus needed.

Verification of neural networks is difficult as it is experimen-
tally beyond the reach of general-purpose tools such as linear
program (LP) solvers or existing satisfiability modulo theories
(SMT) solvers [7]–[9]. In [10], the authors propose a method
to verify Multi-layer Perceptron (MLP) [11] with sigmoid
activation function. They point out the difficulty in scaling-
up this technique, i.e., only able to tackle small networks with

� Corresponding author

at most 20 hidden nodes [7]. In [9], the authors propose an ap-
proach for verifying the local adversarial robustness of DNNs
based on a systematic exploration of a region. The verification
process is still exponential in the number of features. Katz et
al propose an algorithm called Reluplex, which is efficient to
verify DNNs with ReLU activation functions [12]. This is achi
eved by leveraging the piecewise linear nature of ReLUs and
attempting to gradually satisfy the constraints that they impose
as the algorithm searches for a feasible solution. We call the
algorithm Reluplex, for “ReLU with Simplex”. Compared with
[9] and [10], Reluplex can handle larger deep neural networks
and guarantee that there are no irregularities hiding between
the discrete points.

Reluplex mainly focuses on DNNs. To support image pro-
cessing, it is necessary to extend this tool with CNNs to make
it more practical. To this end, we present a Conv-Reluplex
framework on the basis of Reluplex. The extension is able
to verify network robustness, that is, if Conv-Reluplex finds
that the adversarial robustness is not satisfied, a correspond-
ing counter-example (adversarial example) will be generated
in the form of an image type which shows an abnormal
classification with respect to the network. So, in the Conv-
Reluplex framework, the adversarial examples generation is
conducted during verification process, not alike those in the
existing methods [13]–[15]. As have been shown in [10] [14]
[16] [17], adversarial training can improve the robustness of
models. We thus make some tricks in the tool to produce
a large number of adversarial examples, not just one, for
our later training of CNNs. The experimental results show
that appropriate adversarial training is helpful to enhance the
adversarial robustness of the CNNs.

So, based on the current tool—Reluplex, we give the Conv-
Reluplex framework to verify CNNs, meanwhile generate
adversarial examples. We also have implemented the frame-
work [18] and conducted some experiments. In the following,
we begin with some background on CNNs, and Reluplex in
Section 2. In Section 3, we present Conv-Reluplex verification
framework, also with an emphasis on generation of adversarial
examples, followed by exprerimental results and analysis in
Section 4. We conclude the paper in the last section.

DOI reference number: 10.18293/SEKE2021-085
160

II. PRELIMINARIES

We first recall some definitions of CNNs, Adversarial ro-
bustness and Reluplex algorithm.

A. Convolutional Neural Networks

A convolutional neural network [19] is comprised of one
or more convolutional layers (often with a subsampling step)
and then followed by one or more fully connected layers as
in a standard multilayer neural network. The architecture of
CNNs is designed to take advantage of the 2D structure of an
input image (or other 2D input such as a speech signal). This
is achieved with local connections and tied weights followed
by some form of pooling which results in translation invariant
features. Another benefit of CNNs is that they are easier to
train and have many fewer parameters than fully connected
networks with the same number of hidden units.

B. Adversarial Robustness

Adversarial robustness [12] is a safety property, which
measures the resilience of a neural network against the inputs
with perturbation. When the input is x0, the output of network
can be denoted as f(x0). A neural network is δ-locally-robust
at point x0 iff

∀x, ‖x− x0‖ ≤ δ ⇒ f(x) = f (x0)

Intuitively, the above formula states that for input x that is
very close to x0, the network assigns to x the same label that
it assigns to x0; “local” thus refers to a local neighborhood
around x0. Larger values of δ imply larger neighborhoods, and
hence better robustness [16].

C. Reluplex Algorithm

Reluplex is an SMT solver for a theory of linear real
arithmetic with ReLU constraints. The technique is based on
extending the Simplex algorithm [17] [18] to support the non-
convex ReLUs in a way that allows their inputs and outputs
to be temporarily inconsistent which will then be fixed as
the algorithm progresses. In other words, DNNs and their
properties can be directly encoded as conjunctions of linear
formulas and ReLU constraints. Here, a ReLU constraint
satisfies xf = max(0, xb), where xf and xb stand for the
connection information of the nodes. To guarantee termination,
some ReLU connections may need to be split upon. However,
in many cases this is not required, resulting in a practically
efficient solution. The details that are crucial to performance
and scalability, such as the use of floating-point arithmetic,
bound derivation for ReLU variables, and conflict analysis,
are discussed in [12]. The success in verifying properties of
the ACAS Xu networks [20] indicates that the technique holds
potential for verifying real-world DNNs.

III. A VERIFICATION FRAMEWORK FOR CNNS BY
CONV-RELUPLEX

The Reluplex is able to verify and improve the adversarial
robustness of networks. If the adversarial robustness is not
satisfied for a classification task, there must exist an x′,

‖x′ − x‖ ≤ δ, with x′ belonging to a label different from
that of x. We call x′ a counter-example, which shows the
violation of the adversarial robustness property. As the tool
is not able to directly verify the CNNs and generate their
corresponding counter-examples, we hereby propose the Conv-
Reluplex framework to boost its ability on CNNs.

CNNs generally consist of three kinds of layers, convo-
lutional layers, pooling layers and fully connected layers.
The convolutional layer extracts rough features from the
original image, the pooling layer is a form of non-linear
down-sampling to generate dominant features, and the fully
connected layer employs these dominant features for classifi-
cation. The fully connected layer closely resembles the basic
component of DNNs, so the Reluplex can be directly applied
to process this layer. However, to tackle convolutional and
pooling layers in the CNNs, in particular for the purpose of
adversarial example generation, we propose a reverse calcula-
tion algorithm.

As illustrated in Fig. 1, the designed Conv-Reluplex frame-
work consists of Reluplex and a reverse calculation algorithm.
Given a trained CNN classifier, there are six steps included in
the framework.
• Step 1: A correctly classified image sample is selected

from the training dataset and input into the CNN.
• Step 2: When the image sample passes through the

convolutional layer and the pooling layer, the rough
features and the dominant features extracted by these two
layers are stored respectively before it passes through the
fully connected layer.

• Step 3: The stored dominant features are regarded as
the input of a DNN, because the structure of the DNN
is almost same as the fully connected layer. A small
perturbation neighbourhood δ of the stored dominant
features is a set, and Reluplex is used to verify the
adversarial robustness of the fully connected layer.

• Step 4: The adversarial robustness of the DNN (the
fully connected layer) is verified from Reluplex. If it is
not satisfied, Reluplex will output a counter-example to
prove that the adversarial robustness is not satisfied. This
example is called as ”intermediate adversarial example”.

• Step 5: The Unpooling algorithm (See Sec.III.A) is
applied to restore the intermediate adversarial example to
the potential rough features before the pooling operation.

• Step 6: The Deconvolution algorithm (See Sec.III.B) is
applied to restore the potential rough features to a image.

Reluplex is able to find out a counter-example (the inter-
mediate adversarial example in our framework), in general,
Conv-reluplex can turn this intermediate adversarial example
into a real image.

A. Unpooling algorithm

The function of pooling layers is to reduce the dimension of
rough features and generate dominant features. The commonly
used types of pooling calculation are Max, Average, Sum, etc.

The Max-pooling is shown in Fig. 2. The input of this
pooling layer is a 4∗4 matrix , the pooling window is a 2∗2

161

Fig. 1: Main steps of the Conv-Reluplex framework

matrix, and the stride is 2. The first iteration operation of the
pooling layer is Max(1, 1, 5, 6) = 6, then sliding to the right
of 2 cells, the second pooling operation is Max(2, 3, 4, 5) = 5,
and so no. The final output of the pooling layer is a 2∗2 matrix.

Fig. 2: Max-pooling calculation

The Unpooling algorithm is the inverse calculation of pool-
ing operation. The potential rough features can be generated
based on the Unpooling algorithm using the intermediate
adversarial example found in Step 4 and the original rough
features stored in Step 3. Because the CNN is well-trained, the
internal structure and weight parameters is fixed. Our approach
is to make minimal changes to the original rough features so
that it match the intermediate adversarial example.

For the Max-pooling, our Unpooling algorithm goes through
every value in the pooling window. If the value is greater
than the corresponding value in the intermediate adversarial
example, the value is set as the corresponding value. If the
value is less than or equal to its corresponding value, the value
will remain. Assume that x is the value in the original rough
features, and α is its corresponding value in the intermediate
adversarial example, the Unpooling algorithm is defined as
following:

funpooling(x) =

{
x = α, if x > α
x = x, if x ≤ α

An example of the Unpooling algorithm for the Max −
pooling is illustrated as Fig. 3. The left matrix is the original
rough features, the middle matrix is the intermediate adversar-
ial example. Firstly, the values 1,1,5,6 are in the window of the
first pooling operation, and compared with the corresponding
value in the intermediate adversarial example 4. Secondly,
because 5 and 6 are larger than 4, so the valuse of 5 and
6 reduce to 4, and other two values, 1 and 1, are both smaller
than 4, so they remain. The pooling window slides to the next

position iteratively. Finally, the new input matrix on the right
side of Fig. 3 is generated.

Fig. 3: Unpooling calculation of Max-pooling

As mentioned before, the Unpooling algorithm only modi-
fies the value necessarily. Therefore, the minimal changes can
be ensured.

B. Deconvolution algorithm
The function of convolutional layers in CNNs is to extract

the rough features from the original image, and the operation
is demonstrated in Fig. 4. The input of the convolutional layer
is a 5∗5 matrix, the kernel (parameter) of this layer is a
3∗3 matrix, and the stride is 1. When the third iteration of
convolution is performed, The kernel slides to the upper right
corner of the input. The corresponding values in the same
location of these two matrices multiply with each other and the
values of iterations are summed up. The result is shown at the
upper right corner of the output matrix. When the operations
of convolution are completed, the output of the convolutional
layers, a 3∗3 matrix, is obtained.

Fig. 4: Convolution calculation

Generally, a nonlinear activation function follows the con-
volutional layer. ReLU function is a widely used nonlinear
activation function after the convolutional layer, and it can be
expressed as follows.

Yi = ReLU (Xi ·Wi +Bi)

162

where Xi represents input data of layer i, Wi represents
convolution kernel parameter of layer i, Bi represents bias
of layer i, and Yi represents feature map of layer i.

In order to convert the rough features back to the image
which violate the adversarial robustness, the deconvolution
algorithm should invert both the ReLU operation and the con-
volution operation. The problem of convolution layer inversion
is formulated as a linear constraint solving problem. The kernel
Wi, the bias Bi and the potential rough features Yi is obtained
from Step 2 and Step 5 respectively. Xi is the adversarial
image to be generated. Since the result of the ReLU function
Yi is known, according to Yi and the ReLU definition, the
ReLU constraint can be eliminated from the expression, and
the problem is directly encoded as the following constraints:

Yi = ReLU (Xi ·Wi +Bi)⇔
{

Xi ·Wi +Bi = Yi, if Yi > 0
Xi ·Wi +Bi ≤ 0, if Yi = 0

For the first convolution layer, and the input of this layer
is still the input of the CNN, an additional upper and lower
bound constraint of 0 ≤ Xi ≤ 1 needs to be added for
each variable Xi. Because in preprocessing stage, the pixel
values of 0 to 255 are usually normalised between 0 to 1, the
additional constraints ensure that the generated data obtained
by the inversion can be correctly converted into a image.

Fig. 5: Deconvolution calculation

An example of the Deconvolution algorithm is shown in
Fig. 5. The input data (the normalised image) to be generated
is a 3∗5 matrix, and all values, x1,...,x15, in the matrix are
unknown. The convolution kernel is a 3∗3 matrix, the values of
this kernel are already known, the bias are all 0 for simplicity,
and the potential rough features is also known. Assuming that
this is the first convolution layer, the inequality groups can be
formulated as follows:

x1 + x3 + x7 + x11 + x13 = 5
x2 + x4 + x8 + x12 + x14 = 5
x3 + x5 + x9 + x13 + x15 = 4

0 ≤ xi ≤ 1

The solutions of these constraints are generally not unique,
one of which is: x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1

x6 = 0, x7 = 1, x8 = 1, x9 = 1, x10 = 0
x11 = 1, x12 = 1, x13 = 1, x14 = 1, x15 = 0

In practice, it is often the case that the constraints admit
multiple solutions. If the number of the solutions is too large,
our algorithm will further to solve an optimization problem
(linear programming), taking the maximum or minimum value
of the sum of all variables xi as the objective function. The
optimum can be directly selected as a solution.

There are various mature algorithms and tools for solv-
ing linear programs. The tool PuLP [21] which is based
on simplex algorithm is employed in our experiments. If
the solution fails, it means that there are obvious conflicts
between the constraints, and the deconvolution algorithm can
not be continued. In this circumstance, the corresponding
“intermediate adversarial examples” is considered as spurious
and will be discarded. If the solution can be found, it means
that the decalculation of the current convolutional layer is
successful. If the previous layer is another pooling layer, the
Unpooling algorithm is used to process again. Otherwise, a
couter-example image might be generated.

IV. EXPERIMENTAL RESULTS

A. Conv-Reluplex experiments

This experiment includes two steps. The first step is to train
a CNN model. The second step is to verify the CNN model by
using the Conv-Reluplex framework and generate adversarial
examples, which demonstrates the effectiveness of our Conv-
Reluplex algorithm.

1) Training a CNN model: The public MNIST data set [22]
is employed for this experiment. MNIST is an image data
set of handwritten numbers 0 to 9, including 60,000 training
samples and 10,000 test samples. Each sample is a grayscale
image with the size of 28∗28 and the grayscale range of 0
to 255. In preprocessing, the grayscale is normalized as data
between 0 and 1. The structure of the CNN model we built is
shown in Fig. 6 with batch size 64 and epoch 10. After the
training step, the test loss is 0.1894 and the test accuracy is
94.98%.

2) Verifying and generating picture adversarial examples
by Conv-Reluplex: An image sample of handwritten numeral
6 is used to verify adversarial robustness. We input the image
sample into the CNN model, extract feature data at the full
connection layer, and set perturbation neighborhood δ from
0.2 to 0.6. (Note: the perturbation neighborhood of 0.2 means
that each generated value is between the original value adding
0.2 and substrating 0.2. For example, the original input is [1.0,
1.5], and the perturbation [0.8, 1.3], [1.2, 1.7] both satisfy the
setting of the perturbation neighborhood of 0.2, but [1.0, 1.8]
is under the 0.3 perturbation neighborhood rather than 0.2.
The verification results are shown in Table. I:

The symbol ”
√

” indicates that there is no adversarial
example here. ”\” indicates that the classification is the real
class of the sample, and verification can be skipped. “Fail”
means that there is at least one adversarial example misclas-
sified as the corresponding class in the specified perturbation
neighborhood. Only when there is no “Fail” in an entire row,
the adversarial robustness in the corresponding neighborhood
is satisfied.

163

Fig. 6: The structure of the CNN model in the experiment

TABLE I: Verification results of a test sample of number 6
in different perturbation neighborhoods

perturbation
neighborhood

classification
0 1 2 3 4 5 6 7 8 9

δ = 0.2
√ √ √ √ √ √

\
√ √ √

δ = 0.3
√ √ √ √ √

Fail \
√ √ √

δ = 0.4
√ √ √ √ √

Fail \
√ √ √

δ = 0.5
√ √ √ √ √

Fail \
√

Fail
√

δ = 0.6
√ √ √ √ √

Fail \
√

Fail
√

As shown in Table I, when δ = 0.2, the adversarial ro-
bustness is satisfied, and no other classification will appear.
When δ = 0.3, the adversarial robustness is not satisfied, and
the sample of number 6 will be classified as number 5. As
the neighborhood δ increases, the misclassification caused by
perturbation becomes more and more serious. Such as δ =
0.5 or δ = 0.6, the selected sample of number 6 will be
classified as numbers 5 or 8. It is obvious that the number
of misclassification types and the number of intermediate
adversarial examples have further increased.

An intermediate adversarial example misclassified as 5 is
chosen when δ = 0.6 to carry out further analysis. The
intermediate adversarial example is converted to an image by
using the Unpooling and Deconvolution algorithm of Conv-
Reluplex. The comparison between the original image and the
adversarial example image is shown in Fig. 7. Although there
is a lot of noise in the adversarial example picture, it does not
prevent human from recognizing the main content.

Fig. 7: Original picture and adversarial example of number 6

In addition to the number 6, other numbers are also selected,
and the different types of original samples are used to generate
different adversarial examples, as shown in Fig. 8:

Fig. 8: Different adversarial examples

B. Adversarial training experiment

This experiment is designed to enhance the robustness of the
model by adversarial training. The adversarial examples used
in training are all generated by Conv-Reluplex. The numbers 1,
3 and 6 are selected as the main original samples. Each number
has generated 200 adversarial examples, of which 100 are
used for adversarial training and the remaining 100 are used
for testing. In order to prevent the model from forgetting the
characteristics of the original samples in adversarial training,
we randomly selected 900 or 1000 samples from the original
data set of each number, and mixed them with adversarial
examples. Therefore, in the new training set, the numbers 1,
3 and 6 are composed of 100 adversarial examples and 900
original samples. The remaining numbers are composed of
1000 original samples respectively. After preparing the new
training set, the adversarial training is performed based on the
original model, without changing any parameters or structure.
The batch size is 64 and the epoch is 10.

The difference of the accuracy after adversarial training is
shown in Table II. The classification accuracy of adversarial
examples has suddenly increased from 0% to 99.65%, while
the accuracy of original samples has only decreased from
94.98% to 94.89%, and the difference is only 0.09%. It
shows that appropriate adversarial training can enhance the
adversarial robustness of model, at the same time, the accuracy
of original samples will not be affected too much.

TABLE II: Accuracy comparison before and after adversarial
training

accuracy of original sample accuracy of adversarial sample
Original model 94.98% 0%

Adversaria training 94.89% 99.65%

In order to further analyze the difference of the model’s ad-
versarial robustness after adversarial training, we respectively
select one original sample of numbers 1, 3 and 6 as test data,
and input them into the original model and the adversarial
training model, then use Reluplex to verify the adversarial
robustness of CNN’s full connection layer. The verification
results are shown in Table III-V.

TABLE III: Verification results of number 1’s test sample
(δ = 0.6)

classification 0 1 2 3 4 5 6 7 8 9
Original model

√
\
√

Fail Fail
√ √

Fail Fail Fail
Adversaria training

√
\
√ √ √ √ √

Fail
√

Fail

164

TABLE IV: Verification results of number 3’s test sample
(δ = 0.6)

classification 0 1 2 3 4 5 6 7 8 9
Original model

√ √ √
\
√

Fail
√ √

Fail
√

Adversaria training
√ √ √

\
√ √ √ √ √ √

TABLE V: Verification results of number 6’s test sample
(δ = 0.6)

classification 0 1 2 3 4 5 6 7 8 9
Original model

√ √ √ √ √
Fail \

√
Fail

√

Adversaria training
√ √ √ √ √ √

\
√ √ √

In Table III, when perturbation neighborhood δ = 0.6, the
selected sample of number 1 has five kinds of adversarial
examples in original model, the selected sample may be
misclassified as 3, 4, 7, 8 or 9. However, in the adversarial
training model, the selected sample only has two kinds of
adversarial examples. It may be misclassified as 7 or 9. We
can find that the types of adversarial examples have decreased.

In Table IV, the selected sample of number 3 has two
kinds of adversarial examples in original model, which may be
misclassified as 5 or 8. But in the adversarial training model,
the two misclassification cases have disappeared, the selected
sample has no adversarial examples in the same neighborhood
(δ = 0.6), and the adversarial robustness has changed from
not satisfied to satisfied.

In Table V, the verification situation of number 6’s selected
sample is the same as number 3. It shows that this phenomenon
is not accidental. Adversarial training can indeed repair the
weakness of the model and enhance the adversarial robustness.

V. CONCLUSION

In this paper, to make Reluplex more practical, we propose
a Conv-Reluplex verification framework, which is utilized to
check adversarial robustness of CNNs. In case the robustness
property is not satisfied, it generates adversarial example. Us-
ing these adversarial examples to proceed adversarial training,
can indeed enhance the adversarial robustness of our model.

There are still some further work needed to be done. The
complexity of the general SMT solver algorithm is exponen-
tial. Reluplex proposed its own optimization algorithm to solve
some performance bottlenecks, but the efficiency is severe
limited by the high nonlinearity of the resulting formulas.
So we can only deal with some smaller networks at present.
The network trained by MNIST only has more than 4,000
relu nodes, while the network nodes trained by ImageNet are
too many to handle. We hope to do some work to improve
efficiency so that it can handle more network nodes, and it is
one of our goals to handle color pictures. Finally, the recurrent
neural networks (RNNs) can be taken into the consideration
in both original Reluplex and the extensions of Reluplex.

ACKNOWLEDGMENT

We acknowledge the support of National Natural Science
Foundation of China (NSFC) Project 61972284.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[2] M. Riesenhuber and T. Poggio, “Hierarchical models of object recogni-
tion in cortex,” Nature neuroscience, vol. 2, no. 11, p. 1019, 1999.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[4] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[5] D. Zhao, Y. Chen, and L. Lv, “Deep reinforcement learning with visual
attention for vehicle classification,” IEEE Transactions on Cognitive and
Developmental Systems, vol. 9, no. 4, pp. 356–367, 2017.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[7] L. Pulina and A. Tacchella, “Challenging smt solvers to verify neural
networks,” Ai Communications, vol. 25, no. 2, pp. 117–135, 2012.

[8] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi, “Measuring neural net robustness with constraints,” in
Advances in neural information processing systems, 2016, pp. 2613–
2621.

[9] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in International Conference on Computer
Aided Verification. Springer, 2017, pp. 3–29.

[10] L. Pulina and A. Tacchella, “An abstraction-refinement approach to
verification of artificial neural networks,” in International Conference
on Computer Aided Verification. Springer, 2010, pp. 243–257.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[12] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification. Springer,
2017, pp. 97–117.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[14] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[15] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
arXiv preprint arXiv:1712.04248, 2017.

[16] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Towards proving the adversarial robustness of deep neural networks,”
arXiv preprint arXiv:1709.02802, 2017.

[17] R. J. Vanderbei, “Linear programming: Foundations and extensions,”
Journal of the Operational Research Society, vol. 49, no. 1, pp. 94–94,
1998.

[18] G. Dantzig, Linear programming and extensions. Princeton university
press, 2016.

[19] http://ufldl.stanford.edu/tutorial/supervised/
ConvolutionalNeuralNetwork/.

[20] K. D. Julian, M. J. Kochenderfer, and M. P. Owen, “Deep neural
network compression for aircraft collision avoidance systems,” Journal
of Guidance, Control, and Dynamics, vol. 42, no. 3, pp. 598–608, 2018.

[21] https://pythonhosted.org/PuLP/.
[22] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.

com/exdb/mnist/, 1998.

165

Tree Ensemble Property Verification from A Testing
Perspective

Bohao Wang1,2, Zhe Hou3, Gelin Zhang2, Jianqi Shi2, and Yanhong Huang* 1,2

1Shanghai Key Laboratory of Trustworthy Computing, Shanghai, China
2National Trusted Embedded Software Engineering Technology Research Center,

East China Normal University, Shanghai, China,
{bohao.wang, gelin.zhang}@ntesec.ecnu.edu.cn,{yhhuang, jqshi}@sei.ecnu.edu.cn

3Griffith University, Australia, z.hou@griffith.edu.au

Abstract—With the development of artificial intelligence, ma-
chine learning algorithms are currently being used in more and
more fields, such as autonomous driving, medical diagnosis, etc.
In recent years, much research focuses on property verification
of machine learning models. As one of the machine learning
models, the tree ensemble model’s structure is amicable to formal
verification, but large models still prove hard to verify due to
the combinatorial path explosion. This paper presents a violation-
driven, sound but incomplete method from a testing perspective.
We generate an explanation model of the original model and
verify it formally. After a narrowed search space is obtained,
we verify the original model by a testing-based method. A
counterexample is then proof that the original model violates the
property. We elaborate our method through a case study in detail.
And we have developed our method into a tool called TEPV
(Tree Ensemble Property Verification) and tested it on datasets
of various sizes. The experiment demonstrates that our approach
is scalable and works well on large tree ensemble models.

Index Terms—Tree Ensemble, Property Verification, Testing

I. INTRODUCTION

Nowadays, artificial intelligence utilizing machine learning
algorithms has achieved a lot of success in many fields, such as
face recognition, autonomous driving, medical diagnostics, etc.
With the application of these technologies in more and more
fields, people doubt whether they can meet certain properties,
such as security, robustness, fairness etc., since deep learning
models are almost a black-box, and the tree ensemble models
are also too complex. In recent years, deep learning has
developed rapidly, and now there has been much research on
the verification of neural network [1], [2]. This paper is mainly
focused on whether the tree ensemble models satisfy specific
interesting properties.

Suppose you have a random forest model that tells you
whether or not two cars will collide based on a variety of
features. Traffic safety experts suggest that when the distance
between two cars is less than 5 meters and both cars’ speed is
greater than 120km/h, the two cars are bound to collide. The
prediction of a random forest model may be correct 99% of

*Corresponding Author
DOI reference number: 10.18293/SEKE2021-087

the time, but it may violate this property in some input spaces,
so we still need to verify the random forest model.

As background work, we tried to develop and implement a
general, sound and complete verification algorithm for random
forest. Our method divided the input space of the random
forest into different disjoint sets. Suppose the random forest
has 10 trees, each tree has 32 leaf nodes (depth is 5), and
each leaf node corresponds to a branch. We join each tree
branch with one branch of all other trees to represent the
disjoint sets of the input space divided by the random forest
model. When the input space is divided into disjoint sets, the
specific region of input space that does not satisfy the property
will be found by a property checking algorithm. The method
mentioned above faces combinatorial path explosions, which
means it is not scalable and can only handle random forests
where the sum of the number and depth are no more 15 in
our experiment. Random forest models on this scale are toys
that do not work in real life. Similar results are obtained in
recent work on verifying tree ensembles [3].

Consequently, we take a step back and sacrifice complete-
ness for a more feasible approach. The proposed approach
in this paper performs verification of tree ensembles from
a testing perspective. We first transform the original tree
ensemble model into a relatively simple model, which is
referred to as an “explanation model”. The explanation model
has a highly similar predictive behaviour compared to the
original model [4]. Then we verify the explanation model
against a property. Our hypothesis is that when the explanation
model violates the property in a certain search space, it is
highly likely that the original model also violates the property
in the same search space. Then we can narrow down the search
space using the explanation model and verify the original
model in a much smaller input space by a test-based method.
If a counterexample is found, then it is proved that the original
model violates the property.

The contributions of this paper include:

• We propose a method for tree ensemble property verifi-
cation, which alleviates combinatorial path explosion.

• We have developed a tool called TEPV that can perform
property checking on tree ensemble models.

166

• We validate our approach on datasets of different sizes,
and the experiment demonstrates that our approach is
scalable and works well on large tree ensemble models.

The rest of this paper is organized as follows: Section II
gives the background knowledge of this paper. Section III
details the proposed method. Section IV demonstrates a case
study and experiment of our approach. We discuss related
work in Section V. Finally, we conclude and give some future
work in section VI.

II. PRELIMINARIES

This section presents the required background knowledge,
including decision trees, ensemble of decision trees, and the
explanation tree ensemble model. We also give the definition
of the properties used in this paper.

A. Decision Trees With a Logical Foundation

We adopt the definitions of decision tree described in [4].
In supervised learning, a structured dataset for classification
is defined as set of instances of the form (~x, y) where ~x =
[x1, ..., xn], n ∈ N, is an input vector called features and y is
an outcome value often called the label. We denote by X the
feature space and Y the outcome space.

F1

(0,6)

(2,1) (3,1)

F2

False True

TrueFalse

Fig. 1. An example decision tree.

A decision tree is composed of internal nodes (diamonds in
Figure 1) and terminal nodes called leaves (ovals in Figure 1).
Each internal node is associated with a logical formula over
a feature. Each leaf node contains a set of instances, which
yield a vote distribution of the form (n1, · · · , nm) where m
is the number of classes and ni (1 ≤ i ≤ m) is the number of
instances of the corresponding class. For example, in Figure 1,
the leftmost leaf node (0, 6) indicates that there are 0 class1
instances and 6 class2 instances. Without loss of generality,
we focus on binary trees, in which internal nodes have two
successors respectively called the left and right child nodes.
By convention, the instances that satisfy the logical formula
of an internal node go to the right child node, and those that
do not satisfy go to the left child node. For example, in Figure
1, let I be the set of training instances associated with the root
node, I1 ⊂ I be the subset that satisfies the formula F1, then
I1 will be the set of instances associated with the right child
node (with formula F2), and I2 = I \ I1 will be the set of
instances associated with the left child (leaf) node.

Given a decision tree, any input vector (or instance) is
associated with a single leaf. A decision tree is, therefore, a

compact representation of a function of the form t : X → Nm,
where m is the number of classes. The output of a decision tree
is a distribution of votes for each class. To obtain an outcome
in Y , we take the class with the most votes.

B. Random Forest

We adopt the definitions of Cui et al. [5]. Let an ensemble
be a set of decision trees of size T . It gives the weighted sum
of the trees as follows:

E(x) =
T∑

i=1

wi · ti(x) (1)

where E is the function for the ensemble, wi and ti are respec-
tively the weight and function for each tree. The summation
aggregates the weighted votes from each tree and obtains
the final votes for each class. Thus, the ensemble is also
a function of the signature E : X → Nm and requires a
voting mechanism to obtain the outcome. We mainly focus on
the ensemble trees by bagging. Each decision tree is trained
using a subset of the dataset that is sampled uniformly with
replacement. The remaining instances form the out-of-bag
(OOB) set. When selecting the best formula at each decision
node in a tree, only a subset of the features are considered. This
is commonly found in algorithms such as Random Forest [6].
Bagging grows large trees with low bias, and the ensemble
reduces variance.

C. Explanation Tree Ensemble

In our previous work [4], we extract logical formulas
from an original tree ensemble model Mo to synthesize an
explanation model Me. Me is an approximation of Mo, and
it contains a set of decision rules. A decision rule is a tuple
(F, s, w), where F is a classical logic formula, s is the signa-
ture, which is a normalized vote distribution between classes,
and w is the weight, which indicates the importance of the rule.
There are four parameters that determine the generation of the
Me, which are θ, φ, ψ and k. θ determines the complexity
of the decision rules, ψ determines the signature s of each
decision rule. Both φ and k determine the number of the
decision rule in Me. Refer to [4] for the details.

The explanation model Me can make predictions based on
the following method: given a data instance x, find all the
decision rules in Me whose logical formula F is satisfied
by x, then multiply the signature of those rules by their
corresponding weight, and add them up to get a tuple of vote
distributions. The class with the largest value is the output. The
above procedure is denoted asMe(x) = c, where c is a class.
Figure 2 gives an example of how Me makes a prediction.

D. Properties of Interest

In this paper, we consider a general class of properties,
which is defined below.

Definition 1: (Properties) Let f : Xn → Rm be the function
to be verified. A property is of the form P : Constraint →

167

Instance x satisfies
r1,r2,r4

(2,0)*42

(0,2)*35

(0,2)*20

(84,110)

predict:class2

Rule F
signature

(clss1,class2)
weightRule F

signature
(clss1,class2)

weight

r1 F1 (2,0) 42r1 F1 (2,0) 42

r2 F2 (0,2) 35r2 F2 (0,2) 35

r3 F3 (2,0) 33r3 F3 (2,0) 33

r4 F4 (0,2) 20r4 F4 (0,2) 20

…
..

Rule F
signature

(clss1,class2)
weight

r1 F1 (2,0) 42

r2 F2 (0,2) 35

r3 F3 (2,0) 33

r4 F4 (0,2) 20

…
..

+

+

Fig. 2. An illustration of how Me makes a prediction for an instance x.

Target, where Constraint is the boundary of input features
and Target is the target label, i.e.,

Constraint ::=
∧
αi 6 xi 6 βi,∀i ∈ {1, ..., n} (2)

Target ::= (y = ci), i ∈ {1, ...,m} (3)

where αi, βi ∈ R and ci is the ith class of all m classes. If
αi = −∞ and βi = +∞, then xi has no constraint. That is,
−∞ ≤ xi ≤ +∞ ≡ >.

III. METHODOLOGY

This section details our tree ensemble property checking
approach. The overview of our method is given in Figure 3.
There are three stages in our method. First, we generate an
appropriate explanation model Me, which has high fidelity.
Here, fidelity refers to the degree of similarity between the
predictions of Me and Mo on unseen data [7]. The second
stage is the ExModel Checker part. In this step, our approach
checks whether the property P is violated by Me. If the
ExModel Checker finds that P is violated, the process will
continue. Finally, OrModel Checker will verify Mo against
the property P. If Mo violates P, we will output a decision
rule explanation and a counterexample. The counterexample
is an instance that P is not satisfied by Mo, and the decision
rule explanation is a narrowed-down search space.

OrModel

ExModel
Checker

OrModel
Checker

ExModel

Generate Violates

Rule Explanation
&

Counter Example

Violates

Stage 1

Property

Property

Stage 2

Stage 3

Fig. 3. An overview of the proposed method.

A. STAGE 1: Generate Explanation Model

We adopt our previous work [4] to generate the explanation
model Me. The process of generating explanation model is
expressed as the following formula:

explain(Mo, θ, φ, ψ, k) =Me (4)

A major difference compared to the previous work is that the
Me we generate here does not need to follow the criteria
of the explanation should be concise and small. Instead, we
only follow one criterion: the classification behavior of the
explanation modelMe should be as similar as possible to the
original model Mo.

We mentioned in Section II-C that different parameters
generate different Me. In order to get an explanation model
Me with high fidelity, we also use the linearly decreasing
inertia weight particle swarm optimization algorithm (LDIW-
PSO) [8] to optimise the four parameters:θ, φ, ψ and k. Since
our criteria are different from [4], we propose a new equation
below as the fitness, i.e., the objective function to be optimised.

Sopt =

n∑
i

Θ(Me(xi),Mo(xi)) (5)

where Θ(x, y) is a function that outputs 1 when x = y;
otherwise outputs 0, xi is the sample in the test set, and n
is the number of samples in the test set. After optimization,
we finally obtain Mopt

e .

B. STAGE 2:Verify Explanation Model

Once we obtainMopt
e , we can use the ExModel Checker to

verifyMopt
e against properties. The detail of Stage 2 is shown

in Algorithm 1.

Algorithm 1 Stage 2: find violation of explanation model
1: Input: Property P, Explanation Model Mopt

e

2: Output: a set of decision rules set Φ
3: R← ∅
4: Φ← ∅
5: for all r ∈Mopt

e do
6: if r ∧ P.constraint is satisfiable then
7: R← R ∪ {r}
8: end if
9: end for

10: for all R′ ⊆ R do
11: if R′ is satisfiable and Mopt

e .predict(R′) 6= P.target
then

12: Φ← Φ ∪ {R′}
13: end if
14: end for
15: return Φ

Given an Mopt
e and a property P, the first step of checking

Mopt
e is rule selection, corresponding to the lines 4-8 in

Algorithm 1. For simplicity, the notation of Mopt
e not only

refers to the explanation model but also the decision rules in
the explanation model. For the decision rules in Mopt

e that

168

are compatible with the constraint of property P, we collect
them as R. After rule selection, we try to find the subset of R
whose decision rules are satisfiable when combined. Assume
there is a set R′ that meets the requirements; we useMopt

e to
make a prediction based on R′. We mentioned in Section II-C
that the explanation model would first select decision rules in
Mopt

e are satisfied by x, and then make a specific prediction
according to the selected decision rules. Here, the prediction
of Mopt

e omits the steps for selecting decision rules, as these
are done in lines 4 - 8 already. Instead, we directly give the
prediction based on the set R′.

If the prediction result is not consistent with the target
of the property P, Mopt

e violates the property P. Then, we
will continue to verify the original modelMo using OrModel
Checker based on the narrowed search space.

C. STAGE 3: Verify Original Model

BecauseMopt
e andMo have very similar predictive behav-

ior, when we look at the same (narrowed-down) search space,
ifMopt

e violates the property P, it is very likely thatMo may
also violate P. We present the details of stage 3 in Algorithm 2.

Algorithm 2 Stage 3: find violation sample of original model.
1: Input: Property P, Original ModelMo, decision rules set
R′ and the number of generated samples n

2: Output: flag, c and e
3: flag ← False
4: c← None
5: e← R′ ∧ P.constraint
6: samples← generate n samples based on e
7: for all s ∈ samples do
8: if Mo.predict(s) 6= P.target then
9: flag ← True

10: c← s
11: return flag, c, e
12: end if
13: end for
14: return False,None,None

Note that the constraint component of a property has the
same structure as the logical formula of a decision rule, so
they can be used in conjunction to limit the search space.
More specifically, we combine the decision rules in R′ and
the property P’s constraint and simplify them by merging sub-
formulae on the same feature (Line 5 of Algorithm 2). At
this point, the counterexample search space of property P is
reduced significantly by the above simplified formula, which
we call decision rule explanation. Then, a sample generator
will generate many samples in the narrow search space.

We adopt a Generative Adversarial Network (GAN) [9]
model as the sample generator. GAN has two parts: a discrim-
inative network (the discriminator) and a generative network
(the generator). The discriminator learns to distinguish the
features of a given data instance. The generator, which learns
to confuse the discriminator, can generate fake but plausible
data via an adversarial learning process. GAN will generate

samples with the same distribution as the training set, but we
need samples within the narrow search space determined by
e. So we add a filter after the GAN model to select samples
that meet the requirements. The process mentioned above
corresponds to Line 6 of Algorithm 2.

Next, we use Mo to make predictions from the generated
samples, which are expected to have a high chance of violating
P. If the predicted result is indeed different from the target
of the property, it means that Mo violates the property. The
sample with the different predicted result is provided as the
counterexample, and the final narrow search space is output
as a decision rule explanation.

Noted that there may be a lot of R′ that cause property
violation of Mopt

e in the subset of R, which means a lot of
decision rules sets will be emitted in stage2, but what we
want to find is a R′′ that cause property violation of both
two models. Since our approach is violation-driven, once we
find one appropriate R′′, our method will stop and return the
counterexample and decision rule explanation. Otherwise, the
method will continue to find the violation.

IV. EXPERIMENT AND CASE STUDY

We implement our method in Python and develop a tool
called TEPV (Tree Ensemble Property Verification). We use
scikit-learn [10] to train random forest models and evaluate our
tool TEPV through a case study and experiment. For random
forest in our experiment, the number of trees is 100, and the
depth of the tree is unlimited. For simplicity, we only consider
binary classification datasets with numeric features. However,
the proposed approach can easily be extended to multi-class
datasets with both numeric and nominal features. We test our
method on three datasets: diabetes, JM1 and MiniBooNE,
all of which are available on OpenML [11]. Particle size
and iteration period are set to 20 by default, which are two
parameters in LDIW-PSO. Experiments were conducted on a
machine with an Intel Core i9-7960X CPU and 32GB RAM.

TABLE I
THE CHANGE OF SEARCH SPACE.

Constraint of the Property Rule Explanation
Feature lower bound upper bound lower bound upper bound

preg 7.51 10.65 7.51 9.5
plas 138.52 +∞ 157.5 +∞
pres 99.02 101.23 99.02 101.23
insu 77.94 93.51 77.94 93.51
skin −∞ 99.04 −∞ 99.04
mass 26.94 60.39 27.9 28.9
pedi 0.63 2.23 0.63 1.1
age −∞ +∞ −∞ 27.5

A. Case Study 1:Pima Indians Diabetes Dataset

The Pima Indians Diabetes dataset [12] has 768 samples,
8 features, 2 classes. The features are as follows: the number
of times pregnant (preg), plasma glucose concentration (plas),
diastolic blood pressure (pres), 2hour serum insulin (insu),
triceps skinfold thickness (skin), body mass index (mass),
diabetes pedigree function (pedi) and age. Two classes are

169

TABLE II
ALL DECISION RULES OFMopt

e .

Rule Logic Formula Signature
(N, P) Weight Rule Logic Formula Signature

(N, P) Weight

r1 (plas ≤ 132.0)
∧
(mass ≤ 26.4) (2,0) 133 r13 (preg ≤ 9.5)

∧
(plas > 157.5)

∧
(mass > 27.9) (0,2) 60

r2 (mass ≤ 28.9) (2,0) 127 r14 (plas > 154.5)
∧
(pres ≤ 92.0)

∧
(pedi > 0.3) (0,2) 52

r3 (plas ≤ 123.0) (2,0) 124 r15 (plas > 154.5)
∧
(mass > 29.9)

∧
(age ≤ 49.5) (0,2) 47

r4 (plas ≤ 128.5)
∧
(mass ≤ 30.9) (2,0) 122 r16 (plas > 154.5)

∧
(pedi ≤ 1.1) (0,2) 46

r5 (plas ≤ 130.5)
∧
(insu ≤ 30.5) (2,0) 116 r17 (plas > 155.0)

∧
(pres ≤ 92.0)

∧
(mass > 30.1) (0,2) 44

r6 (plas ≤ 104.0) (2,0) 116 r18 (plas > 157.5)
∧
(mass > 28.8) (0,2) 43

r7 (plas ≤ 112.5) (2,0) 115 r19 (plas > 147.5)
∧
(pedi > 0.3) (0,2) 41

r8 (plas ≤ 123.5) (2,0) 115 r20 (plas > 139.0)
∧
(pedi > 0.2) (0,2) 40

r9 (plas ≤ 112.5) (2,0) 114 r21 (plas > 132.0)
∧
(mass > 35.5) (0,2) 38

r10 (age ≤ 27.5) (2,0) 113 r22 (preg > 7.5) (0,2) 36
r11 (plas ≤ 124.5)

∧
(mass ≤ 27.8) (2,0) 112 r23 (preg > 6.5)

∧
(insu > 22.5) (0,2) 36

r12 (mass ≤ 30.1) (2,0) 111 r24 (plas > 129.5)
∧
(insu > 16.5)

∧
(skin ≤ 629.5) (0,2) 36

positive and negative. We use 668 samples to train a random
forest and 100 samples as the testing set.

In this case study, a doctor wants to check if the random
forest model Mo satisfies his expert knowledge. He puts
forward a property as follows. When a patient meets the
constraint that preg is between 7.51 and 10.65, plas is bigger
than 138.52, pres is between 99.02 and 101.23, insu is between
77.94 and 93.51, skin is less than 99.04, mass is between 26.94
and 60.39, and pedi is between 0.63 and 2.23, she should
be diagnosed as positive. The doctor argues that the machine
learning model is unreliable if it violates this property which
is derived from his expertise.

We use our tool TEPV to verify the random forest model
Mo against the property put forward by the doctor. We
generate explanation model Mopt

e as Table II shows. And the
decision rules in red is one set of the output of Algorithm 1.
Based on Algorithm 1 and Algorithm 2, we have narrowed
the search space and provide a counterexample of violation.
In Table I, compared to the constraint of the tested property
P, it is clear that the upper bound of preg, mass, pedi and age
shrinks; in the meantime, the lower bound of plas and mass
rises.

TABLE III
A COUNTER EXAMPLE OF THE TESTED PROPERTY

preg plas pres insu skin mass pedi age predict

8 157.64 99.99 86.62 47.19 28.61 0.66 21 negative

The counterexample that reflects the violation of Mo is
shown in Table III. This sample is generated by our sample
generator in the input space defined by the decision rule ex-
planation. Our method narrows down the search space, and the
counterexample found in this space reflects the effectiveness
of our approach.

B. Experiment

Under normal circumstances, users want to test whether the
model violates certain user-specified properties that may be
domain-specified. Since we are not domain experts and can

not define properties with professional knowledge, we use the
following method to randomly generate properties.

Assume the dataset has n features and m classes, we first
find the mini and maxi of feature fi, i ∈ {1, .., n}, which is
the minimum and maximum of the fi in the training samples.
For the constraint of the property, we select fi with a chance
of p1%. And for each fi selected, randomly generate αi and βi
between mini and maxi(assume αi <βi). Then we generate
the constraint αi ≤ fi ≤ βi with a chance of p2%, otherwise
generate the constraint αi ≤ fi or fi ≤ βi with 50% change
each. For the target of the property, we randomly select one
class as the target with equal probability.

We test on three datasets: diabetes, JM1 and MiniBooNE.
JM1 is a dataset about software defect prediction; it has 21
features and 10k samples. MiniBooNE dataset is used to
distinguish electron neutrinos (signal) from muon neutrinos;
it has 50 features and 130k samples. For each dataset, we
train a random forest model with 100 trees of unlimited depth,
which are the usual default settings in real-life applications.
We set p1 ∈ {0.5, 0.8}, p2 ∈ {0.5, 0.8} and randomly generate
25 properties of every (p1, p2) combination, totalling 100
properties for each dataset. The number of samples generated
by the sample generator is 1000. For JM1 and MiniBooNE,
90% of the samples are used as the training set, and 10% of
the samples are used as the testing set. For each property, if
no counterexample is found or if the process takes more than
one hour, we consider it a failure and the property is skipped,
and the program begins to verify the next property.

TABLE IV
PROPERTIES CHECKING ON DIFFERENT DATASETS.

Dataset Mopt
e Fidelity

Parameters (θ, φ, ψ, k)
Acc. Vio. Time Std.

Diabetes 93%
(0.57, 0.1, 0.67, 12.0)

80% 75% 388 1424

JM1 92%
(0.66, 0.14, 0.7, 12.0)

92% 60% 354 600

MiniBooNE 88%
(0.8, 0.04, 0.93, 20.0)

93% 58% 524 752

The results of the experiment are shown in Table IV.
Mopt

e Fidelity is the proportion that Mopt
e and Mo predict

170

the same results in the test set. Acc. is the prediction accuracy
ofMo on the test set. V io. is the percentage of the properties
for which we can find a counterexample within timeout, Time
is the average time of finding counterexamples (in seconds),
and Std. is the standard deviation of the time. The results show
that our tool, TFPV, can find some violation of tree ensemble
in different datasets. When the model violates properties, the
average time required is less than 20 minutes. Since the
properties are generated randomly, a large standard deviation
is acceptable. But it is clear that our approach is scalable
and works well on datasets of different sizes and large tree
ensemble models.

V. RELATED WORK

Since machine learning algorithms are used more and
more frequently in daily life, people have some doubts about
whether they meet certain requirements or properties. There-
fore, more and more researchers are now working on the prop-
erty verification of machine learning models. In the following,
we will introduce the property verification of machine learning
models in two parts: verification of deep learning models and
verification of tree ensemble models.

A. Verification of Deep Learning Models

In 2010, Pulina et al. [2] proposes abstract interpretation to
verify a DNN and introduces a linear approximation algorithm
to estimate the interval of ReLU and Sigmoid output.

Fichetti et al. [13] propose a 0-1 MILP encoding to model
a DNN for property verification and reasons through a MILP
solver and implements a bound tightening mechanism to
reduce the search space.

A method for verification of feed-forward neural networks
with piecewise linear activation function was presented in
[14]. They treat the neural network model as a block-box
and use the SMT solver to verify the approximation of the
block-box. Compared with Ehlers, Huang et al. [1] describe a
white-box approach to verify the feed-forward neural networks
and introduce a feed-forward analysis that partially based on
discretization to test robustness and find adversarial examples.

B. Verification of Tree Ensemble Models

Tree ensemble models are non-continuous step functions,
which is different from neural networks in deep learning.
Therefore, the techniques mentioned above cannot be used
to verification of tree ensemble models. Recently several
researchers have pursued approaches to the verification of tree
ensemble models.

Tornblem et al. [3] proposed a robustness verification tool
of tree ensembles called VoTE. Their method is an abstraction-
refinement procedure that iteratively refines a partition of the
input space where each block of the partition is a hyperrect-
angle. A tool named Silva introduced by Ranzato and Zanella
[15] pushes forward the line of research by designing a general
and principled abstract interpretation-based framework for the
formal verification of robustness and stability properties of

decision tree ensemble models. Unlike tool VoTE, the sound-
ness and completeness properties of Tornblem’s verification
algorithm are not formally proved. The algorithm of Silva
is based on the principles of abstract interpretation, which is
endowed with a formal soundness and completeness proof.

VI. CONCLUSION AND FUTURE WORK

This paper presents a method for verifying whether a tree
ensemble model violates a user-specific property. We give
one case study and show that our approach works. Moreover,
in the experiment, we test various properties on datasets of
different scale, which reflects the effectiveness of our method.
In addition, the number of trees in the tree ensemble we tested
is 100, and the depth is unlimited. By contrast, related methods
struggle to verify 25 trees of depth 20 [3]. This demonstrates
that our approach is scalable. Our approach relies heavily on
sample generation, and in some certain cases, the performance
of our tool, TEPV, may degrade dramatically. As future work,
we plan to improve the sample generation algorithm so that our
method can produce samples that meet the requirements more
quickly and improve the speed of finding counterexamples.

REFERENCES

[1] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in International conference on computer aided
verification. Springer, 2017, pp. 3–29.

[2] L. Pulina and A. Tacchella, “An abstraction-refinement approach to
verification of artificial neural networks,” in International Conference
on Computer Aided Verification. Springer, 2010, pp. 243–257.

[3] J. Törnblom and S. Nadjm-Tehrani, “Formal verification of input-output
mappings of tree ensembles,” Science of Computer Programming, vol.
194, p. 102450, 2020.

[4] G. Zhang, Z. Hou, Y. Huang, J. Shi, H. Bride, J. S. Dong, and
Y. Gao, “Extracting optimal explanations for ensemble trees via logical
reasoning,” arXiv preprint arXiv:2103.02191, 2021.

[5] Z. Cui, W. Chen, Y. He, and Y. Chen, “Optimal action extraction for
random forests and boosted trees,” in Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data
mining, 2015, pp. 179–188.

[6] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[7] A. Papenmeier, G. Englebienne, and C. Seifert, “How model ac-
curacy and explanation fidelity influence user trust,” arXiv preprint
arXiv:1907.12652, 2019.

[8] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
arXiv preprint arXiv:1406.2661, 2014.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[11] OpenML, “openml.org,” https://www.openml.org, Accessed 2019.
[12] P. D. Turney, “Cost-sensitive classification: Empirical evaluation of a

hybrid genetic decision tree induction algorithm,” Journal of artificial
intelligence research, vol. 2, pp. 369–409, 1994.

[13] M. Fischetti and J. Jo, “Deep neural networks and mixed integer linear
optimization,” Constraints, vol. 23, no. 3, pp. 296–309, 2018.

[14] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2017, pp. 269–286.

[15] F. Ranzato and M. Zanella, “Abstract interpretation of decision tree en-
semble classifiers,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 5478–5486.

171

DeepAuto: A First Step Towards Formal Verification
of Deep Learning Systems
Yuteng Lu∗ ,Weidi Sun∗, Guangdong Bai† and Meng Sun∗

∗School of Mathematical Sciences, Peking University, Beijing, China
Email: {luyuteng, weidisun, sunm}@pku.edu.cn

†School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
Email: g.bai@uq.edu.cn

Abstract—Deep Learning (DL) offers a data-driven program-
ming paradigm in which Deep Neural Networks (DNNs) can
be constructed through a set of training data. It has been
widely adopted in many real-world applications. However, many
studies have shown that DL systems suffer from adversarial
attacks, especially when they are applied to security- and safety-
critical domains. Given that formal verification has proved a
great success in many areas such as software engineering, using
it to achieve a high-level security assurance in DL systems is
considered promising. In this paper, we design and implement
DeepAuto which makes the significant bridge between automata
and DNNs. With the aid of DeepAuto, we demonstrate how DNNs
can be modeled as automata and be verified formally in the
widely used model checker UPPAAL. The potential usefulness
of DeepAuto shows the connection between DNNs and automata
and provides a solution for the construction of more trustworthy
DL systems.

Index Terms—Formal Verification, Deep Neural Network,
Timed Automata, DeepAuto

I. INTRODUCTION

Deep Learning (DL) has enjoyed tremendous success over
the past few years, achieving or exceeding human-level perfor-
mance in various areas, including security-critical applications,
such as autonomous vehicles [3], computer vision [6], speech
recognition [10], robotics and competitive games such as
Go [11]. However, DL systems often exhibit incorrect and
unexpected behavior [12], carrying the risk of endangering
human lives such as a fatal accident of self-driving car [9].
Thus, more concerns have been raised about the wide adoption
of DL systems in security- and safety-critical systems.

To mitigate such concerns, one of the most active research
areas in recent years is to design testing coverage for DL
systems. Nevertheless, testing could be a quality metric for
DL systems, but it cannot guarantee the correctness of the
systems, which means numerous blunders may be concealed
in DL systems and the testing approach cannot prove the
absence of such errors. Towards addressing the aforementioned
limitations, the application of formal verification techniques
in DL systems appears to be a potential solution. In those
traditional areas like software engineering, formal verification
has achieved great success in guaranteeing that a system is free
of certain defects or satisfies certain properties, and has played
an important role in ensuring the correctness and reliability of
increasingly complex software and hardware systems [4].

In the DL area, various types of DNNs have been widely
used, such as Feed-forward Neural Networks (FNNs), Con-
volutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs). Among these networks, a problem existing
ubiquitously is that the output result may deviate from the
expectation because of small perturbations to the input, which
are so-called adversarial examples [7]. We need to ensure
that DNNs deployed in security- and safety-critical domains
satisfy expected properties against such infinitely many pertur-
bations. In this work, we propose a formal framework named
DeepAuto. It extracts the data flow of DNNs and name the
parameters in DNNs, which results in expressible properties.
It then models the data flow in automata, and converts the
properties of DNNs into the properties of automata.

Since timed automata is a special type of automata and
modeling RNNs needs to consider the temporal properties,
we use timed automata for modeling DNNs in this paper.
We link timed automata and DNNs, model the data flow
process inside DNNs with timed automata. With the help
of timed automata, we can observe the behavior inside the
DNNs step-by-step and verify the properties of DNN-based
systems. The model checker UPPAAL [2] is a tool designed
to verify systems that can be modeled as timed automata. In
UPPAAL, we can assign arbitrary value to input relying on
demand. We use UPPAAL in our work to put DeepAuto into
practice. Overall, our contributions are summarized as follows:
(1) We introduce DeepAuto, the first white-box modeling and
formal verification framework for DL systems. DeepAuto is
practical and universal, and could be used to model trained
DNNs. (2) DeepAuto provides a methodology to reduce the
complex problem of formally verifying DNNs into a model
checking problem which can be addressed by off-the-shelf
model checkers such as UPPAAL. (3) Our work reveals the
connection between DNNs (i.e., FNNs, CNNs and RNNs)
and timed automata, and sheds light on applying formal
verification to DL systems.

II. DATA FLOW AND TIMED AUTOMATA

To systematically ensure the correctness and reliability of
DNNs in safety- and security-critical domains, it is crucial to
apply formal verification techniques on DNNs. We first give
the formal definition of DNNs as follows.

DOI reference number: 10.18293/SEKE2021-090.
172

Definition 1 (Deep Neural Network): A Deep Neural Net-
work is a tuple N = (L,W,F, T) where L = 〈l1, l2, · · · , ln〉
is a sequence of layers and each layer lk contains sk neu-
rons, W = 〈w1, w2, · · · , wn−1〉 is a sequence of matrices
and the elements of matrices are weights between layers,
F = 〈f2, f3, · · · , fn〉 is a sequence of activation functions,
and T is the time variable which is needed in RNN.

Intuitively, the properties of DNNs can be affected by W
and F . To specify and verify properties of DNNs formally,
we define the data flow, which is a record of variable changes
within a DNN. Let X = 〈X1, X2, · · · 〉 be a sequence of
variable vectors in each stage of the feed-forward process for
a given DNN N , where X1 is a set of variables in input stage
and Xi+1 is dependent on Xi within N . The definition of data
flow is as follows.

Definition 2 (Data Flow): For a given DNN N and each
Xi, there is a function φi mapping Xi to Xi+1, i.e., Xi+1 =
φi(Xi). We call Xi+1 = φi(Xi) a data transformation. The
sequence of all such data transformations is a data flow.

Since there are multiple mapping relationships between
Xi+1 and Xi in different DNNs, we use Xi+1 = φi(Xi)
to represent this data transformation process uniformly. Data
flow records the transformation process of X , and we can
investigate the interior of DNNs thoroughly based on data
flow. We extract the data flow within DNNs and model DNNs
as timed automata. Timed automata [1] are proposed to model
the behavior of systems over time, expanding clock variables
on the basis of finite-state automaton. It is decidable to verify
whether states in timed automata are reachable.

Definition 3 (Timed Automaton): A timed automaton is a
tuple (S, s0, A, C,G,E), where S is a finite set of states,
S0 ⊆ S is a set of initial states, A is a finite set of actions,
C is a finite set of clocks, I : S → Φ(C) assigns invariant
to each state, and E ⊆ S × A × 2C × Φ(C) × S is a set of
transitions between states.

A switch 〈s, a, λ, ϕ, s′〉 represents an edge from state s to
state s′ with an action a, where ϕ is a clock constraint over
C that specifies when the switch is enabled, and λ ⊆ C gives
the clocks to be reset with this transition.

Through the above definitions, we can easily derive the
mapping relationships between DNNs and time automata. The
update processes within DNNs can be mapped to update
assignments (i.e., actions) in automata’s edges, and the layers
of DNN can be mapped to states of automaton.

III. OVERVIEW OF DeepAuto

An overview of the DeepAuto framework for modeling and
verifying DNNs is shown in Fig. 1. We first use weights
and activation function of a given DNN to construct the data
flow. Then, the DNN is modeled by timed automaton, and
its properties are formalized and converted into the properties
of timed automaton. Finally, we can check whether the DNN
meets expected properties. The pseudo-code for DeepAuto is
given as in Algorithm 1.

Algorithm 1 takes the weights of DNN (the W), activation
function of DNN (the F), structure information of DNN (e.g.,

Fig. 1. Overview of DeepAuto

Algorithm 1 DeepAuto
Input: Weights of DNN W ; Structure’s information Sl ; Ac-

tivation functions of DNN F ; Expected property φ; Time
information t (optional, needed for RNN)

Output: Formal verification result r
1: Data flow ← construct data flow(W ,F)
2: Automaton← Model(Data flow ,Sl , t)
3: if Finish model(Sl, t) = true then
4: Guard()← convert property into function(φ)
5: Automaton.add(Guard())
6: end if
7: Query ← convert property for automaton(φ)
8: r←Model checker(Automaton,Query)
9: return r

the number of layers in DNN and the activation function
of each layer) and expected property as inputs. In addition,
circulation of time round is also needed for input when
modeling RNN. Lines 1 to 6 of Algorithm 1 describe the
abstract and model process, whose details are given later in
Section IV. After obtaining the automaton, we can convert the
properties and construct queries needed for the model checker,
and finally use the model checker to query whether DNN
meets the expected properties. If so, the DNN must satisfy the
verified properties. Otherwise, users can analyze and debug the
DNN according to unsatisfied properties.

IV. MODELING OF DNN

More details of the modeling process are given in this
section. Since commonly used DNNs (i.e., FNN, CNN, and
RNN) have different internal structures, there are differences
in the specific modeling processes.

A. Modeling of FNN

We use a FNN with a hidden layer as an example. The
hidden layer has two neurons. The weights of the neuron in
the input layer to the two neurons in the hidden layer are
1, -1 respectively. The rest of the weights are all 1. The
activation function is ReLU function. When the input value
is non-negative, the output value is always identical to the
input value.

The given FNN can be modeled as automaton based on Al-
gorithm 2. In all the algorithms of this work, the index of layer
li+1 is i. Using weights, structure information and activation

173

Algorithm 2 Modeling FNN (CNN) as automaton
Input: The weights of FNN (CNN) W ; List of layers for FNN

(CNN) L = 〈l1, l2, · · · , ln〉; Activation functions of FNN
(CNN) F = 〈f2, f3, · · · , fn〉

Output: Abstract automaton ANN

1: node1 ← L [0]
2: for index i of layers do
3: if L[i] is Convolution layer then
4: Update ← Xi+2 = Wi ∗Xi+1

5: end if
6: if L[i] is Max-pooling layer then
7: Update ← Xi+2 = Max(Xi+1)
8: end if
9: if L[i] is Activation layer then

10: Update ← Xi+2 = fi(Wi ⊗Xi+1)
11: else
12: Update ← Xi+2 = Wi ⊗Xi+1

13: end if
14: T(i+1)(i+2) ← Update /*T(i+1)(i+2) is the transition

between nodei+1 and nodei+2 .*/
15: nodei+2 ← L [i+ 1]
16: end for
17: T(n+1)1 ← Guard()
18: return ANN

function, we can obtain the automaton shown in Fig. 2. In this
example, node1 , node2 , and node3 correspond to the states
Input layer, Hidden layer, and Output layer in Fig. 2 respec-
tively. We construct equations, which are actually data flows,
such as Xi+2 = f(Wi⊗Xi+1), Xi+2 = Wi⊗Xi+1. Each of
these equations is assigned to the Update of a transition be-
tween states that are created based on the layer information of
the FNN. Specifically, if Update corresponds to hidden layer,
the data flow assigned should be Xi+2 = f(Wi⊗Xi+1). Oth-
erwise, the data flow assigned should be Xi+2 = Wi⊗Xi+1.
Guard() is a function with an if-else structure, whose re-
turned type is Bool. We abstract the properties that DNNs need
to satisfy into quantitative relationships by the aid of data flow.

Fig. 2. FNN Model

After generating
such quantitative
relationships, we
encode them into
the conditions of
if-else statements,
which enable
us to transform
the verification
of DNNs’ properties into the verification of automata’s
properties. The process of constructing Guard() is similar
to constructing formal specifications in traditional software,
and requires prior knowledge of the system.

B. Modeling of CNN

Algorithm 2 can also be used to model CNNs with the
common structure (i.e., CNNs with convolution layers and
max-pooling layers), which takes the weights of CNN, struc-

Fig. 3. CNN Model

ture information and activation function as inputs and pro-
duces an automaton as output. The data flows in CNNs have
forms like Xi+2 = f(Wi ⊗ Xi+1), Xi+2 = Wi ∗ Xi+1 or
Xi+2 = Max(Xi+1). According to the type of each layer,
the data flows are assigned to the corresponding transition
Updates. Specifically, the above-mentioned data flows corre-
spond to activation layer, convolution layer and max-pooling
layer respectively. The structure of automaton is constructed
using structure’s information.
Guard() is also a function with an if-then-else structure

and its return type is Bool. Based on the properties of CNNs,
we can obtain quantitative relationships. By encoding such
relationships into the condition of the if-then-else statement,
we transform the verification of CNNs’ properties into the
verification of automata’s properties. We use a CNN with one
convolution layer, one activation layer and one max-pooling
layer as the running example. The corresponding automaton
in UPPAAL is as shown in Fig. 3.

C. Modeling of RNN

Using Algorithm 3, we can model Vanilla RNNs of any
size and simulate their running process, so as to check the
properties. Algorithm 3 takes time round of RNN, RNN’s
weights, structure information and activation functions as
inputs and produces an automaton simulating RNN as output.
Based on the number of time round and weights within RNN,
we can construct value update statements Propagate1(time),
· · · , and Propagaten−1(time). Whereafter, time update state-
ment time = time + 1 and Propagate1(time) will be as-
signed to T12. Simultaneously, Propagate2(time), · · · , and
Propagaten−1(time) will be assigned to the corresponding
transitions. We use t <= time&&time < t0 to control rounds
of the RNN. The approach to construct Guard() is the same
as that in FNN and CNN modeling. By adding Guard() to
the transition, we can affect the property of automaton.

Here we use a three-cycle RNN as an example. We as-
sume that weights of the RNN is 〈[1], [1], [1]〉 and activation
function is ReLU . The time round t0 is set as 3. To model
such an RNN, we follow Algorithm 3. We first construct
Propagate1 (time) and Propagate2(time) to simulate the
data processing. Time update statement time = time + 1
and Propagate1(time) are assigned to the transition from
Input layer to Hidden layer, and Propagate2(time)
is assigned to the transition from Hidden layer to
Output layer. Using t <= time&&time < t0, we limit
the number of rounds to 3. After time 3, the transition
from the state Output layer to the state Input layer
will pass from the state Success because of the invari-

174

Algorithm 3 Modeling RNN as automaton
Input: Time round of RNN t0 ; The weights of RNN W ;

List of layers for RNN L = 〈l1, l2, · · · , ln〉; Activation
functions of RNN F = 〈f2, f3, · · · , fn〉

Output: Abstract automaton ARNN

1: node1 ← L[0]
2: L.append(Success)
3: for Time round of RNN t do
4: Construct Propagate1(time), · · · , P ropagaten−1(time).
5: end for
6: for index i of layers do
7: if i == 0 then
8: T12 ← time = time + 1 ,Propagate1 (time)
9: else

10: T(i+1)(i+2) ← Propagatei+1 (time)
11: end if
12: nodei+2 ← L[i+ 1]
13: end for
14: T(n+1)1 ← t <= time&&time < t0
15: T(n+1)(n+2) ← Guard()
16: return ARNN

ant in Output layer (i.e., t 6 3). Finally, we assign
Guard() to transition from Output layer to Success.

Fig. 4. RNN Model

Now we get the model
of the RNN (as shown
in Fig. 4) and can do
verification in the fol-
lowing. Note that the
number of RNN rounds
can be assigned by any
value, which means our
modeling methods can scale up and be used to model RNNs
of any size.

For LSTM [5], We model the forgotgate, inputgate
and outputgate into automaton. Using idea similar to Al-
gorithm 3, update processes within LSTM can be abstracted
and assigned to corresponding transitions between states.
And we assign time update assignment time = time + 1
to transition between state Wait for input and state
Forget gate and input gate updated . Guard t <= time
&&time < t0, same as Algorithm 3, is constructed to con-
trol the number of rounds. Actually, Guard t <= time
&&time < t0 can be reduced to time < t0. The We model
a two-layer LSTM as the running example. The Automaton
obtained is shown in Fig. 5.

V. FORMAL VERIFICATION

In this section, we show how to verify the properties of
DNNs. Intuitively, the properties of DNNs can be converted
into the properties of automata. These properties can be
verified by existing model checkers such as UPPAAL.

For FNN and CNN, because they have similar structures,
methods of transforming their properties are inspired by the
same idea. To be specific, we use the Guard() function
to control the operation of the automaton and encode the

Fig. 5. LSTM Model

properties of FNN (or CNN) into the condition of if-else
statement. The Guard() is designed in such a way that it
returns True when the properties are as expected, and False
otherwise. In other words, if and only if FNN (or CNN) meets
the property, the automaton is deadlock-free, otherwise the
automaton will deadlock (i.e., stop on state Output layer). As
a result, we are able to verify the properties of FNN or CNN
by using UPPALL to check whether the system is deadlock-
free with the query A[] not deadlock.

For Vanilla RNN and LSTM, we construct Guard() in a
similar way. Guard() returns True if the property of the RNN
is as expected. Otherwise, Guard() returns False. Naturally,
when the RNN meets the expected property, the automaton
always returns to the state Success for both Vanilla RNN and
LSTM. Otherwise, the automaton eventually stops in the state
Output layer. With the help of the model checker, we can
check the property “the automaton can always reach the state
Success” with the query E <> Process.Success.

The traditional definition for local robustness based on
distance is ”for every input x1 and x2 such that ||x1−x2||∞ 6
δ, if the network is able to assign the same label to x1
and x2, then the network is robust.” In UPPAAL, we can
assign arbitrary value to input relying on demand. Thus, when
exploring the robustness of the DNN, we could change inputs’
value and observe whether the corresponding property (i.e., the
output situation), could remain unchanged. If so, we could say
the local robustness of the DNN for specific input could be
proved.

VI. CASE STUDIES

To examine the effectiveness of DeepAuto, we conduct case
studies on both primitive operations and medium-sized DNNs.
In our experiments, we extract the parameters required by
modeling from the DNNs, and then use DeepAuto to model
and verify them. To show the practicability of DeepAuto,
there are two critical points that we need to highlight: (1)
We can extract weights of trained DNNs based on Keras with
TensorFlow. (2) The properties of DNNs can be converted into
the properties of automata with the aid of data flow.

We start with a small-scale experiment in which we train
FNNs which are capable of simulating ∧ (and), ∨ (or), ∼
(not) and the Exclusive-OR gate. They are the four primitive
operations the DL seminal work [8] uses neural networks to
simulate. With DeepAuto, the weights of trained FNN can be
automatically imported into UPPAAL, and then the formal
models of these FNNs can be given automatically. Now we can
obtain formal model of FNNs which are capable of simulating

175

all propositional forms with ∧, ∨ and ∼. We can also model
trained CNN and trained RNN as automaton automatically.

A standardized procedure for modeling and verifying a
trained DNN is presented in Fig. 6. Following the procedure,
we can model and verify the DNN before deployment, and
verify whether the DNN is running according to its expected
properties formally. When the DNN does not meet its expected
properties, the automata can be used to observe the data flow
inside the DNN, so as to point the way for debugging.

Fig. 6. The Standardized Procedure for Modeling and Verifying a Trained
DNN

Theoretically, DeepAuto can be scaled up to verify practical
DNNs. However, UPPAAL doesn’t accept real arithmetic. The
weights of DNNs which we study in experiments are INT.
We show DeepAuto can be scaled up to verify medium-sized
DNNs. Several critical properties, as shown in Table I, can be
verified based on DeepAuto framework. Property P1 states that
if the input is not perturbed by adversarial attacks, the output
of the DNN will always be as expected. Property P2 deals
with the problem whether the output will be affected when the
input is perturbed. Property P3 “when we modify the internal
weights, will the output be as expected?” probes into the
interpretability of DNNs. As presented in Table I, we are able
to verify all these properties based on the DeepAuto frame-
work. The details can be found at https://github.com/Yuteng-
Lu/UPPAAL NN.

The concrete constructing and verifying processes of these
three properties are as follows: (1) For property P1, the
expected relationship of input data and output data could be
written in the Guard(). (2) For property P2, we could change
input’s value based on adversarial attack’s behavior. After
generating the perturbed input, we could check the properties
of our formal model. If the properties change, we could say
the output will be affected when the input is perturbed. (3)
For property P3, we can alter the formal model to modify the
internal weights. After getting the formal model with modified
weights, we could check its properties to indirectly check P3.

TABLE I
CRITICAL PROPERTIES

Specific Properties Capabilities

P1 When the input is not perturbed, the
output is as expected.

X

P2 Whether the output will be affect
when the input is perturbed.

X

P3 What happens to the output when the
internal weights are changed.

X

VII. CONCLUSION

In this paper, we propose the modeling and formal verifi-
cation framework DeepAuto for DL systems. The UPPAAL
model checker is used to implement DeepAuto. The experi-
ments show that DeepAuto can dramatically guide modeling
and verification procedure of DNNs, and the method covers the
three most common DNN structures: FNNs, CNNs and RNNs.
In addition, our work illustrates that there is a connection
between the states of the timed automaton and the DNN’s
neurons. On the other hand, DeepAuto is actually a white-box
verification framework. How can we do formal verification
without all internal information (i.e., black-box or gray-box)
will be considered in future work.

ACKNOWLEDGMENTS.

This work was partially supported by the Guang-
dong Science and Technology Department (Grant no.
2018B010107004) and the National Natural Science Founda-
tion of China under grant no. 61772038 and 61532019.

REFERENCES

[1] R. Alur. Timed automata. In Computer Aided Verification, 11th
International Conference, CAV ’99, Trento, Italy, July 6-10, 1999,
Proceedings, pages 8–22, 1999.

[2] G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In
Formal Methods for the Design of Real-Time Systems, International
School on Formal Methods for the Design of Computer, Communication
and Software Systems, SFM-RT 2004, Bertinoro, Italy, September 13-
18, 2004, Revised Lectures, volume 3185 of Lecture Notes in Computer
Science, pages 200–236. Springer, 2004.

[3] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition, 84:317–331, 2018.

[4] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith.
Model checking. MIT press, 2018.

[5] F. A. Gers, J. Schmidhuber, and F. A. Cummins. Learning to forget:
Continual prediction with LSTM. Neural Computation, 12(10):2451–
2471, 2000.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60(6):84–90,
2017.

[7] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial examples in
the physical world. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop
Track Proceedings, 2017.

[8] G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural networks
using genetic algorithms. In Proceedings of the 3rd International
Conference on Genetic Algorithms, George Mason University, Fairfax,
Virginia, USA, June 1989, pages 379–384, 1989.

[9] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In Proceedings of the 26th Symposium
on Operating Systems Principles, Shanghai, China, October 28-31,
2017, pages 1–18, 2017.

[10] H. Sak, A. W. Senior, and F. Beaufays. Long short-term memory
recurrent neural network architectures for large scale acoustic modeling.
In INTERSPEECH 2014, 15th Annual Conference of the International
Speech Communication Association, Singapore, September 14-18, 2014,
volume 10629 of Lecture Notes in Computer Science, pages 338–342.
Springer, 2014.

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

[12] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus. Intriguing properties of neural networks. In
2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014.

176

https://github.com/Yuteng-Lu/UPPAAL_NN
https://github.com/Yuteng-Lu/UPPAAL_NN

Evaluating the Impact of Vaccination on COVID-19
Using Model Checking

Xin Li
Shanghai Key Laboratory of Trustworthy Computing

East China Normal University, Shanghai, China
xli@sei.ecnu.edu.cn

Abstract— Since last year, COVID-19 has become a global
issue and brings crisis in nearly every aspect. At the end of last
year, COVID-19 vaccines finished developing and began to be
large-scale administered. However, the impact of vaccination on
COVID-19 is not clear yet. The current vaccine manufacturing
capacity is highly insufficient, thus, it is urgent to implement an
optimized vaccine prioritization strategy. To shed light on these
vaccination issues in our study, we used a fluid model checking
method to track the trends of COVID-19 dynamically. First, we
proposed a vaccine-related epidemiological model, the SEIHRV
model, to investigate the vaccine’s impact on the pandemic based
on previous studies. Then we embraced a fluid model checking
approach to evaluate this SEIHRV model. Compared with the
compartmental and agent-based model methods, our approach
made a trade-off between speed and accuracy. Lastly, we took
several exceptional scenarios into account based on the current
COVID-19 situations, including the individual’s daily activities,
hospital capacity, vaccine prioritization strategy, the variant
virus. Our work applied this fluid model checking method to
COVID-19 studies, which demonstrates the up-to-date computing
method can combine with social concerns and deal with practical
problems from an innovative perspective.

Index Terms—COVID-19; Vaccine; SEIHRV model; Fluid
model checking; Continuous-time Markov-chain

I. INTRODUCTION

In the past year of 2020, coronavirus disease 2019 (COVID-
19) pandemic which is caused by a severe acute respiratory
syndrome coronavirus type 2 (SARS-CoV-2) has swept the
world, seriously affected and even threatened all aspects of
people’s lives. As of March 9, 2021, more than 117 million
COVID-19 cases have been reported worldwide, of which
death cases exceeded 2.6 million (data from Center for Sys-
tems Science and Engineering at Johns Hopkins University
[1]). In order to reduce the infection rate and mortality rate
of COVID-19, governments all around the world have imple-
mented a series of lockdown policies. Researchers in different
domains from different countries also actively participate in
the COVID-19 studies, especially, in developing the COVID-
19 vaccine.

Many COVID-19 vaccine projects started since the begin-
ning of 2020, vaccine developed by BioNTech/Pfizer first
obtained the emergency use authorization by FDA (U.S. Food
and Drug Administration) and European Union on December
of 2020. Subsequently,another vaccine developed by Oxford
and AstraZeneca [2] was also approved by several European
countries. The emergence of vaccines brings the hope of

defeating COVID-19 to people. Ideally, if the majority of
the population obtain protection from vaccines, COVID-19
reproduction rate would decrease, and it would disappear or
be inactivated in the end.

However, there are still some challenges in achieving herd
immunity through vaccination. The first challenge is the man-
ufacturing capability. Although vaccine manufacturers have
accelerated the large-scale production of vaccines, so far, there
are only 300 million doses have been administered worldwide
[3]. Due to this situation, countries have to implement various
priority strategies to ensure that priority groups (such as the
elderly, medical staff, etc.) can be first administered. Neverthe-
less, these strategies might not be the most efficient one [4].
Second, vaccine efficacy is not completely clear. According
to statistics, BioNTech/Pfizer vaccines have an efficacy rate
close to 95 percent [5], while Oxford-AstraZeneca vaccines
have 82.4 percent for two doses separated by 12 weeks [6].
Third, newly emerged variants SARS-CoV-2 called B.1.1.7
(from the United Kingdom) and B.1.351 (from South Africa)
induce increased risk of death and infection, but how they
affect vaccine efficacy is still an open question.

Since various factors have brought great uncertainty to
the COVID-19 pandemic and the vaccine efficacy, a method
that can dynamically monitor the vaccine efficacy is urgently
required. Jensen and colleagues used the UPPAAL SMC tool
to not only simulate the overall trend of COVID-19 pandemic,
but also dynamically track the individual’s infection rate and
other COVID-19 indicators [7]. Based on their work, we also
applied UPPAAL here to check how the Susceptible-Exposed-
Infected-Hospitalized-Recovered Model (SEIHR model [8])
simulates the COVID-19 pandemic after the large-scale vac-
cine administration. Here, we considered the latest COVID
situations, including the vaccine prioritization strategy [4], the
age distribution of COVID cases [9], vaccine efficacy, and
vaccine performance against variant viruses. In this way, we
can get a comprehensive understanding of how this SEIHR
model simulating this pandemic in various situations.

The contributions of this paper are as follows:
• We proposed a vaccine-related epidemiological model

to investigate the vaccine’s effects on the COVID-19
pandemic.

• We embraced the fluid model checking to analyze the
infectious disease model. Compared with the compart-
mental and the agent-based model method, our approach

DOI reference number: 10.18293/SEKE2021-131
177

makes a balance between speed and accuracy.
• We demonstrated some complicated situations could be

efficiently simulated by our model, such as the individual
case situations, hospital capacity, and vaccine prioritiza-
tion strategy. This approach bridges the gaps between up-
to-date computing methods and social concerns.

This paper is organized into five sections: Section II in-
troduces the background of epidemiological models and a
stochastic model checking method, while Section III describes
the widely-used basic reproduction number and our SEIHRV
model. Section IV emphasizes our experiment and discussion.
Section V draws the conclusion.

II. BACKGROUND

A. The Compartmental Model in Epidemiology

In epidemiology, Kermack and McKendrick proposed a
dynamic compartmental SIR model to simulate the influences
of an infectious disease [8]. The original SIR model divided
individuals into three groups depending on their physical states
(compartments): susceptible (S), infectious(I), and recovered
(R) group. It assumes that all individuals are initially suscep-
tible, while all recovered individuals will have antibodies and
will not be re-infected again. The dynamical flow of this SIR
model can be represented as follows:

S → I → R

The SIR model updates the variables for every time point.
N denotes total number of the population, β is the fraction of
susceptible persons get infected, and 1/γ implies the infectious
period. The model with transmission is:

dS

dt
= −βSI

N

dI

dt
=
βSI

N
− γI dR

dt
= γI

The establishment of this dynamical model sheds light on
theoretical and quantitative analysis of infectious diseases
[10]. It is based on the disease’s occurrence, the spread,
the transmission rules, and related social factors. Through
qualitative, quantitative analysis, and numerical simulation, it
is possible to track where the disease comes from, monitor
some key elements, and even predict the disease trends.

Using the continuous-time ordinary differential equation
(ODE) method, this traditional compartmental model can eas-
ily simulate the general population’s epidemic development.
Nevertheless, it does not allow the prediction for individu-
als, how compartment changed with individuals’ activities.
Moreover, it is impossible to describe some exceptional cases,
like the variant COVID-19 virus and the super spreaders. To
simulate these complicated cases, a fluid model checking is
necessary.

B. Stochastic Model Checking

Stochastic model checking is an extension of classical
model checking theory, serves as an automatic model-based
formal verification of stochastic systems [11]. In recent years,
stochastic model testing has attracted a lot of attention in the

formal verification domain and has made significant progress.
It has been applied to the verification of probabilistic pro-
grams, system performance analyses, communication protocol
reliability analyses, service quality optimization of service
processes, and even computational biology [12]. Typically,
the continuous-time Markov chain (CTMC) [13] is used to
represent models in stochastic model checking, CTMC is a
tuple (S,R, π0) where:
• S is the set of states,
• R : S × S → R ≥ 0 is the transition rate matrix, and
• π0 is the initial distribution.
We defined the exit rate of s state s ∈ S as

E(s) =
∑
s′∈S

R (s, s′)

The embedded DTMC coincides on S and π0 but has the
transition probability matrix E. It can be defined as:

E(s, s′) =

R(s,s′)
E(s) if E(s) > 0

0 if E(s) = 0 ∧ s 6= s′, and
1 if E(s) = 0 ∧ s = s′.

The probability measure for a CTMC (S,R, π0) is induced
by the measure for cylinder sets P (C (s0/0 . . . sn)) defined
as:

π0(s)
∏

0≤i<n

E (si, si+1)
(
e−E(si) inf li − e−E(si) sup li

)
.

The stochastic model checking algorithm combines the
classical model checking algorithm and linear equation system
solution or linear programming algorithm. Its operation deals
with the probability vector about the state instead of the
bit vector in the classical model checking. However, the
stochastic model checking is faced with a more challenging
problem,the state-space explosion problem. It is still not clear
how to mitigate the state explosion problem for large-scale
stochastic systems and apply stochastic model testing to the
quantitative verification and analysis of such systems, even
Turing Award winner Clarke listed this as a crucial direction
for future research in model testing in his Turing Lecture
[14]. Researchers recently found that fluid model checking,
a combination of ODE and CTMC, can efficiently mitigate
the state-space explosion [15].

III. BASIC REPRODUCTION NUMBER AND SEIHRV
MODEL

MacDonald and colleagues established a mathematical
model on the spread of an epidemic based on malaria studies
[16]. There is a crucial indicator in their model, the basic
reproduction number R0. R0 that greater than 0 indicates this
epidemic will continue to spread; otherwise, this epidemic
will eventually be eliminated. The reproduction number has
been widely used in the epidemiological domain, and now
it becomes one of the most valuable indicator in COVID-19
studies [17].

178

In our paper, a variant of the SIR model: the SEIHRV model
was defined. We also assumed all individuals are initially
susceptible (S), they become exposed (E) once they contact
with an infectious people, the transition rate can be denoted
as λ. After a latency period (dE days), the exposed individual
will transition to an infectious individual (I). Those infectious
people with severe symptoms for few days (dIH) are accepted
to the hospital (H) (HR: hospitalization rate), the majority of
them will recover (R) after several days (dH) treatment, a
small proportion (IFR: infection fatality rate) would die even
been treated. Meanwhile, most infectious people will spend
some days (dIR) to eventually recover (R) by relying on their
self-immunity. In this model, λ is obtained by:

λ = u
∑
j

cj
I

N − Ω

where u is the probability of a successful transmission from
an infectious contact and the cj is the number of individuals
that a susceptible individual contacts per day. I/(N − Ω)
refers to the probability that a random individual is infectious,
where N is the total population number, I , Ω is the infectious
number and death number, respectively. λ can also predict
basic reproduction number R0.

a (1-‐‑se)

𝑑"#$(𝐼𝐹𝑅)
V

S

Sx

ve

a (sp)

a (1	 -‐‑ sp)

1	 -‐‑ ve 1	 -‐‑ ve

l

l

Ev

E

Ex

ve

a (sp)

a (1	 -‐‑ sp)

𝑑*#$

𝑑*#$

𝑑*#$ Iv

Ix

𝑑+"#$(𝐻𝑅)
Hv

H

Hx

𝑑"#$(1 − 𝐼𝐹𝑅)
Rv

R

Rx

𝑑+"#$(𝐻𝑅)

𝑑+"#$(𝐻𝑅)

𝑑+/#$(1 − 𝐻𝑅)

𝑑+/#$(1 − 𝐻𝑅)

I

𝑑+/#$(1 − 𝐻𝑅)

𝑑"#$(1 − 𝐼𝐹𝑅)

𝑑"#$(1 − 𝐼𝐹𝑅)

𝑑"#$(𝐼𝐹𝑅)

𝑑"#$(𝐼𝐹𝑅)

a (se)

vaccinated &
protected

serotest -

unvaccinated

serotest +

no vaccinated:
sero +
refused
unprotected

Fig. 1. Schematic diagram of a dynamic SEIHRV model with vaccination.

To evaluate the development of the COVID-19 pandemic
after large-scale vaccine administration, we added vaccination
effect in the original SEIHR model and named the new model
as SEIHRV model. We divided the whole population into three
groups as previous work did [4]: people were vaccinated and
effectively protected by the vaccine, unvaccinated people (can
be vaccinated), and people ineligible for vaccination, which
includes vaccine-hesitant people, people with positive serotest
result or vaccinated people without protection. The schematic
diagram is shown in Fig. 1. Whether an individual can be
administrated or whether a vaccinated person is perfectly pro-
tected largely depend on the serological test results. However,
the serological test is not entirely accurate. To illustrate this
constraint, we also took the sensitivity (se) and the specificity
(sp) of the serological test into consideration. α in this model
represents the vaccine rollout rate in susceptible and exposed
populations, and α = nvax /[(S + E)sp + R(1 − se)], where
nvax indicates the amount of vaccines to be rolled out in a
single day. ve denotes the vaccine efficacy. A small proportion

of the susceptible people and the exposed population with
negative serotest results can be vaccinated (α(sp)) per day.
Some of them are well protected by the vaccine and will be
members of V or Ev group, the rest of the people who are
ineligible for vaccination or without vaccine protection will
be grouped into Sx and Ex. The following equations describe
the compartment-to-compartment relationships:

S → Sv =
nvax

(S + E)sp + R(1− se)
S(sp)

E → Ev =
nvax

(S + E)sp + R(1− se)
E(sp)

R→ Rv =
nvax

(S + E)sp + R(1− se)
R(1− se)

S → Sx =
nvax

(S + E)sp + R(1− se)
S(1− sp)

E → Ex =
nvax

(S + E)sp + R(1− se)
E(1− sp)

R→ Rx =
nvax

(S + E)sp + R(1− se)
R(se)

IV. EXPERIMENT AND DISCUSSION

In this section, we first built a continuous-time ordinary
differential equation model of SEIHRV, and simulated the 365-
day dynamic model corresponding to the first-year vaccina-
tion phase. Then we used the continuous-time Markov chain
models since they have better performance than ODE if we
take individuals’ behaviors and decisions into consideration,
such as staying at home or wearing a mask. Usually, such
models require a large volume of individual activity data and
a considerable amount of computational resources.

To improve these, we got the inspirations from the fluid
model checking method, combined the ODE and CTMC, to
simulate the COVID-19 epidemic. By doing this, the system
required less time in performing verification significantly.
Thus, we can not only use ODE to describe the population
epidemic development, but also use CTMC to describe the
individuals’ status. Our simulations indicate lockdown and
conditional lockdown are the best options for reducing infec-
tion fatality rate and virus transmission rate.

Additionally, we simulated the emerging cases caused by
the variant and emphasized how the variant affects hospital
capacity. Lastly, we focused on the current vaccine prioritiza-
tion strategy and predicted the trends of COVID-19 after vac-
cination. These simulations and models can provide beneficial
assistance to COVID-19 researches and policy formulation.

A. Ordinary differential equation models

In the first part, we established the ODE model of SEIHRV
in UPPAAL SMC [18]. All individuals in this model are
initially susceptible unless they have been effectively vacci-
nated or have already got natural immunity. The recovered
individuals are no longer infectious in the simulation period
(up to 365 days) and cannot be re-infected. Details of SEIHRV
model can be found in Section III.

As shown in Fig. 2, only one state was required for
one individual to build the above ODE model system in
UPPAAL SMC, and all of the populations were represented
by using the variable CLOCK in UPPAAL SMC.

179

Fig. 2. ODE model of SEIHRV

We hypothesized a town with a 10,000 population in our
simulation, the basic reproduction number of this town is
1.3, and 1% people have been infected. Other demographic
data, such as infection and fatality rate, were obtained from
CDC [1]. Meanwhile, we assumed the vaccine rollout rate is
0.2% per day, and the vaccine efficacy is 95%, which means
vaccines are not one hundred percent efficient. The specificity
and sensitivity value of a serological test is 0.97 and 0.99.

TABLE I
QUERY OF EPIDEMIC TREND

Purpose Query

Epidemic trend simulate [<=365]{S,E,I,H,R,V,D}

Next, a query was described in UPPAAL SMC. As shown
in TABLE I, we counted the susceptible, exposed, infectious,
hospitalized, recovered, and dead people within 365 days and
analyzed COVID-19 trends.

Fig. 3. Evolution of the epidemic with vaccine

Simulation results indicate this epidemic is hard to control at
the very beginning of the vaccination. However, the situation
will become better once the number of vaccinated population
increases, the transmission rate will simultaneously decrease
(Fig. 3). Around 60 days after vaccination, the susceptible line
and the recovered line will intersect, the inflection point of
the epidemic appear, which means the epidemic is gradually
under-controlled.

(a) Lockdown mechanism

(b) Health conditions of 30 persons

Fig. 4. Model and Result

B. Continuous-time Markov chain models and Fluid model
checking

Although the ODE model in the previous section can
describe the epidemic trends at the population level, it cannot
describe individuals’ behavior and incorporate some other
details, like the age-dependent infection rate and fatality rate,
the lockdown, etc. Therefore, we built the CTMC model of
SEIHRV here to involve detailed information (Fig. 5):

In this model, each location has one corresponding ex-
ponential distribution function, and different weights were
given to different edges. For example, in Fig. 5, location I
has different probabilities to location H or L. Initially, we
assumed a CTMC could describe an individual’s status, and
used the 10,000 population case to test it. However, we found
this operation occupied massive computing resources, since
10,000 CTMC models are required to generate based on the
template and simultaneously run. Moreover, the state-space of
the system increased exponentially as the number of people
increased, and the state-space explosion problem appeared.

Therefore, in order to efficiently model these data with
individual information, we adopted the fluid model checking
method in our experiment, abstracted the population epidemic
situation, and only focused on the target groups. Combination
of the ODE model and the CTMC model in UPPAAL SMC
can significantly reduce the memory and time required for
simulation and verification.

We simulated a lockdown scenario here and found transmis-
sion significantly decreased in the lockdown period (Fig. 4(a)).
Furthermore, we selected 30 specific individuals in this model
and analyzed their health conditions (Fig. 4(b)). If their health
conditions varied largely, their personal curves would also
be fluctuating. The above simulation took a long time if
we only used the CTMC model. However, the simulation
time shortened to one-tenth if the CTMC model was used
to represent 30 target individuals and others are modeled by
ODE. Thus, the fluid model checking significantly reduced the
memory and time required for simulation and verification.

180

Fig. 5. CTMC model of SEIHRV

C. Hospital capacity and Variant of SARS-CoV-2

A variant of the SARS-CoV-2 was first identified in UK
in September 2020, and then it spreads around the world in
the next few months. Studies show this variant has a 40-70%
higher transmission rate than the original virus [19]. By far, it
has been found in more than 100 countries and takes Germany
as an example, the variant infected nearly 55% of the cases.
Studies demonstrated this variant could also induce a 30-100%
higher infection fatality rate than previous viruses.

Fig. 6. Evolution of hospitalized
To include this variant in our model, we accordingly mod-

ified our parameters. In the updated model, 55% of patients
were infected by the new variant. Furthermore, due to the
high infection rate and fatality rate caused by this variant, we
addressed hospital capacity here. Once the number of patients
with severe symptoms exceeds hospitals’ capacity, the fatality
rate would rise rapidly. So we had the following query in
TABLE II, the query “Hospitalized trend” can be explained as
to how the number of hospitalized population changes.

One hundred hospitalized cases were simulated here, data
shows hospitalization peak occurs at around 40 days after
vaccination, and the number of hospitalized patients is about
60 (Fig. 6). Those simulation data can help medical institu-

TABLE II
QUERY OF HOSPITALIZED

Purpose Query

Hospitalized trend simulate [<=365;100]{H}
Hospital capacity Pr[<=365](<> H >= 60)

tions monitor the hospitalization load dynamically and make
complete preparations in advance.

To get more details, we used the query “Hospital capacity”
to calculate the probability of hospitalized cases exceed 60.
As shown in Fig. 7, the range is [0.0125218,0.112309] with
confidence 0.95. Thus, we suggest medical institutions to pay
sufficient attention to this variant, it could bring vast pressure
on the medical system.

Fig. 7. Probability Distribution

D. Vaccine prioritization strategy

At the beginning of large-scale vaccination, vaccines’ man-
ufacturing capability is limited and it is still hard to achieve
herd immunity, optimizing the vaccine prioritization strategy
has become a crucial issue. Most prioritization strategy is age-
dependent since infection rate and infection fatality rate are
closely associated with ages. In this section, we applied the

181

fluid checking model to analyze various vaccine prioritization
strategies.

Here, three different vaccines were used: Pfizer-BioNTech,
Moderna, and Oxford/AstraZeneca. Their efficacies are 95%
and 94.1% and 82.4%, respectively. We used the age demo-
graphic data from UN [20] to estimate the age distribution,
and grouped individuals by their ages with 10-year increment
steps. Some other age-stratified values from previous literature
[9] served as model parameters here, which include infection
rate, fatality rate, hospitalization rate, and recovery period.

Four age-dependent vaccine prioritization strategies: young
people under 20 years old, middle-aged and young adults
between 20 and 49 years old, old people over 60 years old,
and all people over 20 years old, were simulated by using our
previous approach.

We assumed all remaining individuals have equal priority
once the vaccination for the priority group has been completed.
Here we present simulations of 20-49 (Fig. 8(b)) and 60+
(Fig. 8 (a)) prioritization strategy (Pfizer-BioNTech).

(a) Adults 60+ first (b) Adults 20-49 first
Fig. 8. Simulation results

20-49 vaccine prioritization strategy effectively lowers down
the infection rate and transmission rate (Fig. 8(b)). Those
results are reasonable because individuals at that age tend to
have more social activities, most of them work everyday and
are more likely to contact infectious individuals. Meanwhile,
60+ strategy can effective reduce the fatality rate (Fig. 8 (a))
mainly because old people usually have higher hospitalization
rates and fatality rates once they are infected. Since every
vaccine prioritization strategy has its own benefits, it is crucial
to make a trade-off between different COVID-19 vaccine
prioritization strategies.

V. CONCLUSION

In this paper, we used a fluid model checking method to con-
duct a series of studies on the current COVID-19 pandemic.
First, we proposed a vaccine-related epidemiological model:
the SEIHRV model. With this model, we are able to investigate
the vaccination impact on the current pandemic more rapidly,
efficiently, and flexibly. Second, the fluid model checking
method was embraced to model, simulate, verify, and analyze
this SEIHRV model. We elaborated this method in detail and
compared it with the traditional compartmental model method.
Results show it performed better in complicated scenario
simulations. Moreover, this method is adjustable on different
individual’s specific conditions and can provide more detailed
information. In comparison with the agent-based method, fluid
model checking can effectively reduce computing resources’

requirements and lessen the state space explosion. Finally,
based on the true-to-life situations, we simulated the cases
individually, also how the hospital capacity, variant virus, and
vaccine prioritization strategy affect the COVID-19 trends. In
conclusion, this approach provide a more practical and effi-
cient way to simulate COVID-19 development in complicated
scenarios, especially after the large-scale vaccine administra-
tion. Correspondingly, its simulation results can provide more
comprehensive and detailed information on COVID-19.

REFERENCES

[1] S. Science and E. at Johns Hopkins University, “Covid-19 dashboard,”
gisanddata.maps.arcgis.com/apps/opsdashboard.

[2] M. D. Knoll and C. Wonodi, “Oxford–astrazeneca covid-19 vaccine
efficacy,” The Lancet, vol. 397, no. 10269, pp. 72–74, 2021.

[3] “Data on covid-19 (coronavirus) vaccinations by our world in data,”
github.com/owid/covid-19-data/tree/master/public/data/vaccinations.

[4] K. M. Bubar, K. Reinholt, S. M. Kissler, M. Lipsitch, S. Cobey,
Y. H. Grad, and D. B. Larremore, “Model-informed covid-19 vaccine
prioritization strategies by age and serostatus,” Science, vol. 371, no.
6532, pp. 916–921, 2021.

[5] E. Mahase, “Covid-19: Pfizer vaccine efficacy was 52% after first dose
and 95% after second dose, paper shows,” 2020.

[6] M. Voysey, S. A. C. Clemens, S. A. Madhi, L. Y. Weckx, P. M. Folegatti,
P. K. Aley, B. Angus, V. L. Baillie, S. L. Barnabas, Q. E. Bhorat
et al., “Single-dose administration and the influence of the timing of
the booster dose on immunogenicity and efficacy of chadox1 ncov-19
(azd1222) vaccine: a pooled analysis of four randomised trials,” The
Lancet, 2021.

[7] P. G. Jensen, K. Y. Jørgensen, K. G. Larsen, M. Mikučionis, M. Muñiz,
and D. B. Poulsen, “Fluid model-checking in uppaal for covid-19,”
in International Symposium on Leveraging Applications of Formal
Methods. Springer, 2020, pp. 385–403.

[8] W. O. Kermack and A. G. McKendrick, “Contributions to the mathemat-
ical theory of epidemics. ii.—the problem of endemicity,” Proceedings
of the Royal Society of London. Series A, containing papers of a
mathematical and physical character, vol. 138, no. 834, pp. 55–83, 1932.

[9] N. G. Davies, P. Klepac, Y. Liu, K. Prem, M. Jit, and R. M. Eggo, “Age-
dependent effects in the transmission and control of covid-19 epidemics,”
Nature medicine, vol. 26, no. 8, pp. 1205–1211, 2020.

[10] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo,
A. Di Matteo, and M. Colaneri, “Modelling the covid-19 epidemic
and implementation of population-wide interventions in italy,” Nature
medicine, vol. 26, no. 6, pp. 855–860, 2020.

[11] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model check-
ing,” in International School on Formal Methods for the Design of
Computer, Communication and Software Systems. Springer, 2007, pp.
220–270.

[12] M. Kwiatkowska, G. Norman, and D. Parker, “Using probabilistic
model checking in systems biology,” ACM SIGMETRICS Performance
Evaluation Review, vol. 35, no. 4, pp. 14–21, 2008.

[13] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Model-checking
continuous-time markov chains,” ACM Transactions on Computational
Logic (TOCL), vol. 1, no. 1, pp. 162–170, 2000.

[14] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model checking. MIT press, 2018.

[15] L. Bortolussi and J. Hillston, “Fluid model checking,” in International
Conference on Concurrency Theory. Springer, 2012, pp. 333–347.

[16] G. Macdonald, “The measurement of malaria transmission,” 1955.
[17] R. Subramanian, Q. He, and M. Pascual, “Quantifying asymptomatic

infection and transmission of covid-19 in new york city using observed
cases, serology, and testing capacity,” Proceedings of the National
Academy of Sciences, vol. 118, no. 9, 2021.

[18] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson,
W. Yi, and M. Hendriks, “Uppaal 4.0,” 2006.

[19] R. Challen, E. Brooks-Pollock, J. M. Read, L. Dyson, K. Tsaneva-
Atanasova, and L. Danon, “Risk of mortality in patients infected with
sars-cov-2 variant of concern 202012/1: matched cohort study,” BMJ,
vol. 372, 2021.

[20] U. Nations, “Age demographic data,” population.un.org/wpp/Download/
Standard/Population/.

182

A Novel Approach of CTL Model Checking Based
on Probe Machine

Dong Wang†, Jing Liu∗†, Jin Xu∗‡, Haiying Sun†, Jiexiang Kang§
† Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

‡ Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China
§ China Aeronautical Radio Electronics Research Institute, Shanghai, China

Abstract—Model checking has established as an effective
method for automatic system analysis and verification. It is
making its way into many domains and methodologies. However,
the state space may be extremely large for many practical
systems, and this is a major limitation for state-space search
algorithms in model checking. We have proposed a novel com-
puting model called probe machine in 2016, which is a fully
parallel computing model. In comparison to the Turing machine,
it can solve the graph search problems efficiently, which can
overcome the existing model checking limitations. In this paper,
we propose a novel approach to perform Computation Tree Logic
(CTL) model checking based on the mathematical model of probe
machine, which can verify all CTL properties. It can greatly
reduce the verification time for systems with large state space.
We develop a model checker called CTL2PROBE based on our
approach and the experimental results show that our approach
is better than NuSMV.

Index Terms—Model Checking, Probe Machine, Graph
Search, Computation Tree Logic

I. INTRODUCTION

Model Checking is a technology that can verify whether
a system satisfies the given property automatically [1]. The
way of verification is exploring all possible system states in
a brute-force manner [2]. In this way, it is a real challenge to
examine the largest possible state spaces that can be treated
with current means, i.e. processors and memories. Therefore,
the chief limitation is the state explosion problem where the
size of the global state graph grows exponentially with the
size of the program itself [3].

In order to deal with the state explosion problem, many
approaches have been proposed. Ordered Binary Decision
Diagram (OBDD) is proposed by McMillan to represent
state space, improving the scale of verified system [4], [5].
Another successful technique for dealing with state explosion
is based on the partial order reduction [6], [7]. It exploits
the independence of concurrently executed events. Although
symbolic representations and partial order reduction have
greatly increased the size of the systems that can be verified,
many realistic systems are still too large to be handled. Thus,
some researchers have turned their attention to other novel
computation architectures like molecules and DNA to break
through the limitations of Turing machines.

∗ Corresponding author: Jing Liu, jliu@sei.ecnu.edu.cn, Jin Xu,
jxu@pku.edu.cn

DOI reference number: 10.18293/SEKE2021-139

In 2006, Turing Award winner Allen Emerson use DNA
molecules to conduct CTL model checking for the first time
[8]. In this work, he proposes a DNA-computing-based method
and designs a checking algorithm for CTL formula EFp
where Kripke structures are used to model the system and
the states and transitions of the model are encoded into DNA
strands. It permits a very compact representation of extremely
large state graphs. For example, a graph of size 1016 states
can be represented within 0.01 liter of DNA. Therefore, the
parallelism of DNA computing and the vast storage of DNA
molecules provide the opportunity to break the state space
limitation on traditional electronic computers.

Probe machine is a mathematical model proposed by Xu
in 2016 [9]. It can be implemented by using nano-DNA probe
technologies. It is a fully parallel computing model in the
sense that it can simultaneously process multiple pairs of data,
rather than sequentially process every pair of linearly adjacent
data. Many NP-complete problems, i.e., the graph coloring,
Hamilton cycle problems, traveling salesman problem [10],
and postman problem [11] have been solved based on the
probe machine. Probe machine can enumerate all solutions
to these problems by only one probe operation.

Similarly, the way of CTL model checking is exploring
all possible system states in a brute-force manner and finding
a path satisfying the given property. Therefore, we propose a
novel method to perform CTL model checking based on the
probe machine. Compared to traditional model checkers, our
approach can relieve the state explosion problem and reduce
the verification time.

In summary, this paper makes the following contributions:
• We design a mapping algorithm to transform the model

of Kripke structure into the data library and probe library
that can run directly on the probe machine.

• We develop a model checker called CTL2PROBE to
simulate the probe machine, which takes the model as
input and obtains all feasible paths or counterexamples.

• We conduct several experiments based on different num-
bers of states. Compared to NuSMV, the experiment re-
sults prove the feasibility and efficiency of our approach.

The rest of this paper is organized as follows. Section II
briefly introduces CTL model checking and the concept of
probe machine. Section III presents our approach and provides
complexity analysis. Section IV introduces the model checker

183

CTL2PROBE based on our approach, and the experimental
results show that our approach is better than NuSMV. Section
V concludes our work.

II. PRELIMINARIES

A. CTL Model Checking

A Kripke structure is a variation of the transition system,
originally proposed by Saul Kripke [12], used in model
checking [13] to represent the behavior of a system. It consists
of a graph whose nodes represent the reachable states of the
system and whose edges represent state transitions, together
with a labeling function which maps each node to a set of
properties that hold in the corresponding state.

A Kripke structure is defined as a four-tuple

M = {S, I,R, L}

• a finite set of states S.
• a set of initial states I ⊆ S.
• a transition relation R ⊆ S × S.
• a labeling function L : S → 2AP .
Computation Temporal Logics properties are traditionally

interpreted in terms of Kripke structures. Clarke has proved
that any CTL formula can be expressed in terms of ¬, ∨, EX,
EU and EG [13]. Thus, it is sufficient to be able to handle
six cases, depending on whether g is atomic or has one of
the following forms: ¬f1, f1 ∨ f2, EXf1, E[f1Uf2] or EGf1.
These CTL formulas describe the following properites.

M, s |= ¬f1 ⇔ M, s 6|= f1
M, s |= f1 ∨ f2 ⇔ M, s |= f1 or M, s |= f2
M, s |= EXf1 ⇔ there exists a state t such that

R(s, t) and M, t |= f1
M, s |= E[f1Uf2] ⇔ there exists an infinite path π

starting at s and there exists a
k ≥ 0 such that M, sk |= f2

and for all 0 ≥ j < k,M, sj |= f1
M, s |= EGf1 ⇔ there exists an infinite path π

starting at s such that for all
i ≥ 0,M, si |= f1

B. Probe Machine

Probe Machine (PM) is defined as a nine-tuple

PM = (X,Y, σ1, σ2, τ, λ, η,Q,C)

where the nine components denote the data library (X), probe
library (Y), data controller (σ1), probe controller (σ2), probe
operation (τ), computing platform (λ), detector (η), true solu-
tion storage (Q), and residue collector (C). The following will
introduce four main components: data library, probe library,
probe operation, and computing platform.

• The data library X is viewed as a set of n elements,
denoted by X = {x1, x2, ..., xn}. Each data xi contains
a body and p types of data fibers. Data xi is defined as

xi = {x1i , x2i , ..., x
p
i }

• The probe in the probe machine is defined as a tool to find
two data and implement some operations (e.g., connective
and transitive operations) between them. Formally, let xji
and xmt be two types of data fibers. The probe between xji
and xmt denoted as τx

j
ix

m
t . A connective probe, denoted

as xji , xmt , refers to a probe τx
j
ix

m
t connecting two target

data fibers xji and xmt , forming a high-order aggregation.
• A probe operation τ is a process of executing many probe

operations simultaneously.
• The computing platform, denoted by λ, is an environment

to conduct probe operations τ . It helps probes rapidly find
the target data fibers and then conduct probe operations.
High cohesiveness, threshold property, and uniqueness
are the fundamental functions of the computing platform.

– High cohesiveness is the rule that high-order aggre-
gation data are given higher priority than low-order
aggregation to be executed probe operation.

– Threshold property limit that the size of two aggre-
gations for probe operation must not exceed the size
of the graph itself.

– Uniqueness is the rule that there is at most one data
for each type that an aggregation contains.

III. MODEL CHECKING BASED ON PROBE MACHINE

This section is concerned with CTL model checking on the
probe machine. We first introduce the procedures of model
checking on the probe machine. Construction of the data
library and probe library are two main steps. Subsequently,
we propose the methods to construct data library and design
methods for probe library of EG and EU respectively. In
the end, we analyze the time complexity for the designed
approach.

A. Procedures of Model Checking on Probe Machine

Xu solve the graph coloring problems with connective
probes that connect two adjacent vertexes of different colors
[9]. Inspired by the previous work, we propose a graph search
mechanism for model checking. Here, we use a probe to
connect two adjacent states in the graph which satisfying the
CTL property. Each subpath is considered as data to be probed.
In this way, each subpath continuously grows after each probe
operation until the initial state is included in the path.

The procedures of model checking on the probe machine
are divided into four steps as follows

• Construction of the data library X .
• Establishment of the probe library Y according to the

CTL property.
• Implement the probe operation τ(X,Y) in the computing

platform λ, producing a large number of solutions.
• Find the true paths T of all solutions.
Specially, Clarke has proved that any CTL formula can be

expressed in terms of ¬, ∨, EX, EU and EG [13]. Thus, it
is sufficient to be able to handle six cases. We usually check
L(s) to verify M, s |= ¬f1, M, s |= f1 ∨ f2 and traverse
the successors of the state s to check M, s |= EXf1. These

184

s0

{ f1 }

s1

{ f1 }

s2

{ ¬f1 }

Xω01Xωω01 X1ω01

(a)

(b)

X012X0012 X2012

(c)

Xω01Xωω01 X1ω01 X012X0012 X2012

(d)

X1
ω01,X0

012

Xω[01]2Xωω01 X2012

(e)

Fig. 1. (a) A simple Kripke Structure. (b) Data xω01 with its two data fibers
xω
ω01, x1

ω01. (c) Data x012 with its two data fibers x0
012, x2

012. (d) Probe
x1
ω01, x

0
012 (e) Two-aggregation data xω[01]2.

three verifications can be solved within a short time, so we
don’t need some particular methods on the probe machine to
check them. Therefore, only two algorithms are needed for EG
and EU. And the following will respectively introduce how to
build the data library and probe library forM, s |= EGf1 and
M, s |= E[f1Uf2] respectively.

B. Construction of Data Library

Let a graph G mean a Kripke structure,M = {S, I,R, L}.
We denote V (G) and E(G) as the sets of states and transitions
of G respectively. G has a set of nodes V (G) = {v1, . . . , vn}
and a set of edges E = {e1, . . . , ep}, as well as L(vi) ∈
{f1,¬f1} holds for each vi.

In addition, we denote Pre(vi) and Suc(vi) as the sets of
predecessor nodes and successor nodes of the vertex vi. E(vi)
is defined as the set of edges out of the vertex vi. Let E2(vi)
be the set of all directed two-paths with internal vertex vi.
Formally

E2(vi) = {vlvivr , xlij |vl ∈ Pre(vi), vr ∈ Suc(vi)} (1)

Data xlij are defined according to (1). Let’s take an
example[see Fig. 1(a)], it is a simple Kripke structure with 3
states and 2 transitions. Every state is considered as data with
its transiton edge, such as E2(v1) = {x012} [see Fig. 1(c)].

Based on E2(vi), we construct the data library X of the
connective probe machine as follows:

X = ∪ni=1E
2(vi) =

= ∪ni=1{xlir , vlvivr|vl ∈ Pre(vi), vr ∈ Suc(vi)}
(2)

where xlir has exactly two types of data fibers, the left one
is xllir and the right one is xrlir. Typically, initial states have
no predecessor and final states have no successor, so we define

¬Start
¬Close
¬Heat

Start
¬Close
¬Heat

S0

S1

start oven

Start
Close
¬Heatopen door

close door

¬Start
Close
¬Heat

reset

S2

S3

Start
Close
Heat

S4
start cooking cook

done

restart

Fig. 2. Microwave oven example.

ω as empty. The data xω01 of the initial state s0 is shown in
Fig. 1(b).

In fact, each data represent a path and a n-aggregation
data represents a path of length n. For example, data x012
represents a one-length path, π = v1 [see Fig. 1(c)], and 0
and 2 respectively represent the possibe node connecting this
path. Similarly, a two-aggregation data xω[01]2 represents a
two-length path, π = v0, v1 [see Fig. 1(e)].

C. Probe Library for EGf1

The logical operator EG means that there is a path so that
all future states on it are satisfied. Based on this property, we
set a rule for the probe library Y of EGf1 as follows.

Rule 1: Let xutv and xlir be two data in X. Then there
exists a probe xvutv, xllir between them if and only if l = t, v =
i and f1 ∈ L(vt), f1 ∈ L(vi).

As shown in Fig. 1(d), f1 ∈ L(v0), f1 ∈ L(v1) and the
data xω01 is adjacent to another data x012, so there exists a
probe x1ω01, x0012 to connect the two data fibers, which forming
a two-aggregation data xω[01]2 and remaining two data fiber
xωω01 and x2012 [see Fig. 1(e)].

By taking the graph in Fig. 2 as an example, the following
steps describe the process of checkingM, s0 |=EG¬Heat by
our approach.

Step 1: Data library X can be constructed as follows:

X = E2(v0) ∪ E2(v1) ∪ E2(v2) ∪ E2(v3) ∪ E2(v4).

where, E2(v0) = {xω01}, E2(v1) = {x012, x212, x312},
E2(v2) = {x121, x123, x124, x421, x423, x424}, E2(v3) =
{x231}, and E2(v4) = {x242, x244, x442, x444}. Let ζ(x)
represent data fibers of data x. There are total 15 types of
data in X , and 30 types of data fibers has been generated as
follows:

185

ζ(xω01) = {xωω01, x1ω01}, ζ(x012) = {x0012, x2012}
ζ(x212) = {x2212, x2212}, ζ(x312) = {x3312, x2312}
ζ(x121) = {x1121, x1121}, ζ(x123) = {x1123, x3123}
ζ(x124) = {x1124, x4124}, ζ(x421) = {x4421, x1421}
ζ(x423) = {x4423, x3423}, ζ(x424) = {x4424, x4424}
ζ(x231) = {x2231, x1231}, ζ(x242) = {x2242, x2242}
ζ(x244) = {x2244, x4244}, ζ(x442) = {x4442, x2442}
ζ(x444) = {x4444, x4444},

Step 2: Probe library construction
Based on the data library X , we construct the correspond-

ing probe library Y according to rule 1.

Y01 = {x1ω01, x0012}
Y12 = {x2012, x1121, x2012, x1123, x2012, x1124,

x2212, x1121, x2212, x1123, x2212, x1124,

x2312, x1121, x2312, x1123, x2312, x1124}
Y21 = {x1121, x2212, x1421, x2212}
Y23 = {x3123, x2231, x3423, x2231}
Y31 = {x1231, x3312}
Y24 = Y42 = ∅

Step 3: Probe operations
In each iteration, probes connect the probeable data to form

larger data, namely, aggregations. After several rounds, each
data containing the initial state is a feasible path satisfying the
property, otherwise, the largest data is a counterexample.

Probe operation rules are based on three functions of the
computing platform: high cohesiveness, threshold, and unique-
ness. They ensure that aggregations grow quickly according to
the rules. By taking the oven example, the process of probe
operation is as follows.

Data library X and probe library Y have been constructed,
and the following Table I showing how to obtain the feasible
paths in the computing platform λ. For model checking, the
number of iterations is at most equal to dlog2ne+ 1, n is the
number of vertexes in the graph G. In this example, it takes
three steps for probe operations.

TABLE I
SOLUTIONS PROCEDURES

Computing Platform

0 xω01, x012, x212, x312 . . .

1 xω[01]2, x0[12]3, x1[21]2, x1[23]1, x2[31]2 . . .

2 xω[0123]1, x0[123]1, xω[012]3, x4[231]1 . . .

3 xω[0123]1

In the first iteration, the probe x1ω01, x0012 find the data
fiber x1ω01 of the data xω01 and x0012 of x012, connecting

them and forming a two-aggregation data xω[01]2. And the
data x1[24]4 isn’t formed for lack of probe x4124, x

2
244. Many

two-aggregations are generated in this round, but some are not
shown in the table I.

In the second iteration, some four-aggregations and three-
aggregations are generated. For example, the probe x2012, x1123
find the data fiber x2012 of the data xω[01]2 and x1123 of
x1[23]1, connecting them and forming a four-aggregation data
xω[0123]1.

In the third iteration, no larger aggregation is produced, so
the iteration stops.

It is clear that xω[0123]1 contians the initial node s0
and a cycle π = s1s2s3s1s2s3 . . . , so it can be concluded
that M, s0 |= EG¬Heat and an available path is π =
s0s1s2s3s1s2s3

For the problem of EGf1, all true solutions are the aggre-
gations including the initial state s0 and a cycle, and feasible
paths are recorded by aggregations themselves. Otherwise, it
means M, s0 6|= f1. Furthermore, the largest aggregation can
be the counterexample, since it represents the path closest to
true solutions.

D. Probe Library for E[f1Uf2]
The logic operator EU means that there is a path keeping

a state before another certain state appears. Based on this
property, two rules are set as follows to establish probe library
Y of E[f1Uf2].

Rule 1: Let xutv and xlir be two data in X. Then there
exists a probe xvutv, xllir between them if and only if l = t, v =
i and {¬f2, f1} ∈ L(vt), f2 ∈ L(vi).

Rule 2: Let xutv and xlir be two data in X. Then there
exists a probe xvutv, xllir between them if and only if l = t, v =
i and {¬f2, f1} ∈ L(vt), f1 ∈ L(vi).

Rule 1 and rule 2 ensure that only one state on the path
satisfies f2 and lies at the endpoint. By taking the graph in
Fig. 2 as an example, the following steps describe the process
of checking M, s0 |= E[¬Heat U Close] on probe machine.

Based on the two rules, we construct the corresponding
probe library Y as follows.

Y01 = {x1ω01, x0012}
Y12 = {x2012, x1121, x2012, x1123, x2012, x1124,

x2212, x1121, x2212, x1123, x2212, x1124,

x2312, x1121, x2312, x1123, x2312, x1124}
Y21 = Y23 = Y24 = Y31 = Y42 = ∅

And the following Table II showing how probe operation
τ is executed to obtain solutions in the computing platform
λ. After three iterations, the aggregation xω[012]3 and xω[012]4

contian the initial node s0, it can be concluded that M, s0 |=
E[¬Heat U Close] and an available path is π = s0s1s2

E. Complexity Analysis

We analyze the time complexity in terms of three steps
proposed in Section III-A.

186

TABLE II
SOLUTIONS PROCEDURES

Computing Platform

0 xω01, x012, x212, x312 . . .

1 xω[01]2, x0[12]3, x0[12]4 . . .

2 xω[012]3, xω[012]4, . . .

3 xω[012]3, xω[012]4

Theorem 1: The time complexity of data library X is at
most O(V × E2).

For each vertex, outgoing and incoming edges need to be
visited. Thus, the time complexity of constructing the data
library X is O(V × E2).

Theorem 2: The time complexity of probe library Y is at
most O(V × E).

We construct the probe library Y by traversing every
vertex with its predecessor nodes and its time complexity is
O(e1), and e1 is the number of its predecessor. The total time
complexity of this process is at most O(V × E).

For model checking, the number of iterations is at most
equal to dlog2ne+1, n is the number of vertexes in the graph
G. Thanks to the underlying parallelism of the probe machine,
the processing ability of one probe operation τ is 2q , q is
the number of all possible edges to probe [9]. Therefore, our
approach of CTL model checking based on the probe machine
can greatly reduce the verification time for systems with large
state space.

IV. PROTOTYPE TOOL

This section is concerned with the framework of our
tool CTL2PROBE and simulation of CTL model checking
on probe machine. First, we will introduce a model checker
called CTL2PROBE based on our approach. And then, some
simulations are conducted, which prove the feasibility and
efficiency of our approach.

A. CTL2PROBE

To simulate automatic verification of the CTL model
checking on the probe machine, we develop a model
checker called CTL2PROBE. Fig. 3 shows the framework of
CTL2PROBE. It consists of three functional modules: Parsing,
Modeling, and Computing. The specific design is as follows:

Parsing: This module mainly parses a JSON file into
a model and CTL formula. In this process, the transitions
between states are recorded in a HashMap structure and the
CTL formula is transformed into a parse tree. It takes a
particular format JSON file as input. We define this special
format to effectively simplify the parsing process. It is a
structured markup language similar to XML that users can
quickly obtain or change the contents of elements. As shown
in Fig. 4, it is a JSON file that describing the state s0 of oven
example at Section III. The file includes the label, predecessor,

Model

CTL
Property

Verification System

Parsing

Parse
Tree

Data
Library X

Probe
Library Y

Mapping Computing

Algorithms Probe
Operation

Avaliable
Paths

Counter-
example

JSON
File

Fig. 3. The Framework Design of Verification System

Fig. 4. The JSON file of the oven example

and successor of each state and provides the CTL formula for
verification. In the module, CTL formula will be transformed
into the formula in terms of ¬, ∨, EX, EU and EG, and stored
in the data structure based on parse tree [see Fig. 5]. It is a
bottom-up solving process and the given formula is satisfied
when the top node contains the initial node.

Mapping: This module is responsible for mapping ele-
ments into the data library and probe library. The rule of
mapping is the described in Section III. Data library and probe
library are provided for the computing module to verify CTL
property.

Computing: This module is used to implement probe
operations according to the data library and probe library. The
rule of computing is based on three functions of the computing
platform: high cohesiveness, threshold, and uniqueness. We
realize them according to the following rules.

• High cohesiveness: High-order aggregation data are given
higher priority than low-order aggregation to be executed
probe operation.

• Threshold: The size of two data for probe operation must
not exceed the size of the graph itself.

Operator

States
Left

Branch
Right
Branch

Operator

States
Left

Branch
Right
Branch

Operator

States
Left

Branch
Right
Branch

Fig. 5. The data structure of parse tree nodes

187

Fig. 6. The process of verification

• Uniqueness: There is at most one data for each type that
an aggregation contains.

B. Simulation

To verify the effectiveness and efficiency of the pro-
posed algorithm, we have carried out several experiments on
CTL2PROBE.

As shown in the Fig. 6, it is the result of verification of
EG¬Heat in the oven example. It takes a JSON file as the
input of the program and the output consists of four parts: data
library, probe library, the process of verification, and result.
The result part consists of all available paths, modeling time,
and verification time. The total time of this verification is
1240 × 10−6s, but NuSMV takes 15313 × 10−6s to verify
the oven example. It is powerful proof of the efficiency of our
tool.

To further prove the efficiency of verifying the model
with more states, we have carried out several experiments.
We randomly generate multiple graphs with 5, 10, 50 states.
Each of the instances runs independently 10 consecutive
times to measure the average runtime. The experiment is
programmed by Python and executed on a computer system
with specifications of Intel Core i-7 at 2.2 GHz CPU and 16
GB RAM under macOS operating system.

The experimental results are shown in Table III. The
results show that CTL2PROBE is better than NuSMV in
some cases. However, the verification time by CTL2PROBE
will increase significantly as the number of nodes increases.
Because CTL2PROBE is a tool to simulate probe machine
for probe operation and the properties of huge capacity and
total parallel are difficult to realize on CTL2PROBE. It is
definite that model checking on the probe machine is much
faster than traditional model checkers. Our experiment proves
the feasibility and efficiency of model checking on the probe
machine.

V. CONCLUSION

In this paper, a novel CTL model checking approach
based on the probe machine is proposed, which can solve the

TABLE III
COMPARISON OF CTL2PROBE WITH NUSMV ON SOME CASES

Nodes
CTL2PROBE(10−6)

NuSMV(10−6)
Modeling Computing Total Time

5 426 301 727 13291

10 1127 957 2084 21532

50 17402 1574 18976 30804

limitation for state-space explosion and reduce the verification
time for systems with large state space. We design a mapping
algorithm to transform the model of Kripke structure into the
data library and probe library that can run directly on the probe
machine. We develop a model checker called CTL2PROBE to
simulate the probe machine, which takes the model as input
and obtains all feasible paths or counterexamples. Compared to
NuSMV, our approach is more efficient by several comparison
experiments.

VI. ACKNOWLEDGEMENT

This work was supported in part by the National Key
Research and Development under Project 2019YFA0706404,
in part by the NSFC under Project 61972150, and in part by the
Shanghai Knowledge Service Platform under Project ZF1213.

REFERENCES

[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 8, no. 2, pp. 244–263, 1986.

[2] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[3] Y. Kwon and E. Kim, “A design of gpu-based quantitative model
checking,” in International Conference on Verification, Model Checking,
and Abstract Interpretation, pp. 441–463, Springer, 2021.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Information and
computation, vol. 98, no. 2, pp. 142–170, 1992.

[5] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao, “Efficient
generation of counterexamples and witnesses in symbolic model check-
ing,” in Proceedings of the 32nd annual ACM/IEEE Design Automation
Conference, pp. 427–432, 1995.

[6] P. Godefroid, “Using partial orders to improve automatic verification
methods,” in International Conference on Computer Aided Verification,
pp. 176–185, Springer, 1990.

[7] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” ACM Sigplan Notices, vol. 40, no. 1, pp. 110–
121, 2005.

[8] E. A. Emerson, K. D. Hager, and J. H. Konieczka, “Molecular model
checking,” International Journal of Foundations of Computer Science,
vol. 17, no. 04, pp. 733–741, 2006.

[9] J. Xu, “Probe machine,” IEEE transactions on neural networks and
learning systems, vol. 27, no. 7, pp. 1405–1416, 2016.

[10] M. A. Rahman and J. Ma, “Solving symmetric and asymmetric trav-
eling salesman problems through probe machine with local search,” in
International Conference on Intelligent Computing, pp. 1–13, Springer,
2019.

[11] J. Yang, Z. Yin, J. Cui, Q. Zhang, and Z. Tang, “The chinese postman
problem based on the probe machine model,” in International Confer-
ence on Bio-Inspired Computing: Theories and Applications, pp. 55–62,
Springer, 2018.

[12] S. A. Kripke, “Semantical consideration on modal logic.,” Acta Philo-
sophica Fennica, vol. 16, 1963.

[13] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model checking. MIT press, 2018.

188

How MOOC Videos Affect Dropout? A
Lightweight Pipeline Making Student Dropout

Interpretable From Several Levels
Deming Sheng, Jingling Yuan*, Xin Zhang
School of Computer Science and Technology,

Wuhan University of Technology,
Wuhan 430070, China

Email: shengdeming@whut.edu.cn, yjl@whut.edu.cn, xinz@whut.edu.cn

Abstract—Massive Online Open Courses (MOOC) have
popularized educational opportunities for students all over
the world, while immensely high dropout is becoming a
central challenge nowadays. Most researches predict course
dropout labels through analyzing the student engagement
data. However, these models have high structural complexity
with high time cost and cannot provide in-depth insights into
why a student is likely to drop out. We devise a lightweight
pipeline to simplify the MOOC dropout problem, grasp the
core features to make student behaviours interpretable at
the model and instance level, visualize the changing trend of
predicted label probability estimation with feature values for
longitudinally interpreting the sample student behaviours.
Based on qualitative insights and quantitative analysis, our
main findings are that shorter videos and instructors speak
fast are more engaging. Most students complete MOOC
learning with a rapid speed, while a few students who watch
the video slowly have a higher completion rate. When the
frequency of fast-forwarding increases while the percentage
of videos watching decreases, the likelihood to drop this
course raises. In the end, our pipeline achieves 69.52% AUC,
0.744 R-squared and 0.553 R̄-squared with 0.982s inference
time on the 20238 sample student data.

Index Terms—MOOC, Dropout, Student Behaviours,
Lightweight Pipeline, Interpretable Model

I. INTRODUCTION

Massive Online Open Courses (MOOCs), such as
Coursera, edX, Udacity and XuetangX, have developed
rapidly in recent years and attracted wide attention of
both educators and the public all over the world. As of
the end of 2019, more than 900 universities around the
world have provided about 11,400 MOOC courses, and
in 2018 alone, there were 2,000 new courses. However,
the rapid growth of the number of courses has resulted in
fewer and fewer students for each course. What’s more,
research shows that the average course completion rate on
edX is only 5% [1], [2], and 4.5% on XuetangX similarly
[3]. How to effectively improve the MOOC completion
rate of students has become a prominent problem.

DOI reference number: 10.18293/SEKE2021-023

Most of the students engaging MOOCs do not complete
the courses and drop them out halfway, which hinders the
further development of MOOCs. With the student past
engagement time, many works attempt to predict whether
a student will drop out or not. However, these models
have high structure complexity, strict training conditions
and high time cost, which inappropriate for the dynamic
of MOOC courses and the diversity of attached student
watching video behaviours. More importantly, they do not
provide in-depth insights into why a student is likely to
drop out, which can not offer analysis for instructors to
refine the future versions of MOOC.

Though MOOC dropout models are progressively pro-
posed in recent years, still there are many issues to be ad-
dressed when it comes to the real scenarios. For instance,
the engagement time can not reflect whether a student is
actively paying attention to this video or just playing it
in the background while multitasking. A comprehensive
collection and analysis of student information are costly,
which also increases the burden on instructors. Besides,
a wide range of features does improve the accuracy of
model predictions while impairing interpretability.

We attempt to filter the original video data and extract
core features, utilize a simple pipeline to explain the be-
haviours of student groups withdrawing from courses, and
dynamically analyze the actions of individual students.
Through this pipeline, instructors can intuitively predict
whether a student will drop out this course from a small
amount of data, and take countermeasures to help students
complete the course. At the same time, instructors can
also make targeted changes to the curriculum for the next
semester based on historical data. In summary, our main
contributions in this paper are three folds:

• We simplify the MOOC dropout problem and de-
scribe some preliminary to make the pipeline in-
terpretable. After that, we explore data analysis,
feature engineering, model selection, model metrics

189

and visualization as design parameters in the context
of our lightweight pipeline. In the end, our pipeline
achieves 69.52% AUC, 0.744 R-squared and 0.553
R̄-squared with 0.982s inference time on the 20238
sample student data.

• We adopt two interpretable models to provide in-
depth insights into students dropout at several levels.
Besides, we visualize the probability estimation and
change trend of predicted label linked to feature
values to longitudinally interpret the sample student
behaviours.

• We devise a deterministic finite automaton to con-
struct the complete student behaviours, which over-
comes the inherent limitation of the student engage-
ment time. Moreover, we find that shorter videos
and instructors speak fast is more engaging, which
enables instructors to adjust MOOC videos for future
education.

II. RELATED WORK

Many recent works mainly employ the clickstream as
the student engagement and attempt to predict dropout
thanks to the detailed records of the students’ interactions
with course content, including video lectures, discus-
sion forums, assignments, and additional course content,
within the MOOC platform. Kloft et al. [4] propose
a Support Vector Machine (SVM) framework focusing
on clickstream data, which takes the weekly history of
student data into account. Liu et al. [5] employ K-means
to make a quantitative analysis of the low completion in
course study on MOOC platform. Al-Shabandar et al. [6]
apply Decision Tree (DT) to compare in terms of their
suitability for predicting the course outcome of learners
participating in MOOCs.

Three are also works that considered Neural Networks
(NNs) to predict the MOOC dropouts. They usually
convert clickstream data into a fixed-length representation
for the downstream classification models. Fei and Yeung
[7] approach a recurrent neural network (RNN) model to
solve this time series prediction problem. Josh Gardner
and Christopher Brooks [8] present a procedure to sta-
tistically test hypotheses about their deep neural network
(DNN) model performance. Wang et al. [9] propose a
hybrid deep neural network dropout prediction model by
combining the CNN and RNN.

However, the majority of student interaction data in
MOOCs is in the form of hardly interpretable click-
streams, and Neural Networks are too sophisticated to
uncover the underlying factors of student withdrawal. In
this paper, We only utilize a small number of students
watching MOOC video data, and propose a lightweight
pipeline to quickly judge the dropout rate of students,
then visualize the core features that affect the results to
assist instructors in making adjustments.

TABLE I
NOTATIONS.

Symbol Interpretation
S, C,V,B,L Set of students, courses, videos, behaviours, labels
Fs

wc,Fs
wp Feature set of the number and percentage of

students watch videos
Fs

wt,Fs
pt,Fs

st Feature set of the time to students watch the video,
progress the video, stay on the webpage

Fs
f ,F

s
b ,F

s
p ,Fs

l Feature set of the frequency of students fast forward,
slow backwards, pause, leave the videos

Fv
c ,Fv

d ,F
v
s Feature set of the subtitle length, duration time,

speed of videos
εf , εb, εp, εl The upper limit parameter of the student’s fast

forward, slow backwards, pause, and leave behavior
ηf , ηb, ηp, ηl The lower limit parameter of the student’s fast

forward, slow backwards, pause, and leave behavior

III. PRELIMINARY

Preliminary Before proposing our methodology, we
describe some preliminary of our pipeline and corre-
sponding notations (Table I). Given a specified student-
course pair < s ∈ S, c ∈ C >, we attempt to make
the dropout result l ∈ L interpretable after a series of
the behaviours {b1, b2, ..., bn} ⊆ B about watching these
MOOC videos {v1, v2, ..., vm} ⊆ V .

Definition 1. Dropout: We define dropout in this paper
as meaning that the student will not continue to study the
remaining videos of the course after the behaviour of a
certain video (not the final video) of a certain course ends.

Definition 2. Student Behaviours: We define student
behaviours B as the behaviours of each student s watching
a series of videos V in the course c. We adopt the tuple
(s, v, Fswt, Fspt) to infer whether the student s has the
action of fast forward or slow backwards and the tuple
(s, v, Fswt, Fsst) to infer whether the student s has the
action of pause or leave in this video v.

Definition 3. Interpretable: We make efforts to ex-
plain the final predictions of student dropout models for
advancing the development of MOOC. In this paper,
interpretability is an explanation, usually in a way that
humans can understand, associating the feature values of
an instance with its model predictions.

IV. THE PROPOSED LIGHTWEIGHT PIPELINE

A. Overview of the pipeline

As shown in Fig.1, our lightweight pipeline mainly
consists of five components. We adopt this pipeline to
obtain quantitative results and qualitative insights about
the impact of MOOC videos on student dropout and
utilize visualization for instructors to intuitively judge
the impact of each student behaviour on the final label.
We can infer from Fig.1 that Logistic Regression and
Decision Tree can provide a fast and accurate prediction
on the student dropout rate. And both of them have
an excellent model level interpretation to uncover the
underlying factors of student withdrawal.

190

Fig. 1. A Lightweight Pipeline Making Student Dropout Interpretable From Several Levels.

B. Data Processing and Feature Engineering

Data Insights Our dataset comes from the competi-
tion“MOOCCube student behaviour analysis”, and data
was crawled from Chinese one of the largest MOOC
platform named XuetangX. XuetangX has provided over
1,000 courses and attracted more than 10,000,000 reg-
istered students, which offers abundant data to analyse
students behaviours.

Basic Features This competition provides three types
of JSON files about courses, videos and student be-
haviours. A series of basic information can be obtained
from these original files, but some are not intuitive enough
to make students behaviours interpretable, and some are
inappropriate. We force on analyzing the behaviours of
each student watching these videos because it is a nec-
essary (but not sufficient) premise for learning and can
be quantified by calculating the different times of each
student watching these videos. Moreover, the character-
istics of the course (video) itself are quite important for
students’ MOOC completion rate.

Fig. 2. Student Behaviours Construction - The left figure illustrates
the construction of complete student behaviours based on deterministic
finite automaton (DFA) and the right equation shows the calculation
process of these corresponding features.

Student Behaviours Features Video interaction data
in XuetangX is recorded for each student generated
event separately. These data are recorded in the form
of JSON type events, which we then structure into
students behaviours features form as described below.
Every row in the raw JSON file records a series
of times like local watching time, video progress time,
video start(end) time and local start(end) time. We at-
tempt to aggregate these into simple, interpretable fea-

tures for a specified video id-student id pair: watch-
ing count, local watch time, local watch percentage,
local progress time, local web time, forward, backward,
pause and leave. Each of these captures various potential
factors in the consumption of video content by students,
which is shown in Table II.

We employ a deterministic finite automaton (DFA) to
construct the complete student behaviours. Fig.2 shows
three state transitions in this DFA: Ready, Record, Judge.
When the state is Ready, it stays until receives a Forword
or Backword event (Pause or Leave, Fsf = 1 or Fsb = 1
&& Fsp = 1 or Fsl), then the state transforms to Record.
At the Record state, there is a stack. When getting a new
Pause or Leave (Forward or Backward) events, it pushes
all the events into the stack. If there come some other
events, it goes to the Judge state. At the Judge state, we
check whether the Action.json is normal data to decide
whether to save it and return to the Ready state. It is
worth noting that in each cycle, Fsf and Fsb (Fsp and Fsl)
are mutually exclusive, but Fsf and Fsp (Fsl) can exist at
the same time.

Course (Video) Features Each course has a list of
corresponding videos, and we utilize the characteristics
of these videos to represent different courses. For the
original video JSON file, it is difficult to directly use
the text information. We make efforts to classify these
videos by the video name, but because of the limitation
of information, judging based on only a few characters
is time-consuming and meaningless. Here we adopt a
more direct and effective strategy. We care less about the
content of video text itself but pay more attention to the
coarse-grained features such as the duration of videos and
the speed of speech. The text of all frame is counted and
combined with the duration time to calculate the speed
of every video. Intuitively, videos where instructors speak
fairly fast and with high enthusiasm are more engaging,
which is shown in Table II.

Linear Correlation We utilize the Pearson Correla-
tion Coefficients (PCCs) to explore the linear correlation
between different features and student dropout (Eq.1).

191

TABLE II
PCCS OF THE 12 FEATURES AND STUDENT DROPOUT.

Fs
wc Fs

wp Fs
wt Fs

pt Fs
st Fs

f
-0.2990 -0.3147 -0.2015 -0.3219 -0.2991 -0.2332
Fs

b Fs
p Fs

l Fv
c Fv

d Fv
s

-0.2144 0.0072 -0.2990 -0.1697 0.0273 0.1842

ρf1,f2 =
cov(f1, f2)

σf1σf2
=
E((f1 − µf1)(f2 − µf2))

σf1σf2
(1)

Where cov and σ are covariances and standard de-
viations of two different continuous feature variables,
respectively. Each student will produce a series of actions,
so the feature parameters are a list. In order to simplify
the parameters, we explore the linear correlation between
the maximum, minimum, median and average value of
each feature and the dropout. Take feature Fswp as an ex-
ample, ρmax(Fs

wp),L = −0.2825 ρmid(Fs
wp),L = −0.3147

ρmin(Fs
wp),L = −0.0557 ρavg(Fs

wp),L = −0.2935, here
we will select the feature value with the largest linear
correlation as our final input, that is, when the absolute
value of ρ is the largest.

Table II verifies our above conjecture, the comple-
tion rate of MOOC course with more video content
and instructors speaking fast is higher [ρmax(Fv

d),L =
−0.0262 ρmin(Fv

d),L = 0.0273 ρmax(Fv
s),L = −0.0618

ρmin(Fv
s),L = 0.1842]. Simultaneously, other features

that mostly take the median and average values have a
linear and negative correlation with the MOOC dropout,
and we remove the low linear correlation feature Fsp .

In addition, we calculate the PCCs for the remaining
11 features pairwise so as to avoid the problem of
multicollinearity between variables (Fig.3). We identify
ρf1,f2 ≥ 0.8 as a highly correlated variable pair <
f1, f2 >, and eliminate features with smaller ρf,L values.

Fig. 3. Data Insight - PCCs heat map of features and labels.

C. Logistic Regression Model

Logistic Regression A logistic regression model (LR
model) predicts the label L as a probabilities between 0
and 1 (Eq.2). However, the interpretation of the weights
in logistic regression do not influence the probability

linearly, which impairs the intuitive interpretability of
each input feature f ∈ F . Here we reformulate the
original equation for the interpretation so that only the
linear term is on the right side of the formula and we
employe the “odds” represents the probability of event
divided by the probability of no event (Eq.3).

P (li = 1) =
1

1 + e−(β0+β1fi
1+β2fi

2+...+βnfi
n)

(2)

odds =
P (li = 1)

1− P (li = 1)
= eβ0+β1f

i
1+β2f

i
2+...+βnf

i
n (3)

odds(fn + ∆f)

odds
= eβn(fn+∆f)−βnfn = eβn∆f (4)

At last, An increase in a feature fn by ∆f changes the
odds ratio (multiplicative) by a factor of eβn∆f (Eq.4).
Although interpreting the advantage ratio requires some
mental arithmetic, it is much simpler than considering
the log function. Particularly, for the numerical feature,
if the value of feature fn increases by one unit, the
estimated odds change by a factor of eβn . And for the
binary categorical feature, altering the feature fn from
the reference category to the other category changes the
estimated odds by a factor of eβn as well.

Model Level Interpretation In the above, we in-
troduce odds to more intuitively show the impact of
each feature change on the prediction results, for the
interpretation of weight in the logistic regression model
depends on the type of the corresponding feature. Another
important measurement for interpreting models is the R-
squared measurement, which implies the total variance of
the target result is explained by the model (Eq.5).

R2 = 1− SSE

SST
= 1−

∑m
i=1(li − l̂i)∑m
i=1(li − l̄i)

(5)

Where SSE is the squared sum of the error terms,
which is measured by the squared differences between the
predicted and actual target values. And SST is the squared
sum of the data variance, which is measured by the square
difference between the average and actual target value.
R-squared increases with the number of features in the
model, but it is not related to the number of instances
and labels. Here, we also list the adjusted R-squared (R̄-
squared) values to account for the number of features
used in the model. The calculation method of R̄-squared
is shown in Eq.6, where i is the number of features and
n the number of instances.

R̄2 = 1− (1−R2)
n− 1

n− i− 1
(6)

As we can see from Table III, the values of R and R̄ are
both increasing with the number of input features, which
indicates that the interpretability of the logistic regression
model will strengthen with the richness of input features.

192

TABLE III
MODEL PERFORMANCE - THE INFLUENCE OF DIFFERENT

FEATURES ON THE INTERPRETABILITY AND ACCURACY. WE ADD
THEM ONE BY ONE ACCORDING TO THE IMPORTANCE OF THE

FEATURE (REFER TO THE ESTIMATE AND SIGNIF.CODES COLUMNS
OF TABLE IV FOR THE RELEVANT IMPORTANCE).

Model (L ∼ F) AIC BIC R-squared R̄-squared
Fs

wp 23780 23795 0.6985642 0.4879666
Fs

wpFs
b 22572 22569 0.7056793 0.4979337

Fs
wpFs

bF
s
f 20904 20963 0.7071946 0.5000501

Fs
wpFs

bF
s
fF

s
pt 20451 20491 0.7214005 0.5203239

Fs
wpFs

bF
s
fF

s
ptFv

s 20447 20494 0.7226397 0.5220901
Fs

wpFs
bF

s
fF

s
ptFv

sFs
wt 20445 20500 0.7271775 0.5286474

However, this does not mean using all variables, because
too many variables will lead to over-fitting, which will re-
duce the generalization of the model. In addition, complex
features are not suitable for model interpretability. In this
paper, we hope to find a small number of decision-making
features to help MOOC instructors infer whether students
will complete this course for future course adjustments.

We simplify the input to improve the interpretability of
the model by eliminating linear irrelevant and collinearity
features. Here we employ two indicators, Akaike Informa-
tion Criterion (AIC) and Bayesian Information Criterion
(BIC), to verify that the 8 modelling variable models
we selected alleviate the problem between accuracy and
overfitting.

AIC = −2In(L)+2i, BIC = −2In(L)+i∗In(n) (7)

Where L is the maximum likelihood under the logistic
regression model, n is the number of data, and i is the
number of input features in this model. Table IV shows
that the model we built balances the complexity of the
model and the ability to describe the data set (likelihood
function).

It can be seen from Table III and Table IV that
the course completion rate is the most relevant to the
percentage of course watching (Fswp), followed by the
behaviours of student watching videos, forward (Fsf) and
backward (Fsb). What’s more, the dropout rate of courses
with slower video speaking rates will increase. In general,
the logistic regression model gives more weight to the
preprocessed features. Taking video watching time (Fswt)
and video watching rate (Fswp) as examples, both of them
can measure the degree to which a student learns a certain
video. But from the actual data, we can see that Fswp
is more sensitive, which means it is essential to extract
student behaviours from basic information.

Instance Level Interpretation We visualize the co-
efficients of the logistic regression model to explain the
result of the sample student’s final label after a series
of actions (Fig.4(b)). For individuals, basic features and
student behaviours features have a linear and negative
correlation with the MOOC dropout. That is to say, the

TABLE IV
MODEL PARAMETERS - FEATURE WEIGHT AND IMPORTANCE.

Feature Estimate Odds ratio Std. Error z value Pr (> |z|) Signif.codes
Intercept 0.7912388 2.2061276 0.0739276 10.703 < 2e-16 ? ? ?
Fs

wp -0.6834781 0.5048579 0.0794952 -8.598 < 2e-16 ? ? ?
Fs

wt -0.0010715 0.9989290 0.0006284 -1.705 0.08819 .
Fs

pt -0.0150089 0.9851032 0.0010296 -14.578 < 2e-16 ? ? ?
Fs

f -0.1154977 0.8909226 0.0081302 -14.206 < 2e-16 ? ? ?

Fs
b -0.1640974 0.8486593 0.0127081 -12.913 < 2e-16 ? ? ?
Fv

c 0.0000014 1.0000014 0.0000012 1.132 0.25773
Fv

d -0.0004825 0.9995176 0.0004183 -1.153 0.24872
Fv

s 0.0005496 1.0005497 0.0001792 3.066 0.00217 ? ?

TABLE V
MODEL PARAMETERS - THE IMPORTANCE OF FEATURES UNDER

DIFFERENT DEPTH DECISION TREE MODELS.

Model (L ∼ cI) Feature Importances Model Performance
Fs

wp Fs
pt Fs

f Fs
b Fv

s R-squared R̄-squared
max depth = 3 0.0 0.942 0.033 0.0 0.025 0.725 0.526
max depth = 4 0.011 0.919 0.030 0.024 0.015 0.731 0.534
max depth = 5 0.026 0.870 0.032 0.029 0.043 0.733 0.537
max depth = 6 0.049 0.839 0.025 0.026 0.061 0.744 0.553

higher the time or the percentage of an example student
watching the video, the more frequently playing forward
or backwards, the higher likelihood he is to complete this
course. Video features are positively linearly correlated
with the MOOC dropout, the speed of the video also
affects other features. As shown in Fig.4(c), when the
influence of Fvs increases, the influence of other features
will decrease. At this time, the student is more likely to
give up the course.

D. Decision Tree Model

Decision Tree Decision tree models can handle situ-
ations where the relationship between features and out-
come is nonlinear or where features interact with each
other. Decision tree models split the data multiple times
according to certain cutoff values in the features. Through
splitting, different subsets of the dataset are created, with
each instance belonging to one subset. The final subsets
are called terminal (leaf) nodes and the intermediate
subsets are called internal (split) nodes. The following
equation describes the relationship between the outcome
label L and the input features F .

li =
M∑
m=1

cmI{f ∈ Tm} (8)

Each instance falls into one terminal node subset Tm.
I {f ∈ Tm} denotes the identity function which return 1
when the input features F is in the final subsets Tm, 0
otherwise. For a terminal node ti, the instance outcome
label is li = c̄, where c̄ denotes the average value of the
whole instances in this terminal node subset Tm.

Model Level Interpretation We finally select the five
most relevant features to construct the decision tree model
through the previous analysis. As the max depth of the
decision tree model increases, the accuracy of the model
will be improved, and the corresponding feature weights
will be more balanced. But it is worth noting that the

193

(a) A distribution boxplot of the most
linearly correlated feature values.

(b) A line graph of Pearson correla-
tion coefficients of features and labels.

(c) The probability estimation and change trend of predicted label
linked to feature values.

Fig. 4. Instance Interpretation - The features of the dropout prediction model have different priorities. As students’ actions of watching videos
increase, these features will change differently (the feature change interval is shown in subfigure (a)), and the estimated weight of the feature will
also change (the trend of feature change is shown in subfigure (b)).

TABLE VI
MODEL INSTANCE - DROP AND COMPLETE INSTANCES UNDER

DIFFERENT DEPTH DECISION TREE MODELS.

Model (L ∼ cI) Instance Gini Samples

Drop

max depth = 3 Fs
pt ≥ 95.675,Fv

s ≤ 249.084 0.039 2577
max depth = 4 Fs

pt ≥ 121.675,Fv
s ≤ 249.084 0.023 2106

max depth = 5 Fs
pt ≥ 90.873,Fv

s ≤ 324.997 0.08 72
Fs

pt ≥ 141.56,Fv
s ≥ 247.44,Fs

f ≥ 9.5 0.005 1127

max depth = 6
Fs

pt ≥ 131.481,Fv
s ≤ 249.725 0.0 74

Fs
pt ≤ 102.824,Fs

wp ≤ 0.992,Fs
f ≥ 9.5 0.0 117

Fs
pt ≥ 122.564,Fs

wp ≤ 0.980,Fv
s ≤ 260.331 0.0 188

Complete

max depth = 3 Fs
pt ≤ 51.099,Fv

s ≥ 248.616 0.452 626
max depth = 4 Fs

pt ≤ 59.075,Fv
s ≥ 304.247 0.229 114

max depth = 5 Fs
pt ≤ 56.561,Fv

s ≥ 304.025 0.013 100
Fs

pt ≥ 90.873,Fv
s ≤ 160.196,Fs

f ≥ 4.5 0.0 18

max depth = 6
Fs

pt ≤ 43.297,Fv
s ≥ 249.725 0.0 48

Fs
pt ≥ 102.824,Fv

s ≤ 250.019,Fs
f ≥ 5.5 0.0 25

Fs
pt ≥ 53.186,Fs

wp ≥ 0.967,Fv
s ≥ 348.699 0.0 87

increase in model complexity will affect our intuitive
judgment, which is contrary to the original intention of
this paper. Therefore, in the following instance analysis,
we will adopt a three-layer decision tree. As can be seen
from Table V, Fspt and Fvs are the most significant features
in the decision tree model. Table VI shows the student
instances under different depth decision tree models. We
can infer intuitively whether a student will dropout from
a course is closely related to the video watching time, the
playing speed, and the instructor’s speaking speed.

Instance Level Interpretation Three distinct profiles
of dropout can be inferred from paths to leaves indicating
label = Drop. These profiles are 1) Video progress exceeds
two minutes while the instructor’s speaking speed is under
four words per second, 2) Students who fast forward many
times, the video progress time is less than one and a half
minutes, the percentage of watches is relatively low, 3)
Students who fast forward many times, video progress
exceeds two and a half minutes while the instructor’s
speaking speed is above four words. It is not difficult
to infer that the completers are those who watch a series
of short videos with a fast instructor’s speaking speed
at a fast rate, which is consistent with the experimental
instances at Table VI.

V. CONCLUSION

Our lightweight pipeline begins with interpretable fea-
tures, we employ a deterministic finite automaton to

construct the complete student behaviours and we adopt
a direct and effective strategy to extract the course fea-
tures. We do our utmost to simplify the MOOC dropout
problem, grasp the core features through two interpretable
models. In the end, the student’s dropout behaviour is
explained at several levels, which enables instructors and
video producers to make the most of online videos for
future education.

REFERENCES

[1] J. He, J. Bailey, B. I. P. Rubinstein, and R. Zhang, “Identifying at-
risk students in massive open online courses,” in Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA, B. Bonet and S. Koenig, Eds.
AAAI Press, 2015, pp. 1749–1755.

[2] D. T. Seaton, Y. Bergner, I. L. Chuang, P. Mitros, and D. E.
Pritchard, “Who does what in a massive open online course?”
Commun. ACM, vol. 57, no. 4, pp. 58–65, 2014. [Online].
Available: https://doi.org/10.1145/2500876

[3] W. Feng, J. Tang, and T. X. Liu, “Understanding dropouts in
moocs,” in The Thirty-Third AAAI Conference on Artificial In-
telligence, AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.
AAAI Press, 2019, pp. 517–524.

[4] M. Kloft, F. Stiehler, Z. Zheng, and N. Pinkwart, “Predicting
mooc dropout over weeks using machine learning methods,” in
Proceedings of the EMNLP 2014 workshop on analysis of large
scale social interaction in MOOCs, 2014, pp. 60–65.

[5] T.-y. LIU and L. Xiu, “Finding out reasons for low completion in
mooc environment: an explicable approach using hybrid data min-
ing methods,” DEStech Transactions on Social Science, Education
and Human Science, no. meit, 2017.

[6] R. Al-Shabandar, A. Hussain, A. Laws, R. Keight, J. Lunn, and
N. Radi, “Machine learning approaches to predict learning out-
comes in massive open online courses,” in 2017 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2017, pp. 713–
720.

[7] M. Fei and D.-Y. Yeung, “Temporal models for predicting student
dropout in massive open online courses,” in 2015 IEEE Interna-
tional Conference on Data Mining Workshop (ICDMW). IEEE,
2015, pp. 256–263.

[8] J. Gardner and C. Brooks, “Dropout model evaluation in moocs,”
arXiv preprint arXiv:1802.06009, 2018.

[9] W. Wang, H. Yu, and C. Miao, “Deep model for dropout prediction
in moocs,” in Proceedings of the 2nd International Conference on
Crowd Science and Engineering, 2017, pp. 26–32.

194

Development of an Automated Machine Learning Solution Integrable With
Multiple Virtual Learning Environments

Raniel Gomes da Silva1, Vitória Maria Pena Mendes1, Rodrigo Lins Rodrigues2, and Alexandre Magno
Andrade Maciel1

1Universidade de Pernambuco
2Universidade Federal Rural de Pernambuco

Abstract

In the last decade, a large volume of data has emerged
from the massive use of Virtual Learning Environments
(VLE). The information contained in these data has en-
abled the evolution of Educational Data Mining (EDM),
whose objective is to apply Machine Learning (ML) in ed-
ucational contexts. However, building accurate and robust
ML models requires, in most cases, advanced knowledge
in data science. To solve such problems, Automated Ma-
chine Learning techniques have been studied, to simplify
the repetitive processes of Data Mining. To validate the so-
lution, the database of the Núcleo de Educação a Distância
da Universidade de Pernambuco was used. In comparison
with the classic EDM approaches, the applied technique
showed a superior result, obtaining an accuracy of 89% in
the student performance classification process. This solu-
tion is called the Framework de Mineração de Dados Ed-
ucacionais (FMDEV), whose objective is to allow users to
validate and make available ML baselines with greater pro-
ductivity. The results of the experts’ opinions prove that the
FMDEV can contribute to the construction of better models
of ML.

1 Introduction
In the last decade, the adoption of distance learning tools

has grown exponentially. Consequently, a large volume of
data has emerged from the massive use of Virtual Learning
Environments (VLE) [1]. For knowledge extraction from
these data, it is necessary to carry out a series of data mining
processes [2].

Educational Data Mining (EDM) techniques have been
adopted frequently, as an alternative for extracting knowl-
edge from data obtained from VLE [3]. The EDM pro-
cess is conceptualized as a paradigm for building models,
tasks, methods, and algorithms from educational databases.
Within this context, the use of supervised learning is quite
common to solve tasks such as analyzing student perfor-

mance or predicting evasion risk. [4].
Machine Learning (ML) application is important for data

scientists, tutors, and teachers. However, given the com-
plexity of educational problems, the model building re-
quires advanced knowledge in data science [5]. In addition,
other factors such as the development time in model build-
ing, the definition of input parameters, and the selection of
the best algorithm, make it impossible for the use of ML to
be democratized for non-technical users. [6].

To solve such problems, Automated Machine Learning
(AutoML) techniques have been studied, with the objective
of simplifying repetitive Data Mining processes, which do
not require domain knowledge in most cases [7]. Bayesian
Optimization (BO) and Evolutionary Algorithm (EA) tech-
niques have been applied in the categories of Automated
Engineering of Features (AutoFE) and in the Automation
of Models with Hyperparameter Learning (AutoMHL) [8].

Some technologies simplify such steps, such as TPOT
[9, 10], AutoKeras [11] and Auto-Weka [12], however, it
is necessary to have a minimum of knowledge in data sci-
ence [13]. Tools like the one by Fusijawa et al., present a
closer path for a non-technical user, however, the developed
features require knowledge in Structured Query Language
(SQL) and also ML, as the user needs to define an algorithm
for training [14].

Thus, the justification for this work lies in the need to
develop an AutoML solution that favors users in the extrac-
tion of knowledge from EDM, even with little experience
in ML techniques. Considering the various possibilities of
applications of this solution, this research focused on EDM,
with the integrability of multiple VLE, to obtain evidence
in the context of a course, discipline, period, or class.

The general objective of this article is to develop an Au-
tomated Machine Learning solution that can be integrated
into Virtual Learning Environments or data visualization
tools, based on the application of models generated through
Genetic Algorithm techniques. To achieve the general ob-
jective, the following specific objectives were established:

DOI reference number: 10.18293/SEKE2021-068

195

Identify the essential functionalities of an Automatic Ma-
chine Learning solution for use in Educational Data Mining;
Implement an application with the proposed solution and
evaluate the implemented solution from experiments with
the database of the Núcleo de Educação a Distância da Uni-
versidade de Pernambuco (NEAD) and measure the quality
of the framework from integration tests.

2 Background and Related Work
2.1 Machine Learning

Machine Learning has as its definition the application of
computational methods that obtain expertise, with the ob-
jective of improving performance or applying partial pre-
dictions in a given context [15]. In practice, prediction al-
gorithms are built with high robustness, which depends on a
sample necessary for the algorithm to learn a family of con-
cepts [15]. Contextualizing this task for the CRISP-DM, it
is possible to fit the ML in the pre-processing, modeling,
and evaluation steps.

As for the types of ML algorithms, are present the su-
pervised learning, unsupervised learning, semi-supervised
and reinforcement learning [16]. The definition of the cor-
rect type for each context may depend on some criteria,
such as (I) The need for human supervision as to the ex-
pected output; (II) Speed of relearning as new input data is
available; (III) The identification of new patterns based on
trained characteristics, or simply, classifying them consid-
ering a data entry [16].

2.2 Automated Machine Learning

Automated Machine Learning (AutoML) is an abstrac-
tion for ML in which it proposes to optimize productivity
in the pre-processing and modeling steps. Steps such as
selecting features, defining the best algorithm and config-
uring hyperparameters, are built automatically and without
human intervention [17]. Another value delivered by the
AutoML approach is to prevent the data scientist from wast-
ing development time on repetitive trial and error tasks [17].

There are categories in AutoML with a greater focus on
the selection of features (AutoFE) and others with a greater
emphasis on the definition step of model optimization and
hyperparameters (AutoMHL), finally cases more focused
on Deep Learning (AutoDL). Among the techniques most
applied in AutoML, there are Bayesian Optimization (BO)
and Evolutionary Algorithm (EA) [8]. There are also appli-
cations based on techniques with Reinforcement Learning
and Gradient-based, but they are still very incipient [8].

Figure 1 defines a conventional ML flow. According
to the diagram above, the use of AutoML seeks to opti-
mize the two major areas in evidence. From the point of
view of features engineering, three steps seek to be opti-
mized. In the data cleaning step, imputation techniques
and attribute normalization are applied. When generat-

ing features, new metadata is created from existing ones.
In the selection of features, dimensionality reduction tech-
niques (VarianceThreshold, SelectKBest), to optimize the
database. From the modeling point of view, BO or EA tech-
niques are applied to identify the best algorithm and hyper-
parameters (Figure 1).

Figure 1: 2019 Automated Machine Learning default archi-
tecture [8]

3 Proposed Solution
The proposed solution is called the Framework de

Mineração de Dados Educacionais (FMDEV). FMDEV ap-
plies the CRISP-DM [18] methodology to the solution
steps. On the construction of the solution, Requirements
Engineering [19] and Lean Inception [20, 21, 22] tech-
niques were applied to define the necessary functionalities
for FMDEV.

FMDEV is able to assist in data pre-processing, train-
ing, validation, and availability. The steps of understanding
the business and understanding the data are not the respon-
sibility of FMDEV. FMDEV makes the models available
in REST format so that data visualization tools and Virtual
Learning Environments are able to consume the endpoints
generated by FMDEV.

Before the actual implementation process, a navigable
prototype was built using the tool Figma [23]. The main-
stream of Framework de Mineração de Dados Educacionais
(FMDEV) is divided into four screens: (I) Data sources; (II)
Selection of indicators; (III) Data pre-processing and (IV)
Training. For the trained and saved models, a screen was
created separately from the main flow.

4 Results
The assessment of the environment proposed in this

work sought to validate the FMDEV under four sets of ex-
periments: the first analyzed the use of it as a tool to assist
in the generation of educational data mining models; the
second assessed the holistic functioning of the environment
based on integration tests; the third, carried out an opinion

196

Course ROC AUC Recall Precision F1 Score
Administration 96,42% 80,33% 86,80% 83,42%

Biology 93,34% 80,32 % 87,34% 83,67%
Literature 88,77% 77,39% 82,94% 80,06%
Pedagogy 93,16% 78,25% 87,58% 82,65%

Table 1: Bayesian Optimization Technique Results.

survey with experts in the field of data science, addressing
the contributions that the tool provides to the development
of machine learning models; and the last, evaluated the us-
ability of FMDEV in order to verify how the environment
can establish a better user experience to non-technical users.
The following subsection will present only the experiment
of educational data mining models due to the limit of this
work.

4.1 Generation of Data Mining Models

To validate the model generated by FMDEV, an experi-
ment was carried out with the database provided by NEAD.
The base is a backup of the MySQL Relational Database
Management System (RDBMS) of the Moodle Learning
Management System. This database contains 30,218 in-
stances, which includes courses in Administration, Biol-
ogy, Literature, and Pedagogy, referring to the years 2010
to 2016. The construction of these variables occurred from
a set of SQL queries. The result of these queries allowed
33 variables relevant to the students’ characteristics to be
created.

From this, four sub-bases were created, each one related
to a course (Administration, Biology, Literature, and Peda-
gogy). As for the number of instances in each course, it is
divided as follows: Administration (2892), Biology (6526),
Literature (6297), and Pedagogy (14502).

Regarding the problem to be solved, it is about the anal-
ysis of student performance from the way it interacts with
Moodle. The supervised models built used the DESEM-
PENHO BINARIO variable as the target variable, whose
classes are 0 and 1. Class 0 indicates that the student failed
and class 1 indicates that the student passed.

Each experiment made use of the AutoML techniques
presented in this work. With this, eight approaches were
applied in total (4 courses * 2 techniques). Both techniques
were performed with five epochs. In the case of the GA
technique, epochs are called generations. The input param-
eters of GA also depend on the population size (configured
with 100), mutation rate (configured with 0.9), and crossing
rate (configured with 0.1).

For each scenario, the base was divided into 70% train-
ing and 30% tests. As for the evaluation metrics, ROC curve
(AUC), recall, precision, and F1 Score are present. All pro-
cedures were performed on a Linux server (Intel Core i7 2.2
GHz; 4 Cores; 16 GB of RAM). According to Table 1, the
first round of tests included the BO technique.

AutoKeras library was applied to assist the execution of

the AutoML technique for Bayesian Optimization [24]. It
is possible to notice that the Administration course obtained
the best performance in the tests (89.36%). The Literature
course had the lowest accuracy (84.23%). In the 2 table, the
results with the GA technique and the due considerations
regarding the two techniques will be presented.

Course ROC AUC Recall Precision F1 Score
Administration 96,62% 84,51% 91,92% 88,04%

Biology 95,93% 84,37% 90,95% 87,47%
Literature 94,23% 86,87% 87,16% 87,01%
Pedagogy 96,11% 84,92% 88,99% 86,90%

Table 2: Genetic Algorithm Technique Results.

TPOT library was applied to assist the execution of the
AutoML technique for Genetic Algorithm [25]. Specifically
for this technology, it is possible to create a parallelism rule,
in which all colors of the experiment machine can be used
[26].

As for the models optimized for each experiment with
GA, the following algorithms were obtained: XGBoost
(Administration and Biology), Random Forest (Literature)
and Extra Trees (Pedagogy) [27, 28, 29]. It is interesting to
note that the administration and biology courses obtained
the same algorithm, however, their hyperparameters, de-
fined from the multiple generations in the AutoML tech-
nique, obtained completely different configurations.

When comparing the metrics of GA and BO, it is no-
ticeable that the GA excels in all cases. From an average
among all courses, the accuracy of GA is 2.52% higher;
AUC at 2.79%, recall at 6.08%, precision at 3.57% and F1
Score at 4.90 %. Of the four courses evaluated, the great-
est discrepancy in techniques is presented in the Literature
course. The F1 Score generated by the GA technique for
this course, is 6.94 % higher. Given this, it is important to
note several contributions with the use of the GA technique
in AutoML: superior results in relation to the BO technique
and explanability of the models and the optimized hyperpa-
rameters.

5 Conclusion
This work proposed the development of an Automated

Machine Learning solution for EDM. For this, a frame-
work was developed capable of using Moodle data sources,
as well as CSV files that can be imported directly into
FMDEV. The framework allows you to create, manage, and
consume supervised classification models in a simple way
for non-technical users and productive for technical users or
with little expertise in data science.

Regarding the machine learning area, contributions were
reported from the use of the Genetic Algorithm techniques,
in comparison with the Bayesian Optimization technique.
For the case study applied with the NEAD database, it was
possible to perceive that the results presented from the GA
technique, was superior in all scenarios, in comparison with

197

the BO technique. In addition, the GA technique showed
superior results compared to conventional data mining tech-
niques, considering the case study addressed.

Regarding the software engineering area, integration
tests were developed for all available endpoints. Such tests
ensured that the FMDEV presents consistency and confor-
mity based on the functional and non-functional require-
ments presented. In addition, these tests will be useful as
a software quality assurance strategy.

As a way of ensuring more reliability in this research, an
expert opinion was carried out to assess the conformity of
the steps developed in the FMDEV. The experts’ feedback
corroborated that FMDEV is able to simplify the process
of mining educational data, as well as promoting produc-
tivity in the use of automated machine learning. The fact
that FMDEV is able to abstract the complexity of Machine
Learning algorithms, shorten the development time of mod-
els and remove the difficulty in defining the parameters of
the algorithms, will enable a great differential in the pro-
cesses of EDM.

Acknowledgement
This study was financed in part by the Coordenação

de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - finance code 001.

References
[1] C. Patel, M. Gadhavi, and A. Patel, “A survey paper on e-learning

based learning management systems (lms),” International Journal of
Scientific & Engineering Research, vol. 4, no. 6, pp. 171–177, 2013.

[2] C. Romero and S. Ventura, “Educational data mining: A
review of the state of the art,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews),
vol. 40, no. 6, pp. 601–618, Nov. 2010. [Online]. Available:
https://doi.org/10.1109/tsmcc.2010.2053532

[3] G. Mahajan and B. Saini, “Educational data mining: A state-of-the-
art survey on tools and techniques used in edm,” 2020.

[4] A. Peña-Ayala, “Educational data mining: A survey and a data
mining-based analysis of recent works,” Expert Systems with
Applications, vol. 41, no. 4, pp. 1432–1462, Mar. 2014. [Online].
Available: https://doi.org/10.1016/j.eswa.2013.08.042

[5] S. Viaene, “Data scientists aren't domain experts,” IT Professional,
vol. 15, no. 6, pp. 12–17, Nov. 2013. [Online]. Available:
https://doi.org/10.1109/mitp.2013.93

[6] M. Tsiakmaki, G. Kostopoulos, S. Kotsiantis, and O. Ragos,
“Implementing AutoML in educational data mining for prediction
tasks,” Applied Sciences, vol. 10, no. 1, p. 90, Dec. 2019. [Online].
Available: https://doi.org/10.3390/app10010090

[7] R. Elshawi, M. Maher, and S. Sakr, “Automated machine learning:
State-of-the-art and open challenges,” 2019.

[8] Y.-W. Chen, Q. Song, and X. Hu, “Techniques for automated ma-
chine learning,” 2019.

[9] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore,
“Evaluation of a tree-based pipeline optimization tool for automating
data science,” in Proceedings of the 2016 on Genetic and

Evolutionary Computation Conference - GECCO '16. ACM Press,
2016. [Online]. Available: https://doi.org/10.1145/2908812.2908918

[10] R. S. Olson and J. H. Moore, “TPOT: A tree-based pipeline optimiza-
tion tool for automating machine learning,” in Automated Machine
Learning. Springer International Publishing, 2019, pp. 151–160.

[11] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural archi-
tecture search system,” 2018.

[12] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-
Brown, “Auto-weka 2.0: Automatic model selection and hyperpa-
rameter optimization in weka,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 826–830, 2017.

[13] A. Truong, A. Walters, J. Goodsitt, K. Hines, C. B. Bruss, and
R. Farivar, “Towards automated machine learning: Evaluation
and comparison of AutoML approaches and tools,” in 2019
IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI). IEEE, Nov. 2019. [Online]. Available:
https://doi.org/10.1109/ictai.2019.00209

[14] I. Y. Fujisawa and A. M. A. Maciel, “Desenvolvimento de um
framework integrador de mineração de dados educacionais,” Revista
de Engenharia e Pesquisa Aplicada, vol. 3, no. 3, Sep. 2018.
[Online]. Available: https://doi.org/10.25286/repa.v3i3.977

[15] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of ma-
chine learning. MIT press, 2018.

[16] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent sys-
tems. O’Reilly Media, 2019.

[17] B. Chen, H. Wu, W. Mo, I. Chattopadhyay, and H. Lipson, “Au-
tostacker: A compositional evolutionary learning system,” 2018.

[18] R. Wirth and J. Hipp, “Crisp-dm: Towards a standard process model
for data mining,” in Proceedings of the 4th international conference
on the practical applications of knowledge discovery and data min-
ing. Springer-Verlag London, UK, 2000, pp. 29–39.

[19] B. H. Cheng and J. M. Atlee, “Research directions in requirements
engineering,” in Future of Software Engineering (FOSE '07). IEEE,
May 2007. [Online]. Available: https://doi.org/10.1109/fose.2007.17

[20] L. Wilson, How to implement lean manufacturing. McGraw-Hill
New York, 2010.

[21] J. N. R. Boeira, “First steps with lean,” in Lean Game Development.
Springer, 2017, pp. 9–21.

[22] P. Caroli, “Lean inception: How to align people and build the right
product,” Rio de Janeiro, Brasil: Caroli Editora, 2018.

[23] “Figma: the collaborative interface design tool.”
https://www.figma.com/, (Accessed on 08/17/2020).

[24] “Autokeras,” https://autokeras.com/, (Accessed on 08/12/2020).

[25] “Epistasislab/tpot: A python automated machine learning tool that
optimizes machine learning pipelines using genetic programming.”
https://github.com/EpistasisLab/tpot, (Accessed on 08/19/2020).

[26] “Automate machine learning with tpot — dask examples documen-
tation,” https://examples.dask.org/machine-learning/tpot.html, (Ac-
cessed on 08/19/2020).

[27] T. Chen, T. He, M. Benesty, V. Khotilovich, and Y. Tang, “Xgboost:
extreme gradient boosting,” R package version 0.4-2, pp. 1–4, 2015.

[28] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[29] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine learning, vol. 63, no. 1, pp. 3–42, 2006.

198

Towards the integration of the GDPR in the
Unified Software Development Process

Elena Gómez-Martínez, Miguel Marroyo, Silvia T. Acuña
Departamento de Ingeniería Informática

Universidad Autónoma de Madrid, Madrid, Spain
{MariaElena.Gomez, Miguel.Marroyo, Silvia.Acunna}@uam.es

Abstract—The General Data Protection Regulation (GDPR) is the
core of digital privacy legislation across Europe (EU), and it ap-
plies to processing carried out by organisations operating within
and outside the EU that offer goods or services to individuals in
the EU, including software products. Nevertheless, software teams
are generally unaware of the legal requirements for personal data
protection and its application throughout the software life cycle.
In this paper, we propose a comprehensive guidance to integrate
compliance with GDPR requirements within the Unified Software
Development Process (UP) across the entire lifetime.

Keywords-data protection regulation; unified software develop-
ment process; personal data; privacy requirements.

I. INTRODUCTION
As part of the software process activities, software engineers

should get acquainted with and understand guidelines related to
information privacy, as software requirements should comply
with data privacy laws. Therefore, development team members
need to be familiar with the applicable personal data protection
legislation [12]. In addition, the identification of the privacy re-
quirements, that is, the protection of personal data that are pro-
cessed by complex systems, is a tough, error-prone task in social
networks where users often enter personal and other sensitive
data that would otherwise be subject to varying levels of per-
sonal data protection, security and privacy [25].

The European Union (EU) General Data Protection Regula-
tion 2016/679 (GDPR) comes into force in May 2018 [13], rep-
resenting an advance in personal data protection. For enterprises
in the EU or those that work with resident data in it, this regula-
tion means a new challenge, namely, to avoid costly fines (up to
20 million or 4% of turnover) and offer their clients a service
that guarantees their privacy rights. Not only should software
engineers validate that installed systems comply with privacy re-
quirements, personal data and data protection needs should also
be identified during the early development activities, including
requirements capture and analysis, in order to specify the asso-
ciated requirements [12][19][9]. For instance, the personal data
gathered from users by developers designing a medical data
management application, where age or sex are important, will
not be the same as for a library management system, where such
data are unnecessary. If these data and needs are identified later
during the development process, it will be more costly to solve
data privacy-related problems, because the changes that have to
be made to the future system will tend to affect more functional-
ities [3][18][22]. Nevertheless, the software development teams
do not have a framework for adopting the personal data protec-
tion legislation in software development, as the this legislation

should change development team work methods by, for exam-
ple, adopting a series of features and controls related to consent,
documentation and privacy responsibilities throughout the soft-
ware development process [4][5][26].

Regarding the lack of a framework for adopting the personal
data protection legislation in software development, in 2017, in
a survey conducted by PwC [23], 92% of organizations in the
United States of America believe that even though GDPR is a
European regulation, it still affects their business and therefore
compliance should be a priority. In the same year, Deloitte con-
ducted a survey of organizations in EMEA (Europe, Middle East
and Africa) [11], in which only 15% of companies believed that
they could fully comply with regulations by May 2018. Compa-
nies like Facebook or Google have been fined US$114 million,
and countries such as Greece, Portugal or Slovenia have not ad-
justed their measures to adapt to their national regulations [14].
Therefore, despite the importance of GDPR has been recog-
nized, due to the lack of a defined framework to incorporate
GDPR into the software development process, it is difficult to
fully take action to comply with the legislation.

The objective of this article is to provide a framework from
the point of view of software engineering that incorporates the
European General Data Protection Regulation in the Unified
Software Development Process or Unified Process (UP), thereby
software teams can define and specify the privacy requirements
in early development activities and throughout the software de-
velopment process, including design, implementation, testing,
and maintenance.

The research question is if: it is feasible to apply the GDPR
into the UP. GDPR [13] has important value in the technical and
information technology fields at European and international lev-
els, so GDPR must be considered in any process related to soft-
ware development. In addition, it guarantees that if you follow
its instructions, the processing of personal data will be transpar-
ent, honest, and safe, which is very important for companies and
organizations as well as users themselves. The Unified Process
[17] has been selected thereby that it can be tailored to a wide
range of software development projects and provides a formal-
ised prescription of the entire software development process, as
it specifies all the software process modelling elements through
Unified Modelling Language (UML) [21]. The research method
used consists of the analysis and synthesis of the GDPR and its
justified inclusion in the UP following the standard set by the
Data Management Association (DAMA) International, known
for its data management guide [10]. To verify this adaptation,
the Regulatory Compliance List developed by the Spanish
Agency for Data Protection (in Spanish, Agencia Española de

DOI reference number: 10.18293/SEKE2021-069

199

Protección de Datos, AEPD) [2] was used, which allows us to
approximate in hindsight compliance percentage that would be
achieved following our proposal. All this work has been carried
out by a team of software engineers together with a legal advisor
expert in personal data protection and data auditing. Our main
contribution is to provide comprehensive guidance to familiarize
a development team with the legal requirements of the regula-
tions throughout all the software development activities from re-
quirements elicitation to deployment to the customer and
maintenance. This solves the problem of validating compliance
with the law a priori and not just compliance in hindsight when
the system is already in use.

The rest of this paper is organized as follows. Section II in-
troduces key basic concepts. Section III presents our approach
to integrate the GDPR in the Unified Process. Section IV com-
pares with related approaches. Finally, Section V outlines the
conclusions and future work.

II. BACKGROUND

A. Legal Environment: GDPR and LOPD
The GDPR [13] is the core of Europe’s digital privacy legis-

lation and gives back control over personal data to citizens far
more than its predecessor the Data Protection Directive or Di-
rective 95/46/EC. It applies to organisations in all member states
across Europe, including any organisation outside of the EU
which offer goods or services to customers or businesses there.
The GDPR provides the following rights for individuals: a) The
right to be informed, Articles 13 and 14 of the GDPR specify
that individuals have the right to be informed about the collec-
tion and use of their personal data; b) The right of access, indi-
viduals have the right to access their personal data; c) The right
to rectification, under Article 16 each individual has the right to
have inaccurate personal data rectified; d) The right to erasure,
under Article 17 each individual has the right to have personal
data erased; e) The right to restrict processing, Article 18 gives
individuals the right to restrict the processing of their personal
data in certain circumstances; f) The right to data portability,
individuals has the right to receive personal data they have pro-
vided to a controller in a structured, commonly used and ma-
chine-readable format; g) The right to object, Article 21 gives
individuals the right to object to the processing of their personal
data at any time; h) Rights in relation to automated decision
making and profiling, Article 22 has additional rules to protect
individuals if you are carrying out solely automated decision-
making that has legal or similarly significant effects on them.

The directive entered into force on 5 May 2016 and EU coun-
tries had to transpose it into their national regulations. The Law
on the Protection of Personal Data and Guarantee of Digital
Rights (in Spanish, Ley de Protección de Datos Personales y
Garantías de los Derechos Digitales, in short LOPD) [7] sets out
the data protection framework in Spain, alongside the GDPR.
Despite having some dissimilarities with respect to the GDPR,
they do not impact the software development. Therefore, both
acronyms, LOPD and GPDR, will be used interchangeably in
this paper, employing the latter for the sake of brevity. We focus
on UP process workflows (activities) and all the software devel-
opment process activities that will be taken into account when

analysing the Spanish LOPD: requirements, analysis, design,
implementation, test and maintenance.

B. Data Management Book of Knowledge
The guidebook named “The DAMA Guide to the Data Man-

agement Body of Knowledge” (DAMA-DMBOK) [10] estab-
lishes a framework to data management standards and practices
for data management, remarking the importance of data quality
and ethics. This framework is structured around the 11
Knowledge Areas with core activities surrounded by software
lifecycle and usage activities, contained within the structures of
governance. Settled within the Knowledge Areas are the essen-
tial objectives and principles of data management. Here we
only focus on those related to the software process.

Data Governance provides the general template and over-
sight to govern data management by establishing a framework
of decision rights over data that accounts for the company’s
needs, and according to the current legislation. It affects to all
the software lifecycle encompassing from the access policy, us-
age, security and quality to the fulfilment of requirements. Data
Architecture defines the master plan to handle and maintain
data assets by with regards to organizational strategy which are
already establish with other strategic data requirements and de-
signs to meet these necessities. Data Modelling and Design de-
termines, analyses, represents, and communicates data require-
ments in a detailed form which is called the data model. Data
Storage and Operations comprises the design, application, and
maintains of stored data to make the most of its value. Data Se-
curity ensures that data privacy and confidentiality are main-
tained that data is accessed appropriately and not breached
across various channels of use. Data Integration and Interop-
erability includes processes associated with the movement and
consolidation of data within and between data stores, applica-
tions, and organizations. Document and Content Management
are measures and strategies which are used to handle the lifecy-
cle of data and information found in a range of unstructured me-
dia, especially documents needed to support legal, regulatory
compliance requirements and ethics implication. Data Quality
includes the planning and implementation of quality manage-
ment techniques to measure, assess, and improve the fitness of
data for use within an organization.

III. INTEGRATING THE GDPR
The Spanish LOPD [7] is comprised by 97 articles. Many of

them are transversal to the activities of the software development
process, and therefore they can be affected. Notwithstanding, not
all the articles have a place within any of the activities given its
purely legal nature and that it does not apply to the technological
context. Several articles in the LOPD mention crucial infor-
mation contained in the GDPR. In those cases, we have contem-
plated that information. We will refer as (Art. X) to the Article
labelled X of the LOPD.

A. Procedure
 Before analysing the GDPR, we have firstly established a

correspondence of each Knowledge Area of DAMA-DMBOK
with the UP activities in order to guarantee the data manage-
ment. Note that not all Knowledge Areas have been considered

• • • • • • •

200

since they are not included in the UP. This correspondence is
summarised in Table TABLE I. As it can be observed, data man-
agement process and governance are considered globally strate-
gic to the entire software lifecycle. In addition, data security
shall affect all the process, otherwise security could be uncom-
pleted, since it is designed, but not implemented. Processes re-
lated to architecture, modelling, design, storage and operations
belong to design activity of the UP, which considers all the soft-
ware requirements. Data ethics and management are closely re-
lated to the fulfilment of users’ rights; therefore, they correspond
to the analysis activity. Since these rights have to be guarantee
during all the software lifecycle, we have included it in the
maintenance activity. To integrate the legal requirements im-
posed by the GDPR into the UP [18], we propose a procedure
with the following steps:

1. Overview of the regulation: Initial reading of every article
and extraction of keywords and concepts which can guide
us to correlate UP activities within the GDPR.

2. Reading of each article: Each article is analysed in detail by
focusing on a set of keywords in Table TABLE I and
Knowledge Areas of DAMA-DMBOK. After this study, we
determined if the article can be applicable to any develop-
ment activity.

3. In the case the article is applicable, we placed it in one or
more development phases, and extracted new keyword if
needed and reassessed the examined articles.

4. Otherwise, we evaluated the next article.

The inclusion of the GDPR into the UP has been carried out
by an interdisciplinary team composed by senior and junior soft-
ware engineers together with an expert in data protection and
data auditing. For the sake of brevity, additional documents are
available at https://github.com/egomez26/SEKE2021.

B. Requirements and Analysis
Since most of the legal requirements are in the initial phases

of the project, we have decided to tackle both activities at the
same time. All the activities to carry out during this phase are
summarised in the workflow in Fig. 1, whose rationale is de-
scribed below.

TABLE I. KEYWORDS TO IDENTIFY SOFTWARE ACTIVITIES IN EACH ARTICLE
Elicitation &

Analysis Design Implementation &
Testing

Mainte-
nance

Rights and Ob-
ligations

Storage User Lifetime

Data type Transfer Validation Data life
cycle

Purpose Architecture Interface Register

Requirements Security Consent Security

Processing Interface Communication
Provide information

Control

Limitations Communication
Provide information

Rights and
Obligations

Assessment Measures and codes
Controller Data ac-
cess

Security

In the early activity of any software development, the data
scope is defined, that is, their data type and purpose. According

to (Art. 4), data have to be precise and represent the reality. Fur-
thermore, it is mandatory that users express their explicit consent
to use their required personal data and the purposes of the pro-
cessing, and to be informed of this fact (Art. 8). Therefore, we
need to identify the minimum information with personal data for
our application and to not use this information for any kind of
discrimination on the grounds of age, sex, gender and sexual ori-
entation, race or ethnic group, political convictions, health, bio-
metric information, and/or religion (Art. 9). Notwithstanding,
there exist exceptions to use the aforementioned data if individ-
ual gives her consent or that the data processing is vital in a legal
process (Art. 10).

Concerning the purposes of data processing, once the data
are collected, the user has the legal right to claim this purpose at
any time, requiring the name of the contact detail of the organi-
zation, identity of the data protection officer, the lawful basis of
the processing, and any related information (Art. 15 to 22), in-
cluding data categories and their sources (Art. 11). The Spanish
LOPD also encompasses the following data processing to pro-
tect personality or habits aspects, automated individual decision-
making, systematic profiling, monitoring or geolocating of peo-
ple, genetic information, vulnerable people or at risk of social
exclusion, and/or preventing nor discouraging from exercising
their rights. In all these cases, the application will have to require
the user’s acceptance or her legal representative (Art. 12). Obvi-
ously, the application has to guarantee all their rights of end-us-
ers, and the security tools to achieve it (Art. 80). Therefore, the
main functionalities of the software must be considered if this
information is processed, e.g., application for banking or video
surveillance. We must also define the kind of application, target
end-users, processed information, context of use, and derived
contents (Art. 87). In the following, we describe the most sensi-
tive applications. In the working environment, since service pro-
viders may be a natural person or a corporate entity, information
related to self-employed, freelances, individual entrepreneurs
and professionals has special attention (Art. 19). In these cases,
we will only consider the minimum personal data to locate her
professional activity, such as working address and phone num-
ber. We must also contemplate the direct or indirect geolocation
of workers (Art. 90) or video surveillance at workplaces (Art.

Figure 1. Activities in the Analysis Phase

201

89). If we are developing a banking application, it is lawful to
have credit information if that data has been provided by the
creditor (Art. 20). It is also lawful when they derived from the
development of a commercial transaction, i.e., when the com-
pany structure has been modified, acquired or sold (Art. 21).
Video surveillance applications can process captured images and
videos if the purpose is to guarantee safety of individuals and
facilities (Art. 22). Thus, a mechanism to destroy these images
or videos in a month from their acquisition must be considered.
Marketing communication applications must create an infor-
mation system to store the indispensable data for those individ-
uals who do not want to receive these communications (Art. 23).
Statistical applications can use personal data at the prior disposal
of those affected, provided voluntarily (Art. 25). Applications
involving underage users, we need to storage the consent of their
parents or legal custodians to process their information in the
analysis activity (Art. 92). Data controllers, processors and of-
ficers play a key role in software applications, since we must
contemplate them their different responsibilities, role access and
functionalities in our system (Art. 28 to 37). A data controller
can handle personal data using technical measures to guarantee
that the Directive is fulfilled. They are in charge of registering
all the processing activities (Art. 28). Data officers are able to
lock information (Art. 32). In addition, the application must pro-
vide default functionality to erase personal data for individuals
who exercise their right to be forgotten (Art. 94), to modify in-
accurate or low-quality information (Art. 93), and to port per-
sonal data (Art. 95). To guarantee digital security, we will need
to analyse it in this phase, considering level of confidentiality for
sensitive data, involved roles, administration procedures,
maintenance plans, monitoring, auditing and policy compliance
(Art. 82), that we will describe in the following sections.

C. Design
Design activities define the data domain and the architecture

from those requirements obtained in the previous analysis. One
key aspect during design is to guarantee confidentiality in data
structures, interfaces and algorithms (Art. 5). With this purpose,
the application ensures not authorized data processing, and lost
or destruction of personal data. In addition, data must be accurate
and, if needed, updated (Art. 4). Designers must take into ac-
count all these aspects to prepare databases, including memory
requirements, index and precise processing to make queries,
generate verified statistics, provide backup services and balance
to allow the access at any time. Remark that it is not possible to
process data categories into conflict with Art. 9, that is special
information, and criminal records (Art. 10). We will also include
in databases information such as identification of the data pro-
cessing officer, if there are data of special categories, and data
sources (Art. 11). Software systems must also consider mecha-
nisms to register all the activities related to Art. 31. This register
must contain the following fields: name and contact details of
the data processing officer, purpose of processing, categories of
personal data and person concerned, categories of recipient of
those personal data, transaction to third countries or international
organizations Art. 82, expected timeframe for removing data,
technical and organizational measures to guarantee data security.
This register shall have a relation N:N between the Register class
and each data category. As a step forward, to facilitate the inte-
gration of the legal requirements into design activities, we have

also drawn a representation of the GPDR. With this aim, we use
MDE (Model Driven Engineering) [8] to formally define the
syntax. Models are described using a modelling language (e.g.,
UML), whose syntax is defined through a meta-model. Particu-
larly, we represent the GDPR as a DSL (Domain Specific Lan-

guage) [16], an excerpt depicted in Fig. 2. This DSL can be ap-
plied to any application domain.

D. Implementation and Testing
During these activities, the design is translated into code and

the tests are performed to validate and verify that the implemen-
tation is valid according to the requirements. From the GDPR
viewpoint, those activities are straightforward to carry out, since
legal requirements have been already fulfilled at early stages.
Fig. 3 illustrates all the activities involved in these phases. The
implementation shall develop user interfaces displaying users’
rights and collecting their explicit consent, which shall be ex-
pressed voluntarily, specifically, and unambiguity by means of
a clear affirmative action (Art. 6). For instance, it could be im-
plemented using a pop-up window with this information. It is
noteworthy that in no case the user consent can be marked as
accepted by default (Art. 90). That is, if there is a checkbox for
the acceptance, its default value must be unchecked. There are
other means of obtaining the user consent, such as digital certif-
icates, electronic signatures, or electronic national ID issued by

Figure 3. Workflow during the Implementation and Testing phase

Figure 2. Excerpt of the Domain Specific Language for the Design Phase

202

certification authorities. As mentioned in analysis activities, the
user interface shall validate user’s age. The processing of data of
a child under fourteen shall be lawful only if it has the consent
of their legal custodians, so it will be necessary to collect some-
how such consent (Art. 7). In the case of not obtaining this con-
sent, the application may have a restricted functionality. As a
general rule, the application or website shall include a disclaimer
reporting its owner, the privacy policy on which the following is
communicated: the data processing, its purpose, if you have re-
cipients and the identity and address of the person responsible
for the treatment. Finally, it shall display the rights of the user
and, if necessary, the cookie policy if they are used.

E. Maintenance
Once the product is delivered to the customer, the next activ-

ity is maintenance, which will be carried out by either the devel-
opment company or a software maintenance company. In this
activity. The activities carried out during this phase are summa-
rised in Fig. 4. The European GDPR does not apply to the pro-
cessing of personal data of deceased persons or of legal persons,
therefore they must be removed. Nevertheless, the Spanish
LOPD authorises to exercise the rights to access, of rectification
and erasure with respect to the personal data of deceased persons
to relatives and their legal successors (Art. 3). The role of the
data controller will participate in case it is necessary to block
those personal data (Art. 32). In the event this unlocking does
not occur, the data controller will eventually have to destroy the
personal data. Moreover, the data controller will be in charge of
registering all those activities occurring on the data (Art. 31), in
order to reliably monitor that they are correctly processed in the
event that such information is requested. One of the key issue of
data quality is accuracy, that is, personal data will be exact and,
if necessary, updated (Art. 5). During the maintenance, the soft-
ware product must carry out tasks to validate these premises, in-
cluding the automatic erasure of personal data once the limit
time has reached, periodic updating the information and revision
of invalid data, uncompleted or void.

IV. RELATED WORK
We reviewed the literature in search of recent related work

on the scope of privacy requirements definition and management
in software process activities. The goal of the literature search
was to the answer the following question: How are the articles
of the European GDPR adopted in the software development
process? From the analysis of the selected studies, we classified

the related work into two categories depending on the type of
software process activity addressing data privacy issues:

• Adoption of the GDPR in early development activities, like
requirements elicitation, analysis and specification, and
software design. This addresses the problem of validating
compliance with the regulation a priori before starting and
during software system development.

• Adoption of the GDPR in later development activities, such
as system testing and maintenance. This addresses the prob-
lem of validating compliance with the regulation when the
software system is in use.

With respect to papers dealing with GDPR issues in early
development activities, Meis and Heisel [19] report a systematic
extension of the problem-based privacy analysis method (Pro-
PAn) designed to identify software system privacy needs based
on a set of functional requirements. Based on studies published
from 2009 to 2019, Dias et al. [12] reported a systematic litera-
ture review (SLR) on software privacy and privacy requirements
and the methodologies and techniques that are used for their elic-
itation and specification. The methodologies include
LINDDUN, SQUARE for Privacy, and PriS, among others. The
SLR results revealed that ICT practitioners are not altogether fa-
miliar with software privacy, privacy requirements and the Bra-
zilian LGPD, which is an obstacle to the application of laws and
directives governing data privacy. Amorim et al. [3] suggest the
use of gamification techniques as an option for providing prac-
titioners at an organization with data privacy training. Mavroeidi
et al. [18] also investigated the use of gamification for privacy
requirements elicitation and engagement with the users. Perera
et al. [22] proposed a guide based on the Privacy by-Design
framework including a set of best practices to help software en-
gineers to ensure user data privacy during the development of
Internet of Things (IoT) applications. Rabinia et al. [24] high-
light the difficulty to model the GDPR. This process tends to
output models that are extremely complex and hard to under-
stand due to the number of articles of which they are composed,
as well as the complexity of both the articles that they contain
and the issues that they address. They propose the use of the For-
mal Legal GRL framework, associated with a methodology to
help address the complexity of the models and automate the
modelling process. They focus exclusively on design, that is,
they do not account for other development phases. BlancoLainé
et al. [6] underscore the importance of the GDPR for businesses,
which have difficulty understanding the legal requirements.
They should take utmost care to ensure compliance, as any mis-
take can have an impact at all business levels. They attempt to
facilitate this process by using enterprise architecture models to
represent the GDPR regulation. In addition, there are GDPR-
related papers [15] that primarily focus on the process of vali-
dating compliance with regulations once the system or applica-
tion is in use, developing models to automate this process to en-
able any business, organization or even person to check that its
systems or applications comply with the regulations and avoid
possible penalties [4][26]. Torre et al. [26] propose analysing ar-
ticles iteratively in search of keywords to help identify different
artefacts and their relationships in order to model GDPR in a
machine-readable format [25]. Other approaches, like Ayala-Ri-
vera and Pasquale’s GuideMe [4], set out a systematic stepwise
approach. They set out six stages in which to analyse the status Figure 4. Workflow during the data maintenance

203

of an organization or application, and plan and implement cor-
rective actions to fix non-compliant issues. This is a corrective
method for application on existing applications. It is not, there-
fore, suitable for use throughout the entire software development
process but is rather confined to the maintenance activity during
which most corrections are usually made. Besides the more
functional approaches outlined above, there are a series of best
practice guides on compliance developed by different companies
and organizations [1]. The EU [14] and companies like Deloitte
[11], Norton Rose Fulbright [20] have their own checklists and
benchmarks that they make available to their customers with a
view to establishing a series of general guidelines enabling a
company, organization or even a self-employed worker to assure
that their services, applications and infrastructures comply with
the regulations.

V. CONCLUSIONS AND FURTHER WORK
We propose a common reference framework to drive the in-

tegration of privacy guidelines into the software development
process and guarantee personal data privacy. In particular, we
provide a reference framework for adopting the articles of the
GDPR in the software process and integrate the legal require-
ments into all the Unified Process activities. Specifically, we
adapted each and every one of the 97 articles of the Spanish Law
on the Protection of Personal Data and Guarantee of Digital
Rights to the Unified Process. This reference framework consti-
tutes comprehensive guidance designed to familiarize a devel-
opment team with the legal requirements of the regulations
throughout all the software development activities, from require-
ments elicitation to deployment to customers and maintenance.
It also provides software development teams with a mechanism
for integrating the legal requirements into all the development
activity groups of the Unified Process. The development team
should include a legal expert in order to take into account all the
legal slants and details of specified articles that may be omitted
during the use of the reference framework in particular software
development projects. One example would be special types of
scientific research, historical or medical data processing, which
may be especially important in some software projects. A corpus
of legal terms shall be developed with experts in natural lan-
guage processing and legal corpus. Our future research sets out
to automate the reference framework advocating the integration
of the above professional profiles into software development
teams in order to apply natural language processing techniques
and automate the reference framework.

ACKNOWLEDGMENT
Work funded by the Spanish Ministry of Science (RTI2018-

095255-B-I00) and the R&D programme of Madrid
(P2018/TCS-4314).

REFERENCES
[1] Agencia Española de Protección de Datos (AEDP). Guide of Personal

Data Protection for Processing Controllers (In Spanish, Guía del Regla-
mento General de Protección de Datos para Responsables de Trata-
miento), September 2019. https://www.aepd.es/sites/default/files/2019-
09/guia-rgpd-para-responsables-de-tratamiento.pdf

[2] Agencia Española de Protección de Datos (AEDP). Regulatory Com-
pliance List (In Spanish, Lista de cumplimiento normativo), November
2019. [Online]. https://www.aepd.es/sites/default/files/2019-11/guia-lis-
tado-de-cumplimiento-del-rgpd.pdf

[3] J. A. Amorim, R. Ahlfeldt, P. M. Gustavsson, and S. F. Andler. Privacy
and security in cyberspace: Training perspectives on the personal data
ecosystem. In Proc. European Intelligence and Security Informatics Conf.
(EISIC’13), pages 139–142. IEEE, 2013.

[4] V. Ayala-Rivera and L. Pasquale. The grace period has ended: An ap-
proach to operationalize GDPR requirements. In Proc. of the IEEE 26th
Int. Requirements Engineering Conf. (RE’18), pages 136–146, 2018.

[5] P. Barbosa, A. Brito, and H. O. Almeida. Privacy by evidence: A meth-
odology to develop privacy-friendly software applications. Inf. Sci.,
527:294–310, 2020.

[6] G. Blanco-Lainé, J. Sottet, and S. Dupuy-Chessa. Using an enterprise ar-
chitecture model for GDPR compliance principles. In Proc. of 12th IFIP
Working Conf. of The Practice of Enterprise Modeling, (PoEM’19), vol.
369 of Lecture Notes in Business Information Processing, pages 199–214.
Springer, 2019.

[7] Boletín Oficial del Estado (BOE). Organic Law 3/2018 on Personal Data
Protection and Digital Rights Guarantees (In Spanish, Ley Orgánica
3/2018, de Protección de Datos Personales y Garantías de los Derechos
Digitales), December 2018. https://www.boe.es/buscar/pdf/2018/BOE-A-
2018-16673-consolidado.pdf

[8] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engi-
neering in Practice, Second Edition. Synthesis Lectures on Software En-
gineering. Morgan & Claypool Publishers, 2017.

[9] A. Cavoukian. Understanding how to implement privacy by design, one
step at a time. IEEE Consumer Electron. Mag., 9(2):78–82, 2020.

[10] DAMA International. The DAMA Guide to the Data Management Body
of Knowledge DAMA-DMBOK. Technics Publications, 2009.

[11] Deloitte. Deloitte GDPR Benchmarking Survey: The time is now, 2017.
https://www2.deloitte.com/lu/en/pages/risk/articles/deloitte-gdpr-bench-
marking-survey-the-time-is-now.html

[12] E. Dias Canedo, A. Toffano Seide Calazans, E. Toffano Seidel Masson,
P. H. Teixeira Costa, and F. Lima. Perceptions of ICT practitioners re-
garding software privacy. Entropy, 22(4):429–452, 2020.

[13] European Parliament. Regulation (EU) 2016/679 (General Data Protec-
tion Regulation), May 2016. https://eur-lex.europa.eu/legal-con-
tent/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN

[14] European Union. GDPR checklist for data controllers, 2018.
[15] European Union. How the GDPR could change in 2020, January 2019.
[16] M. Fowler. Domain Specific Languages. Addison-Wesley, 2010.
[17] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Develop-

ment Process. Addison-Wesley, 1999.
[18] A. Mavroeidi, A. Kitsiou, and C. Kalloniatis. The role of gamification in

privacy protection and user engagement. 2020.
[19] R. Meis and M. Heisel. Computer-aided identification and validation of

privacy requirements. Inf., 7(2):28–60, 2016.
[20] Norton Rose Fulbright. GDPR Checklist, 2018. https://www.nortonrose-

fulbright.com/en/knowledge/publications/3b14a527/gdpr-checklist
[21] UML 2.5.1 Specification. https://www.omg.org/spec/UML/
[22] C. Perera, M. Barhamgi, A. K. Bandara, M. A. Azad, B. A. Price, and B.

Nuseibeh. Designing privacy-aware internet of things applications. Inf.
Sci., 512:238–257, 2020.

[23] PricewaterhouseCoopers US. GDPR Compliance Top Data Protection
Priority for 92% of US Organizations in 2017, January 2017.
https://www.pwc.com/us/en/press-releases/2017/pwc-gdpr-compliance-
press-release.html

[24] A. Rabinia, S. Ghanavati, L. Humphreys, and T. Hahmann. A methodol-
ogy for implementing the formal Legal-GRL framework: A research pre-
view. In Proc. of 26th Inter. Conf. Requirements Engineering: Foundation
for Software Quality, (REFSQ’20), LNCS vol. 12045, pages 124–131.
Springer, 2020.

[25] D. Soltes. Social networks as the best instrument for achieving full, world-
wide and truly global e-inclusion. Proc. 16th World Multi-Conference on
Systemics, Cybernetics and Informatics (WMSCI'), pages 142–146, 2012.

[26] D. Torre, G. Soltana, M. Sabetzadeh, L. C. Briand, Y. Auffinger, and P.
Goes. Using models to enable compliance checking against the GDPR:
An experience report. In Proc. of the ACM/IEEE 22nd Int. Conf. on
Model Driven Engineering Languages and Systems (MODELS’19).

204

DOI reference number: 10.18293/SEKE2021-075

Remaining Activity Sequence Prediction for
Ongoing Process Instances
Xiaoxiao Sun*, Yuke Ying, Siqing Yang and Hujun Shen

School of Computer Science and Technology
Hangzhou Dianzi University

Hangzhou, China
sunxiaoxiao@hdu.edu.cn, yingyuke_hdu@163.com, yangsiqing@hdu.edu.cn, 191050007@hdu.edu.cn

Abstract—Remaining activity sequence prediction (i.e., Activity
suffix prediction) aims at recommending the most likely future
behaviors for ongoing process instances (traces), which enables
process managers to rationally allocate resources and detect
process deviations in advance. Recently, techniques of neural
networks have found promising applications in activity suffix
prediction by training a prediction model for next activity and
iteratively performing the model to achieve the whole sequence
prediction. However, the iterative prediction accumulates the
deviations of each iteration and the result also lacks
interpretability. In this paper, we propose a novel method to
predict activity suffixes from the perspective of control flow and
data flow for ongoing traces, where process discovery and trace
replay techniques are employed to simulate executions of traces
under real conditions and Long Short-Term Memory (LSTM) is
applied to characterize the correlation between executed
information and future execution. Sequence matching between
historical prefix traces and ongoing traces are performed based on
the above information to select the optimal-matched (i.e., most
similar) activity suffix for ongoing process instances. Experiments
on real-life datasets demonstrates that our proposed method
outperforms other methods.

Keywords-activity suffix prediction; process discovery; trace
replay; LSTM; sequence matching

I. INTRODUCTION
Business process management (BPM) is a technique that

modifies and extends business processes for enterprises by
continuously mining, modeling, and monitoring process
instances (traces) [1]. As a concrete practice that supports the
businesses of enterprises, Process Aware Information System
(PAIS) [2] record execution information of process instances
(i.e., event logs) such as activity (i.e., event type), timestamp,
resources and so on, which is further analyzed for process
optimization and improvement. Traditional process mining
pays attention to offline analysis like process discovery,
conformance checking between logs and process models while
recent focus of researchers has gradually turned to online
analysis, especially predictive business process monitoring
(PBPM). PBPM dedicates to predicting future execution
information for ongoing traces such as next activity, remaining
time, final outcome, remaining activity sequence (i.e., activity
suffix) and so on, which provides reference information for
process executors and helps process managers to take effective
measures for optimizing process executions.

Among all prediction tasks of PBPM, next activity
prediction and remaining time prediction are the most widely
studied tasks while activity suffix prediction is seldom
considered as a single theme. However, compared to next
activity prediction and remaining time prediction, activity
suffix prediction provides more extensive future information
for both process executors and process managers. Accurate
prediction of activity suffix helps process managers to perceive
early deviations and resource shortages, which can be prevented
by timely and effective measures.

Recently, techniques of neural networks especially
Recurrent Neural Network (RNN) [3] and Long-Short Term
Memory (LSTM) [4] are widely employed in the fields of
PBPM. These works address the tasks of PBPM as regression
problems or classification problems and utilize historical traces
to train prediction models. However, the diversity of activity
suffix categories makes this solution inapplicable. Currently, a
variety of researches achieve activity suffix prediction by
constructing a prediction model for next activity and iteratively
performing the model to predict the whole sequence. These
methods, however, are super sensitive to hyper-parameters and
each iteration would add deviations to the final result.

Therefore, in this paper, we propose a novel sequence-
matching-based approach from the perspective of both control
flow and data flow for activity suffix prediction. Summarily, the
main contribution of this paper is as follows:

• The techniques of process discovery and trace replay are
applied to simulate the real behavioral context of trace
executions.

• LSTM is employed to train a prediction model that
implicitly characterizes the correlations between
executed information and future execution.

• Sequence matching is performed between historical
prefix traces and ongoing traces based on the above
information to obtain the most similar activity suffixes
for ongoing traces.

The rest of this paper is structured as follows: Section Ⅱ
introduces existing works on activity suffix prediction. A
detailed description of our approach is presented in Section Ⅲ.
Section Ⅳ evaluates the effectiveness of our method and
conducts comparisons with the optimal result of other
researches on real-life datasets. Eventually, conclusions and
future work are demonstrated in Section Ⅴ.

205

II. RELATED WORK
A variety of researches have been put forward to realize

activity suffix prediction in the past decade, which are roughly
divided into two types according to whether process structures
are extracted from event logs, i.e., process-aware methods and
non-process-aware methods [5].

Process-aware methods for activity suffix prediction
require constructions of process models such as petri net and
then apply the models to accomplish prediction. For example,
Spoel et al. [6] first mine a causality graph from the event log.
Then, they adjust and apply a well-known shortest path
algorithm (i.e., Floyd-Warshall algorithm) over the mined
causality graphs to find a path whose sum of weights is the least.
Similarly, Polato et al. [7] construct a transition system based
on the event log and annotate its edges with transition
probabilities. Then, they define a cost (i.e., the opposite of the
logarithm of the transition probability) between two nodes and
apply a shortest path algorithm on annotated transition systems
for activity suffix forecasting.

Recently, neural networks especially RNN and LSTM are
widely applied to achieve activity suffix prediction, which are
typical non-process-aware methods. Tax et al. [8] and
Evermanna et al. [9] employ LSTM to forecast activity suffixes
for ongoing traces while Lin et al. [11] apply RNN to achieve
activity suffix prediction. The similarity of their works is that
they all iteratively forecast next activity to realize activity suffix
prediction. Specifically, Tax et al. [8] construct a prediction
model to forecast both the type of the next event (i.e., next
activity) and its timestamp at the same time using a shared
LSTM layer. Evermann et al. [9] realize the similar works as
[8], however, they encode attributes via embedding space
instead of one-hot encoding. Lin et al. [10] propose a RNN-
based predictive model called MM-Pred to predict next
activities and related attributes, and conduct iteration of the
model to obtain the remaining event sequence. In addition,
Taymouri et al. [11] present an encoder-decoder architecture
grounded on Generative Adversarial Networks (GANs), which
generates a sequence of activities and their timestamps in an
end-to-end way.

Summarily, most of the current researches adopt neural
networks to accomplish activity suffix prediction, which lacks
deep mining on event logs as well as interpretation of the
predictive results. Therefore, in this paper, we attempt to
propose a novel approach to accomplish the task, where process
discovery and trace replay techniques are employed to simulate
the real trace execution environment and LSTM is applied to
characterize the correlation between executed information and
future execution of ongoing traces. Eventually, sequence
matching is applied to achieve the final prediction based on the
above information.

III. APPROACH

A. Preliminaries
1) Event logs

Definition 3.1 (Event; Trace; Event log). An event is one
single execution of an activity in different contexts, represented

as , where is the case to which
the event belongs, represents the associated activity,

 is resources required for execution, and represent
the start and end timestamp respectively, and
represent the other basic attributes. A trace is a finite ordered
sequence of events expressed as , where

 is the length of . An event log is a collection of
multiple traces, which is expressed as , and

 denotes the number of traces in .
Definition 3.2 (Prefix Trace, PT; Suffix Trace, ST). A PT is
the first events of a trace , which is denoted as

. Correspondingly, a ST is the last
events of trace and is represented by

.
Definition 3.3 (Activity Sequence, AS). Given a trace , its
activity sequence is composed by activities of its events, which
is expressed as .
Definition 3.4 (Event encoding; Encoded matrix). An event
encoding is a function that transforms the attribute
values of event into a numerical vector (one-hot encoding for
category attributes and normalization for numeric attributes),
where denotes the dimension of the encoded vector. Then,
for each trace , we integrate encoded vectors of its events by
time order and obtain an encoded matrix expressed as

.
2) Petri net

Definition 3.5 (Petri Net). A petri net is an explicit
representation of an event log consisting of nodes (places and
transitions) and direct arcs. Each place holds a non-negative
integer number of tokens, which can be transferred according to
firing rules (Definition 3.7). The number of tokens in place
is expressed as . A petri net is defined as a six-tuple, i.e.,

, where:
• is a finite and non-empty set of

places.

• is a finite and non-empty set of
transitions. Transitions in petri net are associated with
activities of an event log by a function , that is,

, , , where is the activity
set of an event log and represent non-observable
activities. Transitions interrelated to non-observable
activities are hidden (invisible) transitions.

• is the set of directed arcs
connecting places and transitions.

• is the marking that represents the state (the token
distribution of places) of the petri net and is denoted as

, where can be
expressed as , .

1(, , , , , ,...,)s e me c a t t r d d= c CÎ
a AÎ

r RÎ st et

1,..., md d

1 2 | |, ,...,e e es s s
ss =< >

| |s s L

1 2 | |{ , ,..., }LL s s s=

| |L L

k s

1 2() , ,...,k kPT e e es s ss =< > r
s

| | 1 | |() ,...,r rST e es s
s ss - +=< >

s

1 2 | |() . , . ,..., .AS e a e a e as s s
ss =< >

: mf e D®
e

m
s

1 2 | |() [(), (),..., ()]EM f e f e f es s s
ss =

ip
()ipb

(, , , , ,)pn P T F A Mp=

0 1 | | 1{ , ,..., }PP p p p -=

0 1 | | 1{ , ,..., }TT t t t -=

p
()a tp= t TÎ { }a A tÎ ! A

{ }t

() ()F P T T PÍ ´ ´!

M

0 1 | | 1[(), (),..., ()]PM p p pb b b -= ()ipb
[]M i 0 | |i P£ <

206

Definition 3.6 (Input Set, Output Set). Given a node
, its input set is denoted as

 and its output set is
represented by .
Definition 3.7 (Firing rules). A transition is enabled iff

. Besides, when the transition is enabled,
it can be fired and current marking converts into a new
marking , where is calculated as:

 (1)

B. Sequence-matching-based activity suffix prediction
After presenting basic concepts and definitions of this

paper, this section introduces the procedure of sequence-
matching-based activity suffix prediction, which is divided into
three parts, i.e., behavioral context replay, data context
prediction and sequence matching.

1) behavioral context replay
Trace replay is a technique that executes traces of an event

log on a process model to measure the conformance between
the event log and the model [1]. In this paper, inspired by Theis
et al. [12], we develop a new application of trace replay to
simulate the real-life environment of process executions, i.e.,
behavioral context replay. Since rare behaviors cannot be
characterized by the process model, we adjust the firing rules in
Definition 3.7 to guarantee that all the transitions related to
activities of traces to be enabled. Specifically, when a transition

 is not enabled, we first obtain its input set and find places
with token missing. Then, to fill requirements of tokens in these
places, we further enable some hidden transitions that connects
these places with other places which hold tokens. If still
cannot reach the enabled state by the above operations, we
manually add tokens to these places to fulfill the firing
requirement of transition .

In detail, we first conduct process discovery on an
historical event log to obtain a petri net using Inductive Miner
(IM), which is easy to operate and friendly to implement trace
replay [13]. Then, for each trace in the event log, we replay
it on the obtained petri net according to the adjusted firing rules
to simulate its execution. Specifically, during the replay of ,
whenever a transition related to activity is fired, we
update the token value of each place and acquire a new marking

. When the trace ends its replay, we integrate all markings
and obtain the behavioral context information of , which is
denoted as . The whole
process of behavioral context replay is illustrated in Figure 1.

To measure the behavioral context consistency between
two traces, we further introduce a definition named trace
behavioral similarity (TBS), whose mathematical expression is
illustrated as (2).

Figure 1. The whole process of behavioral context replay.

Definition 3.8 (Trace Behavioral Similarity, TBS). Given
two traces and ,
their TBS is defined as:

 (2)

 (3)

Where represents the token equivalence of place after
the i-th activity is executed. The average equivalence of

 and is calculated as
. Besides, if the dimension of

and is not consistent, we stuff the one with
smaller dimension using padding vectors, i.e., vectors filled
with 0.

2) Data context prediction
During the execution of process instances, a variety of data

information is produced and recorded as attributes (i.e.,
resource, cost and so on) in event logs, which is collectively
considered as data context in this paper. Data context
characterizes the variations of essential attributes, which has
significant influence on future execution. In this section, we
attempt to mine the correlation between executed information
and future execution, and use LSTM model to predict the future
data context of ongoing traces.

In detail, we first split historical traces in event logs into
PTs and STs. Then, several time-related features are added
including year, month, day, weekday, hour and duration for the
purpose of enriching information. Subsequently, we perform
event encoding on PTs and STs, whose encoded matrixes are
considered as the input and training target of LSTM
respectively to learn their correlation. Meanwhile, to reduce
memory consumption during the training, we conduct
dimensionality reduction on suffix matrixes using a popular
technique named Uniform Manifold Approximation Projection
(UMAP) [14] before training, which is used to deal with high-
dimensional data. The matrix of ST after dimensionality
reduction is denoted as . After training, the
correlation between executed data information and future
execution is implicitly expressed in the prediction model. For
an ongoing trace, we import its encoded matrix to the prediction

x P TÎ !

{ | (,) }x y y P T y x F• = Î Ù Î!

{ | (,) }x y y P T x y F• = Î Ù Î!

t TÎ
: () 0i ip t pb" Î• > t

M

tM []tM i
[] 1,

[] [] 1,
[],

i

t i

M i p t
M i M i p t

M i otherwise

- Î•ì
ï= + Î •í
ï
î

t

t

t

s

s

it ia

it
M

s

0 1 | | 1
() [, ,...,]t t tBehavContext M M M

s
s

-
=

An event
log L

Process discovery
(Inductive Miner)

...
Trace
replay

1p 2p 3p 4p
[1 0 0 0]
[0 1 1 0]
[0 0 0 1]

Behavioral context

...s

1s

1p

1t 2p

2t 3p

3t 4p

Petri net

2

11 1 2 | |, ,...,e e ess =< >

22 1 2 | |, ,...,e e ess =< >

| || | 1 2 | |, ,...,
LL e e ess =< >

1 1 1

11 1 2 | |, ,...,e e es s s
ss =< > 2 2 2

22 1 2 | |, ,...,e e es s s
ss =< >

1 20 max(| |,| |),0 | |
1 2

1 2

(,)
| | *max(| |,| |)

ij
i j P

Eq
TBS

P
s ss s

s s
£ < £ <=

å

1 2

1 2

1 2

1, () 0 () 0
| () () |

1 ,
max(() , ())

ij ij

ij ijij

ij ij

BehavContext BehavContext
BehavContext BehavContextEq

otherwise
BehavContext BehavContext

s s

s s
s s

= =ì
ï

-= í -ï
î

!

ijEq jp

1()BehavContext s 2()BehavContext s

1 2(,)TBS s s 1()BehavContext s

2()BehavContext s

st
()UMAPEM st

207

model and the output is the predicted data context we need for
further sequence matching.

3) Sequence matching
After introducing the behavioral context replay and data

context prediction, we further describe the procedure of
sequence matching in this section, which is divided into four
steps:

Step 1: To better simulate real-life executions, we sort
traces in event logs by time and take the first 70% of traces as
training set and the remaining 30% of traces as testing set. We
further divide the traces in training set and testing set into PTs
and STs, where PTs and STs of training set are employed for
sequence matching while PTs of testing set are considered as
ongoing traces and STs are utilized for evaluation.

Step 2: Subsequently, we perform process discovery on
training set using IM and obtain a petri net. For each PT in
training set and testing set, we replay it on the petri net and
acquire its behavioral context information .

Step 3: Traces in training set is applied to train the
prediction model for data context as mentioned above. Then, for
each PT in testing set, we import its encoded matrix into
the prediction model and obtain its predictive data context,
which is denoted as .

Step 4: After step 2~3, each PT in testing set is
associated to and . Then,
we perform sequence matching between PTs in testing set and
PTs in training set. Specifically, for each PT in testing set ,
we traverse PTs in training set and select PTs with the highest
TBS as . Then, we further calculate the Euclidean Distance
(ED) between the data suffix matrixes of selected PTs and

 to select the most similar PT as . Finally,
the activity suffix of the selected PT is considered as the
predictive activity suffix of . Algorithm 1 illustrates the
procedure of Step 4.

IV. EVALUATION

A. Datasets
In order to verify the effectiveness of our proposed

approach, we perform evaluation using four real-life datasets,
which can be download from 4TU Centre (https://data.4tu.nl/).
The concrete description of datasets is present below and
characteristics of datasets is shown in Table Ⅰ, where “#Trace”
and “#Event” indicate the total count of traces and events in the
datasets separately, “#Activity” and “#AS” denote the number of
the different activities and activity sequences in the datasets
respectively, and “#Avg. length” represents the average length
of traces in dataset.
Helpdesk: This dataset contains events from a ticketing
management process of the help desk of an Italian software
company. All cases in the log start with the insertion of a new
ticket into the ticketing management system and end when the
issue is resolved and the ticket is closed.
(https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb)

Algorithm 1: The procedure of Step 4.
INPUT: 1. Training set ; 2. A PT in the testing set;

OUTPUT: The predictive activity suffix of , ;
BEGIN

01:

02:

03:

04:

05:

06:

07:

08:

09:

10:

11:

12:

; ; ;

FOREACH trace in DO:

 FOREACH in DO:

 ;

 IF DO:

 ; ;

 ;

 ELIF DO:

 ;

 IF DO:

 ; ;

RETURN ;

END
Sepsis: This real-life event log contains events of sepsis cases
from a hospital, which were recorded by the Enterprise
Resource Planning (ERP) system.
(https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460)
BPIC2012W_Complete: BPIC2012 dataset is an event log
taken from a Dutch Financial Institute and represents the
process of an application process for a personal loan or
overdraft within a global financing organization, which can be
split into three sub-processes, i.e., the application itself
(BPIC2012A), the work items belonging to applications
(BPIC2012W) and the offer (BPIC2012O). In this paper, events
with the transition lifestyle of “completed” in BPIC2012W are
employed to conduct experiments, which is called
BPIC2012W_Complete.
(https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f)
BPIC2012W_Deduplication: Since BPIC2012W_Complete
contains a lot of self-loops, i.e., some activities are continuously
executed several times, we further perform experiments on
BPIC2012W_Complete without self-loops, which preserves the
first loop of traces and removes the others. The processed
dataset is named as BPIC2012W_Deduplication.

TABLE I. CHARACTERISTICS OF DATASETS

Dataset #Trace #Event #Activity #AS #Avg. length
Helpdesk 4580 21348 14 226 4.66
Sepsis 1050 15214 16 895 13.64
BPIC2012W_
Complete 9658 72413 6 2263 7.50

BPIC2012W_
Deduplication 9658 29410 6 71 3.05

B. Evaluation metrics
Similar as references [8], [10] and [11], we employ

Demerau-Levinstain similarity (DLS,) to measure
the similarity of the true activity suffix (TAS) and the predictive
activity suffix (PAS). The mathematical representation of DLS
is illustrated as (4), where is the Demerau-

pt

()BehavContext pt

pt

()DataContext pt
pt

()BehavContext pt ()DataContext pt

pt

pt

()DataContext pt pt

pt

trainingS pt

pt ()PAS pt

0maxTBS¬ minDist¬¥ ()PAS pt null¬

s trainingS
i (1,| | +1)range s

(, ())icurTBS TBS pt PT s¬

curTBS maxTBS>

maxTBS curTBS¬ | |() (())iPAS pt AS TSs s-¬

| |((()), ())UMAP iminDist ED EM TS DataContext pts s-¬

curTBS maxTBS==

| |((()), ())UMAP icurDist ED EM TS DataContext pts s-¬

curDist minDist<

minDist curDist¬ | |() (())iPAS pt AS TSs s-¬

()PAS pt

[0,1]DLS Î

(,)DL PAS TAS

208

Levinstain distance between and , and
and represent the length of and
respectively. Demerau-Levinstain distance is the minimum
number of single-character editions (i.e., insertion, deletion,
substitution, and transposition) required to transform one
sequence into another.

 (4)

C. Experimental setup
Our experiments were run on a 10 core Intel(R) Core (TM)

i9-7900X CPU @ 3.30GHz with 64 GB RAM. The approach
was implemented in Python 3.6, Keras 2.2.4 with Tensorflow
1.15.0 backend and Pm4py 2.1.0, using CUDA 10.1 and UMAP
0.5.1. The hyper-parameters of LSTM and UMAP are shown in
Table Ⅱ, where is the length of the longest trace in the
log.

TABLE II. HYPER-PARAMETERS OF LSTM AND UMAP

Hyper-parameter Value Hyper-parameter Value
LSTM layers 1 Epoch 200
LSTM units 50 Dropout 0.5
Optimizer Adam n_neighbors (UMAP) 5
Batch size 128 min_dist (UMAP) 0.3
Learning rate 0.001 n_components (UMAP) maxLen
Loss mse

D. Result
Table Ⅲ summarizes the performance of our method on

four datasets in terms of the average DLS. We further analyze
the performances in three specific prefix lengths as short PTs,
medium PTs and long PTs. As shown in the table, we calculate
the average DLS of PTs whose length is more than 2, 4 and 6
for Helpdesk and BPIC2012W_Deduplication while calculate
average DLS of PTs whose length is more than 2, 5 and 10 for
the other two datasets since the sequence length of Helpdesk
and BPIC2012W_Deduplication is relatively shorter than the
other two. Besides, All represents the average DLS of all PTs in
the event log. From the table, we notice that Helpdesk achieve
the best DLS, i.e., 84.01%, while BPIC2012W_Complete
demonstrates relatively poor performance.

TABLE III. THE AVERAGE DLS OF OUR METHOD ON FOUR DATASETS

Dataset
DLS

>= 2 >=4(5) >=6(10) All
Helpdesk 0.8585 0.8946 0.7970 0.8401
Sepsis 0.3402 0.3369 0.3152 0.3428
BPIC2012W_Complete 0.2936 0.3014 0.3028 0.2821
BPIC2012W_Deduplication 0.4575 0.4650 0.4748 0.4013

Furthermore, to explore the reason for the difference of
performances among datasets, we introduce a definition named
Coincidence Degree (CD).
Definition 4.1 (Coincidence Degree, CD). The CD of traces in
an event log is defined as (5), where and mean
the number of different activity sequences and the total count of
traces in the log, respectively. The trace behavior of event logs

with low CD are highly variable, which improves the difficulty
of sequence matching.

 (5)

We analyze the correlation between CD and DLS for four
datasets, which is shown in Figure 2. In general, our method
demonstrates better performance in datasets with high CD while
performs relatively poor in datasets with low CD. For example,
the CD of Helpdesk is high and its average DLS is
correspondingly high while Sepsis demonstrates an opposite
situation. However, we notice that the CD of
BPIC2012W_Complete is high while its average DLS is low.
As mentioned above, this dataset contains a lot of self-loops,
which causes our approach to predict overly long sequences of
the same activity. From the figure, we conclude that the average
DLS of BPIC2012W_Deduplication improves a lot compared
to BPIC2012W_Complete, which demonstrates that the self-
loops have an adverse effect on our prediction.

Figure 2. The variation trends of DLS and CD in different datasets.

Furthermore, to explore the performance of our method on
PTs with different length, we analyze the variations of average
DLS at each prefix length in Figure 3, where the blue polyline
and the columnar in gray represent the average DLS and the
sample proportion at current prefix length, respectively. As
shown in the figure, with the increase of prefix length, the
sample proportion gradually decreases and even reaches 0 at
some long prefix length. We also notice that with the increase
of prefix length, the average DLS first shows a trend of slowly
rise since PTs with medium length carry more information than
PTs with short length but possess a similar sample proportion,
which corresponds to a better sequence prediction result.
Gradually, the polylines demonstrate dramatic changes with the
further increase of prefix length in all datasets. The reason is
that although PTs with long length carry more information, the
relatively small number of samples raises the bar of finding
historical PTs with consistent behaviors.

PAS TAS .PAS length
.TAS length PAS TAS

(,)(,) 1
max(. , .)

DL PAS TASDLS PAS TAS
PAS length TAS length

= -

maxLen

#AS #Trace

#1
#
ASCD
Trace

= -

209

Figure 3. The average DLS at different prefix lengths of four datasets.

E. Comparison with other methods
The comparison of our method with the results of other

researches in terms of DLS is shown in Table Ⅳ. In this paper,
we conduct comparison on Helpdesk, BPI2012W_Complete
and BPIC2012W_Deduplication datasets since only their
prediction results are reported in references as Tax et al. [8],
Evermann et al. [9], Lin et al. [10], and Taymouri et al. [11],
which all employ neural networks to achieve activity suffix
prediction. In addition, since reference [8], [9], [10] and [11]
only report prediction results of PTs at certain prefix lengths,
we also calculate the average DLS of the corresponding length
of our method to make comparisons. The result shows that our
method improves the average DLS over [8], [10] and [11] by
9.16%, 1.74% and 2.06 % in Helpdesk respectively, and
outperforms [9] and [11] by 0.44% and 2.74% in
BPIC2012W_Complete, respectively. The result of [8],
however, surpasses our result by 5.97% in
BPIC2012W_Complete. As for BPIC2012W_Deduplication,
[8] only improves the average DLS by 4.04% compared to
BPIC2012W_Complete while our method has a significant
improvement of 16.39%. Besides, our method outperforms [8]
by 6.38% in terms of average DLS on
BPIC2012W_Deduplication.

TABLE IV. COMPARISON WITH STATE-OF-THE-ART METHODS

Implementation

Dataset

Helpdesk BPIC2012W
Complete

BPIC2012W
Deduplication

>=2 >=3 >=2 >=5 >=2
Our method 0.8585 0.8946 0.2936 0.3014 0.4575
Tax et al.[8] 0.7669 - 0.3533 0.3937
Evermann et al.[9] - - - 0.2970 -
Lin et al.[10] - 0.8740 - - -
Taymouri et al.[11] 0.8411 - 0.2662 - -

Note: “-” represents that the corresponding result of the dataset is not reported in the reference

V. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a method to address the problem

of activity suffix prediction, where process discovery and trace
replay techniques are employed to simulate executions of traces
under real conditions and LSTM is applied to predict and
characterize future data context of ongoing process instances.
Besides, the above information is eventually applied to perform
sequence matching between historical PTs and the current
traces. The result of our method outperforms the best result of
most methods.

Since our work only cope with the problem of activity
suffix prediction, we plan to make suffix predictions related to
other execution status such as resource, time and so on in the
future, which would provide more reference information for
both process executors and process managers.

ACKNOWLEDGMENT
This work is supported by Natural Science Foundation of

China (No.61472112), Natural Science Foundation of Zhejiang
Province (No.LQ20F020017) and the Key Science and
Technology Project of Zhejiang (No.2017C01010).

REFERENCES
[1] Van Der Aalst, W. (2011). Process mining: discovery, conformance and

enhancement of business processes (Vol. 2). Heidelberg: Springer.
[2] M. Dumas, W.M. Van der Aalst, and A.H. Ter Hofstede. Process-aware

information systems: bridging people and software through process
technology. John Wiley & Sons, 2005.

[3] R.J. Williams, and D. Zipser, (1998). A learning algorithm for continually
running fully recurrent neural networks. Neural Computation, 1(2).

[4] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural
computation, 1997, 9(8): 1735-1780.

[5] Marquez-Chamorro A E, Resinas M , Ruiz-Cortes A . Predictive
monitoring of business processes: a survey[J]. IEEE Transactions on
Services Computing, 2017:1-1.

[6] Spoel S V D, Keulen M V, Amrit C . Process Prediction in Noisy Data
Sets: A Case Study in a Dutch Hospital[C]// International Symposium on
Data-Driven Process Discovery and Analysis. Springer Berlin Heidelberg,
2012.

[7] Polato M, Sperduti A , Burattin A , et al. Time and Activity Sequence
Prediction of Business Process Instances[J]. Computing, 2016.

[8] N. Tax, I. Verenich, M.L. Rosa, and M. Dumas, (2017). Predictive
business process monitoring with LSTMs. Proceedings of the Twenty-
Sixth Benelux Conference on Machine Learning (BENELEARN).

[9] Evermann, J. , Rehse, J. R. , & Fettke, P. . (2017). Predicting process
behaviour using deep learning. Decision Support Systems, 100, 129-140.

[10] L. Lin, L. Wen and J. Wang, (2019). MM-Pred: A Deep Predictive Model
for Multi-attribute Event Sequence. SIAM International Conference on
Data Mining (SDM19).

[11] Taymouri, Farbod, and Marcello La Rosa. "Encoder-Decoder Generative
Adversarial Nets for Suffix Generation and Remaining Time Predication
of Business Process Models." arXiv preprint arXiv:2007.16030 (2020).

[12] Theis, J., & Darabi, H. (2019). Decay replay mining to predict next
process events. IEEE Access, 7, 119787-119803.

[13] Leemans S J J, Fahland D , Aalst W M P . Discovering Block-Structured
Process Models from Event Logs - A Constructive Approach[C]//
Application and Theory of Petri Nets and Concurrency - 34th
International Conference, PETRI NETS 2013, Milan, Italy, June 24-28,
2013. Proceedings. Springer-Verlag, 2013.

[14] Mcinnes L , Healy J . UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction[J]. The Journal of Open Source
Software, 2018, 3(29):861.

210

Studying the Impact of the User Subscription Times in
Different Cloud Configurations

Hernán-Indibil De la Cruz1

HernanIndibil.Cruz@uclm.es

Marı́a-Emilia Cambronero1

MEmilia.Cambronero@uclm.es

Valentı́n Valero1

Valentin.Valero@uclm.es

Pablo C. Cañizares2

pablo.cerro@uam.es

Adrián Bernal1

Adrian.Bernal@uclm.es

Alberto Núñez3

Alberto.Nunez@pdi.ucm.es

1Albacete Research Institute of Informatics, Computer Science Department, Universidad de Castilla-La Mancha
2Computer Science Department, Autonomous University of Madrid

3Software Systems and Computation Department, Complutense University of Madrid

DOI reference number: 10.18293/SEKE2021-095

Abstract

In this paper, we model cloud systems and the user in-
teractions with the cloud provider using the UML2Cloud
profile. In general, users request virtual machines accord-
ing to their needs, but they can also subscribe to the cloud
provider and wait to be notified when the requested re-
sources are not available. In this case, users indicate a
maximum subscription time, so once this time elapses with-
out being notified, users leave the system unattended. In
this paper, then, we present an exhaustive research study to
measure how the user subscription times affect the overall
system responsiveness. In this study, three different cloud
configurations are analyzed. Each cloud processes sev-
eral workloads, which are generated using two distribu-
tion functions for the user arrivals, namely a normal and
a cyclic normal distribution. The purpose of this study is to
find out the inflection point for the waiting time of the users,
from which the cloud responsiveness and its performance
do not improve. The obtained information is therefore use-
ful for the cloud provider to improve the configuration of the
cloud.

1. Introduction

Cloud computing is experiencing important growth
nowadays. Cloud service providers need tools that allow
them to better manage their resources, with the goal of
maintaining the Quality of Service offered to a growing
number of customers, agreed in the so-called Service Level
Agreements (SLAs). One of these tools is the simulation
and, particularly, cloud simulators, which allow us to sim-
ulate workloads that are executed in virtual environments.
With these tools, we can predict behaviors in the real cloud
systems, even before these systems are built and deployed
so that they allow cloud providers to anticipate some prob-
lems that could arise once the system is running.

In addition, modeling the cloud infrastructure and the
users’ interactions with the cloud providers allow us to have
a better understanding of the behavior of all the roles in
these systems. With this purpose in mind, we defined the
UML2Cloud profile [1]. The main features of the cloud in-
frastructure, that is, CPUs, storage, and network bandwidth,
among others, are considered in this parameterized profile,
as well as the exchange of messages between the users and
the cloud provider, with parameters such as the specification
of the virtual machines required, the applications to be ex-
ecuted on them, and the maximum subscription time when
the requested machines are not available at the time of the
request.

This paper aims at studying the behavior of simulated
cloud environments modeled with the UML2Cloud UML
profile. In essence, this study focuses on the abandon-rate
and waiting time of the users, in order to help finding the
best configurations and workloads for the analyzed cloud
systems. We investigate the relationships between the num-
ber of users trying to be served by the cloud and the wait-
ing time due to users’ subscriptions, which is a quality of
service-related metric defined in the UML2Cloud profile.

There are several works in the cloud literature studying
different resource allocation policies with the goal to meet
the quality of service (QoS) features. For instance, Kouki
et al. [6] present an analytical performance model to pre-
dict cloud service performance taking into account the last
values for abandon rate, latency, and cost. Following the
same line, Wu et al. [12] propose several resource alloca-
tion algorithms for SaaS providers to minimize SLA viola-
tions and infrastructure costs by managing the workloads.
Mateo-Fornés et al. [7] present an analytic model, called
CART, for studying cloud availability and response time to
improve several QoS items, as performance, cost, and avail-
ability in SaaS. There are significant differences with our
work, in which we consider the publish-subscribe paradigm
and we study the impact of user subscription times on QoS
parameters, like response time and performance.

211

Vinodhini [11] analyzes a cloud system based on a
queueing model with possible failures and cloud repairs, in-
stead of the publish-subscribe paradigm used in this study.

There are other works that analyze different metrics re-
lated to performance evaluation. For instance, Yang et
al. [13] evaluate cloud performance taking into account the
service response time in an environment with fault recov-
ery to improve cloud reliability and considering a queue-
ing system to conduct the performance analysis. Similarly,
Khazaei et al. [5] propose an approach also focused on the
response time, using other queueing system model.

In general, these works are based on theoretical mod-
els and the obtained results are based on the assumptions
that need to be established for the analysis of these models.
An alternative is the usage of cloud simulation, which is a
widely adopted technique that allows us to reproduce the
behavior of real cloud environments. Furthermore, simula-
tion allows mitigating some problems related to these envi-
ronments, such as the experiments reproducibility and the
high costs of renting real cloud systems.

In the current literature, we can find multiple propos-
als based on simulation tools to study different aspects of
the cloud [3]. Some simulators focus on resource provi-
sioning algorithms, such as CloudSim [2], and Network-
CloudSim [4]. Another simulator, SimIC, is focused on
the management of large-scale resources in inter-cloud en-
vironments. Finally, iCanCloud [9] helps users of a cloud
deciding the best starting conditions on pay-as-you-go sce-
narios.

In this paper, we focus on the use of cloud simulation.
Specifically, we use the Simcan2Cloud simulator [1], which
is a simulation tool of parallel and distributed architectures
and applications. We use a different perspective, our ap-
proach focuses on the users waiting time analysis when they
subscribe to the cloud provider. Thus, users are notified
when the resources they need are available. This metric is
measured in a cloud environment close to saturation, i.e., in
a cloud system where a high number of users are requesting
resources, in comparison with the cloud size.

In this study, each cloud processes different workloads,
which have been generated using two distribution functions
for the users’ arrival, a normal and a cyclic normal distri-
bution. Thus, we analyze the impact of the maximum sub-
scription times in the cloud behavior, in terms of the re-
quests that are finally served, the average waiting times for
users, and the number of unattended users. Subscription
time has been chosen as a key parameter in this study be-
cause it influences the trade-off between the waiting time
and the number of unattended users. If users have a long
subscription time, then the queue for resources is enlarged
and the average waiting time increases as well. In contrast,
users with a short subscription time will leave earlier unat-
tended, keeping the queues with a lower number of users

and the average waiting times will decrease.
The paper is structured as follows. Section 2 presents

the background. Section 3 shows the methodology used to
conduct the experimental phase of our study. In Section
4, a complete study about the impact of the user waiting
time in different cloud configurations. And finally, Section
5 presents the conclusions and future work.

2. Background

In this section, we present an overview of the UML2Cloud
profile [1], which has been created using UML, for the mod-
eling of both cloud systems and the behavior of the users
when they interact with the cloud provider. We also de-
scribe the Simcan2Cloud cloud simulator [1] that we use in
the experiments.

2.1. The UML2Cloud UML profile

In this profile, a cloud system consists of a cloud
provider, one or more data centers, and clients (also called
cloud users) requesting resources to the cloud. The cloud
provider manages a catalog of Virtual Machines (VMs) and
hardware resources provided by the data centers. Each data
center consists of a collection of physical machines, also
called nodes, which are grouped by racks. Thus, each rack
contains a set of nodes with the same hardware features,
that is, CPU, memory, and storage. The whole cloud infras-
tructure is described in a component diagram, which can be
found in our previous work [1].

The interactions between the users and the cloud
provider are modeled using a sequence diagram (SD).

Figure 1 shows a new version of the SD presented in [1].
The interaction starts with a request message from the user,
containing a list of all the VMs needed to execute its apps.
Each VM is defined as a tuple: VM=(number, VM type,
renting time) where we indicate the number of VMs of a
certain type (VM type) that we request, and the renting time.

The user then enters into a loop to handle the messages
received from the cloud provider, until no requested VM is
in execution or no subscription is active for this user. The
answer to a request is a response message that contains the
set of IPs corresponding to the physical machines contain-
ing all the requested VMs, which can be empty if this re-
quest cannot be attended to. If the set of IPs is not empty, the
request can be served, and the user sends an execute mes-
sage containing the list of applications (APPs) to execute
and the list of IPs in which each APP is executed. Other-
wise, when the set of IPs is empty, that is, at least one of the
VM requested cannot be provided, the user can subscribe to
the cloud provider indicating the VMs required and a max-
imum subscription time (subscribe message). The latter is
the maximum time that the user is willing to wait for being

212

User Requestinteraction
User Cloud Provider

5 : ok(VM)

9 : execute(APPs,IP)

10 : timeout(VM)

1 : request(VMs)

2 : response(IPs)

3 : execute(APPs,IPs)

6 : exec_timeout(VM)

7 : subscribe(VM,maxSubTime)

8 : notify(IP)

4 : subscribe(VMs,maxSubTime)

Handle messagesloop

[any VM in execute/subscribe state]

Message typealt

[result of a request]

[VM execute success]

[VM renting time over]

[subscription notify]

[subscription timeout]

request resultalt

[IPs≠∅]

[IPs=∅ and wants to subscribe]

Fail subsopt

[wants to subscribe]

Figure 1: Cloud provider and user interaction SD.

served. When the cloud provider receives an execute mes-
sage, it starts the execution of the APPs in their correspond-
ing VMs. In the case that all the APPs running in a VM
finish within the agreed renting time period, an ok message
is sent to the user, indicating the ended VM. These VMs are
marked as finished.

It can be the case that the APPs running in some VMs do
not finish in the agreed renting time. An exec timeout mes-
sage is then sent to the user for each VM that was not able
to complete its workload. In this case, the user can decide
to subscribe to these VM characteristics in order to be no-
tified when a VM fulfilling these features allows resuming
the APPs execution. For this purpose, the user sends a sub-
scribe message containing the VM characteristics and the
maximum subscription time (maxSubTime) that she is will-
ing to wait. A notify message will then be sent to the user
as soon as a VM fulfilling these features is available. How-
ever, it can also be the case that the maximum waiting time
elapses and no VM is available to resume the execution. In
this case, a timeout message is sent to the user indicating
the VM that could not be resumed.

2.2. Simcan2Cloud Simulator

Simcan2Cloud [1] is a cloud simulator written in C++
using OMNeT++ [10], which is a cloud extension of
SIMCAN [8], a tool for the simulation of parallel and dis-

0 20 40 60 80 100 120
Arrival t im e (h)

0
50

100
150
200
250
300

N
um

be
r

of
 u

se
rs

User Arrival

(a) Normal user arrivals.

0 20 40 60 80 100 120
Arrival t im e (h)

0
100
200
300
400
500
600
700

N
um

be
r

of
 u

se
rs

User Arrival

(b) Cyclic normal user arrivals.

Figure 2: Distributions of number of user arrivals per time
intervals.

tributed architectures and applications. The implementa-
tion of Simcan2Cloud fulfills the cloud specifications
and the user interactions defined in the UML2Cloud profile.
Simcan2Cloud is designed to provide a high level of flex-
ibility, allowing the user to set up the cloud configuration
in a modular way, in terms of data centers, computing and
storage nodes, and network connections, among other com-
ponents. Thus, Simcan2Cloud allows us to model and an-
alyze different cloud scenarios.

3. Methods

In this section, we describe the methodology used to
study the impact of the maximum user subscription time
in different cloud configurations. In this study, we consider
three cloud configurations, consisting of 64, 96, and 128
physical machines, respectively, where all machines have
the same configuration (CPU and storage). These configu-
rations have been chosen to analyze the impact of subscrip-
tion times as we increase the number of nodes. Each cloud
system processes several workloads, which are generated by
establishing the inter-arrival time for the users, who execute
the same application on the VMs. Each workload consists
of 5000 users that request services to the cloud provider for
a period of 5 days, where each VM is rented for 2 hours.

The first group of experiments analyzes the cloud re-
sponsiveness when users come at a normal distribution ba-
sis, with a single peak in the workload. In this case, a nor-
mal distribution with a mean of 3 days and a standard devi-
ation of 1 day has been considered (see Figure 2a), where
the x-axis represents the user arrival time and the y-axis
shows the number of users. The second group of experi-
ments analyzes the impact of daily burst user arrivals and,
thus, a cyclic normal distribution has been considered (see
Figure 2b). This figure represents the repetition of the same
normal distribution in cycles of 24 hours of duration, with
strong daily peaks at midday, where the x-axis represents
the user ID and the y-axis shows the arrival time (in hours).
In this case, therefore, we consider a normal distribution
with a mean of 12 hours and a standard deviation of 3 hours.

The main goal of this study is to analyze the impact of the
maximum subscription time that users establish when they

213

subscribe to the cloud provider. For simplicity, all the users
assign the same value for the maximum subscription time,
so the experiments are repeated using different values for
this parameter. Thus, we put the focus on the waiting time
obtained for the users when they intend to execute their ap-
plications in the cloud. The results obtained when different
values for the maximum subscription time are used, pro-
vide us with valuable information about the responsiveness
of the cloud and allows us to conclude the best configura-
tions according to the submitted workload.

4. Results and Discussion

In this section, we show the results obtained from the
empirical study described in Section 3. First, in Section 4.1
we show an experiment in which the cloud processes a user
workload generated using a normal distribution. Next, in
Section 4.2, we conduct an experiment in which the cloud
processes a user workload generated using a cyclic normal
distribution. Finally, we present a discussion of the obtained
results in Section 4.3.

4.1. Case Study 1: Normal Distribution

In this scenario, users arrive by following a normal dis-
tribution with a mean of 3 days and a standard deviation of
1 day.

Figure 3 shows the results obtained for a cloud consisting
of 64 physical machines, considering the following values
for the maximum subscription time: 30, 50, and 70 hours.
In these charts, the x-axis shows the user IDs, while the y-
axis shows the waiting time for the users to be attended to.
Black dots represent users that were fully served, while the
red ones represent users that left the system without being
served. The latter situation occurs when the maximum sub-
scription time elapses and the cloud is not able to provide
the user the requested resources. The first chart (left) shows
the results obtained for a maximum subscription time of 30
hours. In this case – approximately – the first 1000 users
are immediately served, i.e. their waiting time is 0. How-
ever, as more users arrive at the system, the cloud becomes
more saturated and, approximately, when 2500 users are
processed, the cloud cannot serve the new users’ requests,
so they leave the system without being served (red dots at
the upper area). Finally, once the user arrivals slow down af-
ter the peak, we can see that the final users are again served,
but with a high waiting time.

When the subscription time is set to 50 hours (central
figure) similar results are obtained. However, the point at
which users leave the cloud is obtained when – approxi-
mately – 3700 users are attended. When the subscription
time is set to 70 hours (right figure), we can see that the
cloud can attend to all the requests, and the maximum wait-
ing time is about 63 hours. This is the inflection point for

the user waiting time, that is, the point at which the cloud re-
sponsiveness reaches the worst value and, at the same time,
it can attend to all the users’ requests, so it should be the
maximum subscription time for the users if they wish their
works to be executed.

0 1000 3000 5000
User ID

0
10

20

30

40

50

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 50 h

0 1000 3000 5000
User ID

0
5

10
15
20
25
30

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 30 h

0 1000 3000 5000
User ID

0
10
20
30
40
50
60

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 70 h

Figure 3: Case study 1 with 64 computing nodes.

Figure 4 shows the results for a cloud consisting of 96
physical machines, where the maximum subscription time
ranges from 10 to 30 hours. This figure shows similar re-
sults to those obtained in the previous case. However, it is
important to note that we have considered smaller values
for the maximum subscription time. Thus, in this case, the
inflection point is of 21.32 hours, so this should be the max-
imum subscription time for users that want their works to
be executed.

0 1000 3000 5000
User ID

0

5

10

15

20

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 20 h

0 1000 3000 5000
User ID

0

2

4

6

8

10

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 10 h

0 1000 3000 5000
User ID

0

5

10

15

20

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 30 h

Figure 4: Case study 1 with 96 computation nodes.

Figure 5 shows the results obtained for a cloud with 128
physical machines. In this case, we consider 2, 4, and 6
hours for the maximum subscription time. The first chart
(left) shows how the cloud saturation appears at about user
2800, from which some users leave the cloud without being
served. We notice that some users can actually be served in
the upper part of the normal distribution as a consequence of
the specific random numbers that were generated (see Fig-
ure 2a). However, in general, we would obtain a red line
in the upper part of the figure. Finally, the final users can
be attended to with better waiting times as in the previous
cases. In the central chart, we can see the results for a max-
imum subscription time of 4 hours. In this case, most of
the users can be served, and only a few of them must leave
the cloud being unattended. When 6 hours are considered
as maximum subscription time, all the users are served. In
fact, the inflection point for the user waiting time is of 5.16
hours (see Table 1).

4.2. Case Study 2: Cyclic Normal Distribution

In this experiment, we consider a workload in which the
users arrive following a cyclic normal distribution. Thus,

214

0 1000 3000 5000
User ID

0

1

2

3

4

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 4 h

0 1000 3000 5000
User ID

0.0

0.5

1.0

1.5

2.0

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 2 h

0 1000 3000 5000
User ID

0
1
2
3
4
5

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 6 h

Figure 5: Case study 1 with 128 computation nodes.

0 1000 3000 5000
User ID

0
5

10
15
20
25
30

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 30 h

0 1000 3000 5000
User ID

0

2

4

6

8

10

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 10 h

0 1000 3000 5000
User ID

0

10

20

30

40

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 50 h

Figure 6: Case study 2 with 64 computation nodes.

0 1000 3000 5000
User ID

0
1
2
3
4
5
6

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 6 h

0 1000 3000 5000
User ID

0.0

0.5

1.0

1.5

2.0

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 2 h

0 1000 3000 5000
User ID

0

2

4

6

8

10

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 10 h

Figure 7: Case 2 with 96 computation nodes.

the workload has 5 peaks, so every day at midday we have –
approximately – 1000 users requesting services to the cloud,
with a peak of approximately 700 users.

Figure 6 shows the results of a cloud consisting of 64
physical machines processing the workload, using 10, 30,
and 50 hours as maximum subscription times. The first
chart (left) shows that the cloud can attend to all the users
arriving during the first day, although some of them have to
wait. However, in the following days, we have that many
users must leave the cloud without being served. Using
a maximum subscription time of 30 hours (central chart),
users are served during the first 3 days. However, as the
waiting time increases, they start to leave during the fourth
day. Finally, considering 50 hours as maximum subscrip-
tion time, the cloud can attend to all the users. Their waiting
times reach up to 40.29 hours for some users, which is the
inflection point in this case.

Figure 7 shows the results obtained for a cloud with 96
physical machines and a maximum subscription time of 2,
6, and 10 hours. The inflection point, in this case, is about
9,82 hours. The first chart of this figure (left) refers to the
cloud processing the workload using a maximum subscrip-
tion of 2. In this case, we observe again that many users
leave the cloud from the second day onwards, because we
still have in execution the applications from previous users,
even from previous days. If we consider a maximum sub-
scription time of 6 hours, only a few users leave the system
(central figure) and taking 10 hours (right figure) all users
are served, and the waiting times tend to stabilize in the
peaks.

0 1000 3000 5000
User ID

0

1

2

3

4

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 4 h

0 1000 3000 5000
User ID

0.0

0.5

1.0

1.5

2.0

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 2 h

0 1000 3000 5000
User ID

0
1
2
3
4
5

W
ai

tin
g

tim
e

(h
)

Max sub t im e = 6 h

Figure 8: Case study 2 with 128 computation nodes.

The results for a cloud configuration with 128 nodes are
presented in Figure 8, using 2, 4, and 6 hours as maximum
subscription times. In this case, the inflection point is about
5.20 hours. This system is now able to serve the users’
requests for the first two days, with small waiting times,
and from the third day on-wards the waiting times increase
above 2 hours. Thus, we have reduced the inflection point
in a factor close to 8 in comparison with the 64-nodes con-
figuration, and in a factor of 2 with respect to the 96-nodes
configuration.

4.3. Discussion of the results

This section provides a brief discussion of the obtained
results. Table 1 shows the values for the inflection points in
all the experiments.

Regarding the first set of experiments, where the studied
clouds process a workload generated using a normal dis-
tribution, we observe that, in general, the maximum sub-
scription time has a significant impact on the overall system
performance. Increasing this parameter allows more users
to be attended to by the system. Additionally, increasing
the number of physical machines also impacts positively in
the cloud performance, which allows us to reduce the maxi-
mum subscription time in order to process the same amount
of users. In particular, a cloud with 64 physical machines
is unable to attend to all the user’s requests when short sub-
scription times are considered, and the users must set up
subscription times of several days if they want their appli-
cations to be executed. In contrast, with a cloud with 128
nodes we have seen that the inflection point has been re-
duced by a factor of 12, and with the configuration with 96
nodes the reduction is about 1/3.

The results obtained in the next set of experiments, that
is, where the clouds process a workload consisting of daily
blurts, render similar results. A cloud with 96 nodes would
offer responses below 10 hours for the users’ requests, and
an investment to improve the cloud infrastructure up to 128

Table 1: Inflection points for the user waiting times (hours).

64 nodes 96 nodes 128 nodes
Case 1 63.02 21.32 5.16
Case 2 40.29 9.82 5.20

215

nodes would produce a gain of one half in the waiting times.
Obviously, the final decision strongly depends on the appli-
cations and the users, who usually pay for the use of the
cloud, so the cloud provider should take into account all of
these aspects to make a final decision.

Broadly speaking, these results provide relevant and
valuable information for the cloud provider, so as to im-
prove the cloud configuration with the goal of increasing
the overall income by adapting the physical resources and
the internal configuration parameters.

5. Conclusions

In this paper, we have studied the impact of the users’
maximum subscription time in three different cloud con-
figurations, considering an infrastructure consisting of 64,
96, and 128 physical machines, respectively. Two models
of workload were analyzed, taking two different distribu-
tion functions for the users’ arrivals, namely, a normal and
a cyclic normal. Thus, in the first case, we analyzed the im-
pact of a single peak in the users’ arrivals, and in the second
case, we considered daily peaks at midday. In this study,
the responsiveness of the cloud was then analyzed, to con-
clude which configurations provide better results according
to the workload submitted and the maximum subscription
times indicated by the users. We concluded that increasing
the number of physical machines and the maximum sub-
scription time produce better responsiveness. However, the
cloud provider must take the final decision, that is, to make
an investment by including more resources to the cloud, or
to reduce the overall cloud performance by increasing the
maximum subscription time for the users.

As future work, we will extend this study by considering
other parameters, such as the offered VMs, the storage sys-
tem and the communication network. We will also consider
some other distribution functions for the user arrivals, such
as the exponential and Erlang distributions. Furthermore,
we plan to include costs in the use of the cloud by the users,
to make a deeper analysis of the profits.

ACKNOWLEDGEMENTS

This work was supported by the Spanish Ministry of
Science and Innovation (co-financed by European Union
FEDER funds) project references RTI2018-093608-B-C32
and RTI2018-095255-B-I00. There was also support
from the Junta de Comunidades de Castilla-La Man-
cha project SBPLY/17/180501/000276/01 (cofunded with
FEDER funds, EU), the Region of Madrid (grant number
FORTE-CM, S2018/TCS-4314), and the Madrid Govern-
ment (Comunidad de Madrid-Spain) under the Multiannual
Agreement with the Complutense University as part of the

Program to Stimulate Research for Young Doctors in the
context of the V PRICIT (Regional Programme of Research
and Technological Innovation) under grant PR65/19-22452.

References

[1] A. Bernal, M. E. Cambronero, A. Núñez, P. C. Cañizares,
and V. Valero. Improving cloud architectures using UML
profiles and M2T transformation techniques. The Journal of
Supercomputing, 75(12):8012–8058, 2019.

[2] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya. CloudSim: a toolkit for modeling and sim-
ulation of cloud computing environments and evaluation of
resource provisioning algorithms. Software: Practice and
Experience, 41(1):23–50, 2011.

[3] F. Fakhfakh, H. H. Kacem, and A. H. Kacem. Simulation
tools for cloud computing: A survey and comparative study.
In IEEE/ACIS 16th International Conference on Computer
and Information Science (ICIS’17), pages 221–226, 2017.

[4] S. K. Garg and R. Buyya. NetworkCloudSim: Modelling
parallel applications in cloud Simulations. In 4th IEEE
International Conference on Utility and Cloud Computing
(UCC’11), pages 105–113, 2011.

[5] H. Khazaei, J. Misic, and V. B. Misic. Performance analy-
sis of cloud centers under burst arrivals and total rejection
policy. In IEEE Global Telecommunications Conference
(GLOBECOM’11), pages 1–6, 2011.

[6] Y. Kouki and T. Ledoux. SLA-driven capacity planning for
Cloud applications. In 4th IEEE International Conference
on Cloud Computing Technology and Science Proceedings
(CLOUDCOM’12), pages 135–140, 2012.

[7] J. Mateo-Fornés, F. Solsona-Tehàs, J. Vilaplana-Mayoral,
I. Teixidó-Torrelles, and J. Rius-Torrentó. Cart, a decision
sla model for saas providers to keep qos regarding availabil-
ity and performance. IEEE Access, 7:38195–38204, 2019.

[8] A. Núñez, J. Fernández, R. Filgueira, F. Garcı́a, and J. Car-
retero. SIMCAN: A flexible, scalable and expandable simu-
lation platform for modelling and simulating distributed ar-
chitectures and applications. Simulation Modelling Practice
and Theory, 20(1):12–32, 2012.

[9] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G.
Castañé, J. Carretero, and I. M. Llorente. iCanCloud: A
flexible and scalable cloud infrastructure simulator. Journal
of Grid Computing, 10(1):185–209, 2012.

[10] A. Varga and R. Hornig. An overview of the OMNeT++
simulation environment. In 1st International Conference on
Simulation Tools and Techniques for Communications, Net-
works and Systems & Workshops (Simutools ’08), pages 1–
10, 2008.

[11] G. A. F. Vinodhini. Cloud computing as a queue model
with server breakdown. Advances in Mathematics: Scien-
tific Journal, 9(10):8217–8225, 2020.

[12] L. Wu, S. K. Garg, and R. Buyya. SLA-based resource al-
location for software as a service provider (SaaS) in cloud
computing environments. In 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CC-
GRID ’11), pages 195–204, 2011.

[13] B. Yang, F. Tan, and Y.-S. Dai. Performance evaluation of
cloud service considering fault recovery. The Journal of Su-
percomputing, 65(1):426–444, 2013.

216

An Analysis of the State of the Art of Machine
Learning for Risk Assessment in Software Projects

André Sousa1, João Pascoal Faria2, João Mendes-Moreira2
1Master’s in Software Engineering, 2Departament of Informatics Engineering

Faculty of Engineering of the University of Porto
Porto, Portugal

{up201902618, jpf, jmoreira}@fe.up.pt

Abstract—Risk management is one of the ten knowledge
areas discussed in the Project Management Body of Knowledge
(PMBOK), which serves as a guide that should be followed
to increase the chances of project success. The popularity
of research regarding the application of risk management in
software projects has been consistently growing in recent years,
particularly with the application of machine learning techniques
to help identify risk levels or risk factors of a project before
the project development begins, with the intent of improving the
likelihood of success of software projects.

This paper provides an overview of various concepts related
to risk and risk management in software projects, including
traditional techniques used to identify and control risks in
software projects, as well as machine learning techniques and
methods which have been applied to provide better estimates
and classification of the risk levels and risk factors that can be
encountered during the development of a software project. The
paper also presents an analysis of machine learning oriented risk
management studies and experiments found in the literature as
a way of identifying the type of inputs and outputs, as well as
frequent algorithms used in this research area.

Index Terms—Risk Management, Risk Assessment, Software
Projects, Machine Learning, Classification

I. INTRODUCTION

According to the Project Management Body of Knowledge,
a project risk is “an uncertain event which, if it occurs, has a
positive or negative effect on one or more project objectives”
[1]. Software projects are notoriously complex development
activities, and thus the concept of risk cannot be ignored when
considering this type of projects.

In 2015, the Standish Group International’s CHAOS Report
[2], a study of the success of software projects, reported a
29% success rate for the roughly 5000 projects investigated.
A project is considered successful if it is completed within its
allocated budget, original delivery deadline, and with all of
the features that were planned at the start of its development
life cycle [3]. It also reported a 19% failure rate for the set of
projects investigated, meaning the projects suffered from cost
or time overruns, or lacked content that was initially specified.

However, it is in the category of challenged projects that
we can find the largest percentage of projects. From 2011 to
2015, 49%, 56%, 50%, 55%, and 52% of the software projects,
respectively, were considered challenged, meaning they were

DOI reference number: 10.18293/SEKE2021-097

completed but either over-budget, over the allocated time esti-
mates, or offering fewer features than originally planned. The
consistently high percentage of challenged projects indicates
that there is room for improvement in the success rate of a
large amount of these projects. This is where the concepts of
risk and risk management are important to consider.

Risk management is a process used for early identification,
analysis, planning, and control of risks in a project [4], with
the goal of minimizing negative risks and maximizing positive
risks [5], also referred to as opportunities. By identifying
the risks and creating mitigation plans to deal with them if
they occur before the project development starts rather than
coming up with strategies to deal with risks in the moment
they materialize, project managers and development teams are
better prepared to handle risks and their effects on a project,
which in turn can lead to more projects being completed on
time and within their allocated budgets. However, it is typically
the first activity to be removed from the project management
activities when a project falls behind schedule [6].

In recent years, there has been an increasing use of machine
learning algorithms and techniques for risk assessment, par-
ticularly supervised learning ones where the model is trained
using a data set, and then the same model is used to predict
information on a new set of data (in this area, it could be
to predict possible risk factors of a project based on its
characteristics, such as team members, time, and allocated
budget). Commonly used algorithms for supervised learning
include Decision Trees, Naive Bayes classifiers (NB), Neural
Networks (NN), and Support Vector Machines (SVM).

The purpose of this paper is to provide an overview of
the state-of-the-art in topics related to risk and risk man-
agement with regards to their application in the management
of software projects, including traditional processes as well
as the growing application of machine learning techniques
to tackle the problems associated with risk assessment in
software projects. The remaining sections of the paper are
structured as follows. An overview of the concepts of risk and
risk management in software projects, and different types of
risks and risk management processes are presented in section
2. In section 3, a literature review of the application of ma-
chine learning techniques for risk management is performed,
showing examples of their use in the prediction of risk levels
of software projects. Lastly, section 4 concludes the paper.

217

II. RISK AND RISK MANAGEMENT IN SOFTWARE
PROJECTS

Risk in software projects can be seen as “the potential that a
chosen action or activity will lead to a loss or an undesirable
outcome” [5]; “a set of factors or conditions that can pose
a serious threat to the successful completion of a software
project” [7]; or “the probability and impact of an event on a
project” [8]. From these definitions, it is possible to identify
some common themes, such as a risk possibly leading to a
loss. In a software project, a loss can manifest itself through
lower quality of the final product, increased costs, changes to
the release date of the product, or, in a worst-case scenario,
failure and cancellation [9].

Software projects can be impacted by various types of risks
[10]:

• Technical risks - problems with the programming lan-
guages and frameworks of choice, project size, or pro-
cesses. This type of risk can occur as a result of lack of
experience or lack of maturity of the technologies used.

• Management risks - these risks can occur due to prob-
lems in communication with top management and cus-
tomers, lack of planning, or lack of project management
experience.

• Financial risks - problems regarding budget, cash flow,
or doubts about the return on investment of the project.

• Contractual and legal risks - problems regarding ad-
justing the schedule or the requirements to fit the market,
government regulations, or health and safety problems.

• Personnel risks - these can be due to conflicts among
staff, ethical and moral issues, or productivity issues
resulting from a combination of the aforementioned risks.

• Other resource risks - these occur due to situations that
are generally not a responsibility of the project team, such
as unavailability of computer resources or equipment.

When it comes to the most frequent specific risks in
software projects, Boehm, regarded by many as one of the
most important authors in this research area, listed risks such
as personnel shortfalls, unrealistic schedules and budgets, and
developing the wrong functions and/or user interface as some
of the most frequent risks that have a direct effect on the
success of software projects [8].

The high percentage of challenged projects seen in the Stan-
dish Group International’s CHAOS reports [2] is consistent
with the information presented by Boehm [8], as the first and
second most frequent risk items listed (personnel shortfalls
and unrealistic schedules and budgets) are directly related
to the concept of challenged projects, and often come as a
consequence of the majority of the remaining risk items listed
occurring during the development of a project.

To reduce the high percentage of challenged projects in
the software industry, project managers must consider a wide
variety of knowledge areas in order to manage their projects
towards successful completion. One of those areas is risk
management, as risks can be identified in various areas of
a software project. In a software development project, risks

can be influenced by the business domain, the business style,
culture of the organization, and characteristics of the members
involved in the project [11], so it is important to identify
risks according to the environment in which the project is
being developed. To facilitate this process, risk factor and
item classifications found in the literature can be used. These
classifications usually list the most frequent risk items that
can affect a project’s path towards success, and teams can use
these to evaluate if there is a possibility of any of those risks
occurring during the development of their own projects, and
if so, what could be their impact on the project. Essentially,
those are the 2 parts that make up a risk: the likelihood of the
risk happening, and the degree of impact it has on the project
if it does occur.

Wallace’s categorization [7] of risk items according to six
risk dimensions (Team, Organizational Environment, Require-
ments, Planning and Control, User, and Complexity) is still
widely used in this research area. Not only does it present
common risk items in software projects, but by grouping
them according to a specific dimension within the areas that
project managers have to consider in the development of a
software project, it makes it so they can identify what areas
are more likely to be problematic throughout the course of the
development of the project and prepare their risk management
strategies accordingly.

Those are just some examples of risk classifications that
can negatively affect specific areas during the development of
a software project. In reality, there are a lot more risks that
can be identified, and doing it at an early stage of the project
(ideally before development starts) is crucial for a successful
development life cycle, as it means the project manager as
well as the development team can start to plan actions to take
if these risks materialize during the project development.

A good way of classifying the identified risks according to
their priority is through the use of a portfolio chart, such as
the one presented by Dr. Ernest Wallmüller [12], which can
be seen in table I.

TABLE I
RISK PRIORITIES ACCORDING TO THEIR PROBABILITY AND IMPACT

Impact
High B A A
Medium C B A
Low C C B

Low Medium High Probability

Identifying, classifying, and prioritizing actions for risks
according to their priority are just some of the phases of a
process called risk management, which is defined by Standard
ISO/IEC/IEEE 24765:2010 as “an organized process for” iden-
tifying and handling risk factors; assessing and quantifying the
identified risks; and developing plans to deal with the identified
risks [13].

In a very simplified way, the goal of risk management is
to increase the probability of positive events on a software
project, while at the same time decreasing the probability
of negative events on the same project [4]. To do that, risk

218

management is often divided into two key activities: risk
assessment and risk control, which are composed of more
specific steps.

In [8], Boehm split risk assessment into three phases -
identification, analysis, and prioritization - and risk control
into three other phases: management planning, resolution (or
mitigation), and monitoring. Other researchers may change the
categories to which these steps belong to, such as in [14],
where risk assessment is made up of phases for identification,
analysis, prioritization, planning, and resolution, and risk con-
trol is made up of only one phase, which is monitoring, but
the key concepts and phases remain the same.

Risk assessment begins with the risk identification phase,
where a list of risk items related to the project that have
a higher chance of affecting the success of the project is
created. Common techniques in this phase include checklists
and decision-driven analysis. Afterwards, the loss probability
and impact of each identified risk item is assessed in the risk
analysis phase. Analysis of factors such as quality, reliability,
and availability is a common task in this phase. However, there
is usually some uncertainty when it comes to estimating the
losses that are a result of the occurrence of a risk [8], so
the assessments done are very often subjective, and often the
result of interviewing domain experts [8]. Next, in the risk
prioritization phase, the identified risks are ordered through
the use of techniques such as the analysis of risk exposure
and risk reduction.

With the first three phases of risk management (according
to Boehm) completed, the risk control activities can begin
with the risk management planning step, which addresses
the risk items identified through processes such as buying
information (e.g., investing in a prototype to better understand
the specific risk), risk avoidance, risk reduction, risk transfer,
and risk plan integration. Common techniques used in this
step are checklists of risk-resolution techniques, cost-benefit
analysis, and risk management plan outlines. Afterwards, in
the risk resolution phase, the identified risk items are analyzed
and decisions are taken regarding what action to take against
the risks in order to mitigate them. Boehm identified several
fundamental risk mitigation strategies, such as understanding
the risk or removing the risk from the project’s critical path
[4].

Lastly, in the risk monitoring phase, the project’s progress
is tracked towards completion by resolving the previously
identified risk items and taking corrective action whenever
necessary through the use of techniques such as milestone
tracking and risk assessment.

Boehm’s risk management model is frequently referenced
in the literature, but there are several other traditional risk
management models and processes that can be found in the
literature. The authors in [15] analyzed several risk manage-
ment models and processes, such as:

• Team Risk Management (TRM) [16] - risks are man-
aged in the full software development life cycle, and all
members and stakeholders are involved, improving the ef-
ficiency of the decision-making process. TRM frequently

ensures continuous risk management through regular re-
views and monitoring of the implemented processes.

• Softrisk management technique [17] - this technique
is constructed on the basis of documentation and gives
special focus to extreme risks by focusing on what can be
leading to those risks. Re-estimation, re-prioritization, re-
assessment, and re-documentation are performed to also
guarantee continuous risk management.

• Wallmüller’s Risk Management Process [12] - risk
management activities are conducted by the project team
at the same points where the cost, time, quality, and re-
quirement management activities are performed. A major
point of difference compared to the previous models is the
introduction of risk management roles which are assigned
to different members of the team, thus making sure the
entire team contributes to the risk management tasks and
is up-to-date on the status of risks in the project.

There is another area that has been gaining a tremendous
amount of attention, particularly in recent years, with the goal
of improving risk management processes in software projects,
and that is the application of machine learning techniques and
methods to improve the risk management workflow in software
development companies.

III. LITERATURE REVIEW OF MACHINE LEARNING
APPROACHES IN RISK MANAGEMENT

Machine learning in risk management has obtained increas-
ing popularity in recent years, and a lot of different approaches
have been used. For the purposes of the analysis of the state
of the art performed in this paper, the focus was on finding
practical applications of machine learning to predict possible
project risks or an overall risk level of a project. From there, it
was possible to identify not only some of the most frequently
used algorithms and evaluation metrics, but also the type of
information used as inputs used to train the models.

Throughout the creation of this paper, bibliographic
databases such as Scopus and DBLP were used to search
for various articles, scientific papers, and surveys related to
this topic. Searches were performed using keywords such as
“risk assessment”, “machine learning”, and lastly “software
projects” to reduce the scope of the results to the application
of machine learning for risk assessment specifically in the
software development industry. By reading the abstracts and
briefly analysing the contents of the search results, the ones
that were considered more relevant were read and analysed in
more detail. Some examples of studies and experiments done
in this research area are described below, and can be seen in
greater detail in terms of inputs and outputs used in table II.

In [18], an Artificial Neural Network model was created
to predict deviations in new software projects. The inputs to
the model were the risk factors detected in the projects, and
the outputs were the differences found in time, budget, and
number of personnel, number of completed work packages,
and success of the project under investigation. This experi-
ment showed the applicability of Neural Networks when the
intended information spans more than one category (in this

219

case, the deviations in five attributes related to the project), as
well as the fact that the model can have a great performance
and accuracy, as seen in its results.

A Neural Network model was also created in [19], together
with a Support Vector Machine model to compare both ap-
proaches and their accuracy in evaluating the risk level of
software projects. The input used was a vector of risk factors
of 120 software projects, collected after several interviews
with experts in the industry, which were then grouped ac-
cording to six different risk categories (Environment Com-
plexity, Project Requirement Complexity, Cooperation, Team,
Project Management, and Engineering). The output was the
predicted outcome of the project (“successful”, “failed”, or
“challenged”). The Support Vector Machine model had a
higher accuracy compared to the Neural Network method
(80% vs %70, respectively) due to NN’s tendency in finding
a local optima [19], but after changes were made to the NN
method by optimizing it with a Genetic Algorithm (GA), this
made it so the NN-GA method surpassed SVM in accuracy
(85% vs 80%, respectively) by reducing the search for a local
optima.

In [20], the author proposes a Neural Network architecture
with a back propagation algorithm to learn the patterns of
a data set of projects completed in the past, which also
includes 22 project risk factors of areas such as estimations,
requirements (e.g., frequent changes to requirements), and
team organization (e.g., lack of skills or experience). The
output of the model was a classification of the risk level
of the project: “risky” or “not risky”. The model developed
was found to have a higher accuracy and sensitivity when
compared to a Logistic Regression model developed from and
applied on the same data set.

The authors in [11] developed an approach to predict
runaway projects (projects that greatly exceed budget and
deadlines and have failed to produce an acceptable deliverable)
in an organization through the use of a questionnaire to iden-
tify the characteristics of projects, and then classify them into
“runaway” or “success” projects through the use of a Naive
Bayes classifier. These characteristics are classified according
to five different categories: requirements (e.g., ambiguity of re-
quirements), estimations (e.g., lack of stakeholders present for
estimation process), planning (e.g., unspecified milestones),
team organization (e.g., lack of skills or experience), and
project management (e.g., inadequate project monitoring). 10-
fold cross validation was used to evaluate the effectiveness of
their solution, showing a predictive accuracy of 82.5%, with
33 out of 40 projects classified correctly.

Bayesian classifiers were also used in [21] and [22]. In
the former, a Bayesian Belief Network (BBN) was used to
build a software risk estimation model that was used for the
main software risk indicators for risk assessment in software
projects. In the latter, a model was created using a Bayesian
network with causality constraints to identify and analyze
risks in software development projects through data collected
from 302 software projects. The authors found that it had
an accuracy of 1% to 7% higher than the other models

tested (Logistic Regression, Decision Tree, and Naive Bayes),
which they attributed to the incorporation of expert domain
knowledge and causality discovery into the BBN.

In [23], the authors used a Support Vector Machine to model
risk classification in software projects. The model classified
projects as either high risk or low risk. SVM was also used
in [24] to predict the risk level of different projects as either
“low”, “medium”, or “high”. A Neural Network was used for
comparison, and the authors found that the SVM was more
accurate (85% accuracy of SVM compared to 75% of the NN).

Multiple Logistic Regression was used in [25] to classify
different characteristics of software projects as either a “risk”
or a “non risk”. The input data was obtained through question-
naires sent to experts in the software project development and
management fields, which asked them to classify risk factors
from 8 categories (User, Requirements, Estimations, Cost,
Schedule, Planning and Control, Team, Software) according
to their risk level on a scale from 1 to 5.

Lastly, the authors in [26] used Logistic Regression to
classify projects as either “risky” or “not risky”. Responses
to a questionnaire focusing on 5 viewpoints of key risk
factors (Requirements, Estimations, Planning, Organization,
Management) were used as the input data, and the model
developed classified 35 out of 40 projects correctly.

As can be seen, there are a lot of possibilities when it comes
to machine learning models that can be used to predict risks
in software projects. However, there are definitely areas in
this field that can be explored further in order to improve the
applicability of machine learning models for risk assessment.

Some of the papers presented in table II compare different
machine learning algorithms (e.g., [19] and [24]) with the
goal of comparing their predictive performance in the context
of a specific problem. However, a greater focus should be
placed in also comparing them in terms of interpretability
and the performance trade-offs involved in more interpretable
algorithms.

Interpretability in machine learning is defined as “the degree
to which a human can understand the cause of a decision”
[27]. Interpretable machine learning models make it easier to
understand not only the prediction made by the model, but
more importantly why that prediction was made. If a prediction
does not match what was initially expected, developers can
use this information to identify possible issues in the data
set, the model, or possibly both. However, there is a trade-
off involved with interpretable machine learning algorithms,
namely the fact that predictive performance tends to be lower
with these algorithms.

Additionally, considering the popularity of project manage-
ment software such as JIRA and Asana, one of the next areas
of focus in this research field could be the creation of machine
learning models that can be integrated with these tools. This
integration with tools used for daily project management tasks
could make it so risk management becomes just another step
in the project management cycle, rather than a process which
requires a large overhaul in an organization’s workflow in
order to integrate it in their processes.

220

TABLE II
STUDIES AND EXPERIMENTS ON THE USE OF MACHINE LEARNING TECHNIQUES FOR RISK ASSESSMENT

Reference Inputs Outputs Algorithm(s) Evaluation metric(s)

A Novel Model for Risk Estimation
in Software Projects using Artificial
Neural Network [18]

45 risk factors of 20 software projects (70%
of data used for training, 30% for testing)

Deviations in project duration, cost,
number of personnel, completed work
packages, project success

Neural Network

Training R1= 0.9978
Testing R = 0.9935
Validation R = 0.996
MSE2 = 0.001

Software Project Risk Management
Modelling with Neural Network and
Support Vector Machine Approaches [19]

Data of 120 software projects collected through
questionnaires distributed in cities in China (83.3%
of data used for training, 16.7% for testing)

Classification of projects as either
“successful”, “challenged”, or “failed”

Neural Network Accuracy = 70%
Genetic Algorithm NN Accuracy = 85%
Support Vector Machine Accuracy = 80%

Discriminating Risky Software Project
Using Neural Networks [20]

22 attributes of 40 projects in the OMRON
database (80% of data used for training, 20% for
testing)

Risk level of the project - “risky” or
“not risky”

Neural Network

Accuracy = 82.2%
Precision = 81.82%
TPR3 = 81.82%
TNR4 = 82.61%

Logistic Regression

Accuracy = 87.5%
Precision = 100%
TPR = 66.7%
TNR = 100%

An Empirical Evaluation of Predicting
Runaway Software Projects Using
Bayesian Classification [11]

Responses on a 4 point Likert scale to a
questionnaire focusing on 5 viewpoints of
key risk factors in 40 SSBC projects (10-fold
cross-validation used for testing)

Project classification as either “runaway”
or “success” Bayesian classifiers Accuracy = 82.5%

A Probabilistic Software Risk
Assessment and Estimation
Model for Software Projects [21]

Assessment of 27 risk factors (low, medium
or high) in 12 software projects

Probability of the project being of low,
medium, or high risk Bayesian classifiers MMRE5 = 0.03842

BMMRE6 = 0.03911

Software Project Risk Analysis using
Bayesian Networks with Causality
Constraints [22]

Software project data from 302 projects collected
through questionnaires (10-fold cross-validation
used for testing)

Classification of project’s performance
based on risks identified as “low” or “high”

Bayesian network with
causality constraints Accuracy = 75.15%

Decision Trees Accuracy = 70.86%
Naive Bayes Accuracy = 72.85%
Bayesian classifiers Accuracy = 74.17%

Classification of Risk in Software
Development Projects using Support
Vector Machine [23]

530 samples of a data set created from
information of software development
projects (70% of data used for training
and 30% for testing)

Project risk classification as either
“low risk” or “high risk” Support Vector Machine Accuracy = 99.51%

AUC7 = 98%

An Intelligent Model for Software
Project Risk Prediction [24]

64 risk factors of data from 120 projects (83.3%
of data used for training, 16.7% used for testing)

Classification of projects as either
“successful”, “challenged”, or “failure”

Neural Network Accuracy = 75%
Support Vector Machine Accuracy = 85%

Prediction of Risk Factors of Software
Development Project by Using
Multiple Logistic Regression [25]

Data obtained from questionnaires regarding
the risk level of 70 software projects

Classification of characteristics of a
software project as “risk” or “non risk” Multiple Logistic Regression Accuracy = 90%

An Empirical Approach to Characterizing
Risky Software Projects Based on
Logistic Regression Analysis [26]

Responses on a 4 point Likert scale to a
questionnaire focusing on 5 viewpoints
of key risk factors in 40 SSBC projects

Classification of projects as either
“risky” or “not risky” Logistic Regression Accuracy = 87.5%

1 Defined by the authors as Regression value, indicating the correlation between the predicted values and the observed values. A higher value indicates better results.
2 Mean Squared Error. A smaller value indicates better results.
3 True Positive Rate - the percentage of positive cases that were correctly identified. A higher value indicates better results.
4 True Negative Rate - the percentage of negative cases that were correctly classified. A higher value indicates better results.
5 Mean Magnitude of Relative Error. A lower value indicates better predictive performance.
6 Balanced Mean Magnitude of Relative Error. Due to the fact that MMRE penalizes overestimates more than underestimates, a balanced MMRE is also used in this experiment. As with MMRE, a lower value
indicates better predictive performance.
7 Area Under the ROC Curve - the probability of the model ranking a random positive example higher than a random negative one. AUC returns a value between 0 and 1, where the higher the AUC, the better
the model is at distinguishing positive and negative classes.

221

Lastly, the use of accuracy as the sole evaluation metric to
assess the quality of the models developed (e.g., [19], [25],
[26]) is sometimes not enough. The usefulness of accuracy
as an evaluation metric depends on the balance of the classes
in the problem at hand. As an example, if there are three
possible risk levels (e.g., low, medium, and high) to choose
from in the data set’s dependent variable, and 70% of the
samples are of class “low”, 10% are of class “medium”, and
the remaining 20% are of class “high”, the model can easily
obtain a high training accuracy by just predicting the majority
of the testing samples to be of class “low”. In classification
problems, additional metrics such as AUC, True Positive Rate,
and True Negative Rate should also be closely looked at to
determine if the model is truly returning good results, or if
it is only achieving a high accuracy by predicting the testing
samples as being of the majority class most of the time.

IV. CONCLUSION

As software projects can face a lot of different problems
before they are released to the market, it is important to at
least identify possible risks that can occur before development
starts, making it possible to start planning risk management
and mitigation strategies if the risks materialize, rather than
dealing with the problems as they appear. Risk management in
software projects is a research area with consistently growing
popularity, especially when combined with machine learning
approaches to create models that can identify or predict risks
before project development starts, with the goal of identifying
risks in a software project, and ultimately develop and imple-
ment strategies to prevent or limit the impact of the identified
risks if they materialize during the project’s development.

Explainable AI is also a research field with increasing
research that should be considered to explain the prediction of
black-box models, such as Neural Networks or Support Vector
Machines. One of the next steps in this research area should
be to focus on understanding the predictions that are made
by the models by using interpretable models or black-box
models but, in the latter case, with their predictions explained
by explainable AI. Which would be the best?

Lastly, the creation of machine learning models in software
packages that can then be integrated with popular project
management tools such as JIRA or Asana should be analysed
more closely.

REFERENCES

[1] PMI, A Guide to the Project Management Body of Knowledge (PMBOK
Guide), 4th Edition. Project Management Institute, 2008.

[2] T. S. Group, “Chaos report 2015,” 2015. [Online]. Available: https://
standishgroup.com/sample research files/CHAOSReport2015-Final.pdf

[3] M.-Y. Hsieh, Y.-C. Hsu, and C.-T. Lin, “Risk assessment in new software
development projects at the front end: a fuzzy logic approach,” Journal
of Ambient Intelligence and Humanized Computing, vol. 9, 04 2016.

[4] B. Boehm, “Software project risk and opportunity management,” Soft-
ware Project Management in a Changing World, pp. 107–121, 03 2014.

[5] P. Chawan, J. Patil, and R. Naik, “Software risk management,” Inter-
national Journal Of Computers & Technology, vol. 6, pp. 60–66, 05
2013.

[6] Y. Kwak and J. Stoddard, “Project risk management: Lessons learned
from software development environment,” Technovation, vol. 24, pp.
915–920, 11 2004.

[7] L. Wallace, M. Keil, and A. Rai, “Understanding software project risk:
a cluster analysis,” Information & Management, vol. 42, no. 1, pp. 115
– 125, 2004. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0378720604000102

[8] B. Boehm, “Software risk management: principles and practices,” IEEE
Software, vol. 8, pp. 32–41, 1991.

[9] R. C. Williams, G. J. Pandelios, and S. Behrens, “Software risk evalu-
ation (sre) method description (version 2.0),” 2000.

[10] L. Westfall, “Defining software risk management,” 2001. [Online].
Available: http://www.westfallteam.com/sites/default/files/papers/risk
management paper.pdf

[11] O. Mizuno, T. Hamasaki, Y. Takagi, and T. Kikuno, “An empirical eval-
uation of predicting runaway software projects using bayesian classifi-
cation,” in Product Focused Software Process Improvement, F. Bomarius
and H. Iida, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 263–273.

[12] E. Wallmüller, “Risk management for it and software projects,” 01 2002,
pp. 165–178.

[13] M. Felderer, F. Auer, and J. Bergsmann, “Risk management during
software development: Results of a survey in software houses from
germany, austria and switzerland,” 04 2017, pp. 143–155.

[14] T. Hussain, “Risk management in software engineering: What still needs
to be done,” in Intelligent Computing, K. Arai, S. Kapoor, and R. Bhatia,
Eds. Cham: Springer International Publishing, 2019, pp. 515–526.

[15] M. Pasha, G. Qaiser, and U. Pasha, “A critical analysis of software risk
management techniques in large scale systems,” IEEE Access, vol. PP,
pp. 1–1, 02 2018.

[16] R. Higuera, D. Gluch, A. Dorofee, R. Murphy, J. Walker, and
R. Williams, “An introduction to team risk management. (version 1.0),”
p. 55, 05 1994.

[17] M. F. Rabbi and K. Mannan, “A review of software risk management
for selection of best tools and techniques,” 09 2008, pp. 773–778.

[18] M. H. Calp and M. A. Akcayol, “A novel model for risk estimation
in software projects using artificial neural network,” in Artificial Intelli-
gence and Applied Mathematics in Engineering Problems, D. J. Hemanth
and U. Kose, Eds. Cham: Springer International Publishing, 2020, pp.
295–319.

[19] Y. Hu, J. Huang, J. Chen, M. Liu, and K. Xie, “Software project risk
management modeling with neural network and support vector machine
approaches,” in Third International Conference on Natural Computation
(ICNC 2007), vol. 3, 2007, pp. 358–362.

[20] W.-M. Han, “Discriminating risky software project using neural
networks,” Computer Standards & Interfaces, vol. 40, pp. 15 – 22,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0920548915000136

[21] C. Kumar and D. K. Yadav, “A probabilistic software risk assessment and
estimation model for software projects,” Procedia Computer Science,
vol. 54, pp. 353 – 361, 2015, eleventh International Conference
on Communication Networks, ICCN 2015, August 21-23, 2015,
Bangalore, India Eleventh International Conference on Data Mining
and Warehousing, ICDMW 2015, August 21-23, 2015, Bangalore, India
Eleventh International Conference on Image and Signal Processing,
ICISP 2015, August 21-23, 2015, Bangalore, India. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915013654

[22] Y. Hu, X. Zhang, E. Ngai, R. Cai, and M. Liu, “Software project risk
analysis using bayesian networks with causality constraints,” Decision
Support Systems, vol. 56, pp. 439 – 449, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167923612003338

[23] M. Zavvar, A. Yavari, S. M. Mirhassannia, M. R. Nehi, and A. Yanpi,
“Classification of risk in software development projects using support
vector machine,” Journal of Telecommunication, Electronic and Com-
puter Engineering, vol. 9, pp. 1–5, 2017.

[24] Y. Hu, X. Zhang, X. Sun, M. Liu, and J. Du, “An intelligent model for
software project risk prediction,” vol. 1, 12 2009, pp. 629–632.

[25] T. Christiansen, P. Wuttidittachotti, P. Somchai, and S. Vallibhakara,
“Prediction of risk factors of software development project by using
multiple logistic regression,” ARPN Journal of Engineering and Applied
Sciences, vol. 10, pp. 1324–1331, 01 2015.

[26] Y. Takagi, O. Mizuno, and T. Kikuno, “An empirical approach to char-
acterizing risky software projects based on logistic regression analysis,”
Empirical Software Engineering, vol. 10, pp. 495–515, 10 2005.

[27] C. Molnar, Interpretable Machine Learning, 2019, https://christophm.
github.io/interpretable-ml-book/.

222

https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
http://www.sciencedirect.com/science/article/pii/S0378720604000102
http://www.sciencedirect.com/science/article/pii/S0378720604000102
http://www.westfallteam.com/sites/default/files/papers/risk_management_paper.pdf
http://www.westfallteam.com/sites/default/files/papers/risk_management_paper.pdf
http://www.sciencedirect.com/science/article/pii/S0920548915000136
http://www.sciencedirect.com/science/article/pii/S0920548915000136
http://www.sciencedirect.com/science/article/pii/S1877050915013654
http://www.sciencedirect.com/science/article/pii/S0167923612003338
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Towards a Comprehensive Understanding of Agile
Teamwork: A literature-based Thematic Network

Arthur Freire∗, Manuel Neto∗, Mirko Perkusich∗, Alexandre Costa∗,
Kyller Gorgônio∗, Hyggo Almeida∗, Angelo Perkusich∗

∗ Intelligent Software Engineering (ISE) Group @ VIRTUS, Federal University of Campina Grande
Emails: {arthurfreire, manuel}@copin.ufcg.edu.br

and {mirko, alexandre.costa, kyller, hyggo, perkusic}@virtus.ufcg.edu.br

DOI reference number: 10.18293/SEKE2021-106

Abstract—
Agile Software Development (ASD) has become the mainstream
software development method of choice. Its core fundamentals
are based on Teamwork factors and the higher value it gives
to individuals and their interactions over processes and tools.
Teamwork and human factors have been addressed as essen-
tial topics in the literature, and researchers have stated the
importance of measuring it to increase the chances of success
of ASD projects. However, there is no common understanding
regarding the factors that should be considered for defining an
ASD Teamwork construct. Driven by this problem, this paper
presents a thematic network that defines the themes (i.e., factors)
that should be considered when addressing ASD Teamwork. The
ASD Teamwork thematic network is the result of a process that
consisted of (i) defining the studies used as a data source through
a literature review; (ii) extracting data from these studies; (iii)
translating this data into codes; (iv) translating the codes into
themes; (v) creating the model of higher-order themes; and,
(vi) assessing the trustworthiness of the synthesis. The resulting
thematic network comprises four higher-level themes: Cohesion,
Orientation, Shared Leadership, and Autonomy. We believe that
the constructed thematic network can be generalized to ASD
and used as the basis by researchers who intend to explore
ASD Teamwork. Further, practitioners can use our results to
understand agile teams’ dynamics better and improve their
efficiency.

Index Terms—Teamwork; Agile Software Development; Agile;
Thematic Network; Construct

I. INTRODUCTION

According to Hoda et al. [1], Agile Software Development
(ASD) has become the mainstream development method of
choice. The main reason for adopting ASD is its capability
to respond to environmental changes, such as requirements,
quickly. Usually, agile initiatives embrace iterative develop-
ment, which means dividing the delivery process into short
iterations, allowing requirements to be refined on a regular
basis [2].

Additionally, to enable responsiveness to change, the Agile
Manifesto [3] states that ASD values individuals and interac-
tions more than processes and tools [4]. The team’s importance
in ASD is evidenced by the Agile Manifesto having six out
of the twelve principles directly related to the team (i.e., in-
dividuals). Moreover, other researchers have recently assessed
the relationship of team members’ personality on Teamwork
quality (TWQ) in the context of ASD [5].

Research has shown that TWQ has a positive impact on
team development [6], [7], and is, consequently, essential for
succeeding with ASD [8], [9], [10], [11], [12]. Batista et
al. [13] discussed that the effective combination of individual
parts, often carried out by software development teams, re-
quires interactions among team members and the coordination
of interdependent individual and team level tasks. Given its
impact, researchers argued about the importance of assessing
TWQ to increase the chances of succeeding with ASD [13],
[14].

In this context, researchers have proposed instruments for
assessing ASD Teamwork quality. Moe et al. [15] presented a
Radar Plot that considers five dimensions for assessing TWQ:
Shared Leadership, Orientation, Redundancy, Learning, and
Autonomy. Lindsjørn et al. [16] presented a Structural Equa-
tion Model, based on a differentiated replication [17] from [6],
which considered that the Teamwork construct is comprised
of six variables: Communication, Coordination, Balance of
Member Contribution, Mutual Support, Effort, and Cohesion.
Finally, Freire et al. [14] proposed a Bayesian networks-
based model with 16 variables, which had its practical utility
positively assessed in a case study.

Unfortunately, there is still no common understanding of
what factors should be considered in the ASD Teamwork con-
struct. Except for the instrument proposed by Freire et al. [14],
which claimed to have considered the factors presented in
Lindsjørn’s et al. [16] and Moe’s et al. [15] instruments, there
is no direct similarity between any of the ASD Teamwork
factors in these last two instruments. Even though Freire et
al. [14] considered factors from the other two instruments, it
does not contain them all; it does not include the variable
Balance of Member Contribution, which is part of the ASD
Teamwork construct presented in [16]. Moreover, except from
the ASD Teamwork factors presented in [14], we did not find
other study in the literature that presented a similar list based
on the literature. Therefore, we believe that there is still a need
to develop a comprehensive and shared understanding of the
essential factors included in the ASD Teamwork construct.

To address this gap, we identified the ASD Teamwork
factors presented in the literature through thematic analysis,
following the guidelines presented by Cruzes and Dyba [18].
This paper presents the employed methodology and the re-
sulting thematic network, which comprises the factors (i.e.,

223

themes) for ASD Teamwork and their relationships.
The remainder of this paper is organized as follows.

Section II presents necessary background and related work.
Section III presents the employed methodology. Section IV
describes the resulting thematic network. Section V discusses
this study’s findings in light of its implications for research and
practice. Section VI discusses this study’s threats to validity.
Finally, Section VII presents our final remarks.

II. BACKGROUND AND RELATED WORKS

Freire et al. [14] present a Bayesian networks-based model
to assess and improve the TWQ in the ASD context. To
build the model, the authors listed many ASD Teamwork key
factors extracted from the literature. Based on the knowledge
of an expert and the resulting list, they used reasoning on
a top-down approach - starting with the target node (i.e.,
Teamwork quality) - breaking down higher-level factors into
others they judged more observable. In [14], the authors also
present the results of a case study in which their instrument’s
practical utility was assessed. They concluded that their model
helps agile teams assess TWQ and identify improvement
opportunities, is easy to learn, and the cost-benefit for using
it with the proposed procedure is positive.

Lindsjørn et al. [16] presented a Structural Equation Model
instrument, based on a differentiated replication [17] from
a study of Hoegl and Gemuenden [6], which considered
that the Teamwork construct is comprised of six variables:
Communication, Coordination, Balance of Member Contribu-
tion, Mutual Support, Effort, and Cohesion. Lindsjørn et al.
assumed that study presented in [6] focused on traditional
software development methodologies and analyzed how the
theory presented in it applies to ASD. As a result, they
concluded that the quality of the Teamwork is a major factor
in improving team performance, especially for the product’s
quality.

Moe et al. [15] propose a Radar plot-based instrument to
help diagnose agile Teamwork, which considers five dimen-
sions: Shared Leadership, Orientation, Redundancy, Learning,
and Autonomy. The instrument was presented to a group of
experts comprised of 35 people. They found the model useful
for understanding team problems, such as the team agreeing
on using test-driven development. According to the authors,
the instrument gives researchers and developers a common
language for discussing Teamwork.

III. RESEARCH METHODOLOGY

This section presents the employed research methodology
and partial results - due to space limitations - of the steps
executed for constructing the proposed thematic network. This
study aimed to understand the factors (or dimensions) of agile
Teamwork. Given this, we defined the following Research
Question (RQ):

RQ: Which themes should be considered when defining
ASD Teamwork?

To answer RQ, we employed a thematic analysis ap-
proach [18]. The employed process can be divided into two

main steps: (i) Data Source Definition and (ii) Thematic
Network Construction. The output of step (i) was used as input
for the employed technique we applied in step (ii). In what
follows, Section III-A describes step (i) and Section III-B, step
(ii).

A. Data Source Definition

The first step was to define our data source, in other words,
identify studies that present ASD Teamwork factors. For this
purpose, we used as the initial set of studies the fifteen studies
pointed by Freire et al. [14] (i.e., seed set). Later, we employed
a Forward Snowballing [19] to identify additional primary
studies. To select the studies to be considered on the Forward
Snowballing, we employed the following inclusion criteria:

1) Published in 2019 or later
2) Written in English
3) Published in a Conference proceedings or Journal as full

papers
4) Focused on industry context (i.e., not considering pa-

pers/studies with students or in the academic context)
5) Presents ASD Teamwork factors
We decided to define stringent criteria to consider a paper

relevant in the Forward Snowballing step because we assumed
our start set to be reliable. Such reasoning follows from it
being based on a previews literature review discussed in Freire
et al. [14]. Further, our goal was not to quantify the frequency
of appearance of a factor in the literature in favor of its
relevance, but to identify high-quality studies that discussed
relevant agile Teamwork factors.

We managed the Forward Snowballing process in an online
Google Spreadsheet (see Appendix Table I)1. For each paper in
the seed set, we used Google Scholar to identify papers that
cited it. Wohlin [19] recommends Google Scholar to avoid
bias in favor of any specific publisher. We filtered the results
given the publication date, including only those published from
2019 and later (i.e., we applied Inclusion criteria #1). For
the resulting papers, we screened them and applied Inclusion
criteria #2, #3, and #4. Finally, we analyzed the resulting
papers’ title and abstract in light of Inclusion criteria #5.

On the first iteration, for the 15 papers in the seed set, we
found 13 other papers, from which only six were considered
relevant. The remaining seven were discarded for the following
reasons: being book chapters or workshop papers, did not
present ASD Teamwork factors, or were related to agile
transition only. Given this, our data source for constructing
the thematic network contained 21 papers.

B. Thematic Network Construction

To build the thematic network, we applied the thematic
analysis process proposed by Cruzes and Dyba [18]. Their
guideline is comprised of five steps: (i) data extraction; (ii)
code data; (iii) translate codes into themes; (iv) create a model
of higher-order themes; and (v) assess the trustworthiness of

1https://doi.org/10.6084/m9.figshare.14214431.v1

224

https://doi.org/10.6084/m9.figshare.14214431.v1

the synthesis. All steps in this process were performed by the
first author and checked by the other authors.

For the data extraction step, step (i), we extracted the
Teamwork factors from the papers in our study’s data source
(see Section [14]), alongside text segments describing or
explaining them. The output was a list of 74 ASD Teamwork
factors that served as input for the next step. In step (ii), we
coded the 74 ASD Teamwork factors’ text segments identified
in step (i) given their naming or description. For example, we
labeled the factors Adaptability, Learning, Learning, and Team
Adaptation into the code Learning in our further steps; while
the factors Team Leadership, Shared Leadership, Leadership
and Shared Responsibility were labelled with the code Shared
Leadership.

Then, in step (iii), we translated the codes into themes. This
step has some similarities with the previous one, given the
mechanism that we adopted: group one or more codes into
a theme representing them all. The themes comprised their
representation into a specific Teamwork area that the authors
judged valid given the codes’ and factors’ description. We
grouped the codes that semantically represented a given theme
and considered the ones that we judged essential to the theme
(i.e., comprised essential attributes for the theme concept). For
instance, we translated the codes Coordination, Performance
Monitoring, Task Novelty, and Familiarity into Coordination.
In this case, we considered that Coordination and Performance
Monitoring have similar definitions (i.e., semantics) with re-
gards to the higher-order theme (i.e., Coordination). For Task
Novelty, according to Marsicano et al. [20], when its value is
low, it is more likely that team members assign work between
them adequately. This concept is also related to the concept
of Familiarity, and according to the previous description of
Task Novelty, we interpreted that they were also related to
Coordination (i.e., task assignment).

After identifying 13 themes, we found that describing the
ASD Teamwork in light of them was complex. Thus, we
executed step (iv) by refining them into higher-order themes.
We started by relating the 13 themes into a higher-order theme
for the overall ASD Teamwork, resulting in a tree scheme, with
ASD Teamwork theme as the root node and the remaining 13
themes as leaf nodes.

Then, we identified new middle-level themes by grouping
the leaf themes given their names and related factors. For
example, we considered Cohesion a higher-order theme that
comprises both Communication and Personality. The reason-
ing behind this is because Cohesion, as described in its related
codes and factors, is directly related to the interpersonal attrac-
tion of team members and their willingness to continue work-
ing together. Based on this, we considered that the exchange
of information between team members (i.e., Communication)
and the mixture of personalities (i.e., Personality) contribute
to it.

Notice that our goal was not to define a cause-consequence
model, considering, for instance, the temporal relationship
between the themes and codes, but to simplify the compre-
hension of ASD Teamwork dimensions. For example, even

though Communication could be related to other themes, we
associated it with the theme with the closest definition.

To perform step (v) and validate the synthesis’s trustworthi-
ness, we reviewed the process we adopted regarding reducing
the bias of the researchers by relying on the description of
codes and factors that comprise the themes based on the
peer-review adopted. Besides, we believe that the themes are
consistent and understandable.

IV. RESULTS

This section presents the identified ASD Teamwork factors
(see Table I) and the resulting thematic network (see Figure 1).
In Table I, each line presents information for an identified code
(i.e., ASD Teamwork factor). For each code, it presents the
relative (i.e., “%” column) and absolute frequency (i.e., “Freq”
column) of the code’s appearance on the seed set. Further, for
improving understandability, column “Distribution” presents a
visual representation of the code’s frequency of appearance.
Finally, column “Themes” displays the theme mapped for
each code. The complete information on the thematic network
process is available in the Appendix.

From this point forward, we explain the reasoning behind
the relations that we have defined for the themes presented in
Figure 1. The resulting thematic network is composed of four
higher-level themes: Cohesion, Orientation, Shared Leader-
ship, and Autonomy. As previously discussed in Section III-B,
the relationship between Cohesion with Communication and
Personality follows from the reasoning that both concepts are
part of Cohesion.

Orientation refers to the team members’ belief in the team
goals’ importance over individual members’ goals and their
propensity to take others’ behavior into account during group
interaction. We considered as sub-themes for this theme:
Feedback, Coordination, Collaboration, and Learning. By
analyzing these themes’ concepts, we noticed that having the
capabilities to coordinate the work among team members (i.e.,
Coordination) in a collaborative environment (i.e., Collabora-
tion) that leverages constant feedback (i.e., Feedback) between
the team members seemed strongly related to keeping team
goals a top priority (i.e., Orientation).

Learning refers to the ability to understand and recognize
deviations and readjust accordingly. Moreover, according to
Ringstad et al. [11], it is also related to the development of
shared mental models. Hence, we judged these capabilities
as fundamental to keeping a good team Learning. Expertise
is directly related to Learning because it comprises concepts
such as Collective Knowledge, Redundancy, Adequate Skills,
and Team Experience with Work, which we judged to be
characteristics that influence the teams’ learning capabilities.

The third higher-level theme is Shared Leadership, which
relates to the provisioning of direction, structure, and support
for the team members, with the responsibility and decision
authority for doing so being shared between the team mem-
bers. We judged that having good Management Mechanisms,
which includes planning, discussing, implementing the re-
quired changes, and evaluating the success and the taken

225

TABLE I
CODES FREQUENCIES AND THEIR RELATED THEMES

Codes % Freq Distribution Themes
Coordination 23.8% 5 [XXXXX]

CoordinationPerformance Monitoring 42.85% 9 [XXXXXXXXX]
Task Novelty 4.75% 1 [X]
Familiarity 4.75% 1 [X]
Culture 19% 4 [XXXX]

Organization CultureStructure 4.75% 1 [X]
Team Size 9.5% 2 [XX]
Organization Support 4.75% 1 [X]
Individual Differences 4.75% 1 [X]

Members PersonalityHeterogeneity 4.75% 1 [X]
Personality 14.3% 3 [XXX]
Management 19% 4 [XXXX]

Management Mechanisms

Planning 4.75% 1 [X]
Discussion 4.75% 1 [X]
Implementation 4.75% 1 [X]
Evaluation 4.75% 1 [X]
Information Radiators 4.75% 1 [X]
Decision Making 4.75% 1 [X]
Orientation 33.33% 7 [XXXXXXX]

Orientation

Value Diversity 4.75% 1 [X]
Goals 9.5% 2 [XX]
Roles 9.5% 2 [XX]
Holistic Team Involvement 4.75% 1 [X]
Team Experience in the Organization 4.75% 1 [X]
Trust 23.8% 5 [XXXXX]
Motivation 4.75% 1 [X]
Norms 9.5% 2 [XX]
Tools knowledge 9.5% 2 [XX]

Expertise
Collective Knowledge 19% 4 [XXXX]
Adequate Skills 4.75% 1 [X]
Redundancy 33.33% 7 [XXXXXXX]
Team Experience with Work 4.75% 1 [X]
Interdependence 4.75% 1 [X] CollaborationCollaboration 33.33% 7 [XXXXXXX]
Shared Leadership 38.1% 8 [XXXXXXXX] Shared LeadershipFormal Leadership 4.75% 1 [X]
Autonomy 19% 4 [XXXX] AutonomyTask Control 4.75% 1 [X]
Awareness 4.75% 1 [X]

FeedbackAcceptance 4.75% 1 [X]
Feedback 14.3% 3 [XXX]
Learning 38.1% 8 [XXXXXXXX] Learning
Communication 42.85% 9 [XXXXXXXXX] Communication
Cohesion 14.3% 3 [XXX] Cohesion

226

Teamwork

Cohesion Orientation Shared
Leadership Autonomy

Communication

Personality

Collaboration
Coordination

Learning Feedback

Management
Mechanisms

Organizational
Culture

Expertise

Fig. 1. ASD Teamwork Thematic Network

decisions, is essential for having working Shared Leadership.
We decided to name this theme as Shared Leadership to adhere
to agile teams’ characteristic of being self-organized.

V. DISCUSSION

This section discusses this study’s main findings and impli-
cations. Section IV presented this study’s resulting thematic
network, which helps organize the knowledge regarding ASD
Teamwork factors. It eases knowledge sharing by defining the
terminology to be used for the ASD Teamwork factors. For
instance, we identified three terms for the factor Redundancy:
Backup, Backup Behavior, and Redundancy.

Further, it provides a better understanding of the interre-
lationships between the factors (i.e., objects) of ASD Team-
work’s knowledge field. However, notice that the proposed
thematic network is not a cause-consequence model; instead,
it comprehensively defines the themes (i.e., dimensions) that
should be approached when describing ASD Teamwork. More-
over, the themes presented in Figure 1 respond our RQ defined
in Section III.

It is intended to be used as a blueprint for both researchers
and practitioners. However, it is not our intention to make the
themes and their relations with ASD Teamwork something that
must be followed as is, but to guide whoever intends to work
towards their relevance based on literature findings.

The proposed thematic network also assists on identifying
gaps in the ASD Teamwork knowledge field. Table I presents
the distribution of occurrences for each of the identified ASD
Teamwork factors. Notice that some factors have a high fre-
quency, such as Performance Monitoring and Communication
with nine appearances, while others only have one, such as
Task Control and Awareness. Such results might indicate that
the higher frequency factors are more important than ones with
fewer, but it might only mean that they have been studied
more. Thus, lines of research might follow from understanding
the frequency distribution of the factors as shown in Table I.

Further, the proposed thematic network could be used to create
a taxonomy for the ASD Teamwork field.

For researchers that intend to advance on the definition
of ASD Teamwork constructs or its measurement, we expect
them to consider all themes presented in our thematic network
and complement or adapt their models/instruments based on
the specific use-cases in which they fall. Taking previous
studies into consideration when advancing the state-of-art is
a premise. However, even the definition of another thematic
network with the same purpose as the one defined in this study
could bring valuable discussions around the topic that would
benefit the academic community.

For practitioners, the thematic network can support their
decision-making process. Practitioners can use it as a reference
for understanding the factors and dimensions that comprise
ASD Teamwork. With this, they can, for example, define
mechanisms to monitor such dimensions and use the collected
data as a reference to drive actions towards improving the
team’s performance. Furthermore, they can also extend our
thematic network to achieve tailored instances to the team’s
context.

VI. THREATS TO VALIDITY

This section discusses this study’s threats to validity follow-
ing the classification proposed by Wohlin et al. [21]: construct,
internal, conclusion, and external validity.

• Construct validity: we analyzed the studies following a
thematic analysis approach, in which multiple researchers
participated to avoid researcher bias. However, we em-
phasize that removing researcher bias in qualitative re-
search is virtually impossible. Thus, it is possible that
the resulting thematic network (Figure 1) and codes
(Table I) are not representative due to the researchers’
interpretations.

227

• Internal validity: to assure credibility in our find-
ings, multiple researchers checked the extracted coding,
themes, and the data presented in Figure 1.

• Conclusion validity: there is the risk that, since there is
a threat to the construct validity of the thematic network,
it influenced the extracted data and, consequently, our
conclusions regarding the relationship between concepts.

• External validity: even though the data source was not a
result of a broad literature review, we believe that it was
representative of the state-of-the-art. Thus, we believe that
the proposed thematic network is representative of agile
TWQ in general. However, it might be possible that for
specific situations, such as initial stages of agility adop-
tion, including the transition from a traditional project
management context, different factors could be included
for ASD Teamwork.

VII. CONCLUSION

This paper presented a thematic network that relates the
main dimensions of ASD Teamwork. The thematic network
consists of four higher-level themes: Cohesion, Orientation,
Shared Leadership, and Autonomy. It also consists of addi-
tional nine themes.

It contributes to the field by defining a common terminology
to be used for ASD Teamwork. It also provides a better under-
standing of the interrelationships between the factors of ASD
Teamwork knowledge field. Thus, it advances the state-of-art
in regards to ASD Teamwork construct definition. Further, it
can support practitioners’ decision-making process by being
a reference for understanding the factors and dimensions of
ASD Teamwork.

The main limitations of this study are related to the re-
searchers’ bias regarding the execution of the thematic network
process explained in Section III-B; and the inclusion and
exclusion criteria restrictiveness of the forward snowballing to
build the data source for the thematic network construction.
However, we still believe that the missing factors would still
fall into the themes that we have defined.

The study identifies several opportunities for future work,
including using the proposed thematic network to build a
Teamwork taxonomy and as the basis for potentially refining
the Teamwork model constructs (or instruments) presented in
Freire et al. [14], Moe et al. [10], and Lindsjørn et al.[16].

REFERENCES

[1] R. Hoda, N. Salleh, and J. Grundy, “The rise and evolution of agile
software development,” IEEE Software, vol. 35, no. 5, pp. 58–63, 2018.

[2] L. Gren, A. Goldman, and C. Jacobsson, “Agile ways of working:
A team maturity perspective,” Journal of Software: Evolution and
Process, vol. 32, no. 6, p. e2244, 2020, e2244 smr.2244. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2244

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas, “Manifesto for agile software development,” http://www.
agilemanifesto.org/, 2001.

[4] L. Gren and P. Lenberg, “Agility is responsiveness to change: An
essential definition,” in Proceedings of the Evaluation and Assessment
in Software Engineering, 2020, pp. 348–353.

[5] A. Gomes, M. Neto, D. C. G. Valadares, M. Perkusich, D. Albuquerque,
H. O. de Almeida, and A. Perkusich, “Evaluating the relationship
of personality and teamwork quality in the context of agile software
development,” in SEKE, 2020.

[6] M. Hoegl and H. G. Gemuenden, “Teamwork quality and the success
of innovative projects: A theoretical concept and empirical evidence,”
Organization science, vol. 12, no. 4, pp. 435–449, 2001.

[7] R. E. Kraut and L. A. Streeter, “Coordination in software development,”
Communications of the ACM, vol. 38, no. 3, pp. 69–81, Mar. 1995.

[8] T. Chow and D.-B. Cao, “A survey study of critical success factors in
agile software projects,” Journal of Systems and Software, vol. 81, no. 6,
pp. 961–971, 2008.

[9] R. M. Fontana, I. M. Fontana, P. A. da Rosa Garbuio, S. Reinehr,
and A. Malucelli, “Processes versus people: How should agile software
development maturity be defined?” Journal of Systems and Software,
vol. 97, pp. 140 – 155, 2014.

[10] N. B. Moe, T. Dingsøyr, and T. Dybå, “A teamwork model for under-
standing an agile team: A case study of a scrum project,” Information
and Software Technology, vol. 52, no. 5, pp. 480 – 491, 2010.

[11] M. A. Ringstad, T. Dingsøyr, and N. Brede Moe, Systems, Software
and Service Process Improvement: 18th European Conference, EuroSPI
2011, Roskilde, Denmark, June 27-29, 2011. Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, ch. Agile Process Im-
provement: Diagnosis and Planning to Improve Teamwork, pp. 167–178.

[12] L. Williams, K. Rubin, and M. Cohn, “Driving process improvement
via comparative agility assessment,” in Proceedings of the 2010 Agile
Conference, ser. AGILE ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 3–10.

[13] A. C. D. Batista, R. M. de Souza, F. Q. B. da Silva, L. de Almeida Melo,
and G. Marsicano, “Teamwork quality and team success in software
development: A non-exact replication study,” in Proceedings of the
14th ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), ser. ESEM ’20. New York,
NY, USA: Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3382494.3410632

[14] A. Freire, M. Perkusich, R. Saraiva, H. Almeida, and A. Perkusich, “A
bayesian networks-based approach to assess and improve the teamwork
quality of agile teams,” Information and Software Technology, vol. 100,
pp. 119–132, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584917300204

[15] N. Moe, T. Dingsøyr, and E. Røyrvik, “Putting agile teamwork to the
test – an preliminary instrument for empirically assessing and improving
agile software development,” in Agile Processes in Software Engineering
and Extreme Programming, ser. Lecture Notes in Business Information
Processing, P. Abrahamsson, M. Marchesi, and F. Maurer, Eds. Springer
Berlin Heidelberg, 2009, vol. 31, pp. 114–123.

[16] Y. Lindsjørn, D. I. Sjøberg, T. Dingsøyr, G. R. Bergersen, and T. Dybå,
“Teamwork quality and project success in software development:
A survey of agile development teams,” Journal of Systems and
Software, vol. 122, pp. 274 – 286, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016412121630187X

[17] R. M. Lindsay and A. S. C. Ehrenberg, “The design of replicated
studies,” The American Statistician, vol. 47, no. 3, pp. 217–228, 1993.
[Online]. Available: http://www.jstor.org/stable/2684982

[18] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis
in software engineering,” in 2011 International Symposium on Empirical
Software Engineering and Measurement, 2011, pp. 275–284.

[19] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering - EASE ’14, ser. EASE ’14. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2601248.2601268

[20] G. Marsicano, F. Q. da Silva, C. Seaman, and B. G. Adaid-Castro,
“The teamwork process antecedents (tpa) questionnaire: developing
and validating a comprehensive measure for assessing antecedents of
teamwork process quality,” Empirical Software Engineering, vol. 25,
pp. 3928–3976, 2020.

[21] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012.

228

https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2244
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://doi.org/10.1145/3382494.3410632
https://www.sciencedirect.com/science/article/pii/S0950584917300204
https://www.sciencedirect.com/science/article/pii/S0950584917300204
http://www.sciencedirect.com/science/article/pii/S016412121630187X
http://www.jstor.org/stable/2684982
https://doi.org/10.1145/2601248.2601268

A Comparative Study of Psychometric Instruments
in Software Engineering

G. Guimarães1, M.Perkusich1, D. Albuquerque1, E.n Guimarães2, H. Almeida1, D. Santos1A. Perkusich1

1Federal University of Campina Grande - Intelligent Software Engineering Group (ISE/Virtus) - Paraiba, Brazil
2The Pennsylvania State University - Malvern, Pennsylvania - USA

Abstract—Over the years, researchers have explored the influ-
ence of human factors in software engineering, showing that the
team members’ personalities might affect teamwork. However, it
is challenging to measure software engineers’ personalities due
to the number of available psychometric instruments and the
possibility of using different scales and classifications. Our study
compares the personality traits measured by three psychometric
instruments used in Software Engineering: Big Five Inventory
(BFI), 16 Personality Factors (16PF), and Context Cards (CC).
For this purpose, we executed an empirical study in which
we collected data from 29 software developers for each of the
evaluated instruments. As a result, we identified a moderate
correlation between BFI and 16PF, confirming the current state-
of-the-art. For the remaining combinations, there was a weak
correlation. As implications for this research, there is a need
to empirically evaluate BFI and CC (context-specific survey)
in terms of construct validity since they have moderate to low
correlation.

Index Terms—Human Aspects, Social Aspects, Personality,
Software Engineering, Psychometric Instruments.

I. INTRODUCTION

The success of software development projects is directly
related to the team members’ technical (a.k.a. Hard skills)
and non-technical skills (a.k.a Soft Skills) [1]. Soft skills
are becoming more important in the industrial environment
because they affect team cohesion and team climate [2], [3],
impacting its productivity and outcomes’ quality [4], [5].

A key aspect of studying soft skills is personality. Many
studies investigated the effects of personality on teamwork
performance in the last forty years [6], [7]. These studies used
several psychometric instruments to evaluate personality types
and personality traits of software engineers [8], [6], [7]. The
studies mostly used the Myers-Briggs Type Indicator (MBTI)
or tests based on the Big Five (BF), such as Big Five Inventory
(BFI) and Revised NEO Personality Inventory (NEO-PI-R).
However, other psychometric instruments were also used, such
as International Personality Item Pool (IPIP), the Sixteen
Personality Factor Questionnaire (16PF), and Context-Specific
Survey Instrument (Context Cards) [6].

Choosing a psychometric instrument is not straightforward
because some require training and a license to be used.
Moreover, McDonald and Edwards reported misuse of per-
sonality tests in software engineering (SE) [9]. They argued
that the inappropriate use of psychological tests and fun-
damental misunderstandings of personality theory caused a
lack of progress in this field. Additionally, Graziotin et al.
[10] demonstrated a deeper confusion on assessing related

constructs using personality tests. For example, Capretz and
Ahmed [11] considered that the introvert trait is suitable for
the programmer role, whereas Gorla and Lam [12] concluded
that it is the Extrovert trait.

Having reliable data is the most critical factor for any
SE measurement approach. Such observation is also valid
for psychometric instruments. The inadequate application of
psychometric instruments and their interpretation might lead
to invalid results, economic loss, and harm to individuals. If
the psychometric instruments or their usage are not valid, all
the resulting conclusions are also invalid. Psychometric instru-
ments measure latent variables (i.e., unobservable constructs)
such as intelligence, personality, and happiness. Therefore,
evaluating the psychometric instrument used is crucial to
ensure that the variables are measured correctly.

Cruz et al. [6] discusses the existence of many disagree-
ments in the SE research community regarding (i) the applica-
tion of psychometric instruments and (ii) the interpretation of
their results, comparing psychometric instruments’ constructs
to understand how to measure software engineers’ personali-
ties and their impact on productivity and quality. However, no
other works are performing a similar comparison analysis in
the past five years.

Moreover, Gulati et al. [13] examined studies based on
human factors in software engineering. They compared studies
relating to different personality instruments (i.e., MBTI, KTS,
and BFI). Balijepally et al. [14] focused their research on
comparing two emerging models, BFI and MBTI, for assessing
personality traits in SE. To the best of our knowledge, these
studies promote a discussion relating to software engineering
and psychology but do not explore the correlation analysis
among the personality instruments.

To address this gap, we investigated the similarity between
three psychometric instruments: Big Five Inventory (BFI), 16
Personality Factors (16PF), and Context Cards (CC). We used
these instruments because (i) studies in SE recurrently use
them, (ii) they are of the public domain or readily available
for researchers, (iii) they are clear to use in SE, and their data
analysis have a vocabulary that is easy to understand, (iv) they
do not have a large number of items, thus easing its execution
and interpretation. We collected data from 29 subjects with
about three to five years of experience in the area, and most of
them were developers of web or mobile projects. We compared
the instruments in terms of the number of questions, option
type, response time, and the Kendall correlation.

DOI reference number: 10.18293/SEKE2021-108
229

This paper details the applied study and summarizes the
results regarding the similarity of the evaluated psychometric
instruments. The remainder of this paper is organized as
follows. Section II provides a background with an overview
of psychometric instruments for SE. Section III describes the
study design. Section IV presents the results and discusses
the answers to the research questions. Section V analyzes the
study’s threats to validity. Finally, Section VI presents our
conclusions and directions to future work.

II. BACKGROUND AND RELATED WORK

This section presents an overview of psychometric instru-
ments and describes the studies that compared psychometric
instruments in the context of Software Engineering.

Psychometric Instruments Overview. Personality involves
different theoretical perspectives, definitions, and levels of
abstraction. We used the personality definition established by
Ryckman [15], in which it is defined as “a dynamic and
organized set of characteristics possessed by a person that
uniquely influences his or her cognitions, motivations, and
behaviors in various situations”. We used this definition due
to its popularity in Software Engineering research.

Psychometric instruments have been used to evaluate per-
sonality traits and types of individuals, usually by using
questionnaires. Personality traits are stable characteristics of
individuals such as being optimistic, sociable, and imaginative,
whereas Personality types are constructs that indicate indepen-
dent groups such as mediator, entrepreneur, and adventurer.
For instance, using the 16PF psychometric instrument, a
person that scores high on the traits “introversion”, “sensing”,
“thinking”, and “judging” would be classified as being of the
personality type “logistician”.

Psychometric Instruments in SE. Software development
organizations use psychometric instruments to measure their
members’ personality [16], [17]. The most used psychometric
instruments in SE are based on the Big Five (BF) theory
- e.g., Big Five Inventory (BFI) [6]. Other psychometric
instruments have been widely used in SE research, such as
the 16 Personality Factor Questionnaire (16PF) and Context-
specific survey instrument (CC). Next, we describe each of the
aforementioned psychometric instruments.

Big Five Inventory (BFI) describes the personality by em-
ploying broad factors (dimensions) of personality traits [18].
Its five dimensions are Extraversion, Agreeableness, Conscien-
tiousness, Neuroticism (a.k.a. Emotional Stability), and Open-
ness to Experience (sometimes called Intellect or Imagination).
The BFI-44 is a self-report inventory created to measure the
Big Five dimensions. The psychometric instrument contains
44 items and consists of short and descriptive phrases that
respondents rated on a 5-point scale ranging from strong
disagreement to strong agreement. This method is not in the
public domain. However, it is readily available for researchers
to use for non-commercial research purposes.

The 16 Personality Factor Questionnaire (16PF) is a psy-
chometric instrument to identify characteristics, personality
traits, and behavior. 16PF was published in 1949 and has

been used to evaluate personality in many contexts, including
career assessment and SE [4]. The 16PF online test com-
prises five personality dimensions, making up 16 personality
types. 16PF has five aspects: Mind, Energy, Nature, Tactic,
and Identity. 16PF generates 16 types of personalities by
acronyms generated from the dichotomies emitted by the
psychometric instrument’s aspects. The combination of four
personality aspects results in a personality type. For instance,
the combination of Extroversion (E), Observant (S), Thinking
(T), Judging (J), and Assertive (-A) result in the personality
ESTJ-A. The Identity scale (i.e., assertive or turbulent) is
in all personality types because it affects other scales. As a
result, when we considered this scale, the method describes
32 different personality types.

Context-specific survey instrument (CC) was proposed by
Yilmaz et al. [8] aims to reveal and illustrate the personality
characteristics of the individuals in software development
teams. The instrument combines situations from companies
with basic patterns (items) of the Big Five Inventories (BFI-
44) questionnaire to create a card game-based personality
identification method [8]. The context cards describe the
human personality traits in terms of five fundamental fac-
tors: Extraversion, Openness, Agreeableness, Neuroticism, and
Conscientiousness. This model identified six themes (traits)
for each factor, totaling 30 themes. For example, the factor
Extroversion has the traits talkative, assertive, energetic, active,
approachable, and outgoing.

Psychometric Instruments Evaluation in SE. Next, we
discuss studies that assessed psychometric instruments in SE.
Jia et al. [19] reviewed and compared three psychometric
instruments (i.e., BFI, MBTI, and KTS). They observed the
number of questions, option type, and time spent answering
the test. The researchers collected empirical evidence for
comparison from articles published between 2010 and 2014.
They concluded that BFI is the more suitable alternative to
evaluate soft-skills in software development activities.

Another study by Gulati et al. [13] compared studies pub-
lished between 2003 and 2014 that analyzed human factors in
software engineering. They concluded that the most popular
psychometric instruments in SE are MBTI and BFI. Finally,
Balijepally et al. [14] dedicated their research mainly to
compare BFI and MBTI. They suggested that BFI is more
valuable than MBTI because BFI provides better measures
for all MBTI factors, and it also evaluates Neuroticism, an
important personality trait.

Even though these studies promote a great discussion re-
lating to software development activities (i.e., SE area) and
soft-skills (i.e., Psychology area), they perform the models’
comparison based solely on data available in the literature.
Consequently, we conclude that these studies highlight the im-
portance of human psychology in SE and realized conceptual
comparisons but lack evidence about how the psychometric
instruments compare in the context of SE. To address this gap,
we compared personality instruments by collecting data from
software developers and analyzing the correlation between the
instruments’ answers.

230

III. RESEARCH METHODOLOGY

This section presents the research methodology for the em-
pirical study, including research questions, subjects’ profiles,
experimental materials, and data analysis procedures.

Objective and Research Questions. Our study aimed to
analyze and evaluate the correlation between three state-of-
art psychometric instruments (i.e., BFI, 16PF, and CC) in
the context of software development activities. Given this, we
formulated some Research Questions (RQs):

• RQ1: To what extent do BFI dimensions correlate with
16PF considering software developers’ personality?

• RQ2: To what extent do 16PF aspects correlate with CC
factors considering software developers’ personality?

• RQ3: To what extent do BFI dimensions correlate with
CC factors considering software developers’ personality?

Subjects. We applied the psychometric instruments with
29 software developers (24 men and five women) from one
Brazilian software organization. This organization had approx-
imately 250 employees and produced more than 40 projects in
collaboration with multinational partners. The employees were
organized into small agile teams (around five to ten members).

The participant’s ages ranged from 21 to 29 years, with
a mean of 24 years. They had an average of three years
of experience with software development. They developed
Web and mobile applications using different technologies (e.g.,
Javascript, Java, HTML). Overall, the subjects’ profile meets
our study assumptions since all of them work in software
development. They participated voluntarily in the study and
had no experience with the instruments used.

Experimental Materials. We created a questionnaire 1

with five sections to apply the psychometric instruments and
submitted it to the ethics committee from the Federal Uni-
versity of Campina Grande (UFCG) for analysis and approval
before conducting the study. The ethics committee gave us
the certification (02505718.0.0000.5182), meaning we could
collect data using the questionnaire. In the following, we
present information about the questionnaire.

The first section of the questionnaire presented the study
objectives and the consent form, as approved by the ethics
committee. This section contained information to motivate the
participants to participate in the study. The second section
contained questions to collect demographic data, including
name, gender, experiences, and age. The third section con-
tained BFI-44 questions translated and adapted to Portuguese
by Andrade [20]. We also consulted the BFI-44 in Portuguese
available on the Berkeley Personality Lab site2. All ques-
tions were answered through a five-point Likert-type scale:
1 (Strongly disagree) - 5 (Strongly agree), expressing their
agreement degree regarding the question’s descriptions. The
fourth section contained 16PF questions. The 16PF has about
60 questions (statements), each of them to be answered
through a seven-point Likert-type scale (from “agree” to
“disagree”).

1Available in https://bit.ly/38E6yhP
2https://www.ocf.berkeley.edu/∼johnlab/bfi.htm

Finally, the fifth section included the CC questions. We
translated and adapted the Context Cards to Portuguese. This
psychometric instrument includes 60 cards (e.g., situations,
questions), in which each card presents a situation and two
optional answers described by A and B. The optional answers
describe SE situations. One example of the original text on
the one card is presented next. Situation (“During a team
base discussion...”), Option A (“Evidence suggests that what
we learn is mostly from our conflicts.”), and Option B (“I
believe compromise between people for a common ground
more successful.”). Each person spends about 40 minutes - on
average - to complete the questionnaire.

Procedure. We applied the questionnaire during the period
that the software organization made available for the research.
Before the questionnaire application, the study’s authors ran
a training session with the participants. The training session
lasted 30 minutes, and the participants spent between 30 to
40 minutes answering the entire questionnaire. The training
session aimed to present the questionnaires’ concepts and level
the participants’ understanding regarding the psychometric
instruments and study’s goals. In other words, we motivated
the participants to answer based on reality (not intentions)
and that there were no right or wrong answers. Further, we
emphasized that they would not be identified. Such support
minimized internal validity threats.

Analysis Procedure. We defined the following criteria
for comparing the psychometric instruments: the number of
questions, option type, response time, and the correlation
between the results (i.e., the correlation between the facets,
dimensions, and aspects of psychometric instruments). The
correlation analysis sought to verify the correlation between
the personality traits presented by instruments for each par-
ticipant. The BFI-44, 16PF, and Context Cards instruments
contain different sets of Likert-type items combined into single
composite scores (as explained in Section II). Thus, they
calculate a score for each facet or dimension of the psycho-
metric instrument. Each of these composite scores provides a
quantitative measure of a personality trait.

Considering that the variables measured in this study are
ordinal, we used the Kendall correlation coefficient. Kendall
correlation coefficient is a nonparametric measure of the
strength and direction of the association between two variables
measured on at least an ordinal scale [21]. We also used the
correlation coefficients interpretation for psychology described
by Dancey and Reidy [22].

IV. RESULTS AND DISCUSSION

This section presents the main results for the comparison
between the three psychometric instruments.

Personality Test Results. We obtained personality traits’
scores for each participant by applying the three psychometric
instruments (i.e., BFI, 16PF, and CC). It is worth mentioning
that each instrument provided a set of personality trait scores
for each participant. We calculated these scores using the
guidelines for each instrument. Next, we present the results
when applying each psychometric instrument.

231

BFI results: We found the following quantities of partici-
pants with the dimension value assessed above 50%: Extraver-
sion (20 participants), Agreeableness (29 participants), Con-
scientiousness (28 participants), Neuroticism (12 participants),
and Openness to Experience (24 participants).

16PF results: We found more Extroverts (52%) types than
Introverts (48%), more Sensing (55%) than Intuitive (45%),
fairly more Feeling (65%) than Thinking (35%), and more
Judging (65%) compared to Perceiving (35%) type. The
personality types most present were ENFJ, ESFJ, and ISFJ.
However, we did not have participants with the personality
types ISTP, ESTP, INFJ, and ENTP. Considering the Identity
scale, the personality type most present was ENFJ-A.

CC results: We obtained the following quantities of partici-
pants with the factor value assessed above 50%: Extraversion
(17 participants), Agreeableness (27 participants), Conscien-
tiousness (15 participants), Neuroticism (4 participants), and
Openness to Experience (8 participants).

We analyzed the number of questions, option type, and
time to respond to the psychometric instruments compared.
Considering the number of questions and option type, 16PF
contains 60 7-point questions, BFI-44 contains 44 5-point
questions, and CC contains 44 A or B questions. The par-
ticipant’s average response time was 12 minutes to 16PF, 10
minutes to BFI-44, and 15 minutes to CC.

Nevertheless, in addition to these comparison criteria, we
were interested in the correlation between the test results (i.e.,
the correlation between the facets, dimensions, and aspects of
psychometric instruments). We discussed the analysis of this
criterion by answering the research questions.

RQ1 - To what extent do BFI dimensions correlate
with 16PF aspects considering software developers’ per-
sonality?. Aims to address this RQ, we applied Kendall’s
correlation between 16PF dichotomies and BFI dimensions.
The correlation results can be seen in Table I.

TABLE I
CORRELATION BETWEEN 16PF DICHOTOMIES AND BFI DIMENSIONS.

BFI
16PF Extrav. Agree. Openn. Consc. Neuro.

Extrovert 0.57 0.23 0.29 0.40 -0.17
Feeling 0.04 0.53 -0.08 0.13 -0.19

Intuitive 0.01 -0.03 0.50 -0.27 -0.05
Judging 0.12 0.11 -0.12 0.71 -0.08
Assertive 0.33 0.24 0.15 0.40 -0.57

Figure 1 shows the distribution of participants consid-
ering the 16PF’s Extroversion dichotomy (16PF-E), 16PF’s
Introversion dichotomy (16PF-I), and the BFI’s Extraversion
dimension (BFI-E). In the figure, each point represents the
participant score (i.e., the score of dimension or facet) obtained
from the psychometric instrument.

We found a moderate correlation between BFI’s Extraver-
sion dimension (BFI-E) and the 16PF’s Mind aspect (16PF-E
and 16PF-I). This correlation was positive to 16PF’s Extrover-
sion dichotomy (16PF-E) and negative to 16PF’s Introversion
dichotomy (16PF-I). The coefficient of 0.571 (p < 0.01)
indicates a moderate positive correlation between 16PF-E and

Fig. 1. The correlation coefficient between 16PF’s Extroversion dichotomy
(16PF-E), 16PF’s Introversion dichotomy (16PF-I), and BFI’s Extraversion
dimension (BFI-E).

BFI-E. As expected, the correlation for 16PF-I was inversely
correlated -0.571 (p < 0.01) with BFI-E. The results found
reinforced the analysis performed by Jia et al. [19], [14], which
stated that BFI’s Extraversion dimension (BFI-E) is correlated
to the 16PF’s Extroversion dichotomy (16PF-E).

Considering the distribution of participants for 16PF’s Feel-
ing dichotomy (16PF-F) and 16PF’s Thinking dichotomy
(16PF-T) and the BFI’s Agreeableness dimension (BFI-A), We
found a moderate correlation with a coefficient of 0.534 (p <
0.01) between 16PF-F and BFI-A. As expected, the correlation
between 16PF-T and BFI-A was inversely correlated. Also, we
found a moderate correlation between BFI’s Conscientiousness
dimension (BFI-C) and the 16PF’s Identity aspect. This cor-
relation was positive to 16PF’s Assertive dichotomy (16PF-A)
and negative to 16PF’s Turbulent dichotomy (16PF-T).

Similarly, we obtained a moderate correlation between BFI’s
“Openness to Experience” dimension (BFI-O) and the 16PF’s
Energy aspect (16PF-N and 16PF-S). This correlation was
positive to 16PF’s Intuitive dichotomy (16PF-N) and negative
to 16PF’s Observant dichotomy (16PF-S). The correlation co-
efficient of 0.502 (p < 0.01) indicated a moderate correlation
between the BFI-O and the 16PF’s Intuitive dichotomy (16PF-
N). As expected, the correlation coefficient was negative
between the BFI’s “Openness to Experience” dimension (BFI-
O) and the 16PF’s Observant dichotomy (16PF-S).

Considering the 16PF’s Judging dichotomy (16PF-J),
16PF’s Prospecting dichotomy (16PF-P), and the BFI’s Con-
scientiousness dimension (BFI-C). The correlation coefficient
of 0.712 (p < 0.01) indicated a strong positive correlation
between 16PF-J and BFI-C. As expected, the correlation
between 16PF-P and BFI-A was inversely correlated -0.712
(p < 0.01). We obtained a strong correlation between BFI-
C and the 16PF’s Tactic aspect (16PF-J and 16PF-P). This
correlation was positive with 16PF-J and negative to 16PF-P.

As in previous studies [23], [24], [25], [26], our study
identified a strong correlation between 16PF-J and BFI-C.
However, we found a moderate correlation between 16PF-E
and BFI-E, 16PF-F and BFI-A, and 16PF-N and BFI-O, unlike
Cattell and Mead [23], which found a strong correlation.
Additionally, we observed a weak correlation between 16PF-F

232

and BFI-N.
Further, we analyzed the correlation of 16PF’s Identify

aspect (16PF-A and 16PF-T) with BFI’s dimensions. We
obtained a coefficient of -0.578 (p < 0.01) for the correlation
between the 16PF’s Assertive dichotomy (16PF-A) and BFI’s
Neuroticism dimension (BFI-N). Further, the correlation be-
tween (16PF-A) and BFI’s Conscientiousness dimension (BFI-
C) was 0.40 (p < 0.01). Considering the 16PF’s Turbulent
dichotomy (16PF-T), we obtained a correlation coefficient of
0.580 (p < 0.01) with BFI-N, and -0.416 (p < 0.01) with
BFI-C. Table I illustrates the results of Kendall’s correlation
between 16PF dichotomies and BFI dimensions.

We concluded that BFI-C correlated strongly with 16PF-E.
We found a moderate correlation between 16PF-E and BFI-
E, 16PF-F and BFI-A, and 16PF-N and BFI-O. We found a
weak correlation between 16PF-F and BFI-N. Further, 16PF-
A correlated moderately with BFI-C (moderately positive) and
BFI-N (moderately negative). Thus, we concluded that BFI
and 16PF had a moderate correlation.

RQ2 - To what extent do 16PF aspects correlate with
CC factors considering software developers’ personality?.
Aims to address this RQ, we applied Kendall’s correlation
between 16PF dichotomies and CC factors. The correlation
results can be seen in Table II. The correlation coefficient
of 0.35 (p < 0.01) indicates a weak positive correlation
between 16PF’s Extroversion dichotomy (16PF-E) and the
CC’s Extroversion factor (CC-E). Additionally, we obtained
a weak correlation between CC-E and 16PF’s Mind aspect
(16PF-E and 16PF-I). Similar to what happens with 16PF and
BFI.

TABLE II
CORRELATION BETWEEN 16PF DICHOTOMIES AND CONTEXT CARDS

FACTORS.

Context Cards
16PF Extrav. Agree. Openn. Consc. Neuro.

Extrovert 0.35 0.09 -0.036 -0.21 0.10
Feeling 0.11 0.07 0.09 -0.25 -0.34

Intuitive 0.007 -0.14 0.25 -0.09 0.02
Judging 0.19 0.14 -0.36 -0.008 0.05
Assertive 0.29 0.27 0.02 -0.33 -0.08

Regarding 16PF’s Judging dichotomy (16PF-J) and CC’s
“Openness to Experience” factor (CC-O), we found a negative
correlation -0.36 (p < 0.01) between 16PF-J and CC-O.
Further, we found a weak correlation between CC’s “Open-
ness to Experience” factor (CC-O) and the 16PF’s Tactic
aspect (16PF-J and 16PF-P. Considering the 16PF’s Feeling
dichotomy (16PF-F) and CC’s Neuroticism factor (CC-N), we
observed a negative correlation coefficient of -0.34 (p < 0.01),
which indicated the weak correlation between these charac-
teristics. Finally, we found a weak correlation between CC’s
Neuroticism factor (CC-N) and 16PF’s Nature aspect (16PF-T
and 16PF-F). Given the discussed results, we concluded that
the correlation between 16PF and CC was weak.

RQ3 - To what extent do BFI dimensions correlate with
CC factors considering software developers’ personality?.
Aiming to address this RQ, we applied Kendall’s correlation
between BFI dimensions and CC factors. The correlation

results can be seen in Table III. Considering the five char-
acteristics analyzed for each psychometric instrument, we had
a weak correlation (correlation coefficient of 0.38 (p < 0.01))
between CC’s Extroversion factor (CC-E) and BFI’s Extraver-
sion dimension (BFI-E). We found a correlation coefficient of
0.30 (p < 0.01) between BFI’s Conscientiousness dimension
(BFI-C) and CC’s Extroversion factor (CC-E). Further, we
obtained a weak correlation between CC’s Extroversion factor
(CC-E) and the BFI’s Extraversion dimension (BFI-E). CC’s
Conscientiousness factor (CC-C) had a correlation coefficient
of -0.34 (p < 0.01) with BFI’s Agreeableness dimension (BFI-
A) and 0.32 (p < 0.01) with BFI’s Neuroticism dimension
(BFI-N). Thus, we concluded that there was a weak correlation
between CC’s Conscientiousness factor (CC-C) and the BFI’s
Agreeableness dimension (BFI-A) and BFI’s Neuroticism di-
mension (BFI-N).

TABLE III
CORRELATION BETWEEN BFI DIMENSIONS AND CONTEXT CARDS

FACTORS.

Context Cards
BFI Extrav. Agree. Openn. Consc. Neuro.

Extrav. 0.38 0.04 -0.02 -0.21 0.002
Agree. 0.28 0.27 -0.09 -0.34 -0.30
Openn. 0.15 -0.08 0.12 -0.21 0.19
Consc. 0.30 -0.08 -0.21 -0.09 0.04
Neuro. -0.12 -0.24 -0.02 0.32 0.16

Despite measuring similar characteristics, we concluded that
the relationship between BFI and CC is weak. These results
are not similar to those found by Yilmaz at el. [8], in which
the authors proposed and validated CC. In this study, they pro-
posed results that assumed a strong correlation between the use
of CC and BFI. Such correlations were the CC’s Extroversion
factor (CC-E) with the BFI’s Extraversion dimension (BFI-
E) (correlation coefficient of 0.93). They also found a strong
correlation between CC’s Conscientiousness factor (CC-E) and
BFI’s Conscientiousness dimension (correlation coefficient of
0.79).

We believe that a possible explanation for such distinction
between the study findings and Yilmaz et al.’s [8] maybe
the loss of semantics aspects from the original CC (once the
originals were written in English language and the ones ap-
plied here were translated into Brazilian Portuguese). Besides
that, the cultural factor may have influenced the interviewees’
understanding of some questionnaire items’ situations. We
concluded that CC inventory is currently lacking independent
replications to validate its reliability. In sum, this highlights
the importance of developing such research in the SE field to
enhance the surveys and studies that approach psychometric
aspects and team formation.

V. THREATS TO VALIDITY

This section discusses the study’s threats to validity follow-
ing the classification proposed by Wohlin et al. [27] and the
strategies applied to mitigate them.

Internal validity: We applied the questionnaire during the
period that the company made available for the research.
This session lasted around 50 minutes, which may have

233

influenced the results due to fatigue. Another threat is related
to understanding each of the psychometric instruments used in
the study. The first and second authors ran a training session
with the study’s subjects to mitigate this threat. Conclusion
validity: We obtained the results from the data using the
Kendall correlation coefficient. We also adopted a free soft-
ware for statistical computing and interpreted the correlation
coefficients using psychology guidelines proposed in [22].

Construct validity: We used psychometric instruments pre-
viously validated by other studies and mapped 16PF aspects,
BFI types, and personality factors CC based on the literature.
However, the translation into Portuguese has removed essential
aspects of measurement for the CC. The SE scenarios can be
regionalized, not matching the scenarios of the participants
in this study. External validity: the relatively small sample
size could limit external validity. Therefore, this study should
be replicated with a larger sample size to confirm the initial
results and address external validity issues. Lastly, the gener-
alizability of these results is subject to certain limitations.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented the results of an empirical comparison
of three psychometric instruments (i.e., 16PF, BFI, and CC)
in SE. Our results showed a moderate correlation between
16PF and BFI, a weak correlation between (i) 16PF and CC,
and (ii) BFI and CC. In terms of construct analysis (i.e.,
psychological perspective), our study reinforces the results of
the Psychology field with regards to the correlation between
16PF and BFI, and we found a weak correlation between CC
and BFI, opposing the findings from Yilmaz et al. [8]. Since
this is an emerging field in SE, such contradicting results are
expected in the scientific process. The analysis was performed
in light of the instruments’ psychological constructs and within
the SE field, having relevance for both fields.

Regarding the implications for practice, having a better
understanding of psychometric instruments might help hire
and train software engineers and form software teams, but this
analysis requires further studies. We expect that the present re-
search contributes to having fewer contradictions between the
psychometric test results in SE in the future. As future work,
we plan to expand our study by comparing other psychometric
instruments using different criteria or observing the application
of psychometric instruments with more participants.

REFERENCES

[1] E. D. Canedo and G. A. Santos, “Factors affecting software development
productivity: An empirical study,” in Proceedings of the XXXIII Brazilian
Symposium on Software Engineering, 2019, pp. 307–316.

[2] A. R. Gilal, J. Jaafar, A. Abro, M. Omar, S. Basri, and M. Q. Saleem,
“Effective personality preferences of software programmer: A systematic
review.” J. Inf. Sci. Eng., vol. 33, no. 6, pp. 1399–1416, 2017.

[3] M. Ruiz and D. Salanitri, “Understanding how and when human factors
are used in the software process: A text-mining based literature review,”
in International Conference on Product-Focused Software Process Im-
provement. Springer, 2019, pp. 694–708.

[4] A. Gomes, M. Silva, D. C. G. Valadares, M. Perkusich, D. Albuquerque,
H. Almeida, and A. Perkusich, “Evaluating the relationship of personal-
ity and teamwork quality in the context of agile software development.”

[5] M. Iqbal, A. R. Aldaihani, and A. Shah, “Big-five personality traits
mapped with software development tasks to find most productive soft-
ware development teams,” 2019.

[6] S. Cruz, F. Q. da Silva, and L. F. Capretz, “Forty years of research on
personality in software engineering: A mapping study,” Computers in
Human Behavior, vol. 46, pp. 94–113, 2015.

[7] A. B. Soomro, N. Salleh, E. Mendes, J. Grundy, G. Burch, and
A. Nordin, “The effect of software engineers’ personality traits on team
climate and performance: A systematic literature review,” Information
and Software Technology, vol. 73, pp. 52–65, 2016.

[8] M. Yilmaz, R. V. O’Connor, R. Colomo-Palacios, and P. Clarke, “An
examination of personality traits and how they impact on software
development teams,” Information and Software Technology, vol. 86, pp.
101–122, 2017.

[9] S. McDonald and H. M. Edwards, “Who should test whom?” Commu-
nications of the ACM, vol. 50, no. 1, pp. 66–71, 2007.

[10] D. Graziotin, P. Lenberg, R. Feldt, and S. Wagner, “Behavioral soft-
ware engineering: Methodological introduction to psychometrics,” arXiv
preprint arXiv:2005.09959, 2020.

[11] L. F. Capretz and F. Ahmed, “Making sense of software development
and personality types,” IT professional, vol. 12, no. 1, pp. 6–13, 2010.

[12] N. Gorla and Y. W. Lam, “Who should work with whom? building
effective software project teams,” Communications of the ACM, vol. 47,
no. 6, pp. 79–82, 2004.

[13] J. Gulati, P. Bhardwaj, and B. Suri, “Comparative study of personality
models in software engineering,” in Proceedings of the Third Interna-
tional Symposium on Women in Computing and Informatics, 2015, pp.
209–216.

[14] V. Balijepally, R. Mahapatra, and S. P. Nerur, “Assessing personality
profiles of software developers in agile development teams,” Communi-
cations of the Association for Information Systems, vol. 18, no. 1, p. 4,
2006.

[15] R. M. Ryckman, Theories of personality. Cengage Learning, 2012.
[16] J. W. Lounsbury, L. Moffitt, L. W. Gibson, A. W. Drost, and M. Stevens,

“An investigation of personality traits in relation to job and career satis-
faction of information technology professionals,” Journal of Information
Technology, vol. 22, no. 2, pp. 174–183, 2007.

[17] M. Wyrich, D. Graziotin, and S. Wagner, “A theory on individual
characteristics of successful coding challenge solvers,” PeerJ Computer
Science, vol. 5, p. e173, 2019.

[18] P. Costa and R. McCrae, “Neo inventories professional manual,” Psy-
chological Assessment Resources, Inc, 2010.

[19] J. Jia, P. Zhang, and R. Zhang, “A comparative study of three personality
assessment models in software engineering field,” in 2015 6th IEEE
International Conference on Software Engineering and Service Science
(ICSESS). IEEE, 2015, pp. 7–10.

[20] J. M. d. Andrade, “Evidências de validade do inventário dos cinco
grandes fatores de personalidade para o brasil,” 2008.

[21] M.-T. Puth, M. Neuhäuser, and G. D. Ruxton, “Effective use of spear-
man’s and kendall’s correlation coefficients for association between two
measured traits,” Animal Behaviour, vol. 102, pp. 77–84, 2015.

[22] C. P. Dancey and J. Reidy, Statistics without maths for psychology.
Pearson education, 2007.

[23] H. E. Cattell and A. D. Mead, “The sixteen personality factor question-
naire (16pf),” The SAGE handbook of personality theory and assessment,
vol. 2, pp. 135–178, 2008.

[24] R. B. Cattell and H. E. P. Cattell, “Personality structure and the new
fifth edition of the 16pf,” Educational and Psychological Measurement,
vol. 55, no. 6, pp. 926–937, 1995.

[25] K. Schneewind and J. Graf, “16-personlichkeits-factoren-test revidierte
fassung test-manual [the 16 personality factor test–revised version test
manual],” Bern, Switzerland: Verlag Hans Huber, 1998.

[26] D. W. Gerbing and M. R. Tuley, “The 16pf related to the five-factor
model of personality: Multiple-indicator measurement versus the a priori
scales,” Multivariate Behavioral Research, vol. 26, no. 2, pp. 271–289,
1991.

[27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

234

Evaluating a Bayesian Network to Predict Customer
Satisfaction in Scrum Software Development

Projects: An Empirical Study with One Company
Mirko Perkusich

Intelligent Software Engineering Group
mirko@virtus.ufcg.edu.br

Gleyser Guimaraes
Federal University of Campina Grande

Intelligent Software Engineering Group
gleyser@copin.ufcg.edu.br

Kyller Gorgonio
Federal University of Campina Grande

Intelligent Software Engineering Group
kyller@copin.ufcg.edu.br

Hyggo Almeida
Federal University of Campina Grande

Intelligent Software Engineering Group
hyggo@dsc.ufcg.edu.br

Angelo Perkusich
Federal University of Campina Grande

Intelligent Software Engineering Group
perkusic@dee.ufcg.edu.br

Abstract—Using knowledge-based systems for helping agile
teams to improve their performance is not a fact in the industry.
In previous work, we have presented Kaizen, a knowledge-based
Bayesian network for assisting Scrum teams in diagnosing their
value stream in light of the predicted Customer Satisfaction and,
consequently, improve their performance. This study assesses
Kaizen’s accuracy to predict Customer Satisfaction using real-
world data. We adopted Kaizen for one software development
company and collected data from 18 projects using an online
questionnaire. We collected two types of data: inputs for Kaizen
and the expected Customer satisfaction. We used the first type
of collected data as inputs for Kaizen to calculate the predicted
Customer satisfaction. Then, we assessed Kaizen’s accuracy by
comparing the predicted (i.e., calculated) and expected (i.e.,
collected) Customer satisfaction using face value and the aver-
age Brier score. Considering the face value, Kaizen predicted
Customer Satisfaction correctly for 14 out of the 18 projects.
The average Brier Score was 0.16. The model predicts, with
satisfactory accuracy, the Customer Satisfaction and systemizes
the process for Scrum teams to self-diagnose, enabling for causal
analysis and supporting their continuous improvement.

Index Terms—Agile Software Development; Questionnaire
Survey; Bayesian Network.

I. INTRODUCTION

Using knowledge-based systems for helping agile teams
to improve their performance is not a fact in the industry.
In previous work, we have presented a knowledge-based
Bayesian network to assist Scrum teams in diagnosing their
value stream [14], [13], [12], and, consequently, improve their
performance. From here on, we refer to such a Bayesian
network as Kaizen. Kaizen has as the “target variable” the
Customer Satisfaction. Thus, Kaizen assists Scrum teams to
improve their efficiency in light of the predicted customer
satisfaction. In previous studies, we have validated it with
simulated scenarios (i.e., model walkthrough) [13] and by
analyzing its ability to identify 14 Scrum anti-patterns [12]
described in the literature [4].

Further, we have evaluated its practical utility by using it in
two projects from one software company [14]. However, such
a case study focused on Kaizen’s ability to support decision-
making, not on its predictive accuracy. Thus, at this point, its

accuracy for predicting Customer Satisfaction has not been
assessed with real-world data.

This study addresses this gap by adopting Kaizen for
one software development company. The adoption process
included complementing it with a questionnaire to collect
projects’ data from their Scrum Masters and customer rep-
resentatives. As a result, we collected data from 18 projects.
We collected two data types for each project: inputs for Kaizen
and the expected Customer satisfaction. We used the first
type (inputs for Kaizen) to calculate the predicted Customer
satisfaction. Then, we assessed Kaizen’s accuracy by compar-
ing the predicted and expected Customer satisfaction using
face value and the average Brier score. This paper reports the
employed methodology and our results. Further, it shows an
example of how Scrum teams can adopt Kaizen.

This paper is organized as follows. Section II presents
the necessary background on the Bayesian network and our
reasoning for selecting it as the modeling tool for Kaizen. Sec-
tion III presents an overview of Kaizen. Section IV presents
the employed research methodology. Section V discusses our
results, their implications, and this study’s threats to validity.
Finally, Section VI presents our final remarks and directions
to future work.

II. BAYESIAN NETWORKS

Bayesian networks are probabilistic graph models that rep-
resent knowledge about an uncertain domain. A Bayesian
network, B, is a directed acyclic graph representing a joint
probability distribution over a set of random variables V .
The network is defined by the pair B = {G,Θ}. G is
the directed acyclic graph in which the nodes X1, . . . , Xn

represent random variables, and the arcs represent the direct
dependencies between these variables. Therefore, a Bayesian
network consists of two parts: the directed acyclic graph and
the probability distributions. They can be constructed based
on domain experts’ knowledge, statistical techniques, or both
(i.e., hybrid). Since the data needed to construct Kaizen was
not available publicly, we relied on domain experts’ knowledge
for both parts of our model [14], [13], [12].

DOI reference number: 10.18293/SEKE2021-112
235

Using Bayesian networks for supporting decision-making in
software engineering has the following advantages.

• In a single model, it is possible to maintain observations,
statistical distributions, prior assumptions, and expert
judgment.

• Allows the encoding of causal relationships among vari-
ables for prognosis.

• Enables human diagnosis due to its explanatory nature
(in contrast with opaque neural networks that are hard to
analyze and test), reducing its risk of adoption.

• Handles missing data [5].

III. KAIZEN OVERVIEW

This section presents an overview of Kaizen. Its purpose is
to present a high-level view of its structure. Notice that the
methods applied to construct it and its details are presented
elsewhere [14], [13], [12].

The reasoning behind the model is based on the Scrum
Guide’s vision that Scrum is a means for transforming ideas
into value [18]. Further, according to the Evidence-Based
Management Guide, there are four dimensions four Key Value
Areas: Current Value, Time to Market, Unrealized Value,
and Ability to Innovate. Kaizen focuses on Current Value;
more specifically, it assesses Scrum’s adoption in light of
the value perceived by customers or the product’s users. Its
main requirement was to model Scrum’s product delivery
mechanisms, from conceptualization to release, that affect the
probability of delivering products that satisfy customers.

Given this, Kaizen’s “target variable” is Customer satisfac-
tion. Kaizen’s goal is to be used by Scrum teams to improve
their product delivery process, having the predicted Customer
satisfaction levels as the reference. It enables Scrum teams
to predict Customer satisfaction given their current practices
and diagnose themselves, enabling early detection of undesired
deviations. Thus, Kaizen’s variables model the team’s value
stream, in other words, its procedures to deliver value to
customers.

The process of building Kaizen was top-down, decom-
posing Customer satisfaction into attributes that the team
could observe. Since, in Scrum, the ideas are stored in the
Product Backlog, and the value is delivered through the release
of Increment, these are the variables to “predict” Customer
satisfaction.

Figure 1 presents the Kaizen’s graph. Figure 1, a white
node represents a node not directly observable; an orange
node represents a predictor; and a green one, an indicator.
A predictor is a factor that can be observed to predict the
value of its child node. An indicator is a factor that can be
observed to measure the current value of its parent node.
The difference between a predictor and an indicator is the
time of measurement. For instance, consider Sprint Planning.
Going into such an event, knowing the Projected Capacity and
Past Performance increases the chances of having good Sprint
Planning, and its success can be measured by the quality of
the resulting artifact: the Sprint Backlog.

Notice that Kaizen does not include two of Scrum’s key
aspects: Sprint Retrospective and Scrum Master. The reason
is that Kaizen was built considering the Scrum Master’s per-
spective and that it should be used during Sprint Retrospective

events. Further, it is worthy of mentioning that Kaizen we
built by extracting knowledge available on the literature and
tacit knowledge from industry experts following the Expert-
Based Knowledge Engineering of Bayesian Networks method-
ology [9]. A file for executing Kaizen in AgenaRisk1, the
Bayesian network inference system in which Kaizen’s model
executes, is made available online2.

IV. RESEARCH METHODOLOGY

This study’s goal was to analyze if Kaizen measures what
it is supposed to measure (i.e., customer satisfaction level).
Further, it is essential to mention that our study’s results are
limited to the company’s context from which we collected
data. Given this, we explored the following research question.

RQ What is Kaizen’s accuracy for predicting the customer
satisfaction level’s for the company understudy?

As measures for predictive accuracy, we used face value
(i.e., outcome adequacy [10]) and the Brier score. Face value
measures if the customer satisfaction level calculated by
Kaizen provides the highest probability to a state that matches
the value expected, given the data collected from the company.
For instance, if the expected value for customer satisfaction
is Low, and the predicted value for customer satisfaction is
Low = 0.25, Moderate = 0.60, and High = 0.15, FV is
FALSE (or 0).

However, using the face value is not enough because one
would agree that predicting the correct value with 91% is
better than, for instance, 50%. Thus, we also used the Brier
score, which is the mean squared difference between the
predicted probability and observed outcome. A Brier score of
0 indicates a perfect model, and 1 is the worst score possible.
We calculated the Brier score for each project and used the
average to assess Kaizen’s predictive accuracy.

Next, Section IV-A contextualizes the company for which
we collected data. Section IV-B describes the procedures
employed to collect data.

A. Context Characterization

This section presents information to characterize the com-
pany under study following the context facets described by
Petersen and Wohlin [15]: product, process, practices and
techniques, people, organization and market.

The company under study is a research, development, and
innovation center. It supplies services to industry partners in
the context of several technological domains, including artifi-
cial intelligence, Web systems, and cyber-physical systems. It
manages its initiatives through projects lasting around ten and
eighteen months.

In general, the projects are executed using agile approaches
such as Scrum or Kanban. The development practices and
tools follow the guidelines defined by the organization but are
adapted given the projects’ needs (e.g., programming language
and type of system).

1https://www.agenarisk.com/
2https://doi.org/10.5281/zenodo.4604017

236

Plano de entrega

Teamwork

Autonomy Cohesion

Self-management Collaboration

Adaptability

Shared Leadership

Knowledge

Orientation Coordination

Personality
Daily Scrum

Communication

ChannelsDistribution Monitoring Participation

Increment
Quality

Development and Testing
Process Quality

New Backlog Items
Ready

Sprint Planning

Sprint
Execution

Quality

Sprint Backlog

Past Performance

Projected
Capacity

Product Backlog

Client satisfaction

Requirements
complexity

Requirements
novelty

Business
environment

Requirements
volatility

Ordering

Estimation

Description

Initial Definition of
the Product Backlog

Product Owner
Quality

Sprint Review

Progress
Monitoring

Inspection

Adaptation

Product Backlog
Refinement

Fig. 1. Kaizen’s graph.

B. Data collection Procedure

Kaizen does not claim external validity [12] and adopting
it requires the users to adapt it to their context for the same
reasons that companies tailor methods (including Scrum) to fit
their values, culture, reality, needs, and strategies [7], [1].

One of the steps necessary to adopt Kaizen is to map the
variables of interest into data sources so that the users do
not need to input data directly into the Bayesian network’s
variables. Such data sources might be a questionnaire or
a tool such as Sonarqube [17]. For instance, the variable
Development and Testing Process Quality can be mapped to
one or more questions on a questionnaire or use the technical
debt indicators provided by tools such as Sonarqube.

For our study, our variables of interest are the “target
variable”, Customer support and the leaf nodes (i.e., the
ones marked with the color orange in Figure 1), which we
mapped into two questionnaires. One questionnaire was aimed
only to collect data for Customer support, and answered by
the projects’ customer representatives. The projects’ Scrum
Masters answered the other questionnaire to collect data for the
remaining variables previously mentioned. For each variable
of interest, we defined one question. The questionnaire made
available for the Scrum Master also data about his/her profile

and the project’s context. Section V-A details the process
employed to recruit participants.

We designed and executed our study following the instruc-
tions presented by Runeson and Höst [16] and Molléri et
al. [11]. Before sending the questionnaire to the customer
representatives and Scrum Masters, we evaluated it through
a pre-test with eleven participants, including people from the
target population and colleagues with Scrum experience. The
pre-test’s goal was to validate the questionnaire’s understand-
ability. To execute the pre-test, each person responded to
the questionnaires separately. Afterward, we executed a focus
group to define the questionnaire’s final version.

As a result of the pre-test, for some questions, we created
a glossary to support the respondents of the questionnaire and
avoid misunderstandings regarding the used terminology. The
questions followed a pattern. For some questions, we directly
asked the user to assess each of the target variables’ current
state using a 3-point Likert scale. We used such a scale because
Kaizen’s variables use ordinal variables with three states. For
instance, for the variable “Complexity”, the question was:
“How complex are the requirements?”, with the alternatives
“Low”, “Moderate”, and “High”. For others, we presented a
sentence and asked their level of agreement (i.e., Disagree,

237

Neutral, Agree). There were also three cases in which we cus-
tomized the possible answers to ease their understandability;
an example is shown in Table I. The Supplementary Material,
available online3, presents all questionnaires in their original
language (i.e., Portuguese) and their translations into English.

The questionnaires were made available online using a
Google Form4 and sent by the respondents through e-mail. We
gave the respondents one week to answer the questionnaires,
and the first author remained available if they had any doubts.
All the participants that had agreed to participate in the study
answered the questionnaires.

Once the answers were collected, we inputted the collected
data into a Google Spreadsheet. Then, manually, we inputted
the collected data into Kaizen’s model’s leaf nodes using
AgenaRisk. AgenaRisk has a feature named “scenario”, which
enables the user to tag a set of inputs for the model’s nodes
(i.e., AgenaRisk calls each input into a node as an “evidence”).
Thus, we created one “scenario” for each project, containing
the set of “evidence” for each of the model’s leaf nodes,
which followed directly from the questionnaire’s answers.
For instance, the node Monitoring was mapped the question
The Developers are monitoring tasks properly.. Thus, if for a
given project, the answer to this question was Disagree, we
inputted the “evidence” Low into the node Monitoring. We
used the answers related to the variable Customer Satisfaction
as the reference for calculating Kaizen’s predictive accuracy,
discussed in Section V-B.

V. RESULTS AND DISCUSSION

This section describes the units of analysis (i.e., projects)
and subjects (i.e., people who answered the questionnaires)
(see Section V-A), discusses the results of Kaizen’s predictive
accuracy (see Section V-B), presents its implications (see Sec-
tion V-C), and the study’s threats to validity (see Section V-D).

A. Units of Analysis and Subjects
At the time of the data collection, the company had more

than 30 projects being executed. Our goal was to collect data
from as most projects as possible that used Scrum and focused
on delivering software products or prototypes. The recruiting
process started by having the first author directly inviting
Scrum Masters and customer representatives from projects
with the desired characteristics to participate in this study by
explaining its goals and how it could benefit them. The first au-
thor explained that the data would be kept anonymous. Further,
the first author explained that, after the data analysis was done,
the original data, which mapped the project identification with
the collected, would be destroyed. Finally, they were asked to
sign an informed consent. As a result of the recruiting process,
the Scrum Masters and customer representative of 18 projects
agreed to participate.

For each project, we collected data regarding the most
recently finished Sprint. The questionnaire respondents had
an average of 9.8 years of experience in software projects; six
years with Scrum. The projects, on average, were composed
of 6.7 members, including developers and testers. We also

3https://doi.org/10.5281/zenodo.4604001
4https://forms.gle/i9vtsdNJac8vLjfQA

Fig. 2. Distribution of code size for the projects.

collected data regarding the progress of each project, in
which the progress was calculated by dividing the number
of executed sprints by the number of planned sprints.

Out of the 18 projects, ten were already finished, three
with more than 85% of progress, one with 58%, and the
remaining one with approximately 50% of progress. To better
contextualize the projects, we collected data regarding the size
of their codebase, measured in lines of code (see Figure 2).

B. Predictive Accuracy
Table II shows the answers of all respondents given the

variable “Customer satisfaction” and the calculated results of
the model. The values in bold represent the states with a higher
calculated probability for the given project. In Table II, we
used a color code to interpret the data given the face value by
marking with the color green the correct predictions and red
the incorrect ones.

As a result, for the face value, the models’ predictions were
correct for 14 of the 18 projects, resulting in 78% of accuracy,
which is a reasonable accuracy. The average Brier score was
0.16. Since the average Brier score was close to 0, it means
that Kaizen’s predictions were good [3].

The process to adopt Kaizen in this study was not ideal
because of the participants’ availability. For instance, we
believe that using multiple questions or objective measures
as data sources for the variable factors could have improved
the answers’ internal consistency and reduced bias. Given this,
we believe that Kaizen’s predictions were satisfactory.

We interviewed the respondents of the projects for which
the predictions were incorrect, given the face value (projects
2, 8, 12, and 13). For all cases, they argued that their projects
were in the product discovery phase and that deliverables were
proofs of concepts or MVPs. Thus, the quality rigor was lower
than usual. We believe that the incorrect predictions were
caused by the lack of proper tailoring of Kaizen, given the
company’s context.

A limitation of our analysis for Kaizen’s predictive accuracy
is that out of the 18 projects, 16 had an expected Customer Sat-
isfaction value of High. Ideally, from our study’s perspective,
we would have a more uniform distribution of the expected
values to test Kaizen with diverse situations. However, when
collecting data in the real world, such inconsistencies with the
ideal scenarios might happen.

238

TABLE I
QUESTION AND ANSWERS FOR THE FACTORS Initial definition of the Product Backlog, Detailed, AND Ordered.

Factor Question Answers
Initial definition
of the Product

Backlog

What is the level of definition of the Product
Backlog at the beginning of the release cycle?

Low - None or a few of item defined
Moderate - Main items defined

High - Complete definition of all the items

Detailed

Do you agree with the following statement:
“The functional and non-functional requirements

contain a set of acceptance criteria and are
presented in different levels of details given their

position on the product backlog (top items are
more detailed)”?

Low - Completely disagree
Moderate - Neutral

High - Completely agree

Ordered
Is the Product Backlog continuously ordered
considering attributes such as business value,
technical dependencies, effort, cost, and risk?

Low - It is not ordered
Moderate - Its ordering is continuously refined

using some of the relevant attributes for the project.
High - Its ordering is continuously refined using

all the relevant attributes for the project.

TABLE II
EXPECTED AND CALCULATED AND EXPECTED VALUES FOR THE

VARIABLE Customer satisfaction.

Calculated Probabilities
Project ID Expected Low Moderate High

1 High .130 .429 .441
2 High .212 .459 .329
3 High .137 .426 .441
4 High .121 .405 .474
5 Moderate .296 .489 .215
6 High .107 .408 .484
7 High .129 .411 .460
8 High .542 .380 .080
9 High .111 .379 .510
10 High .120 .417 .463
11 High .049 .260 .691
12 High .387 .446 .167
13 High .388 .455 .156
14 High .030 .208 .762
15 High .031 .220 .749
16 High .023 .190 .787
17 High .077 .326 .597
18 Moderate .272 .479 .249

Given our results, one could argue that if we had just
guessed that Customer Satisfaction was High, we would
have better accuracy, considering face value (i.e., 16 out
of 18). Even though this is true, we believe that this does
not mean that such a guess would be better than Kaizen’s
predictions in general. In previous studies [13], we have
demonstrated Kaizen’s capability of accurately predicting pos-
itive and not positive Customer Satisfaction given diverse
situations. Clearly, only guessing a High Customer Satisfaction
is not enough for diverse scenarios. Thus, such an argument is
supported only by the coincidence of the data collected in this
study being highly skewed toward High Customer Satisfaction.
Consequently, we believe that the results mentioned above
for Kaizen’s predictive accuracy is a positive indicator of its
reliability, complementing our past results [14], [13], [12].

C. Implications for research and practice
This section discusses our study’s implications for research

and practice. For research, our results reinforce Kaizen’s con-
struct validity by complementing our past studies [14], [13],
[12] and presenting its predictive accuracy in an industrial
case. On this note, it is worthy of mentioning that Kaizen is
mainly based on subjective measures. Thus, our results open

the opportunity for research to investigate valid quantitative
measures that would reduce the subjectivity and effort of using
it. We believe that a promising way forward is to analyze how
to connect its nodes into data collected by tools used by agile
teams, including Sonarqube and project tracking software. In
other words, Kaizen can be used as a reference to kickoff
software measurement programs for Scrum teams focusing on
optimizing customer satisfaction.

As previously discussed, Kaizen only focuses on one of the
four dimensions of Evidence-Based Management’s Key-Value
Areas. Since we have had positive experiences with Kaizen
using customer satisfaction as the reference for optimizing the
Scrum team’s performance, we believe that opportunities arise
in exploring other Key-Value Areas.

Further, we made available Kaizen’s model, and we encour-
age the research community to investigate its use within a
broader context. In terms of industry adoption, we believe that
two factors are hindering it. First, there is a need for detailed
adoption guidelines and use cases of how Scrum teams can use
Kaizen to improve their workstreams. Second, Kaizen relies
on AgenaRisk. Thus, there is a need to develop an independent
tool that connects with diverse data sources, including the tools
used by Scrum teams.

We believe that Kaizen could help immature teams to
adopt Scrum by assisting them in detecting deviations or anti-
patterns. However, Scrum is a framework, and it does not
prescribe tactics since they are context-sensitive. Thus, Kaizen
does not inform users about how each of the model’s factors
should be fulfilled. Even though this characteristic promotes
adoption flexibility, it also hinders its usefulness since it does
not guide the users on how to solve the detected problems, for
instance, by suggesting using Story Points to estimate Product
Backlog items. A line of research is to complement Kaizen’s
current version to model such tactics using the concept of
causal intervention [2]. Such a model could be the basis for
developing information retrieval or recommender systems to
help teams define process improvement action points.

Concerning the implications for industrial practice, we have
presented in this paper results the validate Kaizen, which is
a tool that can help them, at the project level, by assisting
the team on risk management, and also at the organizational
level by assisting on knowledge-based process improvement
and deployment of a software measurement program.

239

D. Threats to validity

This section discusses this study’s threats to validity follow-
ing the classification presented by [16].

Construct validity: we used a 3-point ordinal scale for
the factors, which are subjective by nature and susceptible
to cognitive bias, the illusion of communication, and invalid
inferences [6]. Despite this, similar approaches have been used
in other studies with positive results [5], [8], [14], [10].

Reliability: since the respondents of the questionnaire are
providing data for their teams, the data might be biased. We
minimized this potential effect on our results by guaranteeing
the participants that the data would remain anonymous and
that their performance was not at stake. Further, we pre-
tested the questionnaire to avoid the risk of having respondents
misinterpret the questions.

Internal validity: we used a selective sampling approach,
in which we collected data from one software development
company. Further, the participants from the 18 volunteered to
participate in the study during our recruiting process within
the company. Finally, we gave the participants one week to
answer the questionnaire on their best availability to avoid
answering it in a rush.

External validity: the questionnaire defined to operationalize
the usage of the causal model is company-specific. Therefore,
the results are bound by the company’s context in which the
study was performed. Despite this, they might apply to other
companies that use Scrum to manage software development
projects, even though it is expected that companies that adopt
Kaizen would need to tailor it to their context.

VI. CONCLUSIONS

This paper presented the results of an empirical study to
evaluate Kaizen [14], [13], [12] with data collected from 18
projects from one software development company.

A limitation of this study is that out of the 18 projects
for which we collected data, 16 expected a High value for
our “target variable” (i.e., Customer satisfaction). Ideally, we
would have collected data better distributed for the remaining
possible states. However, we believe this is a natural risk of
collected real-world data. We believe that this aspect does not
hinder Kaizen’s evaluation because it has been validated with
other datasets previously [14], [13], [12].

Further, this paper presented how to adopt Kaizen by
defining a questionnaire as its data source. However, in future
work, we will detail an adoption guideline for Kaizen and
present use cases of how it can support Scrum teams to identify
process improvement opportunities and define action points.

Kaizen’s industry adoption potential is currently limited
from an operational perspective because it relies on Age-
naRisk, making it challenging to input data into the model
since it is a manual endeavor. Currently, we are working on a
tool that implements the required algorithms for Bayesian net-
work inference and enables us to connect external data sources
to variables in the model using REST-based endpoints. This
feature enables, for instance, connecting the variable Increment
with metrics collected on SonarQube [17]. Furthermore, it
enables the registration of corrective (or preventive) actions
coupled with the factors. As a result, a knowledge base could

be created for the organization and used by project managers
for data-driven risk management through information retrieval,
case-based reasoning, or recommender systems. Additionally,
we intend to explore evolving the model through the use of
dynamic Bayesian networks to handle the iterative nature of
Scrum.

REFERENCES

[1] A. S. Campanelli and F. S. Parreiras. Agile methods tailoring–a
systematic literature review. Journal of Systems and Software, 110:85–
100, 2015.

[2] A. C. Constantinou, N. Fenton, W. Marsh, and L. Radlinski. From
complex questionnaire and interviewing data to intelligent bayesian
network models for medical decision support. Artificial intelligence in
medicine, 67:75–93, 2016.

[3] T. Corke. Is that a good probability score - the brier score
edition. http://www.matterofstats.com/mafl-stats-journal/2013/12/22/is-
that-a-good-probability-score-the-brier-score-edition.html, 2013. Ac-
cessed in: 03-10-2021.

[4] V.-P. Eloranta, K. Koskimies, and T. Mikkonen. Exploring scrumbut—an
empirical study of scrum anti-patterns. Information and Software
Technology, 74:194 – 203, 2016.

[5] N. Fenton, M. Neil, W. Marsh, P. Hearty, Ł. Radliński, and P. Krause.
On the effectiveness of early life cycle defect prediction with bayesian
nets. Empirical Software Engineering, 13(5):499, 2008.

[6] D. Hubbard and D. Evans. Problems with scoring methods and ordinal
scales in risk assessment. IBM Journal of Research and Development,
54(3):2–1, 2010.

[7] Z. Masood, R. Hoda, and K. Blincoe. Real world scrum a grounded
theory of variations in practice. IEEE Transactions on Software
Engineering, 2020.

[8] E. Mendes. Using knowledge elicitation to improve web effort estima-
tion: lessons from six industrial case studies. In Proceedings of the 34th
International Conference on Software Engineering, pages 1112–1121.
IEEE Press, 2012.

[9] E. Mendes. Practitioner’s knowledge representation: a pathway to
improve software effort estimation. Springer Science & Business, 2014.

[10] E. Mendes, M. Perkusich, V. Freitas, and J. Nunes. Using bayesian
network to estimate the value of decisions within the context of value-
based software engineering. In Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering
2018, pages 90–100. ACM, 2018.

[11] J. S. Molléri, K. Petersen, and E. Mendes. An empirically evaluated
checklist for surveys in software engineering. Information and Software
Technology, 119:106240, 2020.

[12] M. Perkusich, K. Gorgonio, H. Almeida, and A. Perkusich. A framework
to build bayesian networks to assess scrum-based software development
methods. In 28th International Conference on Software Engineering
and Knowledge Engineering, SEKE 2017, pages 1 – 7, Pittsburgh, USA,
2017.

[13] M. Perkusich, K. C. Gorgônio, H. Almeida, and A. Perkusich. As-
sisting the continuous improvement of scrum projects using metrics
and bayesian networks. Journal of Software: Evolution and Process,
29(6):e1835, 2017.

[14] M. Perkusich, G. Soares, H. Almeida, and A. Perkusich. A procedure
to detect problems of processes in software development projects using
bayesian networks. Expert Systems with Applications, 42(1):437–450,
2015.

[15] K. Petersen and C. Wohlin. Context in industrial software engineering
research. In 2009 3rd International Symposium on Empirical Software
Engineering and Measurement, pages 401–404. IEEE, 2009.

[16] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering,
14(2):131–164, 2009.

[17] SonarQube. Sonarqube: Code quality and security.
https://www.sonarqube.org/, 2019. Accessed in: 08-23-2019.

[18] J. Sutherland and K. Schwaber. The 2020 scrum guide.
https://scrumguides.org/scrum-guide.html, 2020. Accessed in: 03-10-
2021.

240

Towards Automatically Generating Release Notes
using Extractive Summarization Technique

Sristy Sumana Nath
Computer Science

University of Saskatchewan
Saskatoon, Saskatchewan

Email: sristy.sumana@usask.ca

Banani Roy
Computer Science

University of Saskatchewan
Saskatoon, Saskatchewan

Email: banani.roy@usask.ca

Abstract—Release notes are admitted as an essential document
by practitioners. They contain the summary of the source code
changes for the software releases, such as issue fixes, added new
features, and performance improvements. Manually producing
release notes is a time-consuming and challenging task. For that
reason, sometimes developers neglect to write release notes. For
example, we collect data from GitHub with over 1,900 releases,
among them 37% of the release notes are empty. We propose
an automatic generate release notes approach based on the
commit messages and merge pull-request (PR) titles to mitigate
this problem. We implement one of the popular extractive
text summarization techniques, i.e., the TextRank algorithm.
However, accurate keyword extraction is a vital issue in text
processing. The keyword matching and topic extraction process
of the TextRank algorithm ignores the semantic similarity among
texts. To improve the keyword extraction method, we integrate
the GloVe word embedding technique with TextRank. We develop
a dataset with 1,213 release notes (after null filtering) and
evaluate the generated release notes through the ROUGE metric
and human evaluation. We also compare the performance of
our technique with another popular extractive algorithm, latent
semantic analysis (LSA). Our evaluation results show that the
improved TextRank method outperforms LSA.

Index Terms—Software release notes, Extractive text summa-
rization, Software maintenance and documentation

I. INTRODUCTION

Software release is a way to deliver the software package,
with release notes, of the stable version to the end-users.
Release notes are essential documentation in software devel-
opment that contains a set of project activities, e.g., issue fixes,
improvements and new features that have been implemented
to a specific release [18]. Different stakeholders (e.g., software
development teams and external users) might benefit from
release notes [13], [19]. For example, the development team
members (project manager, team lead, developer, tester) use
them to learn what has changed in the source code to solve
issues or integrate new features [13]. Similarly, integrators,
who are using a library in their code, use the library release
notes to decide whether such a library should be upgraded to
the latest release [19]. End-users and clients read the release
notes to decide whether it would be worthwhile to upgrade to
the latest software (e.g., application software or tool) version
[5]. Besides, release notes serve as valuable resources to

DOI reference number: 10.18293/SEKE2021-119

generate software documentation (e.g., software release report)
submitted to the client. Moreover, practitioners use release
notes in requirements engineering, software programming,
software debugging and testing phase [4].

Generally, more than one developer is working on a single
software project [5]. Generating release notes of a project
by an individual is challenging as it is not feasible to know
all fixed issues or the integrated new features of the project.
Therefore, primary release note producers collect information
from contributors to produce the release notes manually [6].
A few studies have proposed the generation of release notes
- some of them are semi-automated [13], and some are auto-
mated techniques [5], [19] using manually-defined templates.
The automated technique ARENA generates release notes by
extracting source code change of Java projects and using
some manually pre-defined templates based on the source code
change type [19] (example in Figure 1). The primary limitation
of this method is that it fails if the source code change or
code statement is not matched with the pre-defined data, this
approach cannot generate a sentence. Besides, this technique
is only helpful for Java-based software. In an empirical study
[6], 108 GitHub contributors and 206 IT professionals were
surveyed for production and usage of release notes. The survey
results reveal that none of the participants used ARENA for
producing release notes. Whereas the existing approach is not
suitable to use; therefore, this is one of the motivations of our
study. On the other hand, the semi-automated technique [13]
filters good quality commit messages between two releases
and appends them all to suggest producing release notes.
Appending the commit messages of interrelated releases is
not a feasible solution to generate release notes because it
generates a lengthy release note. The audience wants to read
precise release notes [6]. Some text management tools (e.g.,
issue trackers) are used to keep track of changes for producing
and managing release notes, still need some considerable
manual effort to create the release notes from these sources
[6].

Developing new tools could greatly help to improve release
notes production and usage [6]. As discussed above, there is a
great lack of automatic release notes generation tools, which
motivates us to develop an automated release notes generation
technique. To work collaboratively, developers upload the

241

Fig. 1: Generated Release Note by ARENA

TABLE I: A Release Note in the Laravel Project

Release Note:
Add sanctum cookie endpoint to default cors paths
Modify the cache.php docblocks
Add stub handler
Closed auth correctly
Commit messages & merge PR titles:
Commit 1: Update CHANGELOG.md
Commit 2: Merge branch ‘8.x’ of github.com:laravel/laravel into 8.x
Commit 3: Modify the cache.php docblocks
Commit 4: add stub handler
Commit 5: closed auth correctly
Commit 6: add sanctum cookie endpoint to default cors paths
Commit 7: add auth line

source code in social coding platforms, e.g., GitHub, and can
track the changes of the projects. A release is a collection
of several commits, and commits can be regular commits
and merge commits. Table I represents a release note of
Laravel project with the related commit messages and merge
pull-request titles. Therefore, commit messages and merge
pull-request titles are valuable artifacts to generate automated
release notes.

We prepare a new dataset that contains the release infor-
mation (e.g., release notes, release date) with their commit
messages and merge pull-request titles of 13 projects from
GitHub. After data filtering and pre-processing, our prepared
dataset contains over 1,200 release data (detail described in
Section III). In our study, we regard the combination of com-
mit messages and merge pull-request (PR) titles as an input
source and release notes as the summary of the input sources.
We apply the TextRank algorithm; however, traditional Tex-
tRank algorithm ignores the semantic similarities. We integrate
word embedding technique GloVe (Global Vectors for Word
Representations) [22] to solve this problem and analyzed its
effectiveness (described in Section V-C).

To evaluate the automatically generated release notes, we
also implemented the Latent Semantic Analysis (LSA) text
summarization technique. We evaluated automated release
notes on the dataset using Recall-Oriented Understudy for
Gisting Evaluation (ROUGE) [14] and the F1-score ob-

https://github.com/laravel/laravel/releases/tag/v8.4.2

tained with ROUGE-1, ROUGE-2, and ROUGE-L is 31.74%,
18.53%, and 26.90%, respectively. We also conduct a human
evaluation to assess the quality of the generated release notes,
which shows that our approach performs significantly better
than the LSA and can generate more high-quality release
notes.

In summary, our contributions are:

• We develop a dataset with over 1,200 releases and their
commit messages and merge pull-request titles from
GitHub for release notes generation task.

• We implement the TextRank algorithm and integrate the
GloVe word embedding technique to generate release
notes for software release from their commit messages.

• We evaluate this approach on the dataset using the
ROUGE metric and human evaluation.

We describe the research questions and usage scenarios
in Section II and data collection process in Section III. We
elaborate our proposed approach in Section IV and present the
evaluation results in Section V. Section VI and VII discusses
threats to validity and the related work. We conclude this paper
with some future plans in Section VIII.

II. STUDY DESIGN

Our study aims to answer the following two research
questions:

RQ1: What is the vital information that needs to include
in the release notes? We investigate in the GitHub projects’
repositories to understand the contents of the release note.
We find that for the most cases developers prepare a list of
software changes of the current version from the last previous
version. The list of software changes comes from commits
and merge pull requests (Table I). For reason, we collect the
commit messages and merge pull requests titles as a input
source to generate automated release notes (detail describe in
Section III).

RQ2: What is the efficient way to generate release notes?
As per our previous discussion, it is clear that no appropriate
tool exists for automated release notes generation in the soft-
ware development practice. To produce concise release notes,
we apply text summarization techniques. We implemet the
TextRank summarization algorithm by integrating the GloVe
model. Using the GloVe model, we can resolve the semantic
similarity issue of the traditional TextRank algorithm (detail
describe in Section IV). For evaluation, we have used the
evaluation metric ROUGE to assess the text quality of the
automated summary.

1) Usage Scenarios: The release notes may help developers
and users to capture a summary of the latest release. Our
approach can help developers to write the good quality of
release notes. The usage scenarios are as follows:

• It is challenging for developers to keep in mind all
the changes for the upcoming release. Therefore, our
approach can assist developers in producing release notes.

242

• Our approach can help to replace the existing empty
release notes in GitHub.

Fig. 2: Sample Release Note

2) Problem Formulation: Inspired from the example shown
in Table I, we observe the production of the release notes as a
text summarization task with the combination of the commit
messages and merge PR titles in the release as the article and
the release notes as the summary. Therefore, the problem is
formulated as follows:

Given a source sequence Sseq = (x1, x2, ..., xn), nth sen-
tences in source sequence. An extractive summarizer aims to
produce a summary RNgen by selecting m sentences from
Sseq , where m is the length of existing release notes RNref .
We use a scoring function f() to generate a score for every
sentence of Sseq and then select top-ranked m sentences to
produce an automated summary.

III. DATASET

A. Data Preparation:

In our study, we need to develop a dataset of release notes
with commit messages and pull-request titles of the GitHub
projects. To eliminate the trivial projects, we defined three
criteria for project selection from GitHub projects: (i) the
project is active (i.e., the repository of the project is being
updated); (ii) the number of release notes in the project is
more than 40; and (iii) the project have more than 8,000 stars.
Generally, GitHub projects are classified into six domains
[8]: (1) Application software, e.g., browsers, text editors; (2)
System software, e.g., operating systems, (3) Web libraries
and frameworks, e.g., Web API, (4) Non-web libraries and
frameworks, e.g., android framework, (5) Software tools, like
IDEs, and compilers; (6) Documentation, like documentation,
tutorials.

We extract 1,924 release data (see in Figure 2), e.g., release
note, hash, release data and tag name, of five domains except
Documentation repositories of 13 projects (among them 6
Java, 3 Python and 4 PHP projects). We find 711 (37%) release
have empty release notes and develop a dataset with 1,213
release data. After that, we extracted the commit messages
and merge pull-request titles of the releases. In GitHub, the
new commit is linked with the previous commit using the
parent, i.e., hash value (shown in Figure 3). We extract all
parent hash values between two releases and then collect the
commit messages and merge PR titles. Our study extracts
the first sentences from the commit messages because the
first sentences often are the summaries of the entire commit
messages [12]. Similarly, merge PR commits have two parents
(shown in Figure 3b), one is previous commit and second is

https://github.com/django/django/releases

(a) Regular Commit

(b) Merge PR Commit

Fig. 3: Commit

Fig. 4: Data Collection Process

push PR commit. In our study, we collect all parents hash value
between two releases and then extract the commit messages
and merge PR titles using these hash values. Figure 4 describes
the process flow of data collection process. Data is uploaded
in this link.

B. Data Pre-processing:

We conduct some text pre-processing techniques in the
release notes and source sequences to filter out noise from
the text. First, we eliminate the empty release notes. Then,
we remove the HTML tags from the extracted release notes.
Then, we split the text into sentences using NLTK (Natural
Language Toolkit [7]) and delete the a) url, b) reference
number (e.g., “#123”), c) signature, e,g, signed-off-by or
co-authored-by, d) ‘@name’, e) markdown headlines, e.g.,
###Added, by identifying through regular expressions. Then,
we filter out some trivial commit messages (for example,
duplicate commit messages in same releases, ‘merge pull
request/branch’, ‘update .gitattributes’ and so on).

IV. APPROACH

Automatic text summarization process produces a summary
by reducing the text of a document. Text summarization
approaches can be categorized into two types, extractive
and abstractive summary. Extractive summary is created by
extracting the phrases or sentences from the input sources
and abstractive summarization process produces new words
by understanding the main content of the input sources. We
use extractive techniques in our study. Usually, extractive
summarization processes follow three steps to generate sum-
mary: (a) intermediate representation of the document, (b)
scoring sentences and (c) strategies for selection of summary
sentences. The procedure of our approach is described in
Figure 5.

https://github.com/sristysumana/SEKE2021Paper119

243

Fig. 5: Overview of the methodology

A. TextRank Algorithm

TextRank is an unsupervised graph-based ranking algo-
rithm, and it is widely used in keyword extraction and text
summarization. In general, graph-based ranking algorithms
decide the importance of a vertex within a graph based on
global information iteratively drawn from the entire graph.
The core idea of the TextRank algorithm is to split the whole
document into sentences. These sentences are used as nodes,
and the weight between the nodes is used as edges. The
weight between two nodes is calculated by similarity function
and transform a similarity matrix among the sentences of the
whole document. Then a text graph is formed, and the score
(importance or rank) is computed of each vertex recursively
until convergence.

Given, the source sequence, D, is set of n sentences
{S1, S2, ..., Sn} using NLTK package [7], i.e., D =
{S1, S2, ..., Sn}. By using each Si in D as the node and
the similarity between the nodes as the edge, a text graph
G = (D,E,W) can be constructed, where E ⊆ SXS is
nonempty finite set of edge between the nodes, W is the
weight set of edges, and wij is the weight value of edges
between node Si and Sj . The similarity function (Jaccard
Similarity [17]) for Si, Sj can be defined as:

Sim(Si, Sj) =
|{tk|tkεSi&tkεSj}|
log(|Si|) + log(|Sj |

(1)

According to the Sim(Si, Sj) value, an similarity matrix
SMn×n is constructed between nodes. The weight of elements
on the diagonal of SMn×n are all 1. Based on similarity
matrix, the TextRank algorithm generates the importance or
score of vertex Si using following equation,
Sc(Si) = (1− d) + d ∗

∑
SjεIn(Si)

wji∑
SkεOut(Sj)

wjk
Sc(Sj) (2)

Here, Sc(Si) is the ranking score of the node Si, d is the
damping factor that represent the probability of the current
node jumping to any other node, and at the same time can
enable the weight to be transferred to the convergence stably.
This co-efficient value can be set between 0 to 1, however d
usually set to 0.85 [17], [21]. In(Si) is the collection of all
nodes pointing to node Si, Out(Si) is the set of all nodes
pointed by node Si. The sum of the right side in the equation
(2) indicates the contribution of each adjacent node to the

node. The summed numerator wij represents the degree of
similarity between the two nodes Si and Sj as well as the
denominator is a weighted sum. Sc(Sj) represents the weight
value of node Sj after the last iteration. After generating the
score of all sentences, the TextRank algorithm generates a
summary by selecting top-scored sentences.

B. Text Vectorization

Text Vectorization is the process of transforming text into
numerical representation. Several ways are existing for the
text vectorization, like, bag-of-words (BoWs), term frequency-
inverse document frequency (TF-IDF), global vector for word
representation (GloVe). The traditional TextRank algorithm
converts the document into BoWs vector representation, which
is an unordered collection of word counts [17] and the size of
this vector is equal to the number of words in the vocabulary.
The main issue of the BoW models is that if a sentence comes
with the new words, then the vocabulary size would increase
as well as the length of the vectors would increase. For that
reason, the vector representation of the BoW will be a sparse
matrix. Sparse representations are harder to model both for
computational reasons and informational reasons as well as
required a huge amount of training data. To resolve this issue,
the modified TextRank algorithm [16] integrates the TF-IDF
algorithm. TF-IDF model reflects the importance of a word to
a document in a collection or corpus. It can keep the relevant
words score in the sentences and also considers the different
lengths of the sentence in the document. TF measures the
frequency of the word in each document in the corpus and
IDF calculates the weight of rare words across all documents
in the corpus. The formula of TF − IDF (wi) is as follows:

TF (wi) =
fSj(wi)

fSj(w)

IDF (wi) = log
Ns

fS(wi)

TF − IDF (wi) = TF (wi)× IDF (wi)

where fSj(wi) represents the number of repetition of the
word wi in the sentence sj , fSj(w) is the total number of
words w in the sentence sj , Ns represents the total number
of sentences in the corpus; fS(wi) represents the number of
sentences containing the word wi.

244

TABLE II: ROUGE scores

Approach ROUGE 1 ROUGE 2 ROUGE-L
Recall Precision F1-Score Recall Precision F1-Score Recall Precision F1-Score

LSA 28.65% 30.28% 29.44% 14.89% 14.35% 14.61% 23.54% 25.45% 24.45%
TextRank+GloVe 30.23% 33.42% 31.74% 17.29% 19.97% 18.53% 24.29% 30.15% 26.90%

Still, capturing semantic similarity between the sentences
is the issue of the TextRank algorithm. We observe that
generating automated release notes needs to consider semantic
similarity among the input sources (e.g., commit messages).
Therefore, we integrate the GloVe word embedding model
with the TextRank algorithm, which can improve keyword
extraction performance by enhancing the semantic represen-
tations of documents. GloVe approach generates vector repre-
sentation by calculating the co-occurrence matrix of each word
based on the frequency of word and co-occurrence counts. It
primarily gives information about the frequency of two words
Wi and Wj appear together in the huge corpus. To store this
information, GloVe model generates co-occurrence matrix Xw,
each entry of which corresponds to the number of times word
j occurs in the context of word i. As the consequence:

PWiWj = P (Wj|Wi) =
XWiWj

XWi

is the probability that word with index j occurs in the context
of word i. This co-occurrence probability matrix gives a vector
space with meaningful sub-structures.

V. EVALUATION RESULT & DISCUSSION

To compare the quality of generated release notes, we
implement another text summarization technique named Latent
Semantic Analysis (LSA) [20]. It is an unsupervised approach,
not required to train the model. LSA extracts hidden semantic
structures of words and sentences. An algebraic method,
Singular Value Decomposition (SVD), is used to find out the
interrelations between sentences and words.

A. Evaluation Metric
We evaluate the automated release notes with the ROUGE

metric [14], which has been shown the quality of summarized
text by high correlation with human assessments. Specifically,
we use ROUGE-N (N=1,2) and ROUGE-L, which are widely
used to evaluate text summarization systems. The score of
ROUGE-N is based on comparing n-grams in the generated
and the original summary. The recall, precision and F1-score
for ROUGE-N are calculated as follows:

Recalln =
Countgramn

(RNref , RNgen)

Countgramn(RNref)

Precisionn =
Countgramn(RNref , RNgen)

Countgramn
(RNgen)

F1n = 2
Recalln ∗ Precisionn
Recalln + Precisionn

where, Countgramn
(RNref , RNgen) calculates the number of

overlapping n-grams found in both the original and the gener-
ated text. The precision, recall and F1-score for ROUGE-L are

TABLE III: Release Note Example I

Source Sequence:
• made the parameter of flowable,observable.collect(collector) con-

travariant on t.
• 3.x: fix map() conditional chain causing npe
• suppress undeliverable exception handling in tests.
• fixed image link and added java examples for connectable observable

operators.
• 3.x update conditional-and-boolean-operators.md
• updating suppress undeliverable exception rule to have a named

inner class instead of an anonymous inner class.
• edit dependency for gradle

Reference:
• make the collector type of the collect operator contravariant in t
• fix map() conditional chain causing npe
• suppress undeliverable exception handling in tests

LSA:
• suppress undeliverable exception handling in tests
• 3.x update conditional-and-boolean-operators.md
• updating suppress undeliverable exception to have a named inner

class instead of an anonymous inner class

TextRank+GloVe:
• 3.x: fix map() conditional chain causing npe
• fixed image link and added java examples for connectable observable

operators
• suppress undeliverable exception handling in tests

similar with those for ROUGE-N, but instead of n-grams, they
are calculated using the longest common subsequences be-
tween generated descriptions and reference descriptions [14].
ROUGE is usually reported as a percentage value between 0
and 100. We obtained ROUGE scores using the ‘rouge-score’
package [1] with Porter stemmer enabled.

B. Experiment Settings
We use pandas, Python library, for data manipulation

and analysis. In text pre-processing phase, we use nltk
library for tokenization and removing stopwords as well as
write some regular expressions in the code to identify and
delete the reference code, markdown, etc. from the text. In
this study, we generate extractive summary for producing
automated release notes. Therefore, we count the number of
sentences (n) of reference text and set n is a parameter in the
summarization technique. In order that, the sentence length of
the reference and the generated release notes remain the same.
For implementation, we use several library like, gensim [23],
sumy [2], sklearn [9], networkx [11].

C. Analysis and Discussion
1) The Effectiveness of Our Approach: To investigate the

effectiveness of our approach (i.e., TextRank+GloVE), we

245

evaluate the automated release notes with reference text on our
dataset and the results are shown in Table II. TextRank+GloVe
model has a higher precision and F1 score than the LSA
model for each ROUGE metric. The improvements compared
with LSA in terms of the three F1 scores are 2.30, 3.91 and
2.44 points, respectively. These results indicate that compared
with the two models, our approach can capture the key
points of a release more precisely. The TextRank approach
integrates the GloVe model, for that reason, this technique
can consider semantic similarity between two sentences. On
the other hand, sentence scoring and selection process of
LSA depends on co-occurrence of words. For example, LSA
approach extract “suppress undeliverable exception handling
in tests” and “updating suppress undeliverable exception to
have a named inner class instead of an anonymous inner
class.” in Table III. TextRank+GloVe can handle this situation
by generating co-occurrence matrix of words based on the
context.

2) The Effects of Main Components: In this study, we
generate release notes based on the TextRank approach by
integrating GloVe word embedding technique. We compare
the automated release notes between TextRank+GloVe and
TextRank+TF-IDF with the reference release notes (Table IV).
TextRank+TF-IDF model extracts keywords based on the term
frequency (TF) and inverse document frequency (IDF) and
generate sentence score based on the high TF-IDF value.
In release note example II (Table IV), TextRank+TF-IDF
model identifies error, missing, components as top keywords
and selects top three scored sentences which have these
keywords more than the other sentences. On the other hand,
TextRank+GloVe extract better result than the TextRank+TF-
IDF model. Because GloVe is a very powerful word vector
learning technique which does not only rely on local context
information of words, but also incorporates global word co-
occurrence to obtain word vectors. For example, fix...replay
and fix...switchmap are co-occurred in two sentences of source
sequence in Table IV. Therefore, our model selects good
sentences than the TextRank+TF-IDF. Table V shows the result
by comparing the generated release notes by TextRank+TF-
IDF and TextRank+GloVe model.

3) Where Does Our Approach Fail : We carefully inspected
the release notes where our approach does not obtain good
F1 scores. We find that our approach usually performs badly
because it presents the top ranking sentences and cannot
generate new sentences. The common case is that the source
sequence contains several bug fix commit messages, however
developers described ‘This release fixes few minor issues’ in
the release notes to avoid a lengthy release notes. But our
approach extracts a high ranked sentences from the source
sequence. This issue is very common, hence it gets low
ROUGE scores. Table VI represents a example where our
approach fails. Additionally, the length of the generated text
is a crucial matter for the poor score, because every sentence
has a different word size. In our implementation, we only
consider the total number of sentences, the ROUGE score
would have been better if we had used the number of words to

TABLE IV: Release Note Example II

Source Sequence:
• 3.x: add error handling section to observable.blockingfirst documen-

tation
• 3.x: add missing coverage, update unused/inconsistent ops compo-

nents
• error occur when missing version tag from single.concatmaps
• add more tags those are missing previously
• update 2.x maintenance date, include 3.0 wiki
• update readme.md
• 3.x: fix switchmap not canceling properly during onnext-cancel races
• 3.x: fix incorrect sync-fusion of switchmap and error management
• 3.x: fix replay not resetting when the connection is disposed
• 3.x fix excess item retention in the other replay components

Reference:
• fix switchmap not canceling properly during onnext-cancel races.
• fix replay() not resetting when the connection is disposed.
• add error handling section to observable.blockingfirst documenta-

tion.

TextRank + TF-IDF:
• 3.x: add missing coverage, update unused/inconsistent ops compo-

nents
• error occur when missing version tag from single.concatmaps
• 3.x: fix incorrect sync-fusion of switchmap and error management

TextRank + GloVe:
• 3.x fix excess item retention in the other replay components
• 3.x: fix switchmap not canceling properly during onnext-cancel races
• 3.x: add error handling section to observable.blockingfirst documen-

tation

generate the summaries. However, in the extractive summary
techniques, the word number cannot be used as a parameter.
To reduce these limitations, we will implement sequence-to-
sequence model to produce high-quality release notes in future
and train the model.

D. Human Evaluation

In this section, we invite 16 software engineers and get
response from 13 participants to assess the quality of the
generated release notes by LSA and TextRank algorithms.
Automatic evaluation metric, ROUGE, calculates the textual
similarity between the existing and the generated release notes,
while the human study can evaluate the semantic similarity
between them.

1) Procedure: We also conduct a human evaluation to
investigate our approach’s effectiveness. We invited 13 human
evaluators to assess the quality of the automated release
notes. All of them are software developers with 3-8 years of
experience and use GitHub. We randomly select 10 release
notes from the dataset and design an online survey. For each
release, we show its original release notes followed by the two
automated release notes generated by the TextRank+GloVe
and LSA approaches to the evaluators. The two generated
release notes are randomly ordered. Participants also have
no idea about how these approaches work, so they cannot
figure out which description is generated by which approach.
Every evaluator provided a score from 1 to 7 to measure the
semantic similarity between the generated release notes and

246

TABLE V: Effectiveness of the GloVe model

Approach ROUGE 1 ROUGE 2 ROUGE-L
Recall Precision F1-Score Recall Precision F1-Score Recall Precision F1-Score

TextRank+TF-IDF 26.51% 28.49% 27.83% 13.86% 14.08% 13.64% 22.06% 24.49% 23.51%
TextRank+GloVe 30.23% 33.42% 31.74% 17.29% 19.97% 18.53% 24.29% 30.15% 26.90%

TABLE VI: Release Note Example III

Source Sequence:
fixes failed to disable slave database and fixes unit test errors
fix oracle connection getschema()
fix shadow order
fix test cases and update encrypt strategy name
fix metric image path
fix integration test for select with case expression
Reference:
this release fixes few minor issues
TextRank+GolVe:
fixes failed to disable slave database and fixes unit test errors

1 2 3 4 5 6 7

5

10

15

20

25

score

#R
es

po
ns

e

LSA TextRank+GloVe

Fig. 6: Score of Human Evaluation

the reference. The higher score means the existing release
notes are closer to the automated summaries.

2) Result: Each release note obtains thirteen scores from
13 evaluators. We calculate the score and the Figure 6 shows
the final score of human evaluation. Each bar represents the
obtained scores by the approaches in a specific score interval.
For example, the right-most bar shows that 8 participants
provide seven score to our approach. We notice that the
generated release notes of TextRank+GloVe get more 4 to
7 score because it can extract most relevant sentences than
the LSA. But we also notice that TextRank+GloVe generated
release notes get the score between 1 and 2. The reason may
be that we do not train our model based on the existing release
notes and hence sometimes may fail to generate high score of
important sentences from source sequence.

VI. THREAT TO VALIDITY

One threat to validity is that our dataset is built from Java,
Python and PHP projects in GitHub repositories. Therefore,

it may not represent all programming languages. Besides,
our approach takes commit messages and merge pull-request
titles as input; hence can also be applied to projects of other
programming languages.

Another threat to validity is that the non-summary infor-
mation, such as acknowledgment of contributors, installation
command for the new release, in release notes may affect the
effectiveness of our approach. Release notes are free-form text,
and we cannot guarantee their quality and content. We try
to mitigate this threat by using a set of heuristic rules and
manual analysis to filter out non-summary information when
pre-processing. However, it is hard to process the patterns of
all non-summary information. For future work, we will focus
on data pre-processing for further improvements.

Another threat is we cannot compare the generated re-
lease notes from ARENA and our approach because ARENA
extracts all issues from JIRA to generate release notes for
Java projects and generate lengthy release notes. Moreover,
from survey study, no participants have adopted ARENA for
producing release notes [6].

There is also a threat related to our human evaluation. We
cannot guarantee that each score assigned to every release
note is fair. To mitigate this threat, we invite the professional
developers to our survey who have experience in GitHub and
producing release notes.

VII. RELATED STUDY

Several empirical studies focused on the usage of release
notes. Abebe et al. [3] identify nine important factors (e.g.,
issue priority and type) in explaining the likehood of an
issue being included in release notes. Tingting et al. [6]
analyzed 32,425 release notes and classified the content into
eight categories, e.g., issues fixed, new features, and internal
changes. Among them, issues fixed (79.3% of the release
notes) and new features (55.1% of the release notes) are
the most documented categories. In GitHub, developers push
commits or send pull requests in a separate branch to resolve
the issues. For that reason, we propose an automated release
notes generation technique based on the commit messages and
merge PR titles.

Some other studies aimed to generate automated release
notes. Moreno et al. [19] propose ARENA tool to produce
release notes for Java projects. ARENA extract the source
code changes from GitHub and collect issues from JIRA
using issue-commit linker. Then it prepare a list of issues and
generate change description using predefined text templates.
The example is shown in Figure 1. Similarly, Ali et al. applied
the same technique to generate automated RNs for Node.js
projects [5]. Klepper et al. [13] proposed a semi-automatic

247

approach by collecting information from the build server, issue
tracker and version control system. Then, release manager can
edit the this list before publishing. However, we implemented
full-automatic approach to produce release notes and pre-
defined text templates is not required in our study.

For automated software documentation, researchers studies
different types of software artifacts, such as commit messages
generation [10], [12] and automated pull-requests description
[15]. For example, Liu et al. [15] propose an automatic
approach to generate PR descriptions based on the commit
messages and the source code comments. On the other hand,
release combines plenty of commits and pull requests. Our
work aims to generate release notes from commit messages
and pull-request titles using an extractive method.

VIII. CONCLUSION & FUTURE WORK

This paper aims to generate release notes for software
releases automatically. In our work, we apply the extractive
text summarization technique, i.e., TextRank, to produce au-
tomated release notes by selecting top-ranking sentences from
their commit messages and merge PR titles. The main novelty
of this work is that we do not use any pre-defined template
like ARENA [19]. Our approach is language-independent;
oppositely, ARENA is used for Java projects. Moreover, we
integrate GloVe to convert the text into embeddings, which
helps to extract keywords than the traditional approach. We
evaluate the generated release notes using the ROUGE metric
and conduct a human evaluation to check the effectiveness of
the automated release note generation technique.

In future, we plan to apply a sequence-to-sequence model to
improve the quality of release notes. We also plan to improve
our approach by involving additional related software artifacts
as input. For example, by taking git diff, relevant content from
bug reports as input and text summarization models may be
able to infer the implementation details and the motivation
of a software release. Moreover, we plan to improve the
structure of release notes. We will categorize, e.g., bug fixes,
improvements, new features, the content of release notes for
better representation to release note users.

ACKNOWLEDGMENT

This research is supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), and by
two Canada First Research Excellence Fund (CFREF) grants
coordinated by the Global Institute for Food Security (GIFS)
and the Global Institute for Water Security (GIWS).

REFERENCES

[1] Rouge-score 0.0.4. https://pypi.org/project/rouge-score/.
[2] Sumy. https://pypi.org/project/sumy/.
[3] Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan. An em-

pirical study of software release notes. Empirical Softw. Engg.,
21(3):1107–1142, June 2016.

[4] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno,
Gabriele Bavota, Michele Lanza, and David C. Shepherd. Software
documentation: The practitioners’ perspective. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
ICSE ’20, page 590–601, New York, NY, USA, 2020. Association for
Computing Machinery.

[5] M. Ali, A. Aftab, and W. H. Buttt. Automatic release notes generation.
In 2020 IEEE 11th International Conference on Software Engineering
and Service Science (ICSESS), pages 76–81, 2020.

[6] T. Bi, X. Xia, D. Lo, J. Grundy, and T. Zimmermann. An empirical study
of release note production and usage in practice. IEEE Transactions on
Software Engineering, pages 1–1, 2020.

[7] Steven Bird, Ewan Klein, and Edward Loper. Natural Language
Processing with Python. O’Reilly Media, Inc., 1st edition, 2009.

[8] H. Borges, A. Hora, and M. T. Valente. Understanding the factors that
impact the popularity of github repositories. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
334–344, 2016.

[9] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa,
Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer,
Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas,
Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine
learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
pages 108–122, 2013.

[10] Luis Fernando Cortés-Coy, Mario Linares-Vásquez, Jairo Aponte, and
Denys Poshyvanyk. On automatically generating commit messages via
summarization of source code changes. In Proceedings of the 2014 IEEE
14th International Working Conference on Source Code Analysis and
Manipulation, SCAM ’14, page 275–284, USA, 2014. IEEE Computer
Society.

[11] Aric Hagberg, Pieter Swart, and Daniel Chult. Exploring network
structure, dynamics, and function using networkx. 01 2008.

[12] Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically
generating commit messages from diffs using neural machine translation.
In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, page 135–146. IEEE Press,
2017.

[13] Sebastian Klepper, Stephan Krusche, and Bernd Brügge. Semi-automatic
generation of audience-specific release notes. In CSED@ICSE, 2016.

[14] Chin-Yew Lin. Rouge: A package for automatic evaluation of sum-
maries. In ACL 2004, 2004.

[15] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li.
Automatic generation of pull request descriptions. In Proceedings of
the 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’19, page 176–188. IEEE Press, 2019.

[16] Chirantana Mallick, Ajit Kumar Das, Madhurima Dutta, Asit Kumar
Das, and Apurba Sarkar. Graph-based text summarization using modified
textrank. In Janmenjoy Nayak, Ajith Abraham, B. Murali Krishna, G. T.
Chandra Sekhar, and Asit Kumar Das, editors, Soft Computing in Data
Analytics, pages 137–146, Singapore, 2019. Springer Singapore.

[17] Rada Mihalcea and Paul Tarau. TextRank: Bringing order into text. In
Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, pages 404–411, Barcelona, Spain, July 2004.
Association for Computational Linguistics.

[18] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
Andrian Marcus, and Gerardo Canfora. Automatic generation of release
notes. In Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE 2014, page 484–495,
New York, NY, USA, 2014. Association for Computing Machinery.

[19] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
Andrian Marcus, and Gerardo Canfora. Arena: An approach for the
automated generation of release notes. IEEE Transactions on Software
Engineering, 43:106–127, 2017.

[20] Makbule Ozsoy, Ferda Alpaslan, and Ilyas Cicekli. Text summarization
using latent semantic analysis. J. Information Science, 37:405–417, 08
2011.

[21] Suhan Pan, Zhiqiang Li, and Juan Dai. An improved textrank keywords
extraction algorithm. In Proceedings of the ACM Turing Celebration
Conference - China, ACM TURC ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[22] Jeffrey Pennington, Richard Socher, and Christopher D. Manning.
Glove: Global vectors for word representation. In Empirical Methods
in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[23] Radim Řehůřek and Petr Sojka. Software Framework for Topic Mod-
elling with Large Corpora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta,
May 2010. ELRA.

248

Understanding the Impact of COVID-19 on Github
Developers: A Preliminary Study

Liu Wang1, Ruiqing Li2, Jiaxin Zhu3, Guangdong Bai2, Weihang Su1, Haoyu Wang1
1 Beijing University of Posts and Telecommunications, Beijing, China

2 The University of Queensland, Australia 3 Institute of Software, Chinese Academy of Sciences, China

Abstract—The ongoing COVID-19 pandemic has impact al-
most every aspect of human lives profoundly. This paper inves-
tigates the impact of COVID-19 on the activity and contribution
of open source software (OSS) developers. Specifically, we make
great efforts to harvest the information of all the developers (over
25 million) on GitHub and their contribution activities. With such
a large-scale dataset, we perform analysis from four perspectives,
including the overall ecosystem level, country level, organization
level and developer level, to characterize the impact of COVID-19
on the OSS community. We have revealed a number of interesting
observations and trends, which are crucial to understanding the
OSS contributors and supporting the collaboration to combat
global crisis like COVID-19.

Index Terms—COVID-19, Github, Developer Contribution,
Open Source Software

I. INTRODUCTION

The COVID-19 pandemic has changed people’s lives in
many ways. In this paper, we intend to take a look at the
GitHub developers and their contributions during the pan-
demic, and share our preliminary results.

GitHub developers can make many kinds of contribu-
tions. Commits, pull-requests and issue reports are the most
commonly studied contributions in literature. In this paper,
we consider the comprehensive contributions monitored and
recorded by GitHub, which has been seldom analyzed before.
In particular, ‘committing to a repository’s default branch
or gh-pages branch’, ‘opening an issue’, ‘proposing a pull
request’, and ‘submitting a pull request review’ are counted
as contributions [1]. GitHub presents a contributions graph
for each user in his/her profile page. It tracks the number of
daily contributions and visualizes how active one has been on
the site, which we believe is a good indicator to measure the
activeness of GitHub developers during COVID-19.

Basically, we study the number of contributions per day and
the number of developers who make these daily contributions
before and during the pandemic. We first make a huge effort to
harvest a comprehensive dataset of developers in Github and
their daily contributions. By the time of November 10, 2020,
we have collected 25,761,884 developers in total. Leveraging
the dataset, we perform a systematical analysis including four
perspectives, i.e., the overall ecosystem level, country level,
organization level and developer level, which corresponds
to four research questions that drive our study. Our first
research question is how the overall numbers change (RQ1).

DOI reference number: 10.18293/SEKE2021-132

GitHub developers are from all over the world, and some of
them are corporate employees. The severity of the pandemic
varies across countries. Different companies also have different
strategies to handle the situations. Therefore, we raise the
next two research questions, how the numbers change within
different countries (RQ2) and different companies (RQ3). The
developers are of different activeness, and we also want to see
the trends among them (RQ4).

We observe that there is a remarkable increase in developer
participation and contribution to GitHub in the early stages
of the COVID-19 global explosion. In terms of individual
countries, the trends of GitHub developer contributions are tied
to the outbreak in the corresponding country. On a company
level, the work-from-home setting implemented due to the
pandemic seems not to have disrupted software developers’
commitment to GitHub. For developers of various activeness
levels, their involvement and contribution to GitHub more
or less increased during the COVID-19 outbreak, even for
those developers who are very inactive. Our observations
suggest that COVID-19 did not pose great challenges to
GitHub developers and show that GitHub may have played
an important role in COVID-19, tapping into the potential of
OSS communities like GitHub to respond to public crises.

II. RELATED WORK

Since its outbreak, COVID-19 has attracted great attention
from various research communities. A large number of studies
were focused on the medical domain [2]–[4]. In the field of
mobile app analysis, Wang et al. [5] conducted a systematic
analysis of coronavirus-themed mobile malware and revealed
huge potential threats beyond the virus. There is also a
number of research on COVID-19 in the software engineering
community. For example, Wang et al. [6] presented a large-
scale empirical study of COVID-19 themed repositories on
GitHub and highlighted the practical and potential value of
open source technologies and resources in handling such crisis.

In addition, GitHub developers (users) have been studied
from many perspectives in literature. Technical roles of the de-
velopers and experts of the open source projects are automat-
ically identified via machine-learning based approaches [7],
[8]. Contributions of novice developers are characterized [9],
and the effect of developer sentiment on fix-inducing changes
is analyzed [10]. Collaboration among GitHub developers is
investigated to identify the characteristics favoring innovation
in the open source community [11]. Researchers also studied

249

the motivation behind following others and the influence of
popular users on their followers [12]. Besides, some studies
have attempted to understand developer productivity at tech-
nology companies due to the almost overnight migration of
software developers to work from home. For example, Bao
et al. [13] presented a case study on Baidu Inc. to investigate
the difference of developer productivity between working from
home and working onsite. Ford et al. [14] conducted survey
studies to understand the benefits as well as challenges of
working from home and analyze the factors that have affected
developer productivity over time. Ralph et al. [15] performed
a questionnaire survey study to investigate the effects of the
pandemic on developers’ well-being and productivity.

The researches above only focus on a small number of
GitHub developers. Chatziasimidis and Stamelos conducted
some measurements and association mining with l00K projects
and 10K GitHub users/owners of the projects [16]. Different
from those studies, in this paper, we target at all the GitHub
developers to understand the impact of COVID-19.

III. DATA COLLECTION

Aimed at all the GitHub developers, a large-scale dataset is
retrieved from GitHub. We employ the GitHub search API [17]
to find all the GitHub developers who have at least one public
repository. Considering the limitation of 1,000 results per
search, we have adopted a segmented approach, i.e., narrowing
down the results of a single query using some search qualifiers
and performing multiple queries to further consolidate the
results to collect a complete list of developers. To do this,
we filter the developers based on when they joined GitHub
with the created qualifier, which takes a date as its parameter
with optional time information after the date to search by the
hour, minute, and second. As a result, we collect a total of
25,761,884 developers whose GitHub accounts were created
from 2007 to 2020. Additionally, we plot the distribution of
creation dates for all developers in our dataset in Figure 1.
It can be observed that the number of daily new developers
overall exhibits a continuous upward trend and has a peak
in mid-2019, which in a way showcases the growing market
of Github over the past decade. The basic information we
collect includes id, login, name, location, company, etc. Of
which, the location field reveals that these developers are
located in almost every country in the world today, and the
distribution map of the number of developers per country
is shown in figure 2. The number of developers providing
locations is considerably higher in the United States than
in other countries. More importantly, for all the developers
collected, we capture their daily contributions (e.g., commits,
issues and pull requests) from their creation date to November
10, 2020 by crawling the profile pages. The entire data
collection involves over 26 million HTTP requests, which is
a very time and network resource consuming task.

20
09

-01
-01

20
10

-01
-01

20
11

-01
-01

20
12

-01
-01

20
13

-01
-01

20
14

-01
-01

20
15

-01
-01

20
16

-01
-01

20
17

-01
-01

20
18

-01
-01

20
19

-01
-01

20
20

-01
-01

0

5000

10000

15000

20000

25000

Ne

w
de

ve
lo

pe
rs

Fig. 1. Distribution of creation dates for all collected developers.

Fig. 2. Distribution of located countries of the collected developers.

IV. EMPIRICAL RESULTS

We present the answers to our research questions of the
overall ecosystem level, country level, organization level and
per-developer level in the following sub-sections.

A. RQ1: Overall Trends

Figure 3 shows the sum of contributions per day in 2019 and
2020 for all developers whose accounts were created before
2019. We can examine the trend of contributions in three
stages: (1) Prior to mid-March, i.e., before the global pan-
demic of COVID-19, the total number of daily contributions
exhibits a largely stable trend, with only a slight decline in late-
2019 and early-2020, which probably due to the Christmas
and New Year holidays. (2) From mid-March to the end of
June, the period when COVID-19 is exploding worldwide, and
the number of confirmed cases is rising sharply, meanwhile,
the daily contribution of developers shows a clear trend of
increase, peaking in April and gradually falls back in May.
(3) After July, the trend has dropped to flat, but appears to be
slightly higher than that in 2019.

We then use Mann-Whitney U test [18], a popular non-
parametric test to compare outcomes between two independent
groups, to test whether there is a statistically significant
difference between developer contributions in 2019 and 2020.
Specifically, we generate two samples containing developer
contributions in 2019 and 2020, then calculate the test on
the samples and print the statistic and p-value (2.43e-35).
Typically, if the p-value is below 0.05, the test says there

250

is enough evidence to reject the null hypothesis and that
the samples were likely to have different distributions. Thus
this p-value (2.43e-35) strongly suggests that the sample
distributions are different, i.e., the developer contributions in
2020 is statistically significantly different from that of 2019,
as expected. This observation suggests that the activity of
developers is not significantly disrupted by the pandemic.
Instead, it has somewhat boosted developers’ engagement in
GitHub, especially in the early stages of the global pandemic.
In a way, it also reflects that the open source community and
collaborative platforms like GitHub may have an important
role to play in the face of a public crisis such as COVID-19.
Beyond that, it is interesting to see that the trend is cyclical,
and the periodicity is one week upon our inspection, which
is quite likely related to the weekly work schedule of most
employees, even during the pandemic.

mid-March end-June

Fig. 3. Distribution of the total number of contributions per day for developers
whose accounts were created before 2019.

Further, we attempt to explore the reasons for the increase
of the daily developer contributions in the second stage from
two aspects. On the one hand, we count the number of active
developers whose contribution value is greater than 0 for each
day in 2020, as shown in Figure 4(a). We can observe that the
trend is similar to that in Figure 3, with a significant peak-like
trend experienced from mid-March to the end of June. This
suggests that the number of developers making contributions
per day has increased during the second stage, which leads
to the trend of Figure 4(a). On the other hand, we calculate
the average contribution value of all active developers for each
day as displayed in Figure 4(b). It can be seen that the average
values are very close, fluctuating from 4.2 to 5.2. Although a
slight jump in the average can be seen at the end of March,
the increase is too small to cause the significant growth in the
second stage. To sum up, there was a significant increase in
the number of active developers in GitHub during the period
when COVID-19 began to wreak havoc around the world. In
particular, regarding the outlier that appears on April 11, 2019
in Figure 3, we tried to explain it by manually checking the
number of active developers and the average contribution of
active developers during this period. We found that the number
of active developers on this day was not particularly high but
the average contribution showed a similar outlier, suggesting

200K

300K

#
 A

c
ti

v
e

D
e
v
e
lo

p
e
rs

(a) Active Developers

20
20

-01
-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

4.0

4.5

5.0

5.5

Av

e
Co

nt
rib

ut
io

n
(b) Average Contribution

Fig. 4. The trend of active developers and average contribution per day for
developers created before 2020.

that some developers may have made a substantial amount of
contributions on this day.

B. RQ2: Country-level

As aforementioned, we collect the location information
of all developers, while unfortunately 85% of them did
not provide their locations. Among the available locations
(3,821,170), different formats/representations are used, includ-
ing city name only, country name only, and both. Thus we
collect a list of countries in the world and major cities in
each country and use the string matching method to determine
the country to which the location belongs. Finally we acquire
a total of 3,647,523 (95.5%) valid locations mapping 195
countries. The top three countries in regards to the number
of developers are the United States (698,266), India (379,286)
and China (300,496). We explore whether the contribution of
developers is significantly associated with the corresponding
pandemic situation at the national level within the three leading
countries. For each country, we collect the daily number
of new COVID-19 confirmed cases over time from Google
Statistics [19] and place them in charts for comparison, as
well as marking the start of lockdown, as shown in Figure 5.
It can be seen that all three countries appear to have a rapid
rise in daily contributions in the early stage of the outbreak,
even though at different rates, e.g., China and India rise
significantly, while the US rises slightly.

For the sake of statistical validity, we use the Pearson
correlation coefficient to analyze the relationship between total

251

late-March
State by state
Lockdown

(a) US

2020-03-23
Nationwide
Lockdown

(b) India

2020-01-23
Wuhan Lockdown

(c) China

Fig. 5. Distribution of total contributions for developers in three countries created before 2020.

contributions and pandemic situation for each country. Since
the impact of COVID-19 on developer contributions is mainly
observed at the beginning of the outbreak, we calculate the
correlation between the number of newly confirmed cases and
developer contributions in the one-month period following the
lockdown for each country. We find that the developer con-
tributions of the three countries were all positively correlated
with their corresponding pandemic growth in varying degrees,
with stronger correlations in China (r=0.35, p-value=0.06)
and India (r=0.29, p-value=0.12), and weaker correlations in
the United States (r=0.04, p-value=0.84). The correlations,
though, are not statistically significant (which is speculated
due to the volatility of the contributions). Hence, it seems that
the growth of developer activity and contributions to GitHub
are correlated with the outbreak in the corresponding country.

C. RQ3: Organization-level
COVID-19 has forced companies all over the world to adapt

to and embrace remote work—at least for the short term.
Large tech employers such as Apple, Google, Facebook and
Microsoft are among the first to ramp up remote work plans
for many or all of their employees around the globe in March.
As aforementioned, we also collect the company information
of all developers. There are 1,835,336 (7.1%) developers
providing their company information. With these available
data, we count the number of developers in major companies
around the world, and obtain the top three, i.e., Microsoft
(21,296), Google (10,041) and IBM (8,101). Figure 6 shows
how the activity and contributions of developers working at
these companies have changed in 2020. It can be seen that,
as companies move into “work from home” mode in response
to COVID-19 at the end of March, developer activity and
contributions to GitHub have increased to varying degrees,
and although some companies (e.g. Microsoft) have not shown
a significant increase, none have decreased. It suggests that
companies are likely to rely more on open source communities
and collaboration platforms like GitHub for their work-from-
home efforts and also implies the potential and usefulness of
these platforms in the face of such public emergencies.

D. RQ4: Developer-level
As reported in §IV-A, the number of active developers on

GitHub increased significantly during the rise of COVID-19,
thus we would like to learn more about what kinds of devel-
opers became active during this period. We seek to categorize

all the developers into several types based on how active they
are on GitHub. First, for each developer, we calculate the
percentage of days they are active on GitHub out of the total
number of days they have been on GitHub, and find that it is
very small for the vast majority of developers, with less than
1% of developers having more than half of the total number
of days active. Then, we group all developers (excluding those
who have never contributed) into four levels, i.e., very active,
moderately active, inactive and very inactive, as shown in
Table I. Figure 7 presents the trend of the number of active
developers per day for each type of developers separately. As
can be seen, the activity of all types of users increased to
a greater or lesser extent at the beginning of the COVID-
19 global outbreak, with the less active developers increasing
considerably, while the more active users showing relatively
minor changes, suggesting that a lot of inactive developers got
involved in the use of GitHub during this period. Similarly,
Figure 8 shows the trend of the number of daily contributions
for each type of developers, which is generally very similar
to Figure 7. Both charts show that contributions from any
type of developers increased as COVID-19 began to explode,
and that even among very inactive groups many more people
contributed to GitHub during this period.

TABLE I
FOUR TYPES OF DEVELOPERS BASED ON THE ACTIVITY LEVEL.

Type Proportion of Active Days # Developers
Very Active [0.5, 1] 28,377
Moderately Active [0.1, 0.5) 694,689
Inactive [0.01, 0.1) 4,302,035
Very Inactive (0, 0.01) 31,838,464

To gain a deeper understanding of developers’ activities,
we next explore how the developer contributions evolve over
time and try to group the evolution into several patterns. Since
inactive users make little or no contribution for most of the
time, we only focus on the very active developers (the first
type in Table I) and examine the trends of their contributions
in the year 2020. For each active developer, we retrieve the
contribution he/she made on Github per day over the year, take
them as feature vectors and perform L2 regularization [20] to
apply the K-Means clustering. We use the Elbow Method to
find the optimal value of k, which is 3. Thus we group the
developer contributions into three clusters. Figure 9 presents

252

20
20

-01
-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

0K

2K

5K

8K

10K

12K

15K

18K

Ac

tiv
ity

Total Contributions
Active contributors

(a) Microsoft

20
20

-01
-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

1000

2000

3000

4000

5000

6000

Ac

tiv
ity

Total Contributions
Active contributors

(b) Google

20
20

-01
-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

0

1000

2000

3000

4000

5000

6000

7000

Ac

tiv
ity

Total Contributions
Active contributors

(c) IBM

Fig. 6. Distribution of active developers and total contributions per day for developers in three companies created before 2020.

20
20

-01
-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

10K

15K

20K

Co

nt
rib

ut
io

ns

(a) Very Active
20

20
-01

-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

100K

150K

200K

Co

nt
rib

ut
io

ns

(b) Moderately Active

20
20

-01
-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

75K

100K

125K

150K

Co

nt
rib

ut
io

ns

(c) Inactive
20

20
-01

-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

15K

20K

25K

Co

nt
rib

ut
io

ns

(d) Very Inactive

Fig. 7. Distribution of the number of active developers per day for four types
of developers.

20
20

-01
-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

100K

150K

200K

Co

nt
rib

ut
io

ns

(a) Very Active
20

20
-01

-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

500K

750K

1000K

1250K

Co

nt
rib

ut
io

ns

(b) Moderately Active

20
20

-01
-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

300K

400K

500K

600K

Co

nt
rib

ut
io

ns

(c) Inactive
20

20
-01

-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

40K

60K

80K

Co

nt
rib

ut
io

ns

(d) Very Inactive

Fig. 8. Distribution of total contributions per day for four types of developers.

the trends of contributions in each cluster. It can be seen that
each cluster captures the weekly work cycle. We next briefly
describe the characteristics and examples of different patterns.

Cluster 1 (in red) shows an overall downward trend,
gradually declining from March until it stabilizes after August.
There are 6,366 (22.4%) active developers whose contribution
trends belong to this cluster. This pattern reflects the presence
of some active developers whose contributions and activeness
have decreased after the outbreak. For example, a developer
with the account name ‘najahiiii’ has a contribution trend
showing that his daily contribution fluctuates between 7 and
38 in the first three months of 2020 with a daily average

20
20

-01
-01

20
20

-02
-01

20
20

-03
-01

20
20

-04
-01

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

20
20

-10
-01

20
20

-11
-01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

No
rm

al
ize

d
co

nt
rib

ut
io

n

c1
c2
c3

Fig. 9. Three patterns of developer contributions.

contribution value of 12.2, while in the following months it
has stayed below 15 with an average daily contribution of 8.

Cluster 2 (in green) indicates an overall upward trend, the
opposite of Cluster 1, which started to rise gradually from
March to stabilize. 8,394 (29.6%) active developer contribution
trends fall into this cluster. This pattern suggests that there are
some active developers who have become more active after the
outbreak. For example, one developer with the account name
‘pavangoyal42’ contributed mostly under 10 per day in the
first three months of 2020, and increased significantly from
April to July, with an average daily contribution of 17.7.

Cluster 3 (in blue) implies a relatively stable trend with
little change in the contribution before and after the outbreak.
This seems to capture the normal state of work for developers,
and they are hardly affected by COVID-19. Roughly a half of
the active developers (48%) are in this cluster. For example,
a developer with the account name ‘lambert-p’ has been
contributing in a balanced manner in 2020, in a typical weekly
work pattern, with more contributions during weekdays and
less or no contributions on days off.

V. DISCUSSION

A. Implications

Our investigation addresses the need to provide scholarly
evidence concerning how the COVID-19 pandemic affected
GitHub developers’ contributing activities. On the whole,
we register a significant increase in developer activity and
contributions on GitHub in the early stages of the COVID-
19 global explosion. On an individual country basis, the trend

253

in GitHub developer contributions is closely related to the
outbreak situation in the corresponding country. Our findings
also show that working from home as practiced by companies
does not affect the commitment of software developers to
GitHub. Besides, developers with different levels of activeness
have made more contributions during COVID-19, especially
inactive developers. To conclude, our research implies that
GitHub, as a typical representative of open source commu-
nities and sharing platforms, plays an important role in the
face of public crisis. It should be noticed that these technolo-
gies and resources can be very helpful in other emergencies
too. Relevant participants (software engineering practitioners
and researchers, etc) should take note of these findings and
understand the strengths and usefulness of Github in COVID-
19 pandemic, in order to make fuller use of it as a powerful
weapon in our response to the crisis.

B. Limitations and Future Work

We recognize that our study carries several limitations and
potential threats to validity. First, some of our conclusions rely
on case studies, such as country-level and organization-level
analyses, and do not include the full range of data. This is
mainly because our preliminary study did not concern a lot
of workload and made it a focus for future work. Second,
this study aims to analyze the impact of COVID-19 on the
open source community, however GitHub is not the only
platform where people can share their open source projects,
which might limit our observations. Third, we only consider
the coarse-grained contribution of each developer. Although
the overall contribution is representative enough to reflect
the activeness of developers, enabling fine-grained analysis
of each kind of contribution can offer us more insights,
which will be studied in the future. Forth, we acknowledge
that there may be some non-developer users in our dataset
since Github is being used for purposes other than software
development. However, it is impractical for us to identify
whether each user is a real developer or not. Nevertheless, all
the developers considered in this paper have created at least
one public repository (see Section III), thus we believe that the
observations in this paper could reflect the general behaviors
of Github developers.

VI. CONCLUSION

This research focuses on GitHub developers’ contributions
and presents the first large scale empirical study of the impact
of COVID-19 on the activity and contributions of GitHub
developers. We go to great lengths to collect a dataset of over
25 million GitHub developers and characterize them from four
perspectives including the overall ecosystem level, country
level, organization level and developer level, to understand the
impact of COVID-19 on the open source software community.
Our observations suggest that COVID-19 does not present
a challenge for GitHub developers, and show the promising
direction of applying open source technologies and resources
to response to public emergencies.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-
ence Foundation of China (grant numbers 62072046 and
61702045). Haoyu Wang is the Corresponding author.

REFERENCES

[1] “Github documentations,” https://docs.github.com/en/github/setting-
up-and-managing-your-github-profile/viewing-contributions-on-your-
profile, 2020.

[2] Y. Chen and L. Li, “Sars-cov-2: virus dynamics and host response,” The
Lancet Infectious Diseases, vol. 20, no. 5, pp. 515–516, 2020.

[3] D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C.-L. Hsieh,
O. Abiona, B. S. Graham, and J. S. McLellan, “Cryo-em structure of
the 2019-ncov spike in the prefusion conformation,” Science, vol. 367,
no. 6483, pp. 1260–1263, 2020.

[4] V. M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D. K.
Chu, T. Bleicker, S. Brünink, J. Schneider, M. L. Schmidt et al.,
“Detection of 2019 novel coronavirus (2019-ncov) by real-time rt-pcr,”
Eurosurveillance, vol. 25, no. 3, p. 2000045, 2020.

[5] L. Wang, R. He, H. Wang, P. Xia, Y. Li, L. Wu, Y. Zhou, X. Luo, Y. Guo,
and G. Xu, “Beyond the virus: A first look at coronavirus-themed mobile
malware,” arXiv e-prints, pp. arXiv–2005, 2020.

[6] L. Wang, R. Li, J. Zhu, G. Bai, and H. Wang, “When the open source
community meets covid-19: Characterizing covid-19 themed github
repositories,” arXiv preprint arXiv:2010.12218, 2020.

[7] J. E. Montandon, M. T. Valente, and L. L. Silva, “Mining the technical
roles of github users,” Inf. Softw. Technol., vol. 131, p. 106485, 2021.

[8] J. E. Montandon, L. L. Silva, and M. T. Valente, “Identifying experts in
software libraries and frameworks among github users,” in Proceedings
of the 16th International Conference on Mining Software Reposito-
ries, MSR 2019, 26-27 May 2019, Montreal, Canada, M. D. Storey,
B. Adams, and S. Haiduc, Eds. IEEE / ACM, 2019, pp. 276–287.

[9] I. Rehman, D. Wang, R. G. Kula, T. Ishio, and K. Matsumoto, “New-
comer candidate: Characterizing contributions of a novice developer to
github,” in IEEE International Conference on Software Maintenance and
Evolution, ICSME 2020, Adelaide, Australia, September 28 - October
2, 2020. IEEE, 2020, p. 855.

[10] S. F. Huq, A. Z. Sadiq, and K. Sakib, “Understanding the effect of
developer sentiment on fix-inducing changes: An exploratory study
on github pull requests,” in 26th Asia-Pacific Software Engineering
Conference, APSEC 2019, Putrajaya, Malaysia, December 2-5, 2019.
IEEE, 2019, pp. 514–521.

[11] D. Celinska, “Coding together in a social network: collaboration among
github users,” in Proceedings of the 9th International Conference on
Social Media and Society, SMSociety 2018, Copenhagen, Denmark, July
18-20, 2018. ACM, 2018, pp. 31–40.

[12] K. Blincoe, J. Sheoran, S. P. Goggins, E. Petakovic, and D. E. Damian,
“Understanding the popular users: Following, affiliation influence and
leadership on github,” Inf. Softw. Technol., vol. 70, pp. 30–39, 2016.

[13] L. Bao, T. Li, X. Xia, K. Zhu, H. Li, and X. Yang, “How does working
from home affect developer productivity? – a case study of baidu during
covid-19 pandemic,” 2020.

[14] D. Ford, M.-A. Storey, T. Zimmermann, C. Bird, S. Jaffe, C. Maddila,
J. L. Butler, B. Houck, and N. Nagappan, “A tale of two cities: Software
developers working from home during the covid-19 pandemic,” 2020.

[15] P. Ralph, S. Baltes, G. Adisaputri, R. Torkar, V. Kovalenko, M. Kali-
nowski, N. Novielli, S. Yoo, X. Devroey, X. Tan et al., “Pandemic
programming: how covid-19 affects software developers and how their
organizations can help (2020),” arXiv preprint arXiv:2005.01127, 2005.

[16] F. Chatziasimidis and I. Stamelos, “Data collection and analysis of
github repositories and users,” in 6th International Conference on
Information, Intelligence, Systems and Applications, IISA 2015, Corfu,
Greece, July 6-8, 2015, N. G. Bourbakis, G. A. Tsihrintzis, and M. Vir-
vou, Eds. IEEE, 2015, pp. 1–6.

[17] “Github search api,” https://docs.github.com/en/rest/reference/search,
2020.

[18] P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini
encyclopedia of psychology, pp. 1–1, 2010.

[19] “Google statistics,” https://news.google.com/covid19/map?hl=en-
US&mid=%2Fg%2F11j3990nlq&gl=US&ceid=US%3Aen.

[20] A. Nagpal, “L1 and l2 regularization methods,”
https://towardsdatascience.com/l1-and-l2-regularization-methods-
ce25e7fc831c, 2017.

254

Analyzing Program Comprehensibility of Go
Projects

Moumita Asad, Rafed Muhammad Yasir, Shihab Shahriar, Nadia Nahar, Md. Nurul Ahad Tawhid
Institute of Information Technology, University of Dhaka, Bangladesh
{bsse0731, bsse0733, bsse0703, nadia, tawhid}@iit.du.ac.bd

Abstract—Program comprehension is one of the most impor-
tant activities in developing and maintaining software. Although
existing studies have examined aspects of Go such as design
patterns, code smells and comment density, the comprehensibility
of Go has not been explored yet. This study analyzes the
comprehensibility of Go by comparing it with Java based on
five metrics namely Too Long Files, Too Long Methods, Nesting
Depth, Lack of Cohesive Comments and Duplicate Comments.
For comparison, 50 popular, diverse and open-source projects
are selected from each language. Results show that Go projects
outperform Java in terms of Nesting Depth, Lack of Cohesive
Comments and Duplicate Comments.

Index Terms—Go, Java, Program comprehensibility, Software
maintenance.

I. INTRODUCTION

Go is an open-source programming language developed and
maintained by Google [1]. At present, the popularity of Go
is rising rapidly and many teams are adopting it for their
projects. Renowned projects such as Docker and Kubernetes
have been written in Go. Existing studies [1], [2], [3] have
analyzed aspects of Go such as design patterns, code smells
and comment density. However, the comprehensibility (the
degree of ease with which a programmer read and comprehend
a program [4]) of Go projects have not been explored yet.

Program comprehension is the precondition of performing
any maintenance related activities [5]. It consumes more than
half of the maintenance resources [6]. A major reason behind
introducing the Go programming language is to make code
more maintainable [7]. To make Go projects maintainable,
code must be comprehensible [4]. Therefore, analyzing the
program comprehensibility of Go projects will help to gain
insight regarding their maintainability and identify scopes for
making the projects more comprehensible. Furthermore, it will
help developers to decide whether they should use Go for their
projects [6].

In this context, the current study aims at investigating the
comprehensibility of projects written in Go. Additionally, a
tool named CompreGo has been developed to detect code
fragments that need to be refactored for improving comprehen-
sibility. To analyze the comprehensibility of Go, it is compared
with Java. The reason is that both of these languages are
object-oriented languages [2] and both of these belong to the
C-family (e.g., C++, C#) [8]. Furthermore, an existing study

DOI reference number: 10.18293/SEKE2021-152

concluded that Java projects have higher program compre-
hensibility compared to C, C++ and C# projects [9]. This
study measures program comprehensibility using five static
code metrics namely Too Long Files, Too Long Methods,
Nesting Depth, Lack of Cohesive Comments (non-informative
comments) and Duplicate Comments [9], [10]. These metrics
are language-independent and found to be a good indicator of
program comprehensibility. Based on these metrics, Wilcoxon
Rank-Sum Test [11] is used to analyze comprehensibility of
Go and Java projects.

For analysis, 50 popular, diverse and open-source projects
are selected from each language based on several criteria such
as projects cannot be a fork, and it must have a description
or readme file [9]. Results show that Go projects have signif-
icantly better comprehensibility than Java in terms of Nesting
Depth, Lack of Cohesive Comments and Duplicate Comments.
However, Java projects have significantly fewer long methods
than Go. Regarding Too Long Files, no significant difference
is found between the two languages.

II. METHODOLOGY

This study analyzes the program comprehensibility of Go
projects by comparing those with Java projects. The study is
conducted in 4 steps namely dataset selection, dataset prepro-
cessing, comprehensibility metrics calculation and statistical
analysis. At first, Go and Java projects are selected based
on several criteria such as availability of readme files. Next,
relevant files (e.g., production code) are selected from the
projects to achieve better comparability of results [9]. After
that, comprehensibility metrics of the code residing in these
files are calculated. Based on these metrics, statistical analysis
is performed to identify if the comprehensibility of Go and
Java projects are significantly different. The details of these
steps are given below:

1) Dataset Selection: This study selects Go and Java
projects that fulfill the following criteria:

• To filter out dummy projects, repositories having at
least 10,000 lines of code and a readme file or a
GitHub description are selected, as followed in [9].

• To avoid duplicate projects, repositories must not be
a fork or mirror of another one.

• An existing study found that almost 75% projects
above 215 MB contain the same code multiple times
[9]. Besides, 99% repositories in the GHTorrent
dataset (a collection of GitHub repositories) [12]

255

are below this threshold. Therefore, the size of the
codebase should not exceed this threshold.

2) Dataset Preprocessing: After selecting the projects,
folders containing external libraries, generated source
files or test code are excluded to solely focus on the core
code of the repository. Although test codes are impor-
tant, those are excluded from analysis to improve compa-
rability between the repositories because it is found that
developers may not apply high quality standards to it [9].
To filter out these files, a list of 60 file system paths (e.g.,
“**/libs/**”, “**/test/**”, “**/testsuite/**”) provided in
[9] is used. The entities of the list do not depend on the
organization or naming convention followed by the Go
or Java repositories. Apart from the list, the pkg folder
is excluded from Go projects since it contains internal
libraries that are not part of the main source code.

3) Metrics Calculation: To measure program comprehen-
sibility, five static code metrics namely Too Long Files,
Too Long Methods, Nesting Depth, Lack of Cohesive
Comments and Duplicate Comments are used. These
metrics are language-independent and found to be a
good indicator of program comprehensibility [9]. These
metrics are calculated by inspecting source code files
and parsing the corresponding Abstract Syntax Tree.

• Too Long Files (TLF): Long files are difficult to
comprehend since a large fragment of code needs
to be reviewed [9]. These files can indicate bad
modularization as well. Too Long Files measures
the portion of source code lines that are located in
files exceeding 750 lines [9]. For calculating this
metric, (1) is used.

TLF =

∑
LOC of long files

total LOC
∗ 100 (1)

Where, total LOC denotes LOC of the whole
project.

• Too Long Methods (TLM): Similar to long files,
long methods are difficult to comprehend since a
large code fragment needs to be examined [6], [9].
Too Long Methods calculates the number of code
lines that reside in methods surpassing 75 lines [9].
It is measured using (2).

TLM =

∑
LOC of long methods

total LOC
∗ 100 (2)

• Nesting Depth (ND): Deeply nested codes are hard
to comprehend as the interleaving control structure
of the code needs to be considered, as shown in List-
ing 1 [13]. Nesting Depth measures the fraction of
code lines belonging to methods exceeding nesting
depth 5 [9]. It is calculated using (3).

ND =

∑
LOC of deeply nested methods

total LOC
∗100

(3)

if(marks<40) {
result = "fail";

}
else {

if(marks>=80) {
result = "A";

}
else if(marks>=60) {

result = "B";
}
else {

result = "C";
}

}

Listing 1. Nesting Depth

• Lack of Cohesive Comments (LCC): Comments
lack cohesiveness when they are non-informative
[10]. A sample comment is shown in Listing 2,
where the comment conveys obvious information.
Lack of cohesive comments can confuse and mis-
lead developers and increase the cost to comprehend
and maintain code [14].

/**
* @return true or false
*/
protected boolean

isLoginTicketBased() throws
Exception {
..........
..........

}

Listing 2. Non-cohesive Comment

To compute Lack of Cohesive Comments, the name
and lead comment of each method are tokenized us-
ing camel case format and white-space respectively
[14]. Next, the similarity between these two token
sets is measured using Levenshtein distance [15].
Two tokens are considered similar if the distance
is smaller than 2 [10]. To calculate coherence, the
total number of similar words are divided by the
total number of comment words. If the value of
coherence is 0 or above 0.5, the comment is non-
cohesive [10]. Lastly, Lack of Cohesive Comments
is calculated using (4).

LCC =
total non-cohesive comments

total comments
∗100 (4)

Where, total comments represents the total num-
ber of method lead comments in the project.

• Duplicate Comments (DC): Existing studies show
that source code often contains methods with du-
plicate comments [14], [16]. These comments do
not provide meaningful information on the different
implementation of methods and thereby increases
the difficulty in program comprehension [14]. Cal-
culation of Duplicate Comments follows a similar
process as Lack of Cohesive Comments. Duplicate

256

comments are searched within a file since they are
more likely to occur in the same file [16]. At first, all
the comments of a file are tokenized and stored in
lists. For each comment pair, Levenshtein distance
[15] is calculated between elements of their corre-
sponding token lists. Two comments are considered
duplicate if the distances of all the elements are
less than 2 [10]. Lastly, Duplicate Comments are
measured using (5).

DC =
total duplicate comments

total comments
∗ 100 (5)

All of the above metrics are measured in percentage and
a higher value indicates lower comprehensibility.

4) Statistical Analysis: After calculating the metrics,
Wilcoxon Rank-Sum Test [11] is conducted to check
whether the comprehensibility of Go and Java projects
are significantly different. Wilcoxon Rank-Sum Test is
used because it makes no assumption regarding the
distribution of the data (e.g., normal distribution) and it
can handle unequal sample size (e.g., different number
of duplicate comments for Go and Java projects) [11].
The null hypothesis is “Code written in Go and Java
have no differences regarding comprehensibility”. This
hypothesis is tested individually for each of the five
comprehensibility metrics discussed above.

III. SUPPORTING TOOL: COMPREGO

To calculate comprehensibility metrics for Go, a tool named
CompreGo is developed which is publicly available 1. Devel-
opers can use the tool to measure the comprehensibility of a
project and identify which fragments need to be refactored for
improving comprehensibility.

• Comprehensibility Metrics of a Project: To find com-
prehensibility metrics (Too Long Files, Too Long Meth-
ods, Nesting Depth, Lack of Cohesive Comments and
Duplicate Comments) of a project, run the following
command, where directory is the project path.

./comprego -d directory

The output will show metrics value in percentage, as
displayed in Fig. 1. Here, Too Long Files, Too Long
Methods, Nesting Depth, Lack of Cohesive Comments
and Duplicate Comments are 15.92%, 10.69%, 4.55%,
17.45% and 6.06% respectively.

Fig. 1. Comprehensibility Metrics of a Project

1https://github.com/rafed/CompreGo

A number of optional arguments can be specified with
this command.

– “-TLF”: View list of too long files
– “-TLM”: View list of too long methods
– “-ND”: View list of deeply nested methods
– “-LCC”: View list of non-cohesive comments
– “-DC”: View list of duplicate comments
– “-ALL”: View details of all the five metrics

A sample output for “-TLM”command is shown in Fig.
2. Here, cleanPath() method from file gin-1/4.0/path.go
is a long method since its LOC is 90.

Fig. 2. List of Long Methods

• Custom Thresholds for Metrics Calculation: The de-
fault thresholds for Too Long Files, Too Long Methods
and Nesting Depth are 750, 75 and 5 respectively [9].
However, each project and its maintainers are different
and thus thresholds may need to be changed. For this
reason, CompreGo has a provision for customizing these
thresholds. These thresholds can be changed by adding
the following arguments while running the tool:

– “-lf number”: Set customized threshold for Too Long
Files

– “-lm number”: Set customized threshold for Too
Long Methods

– “-nd number”: Set customized threshold for Nesting
Depth

Where, number represents the customized threshold
value.

IV. EXPERIMENTATION AND RESULT ANALYSIS

For comparing the comprehensibility of Go and Java, 50
popular, open-source projects of each language are selected
from GitHub that fulfill the criteria presented in Section 2
[17]. The popularity of a project is measured based on the
number of stars, as followed in [18], [19]. Table I shows the
top 5 projects from each language along with their number of
stars and LOCs. For example, project Guava has 40000 stars
and its LOC is 756954.

To compare the projects, Wilcoxon Rank-Sum Test [11] is
conducted separately for each of the five comprehensibility
metrics (Too Long Files, Too Long Methods, Nesting Depth,
Lack of Cohesive Comments and Duplicate Comments), dis-
cussed in Section 2. The results are presented in Table 2.

Although the mean of Too Long Files is slightly higher
in Go, there is no significant difference between the two
languages (p-value = 0.39 > 0.05). In terms of Too Long
Methods, Go has longer methods than Java. This is because

257

TABLE I
DESCRIPTION OF TOP 5 JAVA AND GO PROJECTS

Language Project Star LOC

Java

Elasticsearch 53200 2566030
Spring Boot 53000 563943

RxJava 44100 467397
Guava 40000 756954
Retrofit 37400 36610

Go

Moby 59400 1396099
Hugo 49400 144222
Gin 44800 15968
Fro 42300 20771

Gogs 36200 90034

of the error handling mechanism followed by these two lan-
guages. In Java, errors are mostly dealt with try catch blocks.
On the contrary, errors in Go are handled using if statements.
Whenever a function is called in Go, it usually returns an
error in its return values [8]. The errors returned by the
callee function are handled with an if block inside the caller
function. For example, the function PreparedQueryResolve()
in Listing 3 returns ErrMissingQueryID as an error and the
caller function Explain() in Listing 4 handles the error using an
if statement. Although Java can handle multiple errors using
one catch block, Go associates individual if statement for each
function call. Consequently, more error handling statements
are written inside Go method than Java which increases the
method size. Through analysis, it is found that on average
each Java method contains 0.05 error handling statements
(catch block), whereas it is 0.88 in Go. Besides, Go does
not support generics for increasing simplicity and making
code more readable. However, this also makes the code more
verbose compared to other languages and results in longer files
and methods [2].

TABLE II
RESULT OF WILCOXON RANK-SUM TEST

Metric Mean (Go) Mean (Java) P-value
Too Long Files 25.61 18.99 0.39

Too Long Method 17.59 5.69 0.00
Nesting Depth 3.78 4.49 0.00

Lack of Cohesive Comments 18.47 25.69 0.00
Duplicate Comments 2.89 5.43 0.00

1 The significance level is 0.05

In terms of Nesting Depth, Go code have fewer nesting
than Java. The reason again lies in the way how errors are
handled in these languages. In Java, try blocks are used to
handle code that may throw an error. When a try block is
added in a method, it increases the nesting depth, as shown
in Listing 5. Results reveal that around 33.14% deeply nested
method in Java contains at least one try catch block. To find the
association between deeply nested method and the presence
of try catch block, Chi-square Test [20] is conducted since
both of these are categorical variables. The result shows a
significant association between deeply nested method and the
presence of try catch block (p-value < 0.05). However, there
is no concept of try catch blocks in Go [8]. Rather, errors are

handled by adding if statement inside the caller function. The
if statement checks the error and return values accordingly, as
presented in Listing 4. Since the if statement exist in the same
nesting depth as it’s neighbouring code, it does not increase
the nesting depth of the function. As a result, functions in Go
are less nested than Java.

func (s *Store) PreparedQueryResolve()
(uint64,*structs.PreparedQuery, error) s{

if queryIDOrName == "" {
return 0, nil, ErrMissingQueryID

}
}

Listing 3. Returning error in Go

func (p *PreparedQuery) Explain() error {
_, query, err :=

state.PreparedQueryResolve()
if err != nil {

return err
}

}

Listing 4. Handling error using if statement in Go

@Override public void run(){
while (!__isClosed) {

try {
if ((ch=__read(true)) < 0) {

break;
}

}
catch (InterruptedIOException e) {

synchronized (__queue) {
__ioException=e;
__queue.notifyAll();

}
}

}
}

Listing 5. Handing error using try catch blocks in Java

Go shows better results in Lack of Cohesive Comments and
Duplicate Comments as well. This can be due to the difference
in documentation generation process from the source code
comments [21]. Java and Go use different comment structures
and separate tools to generate documentation. In Java, doc-
umentation is generated through the Javadoc tool [21]. It is
necessary for comments in Java to be annotated with Javadoc
tags (e.g., @param, @return, @author) to produce meaningful
documentation. In Go, documentation is generated through the
Godoc tool [8]. Unlike Javadoc, Godoc does not require tags
in comments for generating meaningful documentation. It only
needs a comment preceding a code and its description in plain
words. Godoc then uses the comment and as much information
it can get from the code to generate documentation. This
makes the process of documenting Go code much easier than
Java. Additionally, the community considers that the process
of generating documentation from comments is simpler and

258

easier in Go than in other languages2. Such advantages may
motivate developers to write better comments that are more
cohesive and not duplicates of other comments.

V. THREATS TO VALIDITY

This section presents potential aspects that may threaten the
validity of the study:

• Threats to external validity: The analysis is conducted
on 50 Go and 50 Java projects which are selected using
several criteria such as availability of readme file or
having at least 10,000 lines of code. Although the project
selection criteria are based on an existing study [9], the
obtained results may not generalize to other projects.
However, to mitigate the threat of generalizability, diverse
and popular projects are selected, as followed in [17],
[22].

• Threats to internal validity: Threats to internal validity
include errors in the implementation and experimentation.
The first threat to internal validity lies in measuring
program comprehension. Although research on program
comprehension started more than 30 years ago, till now
there is no well-defined metric to measure it [23]. This
study uses five static code metrics namely Too Long Files,
Too Long Methods, Nesting Depth, Lack of Cohesive
Comments and Duplicate Comments to measure program
comprehensibility. An existing study found that these
metrics are language-independent and a good indicator
of program comprehensibility [9]. However, changing
the metrics (e.g., psychological factors, dynamic metrics
[23]) may impact the obtained results. The second threat
to internal validity comes from setting the thresholds of
the comprehensibility metrics. This study set the thresh-
old for Too Long Files, Too Long Methods and Nesting
Depth to 750, 75 and 5 respectively. These thresholds may
vary depending on the context. However, these thresholds
are adopted by a previous study [9] as well.

VI. RELATED WORK

Existing work related to this paper can be broadly classified
into two categories - studies related to program comprehension
and studies related to Go, which are discussed in the following
subsections.

A. Studies Related to Program Comprehension

Although research on program comprehension started more
than 30 years ago, there are still no well-defined metrics
to measure it [23]. However, various researches [5], [9],
[24] have been conducted in this regard. Scalabrino et al.
used 121 metrics to investigate their correlation with program
comprehension [5]. These metrics are related to code (e.g.,
cyclomatic complexity), documentation (e.g., methods internal
documentation quality) and developer experience (e.g., years
of programming experience in any language). However, the
study found that none of the metrics show a significant
correlation with program comprehension.

2https://blog.golang.org/godoc-documenting-go-code

Trockman et al. reanalyzed the data from the study of
Scalabrino et al. [5] using principal component analysis and
stepwise selection [24]. They did not find a specific principal
component that explains most of the variance. Stepwise selec-
tion revealed that an increase in methods internal documen-
tation quality, max. line length and larger number of periods
per line correlate with lower understandability. However, the
authors pointed out that the dataset is not large enough (only
324 observations from 46 developers) to draw any conclusion.

Roehm et al. studied 10 conventional wisdom related to
software maintainability more specifically program compre-
hension [9]. For example, C code has more too long methods
than code written in other languages. They used 5 metrics -
Clone Coverage, Comment Incompleteness, Too Long Files,
Too Long Methods and Nesting Depth for measuring program
comprehension. However, another study countered that code
clones are helpful for program comprehension [25]. In addi-
tion, writing comments are not enough if they convey unrelated
or inconsistent information [14]. Therefore, this paper uses
Lack of Cohesive Comment and Duplicate Comments instead
of Comment Incompleteness. Furthermore, unlike this study,
their analysis does not consider Go programming language.

B. Studies Related to Go

Prior studies related to Go can be divided into two cate-
gories. The first category [3], [22] includes Go projects as
a part of their dataset. Ray et al. compared 17 programming
languages including Go to find whether the choice of language
affects software quality [22]. Their analysis confirms that
language has a small yet statistically significant impact on code
quality. Besides, classifying bugs into several categories (e.g.,
Memory or Concurrency error), the paper examined whether
language influences the type of bug that occurs in software.
The result revealed that defect types are strongly associated
with languages. For example, languages with managed mem-
ory systems (e.g., Java) naturally had fewer memory errors or
leaks compared to unmanaged languages (e.g., C).

Another study conducted by He et al. explored differences
in commenting practices across different languages [3]. They
analyzed the comment density of 5 popular programming
languages namely Python, Java, Go, JavaScript and C++. Their
study revealed that Python and Java projects have significantly
higher comment density than C++, JavaScript and Go projects.
In addition, the purpose of a project (e.g., reuse, application,
education) impacts its comment density. For example, educa-
tional projects have the highest comment density.

The second category [1], [2] conducts research on Go from
various perspectives. Schmager et al. analyzed the design
patterns of Go [2]. They implemented all the 23 Gangs of Four
(GoF) design patterns and compared these with Java. They
found that Go’s language features have not replaced design
patterns. Implementing the adapter pattern is easier in Go. On
the other hand, implementing the template pattern is difficult
since there is no abstract class in Go. Furthermore, although
Go syntax is an improvement over C++ or Java, it is more
verbose than Python or Haskell.

259

Another study by Yasir et al. proposed a tool named God-
Expo to detect God Structures (a structure that threatens the
maintainability and understandability of code by performing
most of the work alone) in Go programs [1]. GodExpo
uses three metrics namely Weighted Method Count (WMC),
Tight Class Cohesion (TCC) and Access To Foreign Data
(ATFD) for detecting God Structures. Besides, it can provide
version wise result to observe the evolution of God Structures.
By executing GodExpo on Go projects, the authors showed
that it can detect God Structs in all versions of a project.
Additionally, it was found that number of God Structures in a
project gradually increases as a project evolves.

The above discussion indicates that various studies have
been conducted on Go. However, none of these studies focuses
on the maintainability or comprehensibility of Go. Therefore,
this paper aims at analyzing the comprehensibility of Go. In
addition, it proposes a tool CompreGo to help developers in
tracking the comprehensibility of Go projects.

VII. CONCLUSION AND FUTURE WORK

This paper examines the comprehensibility of Go projects
by comparing it with Java projects. For measuring program
comprehensibility, five static code metrics namely Too Long
Files, Too Long Methods, Nesting Depth, Lack of Cohesive
Comments and Duplicate Comments are used. Based on these
metrics, 50 popular, diverse, open-source Go and Java projects
are compared using Wilcoxon Rank-Sum Test. Results demon-
strate that Go code has significantly higher comprehensibility
than Java in terms of Nesting Depth, Lack of Cohesive
Comments and Duplicate Comments. Conversely, Java has
significantly better comprehensibility than Go in terms of
Too Long Methods. Regarding Too Long Files, no significant
difference is observed between these two languages. In future,
the comprehensibility of Go projects will be analyzed from
other perspectives such as dynamic analysis or psychological
aspect. In addition, refactoring suggestion will be developed
for improving comprehensibility of Go projects.

REFERENCES

[1] Rafed Muhammad Yasir, Moumita Asad, Asadullah Hill Galib, Kis-
han Kumar Ganguly, and Md Saeed Siddik. Godexpo: an automated
god structure detection tool for golang. In Proceedings of the 3rd
International Workshop on Refactoring, pages 47–50. IEEE Press, 2019.

[2] Frank Schmager, Nicholas Cameron, and James Noble. Gohotdraw:
Evaluating the go programming language with design patterns. In Eval-
uation and Usability of Programming Languages and Tools, page 10.
ACM, 2010.

[3] Hao He. Understanding source code comments at large-scale. In
Proceedings of the 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 1217–1219. ACM, 2019.

[4] Gerard K Rambally. The influence of color on program readability
and comprehensibility. In Proceedings of the 17th SIGCSE Technical
Symposium on Computer Science Education, pages 173–181, 1986.

[5] Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario
Linares-Vásquez, Denys Poshyvanyk, and Rocco Oliveto. Automatically
assessing code understandability: How far are we? In Proceedings of
the 32nd International Conference on Automated Software Engineering,
pages 417–427. IEEE Press, 2017.

[6] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan,
and Shanping Li. Measuring program comprehension: A large-scale field
study with professionals. IEEE Transactions on Software Engineering,
44(10):951–976, 2017.

[7] Rob Pike. Go at google: Language design in the service of software
engineering, 2012. URL http://talks.golang. org/2012/splash.article,
2012.

[8] Ivo Balbaert. The way to Go: A thorough introduction to the Go
programming language. IUniverse, 2012.

[9] Tobias Roehm, Daniel Veihelmann, Stefan Wagner, and Elmar Juergens.
Evaluating maintainability prejudices with a large-scale study of open-
source projects. In Proceedings of the International Conference on
Software Quality, pages 151–171. Springer, 2019.

[10] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. Quality analysis
of source code comments. In Proceedings of the 21st International
Conference on Program Comprehension, pages 83–92. IEEE, 2013.

[11] William Cyrus Navidi. Statistics for engineers and scientists. McGraw-
Hill Higher Education New York, NY, USA, 2008.

[12] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M German, and Daniela Damian. The promises and perils of
mining github. In Proceedings of the 11th Working Conference on
Mining Software Repositories, pages 92–101, 2014.

[13] Jan-Peter Ostberg and Stefan Wagner. On automatically collectable
metrics for software maintainability evaluation. In Proceedings of the
Joint Conference of the International Workshop on Software Measure-
ment and the International Conference on Software Process and Product
Measurement, pages 32–37. IEEE, 2014.

[14] Anna Corazza, Valerio Maggio, and Giuseppe Scanniello. Coherence
of comments and method implementations: a dataset and an empirical
investigation. Software Quality Journal, 26(2):751–777, 2018.

[15] Li Yujian and Liu Bo. A normalized levenshtein distance metric. IEEE
transactions on pattern analysis and machine intelligence, 29(6):1091–
1095, 2007.

[16] Arianna Blasi and Alessandra Gorla. Replicomment: identifying clones
in code comments. In Proceedings of the 26th Conference on Program
Comprehension, pages 320–323. ACM, 2018.

[17] Joao P Diniz, Daniel Cruz, Fabio Ferreira, Cleiton Tavares, and Ed-
uardo Figueiredo. Github label embeddings. In Proceedings of the
20th International Working Conference on Source Code Analysis and
Manipulation, pages 249–253. IEEE, 2020.

[18] Jailton Coelho, Marco Tulio Valente, Luciana L Silva, and Emad Shihab.
Identifying unmaintained projects in github. In Proceedings of the
12th International Symposium on Empirical Software Engineering and
Measurement, pages 1–10, 2018.

[19] Gustavo Vale, Angelika Schmid, Alcemir Rodrigues Santos, Ed-
uardo Santana De Almeida, and Sven Apel. On the relation between
github communication activity and merge conflicts. Empirical Software
Engineering, 25(1):402–433, 2020.

[20] Mary L McHugh. The chi-square test of independence. Biochemia
medica, 23(2):143–149, 2013.

[21] Douglas Kramer. Api documentation from source code comments: a
case study of javadoc. In Proceedings of the 17th annual international
conference on Computer documentation, pages 147–153, 1999.

[22] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar De-
vanbu. A large scale study of programming languages and code quality
in github. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 155–165.
ACM, 2014.

[23] Janet Siegmund. Program comprehension: Past, present, and future. In
Proceedings of the 23rd International Conference on Software Analysis,
Evolution, and Reengineering, volume 5, pages 13–20. IEEE, 2016.

[24] Asher Trockman, Keenen Cates, Mark Mozina, Tuan Nguyen, Christian
Kästner, and Bogdan Vasilescu. Automatically assessing code under-
standability reanalyzed: combined metrics matter. In Proceedings of the
15th International Conference on Mining Software Repositories, pages
314–318. ACM, 2018.

[25] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. An
ethnographic study of copy and paste programming practices in oopl.
In Proceedings of the International Symposium on Empirical Software
Engineering, pages 83–92. IEEE, 2004.

260

What Do Developers Reply To? An Empirical Study
of the Top Unmanned Aerial Vehicles (UAVs) Apps

Fatma Outay
College of Technological Innovation (CTI)

Zayed University
Dubai, United Arab Emirates

Fatama.outay@zu.ac.ae

Haroon Malik, David Dampier,
College of Engineering and Computer Sciences (CECS)

Marshall University
Huntington, WV, USA

Malikh, dampierd @marshall.edu

Abstract—Most modern UAVs/drones have a dependency on using
a mobile device as part of the flight systems. The drone
manufacturers launch the controlling app for the drones in mobile
app stores. There has been a tremendous upsurge in the number
of UAVs (Unmanned Aerial Vehicle) mobile apps on the Google
Play Store over the past few years. A UAV/Drone app user
expresses the experience with the app by providing comments on
the Google Play Store. Whereas, the developers interact with the
user by posting replies to users' comments. Feedback in users’
comments enables developers of mobile apps to discover issues,
such as features requests, bugs to fix, and app maintenance
requests, in a timely manner. The value of responding to a user
review of drone apps has never been explored. We conducted the
largest and most extensive empirical study of UAV mobile apps to-
date by analyzing the 1,825 UAV mobile apps across twenty-five
categories, with 162,250 reviews (user comments and developers'
replies). We categorized the developer replies into seven major
categories. We also find that 35% of the developer's replies are
associated with providing direct solutions to the drone app user's
problems. Whereas, only 1% of the developer replies are related
to the app’s monetary refund issues.

Keywords-component; Developer reply, Mobile App, Google Play
Store, Drones, UAV

I. INTRODUCTION
Google Play, referred to as the Android Market, is Google’s

official store and portal for Android apps, games and other
media content for the Android OS phone, tablet or Android TV
device. Purchases made on the Google Play store can not only
be shared and synced across mobile devices but can also be
downloaded and stored on the Google cloud. As of 2017, Google
Play features over 3.5 million Android applications, with 2.8
million apps available for download presently.

Within the past five years, i.e., recently, there has been a
tremendous increase in the number of Unmanned Aerial
Vehicles (UAVs) (also known as a drone; a term used
interchangeably with UAV in the paper) apps on the google play
store. The UAV is an aircraft without a human pilot on board.
UAVs can be navigated via control from the ground through
software-controlled flight plans in their embedded systems,
functioning along with onboard sensors and GPS. Small UAVs
mostly use lithium-polymer batteries, while larger vehicles rely
on conventional airplane engines. Some of these drones are
equipped with cameras that allow the user to record videos or

capture pictures. These drones are controlled by certified
operators. Also, there exist many drone hobbyists.

A. Importance of Developer Reply
After interaction with drone apps, users can instantly express

their experience with an app and can directly communicate with
developers via app reviews; a direct channel between users and
developers. Feedback in users’ comments enables developers of
mobile apps to discover issues, such as features requests, bugs
to fix, and app maintenance requests, in a timely manner [6][18].
Perceiving the importance of mobile apps user feedback and
developers interaction with the uses via comments, Google
Google Play Store, and Apple App store have established a
review response system that:

(a). Allows the developers to respond to an app user review
quickly. The developer in the response can address the user
concern, provide details of the app functionalities,
acknowledge users’ feature requests, or simply thank the
user for their feedback and

(b). Quickly notify the user who posted the review, the
developer’s reply/feedback, and provide an option to update
the corresponding app review [2][7].

It has been established via empirical studies [9][15][16] that
developers provide feedback/response to mobile app users in a
timely and accurate manner to:

(a). Improves user experience and
(b). Increases the app popularity and rating

B. Problem Statement
The pace of innovation in the drone industry is increasing at a
tremendous rate. Thousands of companies compete globally,
with more emerging every day. Besides the explosion in
production, prices have reduced exponentially. Additionally,
drones are being incorporated with an array of sensors, cameras,
and software applications. Yet, there exists no study to-date
highlighting user issues related to drone apps that can assist app
store stakeholders, especially in producing quality drone apps.
As well, examine the developer replies to these complaints to
better understand (a) the areas/user concerns that receive enough
attention and (b) the areas/user concerns that are important to
users but not well attended by the developers. There have been
a few studies in the literature aiming at software review-related
research, they all neglect the developer's replies in their analysis.

261

https://www.dronerush.com/best-drones-1977/

Thus, the paper (a) analyzes the developer’s responses (as
comments) to drone app users, (b) categorizes the developer's
answers into types based on the user issues being handled, and
(c) systematically examines and provides details of the category.

II. RELATED WORK
Previous works on reviews of mobile apps affirm that user

reviews play a vital role in the triumph of an app. Kim et al. [12]
found that reviews of an app influenced its purchase the most.
Ha and Wager [8] found that users who are evaluating the apps
are doing so only when they are either extremely satisfied or
dissatisfied. Fu et al. [5] have performed Topic Modelling on 1
and 2-star ratings to discover the most common types of
complaints in each category of apps. Khalid et al. [11] studied
app store 1 and 2-star reviews to identify what iOS app users
frequently complain about. Khalid et al. [11] studied low-rated
reviews of 20 free iOS apps and found that Functional Error,
Feature Request, and App Crash were the categories that were
often complained about. In contrast, privacy and ethics, feature
removal and hidden costs complaints were the most impactful
ones. Martin et al. [14] provided a survey paper that contains a
more exhaustive list of studies conducted on iOS Apps. Hassan
et al. [9] studied 4.5 million reviews with 126,686 developer
responses of 2,328 top free apps from the Google Play Store.
The study was an attempt to (i) explore more about the dynamic
nature of the review-response mechanism and (ii) find if
responding to a review often has a positive effect on the rating
that is given by the user. Noei et al. [17] studied 435,628 reviews
from 49 apps (across 10 categories) from the Google Play Store,
performing topic modeling to identify the categories of user
feedback. In contrast, Mahmoudi et al. [13] studied only the
review of 19 Android wearable apps and concluded that
Functional Errors and Cost categories receive the most
complaints. In contrast, Installation Errors, Device
Compatibility, and Privacy & Ethical Issues are the ones causing
a higher negative impact on app ratings. Hu et al. [10]
investigated 68 hybrid apps from the Google Play Store and iOS
app store to determine whether they achieve consistent star
ratings and user reviews across app platforms.

III. DATA COLLECTION

We searched the entire Google Play Store for all the
mobile apps with the terms ‘Drone’, “UAV”, ‘Drone
Controllers’, ‘Drone Simulators’ and ‘Drone Games’. We
executed a Breadth-First-Search and crawled all the related
apps, including their ‘docid’, ‘hreflink’, ‘developer’, ‘app
price’, ‘app summary’ and ‘app score’ using an open-source
scraper [4]. To get more comprehensive coverage and a large

number of drone apps for the empirical study, the free and paid
apps were scraped separately using the price: ‘free’ and price:
‘paid’ options in the search method provided by the scraper. A
total of 1825 drone apps were collected.

IV. ANALYSIS OF DEVELOPER REPLY
The percentage of developer replies according to their

categories is depicted in Figure 1. Below, we analyze each
category and provide details of the issues discussed and
responded by the drone app developers.

A. Provide Solution
In this category, the drone developer provides a number of

steps for the app user to follow and solve the issue. For example:

“In case of connectivity problems, please make sure no other
DJI apps are running in the background. To do so, either restart
your phone or go to the settings app/applications and terminate
them (closing them with home button is not enough).”

Often these types of developers' responses are accompanied
by direct support mail contact information or forum links, asking
the customer to revert if the steps do not solve the issue. For
example,

“Please try the below steps and revert at
support@reliancegames.com if the issue persists

1. Kill/close the game and any unnecessary apps running
in the background

2. Free up some space in the device/Clear game cache

3. Reboot/restart your device and launch the game in a
strong network (WIFI)”

Many drone app users are concerned with the extent of
private information the drone app wants to access, and they feel
unsafe about it. Thus, most of the developers' responses in this,
i.e., ‘provide solution’ category, clarify the user, why the drone
app needs to collect some of the personal information [3]. Many
developers in this category have justified their in-app purchases,
informing the users that the in-app purchases were mentioned in
the “app description” and directed them to read it.

B. Request Detail
The ‘request detail’ category makes up 15% of the

developer's replies (included in the study). This category
includes developer's replies in which they seek more information
from the drone app users about the encountered problem. Such
as, provide details about their setup, mobile device model, drone

Figure 1. Percentage of developer replies based on the perceived categories Figure 2. A sample developer response to a UAV mobile app user.

19%

15%

9%35%

9%
1% 12%

Developer Replies

Provide_Solution
Request_Detail
Solution_in_Progress_Notification
Offer_Direct_Support
Solved_Notification
Offer_Refund
Others

262

model (e.g., DJI drone model), firmware version (e.g., DJI
firmware version) and app version. In order to troubleshoot the
drone app users problems, some developers ask functionality
queries like: is the user able to launch the app, go past the start-
up screen, or is the app freezing while doing so? E.g., “Hello,
please contact support@flylitchi.com so we can help you. Make
sure to include details about your setup (mobile device model,
DJI drone model, DJI firmware version, Litchi version).”

 A few developers in this category asked the drone app users
whether the issues reported happened after an app update. In a
few replies, developers requested the drone app users to send all
the app’s crash logs. Some developers also asked the drone app
users to post screenshots or send videos of the issue, e.g., “Thank
you for advising of the experience you encountered Stefanos.
Were currently investigating into this occurrence with your
device specifications. But if you would be able to provide any
screenshots of any error message or disconnected status in the
application, please email support@airmap.com!”

The developers have also asked some users to report their
issues to the community forum page, customer care email id, or
to their technical support department call facility.

For the app users who have requested a refund for the app,
developers have asked them to provide more details, such as
their request order number, to initiate the refund process.
Similarly, many reviews that mentioned that the drone app needs
more improvement, the developers requested the users to: (a)
Provide more detail on what improvements are to be made and
(b) Provide/send a concrete suggestion to the support team.

4.3. A Solution in Progress Notification

The comments in this category are the drone app’s
developer's replies to inform the app users that their engineers
are investigating the reported issue(s), and/or a solution is in
progress. Around 9% of developer replies belong to this
category. Most of the developer's responses in this category state
that: (a) The next update will fix the issue reported in the user
feedback. (b) They will consider supporting additional drone
models for their app either in the next app update or release. (c)
They will add compatibility for other/additional devices and
android OS versions in a future update.

As a response to new feature addition requests, the
developers acknowledged the customers for their valuable
feedback. They stated that the development team is actively
working on the feature addition or would consider their
recommendations as they continuously strive to improve their
drone app. As for bug fixes, most developers apologized for the
delay and requested users to kindly extend their patience and
follow until the issue was resolved. In case of the excessive
advertisement complaints, the developers responded that the
concerned team is being notified to resolve the issue, e.g.,

“Thank you for your feedback. The question is under
investigation.”

“Hello, We do apologize for any inconvenience. We already
reported the compatibility and crash issue to the development
team, and they are working right now on the application to
resolve the issue as soon as possible.

Kindly extend your patience. Best Regards, Parrot
Community Support.”

C. Offer Refund
A very meager percentage of only 1% of the developer

responses offered a full refund to the users who are dissatisfied
with the drone app. In some reviews, users have complained that
they did not receive a refund. For all such complaints, the
developers have asked the users to provide their order number or
transaction id since they would not initiate a refund without it.
In contrast, a few developers asked for the purchase receipt to be
sent to the support via email. Most of the developers who offered
a refund (in their replies) were associated with drone education
apps where the discontented user reports that the practice
questions provided in the app were not helpful and resulted in
the user failing the drone pilot exams. In the case of device
incompatibility issues, the developer in their response
apologized to the customer, offering a refund and stating that it
is impossible to provide support for all the varieties of drones or
devices present in the market, e.g., “One star? If it’s that bad
send me an email. More than happy to issue a refund.”

“Please contact us at support@appologics.com and we can
help you with issues or re-fund.”

D. Offer Direct Support
In response to negative user feedback, most of the developers

offered direct support (35%) i.e., asked users to contact them
directly (through the contact details provided instead of
reporting app issues in the Google Play Store platform) so that
they can guide them on how to use certain features of the app. In
cases, where the developers could not provide direct support
(due to company policies), all of them apologized to the user for
the unpleased experiences they incurred with the drone app.
Further, developers guided the users through possible options to
receive support, such as listing the steps to report their issues to
the technical support team via support mail id (e.g.,
support@flylitchi.com), or phone number of a support forum
community (e.g., https://www.facebook.com/spacewargame) or
relevant website (e.g., https://www.parrot.com/support/hotline)
where the user can report their issue with details to the support
executive and receive immediate solutions to their issues, e.g.,

 “Please contact support@flylitchi.com so we can help you
fix this.”

“Hello, users, you can consult. jov@simtoo.com Thank
you~”

E. Solved Notification
Solved Notification Category includes all the developer

responses/comments aimed to notify the drone apps users that
the issue reported in their review (negative feedback) has been
solved. Among all the developer replies, only 9% of replies
belong to this category, which implies that drone developers do
not solve customers’ issues actively, or they take too long to
respond, or they do not bother to notify the user even after the
issue is solved. Among all the developers who reply in this
category, 82% of replies were to notify that their reported
problem was solved as part of a new release of software and the
user needs to upgrade to the new version, e.g.,

263

“Thanks for your review. There was a bug. I just uploaded
an update (version 2.4.1), which fixes it again.”

Only 6% of the developer’s replies in the category include a
notification to the user that their issues have been explicitly
taken care of. In all such responses, the developer advised the
users to log out of the drone app and log back in for new changes
to come into effect.

“We appreciate your patience during this fix Chris. I am
happy to report that the Air-Map application is currently
functioning properly and displaying airspace information when
selecting a particular gridded area for recreational and
commercial operators. Fly Safe!”

 Some developer responses in this category, i.e., 4%, advise
users that the issue reported is tied to the old version of Android
OS, not the mobile drone app. Updating to the new/latest
Android OS update will resolve their issues. The remaining 9%
of the developer replies in this category include: (a) Notifying
drone app users of added support for new drone models or new
phone compatibilities as requested by them (b) Apologizing to
the drone app users for the service outage and notifying that the
service has rebounded and (c) Expressing regret for the delay in
responses since the app improvisation was a major update.

F. Others
Almost 12% of the developer responses could not be

classified into any of the above five categories due to their
arbitrary nature of responses. For example, many of the
developer replies were not in regard to addressing any of the
user's top-27 complaints, as shown in Figure 4, rather simply
thanking and appreciate the users for their feedback. For most of
the good reviews in 3-star rating comments, which did not
specifically mention any complaints but just appreciated the app,
the drone developer replies to express their gratitude and
explicitly asked the happy and satisfied users to consider giving
their drone app a 5-star rating. A few responses of the drone
developers in this category stated to the user that the issue
reported by them is not caused by the drone app; indeed, it’s their
phone’s hardware issue. Some developers’ (3%) provided users
with a harsh response. However, analysis of the developer's
replies yields that 6% of the developer's replies in this category
are counter-replies, apologizing for the inconvenience caused by
the drone apps (such as by the Parrot SA developers).

6. CONCLUSION AND FUTURE WORK

This paper is a large-scale empirical study of UAV or drone-
related apps of the Google Play Store Platform. The study
consisted of 1,825 UAV mobile apps, across twenty-five
categories, with 162,250 reviews. We find that most top drone
apps do not respond to reviews. However, responding can lead
to a positive change in rating. Addressing specific issues and
notifying the users that requested features are available are most
likely to lead to a change in the review rating. As future work,
we plan to undertake the following tasks: (a) identifying the
stakeholders of the reviews and perform review analysis on the
individual stakeholder perspective, (b) perform similar review
analysis on UAV or drone-related apps of other mobile app
platforms such as the iOS store, Blackberry World, and (c)
Apply machine learning on the manually categorized user

reviews to enable the automatic classification of upcoming new
user feedback into their respective complaint types.

Funding: This research was made possible by NASA WV
EPSCoR, Grant # 80NSSC20M0055.

REFERENCES
[1] Ahmed, B.H., Ghabayen, A.S (2020). “Review rating prediction

framework using deep learning”. J Ambient Intell Human
Comput (2020). https://doi.org/10.1007/s12652-020-01807-4

[2] Apple (2020) “Ratings, reviews, and responses in app store,”
https://developer.apple. com/app-store/ratings-and-reviews/. Visited
March 2020.

[3] Beierle, F., Tran, V.T., Allemand, M. (2019). “What data are smartphone
users willing to share with researchers?.” J Ambient Intell Human
Comput (2019). https://doi.org/10.1007/s12652-019-01355-6.

[4] Facundoolano (2019). facundoolano/google-play-scraper. Retrieved from
https://github.com/facundoolano/google-play-scraper.

[5] Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., & Sadeh, N. (2013). “Why
people hate your app”. Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining -
KDD ’13, 1276. https://doi.org/10.1145/2487575.2488202.

[6] Gao. C., J. Zeng, M. R. Lyu, and I. King, (2018)“Online app review
analysis for identifying emerging issues,” in Proceedings of the 40th
International Conference on Software Engineering (ICSE). ACM, 2018,
pp. 48–58.

[7] Google (2020) “View and analyze your app’s ratings and reviews,”
https://support. google.com/googleplay/android-
developer/answer/138230?hl=en. Visited March 2020.

[8] Ha, E., & Wagner, D. (2013). “Do Android users write about electric
sheep? Examining consumer reviews in Google Play”. 2013 IEEE 10th
Consumer Communications and Networking Conference, CCNC 2013,
149–157. https://doi.org/10.1109/CCNC.2013.6488439.

[9] Hassan, S., Tantithamthavorn, C., Bezemer, C. P., & Hassan, A. E. (2018).
“Studying the dialogue between users and developers of free apps in the
Google Play Store. Empirical Software Engineering”, 23(3), 1275–1312.
https://doi.org/10.1007/s10664-017-9538-9.

[10] Hu, H., Wang, S., Bezemer, C. P., & Hassan, A. E. (2019). “Studying the
consistency of star ratings and reviews of popular free hybrid Android and
iOS apps. Empirical Software Engineering”, 24(1), 7–32.

[11] Khalid, H. (2013). “On identifying user complaints of iOS apps”.
Proceedings - International Conference on Software Engineering, 1474–
1476. https://doi.org/10.1109/ICSE.2013.6606749.

[12] Kim. Oh, D., U. Lee, J. Lee, and J. Song, “Facilitating developer-user
interactions with mobile app review digests,” in 2013 ACM SIGCHI
Conference on Human Factors in Computing Systems, CHI ’13, Paris,
France, April 27 - May 2, 2013, pp. 1809–1814.

[13] Mahmoudi, M., & Nadi, S. (2018). “An empirical study of Android Wear
user complaints” (March), 3476–3502. Retrieved from
http://arxiv.org/abs/1801.02716.

[14] Martin, W., Sarro, F., Jia, Y., Zhang, Y., & Harman, M. (2017). “A survey
of app store analysis for software engineering”. IEEE Transactions on
Software Engineering, 43(9), 817–847.

[15] McIlroy. s, W. Shang, N. Ali, and A. E. Hassan (2017), “Is it worth
responding to reviews? studying the top free apps in google play,” IEEE
Software, vol. 34, no. 3, pp. 64–71, 2017.

[16] Nayebi. M, L. Dicke, R. Ittyipe, C. Carlson, and G. Ruhe (2018), “Essmart
way to manage user requests,” CoRR, vol. abs/1808.03796, 2018.

[17] Noei, E., Zhang, F., & Zou, Y. (2019). “Too Many User-Reviews, What
Should App Developers Look at First?” IEEE Transactions on Software
Engineering, PP(28), 1–1. https://doi.org/10.1109/tse.2019.2893171.

[18] Sorbo. A. Di S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall (2016), “What would users change
in my app? summarizing app reviews for recommending software
changes,” in Proceedings of the 24th SIGSOFT International Symposium
on Foundations of Software Engineering (FSE). ACM, 2016, pp. 499–
510.

264

https://doi.org/10.1007/s12652-019-01355-6
https://doi.org/10.1109/tse.2019.2893171

Quantifying Synergy between Software Projects
using README Files Only

Roxanne El Baff
Institute for Software Technology
German Aerospace Center (DLR)

Oberpfaffenhofen, Germany
roxanne.elbaff@dlr.de

Sivasurya Santhanam
Institute for Software Technology
German Aerospace Center (DLR)

Cologne, Germany
sivasurya.santhanam@dlr.de

Tobias Hecking
Institute for Software Technology
German Aerospace Center (DLR)

Cologne, Germany
tobias.hecking@dlr.de

Abstract—Software version control platforms, such as GitHub,
host millions of open-source software projects. Due to their
diversity, these projects are an appealing realm for discovering
software trends. In our work, we seek to quantify synergy
between software projects by connecting them via their similar
as well as different software features. Our approach is based
on the Literature-Based-Discovery (LBD), originally developed
to uncover implicit knowledge in scientific literature databases
by linking them through transitive connections. We tested our
approach by conducting experiments on 13,264 GitHub (open-
source) Python projects. Evaluation, based on human ratings of
a subset of 90 project pairs, shows that our developed models
are capable of identifying potential synergy between software
projects by solely relying on their short descriptions (i.e. readme
files).

Index Terms—repository mining, natural language processing

I. INTRODUCTION

The growing amount of open-source software projects range
from small experimental software to large-scale and continu-
ously advancing systems. Many of such projects are available
on public repository hosting platforms such as GitHub that do
not only provide functionalities for managing source code but
also include tools for documentation and collaboration.

Thus, repository hosting platforms are not only technical
means but can also be considered as an agglomeration of
ideas and knowledge scattered over several projects. However,
exploring this vast amount of information manually is beyond
human capacity.

Several applications assisting users in exploring software
repositories aim at finding similar repositories to one’s own
repository, e.g. [1]–[3], helping to identify alternative imple-
mentations, explore related projects, or identify plagiarism.
However, when focusing solely on similarities, searchers are
trapped in their search bubbles and are rarely exposed to
develop something new based on repositories that complement
their work. Thus, in this paper, we propose an approach
for exploiting distributed software knowledge in repository
platforms, which is inspired by Literature-Based Discovery
(LBD) [4]. LBD uncovers implicit knowledge and synthesizes
hypotheses from scientific literature databases by identifying
complementary information sources (i.e., publications). The

DOI reference number: 10.18293/SEKE2021-162

Fig. 1. Two repositories are related by a common set of features. There is a
potential synergy since both can extend the feature set of the other.

general idea is to seek possible transitive relationships between
concepts mentioned in different publications. For example, if
concepts A (e.g., a disease) and B (e.g., an enzyme) are found
to be often related to a concept C (e.g., a drug) respectively,
but no relationship between A and B has been reported so far,
one can hypothesize that there is also a relationship between
A and B which is worth to be explored.

In this paper, we adopt the idea of LBD to quantify a
synergy score between project pairs taking into account, both,
software feature similarities and differences. For example, Fig-
ure 1 illustrates a simplified scenario of two repositories with
a potential synergy. Repository A has two features: (1)“pre-
process data for significance tests”, and (2) “conduct signif-
icance tests”. Whereas, Repository B has only feature (2) as
common one and an additional feature: (3) “conduct post-
hoc analysis”. As we see, these two repositories can benefit
from each other because they share a common feature, and
each is missing one feature from the other. Accordingly, we
ask the question: How can one discover software repositories
that are similar to some extent but different enough to expand
each other’s functionality so that they can be the basis for new
developments?

Our approach solely relies on information extracted from
repositories’ publicly available readme file because it is a
common practice, in high-quality open-source projects, to
summarize the main project information in such files. More
precisely, we use existing natural language techniques to
model the software features of each project, then we quantify

265

the synergy between each project pair by defining a new
synergy ranking method.

We conduct our experiments on more than 13K GitHub
software repositories with Python as the main programming
language and having a readme file written in English. We
evaluate our models based on human ratings, which shows that
our approach successfully identifies synergy between project
pairs.

Altogether, our contribution is threefold:
• A new view on exploring synergy quantification between

repositories to inspire new ideas.
• A novel approach that combines existing natural language

techniques to extract relevant information from reposi-
tories’ descriptions, and ranking techniques to quantify
synergy between pairs of projects.

• Experimental evidence that synergy between software
projects can be detected automatically.

Our work can be used, among others, for recommenda-
tion systems, or discovery-based systems from large software
projects pile. For reproducibility, the code is publicly available:
https://github.com/DLR-SC/repository-synergy.

II. RELATED WORK

A. Recommendation of software repositories

Previous works in the repository mining community focus
already on developing approaches for software recommenda-
tions by either using the metadata of GitHub repositories (e.g.,
stargazes, readme files, . . .) such as Zhang et al. [3], or by
using software artifacts (e.g., software packages, code, . . .)
such as McMillan et al. [1]. Others focus on categorizing
software repositories and readme files, which helps to better
perceive a massive pile of data and grasp the content faster
(Prana et al. [5], Sharma and Thung et al. [2], . . .).

Zhang et al. [3] built a recommendation system called
RepoPal. They detect similar repositories using three different
heuristics based on readme files and stargazing. They assume
that two repositories are likely to be similar based on three
measurements: 1) readme files with similar content, 2) repos-
itories starred by users of similar interests, and 3) repositories
starred together within a short period by the same user. Their
recommendation system outperform CLAN (Closely reLated
ApplicatioNs) [1]. McMillan et al. [1] developed an approach
for automatically detecting similar applications for a given
Java application based on packages and class hierarchy.

Our goal and methodology differ from Zhang et al. [3]. In
our approach, we exploit not only software similarities but also
differences which we believe can inspire for new directions.
Moreover, our methodology is different: we exploit the implicit
knowledge between software projects based only on readme
files instead of relying on different metadata.

B. Cataloging software repositories

Another strand of research in repository mining essential
to our work is categorizing software repositories’ thematic
analysis of readme files.

GitHub creates showcases where they manually catalog a
set of repositories on a certain topic. Sharma et al. [2] semi-
automatically expanded such showcases. Using 10K reposito-
ries with readme files, they first extract the most descriptive
section in the readme file by selecting the one with the highest
cosine similarity value with the repository short description on
the top of the repository landing page on GitHub. They then
feed all these descriptions to a Latent Dirichlet Allocation
using the Genetic Algorithm model, where they manually
analyze topics into meaningful categories. This work indicates
that readme files are already used in existing research to
deduce the software features of a software repository. Also,
using a topic modeling algorithm is common for clustering
readme files and hence software repositories. In this work,
we use similar techniques within our approach. However, we
identify sections reflecting the software features in readme
files using an existing classifier, READMEClassifier, trained
by Prana et al. [5]. [5] systematically classify each section
of a readme file to categories reflecting its purpose (see
Section III-A for more details).

III. APPROACH

The following section outlines our approach to quantify
synergies between software repositories, which consists of a
pipeline with three steps, as shown in Figure 2.

A. Software Features Extraction

The first step extracts the repositories’ descriptions of
software features (Figure 2.1). To do that, we identify these
sections by using the existing multi-label classifier, READ-
MEClassifer, built by Prana et al. [5], which labels readme
file sections. READMEClassifer was trained on 4k manually
annotated readme file sections from 393 repositories with an
F1 score of 0.75 where each section was categorized into one
or more of eight different categories. The What category is
identified based on headings (e.g., About) or based on the
text at the beginning of a README file. Sections describing
a comparison to another software artifact with respect to
performance, flexibility, and simplicity are categorized as
Why. Other categories describe other metadata not related to
software features. Prana et al. [5] combined What and Why
into one label (Why sections were rare < 3%), WhatWhy, to
train their READMEClassifier.

We use this classifier to extract sections with the label
WhatWhy for each repository, which describes the software
features within it. In the next steps, we only use repositories
having a readme file with WhatWhy section(s).

B. Software Features Modelling

Topic modeling is an unsupervised machine learning tech-
nique that automatically analyzes text data to determine cluster
terms for a set of documents (in our case, readme files). Each
document is assigned a weighted sum of topics. And each
topic is represented by a set of terms and the probability of
this term for a specific topic.

266

https://github.com/DLR-SC/repository-synergy

Fig. 2. Proposed approach of synergy discovery consisting of three steps: 1) Software features extraction, 2) software features modeling and 3) synergy
scoring using a ranking algorithm.

1. Inverse Feature Overlaps

2. Repository-Feature Graph

3. Repository Similarities

F1

F2 F3

F4

M = exp(-𝑿𝑻 × 𝑿)

O = 𝑿 × 𝑿𝑻

R1

R2 R3

R4 R5

X =

R1 R2 R3 R4

F1 F2 F3 F4

R5

0.7

0.3
0.6

0.4 1

0.3

0.7

1

Fig. 3. The three matrices used by the ranking algorithms: 1) matrix M for
inverse features overlaps, 2) matrix X for repository feature combinations and
3) matrix 0 for features overlaps of repositories.

In this step (Figure 2.2), we apply a topic modeling al-
gorithm only on the readme file sections from Section III-A
to cluster them into topics (i.e, set of terms) which yields
readme-term association. The outcome of this step is a numeric
vector representation for each repository. More formally, given
a set of repositories R, we extract a set of characteristics of
features F. A repository a can be represented by a vector
x(a) ∈ R|F | where each of its elements x

(a)
i denotes the

association strength of the repository to feature (topic) i.

C. Synergy Quantification

Now that we have a vector representation for each reposi-
tory, we describe here the approach for finding software project
pairs with synergies using these vectors.

As mentioned previously, we base our synergy scoring on
the ABC model of Literature-Based-Discovery. In the domain
of software projects, A, B, and C represent software features.
We first formalize the problem, and we define three require-
ments for our synergy scoring approach. We then suggest
a random walk-based ranking function for repository pairs,
which comply with these requirements.

1) Problem formalisation: From the previous step, each
repository a is represented by a vector x(a) ∈ R|F | with
elements xa,i giving the association strength of a to feature i.
All vectors are assembled as the rows of the repository-feature
matrix X ∈ R|R|×|F |.1 An example is shown in Figure 3.2.

2) Synergy Scoring Requirements: Synergy is a subjective
notion; therefore, we suggest three main requirements for
quantifying synergy between software project pairs:
• R1 - Potential trend. Two software projects should each

bring features that were not combined by many other
projects before (create a new trend). More formally, high
values mi,j in the inverse feature overlap matrix M =
exp(−XTX) 2 (Figure 3.1) has high values for features
pairs that are not frequently present in the same projects.

• R2 - Potential complementary features. For two soft-
ware projects a and b to bear potential to create new
directions when combined, it is required that one has
strong associations to a subset of features for which
the other has weak associations. This means for two
complementary repositories a and b ∃i,j∈F : xa,i ↑
∧xb,i ↓ ∧xa,j ↓ ∧xb,j ↑. The dissimilarity, and thus the
potential to have complementary features, of repositories
is summarized in the matrix X− = 1−X.

1X is always row normalized.
2For the sake of simplicity we denote exp(−XTX), the element-wise

application of the exponential function to the negative values of the matrix
XTX

267

• R3 - Similarities between projects. R1 and R2 alone are
not sufficient to discover the synergy between software
project pairs because they can lead to matches between
projects from very different domains and purposes. Thus,
two projects that benefit from each other should also
have some common characteristics. This can be expressed
by the row-normalised repository-feature overlap matrix
O ∈ R|R|×|R| (Figure 3.3).

3) Synergy Scoring as Ranking functions: We define a
synergy ranking function for pairs of software repositories
that comply with the requirements defined above based on
a restricted random walk on a heterogeneous graph of reposi-
tories and features similar to the ones shown in Figure 3, when
the matrices are treated as transition probability matrices.

The transition probability matrices P(X) ∼ X and
P(XT) ∼ XT assign probabilities to go from a repository to
a feature or vice versa, respectively. The probability of moving
from a feature node in the graph (Figure 3.1) to another feature
node is given by P(M) ∼M.

The idea of random walk-based ranking is that a random
walker starts at a repository a and randomly jumps to an
associated feature i with probability p(xa,i). In the next step,
it jumps, with probability 1− d, to another repository that is
also affiliated with feature i, which accounts for commonalities
between the two. With probability d, it jumps (or explores)
another feature not well related to a and j by moving
according to the probability p(mi,j)p(x

−
a,j). From there, it

discovers another repository b with high affiliation to feature
j (according to the probability p(xb,j)). The resulting matrix
equation for synergy scores of all repository pairs is:

Qrw = (1− d)P(X)P(XT) + d(P(X)P(M) ◦X−)P(XT) (1)

The jumping probability d can be adjusted to balance be-
tween finding similar repositories and exploring new features.

IV. EXPERIMENTS

In this section, we first describe the dataset used in our
experiments (Section IV-A) and then we describe our experi-
ments.

A. Data

For our experiments, we exploit GitHub open-source repos-
itories. We use GitHub repositories because of the availability
of the data and tools to extract their metadata and readme files.
We limit the extracted repositories to one main programming
language, Python, to control the variability of programming
language–software features dependability, which is outside the
scope of our work. We use the latest dump3 from the GHTor-
rent dataset (Gousios, 2013 [6]). To ensure high repository
quality, we rely on the number of “Watchers” (> 50)
for each repository. “Watchers” are GitHub users who have
asked to be notified of activity in a repository.4 So, the high

3At the time of writing this paper: https://ghtorrent.org/downloads.html
dump mysql-2019-06-01.

4Watchers definition is stated here: https://www.metrics-toolkit.org/
github-forks-collaborators-watchers/.

TABLE I
PRE-PROCESSING OF THE 20,590 SOFTWARE REPOSITORIES FROM

GITHUB.

Prepossessing Repositories Readme
Sections

repositories with readme files 19,797 169,521
repositories with WhatWhy sections 14,065 28,932
repositories with English WhatWhy content 13,264 24,988

number of watchers reflect repositories with high quality or
ones relevant to the community. Also, to ensure recency, we
fetch repositories that are still available on GitHub, and were
updated in the recent year. Lastly, we fetch the readme files
using PyGithub5 where we end up with 20,590 repositories’
readme files.

B. Software Features Extraction

As mentioned in Section III-A, we classify 20,590 readme
files containing 169,521 sections using the READMEClassi-
fier. Table I shows the total number of repositories and sections
after each pre-processing step. Based on the READMEClas-
sifier, only 14,065 have at least one WhatWhy section. We,
then, filter out the non-English sections by using the lang-
detect Python library [7]. We end up with 13,264 readme files
(24,988 WhatWhy sections), which are used in the subsequent
steps.

C. Software Features Modelling

In this section, we transform the 13,264 readme files, that
include only what-why sections, into a numeric vector by
using topic modeling techniques, as described in Section III-B.
We use Mallet latent Dirichlet allocation (LDA) [8], [9]. We
choose the optimal k (pre-set number of topics) configuration
based on the coherence value, which assesses the quality of the
learned topics by measuring the degree of semantic similarity
between high-scoring terms in a topic.

LDA is a generative probabilistic model for a collection
of discrete data such as text corpora (here, readme files).
The model defines a set of topics to describe a corpus. Each
document is modeled as a finite mixture over an underlying
set of topics that are represented as a mixture of terms. Here,
the association vectors of a what-why section of a repository’s
readme file to topics build the repository-feature matrix X
used in the next phase.

First, we pre-process the readme files by removing the
stop-words and lemmatizing the content. After that, we train
Mallet LDA on the readme files (WhatWhy sections) where
the number of topics (k) must be predefined. So, we train
models with k ranging between 406 and 150 topics. To define
the optimal k, for each value, we calculate the average of topic
coherence [10] values of the inferred topics. Figure 4 plots the

5PyGithub library: https://github.com/PyGithub/PyGithub.
6We do not go below 40 because we need a handful of features for the

synergy scoring later.

268

https://ghtorrent.org/downloads.html
https://www.metrics-toolkit.org/github-forks-collaborators-watchers/
https://www.metrics-toolkit.org/github-forks-collaborators-watchers/
https://github.com/PyGithub/PyGithub

Fig. 4. Coherence values generated for each number of topics, k, trained
using Mallet latent Dirichlet allocation (Mallet-LDA).

TABLE II
DISTRIBUTION OF README FILES FOR THE TOP 5 TOPICS (EACH

REPRESENTED BY THE TOP KEYWORDS).

LDA
Topic Readme Files Number
model, train, dataset 856
image, target, alt 553
tool, scan, attack 526
page, html, content 484
api, application, request 454

average of the coherence values for different k. As we see, the
topics are most coherent where k = 45. Also, Table II gives
a sample of the topics’ terms.

D. Synergy Quantification

Using the modeled features from LDA, we apply here the
ranking algorithm, random walk, with different configurations
of the jumping probability d, d = [0.0 − 0.5]. Using each
configuration, we calculate the score of each repository-pair,
sorted in descending order, in our dataset. We evaluate these
models in the next Section (V).

V. EVALUATION

A first observation is that random walk-based ranking with
a larger jumping probability (d > 0.2) results in a similar
set of repositories rb that are rated to have high synergy
with any other repository ra. Therefore, we only evaluate
1) a model with random-walk jumping probability d = 0.0
(focusing on similarity only), 2) with jumping probability
d = 0.2 to see the effect of exploring similar yet more different
features, and 3) random selection of repository pairs (baseline).
We hypothesize that our models (1 and 2) identify synergy
between repository pairs better than the random pair selection.

Due to the absence of ground truth data and comparable
methods, we conducted a study where we asked programmers
with good proficiency in English (the language of readme files)
and high knowledge of Git and Python7 to rate repository pairs
regarding their potential for bearing synergy8. We created a
dataset of 90 repository pairs containing 30 non-overlapping
top picks of the three models mentioned above (d = 0.0, d =

7Raters studied for their bachelor/masters degree in English and have > 3
years experience in Python.

8Evaluation web application: https://synergy-annotation.herokuapp.com/
reposynergy with username: seke2021 and password: seke2021.

0.2, random selection). The 90 pairs were divided into three
different batches, where each batch contained ten pairs of each
model. Each batch was rated by three different raters. As a
result, we obtained 270 evaluations.

As shown in Table III, we asked our raters to evaluate
each repository pair by reading their readme files and then
answering two questions. In question 1, we ask if there is a
synergy between the pair. The possible answers ranged from
None to Strong. Also, the raters briefly explained the rationale
of their choices (question 2). The formulation of questions and
the rating guidelines were refined in a pilot study prior to the
main evaluation.

Table V shows that the majority agreement (2 out of 3)
between our human raters is very high when synergy intensity
is considered. However, the full agreement between all 3 raters
is often not achieved, which indicates that there is a degree of
subjectivity in human judgment.

VI. RESULTS

Table VI shows the count of the synergy evaluations for
repository pairs selected by the different models. We observe
that repository pairs picked randomly have only 23% (21
annotations) of annotations indicating synergy, whereas the
repository pairs generated by our models have higher synergy
reports of 66% and 58% for models 1 and 2, respectively.
The difference to the baseline is significant with regard to
the non-parametric Kruskal-Wallis Test [11] (not normally
distributed data), p < 0.001. This was further confirmed in
a post-hoc analysis using the Mann-Whitney test [12] with
Bonferroni correction that showed that the repository pairs
generated by model 1 and model 2 are significantly rated with
higher synergy than the random pairs at p < 0.001 and effect
sizes, r, of 0.30 and 0.39 respectively. However, the difference
between models 1 and 2 is not significant. Table IV shows
examples of repository pairs rated high by our models.

While overall, model 1 (d = 0.0), focusing on similarities
of project pairs, have a higher agreement with human ratings,
a closer look at the highest rated pairs by humans from the
entire evaluation set shows a different picture. We define the
discovery rate, dr(ptop), as the intersection of repository pairs
belonging to the top p (p ∈ [0, 1]) fraction of repository
pairs ranked by human annotators (tophuman) and the algo-
rithm (topalgo) relative to the number of top pairs, that is:
dr =

|tophuman∩topalgo|
ptop∗n , where n is the number of all pairs

in the evaluation dataset. For model 1, dr(ptop < 2) = 0.0.
While for model 2 (d = 0.2), dr(ptop = 0.1) = 0.1
and dr(ptop = 0.15) = 0.08. This indicates that model 2
incorporates differences of features more strongly. Contrarily,
model 1 scores higher synergy for pairs that have more
redundancies, which makes them more obvious to the raters.

VII. CONCLUSION

This paper explored a novel approach for discovering syn-
ergies between software projects that may inspire innovations.
To this end, we adapted the idea of Literature-Based Discovery
(LBD), which aims at uncovering implicit knowledge by

269

https://synergy-annotation.herokuapp.com/reposynergy
https://synergy-annotation.herokuapp.com/reposynergy

TABLE III
THE QUESTIONS THAT OUR RATERS HAD TO ANSWER AFTER READING THE readme FILES OF TWO REPOSITORIES.

Questions Answers
1. I see that there is synergy between the 2 repositories a. None – No complementary or common features

b. Weak – More common features than complementary
c. Somewhat – Some features can be merged
d. Strong – Clear complementary features that lead to a new project

2. Explain your choice(s) (Keep it short) Free text

TABLE IV
EXAMPLES OF REPOSITORY PAIRS MAJORLY ANNOTATED AS HAVING STRONG SYNERGY (CLEAR COMPLEMENTARY FEATURES THAT LEAD TO A NEW

PROJECT), RANKED BY LDA -RW FOR d = 0.0 AND d = 0.2.

Jumping Probability Repository 1 Repository 2
d = 0.00 Flexible and scalable Django authorization backend

for unified per object permission management
Core common behaviors for Django models, e.g.
Timestamps, Publishing, Authoring, Editing and
more.

d = 0.2 Python scripts and documentation for generating to-
pographically accurate Minecraft maps from histori-
cal map scans

Blender python addon to increase workflow for
creating minecraft renders and animations

TABLE V
MAJORITY AND FULL AGREEMENT BETWEEN HUMAN SCORING FOR

REPOSITORY PAIRS SELECTED BY DIFFERENT MODELS.

Synergy Synergy vs.
Intensity No Synergy

Majority Full Full

LDA - Random Walk (d=0.0) 80% 20% 50%
LDA - Random Walk (d=0.2) 83% 20% 57%
random baseline 100% 50% 57%

TABLE VI
COUNTS OF THE RATED SYNERGIES FOR THE 90 REPOSITORY PAIRS IN

OUR DATASET, FOR EACH ALGORITHM (LDA RANDOM WALK WITH
d = 0.0, WITH d = 0.2 AND random BASELINE). EACH PAIR WAS RATED BY

THREE RATERS.

Synergy w Has Synergy
Intensity
0 1 2 3 No Yes

Algorithm
LDA - Random Walk (d=0.0) 31 12 25 22 31 59
LDA - Random Walk (d=0.2) 38 15 25 12 38 52
Baseline random 69 06 11 04 69 21

exploring similarities and differences of knowledge artifacts,
to the software domain. Based on human rating evaluation
for identifying synergy between pairs of software projects
showed that it is possible to quantify synergy using projects’
readme files only. Our results indicate that models focusing
on similarities to identify synergy are slightly higher rated by
humans.

However, in the original spirit of Literature-Based Dis-
covery for novelty identification, it is acceptable that not
every new knowledge combination leads to a useful finding.
The same applies to systems that use our approach. If the
aim is to build a discovery system that assists in identifying

new directions for novel developments, one would put more
emphasis on differences in software features. The developed
methodology is, however, flexible enough to be configured to
identify repository pairs that serve similar purposes.

REFERENCES

[1] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in 2012 34th International Conference on Soft-
ware Engineering (ICSE). IEEE, 2012, pp. 364–374.

[2] A. Sharma, F. Thung, P. S. Kochhar, A. Sulistya, and D. Lo,
“Cataloging GitHub Repositories,” in Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering - EASE’17. Karlskrona, Sweden: ACM Press, 2017,
pp. 314–319. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
3084226.3084287

[3] Y. Zhang, D. Lo, P. S. Kochhar, X. Xia, Q. Li, and J. Sun, “Detecting
similar repositories on GitHub,” in 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering
(SANER). Klagenfurt, Austria: IEEE, Feb. 2017, pp. 13–23. [Online].
Available: http://ieeexplore.ieee.org/document/7884605/

[4] D. R. Swanson, “Undiscovered public knowledge,” The Library Quar-
terly, vol. 56, no. 2, pp. 103–118, 1986.

[5] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo, “Cate-
gorizing the Content of GitHub README Files,” Empirical Software
Engineering, vol. 24, no. 3, pp. 1296–1327, Jun. 2019. [Online].
Available: http://link.springer.com/10.1007/s10664-018-9660-3

[6] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories, ser.
MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 233–236.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2487085.2487132

[7] S. Nakatani, “Language detection library for java,” 2010. [Online].
Available: https://github.com/shuyo/language-detection

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[9] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[10] M. Röder, A. Both, and A. Hinneburg, “Exploring the space of topic
coherence measures,” in Proceedings of the eighth ACM international
conference on Web search and data mining, 2015, pp. 399–408.

[11] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance
analysis,” Journal of the American statistical Association, vol. 47, no.
260, pp. 583–621, 1952.

[12] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

270

http://dl.acm.org/citation.cfm?doid=3084226.3084287
http://dl.acm.org/citation.cfm?doid=3084226.3084287
http://ieeexplore.ieee.org/document/7884605/
http://link.springer.com/10.1007/s10664-018-9660-3
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://github.com/shuyo/language-detection

Evaluating a Tool for Creating Bug Report Assignment Recommenders

Disha Devaiya, John Anvik, Meher Bheree, Farjana Yeasmin Omee

Department of Mathematics and Computer Science
University of Lethbridge, Alberta, CANADA

E-mail: devaiya86@gmail.com, [john.anvik, bheree, omee]@uleth.ca

Abstract

Large software development projects that use bug track-
ing systems can become overwhelmed by the number of re-
ports filed. To assist in reducing the workload of project
members, researchers have proposed the use of bug report
assignment recommenders. To assist project members with
the creation of assignment recommenders, we proposed a
web-based tool called the Creation Assistant for Support-
ing Triage Recommenders (CASTR). This paper presents
the results of both a laboratory and field study of CASTR.
We found that CASTR can create assignment recommenders
with accuracy as high as 95%, 80%, and 70% for Top-
1, Top-3 and Top-5, respectively. The field study showed
that 60% of the participants found CASTR easy to use,
whereas the remaining participants found CASTR moder-
ately or slightly easy to use.

1. Introduction

An issue tracking system plays an important role in the
development of a high-quality software product. Such sys-
tems record information for a bug report or feature request.
These records include the name of the developer that re-
solved the issue and other relevant development activity. Is-
sue tracking systems are particularly important when team
members are globally distributed [3].

During the testing phase of software development, a de-
veloper or tester confirms that the software is working per
the specifications. If irregularities are found, a triager marks
it as a bug in the issue tracking system and includes such
information as the steps to reproduce and screenshots. A
triager will then assign the reported bugs to the appropri-
ate developer based on the view of the developer’s ability
or their bug fixing history. In the case of large projects, a

This work was funded by the Natural Sciences and Engineering Re-
search Council of Canada.

DOI reference number: 10.18293/SEKE2021-163

large number of new bugs can be submitted daily [2]. For a
software project that uses a manual triage process, the bug
triagers can become overwhelmed. To address such prob-
lems, researchers have proposed the use of bug report as-
signment recommenders [3, 4, 6, 7, 8].

However, the creation of a bug report assignment rec-
ommender for a software project can be a complex and
time-consuming process. To address this problem, we pre-
viously proposed the Creation Assistant for Easy Assign-
ment (CASEA) [1]. CASEA was further refined into a
web-based tool called the Creation Assistant for Support-
ing Triage Recommenders (CASTR) [5]. CASTR allows a
project member to create an assignment recommender for
a project by specifying such items as labelling heuristics,
a machine learning algorithm and a data imbalance tech-
nique. They can also use a “specify and verify” approach to
determine the optimal configuration settings for a project-
specific assignment recommender. By providing a little
project knowledge, a project member can produce a bug re-
port assignment recommender in a short period.

This paper presents an evaluation of the CASTR system
to answer the following research questions:

1. RQ1: Does CASTR create assignment recom-
menders that make accurate recommendations? If
CASTR creates assignment recommenders that make
accurate recommendations, then a triager need not ex-
amine the report as deeply. Using such recommenders
changes the triager’s role from making decisions rely-
ing on their knowledge, experience, intuition or infor-
mation they can gain from existing tools to confirm-
ing decisions made by the recommender. This shift
changes, and hopefully, reduces triager cognitive load.

2. RQ2: Can human triagers make effective use of in-
formation presented by CASTR? If CASTR creates
assignment recommenders that assist human triagers
then time can be saved by not assigning bug reports to
the appropriate developer manually. Some of the hu-
man resources consumed by the triage process can be
then directed elsewhere in the project.

1

271

Our analytical evaluation conducted using bug report
datasets from the Plasmashell1, LibreOffice2 and Firefox3

projects showed that recommenders with good accuracy
could be created. A field study with ten participants from
different technical backgrounds gave evidence that they
were able to make effective use of the information provided
and that most of them are likely to use CASTR in creating
an assignment recommender.

2. Creation Assistant for Supporting Triage
Recommenders (CASTR)

CASTR [5] is a platform-independent web-based tool
that assists a project member with the creation of bug re-
port assignment recommenders. It provides a web interface
for downloading a dataset from a Bugzilla repository. In-
formation about the collected dataset is displayed by a Con-
figuration tab. CASTR assists with setting project-specific
heuristics for labelling reports with the names of the de-
veloper to be recommended. As not all of the developer
names may be valid, CASTR allows the user to select a
minimum threshold of resolution activity to eliminate de-
velopers that have resolved a small number of bug reports.
CASTR provides the option of choosing one of four su-
pervised machine learning algorithms: Support Vector Ma-
chines (SVM), Multinomial Naı̈ve Bayes, C4.5, and Rules.
We chose these algorithms as they represent different cate-
gories of supervised machine learning algorithms. CASTR
also provides three different approaches to handle imbal-
anced data: oversampling using SMOTE, manual oversam-
pling and undersampling using Expectation-Maximization
(EM). When the user clicks the “Recommender” button
in the Configuration tab, a request is sent to the CASTR
web service and redirects the user to an Analysis tab that
presents progress information, such as the time to train the
recommender and evaluation results. The Analysis tab dis-
plays the average Top-1, Top-3 and Top-5 precision and re-
call values for a testing set. A user can tune a recommender
by comparing these values with the last five generated rec-
ommenders to create the best assignment recommender for
their project.

3. Evaluation

In evaluating CASTR, we sought to answer our two re-
search questions. We answered RQ1 using an analytical
evaluation of the recommenders created by CASTR and in-
vestigated RQ2 through a field study.

1https://bugs.kde.org
2https://bugs.documentfoundation.org
3https://bugzilla.mozilla.org

3.1. An Analytic Evaluation of the Recommenders

We selected bug reports with the resolution Fixed from
three open source projects: Plasmashell, LibreOffice and
Firefox. Also, we removed bug reports for developers who
fixed less than 20 reports. We used a 90%/10% split be-
tween training and testing sets. Table 1 shows the number
of bug reports used for the three projects. The third column
shows the number of bug reports remaining filtering.

We evaluate the performance of a recommender using
the metrics of precision4 and recall5. This requires us to
know the set of developers who could have been accurately
assigned to a bug report. We approximated this information
using the names of developers who fixed reports in the same
component as the testing bug report.

We explored all possible combinations of machine learn-
ing and data imbalance algorithms provided by CASTR.
As Table 2 shows, we found that LibreOffice produced
the highest precision values (97/95/91) with the Naı̈ve
Bayes/SMOTE combination whereas for Firefox the Naı̈ve
Bayes/undersampling with EM technique was the best
(55/36/36). On the other end, Plasamshell had the best re-
sults (96/83/73) using an SVM algorithm without any im-
balance technique applied. The low recall values are likely
a result of overestimating the set of possible developers. For
example, in the Firefox project, it was not uncommon for
the estimated set of developers to be 30+ developers, mean-
ing that the best recall value for a single recommendation
would be about 3% (1/30).

3.2. A Field Study of CASTR

To answer our second research question, we conducted
a field study with experienced software developers, project
managers, bug triagers and graduate students. The study
contained ten (10) participants: 3 project managers, 5 ap-
plication developers and 2 graduate students.

The field study was conducted by first asking participants
to complete an initial survey that collected demographic
information and technical background details. The demo-
graphic questions were for general analysis to break down
the response data into meaningful groups. For example, we
found that Indian participants took the survey more than the
participants with other nationalities and the majority were
in the age range of 26 to 39. Most participants completed
a graduate-level of schooling, and most of them belong to
the job function Application Developer. For technical back-
ground, 60% reported having a lot of prior experience with
issue tracking systems, and 33% had a good amount of ex-
perience with contributing to large open-source projects.

4Precision measures how often the approach makes a relevant recom-
mendation for a report

5Recall measures how many of the relevant recommendations are truly
recommended

2

272

Projects Original
Dataset Size

After Filtering
Dataset Size

of Bug Reports in
Training Set

of Bug Reports in
Testing Set

Plasmashell 1112 532 479 53
LibreOffice 2500 1725 1553 172

Firefox 1000 777 699 78

Table 1. Training and testing set sizes for evaluating recommenders.

Project Algorithm Sampling
Technique

Precision Recall
Top 1 Top 3 Top 5 Top 1 Top 3 Top 5

Plasmashell SVM None 96 83 73 11 26 38
LibreOffice Naı̈ve Bayes SMOTE 97 95 91 2 7 11

Firefox Naı̈ve Bayes UnderSampling/EM 55 36 36 11 15 9

Table 2. Evaluation results of assignment recommender

Overall, participants had low bug triaging experience6 and
low familiarity with the machine learning algorithms.

After completing the initial survey, participants were
given a user manual of CASTR and asked to create an as-
signment recommender for the Plasmashell project. The
Plasmashell dataset used was identical to that used for the
analytical experiment.

In the field study, a total of 71 recommenders were cre-
ated by the participants using different heuristic configura-
tions provided by CASTR. Table 3 shows the quantitative
results for the best recommender created by each partici-
pant. The first column identifies the unique participant. The
second column presents the machine learning algorithm se-
lected by the participants for creating their best assignment
recommender. The next two columns present the minimum
and maximum threshold that the participants selected be-
fore creating their most accurate assignment recommender
using CASTR. Half of the participants chose values greater
than or equal to 10 for the minimum threshold and the other
half used values less than 10. By default, the maximum
threshold is set to the largest activity value depending on the
set project-specific heuristics. These values were left un-
changed by the participants. The next three columns show
the Top-1, Top-3 and Top-5 precision and recall values for
the best assignment recommender created by the partici-
pants. Most of the assignment recommenders were created
using the SVM machine learning algorithm. In the case of
Top-5, two scenarios have no values as the recommender
suggested less than 5 developers because of threshold value
settings.

As a part of the recommender evaluation, CASTR pro-
vides information about how long the tool takes to create
a recommender. For most users, the average time to cre-
ate a recommender using any of the algorithms was less

6A possible reason for this is that most of the participants were part of
a large software development project team where their responsibilities are
limited to within specific modules or feature development.

than 30 seconds. In general, the results show that assign-
ment recommenders created using the C4.5 and SVM al-
gorithms took more processing time than the assignment
recommender created using the Naı̈ve Bayes and Rules al-
gorithms. Two notable exceptions were for Users 1 and
7, whose average recommender creation times using C4.5
was between 160 and 200 seconds. A possible reason for
the large processing time is that both participants had set
the minimum threshold value as 1, meaning that CASTR
considered all of the possible developers for classification,
which led to a substantial increase in the processing time.

Although participants were provided with a video pre-
sentation of CASTR and a brief tutorial of the recommender
creation process at the beginning of the field study, partici-
pants encountered some problems related to understanding
concepts, specifically with labelling bug reports and setting
an appropriate minimum threshold value. Most of the par-
ticipants did not initially understand how to select the ap-
propriate label for bug report resolution and which machine
learning algorithm to use. Also, the meaning of the preci-
sion and recall metrics was not initially well understood by
participants. However, once their meaning was understood,
participants felt they made more intelligent choices.

The field study results show that 60% of the participants
found CASTR easy to use whereas the remaining partici-
pants found CASTR moderately or slightly easy to use. We
received positive responses about recommending CASTR
for creating a recommender for bug report assignment with
50% of the participants responding “very likely” or “ex-
tremely likely”, and the remaining participants responding
“moderately likely”. When asked whether they believed
that the assignment recommenders created using CASTR
would reduce the time to triage bug reports, all participants
responded either “extremely likely” (2), “very likely” (5),
or ”moderately likely” (3).

Based on observations while analyzing the field study re-
sult, participants were found to employ two strategies for as-

3

273

Identifier Algorithm Trials to
Best

Threshold Top 1 (%) Top 3 (%) Top 5 (%)
Min Max Precision Recall Precision Recall Precision Recall

User1 SVM 2 5 108 92 9 83 25 72 34
User2 SVM 1 10 130 96 11 83 25 77 38
User3 SVM 1 26 112 94 11 85 30 - -
User4 Naı̈ve Bayes 5 49 73 87 9 78 21 - -
User5 SVM 1 10 130 96 11 83 25 77 38
User6 SVM 2 1 141 74 17 58 33 56 49
User7 SVM 4 1 61 91 7 85 21 74 29
User8 Naı̈ve Bayes 1 1 117 50 5 37 10 33 14
User9 SVM 1 10 115 94 10 82 24 76 38

User10 SVM 7 1 102 87 14 65 27 60 42

Table 3. Best assignment recommenders created by participants.

signment recommender creation using CASTR. Some par-
ticipants were found to be very experimental in their ap-
proach, making many changes before creating a new recom-
mender. Other users were more methodical, making small
changes and testing the results. Most of the time, partici-
pants changed the heuristic configurations and not the min-
imum threshold. Out of 71 recommenders, 42 were created
with the minimum threshold value as 1, 27 recommenders
were created with a threshold more than or equal to 10 and
the remaining 2 recommenders were created with thresholds
of 3 and 5. The majority of recommenders were created us-
ing the SVM machine learning algorithm (32), with Naı̈ve
Bayes being the second most used algorithm (19) and the
C4.5 and Rules algorithm each used 10 times.

4. Conclusions

This paper presented the results of our evaluation of
CASTR, a tool to assist software development projects with
the creation of bug report assignment recommenders. Our
analytical evaluation showed that CASTR can create rec-
ommenders with good accuracy, answering RQ1.

Our field study demonstrated that users were able to cre-
ate accurate bug report assignment recommenders in less
than 10 trials. This indicates that they were able to make
good use of the information provided by CASTR, answer-
ing RQ2. Also, users found the tool was generally easy to
use.

Although the results we obtained have shown that a
CASTR assists the project members with the creation of as-
signment recommenders based on feedback and the results
of the user study, several future improvements were identi-
fied. These include extending CASTR to collaborate with
the other issue tracking systems, having the tool use infor-
mation from duplicate bug reports, supporting the creation
of other types of triage recommenders, and a field study by
dataset project members.

References

[1] J. Anvik, M. Brooks, H. Burton, and J. Canada. Assisting
software projects with bug report assignment recommender
creation. In Proceedings of the 26th International Conference
on Software Engineering and Knowledge Engineering, pages
470–473, 2014.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 361–370, New York,
NY, USA, 2006. ACM.

[3] J. Anvik and G. C. Murphy. Reducing the effort of bug re-
port triage: Recommenders for development-oriented deci-
sions. ACM Trans. on SE and Methodology, 20, 2011.

[4] P. Bhattacharya and I. Neamtiu. Fine-grained incremen-
tal learning and multi-feature tossing graphs to improve bug
triaging. In Proceedings of the 2010 IEEE International Con-
ference on Software Maintenance, ICSM ’10, pages 1–10,
Washington, DC, USA, 2010. IEEE Computer Society.

[5] D. Devaiya. Castr: A web-based tool for creating bug re-
port assignment recommenders. Master’s thesis, University
of Lethbridge, Lethbridge, Alberta, CANADA, 2019.

[6] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage
with bug tossing graphs. In Proceedings of the the 7th Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE ’09, pages 111–120, New
York, NY, USA, 2009. ACM.

[7] S. Kim and E. J. Whitehead, Jr. How long did it take to fix
bugs? In Proceedings of the 2006 International Workshop
on Mining Software Repositories, MSR ’06, pages 173–174,
New York, NY, USA, 2006. ACM.

[8] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani.
Why so complicated? simple term filtering and weighting
for location-based bug report assignment recommendation. In
Proceedings of the 10th Working Conference on Mining Soft-
ware Repositories, MSR ’13, pages 2–11, Piscataway, NJ,
USA, 2013. IEEE Press.

4

274

* Corresponding Author.

DOI reference number: 10.18293/SEKE2021-043

A family of experiments for evaluating the usability
of a collaborative modelling chatbot

Ranci Ren
Dep. Ing. Informática

Univ. Autónoma de Madrid
Madrid, Spain

ranci.ren@estudiante.uam.es

John W. Castro*
Dep. Ing. Informática y Ciencias de la Computación

Universidad de Atacama
Copiapó, Chile

john.castro@uda.cl

Silvia T. Acuña
Dep. Ing. Informática

Univ. Autónoma de Madrid
Madrid, Spain

silvia.acunna@uam.es

Abstract—Recent natural language processing developments
have facilitated the adoption of chatbots in typically
collaborative software engineering tasks. Families of
experiments can overcome limitations in terms of the sample size
of individual experiments. To experimentally evaluate the
usability of a chatbot for collaborative modelling (i.e., SOCIO)
and tackle some of the typical shortcomings of individual
experiments, we conducted a family of three experiments to
evaluate the usability of SOCIO against the Creately online
collaborative tool. Results show that the participants were more
satisfied with the chatbot than with the online collaborative tool
and that they also created class diagrams faster using the
chatbot. We conclude that chatbots may be helpful for creating
class diagrams.

Keywords—Chatbots, Family of Experiments, Usability,
Modelling

I. INTRODUCTION
Modelling is a fundamental part of the software

development process, and it is often a collaborative activity
[1]. A plethora of cloud-based platforms have recently
emerged for synchronous mechanisms (e.g., Lucidchart,
Gliffy and Creately). The SOCIO chatbot, a collaborative
modelling tool, was developed to provide an alternative
method for building models or meta-models using Twitter or
Telegram (nick @ModellingBot) [2]. Along with the SOCIO
chatbot, users benefit from social network collaboration and
ubiquity to perform the lightweight modelling task [2].

Experiments can assess the effectiveness of software
engineering (SE) treatments (e.g., tools) and check whether or
not the hypotheses about the effectiveness of such treatments
hold. Unfortunately, isolated experimental results may be
unreliable due to small sample sizes [3], while families of
experiments increase the reliability of joint conclusions and
internal validity and rule out the detrimental effects of
publication bias on conclusions [4][5]. It is critical to assess
chatbot usability because they are increasingly being used
across many domains [6][7], and poor interactions would have
an impact on user willingness to use the service [8]. To
increase the reliability and generalizability of individual
experimental results, we used a family of experiments to
assess the usability of the SOCIO chatbot.

In our family of three experiments, we compared the
usability of the chatbot SOCIO with Creately
(https://creately.com/app). Creately is a real-time
collaborative tool built on Adobe’s Flex/Flash technologies.
We chose Creately as the control tool since no previous studies
had assessed Creately usability, even though it is the most used
online collaborative modelling tool [9], and it has similar
functionality to SOCIO. Along the way, we made several

findings with respect to efficiency, effectiveness and
satisfaction issues in response to our research question:

RQ: Compared to Creately, does the use of SOCIO
positively affect user efficiency, effectiveness, and satisfaction
with respect to class diagram construction in a family of
experiments?

Our findings contribute: (1) empirical evidence that the
SOCIO chatbot improves usability and (2) direct suggestions
from users, as a starting point for understanding the impact of
three human-computer interaction (HCI) usability
characteristics (effectiveness, efficiency and satisfaction) that
affect collaborative modelling tool and chatbot design.

Paper organization. In Sect. 2, we present the related
work in usability experiments for chatbots. In Sect 3, we
describe the design of the family of experiments, show the data
analysis and results of this family of experiments. The paper
finishes with the threats to validity section (Sect. 5) and
discussion and conclusions (Sect. 6).

II. RELATED WORK
In [10], we reported a wider systematic mapping study

(SMS) to identify the state of the art with respect to chatbot
usability and applied HCI techniques in order to analyse how
to evaluate chatbot usability. We concluded that chatbot
usability is an incipient field of research, where the published
studies are mainly surveys, usability tests, and rather informal
experimental studies. Hence, it is necessary to perform more
formal experiments to measure user experience and exploit
these results to provide usability-aware design guidelines. We
then updated the SMS, focusing on papers published from
November 2018 to June 2020 applying the same procedure
and search string as in [10]. In particular, we reviewed chatbot
usability evaluation experiments to discover the recent trends
and methodologies in the experimental software engineering
field. Based on Ren et al.’s selection criteria [10], we also
included papers describing controlled chatbot usability
experiments and we excluded papers reporting only an
evaluation or a quasi-experiment related to chatbot usability.

Finally, we retrieved ten primary studies ([11]-[20])
reporting experiments on the usability of chatbots which we
used in this study. Only one study, designed as a within-
subjects mixed-method experiment with different participant
backgrounds, carried out replications of experiments [16].
Satisfaction continues to be the most popular usability
characteristic, since it was evaluated more often. Task
completion time and task completion are the efficiency and
effectiveness characteristics attracting most interest,
respectively. Within the primary studies, most chatbots are
used as personal assistants [12][16][17][18][20].

275

Nevertheless, none of the chatbots were applied as modelling
tools like SOCIO.

So far there have been three studies of the usability of
SOCIO: the baseline experiment of this paper [11], and two
separate evaluations [2][21]. All of these studies used
questionnaires, and all participants had a SE background. Two
small-scale evaluation experiments for SOCIO (with 19 and 8
participants) were reported in [2][21]. They measured SOCIO
chatbot applicability for building an e-commerce class
diagram in 15 minutes [2] and a consensus mechanism for
choosing different modelling alternatives, where subjects had
to choose the best of three options for two projects [21].
However, these studies focused on evaluating SOCIO
separately using simple tasks. An evaluation experiment with
a larger number of subjects (54 participants) comparing the
SOCIO chatbot with the web-based application Creately was
reported in [11]. Even though the subjects had identical
backgrounds, session and task were confounded, highlighting
the potentially detrimental effects of combining experimental
results.

 With the aim of moving beyond the limitations of the
above studies, we build a family of experiments - which is
defined as a group of at least three experiments with the same
goal - by means of replication. Families of experiments allow
surpassing the limitations in terms of sample size of individual
experiments, and also, evaluating the effects of the treatments
under different settings [22]. Families provide certain
advantages for evaluating the effectiveness of SE treatments
[4][5]: (i) because access to the raw data is granted in families,
researchers can apply consistent pre-processing and analysis
techniques to analyse the experiments, and, in turn, increase
the reliability of joint conclusions; (ii) researchers conducting
families may opt to reduce the amount of changes made across
the experiments with the aim of increasing the internal validity
of joint conclusions; and (iii) because families do not rely on
already published results, joint conclusions are not affected by
the detrimental effects of publication bias. Due to the
advantages of families of experiments, we followed this
approach to conduct our research.

III. FAMILY DESIGN
Since our family contains a SE baseline experiment and

two replications, we designed the experiment according to the
guidelines proposed by Santos et al. [22].

A. Objectives, Hypotheses and Variables
The objective of our family of experiments was to evaluate

the usability, in terms of efficiency, effectiveness, and
satisfaction, of the SOCIO chatbot through comparison in
controlled experiments with the Creately web tool. The null
hypotheses governing this research question is: H.x.0 There is
no significant difference in EFFICIENCY | EFFECTIVENESS
| SATISFACTION with respect to class diagram construction
using SOCIO or Creately. This hypothesis is broken down into
three specific null hypotheses, one for each usability
characteristic (where x represents 1. Efficiency, 2.
Effectiveness and 3. Satisfaction).

The main independent variable across all experiments is
the modelling tool. The treatments are the SOCIO chatbot and
the Creately web application. The response variable within the
family is usability. Based on definitions of usability in
ISO/IEC 25010:2011 [23], ISO 9241-11:2018 [24] and
ISO/IEC/IEEE 29148:2018 [25], and Hornbæk’s guide [26],

efficiency, effectiveness and satisfaction are commonly
measured attributes for evaluating product usability. In view
of this, we measure usability as efficiency, effectiveness and
satisfaction.

We measured efficiency in terms of speed and fluency.
Speed corresponds to the time taken to complete the tasks.
Fluency corresponds to the number of discussion messages
exchanged between the teammates during task development
via the Telegram group. We measured effectiveness as
completeness, based on the perceived success of each class
diagram compared with the ideal class diagram that we built
to measure the solutions produced by all participants [11][26].
In particular, the speed, fluency, and completeness metrics
refer to social complexity and sociability and are typically
evaluated when measuring macro-level usability (tasks
requiring hours of collaboration) [23][24][26]. To assess and
quantify satisfaction, we modified the System Usability Scale
(SUS) questionnaire [21][27] to suit our experiments. Ease-of-
use and learnability are two measured sub characteristics
included in SUS questions [26]. There are ten SUS questions
–each question is scored on a five-point Likert scale– and four
open-ended questions. Finally, we adopted Brooke’s equation
[27] to derive the numerical value of each participant’s
satisfaction score. The median of the scores given by all three
members of each team –to each question– is selected as the
team score.

B. Design of the Experiments
All three experiments in our family have an identical

experimental design. The study employed a two-sequence and
two-period within-subject crossover design (see Table I). We
chose a crossover design to avoid the influence of the period
on the treatment and assure that there was no learning effect
between the two periods [28].

TABLE I. EXPERIMENTAL DESIGN

Group Period 1 (Task 1) Period 2 (Task 2)
Group 1 (SC-CR) SOCIO Creately

Group 2 (CR-SC) Creately SOCIO

The participants were grouped into three-member teams,
where each team was considered as a subject. We put the full
participant name list in a random team generator
(www.randomlists.com/team-generator) to generate teams.
All teams were assigned to either of two groups (Group 1 or
Group 2), where each group applied the treatments in a
different order. Participants did not receive any training and
signed an informed consent before the experiment. After a 10-
minute tutorial on the tool that they were to use in each period,
they were required to perform the task in 30 minutes. Group 1
implemented Task 1 using SOCIO in the first period followed
by Task 2 with Creately in the second period (i.e., SC-CR
sequence).

On the other hand, Group 2 implemented Task 1 with
Creately first, followed by Task 2 with SOCIO (i.e., CR-SC
sequence). Task 1 was to develop a class diagram representing
a store, including the management of products and customers.
Task 2 consisted of designing the class diagram of a school to
support courses and students. At the end of each period, all
participants filled in a modified and validated SUS
questionnaire. We did not ask participants which tool they
preferred until the end of the second period.

276

C. Subjects
Participants were recruited from two universities in two

countries: (1) the Universidad de las Fuerzas Armadas ESPE
Extensión Latacunga (ESPE-Latacunga) in Ecuador (UNIV-
1), and (2) the Escuela Politécnica Superior of the
Universidad Autónoma de Madrid (EPS-UAM) in Spain
(UNIV-2), all participants are undergraduate students who
were completing a degree in Computer Engineering. Each
participant only participates once. A total of three experiments
were run. 18 subjects (54 participants) of the baseline
experiment (EXP1) are from UNIV-1. 10 subjects (30
participants) of the second experiment (EXP2) are from
UNIV-2. The third experiment (EXP3) contains 11 subjects
from UNIV-2 and 5 subjects from UNIV-1 (48 participants in
total). The subjects were selected using convenience sampling:
participants were students of academic staff teaching SE-
related courses, and all participants volunteered to participate.
All participants were required to complete a pre-test
questionnaire that assessed demographic data and related
experience and knowledge.

As Fig. 1 shows, average subject experience appears to be
slightly heterogeneous, but the gaps between each experiment
appear to be small (i.e., never greater than 1). Although 37%
of participants have no experience in using Telegram, they are
regular social media users. This ensures that they can complete
the task since no complicated operations are required.
However, the inclusion of subjects with no previous
experience with chatbots does pose a threat to the validity of
the results. Despite the fact that none of the participants were
native English speakers, they all claimed to have at least an
intermediate level of English. As there are no significant
differences between the three experiments in terms of age,
gender, knowledge background, social media usage habits,
smartphone or tablet ownership, we consider that the
participants across the countries are comparable.

Fig. 1. Profile plot for subject experience

IV. RESULTS AND DATA AGGREGATION

A. Analysis Approach
 In response to the research question, we follow Santos et
al.’s guidelines [22] to analyse the family of experiments. For
each metric, we provide: (i) a profile plot showing the mean
effect of the treatments across the experiments (ii) a violin-plot
and the descriptive statistics divided by treatment and by
experiment; and (iii) the joint results of all the experiments
together applying a one-stage individual participant data (IPD)
meta-analysis, reporting the contrast between treatments as an
extra parameter in the linear mixed model (LMM) model to
account for the difference between results across experiments
[22][29]. The profile-plots give a bird’s eye view of the data
at family level and check for the existence of patterns across

the results [22]. The descriptive statistics and violin-plots ease
the understanding of the data in each experiment. We followed
an IPD meta-analysis approach rather than a meta-analysis of
effect sizes, because we had access to the raw data of the
experiments [29].

As all the experiments have an identical (i.e., a cross-over)
design, we analyse them following Vegas et al.’s advice [28].
In particular, we analyse the experiments using linear mixed
models (LMMs) [28]. We used LMMs rather than their non-
parametric counterparts because: (i) commonly used non-
parametric models are not useful for studying the effect of
multiple factors at the same time (e.g., period, treatment, and
sequence on the outcomes); (ii) the overall sample size (i.e.,
44 teams, each with two data-points —one per session, a total
of 88 data points) may suffice to make the central limit
theorem hold [30], and thus, interpret the results despite data
non-normality.

 In particular, we fit a three-factor LMM [31] for each
metric: period (i.e., 1 or 2), treatment (i.e., SOCIO, or
Creately), and sequence (i.e., SOCIO-Creately or Creately-
SOCIO). We add an extra parameter to the LMM to account
for the difference between results across the experiments (i.e.,
Experiment), which is a common feature of stratified
individual participant data (IPD) models [22]. We interpret the
statistical significance of the results with the corresponding
ANOVA table of LMMs.

B. Response Variables

1) Efficiency
As Fig. 2 and 3 and the descriptive statistics (Table II)

show, the aggregate time appears to be less for SOCIO than
for Creately in two out of three of the experiments. The
difference in performance between the treatments is
statistically significant in the ANOVA table (Table IV).
According to the pairwise contrast between the treatments in
Table V, the participants took an average of 1.14 minutes
longer with Creately than with SOCIO.

Fig. 2. Profile plot for time spent on tasks

Fig. 3. Violin-plot for time spent on tasks

277

TABLE II. DESCRIPTIVE STATISTICS FOR EFFICIENCY. LEGEND:
TR=TREATMENT; CR=CREATELY; SC=SOCIO;FLUEN=FLUENCY

Metric Exp TR Team Mean Std. Dev. Median

SPEED

EXP1 CR 18.00 28.83 1.76 30
EXP1 SC 18.00 27.06 2.62 27
EXP2 CR 10.00 27.10 2.69 28
EXP2 SC 10.00 25.30 2.63 25
EXP3 CR 16.00 29.19 1.42 30
EXP3 SC 16.00 29.19 1.56 30

FLUEN

EXP1 CR 18.00 19.56 16.30 13.50
EXP1 SC 18.00 9.61 11.51 5.00
EXP2 CR 10.00 75.40 40.84 68.00
EXP2 SC 10.00 57.00 19.98 51.00
EXP3 CR 16.00 63.00 45.85 70.00
EXP3 SC 16.00 65.81 46.00 66.00

As we can see in the plots and the descriptive statistics
(Figs. 4 and 5 and Table II), the participants tend to send more
messages with Creately than with SOCIO. Besides, as Table
IV highlights, the difference in the number of messages is
statistically significant. In particular, the participants send
up to 7.23 more messages with Creately than with SOCIO,
as shown in Table V.

Considering different textual communication styles, we
treat a complete single sentence or an emoji as a message.
Although message exchange was encouraged, we considered
a low number of messages is an indicator that fewer
communication efforts were required, since users were
immediately able to observe the changes in the class diagram.

Fig. 4. Profile plot for discussion messages

Fig. 5. Violin-plot for discussion messages

2) Effectiveness
As we can see in Figs. 6 and 7 and Table III, completeness

appears to be similar for both tools. Besides, as shown in Table
IV and Table V, the observed difference in completeness (-
0.003) was negligible and not statistically significant. In sum,
Creately and SOCIO appear to perform similarly in terms
of completeness.

3) Satisfaction
As Figs. 8 and 9 and Table III show, the participants appear

to be more satisfied with SOCIO than with Creately in EXP1

and EXP2. The opposite applies to EXP3, albeit to a lesser
extent. As Table IV and Table V show, the difference in
satisfaction scores appears to be significant at the 0.1 level. In
other words, participants appear to have higher satisfaction
scores with SOCIO.

Fig. 6. Profile-plot for completeness

Fig. 7. Violin-plot for completeness

TABLE III. DESCRIPTIVE STATISTICS FOR COMPLETENESS AND
SATISFACTION. LEGEND: COMP=COMPLETENESS; SATIS=

SATISFACTION

Metric Exp TR Team Mean Std. Dev. Median

COMP

EXP1 CR 18.00 0.99 0.02 1.00
EXP1 SC 18.00 0.99 0.01 1.00
EXP2 CR 10.00 0.99 0.02 1.00
EXP2 SC 10.00 0.98 0.04 1.00
EXP3 CR 16.00 0.86 0.15 0.92
EXP3 SC 16.00 0.88 0.11 0.89

SATIS

EXP1 CR 18.00 64.72 11.50 66.25
EXP1 SC 18.00 71.32 11.18 70.00
EXP2 CR 10.00 43.50 21.86 43.75
EXP2 SC 10.00 66.00 16.12 72.50
EXP3 CR 16.00 60.16 17.78 61.25
EXP3 SC 16.00 55.62 15.51 55.00

TABLE IV. ANOVA TABLE OF TREATMENT

Metric numDF denDF F-value p-value
SPEED 1 42 6.187 0.0169
 FLUEN 1 42 4.1183 0.0488
COMP 1 42 0.068 0.7955
SATIS 1 42 3.4203 0.0714

TABLE V. CONTRAST BETWEEN TREATMENTS

Metric Estimate SE df t-ratio p-value
SPEED 1.14 0.457 42 2.487 0.0169
FLUEN 7.23 3.56 42 2.029 0.0488
COMP -0.0033 0.0126 42 -0.261 0.7955
SATIS -6.16 3.33 42 -1.849 0.0714

V. THREATS TO VALIDITY
Replications are subject to conclusion validity. To mitigate

any possible influence, we resorted to parametric statistical
tests (i.e., LMM [31]) to analyse the data and ensured result
robustness by meta-analysing the data with the one-stage IPD
model and an extra factor to account for the difference in

278

results [22][32]. We also evaluated the quality of the
constructed class diagrams with respect to different aspects so
as to give a better understanding for the time metric. In order
to ensure the transparency of the results, we provide the
original data, statistical analysis carried out and collaboration
examples with chatbot SOCIO and Creately in the
supplementary materials at https://bit.ly/34v7OTs.

Fig. 8. Profile-plot for satisfaction

Fig. 9. Violin-plot for satisfaction

Unacknowledged variables confounded with the
investigated variable may pose threats to internal validity.
Since subject background (e.g., different universities) is
another potential independent variable, this threat may
compromise the validity of the results. In EXP3, we tried to
mitigate this threat by conducting the experiment in the same
universities as EXP1 and EXP2.

In terms of construct validity, we acknowledge that self-
assessment questions may not properly reflect the knowledge
background of the participants because they may not be able
to honestly assess either their knowledge level or their
characteristics—even if they used chatbot/social network as
frequently as each other. This fact add bias on the response
variable of satisfaction.

A probable external threat is the generalization of results.
As usual in SE experiments [33], we had to rely on toy tasks
to evaluate and compare the performance of two tools. Having
said this, the subjects that make up this family of experiments
are computer science students with sufficient knowledge of the
field. In view of this, our findings are limited to academia and
are not generalizable to industry.

VI. DISCUSSION AND CONCLUSIONS
To the best of our knowledge, there is no other chatbot

offering a similar service to SOCIO. Although SOCIO chatbot
usability was evaluated in two other small-scale evaluation
results [2][21] previously, the number of subjects was smaller
than provided by this family of experiments and it was not
compared with other tools. Our family of experiments is the
first and only research to evaluate the usability of the SOCIO
chatbot comprehensively with regard to effectiveness,

efficiency and satisfaction. Particularly, this family
consolidates the previous result of the baseline experiment
[11] thanks to a bigger sample size and more powerful
statistical results. The information aggregated at family level
is much more accurate than for individual experiments, which,
in many cases, are unable to observe the existing differences.
For instance, the treatment is not statistically significant for all
variables in EXP3, which is not the case in the family of
experiments (see supplementary material).

We followed a mixed method to provide joint results and
identify variables impacting results. With our family of
experiments, we observed that subjects take longer and send a
larger number of messages to build class diagrams with
Creately than with SOCIO. In other words, SOCIO
outperforms Creately in terms of efficiency. Regarding
effectiveness, results are similar for both tools. For
satisfaction, we can conclude that participants were more
satisfied with SOCIO than with Creately.

In addition, with the aim of identifying concrete opinions
related to the satisfaction from subjects, we extended SUS
questionnaire (see supplementary material) with four open-
ended questions (concerning positive and negative aspects of
the two tools, suggestions and user preferences) in order to
gather definite satisfaction-related opinions from subjects. By
analysing responses to open-ended questions, we find some
insight as follows. Many participants remarked that they found
both tools to be satisfactory in terms of responsiveness, ease
of use, and collaboration capabilities. Creately was praised for
its friendly interface. SOCIO was more fun to use. Quite a few
participants complained about the SOCIO chatbot help web
page, whereas the biggest problems with Creately were related
to real-time collaboration, which produced some errors when
loading on some of the user’s computers.

This research contributes to the empirical analyses of the
evaluation of chatbot usability, in particular, the chatbot
SOCIO. There is the existence of statistically significant
differences with medium effect size. Additionally, our
experiments provide further information for developers
regarding the usability evaluation of SOCIO chatbot and
Creately. We conclude that chatbots may aid in the creation of
class diagrams. In particular, their speed may be valuable,
especially in view of the satisfaction shown by the participants
with their use.

Future studies will focus on investigating this updated
versions of the SOCIO chatbot. Accordingly, it is possible to
clarify the required evidence-based SOCIO chatbot
improvements. Currently, work is underway to develop four
different updated versions of the SOCIO chatbot: (1) Provide
different help when the SOCIO chatbot does not understand
the user well according to a different situation. (2) Add
functionalities requested by users: users will be able to delete
any elements that they like by clicking the buttons
underneath, and users will be able to choose how many steps
to cancel or redo at a time instead of deleting or redoing one
by one. (3) Provide option to select the appearance of the class
diagrams. (4) Update and supplement the help page for all
three versions.

ACKOWLEDGEMENTS
This research was funded by the Spanish Ministry of

Science, Innovation and Universities research grant
PGC2018-097265-B-I00 and MASSIVE project (RTI2018-

279

095255-B-I00) and also received support from the Madrid
Region R&D programme (FORTE project, P2018/TCS-
4314).

REFERENCES
[1] M. Franzago, D. D. Ruscio, I. Malavolta, and H. Muccini,

“Collaborative model-driven software engineering: A classification
framework and a research map”, IEEE Trans. Softw. Eng., vol. 44, no.
12, pp. 1146-1175, 2018.

[2] S. Pérez-Soler, E. Guerra, J. De Lara, and F. Jurado, “The rise of the
(modelling) bots: Towards assisted modelling via social networks”,
Proc. 32nd IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE’17).
Urbana, IL, USA, pp. 723-728, 2017.

[3] T. Dybå, V. B. Kampenes, and D. I. K. Sjøberg, “A systematic review
of statistical power in software engineering experiments”, Infor. and
Softw. Techn., vol. 48, no. 8, pp. 745-755, 2006.

[4] T. P. A. Debray, K. G. M. Moons, G. van Valkenhoef, O. Efthimiou,
N. Hummel, R. H. H. Groenwold, J. B. Reitsma, and GetReal Methods
Review Group, “Get real in individual participant data (IPD) meta-
analysis: A review of the methodology”, Res. Synth. Methods, vo. 6,
no. 4, pp. 293-309, 2015.

[5] G. H. Lyman, and N. M. Kuderer, “The strengths and limitations of
meta-analyses based on aggregate data”, BMC Medical Res. Method.,
vol. 5, no. 1, pp. 1-7, 2005.

[6] G. Daniel, J. Cabot, L. Deruelle and M. Derras, “Xatkit: A Multimodal
Low-Code Chatbot Development Framework, ” IEEE Access, vol. 8,
pp. 15332-15346, 2020.

[7] L. Erlenhov, F. Gomes de Oliveira Neto, R. Scandariato and P. Leitner,
“Current and Future Bots in Software Development, ” Proc. 2019
IEEE/ACM 1st Intern. Workshop on Bots in Software Engineering
(BotSE'19). Montreal, QC, Canada, pp. 7-11, 2019.

[8] J. Guichard, E. Ruane, R. Smith, D. Bean, and A. Ventresque,
“Assessing the robustness of conversational agents using paraphrases”,
Proc. 2019 IEEE Int. Conf. Artif. Intell. Testing (AITest’19). Newark,
CA, USA, pp. 55-62, 2019.

[9] F. Lanubile, C. Ebert, R. Prikladnicki and A. Vizcaíno, “Collaboration
tools for global software engineering”, IEEE Software, vol. 27, no. 2,
pp. 52-55, 2010.

[10] R. Ren, J. W. Castro, S. T. Acuña, and J. de Lara, “Evaluation
techniques for chatbot usability: A systematic mapping study”, Int. J.
of Softw. Eng. and Knowl. Eng., vol. 29, no. 11n12, pp. 1673-1702,
2019.

[11] R. Ren, J. W. Castro, A. Santos, S. Pérez-Soler, S. T. Acuña, and J. de
Lara, “Collaborative modelling: Chatbots or on-line tools? An
experimental study”, Proc. Eval. Assessm. Softw. Eng. (EASE’20).
Trondheim, Norway, pp. 1-9, 2020.

[12] S. Lee, H. Ryu, B. Park, and M. H. Yun, “Using physiological
recordings for studying user experience: Case of conversational agent-
equipped TV”, Int. J. Hum. Comput. Interact., vol. 36, no. 9, pp. 815-
827, 2020.

[13] F. Narducci, P. Basile, M. de Gemmis, P. Lops, and G. Semeraro, “An
investigation on the user interaction modes of conversational
recommender systems for the music domain”, User Modeling and User-
Adapted Interaction, vol. 30, pp. 251-284, 2020.

[14] A. Ponathil, F. Ozkan, B. Welch, J. Bertrand, and K. Chalil Madathil,
“Family health history collected by virtual conversational agents: An
empirical study to investigate the efficacy of this approach”, J. Genet.
Couns., pp. 1-12, 2020.

[15] S. Katayama, A. Mathur, M. Van Den Broeck, T. Okoshi, J. Nakazawa,
and F. Kawsar, “Situation-aware emotion regulation of conversational

agents with kinetic earables”, Proc. 8th Int. Conf. Affect. Comput.
Intell. Interact. (ACII’19). Cambridge, UK, pp. 1-7, 2019.

[16] E. W. Huff-Jr., N. A. Mack, R. Cummings, K. Womack, K. Gosha, and
J. E. Gilbert, “Evaluating the usability of pervasive conversational user
interfaces for virtual mentoring”, In: Zaphiris P., Ioannou A. (eds).
Learning and Collaboration Technologies. Ubiquitous and Virtual
Environments for Learning and Collaboration (HCII’19), pp. 80-98.
Lect. Notes Comp. Sci., vol 11591, Springer, Cham, 2019.

[17] J. Guo, D. Tao, and C. Yang, “The effects of continuous conversation
and task complexity on usability of an AI-based conversational agent
in smart home environments”, In: Long S., Dhillon B. (eds). Man–
Machine–Environment System Engineering (MMESE’19), pp. 695-
703. Lect. Notes Elect. Eng., vol 576. Springer, Singapore, 2020.

[18] R. Håvik, J. D. Wake, E. Flobak, A. Lundervold, and F. Guribye, “A
conversational interface for self-screening for ADHD in adults”, In:
Bodrunova S. et al. (eds). Internet Science (INSCI’18), pp. 133-144.
Lect. Notes Comp. Sci., vol 11551. Springer, Cham, 2019.

[19] E. Elsholz, J. Chamberlain, and U. Kruschwitz, “Exploring language
style in chatbots to increase perceived product value and user
engagement”, Proc. 2019 Confe. Human Inform. Interaction and
Retrieval (CHIIR’19). Glasgow, Scotland, UK, pp. 301-305, 2019.

[20] M. Jain, P. Kumar, I. Bhansali, Q. V. Liao, K. N. Truong, and S. N.
Patel, “FarmChat: A conversational agent to answer farmer queries”,
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
(IMWUT’18), vol. 2, no. 4, pp. 1-24, 2018.

[21] S. Pérez-Soler, E. Guerra, and J. De Lara, “Collaborative modeling and
group decision making using chatbots in social networks”, IEEE
Softw., vol. 35, no. 6, pp. 48-54, 2018.

[22] A. Santos, S. Vegas, M. Oivo, and N. Juristo, “A procedure and
guidelines for analyzing groups of software engineering replications”,
IEEE Trans. Softw. Eng., pp. 1-22, 2019.

[23] ISO/IEC 25010, “ISO/IEC 25010:2011 - Systems and Software
Engineering — Systems and Software Quality Requirements and
Evaluation (SQuaRE) — System and Software Quality Models”, ISO,
2011.

[24] ISO 9241-11. “Ergonomics of Human-System Interaction — Part 11:
Usability: Definitions and Concepts.” 2018.

[25] ISO/IEC/IEEE 29148:2018. “Systems and Software Engineering —
Life Cycle Processes — Requirements Engineering.” 2018.

[26] K. Hornbæk, “Current practice in measuring usability: Challenges to
usability studies and research”, Int. Journal of Human-Computer
Studies, vol. 64, no. 2, pp.79-102. 2006.

[27] J. Brooke, “SUS-A quick and dirty usability scale”. In: P. W. Jordan,
B. Thomas, B. A. Weerdmeester, & A. L. McClelland (Eds.). Usability
Evaluation in Industry, Chapter 21, pp. 189-194, 1996.

[28] S. Vegas, C. Apa, and N. Juristo, “Crossover Designs in Software
Engineering Experiments: Benefits and Perils,” IEEE Trans. Softw.
Eng., vol. 42, no. 2, pp. 120–135, 2016.

[29] A. Whitehead, Meta-analysis of controlled clinical trials. John Wiley &
Sons, 2002.

[30] J. de Winter, “Using the Student’s t-test with extremely small sample
sizes”, Practical Assessment, Research, and Evaluation, vol. 18, pp. 1-
13, 2013.

[31] B. T. West, K. B. Welch, and A. T. Galecki, Linear mixed models: A
practical guide using statistical software. CRC Press, 2014.

[32] R. D. Riley, P. C. Lambert, and G. Abo-Zaid, “Meta-analysis of
individual participant data: Rationale, conduct, and reporting”, BMJ
(Online first), pp. 1-7, 2010.

[33] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén, Experimentation in software engineering. Springer
Publishing Company, Inc., 2012.

280

Evaluation of Chatbots Usability Experimentation
Ranci Ren

Dep. Ing. Informática
Univ. Autónoma de Madrid

Madrid, Spain
ranci.ren@estudiante.uam.es

John W. Castro*
Dep. Ing. Informática y Ciencias de la Computación

Universidad de Atacama
Copiapó, Chile

john.castro@uda.cl

Silvia T. Acuña
Dep. Ing. Informática

Univ. Autónoma de Madrid
Madrid, Spain

silvia.acunna@uam.es

Abstract—Context: The interest in developing chatbots is on
the rise as the usability evaluation is an essential step in the
chatbot development process; the number of experimental
studies of chatbot usability has grown as well. Objective:
Aggregating and concluding the features and metrics used to
evaluate the usability of chatbots in experiments, to identify the
state of the art of chatbots usability experimentation. Method: A
systematic mapping study has been conducted, searching in five
scientific databases. Results: Of 363 papers, 14 papers with
experiments were selected as the primary studies. The published
works in this area were initiated in 2018. Control tools are
applied commonly in experiments. Various advantages and
shortages of chatbot usability experiments were revealed, for
example, most of the experiments do not provide raw data, and
only one of the identified works replicated the experiment.
Conclusions: An increased interest in usability experimentation
of chatbots is observed in recent years. The chatbot usability
experiment should be more replicable to improve the reliability
of experimental results.

Keywords—Usability, Chatbots, Family of Experiments

I. INTRODUCTION
A chatbot, also known as a chatterbot, is a domain-

specific text-based software that supports human users with
specific services [1]. The remarkable advancement of natural
language processing and machine learning is causing a
seismic shift, in that sense, this created unlimited possibilities,
productive and useful experiences through chatbots who can
access and interact with digital services in many different
applications [2][3]. Compared with other communication
channels (e.g., e-mail), not all users are willing to fully trust
the chatbot due to understanding ability and response quality,
chatbot design is still far from reading users’ minds, in this
context, it is necessary for better integration between usability
evaluation and the chatbot [4]. Usability evaluation refers to
how well users can learn and use software to meet their
requirements and refers to how satisfied users are during the
process [5]. In software engineering (SE), usability has been
recognized as a crucial quality characteristic for success in the
competitive commercial world [7]. The choice of evaluation
methodology must be applied appropriately for the current
research question or issue [5]. Apparently, usability evaluation
of chatbots is not a mature field so far [4]. In general, usability
evaluation of chatbots learns and borrows experience from
experimentation in software engineering (ESE). We noticed
that the families of experiments are being run in increasing
numbers in ESE [8]. It is the unanimous opinion of the
scientific community that the veracity of the base experiment
results can only be established by replication and contrast of
results [9]. A family of experiments is a set of experimental
replications with the same goal [8]. The families of
experiments allow to obtain a greater statistical power due to
the greater number of involved subjects [10], increase the
internal validity of joint conclusions and the reliability of the

findings. Due to the strengths of families of experiments, we
pay special attention to the adoption of families of experiments
in chatbot usability evaluation. To explore the chatbot
usability experimentation, we did a preliminary investigation,
and we did not find any previous study or literature review that
could bring us a consolidated view. As described by Ren et al.
[4], we noticed that chatbots and their relevant usability
evaluation had become prevalent themes and the number of
publications started to grow from the year of 2015; however,
they did not pay attention to the usability experiment of
chatbots. For this purpose, we conducted a systematic
mapping study (SMS) on top of a baseline study [4] with the
aim of (i) explore the state-of-the-art on chatbots usability
experimentation, (ii) identify the metrics used in experiments
to measure chatbot usability in SE. The nature of our
contribution is providing a map of what has been published
since we have included all reported references in the literature
of our SMS on chatbot usability experimentation. With this
information, researchers interested in conducting experiments
and/or replications related to the usability of chatbots will
obtain a baseline of aspects that they should consider.

Paper organization. In Sec. 2, we outline the research
method of the SMS. In Sec. 3, we provide the answer to each
of the research questions. In Sec. 4, we discuss the results and
threats to validity. Finally, we outline the conclusions of our
study in Sec. 5.

II. RESEARCH METHOD
The secondary study reported in this paper has been

developed following the guidelines established by
Kitchenham and Charters [11].

 Objectives and Research Questions. The main objective of
this study was to map the usability experiments of chatbot in
aspects of publication status, and measured metrics in
experiments. This gave rise to our research questions: (RQ1)
What is the state of the art of chatbots usability
experimentation? (RQ2) How to evaluate the usability of
chatbots in experiments?

Search String Selection. We first piloted various
synonymic search strings. The rationale behind the selection
of our final search string is that it returns the most records, and
the results are more balanced between the different databases.
Our final search string was: (usability OR “usability
techniques” OR “usability practice” OR “user interaction”
OR “user experience”) AND (chatbots OR “chatbots
development” OR “conversational agents” OR chatterbot OR
“artificial conversational entity” OR “mobile chatbots”).

Databases and Search Protocol. The IEEE Xplore, ACM
Digital Library, SpringerLink, Scopus and ScienceDirect
academic databases (DBs) were used in the SMS process. The
selection criteria used to retrieve the fundamental studies are

* Corresponding Author.

DOI reference number: 10.18293/SEKE2021-053

281

summarized below. We dismissed an article whenever at least
one of the exclusion criteria was met. Inclusion criteria: ((the
abstract or title mentions an issue regarding the chatbots and
usability) OR (the abstract mentions an issue related to
usability engineering or HCI techniques) OR (the abstract
mentions an issue related to the user experience)) AND (the
paper describes the experiment of chatbot usability). Exclusion
criteria: (the paper does not present any evaluation or
experiment related to chatbot usability) OR (the paper does not
present any issue related to the chatbots and usability) OR (the
paper does not present any issue related to the chatbots and
user interaction) OR (the paper does not present any issue
related to the chatbots and user experience) OR (the paper is
written in a language other than English).

Search Process. We reviewed works about the
experiments of chatbot usability, which were published from
2014 to June 2020. Once we identified the search strings and
defined search fields, we started our search process. A total of
363 Retrieved Papers were found in the different DBs. Then
the duplicate papers were removed from the retrieved papers,
323 papers were filtered to the group of Non-Duplicate
Retrieved Papers. A peer review was carried out on these 323
papers applying the inclusion and exclusion criteria to the title
and abstract. Discrepancies were resolved through a
discussion. As a result, we obtained 86 Candidate Papers. To
determine if candidate papers have relevance regarding the
usability of chatbots and the execution of the chatbot usability
experiment, we reviewed each candidate paper again, applying
the inclusion and exclusion criteria. However, this time we
especially reviewed the full text. The results were cross-
checked by two HCI experts. Finally, 14 papers formed the
Experiment Papers used in this study. The results of selection
were assessed by two HCI experts, each disagreement has
been discussed and resolved during the meeting. The remained
14 experiment papers for the analysis and extraction of the
results are shown in Appendix A.

III. RESULTS

RQ1: What is the state of the art of chatbots usability
experimentation? The raw data were poorly reported among 14
experiments as only one experiment provided access to their
raw data in the paper. As shown in Fig. 1, a synthetic view of
the identified primary studies, the results have been segmented
into two areas. The left-side consists of two scatter (XY) plots
(top and bottom) with bubbles at the junctions of the year-type
of publication categories (left side - top) and usability feature-
type of publication categories (left side - bottom). With regard
to the types of publications, 50% of publications are conference
papers, 28.6% are journal article, 21.4% are chapters book. The
size of each bubble was determined by the number of
experiment papers that had been classified into each category.
The right-side of Fig. 1 presents the number of primary studies
published per year. As can be seen from the upper right part of
Fig. 1, the interest in chatbots usability experimentation is
increasing and is very recent; initial works are from 2018.
Considering that the search was carried out until June 2020, the
number of identified works in our SMS for 2020 is high.
Satisfaction is the most widely measured usability feature. Note
that the number of papers in the lower part of Fig. 1 does not
match the number of papers in the upper part. The reason is that
the same paper can discuss several usability features. In aspect
of the types of chatbots, most chatbots are deployed as the
personal assistant [PS2][PS4][PS6][PS10][PS11][PS13],

especially in the health care domain [PS5][PS7][PS14], some
act as e-commerce tools [PS9][PS12], collaborative tool [PS8]
and recommender [PS3].

Figure 1. Mapping showing the primary study distribution.

RQ2: How to evaluate the usability of chatbots in
experiments? Compared with the work of [4], we notice that
more varieties of questionnaires were opted for to investigate
the usability of the chatbots in recent years (see Table I), except
SUS and ad-hoc. In [PS2], the AttrakDiff2 questionnaire was
used to measure how attractive a product is based on its hedonic
and pragmatic qualities. The Likert scale was the most used
metric among those questionnaires from the past until now
[PS3][PS6][PS9][PS12]. Over the usability evaluation process,
pre-test and post-test questionnaires were combined for use in
[PS5][PS10] to deepen the result of evaluation.

TABLE I. USABILITY TECHNIQUES

Usability Techniques Experiments

Questionnaire
[PS1][PS2][PS3][PS4][PS6][PS7][PS8][PS9]
[PS11][PS12][PS13][PS14]

Interview [PS1][PS7][PS10][PS13]
Think-aloud [PS5][PS13]
Direct observation [PS5]

The Replication of Experiments. Upon the usability
experiments we reviewed, there is only one study presented by
Huff-Jr et al. [PS6] conducted a replication of an experiment
with consistent experimental design but different participant
background. They used a within-subjects mixed-method
design, and they analyzed data by analyzing qualitative
contents and a multilevel linear model. The total sample size of
replications is 35, although the authors do not report the
corresponding sample size of each replication. To the best of
our knowledge, a family of experiments should include at least
three experiments [8], while a single experiment had been
replicated in their work—that is, it forms a set of two
experiments since two experiments are able to aggregate the
data to evaluate the effect of chatbots—we classified them as a
family of experiments.

Sample Sizes. Although the sample size varies in different
usage and development phases, as the recently published
experiments have, the sample sizes of usability experiments for
chatbots are relatively small. Of the 14 experiments, 50% of
experiments contained less than 30 subjects, 28.6% contained
between 30 and 50 subjects, and 14.3% contained between 100
and 500 subjects. One experiment did not detail the sample size
[PS11].

Conference

Efficiency

2014

2017

0 1 2

2018

3 4 5

2019

2020

Effectiveness

Satisfaction

Chapter
Book

4 7

5

3 11

1 4

22

Journal

3 3

3 2

3

...

282

Types of Subjects. 35.7% of the experiments include
students, while most of the researchers did not limit academic
background and grade. There were 29% that included
experienced users or experts and company employees. Three
experiments included farmers, children, and residents,
respectively. Two experiments did not detail the types of
subjects. Only one experiment used compared group, graduates
and undergraduates [PS8].

Experimental Design and Procedure. 71.4% of
experiments were defined as a within-subject design. Since the
sample sizes of identified experiments are relatively small, the
within-subject design has better statistical power by doubling
data points. In SE, experimental design plays a role in
controlling for extraneous variables: mature experiments are
run with pre-established protocols defining the experimental
settings and the set of procedures that must be strictly adhered
to during the execution and analysis of the experiments. By
contrast, many usability experiments of chatbots are formed
without any a priori plan or experimental design definition.
Furthermore, the prior experience and technical knowledge
have an impact on the global usability of Conversational
Agents [PS13], while the pre-user experience or knowledge
related to chatbot seems didn’t be measured during some
experiments [PS1][PS11].

Statistical Techniques. Statistical techniques are
categorized from two perspectives: statistical descriptions and
statistical inference. The statistical descriptions (Table II) are
representation methods that integrate multiple datasets in a
visual way to give context to the data and to improve reader
understanding. There is an experiment that has not yet been
executed [PS11]. Among 13 experimental results of chatbots
usability, box plot and descriptive statistics were the most used
presentation formats. Statistical inference was used to analyze
11 experiment results. 7 experiments used parametric tests
[PS2][PS5][PS7][PS9][PS12][PS13][PS14], and 4
experiments used non-parametric tests [PS1][PS3][PS5][PS9].
The majority of the authors did not explain the motivation
behind adopting the technique or indicate the challenges or
advantages of adopting the technique.

TABLE II. STATISTICAL DESCRIPTIVE REPRESENTATION

Statistical Descriptive
Representation

N Experiments

Box plot 6 [PS1][PS2][PS6][PS8][PS12][PS14]
Descript. statistics table 4 [PS2][PS3][PS4][PS14]
Histogram 3 [PS3][PS5][PS10]
Line chart 2 [PS2][PS13]
Scatter plot 2 [PS2][PS7]
Textual description 2 [PS9][PS13]

IV. DISCUSSION AND VALIDITY THREATS
Although our goal is to present an analysis for chatbot

usability experimentation, we noticed that the interfaces of
most current chatbots take a form of an NL dialog: the
development of chatbots has become standardized because
there are many build platforms for different goals and usages
that have been widely used [PS1][PS6][PS10]. Of the initial
363 papers selected in well-known electronic research
databases, 14 studies were selected following a rigorous
process, from selecting studies to solve disagreements found
during the selection process. The comparison of two or more
treatments and randomization of subjects are our key points to
identify if the study described an experiment [12] when we

reviewed each paper. The usability experiment of chatbot
correlates to chatbot development; however, there is only one
experiment related to a usability experiment of chatbot in an
advanced or modified version [PS12]. To obtain reliable
experimental results, all aspects of treatment (except for the
manipulation of factors) should remain similar across all
groups, as irrelevant variables pose a threat to validity. We
noticed that many studies did not clearly state extraneous
variables control in their experiment designs. For example,
they did not discuss the possible learning effects between
different sessions [PS6][PS10]. We observed that most
chatbots were experimented based on some specificities—
including the relatively small sample size, the subjects with a
specific background, the tasks being preset, and whether it was
the users’ first encounter with a chatbot—as the expansion of
experimental results to the industrial field is fairly limited.
Besides, there is a work that did not published the experimental
results as of our search date [PS11].

The first threat to the validity of this work is the bias in the
paper selection process. Although the selection criteria and
results have been double-checked and accepted by other
authors, the publications were evaluated and classified based
on the judgment and experience of the authors, and other
researchers may have evaluated the publications differently.
The second point is related to the type of studies included in
this work. We expanded the search scope by using search
strings that identify a wider range of publications. On the one
hand, this SMS was developed using five databases as they
were considered the most complete and most used database in
SE. On the other hand, this search includes only papers written
in English. Nonetheless, relevant papers produced by
additional databases or resources or written in other languages
could have overlooked.

V. CONCLUSION AND FUTURE WORK

RQ1: What is the state of the art of chatbots usability
experimentation? From our SMS perspective, chatbots
usability experiments are being run in increasing numbers (see
Fig. 1). With regard to publication venue, half of the reviewed
papers in our SMS are published through conferences. We
notice that control tools are applied commonly in experiments,
most studies used real-life products as control tools [PS1][PS2]
[PS5][PS8]. To determine whether the chatbot was able to
provide a similar experience to the user, some developed
diverse version of chatbots with different functions or
expression [PS3][PS9][PS10].

We also observed that many experiments did not define the
research question or hypothesis follow ESE methods [12], or
the proposed research questions are related to usability but are
not limited to usability. In general, most studies investigate not
only usability factors but also the quality of the interaction or
chatbot performance [PS3][PS7][PS8][PS10], in order to
understand the chatbot usability comprehensively and also
some studies investigate the relationships between the usability
and other factors (e.g., acceptability) [PS5][PS10][PS14]. The
majority of the experiments did not provide access to raw data.
This situation prevents rigorous peer-review and does not allow
third-party researchers to reanalysis using aggregation methods
that may be more appropriate than the original one [8].

RQ2: How to evaluate the usability of chatbots in
experiments? We notice: (i) the questionnaire is the most used
usability technique; (ii) the family of experiments was barely

283

used in this field so far since only one experiment contained
replications was found; (iii) the within-subject design is the
most popular design on chatbots usability experimentation; (iv)
50% of the experiments included a small sample size (less than
30 subjects) and the most subjects are students; (v) the number
of tasks is relatively small, as most of the experiments applied
less than six tasks; and (vi) parametric tests were the most used
inference to analyze the experimental result in experiments.

We suggest that the researchers: (i) provide access to full
raw data to guarantee the replicability of the experiment and
transparency of results; (ii) consider the family of experiments
or conduct replications of the baseline experiment to
consolidate the experimental result and to increase the
statistical power; (iii) more third-party evaluations should be
considered in chatbot usability evaluation, as they do not suffer
from the bias introduced in the previous development process.
Considering that the work is limited by search date, databases
and search strings, this study could be replicated in a future
study. Based on this research results, we plan to conduct a
family of experiments to evaluate a chatbot's usability with an
advanced version to fill the gap and explore the topic further.

ACKNOWLEDGMENT
This research was funded by the Spanish Ministry of

Science, Innovation and Universities research grant
PGC2018-097265-B-I00 and MASSIVE project (RTI2018-
095255-B-I00). Also, it received support from the Madrid
Region R&D programme (FORTE project-P2018/TCS-4314).

APPENDIX A: PRIMARY STUDIES
[PS1] S. Katayama, A. Mathur, M. Van den Broeck, T. Okoshi, J.

Nakazawa and F. Kawsar, “Situation-aware emotion regulation of
conversational agents with kinetic earables”, in Proc. 8th Intern. Conf. on
Affective Computing and Intelligent Interaction (ACII’19), Cambridge, UK,
2019, pp. 725-731.

[PS2] S. Lee, H. Ryu, B. Park, and M. H. Yun, “Using physiological
recordings for studying user experience: Case of conversational agent-
equipped TV”, Intern. Journal of Human Computer Interaction, vol. 36, no.
9, pp. 815-827, Feb. 2020.

[PS3] F. Narducci, P. Basile, M. de Gemmis, P. Lops, and G. Semeraro,
“An investigation on the user interaction modes of conversational
recommender systems for the music domain”, User Modeling and User-
Adapted Interaction, vol. 30, pp. 251-284, Mar. 2020.

[PS4] J. Guo, D. Tao, and C. Yang, “The effects of continuous
conversation and task complexity on usability of an AI-based conversational
agent in smart home environments”, in: S. Long, B. Dhillon (Eds.), Man–
Machine–Environment System Engineering, MMESE’19, (pp. 695-703).
Lecture Notes in Electrical Engineering, vol 576. Springer, Singapore, 2020.

[PS5] A. Ponathil, F. Ozkan, B. Welch, J. Bertrand, and K. C. Madathil,
“Family health history collected by virtual conversational agents: An
empirical study to investigate the efficacy of this approach”, Journal of
Genetic Counseling, pp. 1-12, Mar. 2020.

[PS6] E. W. Huff-Jr, N. A. Mack, R. Cummings, K. Womack, K. Gosha,
and J. E. Gilbert, “Evaluating the usability of pervasive conversational user
interfaces for virtual mentoring”, in: P. Zaphiris, A. Ioannou (Eds.), Learning
and Collaboration Technologies. Ubiquitous and Virtual Environments for
Learning and Collab., HCII’19 (pp. 80-98). Lecture Notes in Computer
Science, vol 11591, Springer, Cham, 2019.

[PS7] R. Håvik, J. D. Wake, E. Flobak, A. Lundervold, and F. Guribye,
“A conversational interface for self-screening for ADHD in adults”, in: S.
Bodrunova et al. (Eds.), Internet Science, INSCI’19 (pp. 133-144). Lecture
Notes in Computer Science, vol 11551. Springer, Cham, 2019.

[PS8] R. Ren, J. W. Castro, A. Santos, S. Pérez-Soler, S. T. Acuña, and J.
de Lara, “Collaborative modelling: Chatbots or on-line tools? An
experimental study”, in Proc. Evaluation and Assessment in Software
Engineering (EASE’20), Trondheim, Norway, 2020, pp. 260-269.

[PS9] E. Elsholz, J. Chamberlain, and U. Kruschwitz, “Exploring
language style in chatbots to increase perceived product value and user
engagement”, in Proc. 2019 Conf. on Human Information Interaction and
Retrieval (CHIIR’19), Glasgow, Scotland, UK, 2019, pp. 301-305.

[PS10] M. Jain, P. Kumar, I. Bhansali, Q. V. Liao, K. N. Truong, and S.
N. Patel, “FarmChat: A conversational agent to answer farmer queries”, in
Proc. ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(IMWUT’18), vol. 2, no. 4, 2018, pp. 170:1-170:22.

[PS11] Q. N. Nguyen, and A. Sidorova, “Understanding user interactions
with a chatbot: A self-determination theory approach”, in Proc. 24th
Americas Conference on Information Systems: Digital Disruption
(AMCIS’18), New Orleans, LA, USA, 2018.

[PS12] M. Jain, R. Kota, P. Kumar, and S. N. Patel, “Convey: Exploring
the use of a context view for chatbots”, in Proc. Conf. on Human Factors in
Comp. Systems (CHI’18), Montreal, QC, Canada, 2018, pp. 468:1-468:6.

[PS13] M.-L. Chen, and H.-C. Wang, “How personal experience and
technical knowledge affect using conversational agents”, in Proc. 23rd
Intern. Conf. on Intelligent User Interfaces Companion (IUI’18), Tokyo,
Japan, 2018, pp. 53:1-53:2.

[PS14] C. Sinoo, S. van der Pal, O. A. B. Henkemans, A. Keizer, B. P. B.
Bierman, R. Looije, and M. A. Neerincx, “Friendship with a robot:
Children’s perception of similarity between a robot’s physical and virtual
embodiment that supports diabetes self-management”, Patient Education and
Counseling, vol. 101, pp. 1248-1255, Jul. 2018.

REFERENCES
[1] J. Guichard, E. Ruane, R. Smith, D. Bean, and A. Ventresque,

“Assessing the robustness of conversational agents using paraphrases,”
in Proc. IEEE Intern. Conf. on Artificial Intelligence Testing
(AITest’19), Newark, CA, USA, 2019, pp. 55-62.

[2] M. Jain, R. Kota, P. Kumar, and S. N. Patel, “Convey: Exploring the
use of a context view for chatbots,” in Proc. Conf. on Human Factors
in Comp. Systems (CHI’18), Montreal, Canada, 2018, pp. 468:1-468:6.

[3] Q. N. Nguyen, and A. Sidorova, “Understanding user interactions with
a chatbot: A self-determination theory approach,” in Proc. 24th
Americas Conference on Information Systems: Digital Disruption
(AMCIS’18), New Orleans, LA, USA, 2018.

[4] R. Ren, J. W. Castro, S. T. Acuña, and J. de Lara, “Usability of
chatbots: A systematic mapping study,” in Proc. 31st Intern. Conf. on
Software Engineering & Knowledge Engineering (SEKE’19), Lisbon
(Portugal), 2019, pp. 479-484.

[5] S. Greenberg, and B. Buxton, “Usability evaluation considered harmful
(some of the time),” in Proc. SIGCHI Conf. on Human Fact. in Comp.
Systems (CHI'08), Florence, Italy, 2008, pp. 111-120.

[6] A. Seffah, M. C. Desmarais, and E. Metzker, “HCI, Usability and
software engineering integration: Present and future,” in: A. Seffah, J.
Gulliksen, M. C. Desmarais (Eds.), Human-Centered Soft. Eng. —
Integration Usability in the Soft. Devel. Lifecycle (pp. 37-57). Human-
Computer Interac. Series, vol. 8, Springer, Dordrecht, 2005.

[7] K. Curcio, R. Santana, S. Reinehr, and A. Malucelli, “Usability in agile
software development: A tertiary study,” Computer Standards &
Interfaces, vol. 64, pp. 61-77, May. 2019.

[8] A. Santos, O. Gómez, and N. Juristo, “Analyzing families of
experiments in SE: A systematic mapping study,” IEEE Transactions
on Soft. Eng., vol. 46, no. 5, pp. 566–583, may. 2020.

[9] N. Juristo, “Once is not enough: Why we need replication,” in: T.
Menzies, L. Williams, and T. Zimmermann (Eds.), Perspectives on
Data Science for Soft. Engin. Morgan Kaufmann, 2016, pp. 299-302.

[10] E. Fernández, O. Dieste, P. Pesado, and R. García, “The importance of
using empirical evidence in software engineering,” in: G. Simani, and
H. Padovani (Eds.), Computer Science & Technology Series. XVI
Argentine Congress of Computer Science Selected Papers, Ed.
Universidad de la Plata (EDULP), 2011, pp. 181-189.

[11] B. A. Kitchenham, and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Keele
University and Durham University, Keele, UK, EBSE Technical
Report version 2.3 (EBSE-2007-012007), 2007.

[12] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in Software Engineering, Berlin, Germany:
Springer, 2012.

284

From word embeddings to text similarities for

improved semantic clustering of functional

requirements

Takwa Kochbati, Sébastien Gérard, Shuai Li, Chokri Mraidha

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

{takwa.kochbati, sebastien.gerard, shuai.li, chokri.mraidha}@cea.fr

Abstract— Requirements engineering starts by requirements

elicitation which consists in gathering software requirements from

stakeholders. Then, the elicited requirements are usually manually

recorded in a requirements specification document. In recent

years, modern software projects are becoming more complex than

projects of the past due to the increase in the number of

requirements and stakeholders involved in a project. Thus,

manually managing requirements becomes a tedious, time

consuming and error-prone task. One historical strategy to

manage this kind of complexity is “divide to conquer”, meaning to

categorize them into groups in order to breakdown the system into

a set of smallest sub-systems at early stages. In this paper, we

propose an approach to automatically cluster functional

requirements based on their semantic similarity which is the usual

strategy used by system architects to define sub-systems candidate

to simplification of the original problem. First, we use word2vec,

as a predictive word embedding model to compute the word-level

similarity. Second, we derive the requirement-level similarity

using a scoring function for text similarity. Third, we adopt

hierarchical clustering to group the requirements. Experimental

results performed on four open-access software projects show that

our approach succeeded to improve the results of clusters

identification compared with existing studies.

Keywords-component; software requirement; clustering; word

embedding; natural language processing.

I. INTRODUCTION

Requirements elicitation is the first step in developing a
software product. In this step, engineers discover and collect
requirements from customers and then, they manually record
them in a requirements specification document. The gathered
requirements describe different aspects of the target software in
natural language and they are mainly classified into functional
and non-functional requirements [1]. Functional requirements
describe the functional behavior and the features of the software
system while non-functional requirements define the system
attributes such as performance, security, reliability as well as the
system operational conditions such as power consumption and
environmental conditions.

Requirements elicitation has a significant impact on
information systems quality and success, as the errors introduced
at the beginning stages of development are the hardest and most
expensive to correct [2].

Hence, it is crucial that the requirements set has to be well
understood and well managed by engineers [3].

System design constraints evolves more and more requiring
to embed more stakeholders in the projects to handle various
new concerns - such as security, safety, cost, and sustainability
– earlier in the process, at specification time. Consequently,
modern software projects are becoming many times larger and
hence more complex than in the past. Especially, the exponential
growth of the number of requirements raises difficulties in
managing manually the requirements and having a clear crystal
view of the expectation and scope of the system to be designed
[4]. One of the most used and efficient design paradigms to deal
with complexity is the well-known “divide-to-conquer” strategy
i.e., building smallest pieces to reduce the complexity. Herein
lies the importance of an automatic solution to categorize
software requirements into a set of groups in order to breakdown
the target software system into a set of smallest sub-systems at
early stages of the development process.

In this paper, we propose a clustering solution to
automatically group functional requirements based on their
semantic similarity. We use and analyze the semantic
information of the requirements to compute the requirements
similarity at two levels: at the word level, but also at the
statement level of the requirements (i.e., local versus global
semantics of the requirements). In that context, we make the
following contributions: 1) we use a neural word embedding
model, word2vec, as a predictive model to compute the word-
level similarity; 2) then, we derive the requirement-level
similarity using a scoring function for text similarity
computation; 3) finally, we adopt hierarchical clustering
combined with a pre-defined criteria to group the requirements
in specific clusters. To evaluate our proposal, we have
successfully applied it to four open-access software projects.

The remainder of the paper is structured as follow: section 2
discusses the related works; section 3 describes the proposed
approach; section 4 provides the experimental evaluation
settings; section 5 provides the results analysis; section 6 raises
the limitations and the threats to validity and finally, section 7
concludes the paper.

 DOI reference number: 10.18293/SEKE2021-056

285

II. RELATED WORKS

In recent years, the usage of clustering techniques in the
early phases of software engineering has gained a lot of
attention.

In [5], the authors developed a tool based on hierarchical
clustering of requirements in order to propose a packaging
solution for software engineers. They defined a similarity
measure that aims to cluster classes with high number
communication in the same package. The optimal number of
clusters is manually selected by software engineers based on the
hierarchical tree generated by the clustering algorithm.

In [6], the authors present an approach based on concepts
clustering to visualize requirements at different levels of
granularity. They employed word2vec as a predictive model to
compute similarity between concepts.

The authors in [7] propose an initial clustering of
responsibilities from requirements, in order to detect
architecture components. The approach is validated using four
different clustering algorithms and several validity metrics. The
similarity function is computed according to the verb phrase
each responsibility contains, and the direct object it is related
to.

In [8], the authors present an approach to cluster and
sequence user stories in order to assist software engineers in the
implementation phase. They employed clustering algorithm and
the silhouette score to identify the best clustering solution.

In [9], the authors propose an approach that clusters similar
requirements in order to reuse them in software product lines
(SPLs). They compared the performance of two clustering
algorithms based on a distance measure in order to identify
similar requirements.

In [10], the authors demonstrate the use of the HAC
algorithm to group functional requirements based on their
similarity. Their work aims to breakdown the project into a set
of sub-projects at early stages. They use traditional vector space
models (VSMs) to vectorize text requirements and use the
cosine similarity to measure the semantic similarity between
requirements.

All these techniques inspire our work. However, some of
these approaches suffer from a lack of automation as for
example when defining the optimal number of clusters [5],
others rely on the similarity between words or concepts in each
requirement [6], [7]. Moreover, many works rely on traditional
distributional semantic models (DSMs), for instance Vector
Space Model (VSM) [8], [10] and Latent Semantic Analysis
(LSA) [9] to calculate the similarity. The main limitation of
these techniques is that they are considered as “count” models
as they rely on counting the co-occurrences among words by
operating on co-occurrence matrices. Thus, sentences with
similar context but different term vocabulary will not be
considered as similar. Consequently, traditional DSMs usually
achieve worse results than neural word embedding models,
which can be seen as predictive models [11].

The main novelty of our proposal is that we benefit from
using the neural word embedding model word2vec as predictive
model, to compute word level similarity and then, derive the

requirement level similarity using a scoring formula for text
similarity.

III. THE PROPOSED APPROACH

In this section, we explain how our approach processes in
order to generate automatically the clusters from natural
language requirements as illustrated in the process shown in
Figure 1.

Figure 1. Overview of the approach

In what follows, we detail the particular techniques used in
each step.

A. Preprocessing

Preprocessing is the first step of the approach in which, the
input functional requirements expressed in natural language are
normalized through four steps: (i) tokenization, i.e., the
decomposition of a sentence into a set of individual words; (ii)
stop-words removal, i.e., the elimination of common English
words; (iii) punctuation removal; (iv) stemming, i.e., the
transformation of each word to its root (e.g: "adding" becomes
"add").

B. Semantic similarity computation module

The preprocessed requirements are then introduced into the
semantic similarity computation module. Traditional
approaches to compute the similarity between two text
segments consist in using lexical matching method, and
producing a similarity score based on the number of lexical
units that occur in both input segments. However, these lexical
similarity methods cannot always identify the semantic
similarity of texts as they aim to determine whether the words

286

in two texts have similar spellings [12]. For example, the “US”
would be closer to the “UK” this way, than it would be to the
“States”.

Going beyond these traditional methods, we compute and
analyze the semantic information at two levels: locally, for each
word contained in a requirement description, but also globally
at the statement level.

1) Word-level similarity computation

In order to compute the word-level similarity, one must
rewrite the preprocessed requirements from natural language to
a machine-readable and analyzable format. Thus, words should
be transformed into numerical vectors that work with machine
learning algorithms. To this end, we use the word2vec model, a
two-layer neural network that is used to produce word
embeddings (i.e., vectors).

The input of word2vec is a text corpus. Given enough text
data and contexts, word2vec can achieve highly accurate
semantics of the words appearing in the corpus and establish a
word’s association with other words in the semantic space.
Moreover, word embedding models have shown to outperform
traditional DSMs which are considered as “count” models as
they count co-occurrences among words by operating on co-
occurrence matrices [11].

Since a word embedding model is supposed to be of high
quality when trained with large corpus, we use the pretrained
word2vec model on 100 million words of Google News dataset
(https://code.google.com/archive/p/word2vec/). However, even
if the used corpus is large (e.g., Google News), some domain-
specific words founded in the requirement statement may be
unknown in the corpus. In this case, as suggested in [13], we
assign a random vector to the missing word. Then, we compute
the semantic similarity between each pair of the obtained word
vectors belonging to two different requirement statements using
the cosine similarity measure. The cosine similarity principle
consists in computing the cosine of the angle between two
words vectors. Thus, the cosine similarity of two similar words
vectors is close to 1, and close to 0 otherwise.

2) Requirement-level similarity computation

After obtaining the word-level similarity, we extend it at the

global statement-level. Some approaches capture the meaning

of longer pieces of text by taking the means of the individual

term vectors [14], [15]. However, means or sums are rather poor

ways of describing the distribution of word embeddings across

a semantic space. It would be desirable to capture more
properties of the two texts, especially with respect to the

semantics of words that do or do not match.

We overcome the above-mentioned limitations by deriving

the statement-level similarity from the word-level similarity

based on two characteristics: the distribution of words in each

requirement statement; and the specificity of each word in the

requirements document. To do that, we got inspiration from the

work of Mihalcea et al. [12], to derive the statement-level

semantic similarity from the word-level semantic similarity. We

used hence the Mihalcea’s scoring function for text similarity

computation to compute the similarity of each pair of

requirement statement (see Equation 2).

First, we identify for each word w1 in the text requirement

R1, the word w2 in the text requirement R2 that have the highest

semantic similarity maxSim(w1,R2) (Equation 1), based on the
word-to-word semantic similarity wordSim(w1,w2) using

word2vec. Next, the same process is applied to determine the

most similar word in R1 starting with words in R2.

𝑚𝑎𝑥𝑆𝑖𝑚(𝑤1 , 𝑅2) = max

w2∈𝑅2
𝑤𝑜𝑟𝑑𝑆𝑖𝑚(𝑤1 , 𝑤2)

(1)

The word similarities are then weighted with the

corresponding word specificity using the Inverse Document

Frequency (idf) weighting technique to capture the specificity

of a word. In a nutshell, this technique aims to measure how
much a word contributes to the relevance of two texts. The

weighted word similarities are then summed up and normalized

with the length of each text segment. The resulting similarity

scores are combined using a simple average and thus, the

semantic similarity of two requirements R1 and R2 is computed

as follows:

𝑠𝑖𝑚(𝑅1, 𝑅2) =
1

2
×

(
∑ 𝑚𝑎𝑥𝑆𝑖𝑚(𝑤, 𝑅2) × 𝑖𝑑𝑓(𝑤)𝑤∈𝑅1

∑ 𝑖𝑑𝑓(𝑤)𝑤∈𝑅1

+

∑ 𝑚𝑎𝑥𝑆𝑖𝑚(𝑤,𝑅1) × 𝑖𝑑𝑓(𝑤)𝑤∈𝑅2

∑ 𝑖𝑑𝑓(𝑤)𝑤∈𝑅2

)

(2)

Ultimately, by applying the equation (2), we obtain the final

similarity matrix of each pair of requirements.

C. Clustering:

Textual requirements clustering refers to the process of
taking a set of requirements and grouping them based on a
similarity measure so that, requirements in the same cluster are
similar and requirements in different clusters are different. In
this context, we adopt the clustering of functional requirements
based on their semantic similarity.

Clustering methods can be classified either as hierarchical or
partitional [16]. Partitional clustering algorithms such as k-
means, require the number of clusters. Thus, they rely heavily
on the analyst’s knowledge, as they require the identification of
the number of clusters to be generated in advance. In order to
reduce the manual intervention, we employ the Hierarchical
Agglomerative Clustering algorithm (HAC) [17] as it does not
require us to pre-specify the number of clusters in advance.
Hence, we utilize the similarity values for each pair of
requirements as clustering criterion, taking the semantic
similarity matrix of the functional requirements as input for
HAC. The HAC algorithm works in a bottom-up manner, each
requirement statement is initially considered as a single-element

287

https://code.google.com/archive/p/word2vec/

cluster (leaf). At each step of the algorithm, the two clusters that
are the most similar are combined into a new bigger cluster
(node). This procedure is iterated until all requirements are
member of just one single big cluster, resulting in a hierarchical
clustering tree.

However, identifying the optimal number of clusters is not a
trivial task. It might be subjective as it can heavily rely on the
analyst’s knowledge. In order to automate this task, we
implement an operation that identifies automatically the best
number of clusters using the Dunn index [18]. The Dunn index
is an internal validity index used to evaluate the clustering result
when the number of clusters is unknown. Hence, in order to
achieve an optimal number of clusters, we calculate the Dunn
index each time, when varying the number of clusters. A higher
Dunn index indicates better clustering solution. Consequently, to
estimate optimal number of clusters that are generated by HAC,
we select the number of clusters for which we have a higher
Dunn index.

IV. EXPERIMENTAL EVALUATION SETTINGS

In order to assess our approach, we report in this section the
research questions that were investigated as well as the four case
studies we did.

A. Research questions:

As our study focuses on the automatic grouping of the
functional software requirements into a set of clusters, we
investigated the following research questions to evaluate the
approach:

 RQ1: To what extent is the proposed clustering solution
accurate?

Motivation. For this research questions, we aim at
determining the accuracy of the proposed clustering solution in
order to assess whether our approach succeeded to identify
semantic clusters that reflect the domain functionalities
embedded in a given functional requirements document.

Approach. To answer this research question, we evaluate
the proposed clustering solution using two validation criteria as
follows:

 The correctness of the identified semantic clusters:

This validation criterion aims at verifying whether the
identified semantic clusters are close to the semantic clusters
provided in the software requirements specification (SRSs)
documents. For this, we rely on two well-known measures in the
Information Retrieval (IR) field. These metrics are precision and
recall [19]. The identified clusters are compared with the
reference clusters provided in the SRSs documents, which serve
as a ground truth for our evaluation.

Let True Positive (TP) elements be the similar requirements
correctly assigned to the same cluster, False Positive (FP)
elements be dissimilar requirements assigned to the same cluster
and False Negative (FN) elements be similar requirements
incorrectly assigned to different clusters. The evaluation metrics
are defined as follows:

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

 The clustering gap (C_GAP):

For this validation criterion, we aim to verify whether the

identified number of clusters is close to the reference number

provided in the SRSs document. This is recognized as the

clustering gap (C_Gap). The C_Gap compares the identified

number of clusters with the reference number of clusters. Thus,

it is defined as follows:

C_Gap = |numberidentified_clusters – numberreference_clusters|

 RQ2: Is the proposed clustering solution practical in
realistic settings?

 Motivation. For this research question, we aim to establish

whether our approach is scalable. Particularly, the goal is to
check how well the clustering solution performs when

increasing the number of functional requirements.

 Approach. In order to solve this research question, we

assess the following validation criterion:

 The end-to-end execution time of the clustering solution:

It consists in measuring the impact of the number of software

requirements for each case study on the execution time. Hence,

this validation criterion aims to check whether the proposed

clustering solution runs within reasonable time for larger number

of functional requirements in realistic settings.

B. Case studies:

We assess the applicability of our approach using the
software requirements specification documents of four open-
access projects from different domains and with different sizes:
the E-Store software consists of online sales, distribution and
marketing of electronics [20]. The WASP system is a public,
real-world requirements specification of context-aware mobile
telecommunication services [21]. The UUIS system - Unified
University Inventory System - is used to integrate three
faculties’ databases providing a web interface that allows user to
access and manage the integrated inventory [20]. The MHC-PM
system is a Mental Health Care Patient Management System
[22].

The table below shows the characteristics of each case study
in terms of number of requirements as well as the number of
clusters in each SRSs document.

TABLE I. Characteristics of the Case Studies

Case study Number of requirements Number of clusters

E-Store system 62 20

WASP system 66 14

UUIS system 25 11

MHC-PM system 19 6

V. RESULTS ANALYSIS

In this section, we evaluate the results of applying our

proposal to the four aforementioned case studies through the

two previous described RQs.

288

A. Answering RQ1: To what extent is the number of identified

clusters correct?

 The correctness of the identified semantic clusters:
In Tables II, we present an example of the reference and the

identified cluster for the E-Store system. The requirement
statement shown in bold in the identified cluster is an irrelevant
functional requirement in that cluster.

In order to answer RQ1, we evaluate our clustering results
in terms of precision and recall. We also compare our results to
the work in [10]. In fact, the approach used in [10] closely
relates to our work as it proposes a method to semantically
cluster functional requirements. Thus, we use the work in [10]
as a baseline. Table III shows the evaluation results of our
approach as well as the baseline [10] in terms of precision and
recall. The best results are in bold.

TABLE II. Example of identified and reference cluster for the E-store system

Identified cluster Reference cluster

The system shall allow user to

create profile and set his

credential.

The system shall allow user to

create profile and set his

credential.

The system shall authenticate user

credentials to view the profile.

The system shall authenticate user

credentials to view the profile.

The system shall allow user to

update the profile information.

The system shall allow user to

update the profile information.

The system shall allow user to

register for newsletters and

surveys in the profile.

Precision values take a high-range (0.74 – 0.87) and recall

values take a reasonable range (0.63 – 0.75) across different

case studies. In most of these case studies, we achieved better

precision and recall values compared with the baseline [10].

For example, for the MHC-PM case study our approach

achieves better precision and recall values by 6 and 16

percentage points respectively. Thus, the evaluation shows

clustering results with relatively high quality with better

precision and recall values in most case studies compared with

the baseline [10].

TABLE III. Precision, Recall and C_Gap Values for each Case Study

 E-store WASP UUIS MHC-PM

 Precision 0.83 0.87 0.74 0.84

Our

approach

Recall 0.68 0.63 0.75 0.73

 C_Gap 0 2 1 1

 Precision 0.80 0.83 0.72 0.78

The

baseline

Recall 0.61 0.54 0.60 0.57

 C_Gap 1 4 2 0

At the light of these results, the answer to the first research

question (RQ1) is that our clustering solution succeeded to

achieve relatively accurate results that can be applicable.

 The clustering gap (C_GAP):
TABLE III shows, for each case study the clustering gap

between the identified and the reference clusters. By comparing

these results with TABLE I, we note that the identified number

of clusters is the same or very close to the reference number of

clusters. Moreover, by comparing with the baseline [10], our

method succeeded to identify a number of clusters that is closer

to the reference number of clusters for the three case studies: E-

store system, WASP system and UUIS system.

Therefore, the answer to this research question is that the

identified number of clusters is very similar to their

corresponding reference number of clusters. In summary, we

conclude that the number of the identified cluster is accurate
and achieves better results than the baseline [10] in most case

studies.

B. Answering RQ2: Is the proposed clustering solution

practical in realistic settings?

In order to answer this research question, we measure the

execution time of our approach for the four case studies on a

laptop with a 2.10 Ghz Intel (R) Core (TM) i7-4600U CPU and

a 8GB of memory. In Table IV, we measure the impact of the

number of requirements on the end-to-end execution time in

order to assess the applicability of our solution.

TABLE IV . Execution Time by Number of Requirements

 MHC-PM UUIS E-Store WASP

Number of

requirements

19 25 62 66

Execution

time in

seconds

20 24 41 52

Table IV shows that our approach runs in few seconds for

the four case studies. Moreover, Figure 2 shows a linear growth

trend for the impact of the number of requirements on the

execution time. Given such linear relation and the fact that the

end-to-end execution time takes few seconds, the answer to

RQ2 is that our approach runs in reasonable time.

Figure 2. Execution Time by Number of Requirements Graph

In summary, we anticipate that our clustering solution should

be practical for much requirements documents.

289

VI. THREATS TO VALIDITY

In this section, we discuss the limitations of our proposal in
terms of internal threats, construct threats and conclusion
threats. These threats are as follows:

Internal validity. With regard to computing word similarity,
some domain-specific words do not occur in the corpus used to
train the word vector space, which might slightly affect the
efficiency of word similarity computation. To mitigate this
limitation, we map such words to a random vector.

External validity. Our approach is capable of generating
clusters from short text requirements. However, if a
requirement describing a functionality is of too many sentences,
our approach maybe cannot provide an accurate result. Hence,
in this case, some manual semantic analyses may still be needed
to overcome this limitation.

Conclusion validity. We evaluate the applicability of our
approach on four open-access projects. Although the evaluation
results are promising, the results from just four domains may be
not enough to support the conclusion. Thus, we need to evaluate
the approach on larger number of case studies for a better
evaluation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to automatically

group functional requirements into semantic clusters in order to

breakdown automatically a system into sub-systems at early
stages, providing to the system architect a first high-level

architecture description of her/his system.

The core of the approach is a clustering solution that is based

on the semantic similarity of the natural language requirements.

In order to improve the accuracy of the clustering solution,

semantic information of both the words and requirements is

analyzed and used for compute the similarity. Word-level

similarity was firstly computed using word2vec as pre-trained

predictive model then, it was extended to the requirements-level

using the Mihalcea scoring formula for text similarity

computation. Then, we employ the HAC algorithm to cluster

functional requirements into semantic clusters. Moreover, we
propose and automatic identification of the optimal number of

clusters in order to reduce the manual intervention.

To assess the applicability of our approach, we conduct four

case studies from open-access projects from different domains

and evaluate the results in terms of precision, recall and

execution time. Evaluation results reveal that we succeeded to

achieve relatively accurate semantic clusters fully automatically

within a practical execution time that takes few seconds.

Moreover, a comparison with a related work shows that our

approach provides relatively better clustering results.

As future work, we will focus on extending our clustering
solution to categorize non-functional requirements according to

their type. Indeed, most of the work focusing on automating non-

functional requirements categorization use supervised learning

techniques requiring huge training datasets, which are not

always available for all domains. So far, employing clustering to

categorize non-functional requirements did not provide

sufficient accuracy. Hence, we plan to integrate other techniques

taking into account popular key words of each non-functional

requirement type to enhance the categorization process.

REFERENCES

[1] R. Pressman, ”Software Engineering: A Practitioner’s Approach ,” 1982.

[2] B. Brügge and A. Dutoit, “ Object-Oriented Software Engineering Using

UML, Patterns, and Java ,” 2009.

[3] D. Zowghi and C. Coulin, “Requirements Elicitation: A Survey of

Techniques, Approaches, and Tools”, in Engineering and Managing

Software Requirements, Springer, Berlin, Heidelberg, 2005, p. 19-46.

[4] F. Brooks, “No Silver Bullet Essence and Accidents of Software

Engineering”, Computer, vol. 20, no 4, p. 10-19, avr. 1987, doi:

10.1109/MC.1987.1663532.

[5] Y. Amannejad, M. Moshirpour, B. H. Far, and R. Alhajj, “From

requirements to software design: An automated solution for packaging
software classes”, in Proceedings of the 2014 IEEE 15th International

Conference on Information Reuse and Integration (IEEE IRI 2014), août

2014, p. 36‑43.

[6] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, et S. Brinkkemper,

« Visualizing User Story Requirements at Multiple Granularity Levels via

Semantic Relatedness », in Conceptual Modeling, nov. 2016, p. 463‑478.

[7] A. Casamayor, D. Godoy, et M. Campo, “Functional grouping of natural

language requirements for assistance in architectural software design”,

Knowl. Based Syst. 30, 2012, 78-86.

[8] R. Barbosa, D. Januario, A. E. Silva, R. Moraes, et P. Martins, “An
Approach to Clustering and Sequencing of Textual Requirements”, 2015

IEEE International Conference on Dependable Systems and Networks

Workshops : 39-44, 2015.

[9] H. Jalab and Z. M. Kasirun, “Towards Requirements Reuse: Identifying

Similar Requirements with Latent Semantic Analysis and Clustering

Algorithms”, 2014.

[10] H. E. Salman, M. Hammad, A.-D. Seriai, and A. Al-Sbou, “Semantic

Clustering of Functional Requirements Using Agglomerative

Hierarchical Clustering”, Inf. 9 (2018): 222., 2018.

[11] M. Baroni, G. Dinu, and G. Kruszewski, “ Don’t count, predict! A

systematic comparison of context-counting vs. context-predicting

semantic vectors”, ACL, 2014.

[12] R. Mihalcea, C. Corley, and C. Strapparava, “ Corpus-based and

Knowledge-based Measures of Text Semantic Similarity “, AAAI, 2006.

[13] Y. Kim, “Convolutional Neural Networks for Sentence Classification,”

EMNLP, 2014.

[14] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional Neural Network

Architectures for Matching Natural Language Sentences,” NIPS, 2014.

[15] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning With Neural

Tensor Networks for Knowledge Base Completion,” NIPS, 2013.

[16] M. Allahyari et al., “A Brief Survey of Text Mining: Classification,

Clustering and Extraction Techniques,” ArXiv abs/1707.02919, 2017.

[17] M. L. Zepeda-Mendoza and O. Resendis-Antonio, “Hierarchical

Agglomerative Clustering,” in Encyclopedia of Systems Biology,

Springer, New York, NY, 2013, pp. 886–887.

[18] J. C. Dunn, “Well-Separated Clusters and Optimal Fuzzy Partitions,”

1974.

[19] C. D. Manning, P. Raghavan, and H. Schütze, “Introduction to

information retrieval,” 2005.

[20] National Research Council of Italy. Natural Language Requirements
Dataset. Available online: http://fmt.isti.cnr.it/nlreqdataset/ (accessed

Feb. 22, 2021).

[21] T. Menzies, R. Krishna, Pryor “PROMISE Software Engineering
Repository.” http://promise.site.uottawa.ca/SERepository/ (accessed Feb.

22, 2021).

[22] Mental Health Care Patient Management System. Available online:
https://bscs143.files.wordpress.com/2015/11/requirement-mhc-pms.docx

(accessed Feb. 22, 2021).

290

Investigating Process Algebra Models to Represent Structured Requirements
for Time-sensitive CPS

Mathilde Arnaud H Boutheina Bannour H Arnault Lapitre H Guillaume Giraud I

H Université Paris-Saclay, CEA, List I PES R&D Department, RTE

Abstract

Cyber-Physical Systems (CPS) contain complex compu-
tational components that control physical entities. The de-
sign of these components must take into account the real-
time and concurrent nature of these systems. Formulating
requirements that describe CPS behaviors precisely, ruling
out misunderstandings, is a crucial yet difficult endeavor.
To increase trust in the requirements, formal methods can
be used to check relevant properties of the requirements. We
investigate a process algebra to capture real-time behaviors
and concurrency in CPS requirements in order to automate
their analysis. We use a structured natural language to first
express CPS requirements: this takes into account current
practice, indeed requirements should be easily writable as
well as graspable by stakeholders with various points of
view and ease communication among them. At the same
time, requirements analysis using simulation or formal val-
idation is possible by taking advantage of the requirements
structure. We discuss translation from the structured re-
quirements into the process algebra to automate the overall
process. Our approach is implemented and is illustrated by
an example issued from CPS4EU project 1.

1 Introduction
Early validation of Cyber-Physical Systems (CPS) requires
the consolidation of requirements, a tedious task due to
the nature of CPS behavior. Indeed, physical devices have
to be reactive, available and resilient within acceptable
time frames, and their control logic can be quite complex.
Cross-checking CPS industrial requirements, still mostly
expressed in natural language, presents a major challenge,
as missing or contradictory requirements can create a costly
misunderstanding in the CPS development process. Formal
methods can help meet this challenge by validating CPS re-

1This work was financially supported by European commission through
CPS4EU project that has received funding from the ECSEL Joint Under-
taking (JU) under grant agreement No 826276. The JU receives support
from the European Union’s Horizon 2020 research and innovation pro-
gramme and France, Spain, Hungary, Italy, Germany.

DOI reference number:10.18293/SEKE2021-147

quirements. In order to apply automated formal analyses,
requirements need to be specified in a precise and formal
way, through the use of patterns for instance. Fill-in tem-
plates facilitate clearer specification of event-driven, state-
driven system behaviors. The approach described in this pa-
per specifies CPS requirements following EARS [13] tem-
plates, in accordance with recommendations from the Inter-
national Council on Systems Engineering. Real-time details
are introduced to refine event-driven, state-driven system
behaviors. An transformation of such requirements into a
Process Algebra (PA) is proposed. This process algebra has
been implemented in the model-based symbolic execution
tool DIVERSITY[10]. Comparatively to other PA available
tools2, we support real-time behavior modeling. Likewise,
we go a step further by considering real-time aspects com-
pared to related works on formalizing requirement using PA
until recently [6, 1, 14]. The implementation of PA benefits
from existing sat-based techniques integrated in DIVER-
SITY to support models of timed symbolic automata [3].
Via the transformation, behaviors of CPS systems specified
by the requirements can be explored in the tool. Edition
and transformation of the requirements are prototyped as a
web application using Jupyter Notebook environment. A
simplified version of a CPS4EU case study illustrates the
proposed approach throughout the paper.

2 Requirement specification
Illustrative example. We illustrate our approach by show-
ing how it can be applied on a real-world use case coming
from CPS4EU : electrical networks involving intermittent
energy sources. To avoid overload without raising the over-
all network capacity, it is necessary to manage dynamically
the flow of electricity through levers such as batteries or
production modulation. Which mechanisms to trigger must
be determined very quickly and this role must therefore be
entrusted to a software component called NAZA.
We used our approach to analyze NAZA functional require-
ments. For the purpose of illustration, we choose a subset
of requirements : R1 to R6A in Tab.1, written in Structured

2Some references and tooled process algebra are CADP/LOTOS
(https://cadp.inria.fr/) and FDR/CSP (https://cocotec.io/fdr/).

291

R1 every 5 seconds, the NAZA Core shall calculate levers setpoints
R2 when new levers setpoints have been determined upon levers setpoints calculation (R1),

the NAZA Core shall determine common levers by using consensus
R3 every 5 seconds when consensus upon common levers determination (R2), the NAZA Core shall send batteries setpoints
R4 every 5 seconds when consensus upon common levers determination (R2), the NAZA Core shall send topological orders
R5 every 5 seconds when consensus upon common levers determination (R2), the NAZA Core shall send modulation orders
R6A if no result upon levers setpoints calculation (R1), the NAZA Core shall execute backup algorithm within [10,60] seconds
R6B if no result upon levers setpoints calculation (R1), while in nominal mode,

then the NAZA Supervisor shall enter in backup mode
R7 when entering in backup mode,

the NAZA Supervisor shall execute backup algorithm within [10,60], and return in nominal mode
R8 when new setpoints upon levers setpoints calculation (R1), while in backup mode,

the NAZA Supervisor shall enter in nominal mode.

Table 1: Excerpt requirements on levers setpoints calculation in NAZA (Nouveaux Automates de Zones Adaptatifs)

Natural Language as presented below. The NAZA automa-
ton is in charge of computing levers setpoints (cf R1). When
the computation is successful, it then uses consensus (cf R2)
and sends the results to middleware (cf R3, R4, R5). When
the computation fails, it must launch a backup logigram al-
gorithm (cf R6A). Our analysis revealed possible deadlocks
and we proposed to replace requirement R6A by require-
ments R6B, R7 and R8, using two modes (nominal and
backup) to express the behavior more precisely.
Structured Natural Language. We have structured
requirement statements by using a grammar based on
EARS [13]. A user-defined glossary, tailored to the needs
of the requirement engineer, defines systems, triggers, and
also equivalence for ease of use (e.g. ”calculate levers set-
points”/”levers setpoints calculations”). To prevent ambi-
guity arising from the use of synonyms, we favor the use of
repetitions of expressions in the glossary (e.g. R3, R4, R5).
This makes requirements as simple as possible and thus pre-
serves readability and unity. Each requirement statement is
expressed by a -possibly complex- precondition, followed
by a realization, which specifies the action of the system.
Preconditions. Nominal and unwanted behavior require-
ments are initiated when a triggering event occurs. They
are built respectively with keywords when (e.g. R7) and
if (e.g. R6B). State-driven requirements are active while
the system is in a defined state and are built with keyword
while (e.g. R6B). We introduce details to enhance the se-
quencing of system behaviors: they can be triggered peri-
odically, subsequently to other behaviors, or within some
time slot. Periodic behaviors are expressed through pattern
“every ⟨ period ⟩” (e.g. R1, R3, R4, R5). Context execution
can be detailed through two constructs : “within ⟨ timing
interval ⟩”, and “upon ⟨ system response ⟩”, specifying that
the behavior happens subsequently to some other behavior.
R6B is an example of a combined use of these constructs,
demonstrating that requirements can be complex and use
several of these constructs at the same time.

3 Target process algebra
Time datatype, actions and modes. Clocks are typed in
a dense time domain T isomorphic to the set of positive
rational numbers Q+. Given a set of clocks Clk, a clock
valuation v is a mapping v ∶ Clk → T . The set F(Clk) of
clock formulas is built up recursively out of logical con-
junction and atomic formulas of the form True, False,
clk & d, where d is a constant duration (typed in T) and
& ∈ {<,≤,>,≥}. The set of clock invariants I(Clk) is de-
fined by conjunctions of formulas of the form clk&d, where
& ∈ {<,≤}. Let Act be a set of actions which contains the
silent action τ ∈ Act, andA ⊆ Act∖{τ} be a partition I∪O.
Elements a of I (resp. of O) are called inputs and denoted
by ?a (resp. called outputs and denoted by !a). In a parallel
composition, inputs and outputs can synchronize resulting
in τ . We denote ?a =!a (and vice versa). Let M be a set of
modes with initial mode m0 ∈M .
Processes. A process is defined by the following syntax:

P ∶∶= ∑i∈I αi.Pi ∣ inv(ψ).P ∣ nil ∣ P1∣P2 ∣ K
α ∶∶= (m,φ, a,R,m′) are the basic building blocks of the
syntax. They are described by an enabling modem ∈M , an
enabling clock formula φ∈F(Clk), an action a ∈ Act, a set
of clocks R⊆Clk to be reset, and a target mode m′ ∈M to
evolve into. Some of these elements can be dropped. For in-
stance (φ, a,R) denotes that enabling mode can match any
arbitrary mode and that no mode change is to be made. The
construct inv(ψ).P defines a clock invariant ψ ∈ I(Clk)
that has to be satisfied on time passing for the execution of
the process P . This notion is borrowed from timed (and
hybrid) automata and requires some technical handling at
the evaluation of the process. All other constructs are clas-
sic [5]: the empty process nil, action prefixing αi.Pi, non-
deterministic choice∑i∈I αi.Pi, parallel composition P1∣P2

with possible synchronization of input / output actions, the
process constant K def= P for recursive definition.
Process execution. The key idea is to ensure that time

292

progress cannot invalidate either of the local invariants of
parallel processes. We introduce a construct of global in-
variants at evaluation that will be updated upon the evalua-
tion of the left or right processes in a parallel composition.
A global invariant or g-invariant is defined by the syntax:
Ψ ∶∶= ψ ∣ Ψ . Ψ ∣ Ψ .L Ψ ∣ Ψ .R Ψ, with ψ ∈ I(Clk).
We define functions L, R and f on g-invariants that re-
turn respectively the left side of the g-invariant, the right
side, and the formula denoting conditions at the time of
evaluation. If Ψ is in a decomposed form Ψ1 .X Ψ2 with
X ∈ { , L,R} then L(Ψ), R(Ψ) and f(Ψ) denote Ψ1, Ψ2

and f(Ψ1) ∧ f(Ψ2) respectively, otherwise L(ψ), R(ψ)
and f(ψ) are ψ. The process execution is defined up to an
execution context ec = (m,v,Ψ) which represents the nec-
essary information to perform an execution step, namely the
current mode m, the current valuation v of clocks and the
current g-invariant Ψ to be applied. Operational rules of the
execution are defined as follows:
Rule ATOM
⊢ (m,φ, a,R,m′).P (m,v,Ψ) a→ P (m′, v′,Ψ)

with v0 = v[clk → clk + d, clk ∈ Clk], d∈T , v0 ⊧ φ ∧ f(Ψ)
and v′ = v0[clk → 0, clk ∈R].
Rule INV
⊢ inv(ψ).P (m,v,Ψ) τ→ P (m,v,Ψ′)

with v ⊧ f(Ψ), and Ψ′ = ginv upd(Ψ, ψ).
Rule SUM

αi.Pi ec
a→ P ′

i ec′ ⊢ ∑i∈I αi.Pi ec
a→ P ′

i ec′

Rule CONST
P ec

a→ P ′ ec′ ⊢ K ec
a→ P ′ ec′

with K def= P .
Rule PAR1L
P1 (m,v,L(Ψ) .L ginv(P2,R(Ψ))) a→ P ′

1 (m′, v′,Ψ′

1)
⊢ P1∣P2 (m,v,Ψ) a→ P ′

1∣P2 (m′, v′,Ψ′)

with Ψ′ = ginv upd(L(Ψ) .L R(Ψ),Ψ′

1)
Rule PAR2L
P1 (m,v,L(Ψ) .L ginv(P2,R(Ψ))) a→ P ′

1 (m′, v′1,Ψ
′)

P2 (m,v, ginv(P1, L(Ψ)) .R R(Ψ)) a→ P ′

2 (m′, v′2,Ψ
′)

⊢
P1∣P2 (m,v,Ψ) τ→ P ′

1∣P ′

2 (m′, v′,Ψ)

with v′(clk) = 0 if v′1(clk)=0 ∨ v′2(clk)=0 ,
else v′(clk) = v′1(clk) = v′2(clk), for any clock clk ∈ Clk.

The process execution is inductively defined on the form
of the process term. Action prefixing (m,φ, a,R,m′).Pi
evolves to Pi under the constraint that time elapsing is com-
patible with its clock formula φ and formula of current g-
invariant f(Ψ). In case of invariant definition inv(ψ).P ,
then function ginv upd is called to update the relevant side
of the g-invariant for next action executions in P and other
parallel processes if any. In fact, the case of parallel com-

position is the most subtle, other rules are classic [5]. It
uses a function ginv which computes the formula of a g-
invariant of process P given a current g-invariant Ψ (of an
ec). Concerned part of Ψ is returned in case no new invari-
ant is encountered. For clarity’s sake, functions ginv upd
and ginv are defined using the Pattern-Matching notation
of OCaml 3 as follows:
ginv upd(Ψ,Ψ′) = match Ψ with
∣ ψ → Ψ′ ∣ Ψ1 . Ψ2 → Ψ′ ∣ Ψ1 .R Ψ2 → Ψ1 . R(Ψ′)
∣ Ψ1 .L Ψ2 → L(Ψ′) . Ψ2

ginv(P,Ψ) = match P with
∣ ∑i∈I αi.Pi → f(Ψ)
∣ nil → f(Ψ)
∣ inv(ψ).P → ψ
∣ P1∣P2 → ginv(P1, L(Ψ)) ∧ ginv(P2,R(Ψ))
∣ K → ginv(P) if K def= P

An illustrative execution of two parallel processes is given
in Fig.1. It shows how actions a and b will be interleaved in
the presence of invariants. From context ec0 = (m0, [clk →
0],Ψ0) with Ψ0 = True, both left process P1 and right
process P2 are evaluated. P2 can evolve into P ′

2 which al-
lows to reach context ec3. P1 cannot be executed, as rule
PAR1L requires g-invariant L(Ψ0) .L ginv(P2,R(Ψ0))
to be satisfied for P1 to be executed, with L(Ψ0) = True
and ginv(P2,R(Ψ0)) = clk < 1. The execution of P1 is en-
abled by formula clk = 1, which cannot be satisfied at the
same time as g-invariant clk < 1 at this point of execution.
In the evaluation, once the g-invariant True.L clk < 1 is
applied on some process (here left), it is returned in a neu-
tral form True. clk < 1. Later on, from context ec3, the
execution of process P1 becomes possible: rule PAR1L
applies as g-invariant becomes True .L True (previously
True.Lclk < 1) which allows time elapsing with any delay.

ab

ginv(P2,R(Ψ0))
clk < 1

ginv(P ′

2,R(Ψ3))
True

Ψ0 global invariant of ec0
True

Ψ3 global invariant of ec3
True . clk < 1

([clk = 1] , a)
∣

inv(clk < 1)
.([1/2 ≤ clk < 1] , b)
.inv(True)

([clk = 1] , a)
∣

inv(True)

P1∣P2 P1∣P ′

2

Figure 1: Parallel execution

The transformation process described in Section 4 gen-
erates the NAZA processes given in Fig.2. We in-
dicate each time the tuple of requirement identifiers
that allowed the inference. Fig.4 is a graphical view
of the NAZA Core process obtained from requirements
(R1,R2,R3,R4,R5,R6A).

3https://ocaml.org/

293

Core
def=

inv(clk1 ≤ 5).calc setpoints
.(new setpoints.determine common levers. consensus
.(send batteries setpoints.([clk1 = 5],{clk1}).Core
∣ (send topological orders.([clk1 = 5],{clk1}).Core
∣ send modulation orders.([clk1 = 5],{clk1}).Core))
+(((no result,{clk2}))).inv(clk1 ≤ 5 ∧ clk2 ≤ 60)
.((([[[10 ≤ clk2 ≤ 60]]], execute backup algorithm)))
.inv(clk1 ≤ 5).([clk1 = 5],{clk1}).Core)

(R1,R2,R3,R4,R5,R6A)
Core′

def=
inv(clk1 ≤ 5).calc setpoints
.(!new setpoints.determine common levers. consensus
.(send batteries setpoints.([clk1 = 5],{clk1}).Core′
∣ (send topological orders.([clk1 = 5],{clk1}).Core′
∣ send modulation orders.([clk1 = 5],{clk1}).Core′))
+!no result.([clk1 = 5],{clk1}).Core′)

(R1,R2,R3,R4,R5,R6B)
Supervisor

def=
([nominal], ?no result,{clk2},⊳backup).Supervisor
+[backup].inv(clk2 ≤ 60)
.([10 ≤ clk2 ≤ 60], execute backup algorithm,⊳nominal)
.inv(True).Supervisor
+([backup], ?new setpoints,⊳nominal).Supervisor

(R6B,R7,R8)

Figure 2: NAZA processes

Exploration For any finite sequence of P0
a0Ð→ P1 ,⋯, Pn−1

anÐ→ Pn, we note P0
a1.⋯.anÐÐÐÐ→ Pn, or simply P0

∗Ð→ Pn. Our
operational approach to exploration relies on small steps of
the form P

aÐ→ P ′ which corresponds to the execution in
a process P of an action a. This leads to a new process
P ′ that synthesizes possible executions that may occur after
action a. Potential deadlocks can be detected typically for
a sequence P0

∗Ð→ Pn such that no successor process Pn+1
can be computed from Pn. A deadlock arises in process
Core (because of R6A). The execution of the backup algo-
rithm in Core is constrained by the formula 10 ≤ clk2 ≤ 60
which is not compatible with the formula of g-invariant
clk1 ≤ 5 ∧ clk2 ≤ 60. The ambiguity comes from miss-
ing requirements on some parallel execution which is in
charge of the backup algorithm, unconstrained by the period
of 5 seconds. It is hereafter specified by a dedicated process
Supervisor which executes in parallel with the newCore′.
The full NAZA case study introduces requirements for an
additional complex process Acquisition, itself divided into
a number of parallel processes with various periods: every
10 seconds, the NAZA Acquisition shall request new data-
points from middleware and transmit them to NAZA Core;
if no data is received within 10 minutes upon datapoints
request, the NAZA Supervisor shall enter in fault mode; ev-
ery 1 minutes, the NAZA Acquisition shall request new net-
work situation from upper level and transmit them to NAZA
Core; etc. We have also applied exploration with the aim of
identifying the so-called zeno executions [16], i.e., execu-
tions in timed systems with an unbounded number of ac-

⟨trigger⟩a
ct ∣

a
ct ⟨ system

response
⟩ a

ct ⟨ system
response

⟩

(a) parallel responses

⟨trigger⟩

a
ct ⟨ system

response
⟩ +

a
ct

a
ct ⟨trigger⟩

(b) non-deterministic triggers

clk1 ≤ din
v

.

∶d
ef ⟨ system ⟩

r e
c ⟨ system ⟩

a
ct [clk1 = d]

{clk1}

(c) periodic repetition

clk1 ≤ d ∧ clk2 ≤ d2

a
ct ⟨ trigger

{clk2}
⟩ .

a
ct

[d1 ≤ clk2 ≤ d2]

⟨ system
response

⟩
.

in
v .

in
v clk1 ≤ d

(d) time constraint

⟨! trigger⟩

a
ct ⟨ system 1

response
⟩ .

a
ct ⟨ system 2

response
⟩ .

a
ct

a
ct ⟨? trigger⟩

(e) synchronization

Figure 3: Transformation patterns

tions executed in a bounded length of time. The NAZA re-
quirements should not allow such behaviors, as they are not
possible in practice. By applying small-steps P0

a1.⋯.anÐÐÐÐ→
Pn loops (Pn = P0) are checked to be non-zeno, i.e., there
exists a clock clk and some i, j ≤ n such that clk is reset
in step i and clk is bounded from below ε < clk in step j.
Overall, the exploration of processes helped provide a good
understanding of the NAZA requirements and assisted their
refinement.

4 Transformation
We outline next the main transformation patterns into pro-
cess algebra. System responses sharing the same trigger
are composed in parallel (Fig.3a); and triggers can be non-

294

clk1 ≤ 5in
v

+

∶d
ef Core

re
c

Core

re
c

Core re
c

Core

re
c

Core

a
ct determine common levers

a
ct no result

{clk2}

a
ct calculate levers setpoints

.

a
ct consensus

a
ct [clk1 = 5]

{clk1}

a
ct new setpoints

in
v clk1 ≤ 5 ∧ clk2 ≤ 60

a
ct send batteries setpoints

a
ct send topolgical orders a
ct send modulation orders

in
v clk1 ≤ 5

a
ct [[[10 ≤ clk2 ≤ 60]]]

execute backup algorithm

op ∣

a
ct [clk1 = 5]

{clk1}

a
ct [clk1 = 5]

{clk1}

a
ct [clk1 = 5]

{clk1}

∣

.

.

.

.

.

.

.

.

..

.

.

.

m,φ, a,R,m′ .

a
ctA

D

C

B

(A) Node kind
(B) Node label
(C) Node operator

for successors scheduling
(D) Links to successors

(R1,R2,R3,R4,R5,R6A)

Figure 4: Graphical view of a NAZA process

determistically produced upon a system response (Fig.3b).
Each (sub-)system is assumed to have an implicit initial-
ization upon which its behavior occurs. Repetitive behav-
ior of sub-system is also assumed with a topmost recursion
(Fig.3c). It can be associated a period d : time is con-
strained during the iteration through an invariant of the form
inv(clk1 ≤ d), and at the end system clock clk1 is reset
through ([clk1 = d],{clk1}). A synchronization together
with corresponding input / output actions is inferred if a
sub-system response is triggered by some other sub-system
behavior (Fig.3e). When a system response occurs within
an interval [d1, d2], a dedicated clock clk2 is used to encode
such constraint (d1 ≤ clk2 ≤ d2) associated with an invari-
ant (re-)definition inv(clk1 ≤ d ∧ clk2 ≤ d2), which sets an
upper bound d2 on time elapsing before the response occurs
(Fig.3d). State-driven triggers/responses are transformed by
various patterns involving enabling modes or mode change
constructs of the process algebra.

5 Related Work
Requirements are used as a tool to ensure sound com-

munication between stakeholders for the successful design
of the system [15]. Thus, specifying good requirements is

important to develop qualitative products that can satisfy
user’s needs [4]. Cross-checking CPS industrial require-
ments, mostly expressed in natural language, presents a ma-
jor challenge, that formal methods can help meet by validat-
ing CPS requirements.
Analyzing requirements written as natural language and
getting guarantees of non-ambiguity, completeness, consis-
tency would be ideal. Unfortunately, obtaining formal guar-
antees from natural language requirements is difficult, as
they often lack a structure that would allow to apply for-
mal methods. Some works explore nonetheless the possibil-
ities for extracting useful information from natural language
documents, for instance [11] automates a process based on
use case documents. The authors use dependency parsing
techniques to automatically generate activity diagrams de-
scribing use case flow. The input writing style for use case
is fixed, so use cases may have to be rewritten according to
this style, and some other steps in the method may require
manual intervention. The authors provide algorithms to au-
tomatically check some structural defects they identify, but
results include false positives and false negatives due to the
intrinsic ambiguity of natural language. For stronger assur-
ances, other works focus on what formal methods offer.

295

Several formal methods to validate requirements can be
used. We focus on those that take as input natural language
requirements or that address real-time, concurrent systems
as our goal is to validate CPS requirements. The research
problem addressed in [7] is the automatic generation of
timed state-rich formal models from natural-language spec-
ifications to support test generation. Requirements are ex-
pressed according to a controlled language called SysReq-
CNL, where requirements have the form of action state-
ments guarded by conditions. The approach presented in [9]
aims to check some properties or real-time requirements :
rt-consistency, consistency and vacuity. Requirements must
be written following a tightly constrained English grammar
closely related to LTL with the underlying Duration Calcu-
lus semantics. Authors of [14] present a formalisation of
requirements into a process algebra supported by the tool
FDR, used to generate test cases. This work uses a strongly
controlled language as input, and requirements may contain
data but not time.
Filling the gap between natural language and formal
methods is our goal in this paper. In this perspective, a
trade-off must be found between, on the one hand, possibly
difficult to master, strongly constrained requirements [17],
and on the other hand, natural language requirements, that
must be transformed into formal languages [2] and may
lose the intended meaning in the process [8]. Fill-in tem-
plates facilitate clearer specification of event-driven, state-
driven system behaviors. Automatically writing and ana-
lyzing such semi-formal requirements is still a challenge,
especially when taking time into account. Typically, [12]
synthesizes from EARS the logic of CPS controllers, how-
ever timing details are not formally analyzed.

6 Conclusion
This paper investigate a real-time process algebra to rep-
resent structured natural language requirements. Compo-
sitional modeling using process algebra provides powerful
constructs to build larger processes from smaller ones speci-
fied by the unitary structured requirements through transfor-
mation techniques. The proposed approach is implemented,
which enables to explore the resulting model and thus to
better understand the real-time behaviors and concurrency
implied by the requirements. These first results have to be
consolidated on larger experiments. A possible continua-
tion of this work is to develop refinement or bisimulation
methods for the process algebra in order to assist require-
ments evolution and clarification.

References
[1] R. Almeida, S. Nogueira, and A. Sampaio. Automatic

Test Case Generation for Concurrent Features from
Natural Language Descriptions. In SBMF. Springer,
2018.

[2] J. Badger, D. Throop, and C. Claunch. VARED: Ver-
ification and analysis of requirements and early de-
signs. In RE, 2014.

[3] B. Bannour, J. Escobedo, C. Gaston, and P. Le
Gall. Off-line Test Case Generation for Timed Sym-
bolic Model-Based Conformance Testing. In ICTSS.
Springer, 2012.

[4] A. Bennaceur, T. Tun, Y. Yu, and B. Nuseibeh. Re-
quirements engineering. In Handbook of Software En-
gineering. Springer, 2019.

[5] J. Bergstra, A. Ponse, and S. Smolka, editors. Hand-
book of Process Algebra. Elsevier, 2001.

[6] G. Cabral and A. Sampaio. Formal Specification Gen-
eration from Requirement Documents. Elec. Notes
Theor. Comput. Sci., 2008.

[7] G. Carvalho, A. Cavalcanti, and A. Sampaio. Mod-
elling timed reactive systems from natural-language
requirements. Formal Aspects Comput., 2016.

[8] J. Greghi, E. Martins, and A. Carvalho. Semi-
automatic generation of extended finite state machines
from natural language standard documents. In DSN,
2015.

[9] V. Langenfeld, D. Dietsch, B. Westphal, J. Hoenicke,
and A. Post. Scalable analysis of real-time require-
ments. In Int. Conf. RE. IEEE, 2019.

[10] CEA List. Eclipse Formal Modeling Project.
https://projects.eclipse.org/projects/modeling.efm.

[11] S. Liu, J. Sun, Y. Liu, Y. Zhang, B. Wadhwa, J. S.
Dong, and X. Wang. Automatic early defects detection
in use case documents. In ASE. ACM, 2014.

[12] L. Lúcio, S. Rahman, C. Cheng, and A. Mavin. Just
formal enough? automated analysis of EARS require-
ments. In NFM. Springer, 2017.

[13] A. Mavin, P. Wilkinson, and M. Novak. Easy Ap-
proach to Requirements Syntax (EARS). In RE. IEEE,
2009.

[14] S. Nogueira, H. Araujo, R. Araujo, J. Iyoda, and
A. Sampaio. Test Case Generation, Selection and
Coverage from Natural Language. Sci. Comp. Prog.,
2019.

[15] K. Pohl and C. Rupp. Requirements Engineering Fun-
damentals - A Study Guide for the Certified Profes-
sional for Requirements Engineering Exam: Founda-
tion Level - IREB compliant. rockynook, 2011.

[16] S. Tripakis. Verifying Progress in Timed Systems. In
ARTS. Springer, 1999.

[17] L. Wenbin, H. J. Huffman, and T. Mirosław. Tempo-
ral action language (TAL): A controlled language for
consistency checking of natural language temporal re-
quirements. In NFM, 2012.

296

Risk Analysis for Collaborative Systems during

Requirements Engineering

Abstract- Risk, a potential occurrence of some undesirable

event, can be dangerous if not adequately identified and dealt

with early on during software development. However,

identifying risks can be difficult, hence oftentimes resulting in

a particular software system that is unable to address risks,

especially critical ones adequately. This paper proposes an

ontology-based framework for performing risk analysis with

the Augmented Reference Model - The Reference Model

augmented with risk analysis. The Reference Model

emphasizes that the user requirements are met through the

collaboration between the system and the events occurring in

its environment - i.e., not by the system alone, hence the term

"collaborative system." We also offer an activity-oriented

ontology to carry out risk analysis by identifying risks from

negating the events in the environment and system. Such

negations of the requirements, specifications, and domain

events generate a graph-like representation, called Risk

Analysis Graph (RAG), to help perform risk analysis. To

validate our framework, we have performed two experiments

using questionnaires to identify risks and use the risk analysis

tool to generate RAG for performing risk analysis. We feel

that at least these experiments show that RAG helps identify

risks - especially the critical and uncommon ones that we

would not have thought of.

Keywords- Risk; Risk Analysis; Ontology; The Reference

Model (WRSPM Model); Requirements Engineering

I. INTRODUCTION

 Risk, which is defined as a situation or event where
something of human value (including humans themselves)
has been put at stake and where the outcome is
uncertain"[10], is a phenomenon faced or caused by the
agent (e.g., User, Software or Hardware). If the
requirements do not address critical risks as fundamental
potential problems, the projected system may lead to grave
consequences [1]. For instance, in building a smartphone
app for helping blind people navigate indoors, it might not

DOI reference number: 10.18293/SEKE2021-192

be too evident to requirements engineers that a blind person
may not be able to walk straight in line or figure out where
to turn. This is just one example of, among many such
potential risks.

 Risks involving the user and the system may arise
due to the system malfunctioning or the user misusing the
system. For example, a blind person has to walk ten steps
before making a right turn. What if the smartphone
application asks the blind person to turn earlier or later after
walking ten steps? Or what if the user ignores the
instructions and fails to turn at the right spot? Addressing
these kinds of scenarios by the requirements engineers and
the software developers before developing the application
would help plan with risk minimization and mitigation
strategies.

 The Reference Model (WRSPM Model) [3]
emphasizes that the user requirements are satisfied by the
collaboration between the user and the events in its
environment. Since it involves both the system and the
user, the term collaborative system is used (e.g., a

smartphone app, Theia1 for helping blind people navigate
inside one of our campus buildings). Keeping Murphy's
Law in mind which states, anything that can go wrong will
[2], we perform risk analysis by extending the Reference
Model that we adopted into the Augmented Reference
Model.

 Negating the events in the Reference model gives us
the possible negative things (risks) that may arise in a
particular environment. Using these possibilities, a graph-
like structure called the Risk Analysis Graph (RAG) is
generated. We use a highly activity-oriented ontology to
identify the most important/critical risks obtained by the
RAG in performing risk analysis. We have carried out
experimentation in two parts and compared the total
number of risks obtained/ignored by the students who
performed both these experiments. Through this
experimentation, we have observed that simple yet
important risks, such as walking in a straight line, etc., can
be overlooked.

1 Theia is the Greek goddess of sight

Kirthy Kolluri, Robert Ahn, Lawrence Chung

Department of Computer Science

The University of Texas at Dallas

Richardson, TX, USA

{kirthy.kolluri, robert.sungsoo.ahn, chung}@utdallas.edu

Tom Hill

 Fellows Consulting Group

Dallas, TX, USA

tom@fellowsconsultinggroup.com

297

Running example: An indoor navigation app (Theia) for
helping blind people is used as the running example to
illustrate the fundamental concepts of the risk analysis
framework. For ease of understanding, we use the example
of a blind person (Stevie) navigating indoors using the
smartphone application (Theia). Stevie is a blind person
(student) who wants to navigate in the campus building. He
uses the smartphone application, Theia, to navigate from
his current location

 Section II describes the related work. Section III
describes the proposed approach for performing risk
analysis. Section IV describes the experimentation and the
observations of the experimentation. Section V includes
the overall observation and threats to validity. In the end, a
summary of the paper is described, along with some future
work in Section VI.

II. RELATED WORK

The Reference model draws attention to the vital
concept of satisfying the user's requirements through the
collaboration between the environment and the system
through events. The environment comprises everything
associated with the users (designators), the activities
performed by the designators, surrounding infrastructure
(e.g., buildings, things, etc.), and the environment
events (e) are those that are associated with the
environment. The system comprises the software system,
the actions performed by the software system, and the
programming concepts related to the software system. The
system events (s) are those associated with the system.
These events are classified as visible and hidden events –
i.e., events visible and hidden to the environment and the
system - (𝑒ℎ, 𝑒𝑣) and (𝑠ℎ, 𝑠𝑣) respectively [3, 4]. These
environment events and the system events help satisfy the
requirements.

In the area of Requirements Engineering, the Reference
Model [3, 4] emphasizes collaboration and focuses on
applying formal methods to the user requirements and
reducing them to the system specification. We adopt and
extend the Reference Model into the Augmented Reference
Model to perform risk analysis in this work.

In the area of Risk Analysis, the work discussed in [1]
proposes a Goal-Risk (GR) framework for modeling risks
during the requirements engineering phase. They model
goals, events, and treatments in three layers. The work
discussed in [11] builds upon the framework proposed in
[1] and provides multi-object optimization; hence more
queries related to risk. Some similarities between our work
and the work addressed in [1] are the risk analysis
performed in the requirements engineering phase and an
ontology provided, which analyzes risks. Our framework
uses the Augmented Reference Model to perform risk
analysis by negating the events (requirements,
specification, and domain). The approach proposed in our
paper aims to systematically obtain risks that can and
cannot be obtained by logical negation.

 CORAS [5] is a risk analysis framework that
models, analyzes risks, and handles them. Each risk is
analyzed in this framework by asking questions and
prioritizing risks. Our framework provides an activity-
oriented, risk-oriented ontology that addresses critical risks
identified while performing risk analysis using the
Reference Model and the Risk Analysis Graph. The work
discussed in [6, 7, 8] explains obstacle analysis which
explains decomposing the goals. They also provide a set of
rules, including negation. There is some similarity in the
approach, but we use only functional requirements in our
work and use negation for obtaining risks.

 The ontology of risk discussed in [9] is regarding
its relationship with value, unlike our ontology, which is
strongly tied to identifying risks that the agents face. We
adopt the ontological components addressed in
Requirements Modelling Language (RML) [12] and add
another ontological concept, "Risk," to the existing work to
tie the concept of Risk to Action and Agent.

III. A FRAMEWORK FOR PERFORMING RISK
ANALYSIS

To help find and analyze risks, the risk analysis framework

described in this paper uses an activity-oriented ontology.

This process transforms the Reference Model into the

Augmented Reference Model. The Risk Analysis Graph is

generated by using negation which is explained in detail in

the following steps. A tool to help generate a Risk Analysis

Graph (RAG) was also developed.

Figure 1. High-level ontology of the Risk Analysis Framework

298

A. Step 1: Obtain Overall Ontology:

 It is essential to explicitly represent high-level

concepts such as Agents, Risks, Actions, Requirements,

Specification, Domain in a domain-independent approach

to avoid omissions and commissions of risks while

transforming the Reference Model into an augmented

Reference Model and generating risks. Additionally, some

concepts may be incorporated from a domain-dependent

ontology as well. All the concepts and the relationships

between them can be found in Fig. 1.

 This ontology is independent of the domain and can be

used for various domains which use any kind of

collaborative system. In this step, we want to identify the

domain-level concepts involved to help the requirements

engineers/ developers to generate risks. This is an activity-

oriented ontology that addresses risks associated with each

activity performed by the Agent. The ontology is also used

to identify the most critical risks obtained from the risk

analysis outcome after step 5.

B. Step 2: Acquire and Decompose Requirements:

 The proposed approach uses the functional requirements

R from the Reference Model, represented in the form i →

t. This acquired requirement is AND-decomposed into

sub-requirements: 𝑅𝑖𝑓 and 𝑅𝑡ℎ𝑒𝑛. Requirements are

decomposed to broaden the scope of the risk generation.

Each of these sub-requirements can be further decomposed

if there exists an i → t relation.
 Instance-level requirements, specification, and domain

were used throughout this paper for facilitating simplicity
in understanding the risk analysis process.

For instance,

R: When Stevie indicates his destination as room 3.415,

Theia shall ask Stevie to walk 10 steps forward

 is AND-decomposed into

𝑹𝒊𝒇: Stevie indicates his destination as room 3.415

𝑹𝒕𝒉𝒆𝒏:Theia shall ask Stevie to walk 10 steps forward

C. Step 3: Generate Specification and Domain:
Using this proposed approach, it is possible to partially

automate the specification and domain using the Ontology-
based approach, which is discussed further in Step 3. As
shown in the Reference Model, since every requirement
has a specification and domain, all sub-requirements have
sub-specifications and sub-domains, respectively. The
specification and domain can be further decomposed if it is
of the form i → t or if an (AND) or (OR) or (,) or (.) are
present. For instance, after decomposing R into 𝑅𝑖𝑓 and

𝑅𝑡ℎ𝑒𝑛, we obtain the 𝑆𝑖𝑓, 𝑆𝑡ℎ𝑒𝑛, 𝐷𝑖𝑓 and 𝐷𝑡ℎ𝑒𝑛 respectively.

Considering the sub-requirement 𝑅𝑡ℎ𝑒𝑛 (due to space
limitation), we obtain

𝑫𝒕𝒉𝒆𝒏: The smartphone's speaker is switched on and is in

working condition

𝑺𝒕𝒉𝒆𝒏: If the microphone receives a voice input signal,

Theia notifies using the speaker with a voice instruction to

walk 10 steps forward
The events associated with 𝐷𝑡ℎ𝑒𝑛 and 𝑆𝑡ℎ𝑒𝑛 are checked for
further refinements and are decomposed based on the
satisfaction of the criteria. Since 𝑆𝑡ℎ𝑒𝑛 is in the form i → t,
𝑆𝑡ℎ𝑒𝑛 is decomposed into 𝑆𝑡ℎ𝑒𝑛_𝑖𝑓 and 𝑆𝑡ℎ𝑒𝑛_𝑡ℎ𝑒𝑛.

𝑺𝒕𝒉𝒆𝒏_𝒊𝒇: The microphone receives a voice input signal

Figure 2. Transformation of the Reference Model into the Augmented Reference Model depicted using an instance-level example

299

𝑺𝒕𝒉𝒆𝒏_𝒕𝒉𝒆𝒏: Theia notifies using the speaker with a voice

instruction to walk 10 steps forward

D. Step 4: Perform Augmentation

 When considering the Reference Model and

transforming the equations from the Reference Model, the

phenomenon (𝜱) which takes place is a union of the

environment events ‘e ‘and the system events ’ s’ [3] .

Hence,

Φ = 𝑒 ∪ 𝑠 (1)

𝑒 = 𝑒ℎ ∪ 𝑒𝑣 , 𝑒ℎ ∩ 𝑒𝑣 = 𝜙 (2)

𝑠 = 𝑠ℎ ∪ 𝑠𝑣 , 𝑠ℎ ∩ 𝑠𝑣 = 𝜙 (3)

there are four events associated with it (normal case), i.e.,

𝑒ℎ , 𝑒𝑣 , 𝑠ℎ , 𝑠𝑣 [3, 4]. In this piece of work, we call them

normal case events, hence represented by the notation

𝑒ℎ𝑛𝑜𝑟𝑚𝑎𝑙
, 𝑒𝑣𝑛𝑜𝑟𝑚𝑎𝑙

, 𝑠ℎ𝑛𝑜𝑟𝑚𝑎𝑙
, 𝑠𝑣𝑛𝑜𝑟𝑚𝑎𝑙

. Augmenting

the Reference Model is about adding risks (negating) to

the normal events. The events associated with risks are

𝑒ℎ𝑟𝑖𝑠𝑘 , 𝑒𝑣𝑟𝑖𝑠𝑘 , 𝑠ℎ𝑟𝑖𝑠𝑘 , 𝑠𝑣𝑟𝑖𝑠𝑘 . Therefore, in the

Augmented Reference Model we have eight events

associated with it, both the normal case events and risk

events namely. By substituting the normal and risk case

events we get,
𝑒ℎ𝐴𝑢𝑔

= 𝑒ℎ𝑛𝑜𝑟𝑚𝑎𝑙
 ∪ 𝑒ℎ𝑟𝑖𝑠𝑘

 (4)
𝑒𝑣𝐴𝑢𝑔

= 𝑒𝑣𝑛𝑜𝑟𝑚𝑎𝑙
 ∪ 𝑒𝑣𝑟𝑖𝑠𝑘

 (5)

Similarly, the system events can be obtained as shown in

equations 4 and 5. Transformation of the environment and

the system events into negated events is done by

substituting in equation 2.,
𝑒𝐴𝑢𝑔 = (𝑒ℎ𝑛𝑜𝑟𝑚𝑎𝑙

 ∪ 𝑒ℎ𝑟𝑖𝑠𝑘
) ∪ (𝑒𝑣𝑛𝑜𝑟𝑚𝑎𝑙

 ∪ 𝑒𝑣𝑟𝑖𝑠𝑘
) (6)

(𝑒ℎ𝑛𝑜𝑟𝑚𝑎𝑙
 ∪ 𝑒ℎ𝑟𝑖𝑠𝑘

) ∩ (𝑒𝑣𝑛𝑜𝑟𝑚𝑎𝑙
 ∪ 𝑒𝑣𝑟𝑖𝑠𝑘

) = 𝝓 (7)

Similarly, for transforming the system events, we

substitute the normal and risk cases in equation 3 which is

not shown here due to space limitation. The augmentation

process is shown in Fig. 2. with a detailed instance-level

example.

E. Step 5: Obtain Risks by generating the Risk analysis

Graph (RAG)
 In this paper, we propose the generation of

Risk Analysis Graph (RAG), shown in Fig. 3, by the
systematic generation of risks that are hard to find. For
this systematic generation of risks, we perform logical
negation of AND, OR, Implication, etc., as the starting
point. Due to the space limitation, we will present the
process of obtaining risks by negating the logical
implication (i → t) and another particular case (¬ i Λ t). For
this work, we have implications in the requirements,
specification, and domain as well. We have worked on all
possible combinations to obtain various risks from a set of
requirements. However, we will be illustrating only the
implications associated with the R in the running example
due to space limitation. The requirement is of the form i →
t. i → t can also be written as ¬ i ∨ t. For instance, P1: i →
t can be written as

P1: ¬ (Stevie indicates his destination as room 3.415) ∨

(Theia shall ask Stevie to walk 10 steps forward)

which is equivalent to

(Stevie does not indicate his destination as room 3.415) ∨

(Theia shall ask Stevie to walk 10 steps forward)
 Stevie does not indicate his destination as room

3.415 is a risk (when the destination he wants to go to

Figure 3. Risk Analysis Graph (RAG) explained with an instance-level example

300

3.415). This risk might have many cases, such as indicating
the wrong room number as his destination, not indicating
any room number after turning the app on, an unclear
indication of his destination, etc. To identify different
possibilities of risks, we negate P1 represented as P2,

 P2: ¬ [(Stevie does not indicate room 3.415 as his

destination) ∨ (Theia shall ask Stevie to walk 10 steps

forward)]

Negation yields P3, which is

P3: [(Stevie indicates his destination as room 3.415) Λ ¬
(Theia shall ask Stevie to walk 10 steps forward)]

which would lead to P4

P4: [(Stevie indicates his destination as room 3.415) Λ

(Theia shall not ask Stevie to walk 10 steps forward)]

which indicates a risk. This case of risk where Theia shall
not ask Stevie to walk ten steps forward can be analyzed.
Multiple cases could be associated with this risk, such as
Theia may ask Stevie to walk eight steps or may ask him
to walk 12 steps, etc. How can we try to alleviate this risk?
Risk mitigation mechanisms can be designed based on the
risks obtained. For instance, to make sure that Stevie walks
the correct number of steps, a screen-tapping mechanism
can be introduced, where Stevie taps the screen for every
step taken to keep a count on the steps taken.

 Not all risks can be addressed by logic, and there
are some shortcomings as well. Considering the truth
values for i → t, if ‘i’ is false, irrespective of whether ‘t’ is
true or false, the statement i → t is always true [13]. This
analysis will help us find a few risks which a simple
negation of i → t could not find. For instance, t: Theia shall
ask Stevie to walk 10 steps forward makes the truth value
false, but if Stevie does not indicate his destination as
room 3.415, this entire statement is true according to logic,
but in reality, it is not. Similarly, if ‘i’ is false and ‘t’ is false
(negated), the entire statement would still be true.
Secondly, after analyzing the possibility for risks apart
from the logical negation of i → t, which is (¬ i V t), it is
found that (¬ i Λ t), which cannot be obtained by the
logical negation of implication, pulls in risk(s).

Risk Analysis Tool: We developed a risk analysis tool to

generate the RAG for performing risk analysis. The formal

strategies addressed in step 5, namely ¬ (i → t), (¬ i Λ t),

(i Λ ¬ t), etc. are used as templates for semi-automation of

risks using the requirements, specifications, and domains

obtained in Step 2, Step 3 and Step 4 and use the ontology

captured in Step 1 to identify the most important risks

obtained in the semi-automation process. The tool's images

are not shown here due to space limitation, but the results

have been discussed briefly.

IV. EXPERIMENTATION

We have experimented in two parts to validate our risk
analysis process through 1) group projects of several
undergraduate, graduate-level, PhD.-level requirements

engineering courses, which one of the coauthors has been
teaching for more than 12 years 2) generating the RAG to
obtain risks and analyze them. Most of the students
involved in the experimentation for both parts of the
experiments were majoring in Computer Science. Students
learned about the concepts related to the Reference Model,
Ontology, etc., as a part of their coursework and applied
this knowledge along with using Murphy's Law to perform
both parts of the experiment, respectively.

 For experiment 1, the problem domain for all the
projects was to develop a smartphone app for helping blind
people navigate indoors that was not the same. We have
selected around 30 projects, with approximately four
students on average in each project. They developed a
questionnaire for identifying the risks that may arise while
the blind person navigates indoors before developing the
actual application.

Figure 4. Graph depicting the risks found using questionnaires vs. RAG

 This study has shown that students could find out
risks but lacked identifying critical and uncommon risks.
The Teaching Assistant (TA), one of this paper's coauthors,
has carried out a detailed review and analyzed different
kinds of risks obtained by the teams. The questionnaires
were able to identify some risks. Since the questionnaires
developed were at a graduate-level, their analysis was
restricted to being very basic and shallow. The risks
identified by the teams were at a brainstorming-level when
compared to the risks identified by developing the RAG.

 For the second part of the experiment, 30 PhD. and
30 senior-level graduate students volunteered to help us
experiment. Every student was provided with the initial
version of the tool required to generate the RAG. The
students were given the set of functional requirements,
including the running example. They had the liberty to test
their own functional requirements, choose the branches of
specification or domain for which risk analysis should be
performed, and when to stop the risk analysis. The students
followed the process described in Section III to generate
the RAG.

 The students provided their feedback regarding the
ease of use, accuracy of the automation, usability,
including a list of risks classified into critical, important,

301

unimportant, uncommon risks, etc. The questionnaires'
results were compared to the results obtained from the Risk
Analysis Graph, as shown in Fig. 4.

V. DISCUSSION

A. Overall Observation: We have observed that the
students who used RAG were not only able to find common
risks such as missing route, walking in the wrong direction,
etc., unimportant risks such as warnings which ask them to
increase the volume, increase screen brightness, etc., but
also were able to identify some critical risks such as falling
down, bumping into people, colliding against walls,
unexpected object running into the user, etc. and
uncommon risks such as oil on the floor, banana peel on
the way, etc. while some students who developed and used
the questionnaires to find risks have ignored a few critical
risks such as low battery indication, faulty voice input due
to background noise, walking in a zig-zag fashion in a
straight corridor, etc. which we were able to find out by
generating multiple RAG’s using different sets of
requirements.
B. Threats to Validity: Our evaluation is based on human
knowledge, and the decision to generate the RAG using the
semi-automated tool may not be accurate all the time. The
results of the experimentation included are not real
software projects (questionnaires). As our evaluation can
be subjective and incomplete, it should be expanded with
various subjects (developers, requirements engineers, etc.).
Furthermore, the range of experiments and the data
obtained was also limited. To try a more diverse range of
domains, we do not have sufficient guiding ontology for
customizing the model.

VI. CONCLUSION

This paper has presented an ontology-based framework
for performing risk analysis by using a Risk Analysis
Graph (RAG). The Augmented Reference Model obtained
by transforming the Reference Model is illustrated by using
a collaborative system as a reference application to validate
the strengths and weaknesses of the Risk Analysis
framework. More specifically, this paper has presented 1)
an ontology, which incorporates crucial concepts such as
Agents, Risks, Requirements, Specifications, etc.; 2) the
Augmented Reference Model, obtained by transforming
the Reference Model to perform risk analysis by negating
the events in the environment; 3) A Risk Analysis Graph
(RAG) to identify and analyze risks by the negation of
logical implication and a couple of cases to identify risks
which cannot be obtained by negation. The
experimentation, we feel, shows that our approach
facilitates the detection of several kinds of risks (common,
uncommon, critical, etc.). Apart from these, we feel that we
could find critical and unexpected risks using RAG.

 There are several lines of future work that we would
like to work on. We plan on adding risk prevention and risk

mitigation strategies to the risks identified using the RAG.
We also plan to develop a constructing algorithm for
developing the RAG. There are other domains, such as the
Auto-drive domain for Autonomous vehicles, etc., that we
would like to extend our work to. We would also
investigate more ontologies pertaining to other domains as
well. The tool is in its first phase of implementation, and
work is being done on adding more features for performing
risk identification, risk prevention, and mitigation
techniques. For engineers to develop and design their own
graphically oriented Risk Analysis Graph (RAG) for
identifying risks is also underway. We also plan to include
safety and timeliness softgoal and extend our work using a
goal-oriented approach.

REFERENCES

[1] Asnar, Y., Giorgini, P. Mylopoulos, J., “Goal-driven risk assessment

in requirements engineering. Requirements”, Eng 16, 101{116
(2011). https://doi.org/10.1007/s00766-010-0112-x

[2] Murphy's Law, https://en.wikipedia.org/wiki/Murphy%27s_law.
Last accessed 29 September 2019

[3] Gunter, C. A., Gunter, E. L., Jackson, M. Zave, P., "A reference
model for requirements and specifications," in IEEE Software, vol.
17, no. 3, pp. 37-43, May-June 2000, doi:10.1109/52.896248.

[4] Zave, P., Jackson, M.(1997)., “Four dark corners of requirements
engineering’, ACM Trans. Softw.Eng. Methodol. 6, 1 (Jan. 1997),
1{30.DOI:https://doi.org/10.1145/237432.237434

[5] R. Fredriksen, M. Kristiansen, B. A. Gran, K. Stølen, T. A. Opperud,
and T. Dimitrakos, “The coras framework for a model-based risk
management process”, in Computer Safety, Reliability and Security,
ser. Computer Safety, Reliability and Security. Springer Science +
Business Media, 2002, pp. 94– 105

[6] Lamsweerde, A. V., “Risk-driven Engineering of Requirements for
Dependable Systems", Engineering Dependable Software Systems
(2013).

[7] Cailliau, A. Lamsweerde, A. V., "A probabilistic framework for
goal-oriented risk analysis",(2012). 20th IEEE International
Requirements Engineering Conference (RE). Chicago, IL, 2012, pp.
201-210. doi: 10.1109/RE.2012.6345805.

[8] Cailliau, A., van Lamsweerde, A, “Assessing requirements-related
risks through probabilistic goals and obstacles”, Requirements Eng
18, 129{146 (2013). https://doi.org/10.1007/s00766-013-0168-5

[9] Sales T.P., Bai~ao F., Guizzardi G., Almeida J.P.A., Guarino N.,
Mylopoulos J. (2018), “ The Common Ontology of Value and Risk.
In: Trujillo J. et al. (eds) Conceptual Modeling”, ER 2018. Lecture
Notes in Computer Science, vol 11157. Springer, Cham.
https://doi.org/10.1007/978-3-030-00847-5 11

[10] Rosa, E., “Metatheoretical foundations for post-normal risk."
Journal of Risk Research 1 (1998): 15-44.

[11] F. Başak Aydemir, P. Giorgini and J. Mylopoulos, "Multi-objective
risk analysis with goal models," 2016 IEEE Tenth International
Conference on Research Challenges in Information Science (RCIS),
Grenoble, France, 2016, pp. 1-10, doi:
10.1109/RCIS.2016.7549302.

[12] Greenspan, S., Mylopoulos, J. Borgida, A., 1994, “ On formal
requirements modeling languages: RML revisited”, In Proceedings
of the 16th international conference on Software engineering (ICSE
'94). IEEE Computer Society Press, Washington, DC, USA, 135-
147.

[13] Implication, https://en.wikipedia.org/wiki/Material_conditional.
Last accessed 25 February 2020

302

https://doi.org/10.1007/s00766-010-0112-x
https://en.wikipedia.org/wiki/Material_conditional

Requirements Formality Levels Analysis and
Transformation of Formal Notations into

Semi-formal and Informal Notations
Aya Zaki-Ismail∗, Mohamed Osama∗, Mohamed Abdelrazek∗, John Grundy†, and Amani Ibrahim∗

Information Technology
∗Deakin University , †Monash University

Melbourne, Australia
∗{amohamedzakiism, mdarweish, mohamed.abdelrazek, amani.ibrahim}@deakin.edu.au , †<john.grundy@monash.edu>

Abstract—It is pivotal to have well-specified requirements to
eliminate errors at an early stage of the system development
life cycle. Some quality standards recommend the use of formal
methods – mandate requirements to be expressed in formal
notations – to detect errors. However, formal notations are
not suitable for non-experts and may not be understood by
all the stakeholder. To fix this, bidirectional transformations
among requirement representation levels are required to main-
tain traceability and facilitate the communication of requirements
among all the involved parties. This paper reflects on the
different formality levels of requirements specifications including:
informal, semi-formal, and formal notations. In addition, an
automated multi-layer transformation approach is proposed to
enable bi-directional transformation among requirements levels.

Index Terms—Requirements engineering, Informal notation,
Semi-formal notation, Formal notations, Transformation

I. INTRODUCTION

The complexity of modern systems is rapidly increasing as
a result of the incorporation of cutting edge technology in var-
ious fields (e.g., automotive, robotics, and Internet-of-Things).
These systems have special characteristics over classical sys-
tems (e.g., integrating multiple subsystems, scalability, re-
usability, and stringent requirements measures for: reliability,
safety and security, etc.) [1], [2]. In addition, depending on the
scope of application, development errors in such systems (e.g.,
inconsistency, incompleteness, and incorrectness) can lead
to catastrophic consequences, severe losses, and hazardous
operational failures. The earlier the detection and resolution
of such errors, the better quality and control through the
development life cycle [3].

Requirements Engineering (RE) is the first phase within
the development life cycle [4] and thus contributes greatly
to the overall quality of the developed system and achieving
a successful and efficient development. The core artefact for
this process is the requirements specifications document. There
are three levels for representing requirements specifications:
informal, semi-formal and formal notations. Each represen-
tation level has its own strengths and weaknesses. Informal

DOI reference number: 10.18293/SEKE2021-199

(natural language) offers the easiest form of communicating
requirements but is inherently ambiguous, incomplete, and
imprecise. Formal notations are precise and unambiguous but
require mathematical background and expertise. And semi-
formal notations offer an intermediate trade-off between the
two, but is not suitable for all scenarios or domains. Thus, the
transformation between these levels of formality is required to
maintain fast and efficient communication at different stages
of the development between all the contributors in the RE
team (e.g,, non technical users, formal methods experts, etc)
[5]–[7].

In the last three decades, several approaches were proposed
for automating the transformation processes. The majority of
such approaches focus on transforming requirements from the
informal and semi-formal levels to the formal level. This is
done to allow formal methods to detect quality issues within
the requirements [8], [9]. Yet the problem of transforming
requirements from a more formal level of representation to
a less formal one is still an open problem. In addition, to
the best of our knowledge, very few work has provided a
comparison between the different formality levels or discussed
their features and the possible transformations between them
(e.g., [5], [10]) . To address these gaps, in this paper we
provide:

- An analysis of the formality levels for requirements
representation and the current state of transformations
among them for a better understanding of the problem.

- A multi-layer automated transformation approach from
formal notation to semi-formal, then to informal notation.

II. REQUIREMENTS REPRESENTATION
FORMALITY LEVELS

Formality levels notations are defined based on the concepts
of syntax and semantics visualised in Fig.1. In [11], these
concepts are defined from the linguistic perspective and the
field of formal language as indicated below:

. Syntax: The syntax of a language is the set of rules that
define structured sentences or fragments of the language
[12] (e.g., grammatical phrases or sentence structure in
natural languages).

303

Incomplete
syntax

Complete
syntax

Incomplete
semantic

Complete
semantic

x x

Informal
Semi-Informal

Formal
x

Fig. 1. Formality Levels from syntax and semantic perspectives

. Completely defined syntax: The syntax of a language
L is completely defined if and only if, for any fragment
S, it can be verified whether or not S belongs to L [13].

. Semantic: The semantic of a language is the possible
interpretations or meanings of a fragment.

. Completely defined semantics: The semantic of a
language is completely defined if and only if, for any
given fragment S that belongs to L, there is only one
interpretation. This can be confirmed by transforming
the language notation into a mathematical system where
proofs can be performed [11].

A. Informal Notations

Quality standards [14] define informal notations as a tech-
nique with incomplete defined syntax, that is used to specify
requirements. Having incomplete syntax also means that the
semantics aspect is also incomplete.

From the industry perspective, informal notations have a
similar definition where it is defined as free-textual or free-
styled requirements [5], [15], [16]. However, there are two
fundamental constraints on the use of informal notations:
(1) auto-completeness – each individual requirement should
be fully understandable, and (2) implied references should
be avoided as recommended in [16]. The absence of rules
controlling the writing style, makes requirements specification
easier but affects the uniformity as it depends on the sys-
tem engineer’s writing, background and expressiveness skills.
Lacking uniformity makes the requirements vulnerable to
ambiguities and inconsistencies [17].

The most commonly used informal notation today is Natural
Language (NL) (i.e., usually English) [14]. The principle
advantage of NL is that it is well known. Thus, it is a
good communication method among non-technical users (e.g.,
customers, stakeholders, etc.), and technical users (e.g., devel-
opers, experts, etc.). In addition, there is no need for training
to use NL in specifying requirements. This minimises the
time needed to create the first project artifact. More details
about what are the sections of the specification document, how
each section is structured and what are the main elements that
should be contained are available here [15].

Despite the advantages, writing requirements in NL has
many drawbacks. First, the expressiveness power of informal
notation allows requirements documents to contain all kinds

of freedom (e.g., ambiguity, contradiction, inconsistency [18]).
As NL is inherently ambiguous, different persons may have
different interpretations of the same requirement. This may
lead to implementing unintended functions or implementing
more functions than the intended ones. Having unnecessary
functions increases the complexity of the system and con-
sequently the number of errors [19]. In addition, missing a
system function would drive the system into incorrect states.
Secondly, NL is hard to maintain as the proper grouping of
related requirements can not be ensured. Thirdly, due to the
free-style of writing, it is hard to verify requirements and make
sure that each process has correct input and output.

Current research witnesses a lot of progress towards improv-
ing the quality of informal/textual requirements. The existing
approaches can be classified into two categories: (1) detecting
quality issues (e.g., ambiguity, inconsistency, incompleteness,
etc.) in informal requirements –helping engineers refine writ-
ten requirements– (e.g., [20], [21]), (2) providing defined
formats (templates, patterns, boiler-plates, constrained NL) for
engineers to utilise while (re-)writing requirements (e.g., [22]).

B. Semi-formal Notations

Semi-formal notations provide an intermediate layer be-
tween informal and formal notations. It is a technique for
describing requirements with a completely defined syntax and
may have incomplete semantics, as defined in most quality
standards [14]. From the industry perspective, semi-formal
notations are usually either a form of a graphical representation
of the system [5], [10], [15] or Constrained Natural Language
”CNL” [10], [23] that is developed to minimise ambiguities
and improve the readability of the requirements. In fact, there
is no contradiction between these definitions because both
graphical representations and CNL have completely defined
syntax and poorly defined semantics [5], [15].

Graphical representations utilise graphical structures to rep-
resent the system [10]. Although not all the requirements
issues are eliminated, the effectiveness of graphical represen-
tations can be very high. Such representations are popular
as they can improve the quality of the requirements with a
slight learning curve and give an insight about the system
from different points of view (e.g., UML [24], Sysml [25],
URN [26], ER-diagrams [27], etc). A graphical representation
may be accompanied with some logical languages to raise
expressiveness (e.g., OCL is attached to UML in [10]).

CNL is a textual writing with constraints on styling, syntax,
vocabulary or mix of them [28]. This limits the engineers
to only using the predefined writing style to improve the
quality of the written requirements. Commonly, this manifests
as boilerplates [29] or Structured English [30] following the
defined rule(s). This constrains how the requirements are
textually represented by layout and vocabulary (CNL might
be impractical if too restrictive [31]).

Semi-formal notations have several advantages: (1) Elimi-
nate, in most cases, issues with the requirements represented in
informal notations as the complete syntax limits the expressed
variations of a requirement [5]. (2) More comprehensible

304

than informal notations (detailed descriptions in NL may be
confusing when describing complex systems). (3) Graphical
representations can give an abstract view of the system provid-
ing a better understanding of the system [10]. Visualising the
entire system helps find otherwise unnoticed gaps. However,
the major drawback is -due to the lack of complete semantics-
everyone may have their own interpretation [5], [14].

C. Formal Notations

Formal notations are mainly used by formal methods for re-
quirements model verification. They have a completely defined
syntax and semantics as defined by the quality standards [14].
Similarly, formal notations are used in the industry as precise
notations based on the concept of mathematics to ensure
the verification applicability on requirements specifications
[15], [32], [33]. Formal notations require strong expertise in
mathematics set theory and predicate logic to have the ability
to state or understand the formalised requirements of a system
[15]. Thus, many (except those with the right expertise) can
not easily or clearly understand most of these notations. The
most widely used formal notations include (Temporal Logic
[34], Z [35], SAL [36], etc.).

A major advantage of formal notations is reducing the
development cost and time by discovering errors in the early
stages of the software development life cycle. Due to the
absence of ambiguity in formal notations, it is reliable to
verify whether the system conforms to the specifications or
not. Another advantage is improving the quality of the system
as the requirements are stated in a precise and consistent
manner [32]. Moreover, formal notations may help generate
full/partial code [5]. In contrast, non-technical users require
extensive time consuming in training to understand formal
notations. Large numbers of non-technical users find formal
notations very complex [18].

III. FORMALITY LEVELS TRANSFORMATIONS

From the previous section, it is clear that the level of
formality of the requirements affects the quality of the rep-
resented requirements and the understand-ability among the
people involved in the development life cycle (technical and
non technical). Thus, maintaining the requirements consistency
and traceability is pivotal [5] and can be controlled through
transformations. Inspired by the need –in both research and
industry– of having viable transformations among the levels
of formality [5]–[7], we outline the existing formality levels
transformations as follows:-

Informal notations to Semi-formal notations: the popular
direction is to transform informal notations into graphical
representations. This can be accomplished by applying a set
of linguistic parsing rules on free-text [37], [38]. In [39]
and [40], NLP-based extraction approaches are proposed for
transforming NL-requirements into extracting goal-use-cases
and requirements key elements proposed in [41] respectively.
Alternatively, in [42], [43], use case models are extracted from
NL-requirements through matching the input requirements
against a simple set of regular expressions.

Informal notations to Formal notations: type of trans-
formation related to generating a formal notation given free-
textual requirements. Linguistic analysis is a viable technique
coping with this type of transformation as illustrated in [23],
[44]. These approaches are restricted to and reliant on the
accepted subset of NL and the corresponding set of hand-
crafted rules, that are domain-specific and can only work
for limited scenarios [9]. Alternatively, the combined work
proposed in [41] and [40] together can be considered as a more
flexible and domain-independent approach that transforms
clause-based free-textual requirements into formal language.

Semi-formal notations to Formal notations: this type
focuses on transforming either graphical representations or
textual-based semi-formal notations to formal notations. It is
considered a critical transformation due to the value of formal
verification on the derived formal models.

- Textual-based to formal notations:- most of the existing
approaches adopt NLP techniques to parse the defined
meta-model of the used textual format to generate the
corresponding formal notation (e.g., [45]–[48]). Much
progress has been witnessed within this type of trans-
formation. Many different textual-based notations (along
with specific parsing techniques) have been proposed to
serve a specific domain or a specific type of requirements.

- Graphical representations to formal notations: similarly
to the textual-based type of transformation, existing tech-
niques in this category provide a homomorphic mapping
between the meta-models of the graphical representations
and the target languages (e.g., [32], [49], [50]). In [41],
requirement capturing model (RCM) is proposed to en-
able automatic transformation into various temporal logic
based notations, where it is mapped to metric temporal
logic and computational tree logic.

Semi-formal notations to Semi-formal notations: In this
class, conceptual mapping between the intended notations
is formulated to enable transformation [51], [52]. In [53],
system requirements capturing model (SRCM) is constructed
by aggregating RCMs presented in [41](i.e., each representing
one single requirement), to enable compact and integrated
system views and quality issues detection in the semi-formal
level.

Formal notations to Semi-formal notations: this type
of transformation produces a semi-formal notation given the
formal one. The most targeted semi-formal notations are
graphical based [54]. In this transformation, homomorphic
mapping and construction algorithms support the generation
of semi-formal diagrams from formal models to visualise
complex models [54].

IV. APPROACH
In our previous work [41], we analysed the existing require-

ments representation models and proposed RCM as a com-
prehensive semi-formal model supporting behavioural require-
ments. RCM defines the key requirements elements required
for the automatic generation of the corresponding formal
notations. We also formulated the mapping rules between the

305

RCM’s key elements and the metric temporal logic ”MTL”
formal notation. In addition, we developed a fully automated
approach for generating MTL formulas for requirements ex-
pressed in RCM. In [40], we extended the work by proposing
an automatic NLP-based approach for extracting RCMs from
NL-requirements. In this paper we provide requirements trans-
formation in the reverse direction (i.e., MTL to RCM, then
RCM to NL-requirements) to maintain consistency among the
different levels of formality. Our approach takes a text file
containing MTL formulas and a definition file (for interpreting
formal symbols) as input, and provides XML and text files
for the corresponding generated RCMs and NL-requirements
respectively. Figure 2 shows the two transformation layers.

Java

Prolog

SimplinNLP
API

Bottom-Up
matching

ParsingRealisationStructuring

formal(“=“) è vFrame(“be”, [‘A1’]).
formal(“>”) è vFrame(“exceed”, [‘A1’]).

.

.
qRel(“>”) è rel(”more than”)
qRel(“>=”) è rel(”at leasr”)
qRel(“=”) è rel(” ”)

.

.
unit(second)

Input Definition File

Formal
Grammar

Mapping-
Rules

RCM-to-NL

M
TL

-t
o-

RC
M

In
te

rm
ed

ia
te

 T
ab

le

Realised RCM

Out
RCM- xml

Input MTL
Formulas

Out
NL-Reqs

Fig. 2. Multi-Layer Transformations Flow

A. MTL to RCM Transformation

We utilise the same mapping rules proposed in [41]. We rep-
resent such rules as regular expressions to facilitate matching
the underlying formal grammar of the rules. Table I shows the
crafted regular expressions mapped to the RCM-MTL mapping
formulas. However, regex rules 1, 2, 3, and 7 are crafted
according to the formalisation approach proposed in [41]. We

TABLE I
MAPPING REGEX RULES

RCM-Role MTL-
Id

Re-
Id

Regex

Predicate Structure1 - 1 (\(\w+(= | > | < | >= | <=)\w+\))
Predicate Structure2 - 2 (\(\w + \((\w+,) ∗ \w + \)\))
Predicate Structure3 - 3 (\(\w + (= | > | < | >= | <=)\w +

\((\w+,) ∗ \w + \)\))
Pre-Time Element 10:14 4 F{t(= | > | < | >= | <=)\d}\([A −

Z]\)
Valid-Time Element 15:19 5 G{t(= | > | < | >= | <=)\d}\([A −

Z]\)
In-Time Element 20:24 6 G\(F{t(= | > | < | >= | <=

)\d}\([A− Z]\)\)
Coordinated Elements - 7 (\(([0− 9]||AND|OR|(?R)) ∗ \))
Scope StartUP 5 8 G\([A− Z] ==> F\([A− Z]\)\)
Scope EndUP 6-7 9 F [A − Z] ==> \(F\([A − Z]\|\|[A −

Z])U [A− Z]\)\)
Scope both 8-9 10 G\(\([A−Z]\[A−Z]\F [A−Z]\) ==>

\(F\([A−Z]\|\|[A−Z])U [A−Z]\)\)
Single PreCond 2-3 11 G\([A− Z] ==> [A− Z]\)
Composite PreCond 4 12 G\(\([A−Z]\[A−Z]\) ==> [A−Z]\)
Action 1 13 G\([A− Z]\)

apply a bottom-up abstraction approach on the input formula
to construct an intermediate table (IT) containing the required
details for RCM. The approach consists of five steps shown in
Algorithm IV-A, each designed to match a specific set of rules
against the input formulas to extract specific information.

AlgorithmIV-A: MTL-to-RCM Transformation
States:
R: MTL-to-RCM indexed Regex Rules
Formula: input string representing one formula
Tbl: Table contians extracted information
procedure

Step 1: Identify predicate elements
Formula ← abstractMatchedRegx(R{1:3},Formula)
updateTable(Tbl)

Step 2: Identify attached time elements and their types
Formula ← abstractMatchedRegx(R{4:6},Formula)
updateTable(Tbl)

Step 3: Identify predicate elements with same type
Formula ← abstractMatchedRegx(R{7},Formula)
updateTable(Tbl)

Step 4: Identify Scope elements attached to main elements
Formula ← abstractMatchedRegx(R{8:10},Formula)
updateTable(Tbl)

Step 5: Identify main elements types
Formula ← abstractMatchedRegx(R{11:13},Formula)
updateTable(Tbl)

end procedure

In Step 1, each predicate element is identified and repre-
sented with one alphabet. Each matched group is replaced
with a Unique alphabet, where the letter and the corresponding
matched group are stored in the IT. Step 2 matches regular
expression rules R{4:6} against the MTL formula in an
iterative manner to identify time elements. Each identified time
element and its type are attached to the corresponding alphabet
representing the predicate element in the IT (to keep their
composition relation). In addition, the matched elements are
replaced with their related predicate alphabets. Step 3 groups
the coordinated elements (same type). Step 4 identifies the
scope of the main elements. In Step 5, the main elements are
identified. The IT is then parsed into RCM. Figure 3 shows
a step by step annotation of the transformation algorithm on
an example MTL formula along with the constructed IT. The
generated RCM is shown in the first column in Figure 4.

G(((ignition key = in-Lock) AND (Gt=2(the rain sensor = active))) ==> F((the wipers = active) U (the windshield = dry)))

G((P AND Gt=2(Q)) ==> F(R U S))

G((P AND Q) ==> F(R U S))

G(C ==> F(R U S))

G(C ==> R)

Step1

Step2

Step3

Step4

Intermediate Table

P ignition key = in-Lock | condition

Q the rain sensor = active | V-time, t=2 |condition

R the wipers = active | Action

S the windshield = dry | End-Scope |Action-Scope

C P AND Q
Cond Act

End-Scope

V-time

Fig. 3. Tracing example for MTL transformation

B. RCM to NL-Requirements Transformation

This layer consists of two tasks: realisation and sentence
structuring. The generated sentences are governed by the
following grammar:

<S e n t e n c e> : : = <S u b o r d i n a t i n g C l a u s e>* .<MainClauses>
.<S u b o r d i n a t i n g C l a u s e>*

<S u b o r d i n a t i n g C l a u s e> : : = S u b o r d i n a t o r .<MainClauses>
<MainClauses> : : = <C l a u s e> .<C o o r d i n a t i n g C l a u s e>*
<C o o r d i n a t i n g C l a u s e> : : = C o o r d i n a t i n g R e l .<C l a u s e>
C o o r d i n a t i n g R e l : : = ” and ” | ” o r ”
<Cl a u s e> : : = [<Subj>] . [<R e l a t i v e C l a u s e>] .<VerbPhrase> .<Time>*
<R e l a t i v e C l a u s e> : : = RelHead . [P r o p e r t y] .<VerbPh>
<Subj> : : = NounPh
<VerbPh> : : = [M o d a l i t y] .<MainVerb> .<Complement>+
<MainVerb> : : = Verb | (be) . Verb . (ed)
<Complement> : : = P r e p o s i t i o n . (NounPh | Adj)
M o d a l i t y : : = ” s h a l l ”
S u b o r d i n a t o r : : = T r igg e rHead | C o n s t r a i n t H e a d | ScopeHead
C o n s t r a i n t H e a d : : = ” i f ”
Tr igge rHead : : = ”when ”
ScopeHead : : = ” a f t e r ” | ” b e f o r e ” | ” u n t i l ” | ” w h i l e ”
RelHead : : = ” whose ” | ” t h a t ”
<Time> : : = TimeHead . [Q u a n t i f y i n g R e l] . Value . Un i t
TimeHead : : = ValidTimeHead | PreElapsedTimeHead | InTimeHead
ValidTimeHead : : = ” f o r ”
PreElapsedTimeHead : : = ” w i t h i n ”
InTimeHead : : = ” e v e r y ”
Q u a n t i f y i n g R e l : : = ” a t l e a s t ” | ” l e s s t h a n ” | ” a t most ” | ” more t h a n ”

Where, ”*” means zero or more items, ”+” indicates the
presence of one or more, ”.” specifies composition of different
items, ”<>” refers to non-terminal, and ”[]” refers to an
optional item. NounPh, Adj, Value, Verb, QuantifyingRel
and Unit are terminals. The first three exist in the extracted
elements, while the rest are selected from the input definition
file. A requirement sentence in the proposed grammar consists
of at least one clause. A clause is built up from at least a verb
phrase expressing the core meaning of the clause. Optionally,
a subordinator can be attached (setting the grammatical role
to a subordinating clause).

Realisation task is responsible for: (1) replacing formal
symbols in elements with English words and (2) assigning
correct grammatical syntax to these elements. To replace the
formal symbols, we feed our approach with an extensible
definition file mapping the formal-symbols to English frames.
To adjust the grammar, we utilise SimplingNLG. All the
elements are assigned a present tense except for the action –

Generated RCM Realised RCM
Action
ØCompText = Nail
vPredicate
Ø Relation = Nail
Ø Op1
ü Text = the wipers

Ø Op2
ü Text = active

Ø neg_flag = false
Ø Formal Semantic

ü LHS è the wipers
ü RHS è active
ü Operator è “=“

Action-Scope
ØPhase= EndUP-Phase
ØCompText = Nail
vPredicate
Ø Relation = Nail
Ø Op1
ü Text = the windshield

Ø Op2
ü Text = dry

Ø neg_flag = false
Ø Formal Semantic

ü LHS è the windshield
ü RHS è dry
ü Operator è “=“

Action
ØCompText = ”the wipers
shall be active”
vPredicate
Ø Relation = Shall be
Ø Op1
ü Text = the wipers

Ø Op2
ü Text = active

Ø neg_flag = false
Ø Formal Semantic

ü LHS è the wipers
ü RHS è active
ü Operator è “=“

Action-Scope
ØPhase= EndUP-Phase
ØCompText = ”until the
windshield is dry”
vPredicate
Ø Relation = is
Ø Op1
ü Text = the windshield

Ø Op2
ü Text = dry

Ø neg_flag = false
Ø Formal Semantic

ü LHS è the windshield
ü RHS è dry
ü Operator è “=“

Conditions

Condition_1
CompText = Nail
v Predicate

ØRelation = Nail
ØOp1
ü Text = the ignition key

ØOp2
ü Text = ”in-lock”

Øneg_flag = false
ØFormal semantic
ü LHS è the gnition key
ü RHS è in-loc
ü Operator è “=“

Condition_2
CompText = “if the rain
sensor is active
v Predicate

ØRelation = is
ØOp1
ü Text = the rain sensor

ØOp2
ü Text = in-lock

Øneg_flag = false
ØFormal semantic
ü LHS è the rain sensor
ü RHS è active
ü Operator è “=“

v Valid-time
ØValue= 2
ØUnit= second
ØQR = equal
ØFormal Semantic
ü Operator è “=“
ü Value è 2

And

Condition_2
CompText = Nail
v Predicate

ØRelation = Nail
ØOp1
ü Text = the rain sensor

ØOp2
ü Text = ”active”

Øneg_flag = false
ØFormal semantic
ü LHS è the rain sensor
ü RHS è active
ü Operator è “=“

v Valid-time
ØValue= 2
ØUnit= Nail
ØQR = Nail
ØFormal Semantic
ü Operator è “=“
ü Value è 2

Condition_1
CompText = “if the ignition
key is in-lock
v Predicate

ØRelation = is
ØOp1
ü Text = the ignition key

ØOp2
ü Text = in-lock

Øneg_flag = false
ØFormal semantic
ü LHS è the ignition key
ü RHS è in-lock
ü Operator è “=“

And

Fig. 4. Generated and realised RCM of the MTL formula in Fig.3

assigned a future tense. The second column in Figure 4 shows
the changes in RCM after applying the realisation task.

Sentence Structuring task orders the existing elements
in a given RCM to construct a sentence. First, we assign
priority indices to all RCM elements as shown in the third
row in Table II. The numbers indicate the elements occurrence
order in the sentence. The last four rows show the order of
the sub-components within each component (e.g., the action
component exists in the sixth place with its sub-components
ordered as: pre-time, core-segment, valid-time, and in-time).
Empty cells mean a specific sub-component is not eligible
to the corresponding component. These indices are used to
structure the sentence of a given RCM based on the existing
elements.

TABLE II
COMPONENTS AND SUB-COMPONENTS PRIORITY INDICES

PreCond-Scope Action-Scope Condition Trigger Action
StartUp EndUP StartUP EndUP

Components 1 4 5 7 3 2 6

Su
bC

om
p Core-segment 1.1 4.1 5.1 7.1 3.2 2.1 6.2

Valid-time 1.2 4.2 5.2 7.2 3.3 2.2 6.3
Pre-time 3.1 6.1
In-time 2.3 6.4

Figure 5 shows the sentence structure of the realised RCM
in Figure 4 in compliance with the elements priority listed in
Table II.

If the ignition key is in-lock and the rain sensor is active for 2 seconds, the wipers shall be active until the
windshield is dry.

Realised RCM

Conditions Action
v Predicate = ”the

wipers shall be
active”

Action-Scope
ØPhase= EndUP-Phase
v Predicate = ”until the

windshield is dry”Condition_2
v Predicate = “if the rain

sensor is active
v Valid-time = “for 2 seconds”

Condition_1
v Predicate = “if the

ignition key is in-
lock

And

Generated NL-Requirements

Fig. 5. Structured sentence of the realised RCM in compliance with Table II

V. CONCLUSION
In this paper, we provided an insight about the different

levels of formality for representing requirements while high-
lighting the (dis)advantages of each level. We also presented
the current state of research for the transformation among
these levels. Finally, we proposed a multi-layer transforma-
tion approach to bridge the gap of maintaining traceability
between formality level and enabling (non-)technical people
to understand system requirements.

REFERENCES

[1] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner, “Software
engineering for automotive systems: A roadmap,” in Proceedings of
Future of Software Engineering FOSE. IEEE, 2007, pp. 55–71.

[2] M. Weber and J. Weisbrod, “Requirements engineering in automotive
development-experiences and challenges,” in Requirements Engineer-
ing,Proceedings. IEEE, 2002, pp. 331–340.

[3] R. Thayer and W. Royce, “Software systems engineering, ieee system
and software requirements engineering,” IEEE Software Computer So-
ciety Press Tutorial. Los Alamos, California, 1990.

[4] B. W. Boehm, “Verifying and validating software requirements and
design specifications,” IEEE software, vol. 1, no. 1, p. 75, 1984.

[5] K. Pohl, “The three dimensions of requirements engineering,” in In-
ternational Conference on Advanced Information Systems Engineering.
Springer, 1993, pp. 275–292.

307

[6] C. Rolland and C. Proix, “A natural language approach for require-
ments engineering,” in Seminal Contributions to Information Systems
Engineering. Springer, 2013, pp. 35–55.

[7] L. Antonelli, G. Rossi, J. C. S. do Prado Leite, and A. Oliveros, “De-
riving requirements specifications from the application domain language
captured by language extended lexicon.” in WER, 2012.

[8] I. Buzhinsky, “Formalization of natural language requirements into
temporal logics: a survey,” pp. 400–406, Jul 2019.

[9] A. Brunello, A. Montanari, and M. Reynolds, “Synthesis of ltl formulas
from natural language texts: State of the art and research directions,” in
26th International Symposium on Temporal Representation and Reason-
ing. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[10] V. Sládeková, “Methods used for requirements engineering,” Master’s
thesis, Mar, 2007.

[11] P. Sternudd, “Unambiguous requirements in functional safety and iso
26262: dream or reality?” 2011.

[12] J. Harrison, Handbook of practical logic and automated reasoning.
Cambridge University Press, 2009.

[13] R. W. Sebesta, Concepts of programming languages. 4th ed. Addison-
Wesley, 1999. ISBN: 0201385961, 1993.

[14] I. ISO, “26262: Road vehicles-functional safety,” International Standard
ISO/FDIS, vol. 26262, 2011.

[15] W. C. In and M. H. LinLee, “Informal, semi-formal, and formal
approaches to the specification of software requirements,” Ph.D. dis-
sertation, University of British Columbia, 1994.

[16] V. Ambriola and V. Gervasi, “Processing natural language requirements,”
in Automated Software Engineering, 1997. Proceedings., 12th IEEE
International Conference. IEEE, 1997, pp. 36–45.

[17] V. Johannessen, “Cesar-text vs. boilerplates,” 2012.
[18] I. C. S. S. E. S. Committee and I.-S. S. Board, “Ieee recommended

practice for software requirements specifications.” Institute of Electrical
and Electronics Engineers, 1998.

[19] P. Mary and P. Tom, “Lean software development: an agile toolkit,”
2003.

[20] J. Kocerka, M. Krześlak, and A. Gałuszka, “Analysing quality of
textual requirements using natural language processing: A literature
review,” in 2018 23rd International Conference on Methods & Models
in Automation & Robotics (MMAR). IEEE, 2018, pp. 876–880.

[21] M. Osama, A. Zaki-Ismail, M. Abdelrazek, J. Grundy, and A. Ibrahim,
“Score-based automatic detection and resolution of syntactic ambiguity
in natural language requirements,” in 2020 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME). IEEE, 2020,
pp. 651–661.

[22] T. Kuhn, “A survey and classification of controlled natural languages,”
Computational Linguistics, vol. 40, no. 1, pp. 121–170, 2014.

[23] S. Ghosh, D. Elenius, W. Li, P. Lincoln, N. Shankar, and W. Steiner,
“Arsenal: automatic requirements specification extraction from natural
language,” in NASA Formal Methods Symposium. Springer, June 2016,
pp. 41–46.

[24] OMG, “Object management group. omg unified modeling language in-
frastructure. omg specification.” https://www.omg.org/spec/UML/2.5.1,
Dec, 2017.

[25] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML:
the systems modeling language. Morgan Kaufmann, 2014.

[26] D. Amyot, “Introduction to the user requirements notation: learning by
example,” Computer Networks, vol. 42, no. 3, pp. 285–301, 2003.

[27] P. Shoval, R. Danoch, and M. Balabam, “Hierarchical entity-relationship
diagrams: the model, method of creation and experimental evaluation,”
Requirements Engineering, vol. 9, no. 4, pp. 217–228, 2004.

[28] W. Scott and S. Cook, “A context-free requirements grammar to facilitate
automatic assessment,” Ph.D. dissertation, UniSA, 2004.

[29] H. Elizabeth, J. Ken, and D. Jeremy, “Requirements engineering,” 2011.
[30] T. DeMarco, Structured analysis and system specification. Yourdon

Press, 1979.
[31] M. Osborne and C. MacNish, “Processing natural language software

requirement specifications,” in Proceedings of the Second International
Conference on Requirements Engineering. IEEE, 1996, pp. 229–236.

[32] S. Dupuy, Y. Ledru, and M. Chabre-Peccoud, “An overview of roz: A
tool for integrating uml and z specifications,” in Advanced Information
Systems Engineering. Springer, 2000, pp. 417–430.

[33] T. Teige, T. Bienmüller, and H. J. Holberg, Universal pattern: Formaliza-
tion, testing, coverage, verification, and test case generation for safety-
critical requirements. Universität, 2016.

[34] S. Konur, “A survey on temporal logics for specifying and verifying
real-time systems,” Frontiers of Computer Science, vol. 7, no. 3, pp.
370–403, 2013.

[35] J. M. Spivey, “An introduction to z and formal specifications,” Software
Engineering Journal, vol. 4, no. 1, pp. 40–50, 1989.

[36] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre, H. Rueß,
J. Rushby, V. Rusu, H. Saıdi, N. Shankar et al., “An overview of sal,”
in Proceedings of the 5th NASA Langley Formal Methods Workshop.
Williamsburg, VA, 2000.

[37] A. M. Moreno, “Object-oriented analysis from textual specifications,” in
Ninth International Conference on Software Engineering and Knowledge
Engineering, Madrid, Spain (June 1997), 1997.

[38] V. Ambriola and V. Gervasi, “On the systematic analysis of natural
language requirements with circe,” Automated Software Engineering,
vol. 13, no. 1, pp. 107–167, 2006.

[39] T. H. Nguyen, J. Grundy, and M. Almorsy, “Rule-based extraction of
goal-use case models from text,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, 2015, pp. 591–601.

[40] A. Zaki-Ismail., M. Osama., M. Abdelrazek., J. Grundy., and
A. Ibrahim., “Rcm-extractor: Automated extraction of a semi formal
representation model from natural language requirements,” in Proceed-
ings of the 9th International Conference on Model-Driven Engineering
and Software Development - Volume 1: MODELSWARD,, INSTICC.
SciTePress, 2021, pp. 270–277.

[41] ——, “Rcm: Requirement capturing model for automated requirements
formalisation,” in Proceedings of the 9th International Conference on
Model-Driven Engineering and Software Development - Volume 1:
MODELSWARD,, INSTICC. SciTePress, 2021, pp. 110–121.

[42] M. Kamalrudin, J. Hosking, and J. Grundy, “Maramaaic: tool support
for consistency management and validation of requirements,” Automated
software engineering, vol. 24, no. 1, pp. 1–45, 2017.

[43] ——, “Improving requirements quality using essential use case interac-
tion patterns,” in Software engineering (ICSE), 2011 33rd international
conference on. IEEE, 2011, pp. 531–540.

[44] R. Nelken and N. Francez, “Automatic translation of natural language
system specifications into temporal logic,” in International Conference
on Computer Aided Verification. Springer, 1996, pp. 360–371.

[45] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property specification
patterns for finite-state verification,” in Proceedings of the second
workshop on Formal methods in software practice, 1998, pp. 7–15.

[46] S. Flake, W. Müller, and J. Ruf, “Structured english for model checking
specification.” in MBMV, 2000, pp. 99–108.

[47] S. Konrad and B. H. Cheng, “Real-time specification patterns,” in Pro-
ceedings of the 27th international conference on Software engineering,
2005, pp. 372–381.

[48] R. Yan, C.-H. Cheng, and Y. Chai, “Formal consistency checking over
specifications in natural languages,” in 2015 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2015, pp. 1677–
1682.

[49] W. E. McUmber and B. H. Cheng, “Uml-based analysis of embedded
systems using a mapping to vhdl,” in High-Assurance Systems Engineer-
ing, 1999. Proceedings. 4th IEEE International Symposium on. IEEE,
1999, pp. 56–63.

[50] ——, “A general framework for formalizing uml with formal languages,”
in Proceedings of the 23rd international conference on Software engi-
neering. IEEE Computer Society, 2001, pp. 433–442.

[51] H. Afreen, I. S. Bajwa, and B. Bordbar, “Sbvr2uml: A challenging
transformation,” in 2011 Frontiers of Information Technology. IEEE,
2011, pp. 33–38.

[52] A. Rodrı́guez, I. G.-R. de Guzmán, E. Fernández-Medina, and M. Pi-
attini, “Semi-formal transformation of secure business processes into
analysis class and use case models: An mda approach,” Information
and Software Technology, vol. 52, no. 9, pp. 945–971, 2010.

[53] M. Osama., A. Zaki-Ismail., M. Abdelrazek., J. Grundy., and
A. Ibrahim., “Srcm: A semi formal requirements representation model
enabling system visualisation and quality checking,” in Proceedings
of the 9th International Conference on Model-Driven Engineering
and Software Development - Volume 1: MODELSWARD,, INSTICC.
SciTePress, 2021, pp. 278–285.

[54] K. Moremedi and J. A. van der Poll, “Transforming formal specification
constructs into diagrammatic notations,” in International Conference on
Model and Data Engineering. Springer, 2013, pp. 212–224.

308

https://www.omg.org/spec/UML/2.5.1

DOI reference number: 10.18293/SEKE2021-007

Spatial-Temporal Forecast of the probability
distribution of Oceanic Nino Index for various lead

times

Jahnavi Jonnalagadda
Department of Information Science and Technology

George Mason University
Fairfax, Virginia, USA

jjonnala@gmu.edu

Mahdi Hashemi
Department of Information Science and Technology

George Mason University
Fairfax, Virginia, USA

mhashem2@gmu.edu, ORCID: 0000-0003-0212-0228

Abstract— El Nino-Southern Oscillation (ENSO) is an irregular
periodic oscillation in easterly winds and sea surface temperature
(SST) over the tropical Pacific Ocean. El Nino and La Nina are
warm and cold phases of ENSO. Oceanic Nino Index (ONI)
determines ENSO events by calculating the three-month running
mean of SST anomalies over the Nino 3.4 region (5°N-5°S and
120°W-170°W). El Nino refers to ONI greater than +0.5℃ and La
Nina refers to ONI less than -0.5℃ for five consecutive months
across the east-central equatorial Pacific. ENSO is one of the main
drivers of Earth’s inter-annual climate variability, which causes
climate anomalies in the form of tropical cyclones, severe storms,
heavy rainfall, and droughts. ENSO not only impacts global
climate and oceanic conditions but also impacts food production,
human health, and economy. Therefore, forecasting ENSO is of
great importance. The main contribution of this study is proposing
a convolutional long-short term memory that can capture spatial
and temporal relationships between ENSO and environmental
variables, such as SST, sea level pressure, meridional wind, and
zonal wind. This study not only reports forecast accuracy but also
quantifies the uncertainty associated with the forecast.
Experimental results show that the proposed model improves the
forecast accuracy by 14.8%, 10.4%, 11.8%, and 22.2% for lead
times of 3, 6, 9, and 12 months, respectively.

Keywords- Spatial-temporal forecast, Bayesian method,
Probabilistic forecast, ENSO events, Climate anomalies, Variational
inference

I. INTRODUCTION
El Nino-Southern Oscillation (ENSO) is characterized by

irregular periodic variation in easterly winds and sea surface
temperature over the Central and Eastern Pacific Ocean. It is one
of the main drivers of Earth’s interannual climate variability,
which often causes a wide range of climate anomalies in the
form of heavy rainfalls, severe droughts, heatwaves, unusual
tropical storms, and other extreme weather conditions affecting
both tropics and subtropics [1]. ENSO transitions between three
phases: El Nino, neutral, and La Nina. Typical El Nino
conditions in the east-central Pacific Ocean include a) above-
average sea surface temperatures b) weak easterly winds, and c)
deep oceanic thermocline than average. Typical La Nina
conditions in the east-central Pacific Ocean include a) below-
average sea surface temperature, b) strong easterly winds, and c)

shallow oceanic thermocline than average. Oceanic Nino Index
determines ENSO events by calculating the three-month running
mean of sea surface temperature anomalies over the Nino 3.4
region (5°N-5°S and 120°W-170°W). El Nino is observed in the
Pacific Ocean if the ONI is greater than +0.5℃ for five
consecutive months. La Nina is observed in the Pacific Ocean if
the ONI is less than -0.5℃ for five consecutive months.
Together, El Nino and La Nina can not only impact global
weather, climate, and oceanic conditions but also food
production, human health, economy, and water supply [1].
However, El Nino and La Nina differ from each other in terms
of evolutionary patterns and impact on global climate. For
instance, a prolonged El Nino or La Nina for more than two
years has caused droughts in several regions of the United States,
while the transition from El Nino to La Nina or La Nina to El
Nino has caused flash floods in North-Eastern regions of Asia.
Due to the impact of ENSO on the global climate, it is important
to predict these events in advance.

Forecasting ENSO events in the literature can be classified
into two types: a) dynamical and b) statistical models.
Dynamical models use mathematical equations to describe
physical laws governing interactions of atmosphere and ocean
for forecasting ENSO. On other hand, statistical models learn
patterns from historical data for forecasting ENSO. However,
the latter models are often challenged by the complex and
nonlinear nature of the ENSO. Machine learning models are
statistical models that can extract salient features from high-
dimensional data. Linear models such as autoregressive moving
average (ARMA) and autoregressive integrated moving average
(ARIMA) are too simple to capture the nonlinear and time-
varying nature of the ENSO. To overcome the shortcomings of
the linear models, artificial neural networks (ANN) were
proposed in recent studies [2, 3]. Although ANNs can handle the
nonlinearity in the data, they are not designed to explicitly
handle the time-sequential dynamic interactions between
variables. On the other hand, recurrent neural networks have a
mechanism for capturing both nonlinear and time-varying
dynamics of multivariate systems. However, RNNs suffer from
vanishing gradient problems while backpropagating the error. A
variant of RNN, known as long-short term memory (LSTM) was
developed to overcome the vanishing gradient problem by

309

introducing several gates that would help the model decide what
information to keep and what to forget.

Often, climate data exhibits both spatial and temporal
autocorrelation, which means data from nearby locations are
more similar compared to data from remote locations. Therefore,
another challenge of statistical models is how to map the
historical data in a meaningful way such that the model can learn
spatial and temporal relationships between observed data and
ENSO events. A fully connected LSTM can only handle long-
term temporal dependencies between input variables, but they
are not useful to capture spatial dependencies. Therefore, an
extension of LSTM, which is convolutional long-short term
memory (CLSTM) is introduced in [4] for precipitation
forecasting. CLSTM replaces full connections in input and
hidden layers of LSTM by convolution windows. In a recent
study, ENSO is formulated as a spatial-temporal sequence
forecasting problem, in which both input and output are sea
surface temperature sequences [5]. However, their study only
reported the forecast accuracy but did not quantify the
uncertainty associated with the forecast. Estimating forecast
uncertainty not only makes the forecasts reliable but also helps
the decision-makers in the field to take appropriate actions.

In this study, spatial and temporal features of ENSO are
derived by embedding ENSO predictors into a grid space, which
fully expresses the spatial and temporal relationships with
ENSO. Then these spatial-temporal features are fed to CLSTM
to forecast ENSO events at three-month intervals up to one year.
This study not only reports the forecast accuracy but also
quantifies the uncertainty of the forecast.

II. LITERATURE REVIEW
Different machine learning and statistical analyses have been

applied in literature for predicting environmental and urban
phenomena [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Forecasting ENSO
in the literature is explored in this section under two categories:
(a) deterministic methods and (b) probabilistic methods.

A. Deterministic methods
There have been many reviews done on ENSO predictability

in recent years. Wu et al. [16] also used ANN and support vector
regressor (SVR) to forecast sea surface temperature anomalies
over the entire Tropical Pacific region with sea level pressure
and sea surface temperature as predictors at a lead time 3-15
months. Ham et al. [17] used transfer learning to train a CNN
first on historical data and subsequently on reanalysis data from
1871 to 1973. The forecasts were made for the years 1984 to
2017 and the correlation skill of CNN during these years is
superior to that of state-of-art dynamical forecast systems. In a
recent review, Dijkstra et al. [18] detailed the application of
machine learning algorithms and their role in improving the
prediction skill of ENSO.

B. Probabilistic methods
Recent studies use hybrid models by combining

autoregressive integrated moving average and an ANN to
predict the [19]. For a lead time up to six months, their model
performed slightly higher than CSFv2 [20]. Whereas, for lead
times beyond six months the prediction results are similar to that

of shorter lead times. Another example of the hybrid model for
forecasting ENSO events can be found in [21]. A suite of
statistical and dynamical models [20, 22, 23, 24] are combined
using the Bayesian model averaging. The weights for the models
are derived using the expectation-maximization algorithm. The
dynamical models, for example, CFSv2 [20], provides a single
model ensemble forecast. It can give an estimation of the
predictive uncertainty by making an ensemble of forecasts.
Recent studies estimate the predictive uncertainty of forecasts,
using an ensemble of standard neural networks (SNNs), called a
deep ensemble (DE) [25], which can provide the mean and
standard deviation of a Gaussian distribution instead of point
estimates. Another probabilistic approach based on the Bayesian
neural network is proposed in [26], which can give an estimate
of the predictive uncertainty. However, the evaluation window
for their model is very short (2015-2016). Peter et al. [27]
experimented with the gaussian density neural network and
quantile regression neural network to quantify the uncertainty of
the forecasted ENSO. For the test period 1982-2001, the forecast
accuracy is above 0.7 for 12 months lead time but drops to 0.4
for six months lead time for 2002-2017.

In this study, we propose CLSTM that can capture spatial
and temporal relationships between ENSO and ENSO predictors
that contributes in forecasting ENSO. The main difference
between our work and previous works is that we not only report
forecast accuracy but also quantifies uncertainty associated with
the forecast.

Figure 1. ONI variation from 1950 to 2019

III. DATA DESCRIPTION
ENSO events can be determined by forecasting ONI. The

predictors used in this study are sea surface temperature (t: ℃)
sea level pressure (p: Nm2), zonal wind speed (u: ms-1), and
meridional wind speed (v: ms-1). The information about these
variables is gathered from National Oceanic and Atmospheric
Administration [28] and National Center for Environmental
Prediction Reanalysis 1 [29]. The data are recorded at 500
different locations extending from (5 °N-5 ° S and 120 °W-
170°W) from 1950-2019. The temporal resolution of the dataset
is 1 month, and the spatial resolution of the dataset is 1°
latitudinal and 1° longitudinal distance. Therefore, the dataset
consists of a total of 420,000 records. Each record in the dataset
represents the average of the three consecutive months. For
example, the average sea surface temperature for three
consecutive months (January, February, and March) is assigned

-2

-1

0

1

2

19
50

19
56

19
62

19
68

19
74

19
80

19
86

19
92

19
98

20
04

20
10

20
16

ONI

Year

El Nino La Nina ONI

310

to January. All features (predictors) are normalized using
standard scalar within the range of [0,1].

Figure 1 illustrates the variations of ONI from 1950-2019.
The red and green lines are reference lines for El Nino and La
Nina. Any value beyond the reference lines corresponds to El
Nino or La Nina. From the figure, it is inferred that El Nino
occurred more frequently than La Nina in the study period. The
strongest El Nino recorded was in the year 2015, with a
magnitude close to 3, and the strongest La Nina recorded was in
the year 1973, with a magnitude close to -2. The data from 1950-
2013 is used for training, while the data from 2013-2019 is used
for testing.

IV. METHODOLOGY
The presence or absence of ENSO events spans across the

Pacific region, but not at a single point in the Pacific region.
Relating this with the dataset used in this study, all the data
points belonging to the same time have the same output
irrespective of their geographical location. This also means that
the data points from the same time should be fed as a single input
to the prediction model rather than feeding them as different
inputs to the prediction model. In this way, the number of
samples in the dataset is 840 (70 years multiplied by 12 months).
We position ENSO predictors that belong to the same time on
spatial grids, where each grid is for each predictor. These spatial
grids are arranged next to each other to form a spatial feature
map, and this spatial feature map is fed to the prediction model
to determine ONI.

LSTMs are suitable for sequential prediction problems as
they can remember the state of the previous time step with the
help of memory gates. LSTM consists of three gates: input gate,
forget gate, and output gate. With these gates, LSTM decides
what information to store inside the memory unit and what
information to throw away. More information about LSTM can
be found in [30]. The flow of information through gates of
LSTM is given by the following equations.

𝑖! = 	𝜎(𝑊"#𝑋! +𝑊$#𝐻!%& +𝑊'#°𝐶!%& + 𝑏#) (1)

𝑓! = 	𝜎(𝑊"(𝑋! +𝑊$(𝐻!%& +𝑊'(∘ 𝐶!%& + 𝑏() (2)

𝐶! = 𝑓! ∘ 𝐶!%& + 𝑖! ∘ 	tanh	(𝑊")𝑋! +𝑊$)𝐻!%& + 𝑏)) (3)

𝑜! = 	𝜎(𝑊"*𝑋! +𝑊$+𝐻!%& +𝑊'+ ∘ +𝑏*) (4)

𝐻! =	𝑜! 	 ∘ 	tanh	(𝐶!) (5)

Here 𝑖!, 𝑓!, 𝑜! represents the input, forget, and output gates
respectively, 𝑊 with any suffix represents weight matrices, 𝑏
with any suffix represents bias vectors and ∘ represents
Hadamard product. Though LSTM has shown promising
performance in sequence prediction problems, the full
connections in input and hidden layers of LSTM cannot encode
spatial information and therefore underperforms for spatial-
temporal prediction problems. CNN has outperformed other
neural network architectures in image processing and computer
vision due to its ability to capture pixel dependencies in the
image. Unlike LSTM, CNN does not have memory gates to
remember the state of previous time steps and therefore
underperforms for sequential data.

A. CLSTM
In a recent study, Shi et al. [4] introduced CLSTM for a

spatial-temporal prediction problem. CLSTM combines the
advantages of CNN and LSTM by replacing the full connections
in the input and hidden layers of LSTM with convolutional
windows. With this architecture, CLSTM can capture both
spatial and temporal dependencies between predictors and the
target variable. Therefore, we employ CLSTM in this study to
forecast ONI. The flow of information through the gates of
CLSTM is as follows.

𝑖! = 	𝜎(𝑊"# ∗ 𝑋! +𝑊$# ∗ 𝐻!%& +𝑊'#°𝐶!%& + 𝑏#) (6)

𝑓! = 	𝜎(𝑊"(∗ 𝑋! +𝑊$(∗ 𝐻!%& +𝑊'(°𝐶!%& + 𝑏() (7)

𝐶! = 𝑓!°	𝐶!%& + 𝑖!°	tanh	(𝑊") ∗ 𝑋! +𝑊$) ∗ 𝐻!%& + 𝑏)) (8)

𝑜! = 	𝜎(𝑊"* ∗ 𝑋! +𝑊$+ ∗ 𝐻!%& +𝑊'+°𝐶!%& + 𝑏*) (9)

𝐻! =	𝑜!	°	tanh	(𝐶!) (10)

Here * represents convolution operation and ∘ represents
Hadamard product. The original CLSTM proposed in [4]
follows encoding-forecasting structure for spatial-temporal
sequence-to-sequence prediction. The dimensionality of the
target is the same as the input. However, the encoding-
forecasting structure cannot be implemented in this study due to
different input and target dimensions. The architecture of the
CLSTM consists of a 2D-CLSTM layer, a dropout layer, and
three fully connected dense layers. The CLSTM layer consists
of 32 filters, each filter with a size of 5×5. The size of the filter
and the number of filters is determined using hyperparameter
tuning. A dropout value of 0.5 means, only 50% of the output
from the CLSTM layer is used as an input to successive layers
of the network. Dropout avoids overfitting of training data. The
first two layers of the fully connected layers consist of 128 and
64 neurons respectively, and the third layer (output layer) has as
many neurons as the lead time. For example, the architecture for
a lead time of 3 months has three neurons in its output layer.

B. Optimizing Model Parameters using Variational Inference
CLSTM provides the ENSO forecast when the model

parameters 𝜔 are known. To quantify the uncertainty associated
with the forecasts, we need to obtain the probability density
function of ONI. This can be achieved when the true posterior
distribution of model parameters given the observed data is
known. Thus, the posterior distribution of model parameters
according to the Bayesian rule is given as follows.

𝑃(𝜔|𝑋, 𝑌) = 	 ,(.,0|2),(2)	
∫,6𝑋, 𝑌	7𝜔8	,(2)	92 (11)

Here 𝑃(𝜔) is the prior of model parameters, 𝑃(𝜔|𝑋, 𝑌) is
the true posterior distribution of model parameters given
observed data, 𝑃(𝑋, 𝑌|𝜔) is the likelihood of observed data.
However true posterior is generally intractable due to the
multidimensional integrals in the denominator of (11).
Variational inference (VI) is a technique used to approximate the
posterior of model parameters P(𝜔|𝑋, 𝑌) by minimizing the
distance between variational distribution 𝑞:(𝜔) and true
posterior. This is achieved by minimizing the Kullback-Leibler
divergence (KL-divergence) between the variational distribution
and the true posterior. Minimizing KL-divergence is the same as

311

maximizing the evidence lower bound (ELBO) concerning the
variational parameters. Therefore, the final objective is to obtain
the optimal distribution of model parameters by maximizing
ELBO. The same can be formulated as follows.

𝐸𝐿𝐵𝑂 = 𝐿(𝑞) − 𝐾𝐿D𝑞:(𝜔)||𝑃(𝜔)E (12)

Here the first term L(q) is called expected log-likelihood and
the second term is the KL distance between a variational
distribution and true distribution of model parameters.
Maximizing the first term would result in variational distribution
𝑞:(𝜔) that explains the distribution of data well. Maximizing
the second term would help the model from overfitting. The
variational distribution 𝑞:(𝜔) is assumed to be Gaussian with a
predefined probability 𝜌 and the standard deviation 𝜎. The first
term in (12) can be approximated by a Monte Carlo estimate
using the mini-batches chosen randomly from the full dataset [X,
Y] as follows.

𝐸𝐿𝐵𝑂~ − ;
<
∑ ||𝑌= − 𝑓02> (𝑋=)||?<
=@& (13)

−𝐾𝐿(𝑞:(𝜔)||𝑃(𝜔))

It is also assumed that prior follows a normal distribution
with zero mean and unit variance Ν(0, 𝐼). Therefore, the KL-
divergence can be approximated as L2 regularization over the
variational parameters θ. Once the optimal value of the
variational distribution is obtained, the same can be used to
approximate the true posterior. Now, given a test sample x*, the
probability of forecasting its output y* is given by (14).

𝑃(𝑦∗|𝑥∗, 𝑋, 𝑌) = 	∫𝑃(𝑦∗| 𝑓B∗
2> (𝑥∗))	𝑞:(𝜔)	𝑑𝜔 (14)

To verify the performance of CLSTM, machine learning
models, such as SNN, LSTM, CNN, and gaussian process
regressor (GPR) are employed as baselines. The network
settings used for baselines are as follows. The structure of SNN
consists of three fully connected layers. The first two layers of
SNN have 100 nodes each, followed by a third layer with as
many neurons as the lead time. Similar to SNN, the structure of
LSTM consists of three fully connected layers. The first two
fully connected layers consist of 128 and 64 neurons
respectively. The third fully connected layer has as many nodes
as the lead time. Unlike CLSTM, where a sample is spatial maps
of ENSO predictors of the same time, a sample in SNN and
LSTM is ENSO predictors of a single geographical coordinate.
Therefore, we need to train multiple LSTMs for data points
recorded at the same time. The structure of CNN consists of two
convolutional layers followed by a max-pooling layer after each
convolutional layer and three fully connected dense layers. The
first convolutional layer has 64 filters, each filter of size 5×5.
The second convolutional layer has 32 filters, each filter of size
3×3. The first two fully connected layers have 100 nodes each,
followed by a third layer with as many neurons as the lead time.
For all neural network-based baselines, Relu is the activation
function used in the hidden layers. GPR is a probabilistic method
based on Bayesian theory. Multiple GPR models are trained for
data points recorded at the same time. Each model corresponds
to each geographical coordinate. In all baselines, mean squared
error (MSE) is the loss function employed for error
backpropagation.

V. RESULTS AND DISCUSSIONS
The results of hyperparameters are discussed as follows. The

size of the filter and the number of filters determine the spatial
information captured by the model.

Figure 2. Coefficient of determination (R2) in forecasting ONI by CLSTM for
different number of filters

An increase in filter size increases the model’s ability to
capture multiple representations of the spatial dependencies.
However, with more filters, the complexity of the model
increases and they overfit training data quickly. Figure 2
illustrates the performance of CLSTM for various filter sizes and
lead times. From the figure, it is evident that the R2 value
increases when the number of filters is changed from 16 to 32
and decreases when the number of filters is changed from 32 to
64. Since the performance of CLSTM with 32 filters is greater,
the optimal choice for the number of filters is 32.

Figure 3. Coefficient of determination (R2) in forecasting ONI by CLSTM for
different sizes of the filter

As the filter size increases, CLSTM can capture a wide range
of spatial dependencies between variables. Generally, odd-sized
filters are used for modeling. The performance of CLSTM for
various sizes of the filter is illustrated using Figure 3. A filter of
size 1 × 1 means no spatial information is encoded for
forecasting. For shorter lead times, filter size doesn’t seem to
have much effect on the model performance. For lead time
beyond 6-months, the filter size of 5 × 5 performs best. From
the results, we can conclude that for longer lead times, the model
performs best when provided with larger amounts of spatial
information.

The forecasting skill of all the experiments conducted in this
study is verified using three metrics: root mean squared error
(RMSE), mean absolute error (MAE), and coefficient of

0

0.2

0.4

0.6

0.8

1

1 3 6 9 12

R2

Lead time in months

16 32 64Number of filters

0

0.2

0.4

0.6

0.8

1

1 3 6 9 12

R2

Lead time in months

1 3 5 7Size of the filter

312

determination (R2). The metrics are defined by the following
equations.

𝑅𝑀𝑆𝐸 = S&
;
∑ (𝑦# − 𝑦CT)?;
#@& 	 (15)

MAE = &
;
∑ (𝑦# − 𝑦CT);
#@& (16)

R2 = 1 −	 ∑ (B"%B#E)
$
"%&

'

∑ (B"%B#FFF)$
"%&

' (17)

Here, 𝑦# 	and 𝑦CT denotes the actual and predicted values of
the ith sample in the testing set, 𝑦V and N denotes the mean and
total number of samples in the testing set. The smaller is the
values of RMSE and MAE, the better is the model performance.
R2 reaches its best at one and worst at zero.
TABLE I. ACCURACY OF REGRESSION MODELS IN FORECASTING ONI

 Lead time in months
Model Metric 1 3 6 9 12
SNN RMSE 0.77 0.82 0.87 0.95 1.15

MAE 0.83 0.87 1.17 1.23 1.45
R! 0.66 0.58 0.45 0.32 0.28

LSTM RMSE 0.45 0.51 0.53 0.76 0.97
MAE 0.79 0.76 0.84 0.80 0.99
R! 0.89 0.81 0.67 0.59 0.42

CNN RMSE 0.52 0.58 0.73 0.67 0.95
MAE 0.71 0.78 0.72 0.88 1.23
R! 0.88 0.73 0.65 0.54 0.45

GPR RMSE 2.38 3.21 4.78 5.02 7.87
MAE 1.99 2.96 3.92 4.85 6.92
R! 0.22 0.18 0.13 0.11 0.10

CLSTM RMSE 0.23 0.62 0.70 0.69 0.82
MAE 0.67 0.72 0.70 0.75 0.85
R! 0.96 0.93 0.74 0.66 0.52

Continuous rank probability score (CRPS) is the metric used
to assess the performance of probabilistic forecasts. It is defined
by the following equation.

𝐶𝑅𝑃𝑆 =	∫ [𝑃(𝑥) − 𝐻(𝑥 − 𝑦+GH)]?I∞
%∞ (18)

Here 𝑃(𝑥) is the cumulative distribution function (CDF) of
the forecast, 𝑦+GH is the observed value, and H is the Heaviside
function, whose value is zero if 𝑥 −	𝑦+GH < 0 and one if 𝑥 −
	𝑦+GH > 0 . The CRPS achieves a perfect score (zero) if the
observed and forecast values are the same.

Table 1 shows the comparison of different models for
various lead times. The following observations are drawn from
the results displayed in the table. The proposed model, CLSTM,
outperforms other models in terms of R2, RMSE, and MAE for
various lead times. Particularly, R2 values are close to one for
lead times up to three months. Although the value of R2

gradually drops for a lead time beyond six months, the proposed
model is still superior when compared with others. CNN and
LSTM almost performed equally in terms of R2 for lead time up
to six months. The better performance of CNN is due to the
ability to capture spatial relationships between ENSO predictors
and ENSO. The better performance of LSTM is due to the ability
to capture temporal relationships between ENSO predictors and
ENSO. The performance of CNN and LSTM drops beyond six
months. SNN performed moderately for a lead time of three

months. Beyond three months, the performance of SNN drops
due to the lack of proper handling of spatial-temporal data. GPR
achieved lower R2 and greater RMSE, and MAE scores.
Experimental results demonstrate the ability of CLSTM in
capturing both spatial and temporal relationships between ENSO
predictors and ENSO. The results indicate the forecast accuracy
is improved by 14.8%, 10.4%, 11.8%, and 22.2% for lead times
of 3, 6, 9, and 12 months respectively.

TABLE II. ACCURACY OF MODELS IN FORECASTING PROBABILISTIC
DENSITY OF ONI

 Lead time in months
Model 1 3 6 9 12
GPR 0.739 0.858 1.29 1.87 2.25
CLSTM 0.726 0.844 1.08 1.66 1.98

The CRPS scores for GPR and CLSTM are reported in Table
2. From the table, it is clear that CLSTM has the lowest CRPS
score value for all lead times. The results conclude that the
proposed model, CLSTM-BVI not only provides an accurate
forecast but also a reliable probability density of the ONI.

Figure 4. Forecasted versus observed ONI

To estimate the forecast uncertainty obtained by CLSTM,
Figure 4 is plotted for forecasted ONI and observed ONI. The
light blue shade represents the 95% prediction interval, the light
gray shade represents the 70% prediction interval. The blue solid
line represents the forecasted ONI, and the dashed red line
represents the observed ONI. As shown in the figure, the
forecasted ONI follows the observed ONI, demonstrating the
accuracy of CLSTM. Also, the observed ONI falls within the
95% prediction interval which means the proposed model is 95%
confident that future values of ONI are contained within the 95%
prediction interval.

VI. CONCLUSIONS AND FUTURE DIRECTIONS
Experimental results demonstrate that CLSTM outperforms

other models in terms of R2, RMSE, and MAE. The R2 value of
CLSTM is close to one for shorter lead times (< 6 months),
indicating the superiority of CLSTM in capturing spatial and
temporal relationships between ENSO predictors and ENSO.
However, the R2 value gradually drops to 0.52 for longer lead
times (> 6 months). An overall improvement in the forecast
accuracy of CLSTM is observed. Experimental results indicate
that the forecast accuracy of the proposed model improves by
14.8%, 10.4%, 11.8%, and 22.2% for lead times of 3, 6, 9, and

-2

-1

0

1

2

2013 2014 2015 2016 2017 2018 2019

ONI

Year

95% Prediction Interval 75% Prediction Interval
Observed Forecast

313

12 months respectively. The low CRPS value proves the
superiority of the proposed model when compared with GPR. In
addition to the forecast, the uncertainty associated with the
forecast is also shown. The experimental results demonstrate
that the CLSTM is 95% confident that the future values of ONI
are contained within the 95% prediction interval. Therefore, the
proposed model not only improves the forecast accuracy but also
quantifies uncertainty associated with the forecast.

In future work, other environmental variables, such as warm
water volume, westerly wind bursts, and upper ocean heat
content can be added as predictors for forecasting ENSO. A
robust framework can be built by adding more layers to the
CLSTM network. Advanced methods can be proposed by
integrating the existing methods with numerical weather
prediction models.

REFERENCES

[1] S. Philander, "El Nino, La Nina, and the Southern Oscillation,"

International Geophysics Series, vol. 46, 1990.
[2] M. S. Baawain, M. H. Nour, A. G. El-Din and G. E.-D. Mohamed, "El

Niño southern-oscillation prediction using southern oscillation index and
Niño3 as onset indicators: Application of artificial neural networks,"
Journal of Environmental Engineering and Science, vol. 4, no. 2, pp.
113-121, 2005.

[3] F. T. Tangang, W. W. Hsieh and B. Tang, "Forecasting regional sea
surface temperatures in the tropical Pacific by neural network models,
with wind stress and sea level pressure as predictors," Journal of
Geophysical Research: Oceans, vol. 103, no. C4, pp. 7511-7522, 1998.

[4] X. Shi, . Z. Chen, H. Wang, . D.-Y. Yeung, W.-k. Wong and W.-c. Woo,
"Convolutional LSTM Network: A Machine Learning Approach for
Precipitation Nowcasting," Advancement in Neural Information
Processing and Systems, pp. 802-810, 2015.

[5] B. Mu, C. Peng, S. Yuan and L. Chen, "ENSO Forecasting over Multiple
Time Horizons Using ConvLSTM Network and Rolling Mechanism," in
2019 International Joint Conference on Neural Networks (IJCNN) ,
Budapest, Hungary, 2019.

[6] M. Hashemi, "A testbed for evaluating network construction algorithms
from GPS traces," Computers, Environment, and Urban Systems, pp. pp.
96-109, 2017.

[7] M. Hashemi, "Automatic Inference of Road and Pedestrian Networks
From Spatial-Temporal Trajectories," IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 12, pp. 4604-4620, 2019.

[8] M. Hashemi, "Intelligent GPS trace management for human mobility
pattern detection," Cogent Engineering, vol. 4, no. 1, p. 1390813, 2017.

[9] M. Hashemi and A. A. Alesheikh, "A GIS-based earthquake damage
assessment and settlement methodology," Soil Dynamics and
Earthquake Engineering, vol. 31, no. 11, pp. 1607-1617, 2011.

[10] M. Hashemi and A. A. Alesheikh, "Development and implementation of
a GIS-based tool for spatial modeling of seismic vulnerability of Tehran,"
Natural Hazards and Earth System Sciences, vol. 12, pp. 3659-3670,
2012.

[11] M. Hashemi and A. A. Alesheikh, "Spatio-Temporal Analysis of
Tehran's Historical Earthquakes Trends," Advancing Geoinformation
Science for a Changing World, Springer, pp. 3-20, 2011.

[12] M. Hashemi and H. A. Karimi, "Seismic Source Modeling by Clustering
Earthquakes and Predicting Earthquake Magnitudes," Smart City
360°,Springer, pp. 468-478, 2016.

[13] M. Hashemi and H. A. Karimi, "Weighted machine learning for spatial-
temporal data," IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 13, pp. 3066-3082, 2020.

[14] M. Hashemi, A. A. Alesheikh and M. R. Zolfaghari, "A spatio-temporal
model for probabilistic seismic hazard zonation of Tehran," Computers
& Geosciences, vol. 58, pp. 8-18, 2013.

[15] J. Jonnalagadda and M. Hashemi, "Forecasting Atmospheric Visibility
Using Auto Regressive Recurrent Neural Network," in 2020 IEEE 21st
International Conference on Information Reuse and Integration for Data
Science (IRI), Las Vegas, NV, USA, 2020.

[16] S. Aguilar-Martinez, W. W. Hsieh and L. Kantha, "Forecasts of Tropical
Pacific Sea Surface Temperatures by Neural Networks and Support
Vector Regression," International Journal of Oceanography, vol. 2009,
pp. 1-13, 2009.

[17] Y.-G. Ham and J.-H. Kim, "Deep learning for multi-year ENSO
forecasts," Nature, vol. 573, pp. 568-572, 2019.

[18] H. A. Dijkstra, P. Petersik, E. Hernández-García and C. López, "The
application of machine learning techniques to improve El Niño
prediction skill," Frontiers of Physics, vol. 7, pp. 1-13, 2019.

[19] P. D. Nooteboom, Q. Y. Feng, C. Lopez, E. Hernandez- Garcia and H.
A. Dijkstra, "Using Network Theory and Machine Learning to predict El
Nino," Physics - Atmospheric and Oceanic Physics, 2018.

[20] S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer,
Y.-T. Hou, H.-Y. Chuang, M. Iredell, J. Meng, R. Yang, M. Mendez, H.
Van Den Dool, Q. Zhang, W. Wang , M. Chen and E. Becker, "The
NCEP Climate Forecast System version 2," Journal of Climate, vol. 27,
no. 6, pp. 2185-2208, 2014.

[21] H. Zhang, C. Pao-Shin, L. He and D. Unger, "Improving the CPC’s
ENSO Forecasts using Bayesian model averaging," Climate Dynamics,
vol. 53, no. 5-6, pp. 3373-3385, 2019.

[22] H. M. Van Den Dool, "Searching for analogues, how long must we
wait?," Tellus, vol. 46, no. 3, pp. 314-324, 1994.

[23] Y. He and A. G. Barnston, "Long-lead forecasts of seasonal precipitation
in the tropical Pacific Islands Using CCA," Journal of Climate, vol. 9,
pp. 2020-2035, 1996.

[24] Y. Xue and A. Leetma, "Forecasts of tropical Pacific SST and sea level
using a Markov model," Geophysical Research Letters, vol. 27, pp. 2701-
2704, 2000.

[25] B. Lakshminarayanan, A. Pritzel and C. Blundell, "Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles," Advances in
neural information processing systems, vol. 30, pp. 6402-6413, 2017.

[26] P. L. McDermott and C. K. Wikle, "Bayesian Recurrent Neural Network
Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal
Data," Entropy, vol. 21, no. 2, p. 184, 2019.

[27] P. J. Petersik and H. A. Dijkstra, "Probabilistic Forecasting of El Niño
Using Neural Network Models," Geophysical Research Letters , vol. 47,
no. 6, 2020.

[28] "National Oceanic and Atmospheric Administration," [Online].
Available: https://www.ncdc.noaa.gov/teleconnections/enso/indicators.
[Accessed 10 January 2021].

[29] "NCEP/NCAR Reanalysis 1: Summary," [Online]. Available:
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html. [Accessed
10 January 2021].

[30] J. S. S. Hochreiter, "Long short-term memory," Neural computation, vol.
9, no. 8, pp. 1735-1780, 1997.

314

Recurrent Neural Graph Collaborative Filtering
Beichuan Zhang, Zhijiao Xiao∗ and Shenghua Zhong

College of Computer Science and Software Engineering, Shenzhen University, China
zhangbeichuan2019@email.szu.edu.cn, {cindyxzj, csshzhong}@szu.edu.cn

Abstract—Collaborative Filtering (CF) is a prevalent technique
in recommender systems. Substantial research focuses on learning
the embedding of users and items via exploiting past user-item
interactions. Recent years have witnessed the boom of Graph
Convolutional Networks (GCNs) on CF. Performing graph con-
volution iteratively, GCN-based models concatenate/average/sum
all outputs from different graph convolution layers to generate
the embeddings of users and items. Although the previous
methods have been proven effective, the pooling operations in
the previous methods fail to consider the outputs from different
graph convolution layers have different weights and the weights
are related to sequential dependencies from precursor nodes. To
resolve the aforementioned problems, in this work, we present
a new model, Recurrent Neural Graph Collaborative Filtering
(RNGCF), which proposes a sequential dependency construction
module to adaptively generate the embeddings. Specifically, the
module applies a gated recurrent unit (GRU) to learn the
sequential dependencies from precursor nodes and an adaptive
gated unit (AGU) to adaptively construct the embeddings based
on the sequential dependencies. Extensive experiments on three
benchmark datasets show that our model outperforms state-of-
the-art models consistently. Our implementation is available in
PyTorch 1.

Keywords—Collaborative Filtering, Graph Convolutional Net-
work, Recurrent Neural Network, Recommender System

I. INTRODUCTION

To alleviate information overload on the web, recommender
systems have been widely applied to many online services
such as E-commerce and advertising [1], [2]. The goal of
recommender systems is to predict whether a user will interact
with an item, e.g., click, rate, purchase. As an effective solu-
tion, CF achieves the prediction via exploiting past user-item
interactions. In CF, substantial research focuses on learning the
embeddings of users and items to predict a user’s preference
for an item based on the similarity of the embeddings [2],
[3]. As many user-item interaction data show graph structures,
GCNs [4], [5] have been widely applied to CF [6], [7]. In
GCNs, one graph convolution layer aggregates the features
from nodes that are one hop away in the graph. This implies
that the output of the k-th graph convolution layer aggregates
the features from nodes that are k hops away in the graph [8].
Performing graph convolution iteratively, existing GCN-based
works on CF concatenate/average/sum the all outputs from
different graph convolution layers to generate the embeddings
of users and items for combining all features from different
hops [6], [7], [9].

1https://github.com/Book1996/RNGCF
DOI reference number: 10.18293/SEKE2021-015

i2

i1
i2
i3
i4

i5

u1

u2

u3

User-Item Interaction Graph

u3

u1

u2

i1

i2

i3

i4 i5
Multi-hop Path for u1

Fig. 1. An example of the paths rooted at u1. Nodes in different color circles
belong to different hops.

Although the previous methods have been proven effective,
the pooling operations in the previous methods fail to consider
the outputs from different graph convolution layers have
different weights and the weights are related to the sequential
dependencies from precursor nodes. In a user-item interaction
graph, the explanations behind a progressive path unveil the
nodes from different hops have different roles in reflecting the
preference of users. For example, a bipartite user-item graph
is denoted as Figure 1 left, where the edges between user
u and item i are observed interactions. Examining the paths
rooted at u1 as Figure 1 right, as discuss in papers [6], [10],
the first-hop path u1 → {i1, i2, i3} shows u1’s preference is
related to the features of i1, i2 and i3; the second-hop path
u1 → {i1, i2, i3} → {u2, u3} shows the behavioral similarity
between u1 and {u2, u3}, because u2 and u3 have interacted
with the items that u1 also has interacted with; the third-hop
path u1 → {i1, i2, i3} → {u2, u3} → {i4, i5} shows u1 may
be interesting in i4 and i5, since u1’s similar users {u2, u3}
have consumed i4 and i5. This example shows the neighbor
nodes from different hops have different roles in reflecting
the preference of u1. Furthermore, the roles of the nodes are
related to the precursor nodes. In other words, the features of
the nodes that are different hops away would have different
weights to generate the embedding of u1. Ignoring this fact, the
existing works have several limitations: 1) Without adaptively
constructing the embeddings could lead to the suboptimal
representations of nodes; 2) Suppose there are two paths, the
two paths are composed of the same nodes. But the orders of
the nodes in the two paths are different. The average operations
in the existing works may confuse the two paths to make the
embeddings excessively similar.

To address the aforementioned problems, we propose a
new GCN-based model, Recurrent Neural Graph Collaborative
Filtering (RNGCF). RNGCF inputs a user’s ID and a candidate
item’s ID and apply GCNs to output the user’s preference for
the candidate item. Different from GCN-based previous meth-
ods, we propose a sequential dependency construction module

315

user u

item i

User-Item GraphUser-Item Graph User-Item Graph

Initial Embedding

Initial Embedding
One-hop Embedding K-hop EmbeddingTwo-hop Embedding…

GRU GRU GRU

…

…
…

Final Embedding

Prediction scorevector dot product

flow of information

Graph Convolutional LayerEmbedding Layer

AGU

AGU

Fig. 2. An illustration of RNGCF model architecture. Arrowed lines present the flow of information. Orange presents user u, and blue presents item i.

to adaptive construct the embeddings of users and items. The
construction module applies a GRU [11] to learn the sequential
dependencies from precursor nodes and an adaptive gated
unit (AGU) to adaptive construct the embeddings of users
and items based on the sequential dependencies. We perform
extensive experiments on three standard large real-world CF
datasets, and the results clearly show our model can achieve
better performance than state-of-the-art methods. To justify the
designs in our model, we further conduct ablation studies on
RNGCF. The results show each component of RNGCF has
contributions to performance. To summarize, this work makes
the following main contributions:

• We point out it is important to adaptively construct the
embeddings of users and items based on the sequential
dependencies from precursor nodes for our task.

• We propose a new GCN-based model RNGCF, which
applies a gated recurrent unit (GRU) and an adaptive
gated unit (AGU) to adaptively construct the embeddings
of users and items based on the sequential dependencies.

• We demonstrate our model can achieve state-of-the-art
results by extensive experiments on three standard large
real-world CF datasets.

II. RELATED WORK

A. Model-based CF Methods

Collaborative Filtering (CF) is a prevalent technique in mod-
ern recommender systems. Among the various CF methods,
item-based methods estimate a user’s preference for an item
via measuring the item’s similarities with the items in her/his
interaction history [12]. User-based methods estimate a user’s
preference for an item via finding similar users to the current
user and then recommend the items in her/his similar users’
interaction history. Other research focuses on learning the em-
bedding of users and items by reconstructing historical user-
item interactions. For example, Matrix Factorization (MF) [13]
reconstructs historical user-item interactions via conducting
inner product between the embeddings of users and items.
BPR-MF [3] presented a pairwise ranking loss to optimize
MF. NCF [14] pointed out that the inner product in MF had
an inherent limitation and replaced the inner product with a
multiple-layer perceptron (MLP). Another type of CF method
does not project the IDs of each user as embedding vectors,

the methods consider historical items of a given user as the
embedding of the user [15], [16]. For example, SVD++ [15]
regarded the weighted average of the embeddings of historical
items as the embedding of users. With the development of
attention mechanism, ACF [16] proposed to adaptive learn the
weight of each historical item. We focus on how to learn the
embedding parameters of users and items.

B. Graph-based CF Methods

Recent years have witnessed the boom of Graph Convo-
lutional Networks (GCNs) [4], [5], [17]–[19]. As many real-
world datasets in recommender systems show graph structures,
researchers attempt to adopt GCNs for recommendation [1],
[7], [20]. For example, Graph Convolutional Matrix Comple-
tion (GCMC) [21] proposed a graph auto-encoder framework
to resolve matrix completion tasks. PinSage [1] combined ran-
dom walk and graph convolution to handle recommendation
tasks with billions of items and hundreds of millions of users.
HOP-Rec [22] introduced confidence weighting parameters
to incorporate graph convolution and random walk. NGCF
[6] devised a new graph convolution layer to encode more
collaborative signals into the embeddings of users and items.
LightGCN [7] proved that the feature transformation and
the nonlinear activation in NGCF [6] were useless in the
recommendation task that only uses the IDs of users and
items. NGAT4rec [9] employed a novel neighbor-aware graph
attention layer that assigned different attention coefficients
to the different neighbors of a given node. Although the
previous methods have been proven effective, the pooling
operations in the previous methods fail to consider the out-
puts from different graph convolution layers have different
weights. Our GCN-based method applies a GRU and an AGU
to adaptively construct the embeddings of users and items.
There are other approaches that combine GCNs and recurrent
architectures on different domains. For example, Evolving
Graph Convolutional Networks (EGCN) [23] used a GRU
to capture the dynamism of the graph sequence. For traffic
prediction, Temporal Graph Convolutional Network (T-GCN)
[24] adopted GCN to capture spatial dependence and GRU to
capture temporal dependence.

316

III. METHOD

In this section, we introduce the architecture of our model
in detail as shown in Figure 2, which includes an embedding
layer, stacked graph convolution layers, a sequential depen-
dency construction module.

A. Problem Formulation

In many real-world recommendation scenarios, user implicit
data (e.g., click, rate, purchase) are more common than explicit
data (e.g., ratings). Following previous GCNs based models
[6], [7], we focus on implicit data. Suppose we have N users,
M items and an user-item interaction graph G. Based on G, we
can define R ∈ {0, 1}N×M as an implicit feedback interaction
matrix. Entry Rui in the interaction matrix R indicates whether
user u interacted item i, which can be defined as follow:

Rui =

{
1 if (u,i) interaction is observed
0 otherwise

(1)

Typically, most of the entries in the interaction matrix R are
unobserved (0). Based on the interaction matrix R, the aim of
our task is to predict preference scores for unobserved entries
in R.

B. Embedding Layer

Following most of recommender models [3], [25], [26], we
create an embedding table Eo ∈ R(M+N)×d to project the IDs
of N users and M items into initial vector representations,
where d denotes the embedding size:

E0 = [e0u1
, e0u2

, ..., e0uN−1
, e0uN︸ ︷︷ ︸

user′s embedding

, e0i1 , e
0
i2 , ..., e

0
iM−1

, e0iM]︸ ︷︷ ︸
item′s embedding

. (2)

We represent the initial embeddings of user u and item i by
e0u ∈ Rd and e0i ∈ Rd, respectively. It is worth noting that
these embeddings serve as the initial states for user u and
item i, but are not embeddings that are used to predict. Thus,
the superscript of the embeddings is 0.

C. Graph Convolutional Layer

Following the prior works [7], [10], we remove the two most
common designs in GCNs: the feature transformation and the
non-linear activate function. The stacked graph convolution
layer in RNGCF is defined as:

eku =
1

|Nu|+ 1
e(k−1)
u +

∑
j∈Nu

1√
(|Nu|+ 1)(|Nj |+ 1)

e
(k−1)
j ,

eki =
1

|Ni|+ 1
e
(k−1)
i +

∑
j∈Ni

1√
(|Ni|+ 1)(|Nj |+ 1)

e
(k−1)
j ,

(3)

where Nu denotes the set of items that are interacted by user u,
Ni denotes the set of users that interact with item i. eku ∈ Rd and
eki ∈ Rd respectively represent the new embeddings of user u and
item i after k graph convolutional layers.

D. Sequential Dependency Construction Module

1) Gated Recurrent Unit: After K graph convolutional layers,
we can get two sequences Su = {e1u, ..., eKu }, Si = {e1i , ..., eKi } for
user u and item i, respectively. At present, the most widely used neu-
ral network models for processing sequence are the recurrent neural
networks (RNNs) and Transformer [27]. Compared with LSTM [28]
and Transformer [27], the GRU [11] has a relatively simple structure.
Since LightGCN has proved that excessive parameters and nonlinear
structures have no positive effect on the effectiveness of GCN based
models on our task. Thus, we choose GRU to exploit the sequential
dependencies in Su and Si:

cu = GRU(e1u, ..., e
K
u),

ci = GRU(e1i , ..., e
K
i),

(4)

We regard cu ∈ Rd and ci ∈ Rd as the sequential dependencies in
Su and Si, respectively. GRU: RK×d → Rd

2) Adaptive Gated Unit: In order to fully consider the sequence
dependence and the original graph convolution output, we propose an
adaptive gated unit (AGU) to adaptive construct the final embeddings
of users and items based on the sequential dependencies, which can
be defined as:

efu = σ(Wcu + b)⊗ eKu + eKu ,

efi = σ(Wci + b)⊗ eKi + eKi .
(5)

where W ∈ Rd×d, b ∈ Rd are learnable parameters. ⊗ is the
element-wise product. σ is Sigmoid function.

E. Message and Node Dropout

Following the prior works [6], [21], we adopt two dropout tech-
niques in RNGCF: message dropout and node dropout. Specifically,
we apply the node dropout to randomly drop out some observed
interactions. We apply the message dropout to drop out elements in
Equation 4 and 5, which are updated as:

cu = GRU(Dropout(e1u, ..., e
K
u)),

ci = GRU(Dropout(e1i , ..., e
K
i)),

efu = Dropout(σ(Wcu + b)⊗ eKu) + eKu ,

efi = Dropout(σ(Wci + b)⊗ eKi) + eKi .

(6)

F. Model Prediction

The model prediction is defined as the inner product of the final
embeddings of user u and item i.

ŷui = (efi)
T efu, (7)

where ŷui is used as the ranking score for recommendation.

G. Model Training

As most of previous methods [7], [9], we employ Bayesian Per-
sonalized Ranking (BPR) loss [3] to optimize RNGCF. The objective
function can be defined as:

LBPR = −
N∑

u=1

∑
i∈Nu

∑
j /∈Nu

lnσ (ŷui − ŷuj) + λ||E0||2, (8)

where Nu denotes the set of items that user u interacted with. λ
controls the L2 regularization strength to prevent overfitting. σ is
Sigmoid function.

317

0.025

0.035

0.045

0.055

0.065

1 6 1116212631364146515661

R
ec

al
l@

20

EPOCH

Recall@20 on AMAZON

LightGCN

RNGCF
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14

1 6 11 16 21 26 31 36 41 46 51 56 61

LO
SS

EPOCH

LOSS on Yelp2018
LightGCN

RNGCF

0.04
0.045
0.05

0.055
0.06

0.065
0.07

0.075

1 6 1116212631364146515661

R
ec

al
l@

20

EPOCH

Recall@20 on Yelp2018

LightGCN

RNGCF
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14

1 6 11 16 21 26 31 36 41 46 51 56 61

LO
SS

EPOCH

LOSS on AMAZON

LightGCN

RNGCF

Fig. 3. Training curves of LightGCN and RNGCF, which are evaluated by training loss and testing recall@20 per 10 epochs on Yelp2018 and Amazon-Book.

Table I. Statistics of experimented data.

Dataset User# Item# Interaction# Density

Gowalla 29,858 40,981 1,027,370 0.00084
Yelp2018 31,668 38,048 1,561,406 0.00130
Amazon-Book 52,643 91,599 2,984,108 0.00062

IV. EXPERIMENTS

A. Experimental Settings
1) Baselines: NGCF [6] has shown to outperform several meth-

ods including GC-MC [21], PinSage [1], NeuMF [14], and HOP-Rec
[22]. As the comparison is done on the same datasets under the same
evaluation protocols, we do not further compare with these methods.
To verify the effectiveness of our approach, we compare it with the
following baselines:
• MF [3]: Matrix Factorization (MF) directly embedded user/item

IDs as vectored representations and modeled user-item interac-
tion with inner product.

• NGCF [6]: NGCF adopted three GCN layers on the user-item
interaction graph to encode more neighbors’ information into
the embeddings of users and items.

• LightGCN [7]: LightGCN proved nonlinear transformation
contributed little to the performance of NGCF.

• DGCF [10]: DGCF disentangled the representations of users
and items at the granularity of user intents since a user generally
had multiple intents to adopt certain items.

• NIA-GCN [2]: NIA-GCN proposed a cross-depth ensemble
layer to preserve the relational information in neighborhood.

• NGAT4rec [9]: NGAT4rec generated the embeddings of neigh-
bors according to the corresponding attention coefficients.

2) Dataset Description: To keep the comparison fair, we
conduct experiments on three benchmark datasets: Gowalla, Yelp2018
and Amazon-Book. The three datasets are exactly as same as the
LightGCN [7] and DGCF [10] paper used. For each dataset, 80%
of historical interactions of each user are selected to constitute the
training set, and the remaining historical interactions are treated as
the test set. Yelp2018 is about local businesses like restaurants and
bars. Amazon-Book is about the businesses like books. Gowalla con-
tains user-venue check-in information from a location-based social
network. The statistics of datasets are summarized in Table I.

3) Evaluation Metrics: To evaluate recommendation, we use
the same protocols as previous methods [7], [10]: Recall@20 and
NDCG@20. In the testing phase, we rank all items for a user and
evaluate whether the score of the historical items is higher than all
unobserved items’.

4) Parameter Settings: We implement our RNGCF model in
PyTorch. We optimize RNGCF with Adam and use the default
learning rate of 0.001. The default mini-batch size is 8192. We test
the number of graph convolutional layers in the range of 1 to 4, and
satisfactory performance can be achieved when the number of graph

Table II. Overview performance comparison. Bold scores are the best and
underlined scores are the second best.

Dataset Gowalla Yelp2018 Amazon

Method Recall NDCG Recall NDCG Recall NDCG

MF 0.1388 0.1291 0.0533 0.0423 0.0350 0.0249
NGCF 0.1629 0.1355 0.0579 0.0477 0.0347 0.0281
NIA-GCN 0.1726 0.1358 0.0599 0.0491 0.0369 0.0287
LightGCN 0.1860 0.1554 0.0660 0.0521 0.0435 0.0328
DGCF 0.1865 0.1562 0.0670 0.0534 0.0440 0.0335
NGAT4rec 0.1855 0.1534 0.0675 0.0554 0.0457 0.0358
RNGCF 0.1944 0.1628 0.0707 0.0582 0.0570 0.0442
%Impro. 5.53% 4.22% 4.74% 5.05% 24.72% 23.46%

0

0.2

0.4

0.6

0.8

1

Gowalla Yelp2018 Amazon-Book

co
si

ne
 s

im
ila

ri
ty

MF
LightGCN
RNGCF

Fig. 4. Similarity of the embeddings.

convolutional layers equals 3. The dropout rate is 0.3. Typically, 500
epochs are sufficient for RNGCF. For all methods, the embedding
size d is searched in {16, 32, 64, 128}, in most cases, the optimal
value is 128. The learning rate is searched in {0.005, 0.001, 0.0005,
0.0001}. The coefficient λ of L2 regularization term is tuned in
{10−4, 10−5, 10−6, 10−7, 10−8}, in most cases the optimal value is
10−5.

B. Performance Comparison

Table II shows the best performance of all methods on three
datasets. And Figure 3 shows the training curves of RNGCF and
LightGCN, which are evaluated by training loss and testing Re-
call@20 per 10 epochs on Yelp2018 and Amazon-Book (results
on Gowalla show similar trends which are omitted for space). Our
method RNGCF achieves significant improvements over all methods
across three datasets. In particular, RNGCF’s relative improvements
over the strongest baselines w.r.t. Recall@20 are 5.53%, 4.76%, and
24.72% in Gowalla, Yelp2018, and Amazon-Book, respectively. This
demonstrates the high effectiveness of our model. Across the three
datasets, we find that the improvements on Amazon-Book are much
more than that on the others. Compared with other datasets, Amazon-
Book is the sparsest dataset. This suggests that RNGCF may be more
suitable for sparse datasets.

318

Table III. Performance of RNGCF w.r.t different lengths of sequential
dependencies. Bold scores are the best.

Dataset Gowalla Yelp2018 Amazon

Length Recall NDCG Recall NDCG Recall NDCG

0 0.1850 0.1535 0.0670 0.0557 0.0501 0.0386
1 0.1913 0.1589 0.0688 0.0563 0.0555 0.0423
2 0.1923 0.1604 0.0695 0.0571 0.0562 0.0435
3(default) 0.1944 0.1625 0.0707 0.0582 0.0575 0.0442

Table IV. Performance of RNGCF w.r.t different orders of sequential
dependencies. Bold scores are the best.

Dataset Gowalla Yelp2018 Amazon

Order Recall NDCG Recall NDCG Recall NDCG

Default 0.1944 0.1625 0.0707 0.0582 0.0575 0.0442
Reverse 0.1900 0.1589 0.0683 0.0551 0.0513 0.0395
Rand-1 0.1913 0.1597 0.0681 0.0533 0.0501 0.0388
Rand-2 0.1918 0.1602 0.0682 0.0553 0.0515 0.0397

C. Impact of Sequential Dependencies
1) Analysis of Embedding Similarity: As we analyze in

Section I, the average operation in LightGCN [7] may confuse the
orders of high-order paths, which may make the embeddings of
nodes excessive similar. To verify this, we define the average cosine
similarity of the embeddings of interconnected nodes:

1

|R+|
∑

(u,i)∈R+

(
eue

T
i

||eu|| × ||ei||
), (9)

where R+ is a set of the observed interactions. Figure 4 shows the
similarity of embeddings learned by three models (MF, LightGCN,
and RNGCF). The similarity of embeddings learned by LightGCN
is higher than that of MF. This indicates graph convolution makes
the embeddings more similar, which is consistent with LightGCN’s
finding. The similarity of embeddings learned by RNGCF is lower
than that of LightGCN, but the performance of RNGCF does not
decrease. This demonstrates that the average operation may make
embeddings excessive similar.

2) Impact of Sequential Dependencies on Prediction: To
discuss the impacts of sequential dependencies on prediction, we
feed different variants of the outputs from different graph convolution
layers into GRU. Table III and Table IV show the impacts of the
length and the order of the outputs. Note that we sample two kinds
of outputs in random order to alleviate the impacts of accidental
factors. As the length of the outputs increases from 0 to 3, the
performance on the three datasets increases. This indicates complete
sequential dependencies are important to prediction. Shuffling the
outputs achieves worse results. This indicates correct sequential
dependencies can lead to good performance.

D. Ablation Studies
We perform ablation studies on RNGCF to show how the compo-

nents of RNGCF affect performance. Table V shows the results of
RNGCF and its variants on three datasets.
• Remove Dropout: We conduct RNGCF without Dropout on

three datasets. We find that the performance on three datasets
is significantly worse. The results show that the dropout can
effectively regularize our model to achieve better performance.

• Remove GRU: RNGCF without GRU achieves poor results on
three datasets. GRU is used to exploit the sequential dependen-
cies in multi-hop paths. The results may indicate the importance
of the sequential dependencies.

Table V. Performance of RNGCF and its variants. Bold scores are the best
and underlined scores are the second best.

Dataset Gowalla Yelp2018 Amazon-Book

Method Recall NDCG Recall NDCG Recall NDCG

RNGCF 0.1944 0.1628 0.0707 0.0582 0.0570 0.0442
Remove GRU 0.1850 0.1535 0.0688 0.0565 0.0501 0.0386
Remove Dropout 0.1841 0.1507 0.0673 0.0544 0.0541 0.0426
Remove AGU 0.1563 0.1252 0.0526 0.0433 0.0409 0.0323
Transformer 0.1894 0.1580 0.0690 0.0564 0.0546 0.0423
LSTM 0.1874 0.1562 0.0689 0.0563 0.0487 0.0377

0.025

0.035

0.045

0.055

0.065

16 32 64 128

R
ec

al
l@

20

Dimention

Recall@20 on AMAZON

MF

LightGCN

DGCF

RNGCF

0.045

0.055

0.065

0.075

0.085

16 32 64 128

R
ec

al
l@

20

Dimention

Recall@20 on Yelp2018

MF

LightGCN

DGCF

RNGCF

Fig. 5. Performance of NGAT4rec, LightGCN and RNGCF w.r.t different
dimensions on Yelp and Amazon-Book. w.r.t different dimension.

• Remove AGU: We propose a AGU to adaptively construct
the embeddings of users and items based on the sequential
dependencies. Without AGU, RNGCF achieves poor results on
all datasets. This demonstrates that directly taking the output of
GRU as the final embeddings can not get better results.

• Other Common Aggregation Functions: We conduct RNGCF
with other common aggregation functions instead of GRU on
three datasets to demonstrate the effectiveness of GRU, such as
Transformer [27] and LSTM [28]. Other common aggregation
functions achieve worse performance on three datasets than
GRU. This demonstrates the effectiveness of GRU. Compared
with LSTM and Transformer, the GRU has a relatively simple
structure but gets better performance. This may indicate exces-
sive parameters in model are not suitable for our tasks.

E. Hyper-parameter Studies
1) Study on dimension of embeddings: We conduct a dimen-

sion study on MF, LightGCN, RNGCF, NGAT4rec on Yelp2018, and
Amazon-Book. The results of the experiments are shown in Figure
5. As the dimension increases from 16 to 128, the performance
of all models increases. The five methods all apply dot product to
compute the relevance of items and users. But the limitations of dot
product function are well documented in the literature [14]. Thus the
results may indicate that the limitations of dot product function will
become weaker as the dimension increases. RNGCF outperforms all
models on all dimensions, which more forcefully indicates RNGCF
is effective.

2) Study on number of feature aggregation layers: Table
VI shows the performance at different layers (from 1 to 3) and the
percentage of relative improvement on each metric. As the number
of feature aggregation layers increases from 1 to 3, the performance
of all models increases. RNGCF outperforms all models on all
dimensions. In particular, RNGCF’s relative improvements over the
strongest baselines w.r.t. Recall@20 are the largest when the number
of layers reaches 3.

V. CONCLUSION
In this work, we propose a new framework named RNGCF.

RNGCF takes a user’s ID and a candidate item’s ID as inputs and
apply GCNs to output the user’s preference for the candidate item.

319

Table VI. Performance comparison of LightGCN, DGCF,NGAT and our
model w.r.t. number of layers.

Datasets Gowalla Yelp2018 Amazon-Book

Layer# Method Recall NDCG Recall NDCG Recall NDCG

1 Layer

LightGCN 0.1755 0.1315 0.0631 0.0515 0.0384 0.0298
DGCF 0.1794 0.1521 0.0640 0.0522 0.0399 0.0308
NGAT4rec 0.1715 0.1298 0.0613 0.0504 0.0347 0.0281
RNGCF 0.1849 0.1554 0.0660 0.0532 0.0445 0.0337
Improv. (3.11%) 2.21% 3.13% (2.02%) (11.55%) (9.73%)

2 Layers

LightGCN 0.1777 0.1524 0.0622 0.0504 0.0411 0.0315
DGCF 0.1834 0.1560 0.0653 0.0532 0.0422 0.0324
NGAT4rec 0.1757 0.1514 0.0656 0.0540 0.0434 0.0339
RNGCF 0.1887 0.1593 0.0675 0.0551 0.0483 0.0371
Improv. (2.90%) (2.16%) (3.23%) (2.12%) (11.38%) (9.52%)

3 Layers

LightGCN 0.1860 0.1554 0.0660 0.0521 0.0435 0.0328
DGCF 0.1865 0.1562 0.0670 0.0534 0.0440 0.0335
NGAT4rec 0.1855 0.1534 0.0675 0.0554 0.0457 0.0358
RNGCF 0.1944 0.1628 0.0707 0.0582 0.0570 0.0442
Improv. 5.53% 4.22% 4.74% 5.05% 24.72% 23.46%

Different from GCN-based previous methods on our task, we design
an adaptive unit to adaptively construct the embeddings of users and
items based on the sequential dependencies. Extensive experiments
on three benchmark datasets show that our model outperforms state-
of-the-art models consistently and each component of RNGCF is
effective. In particular, RNGCF’s relative improvements over the
strongest baselines w.r.t. Recall@20 are 5.53%, 4.76%, and 24.72%
in Gowalla, Yelp2018, and Amazon-Book, respectively. In future
work, we will study how to exploit auxiliary information such as
item knowledge graphs, social networks, and multimedia content for
our task.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foun-
dation of China [No. 62002230], the Natural Science Foundation
of Guangdong Province [No. 2019A1515011181], the Science and
Technology Innovation Commission of Shenzhen under Grant [No.
JCYJ20190808162613130], and the Shenzhen high-level talents pro-
gram.

REFERENCES

[1] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2018, pp.
974–983.

[2] J. Sun, Y. Zhang, W. Guo, H. Guo, R. Tang, X. He, C. Ma, and
M. Coates, “Neighbor interaction aware graph convolution networks for
recommendation,” in Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2020, pp. 1289–1298.

[3] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” arXiv preprint
arXiv:1205.2618, 2012.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[5] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, 2017, pp. 1024–1034.

[6] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” in Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Re-
trieval, 2019, pp. 165–174.

[7] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn:
Simplifying and powering graph convolution network for recommenda-
tion,” arXiv preprint arXiv:2002.02126, 2020.

[8] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,
“Simplifying graph convolutional networks,” in International conference
on machine learning. PMLR, 2019, pp. 6861–6871.

[9] J. Song, C. Chang, F. Sun, X. Song, and P. Jiang, “Ngat4rec: Neighbor-
aware graph attention network for recommendation,” arXiv preprint
arXiv:2010.12256, 2020.

[10] X. Wang, H. Jin, A. Zhang, X. He, T. Xu, and T.-S. Chua, “Disentangled
graph collaborative filtering,” in Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2020, pp. 1001–1010.

[11] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[12] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th
international conference on World Wide Web, 2001, pp. 285–295.

[13] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[14] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural col-
laborative filtering,” in Proceedings of the 26th international conference
on world wide web, 2017, pp. 173–182.

[15] Y. Koren, “Factorization meets the neighborhood: a multifaceted col-
laborative filtering model,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2008, pp. 426–434.

[16] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T.-S. Chua, “Atten-
tive collaborative filtering: Multimedia recommendation with item-and
component-level attention,” in Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information
Retrieval, 2017, pp. 335–344.

[17] J. Wu, S.-h. Zhong, and Y. Liu, “Dynamic graph convolutional net-
work for multi-video summarization,” Pattern Recognition, vol. 107, p.
107382, 2020.

[18] Z. Zhang, M. Zheng, S. Zhong, and Y. Liu, “Steganographer detection
via a similarity accumulation graph convolutional network,” Neural
Networks, vol. 136, pp. 97–111, 2021.

[19] Y. Li, C. Yin, and S. Zhong, “Sentence constituent-aware aspect-category
sentiment analysis with graph attention networks,” in Natural Language
Processing and Chinese Computing - 9th CCF International Conference,
NLPCC 2020, Zhengzhou, China, October 14-18, 2020, Proceedings,
Part I, vol. 12430. Springer, 2020, pp. 815–827.

[20] W. Fang and L. Lu, “Deep graph attention neural network for click-
through rate prediction,” in The 32nd International Conference on
Software Engineering and Knowledge Engineering, SEKE 2020, KSIR
Virtual Conference Center, USA, July 9-19, 2020, 2020, pp. 483–488.

[21] R. van den Berg, T. N. Kipf, and M. Welling, “Graph convolutional
matrix completion,” CoRR, 2017.

[22] J.-H. Yang, C.-M. Chen, C.-J. Wang, and M.-F. Tsai, “Hop-rec: high-
order proximity for implicit recommendation,” in Proceedings of the
12th ACM Conference on Recommender Systems, 2018, pp. 140–144.

[23] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. Schardl, and C. Leiserson, “Evolvegcn: Evolving graph
convolutional networks for dynamic graphs,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 5363–
5370.

[24] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-gcn: A temporal graph convolutional network for traffic prediction,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 9,
pp. 3848–3858, 2019.

[25] N. Mu, D. Zha, L. Zhao, and R. Gong, “Collaborative denoising graph
attention autoencoders for social recommendation,” in The 32nd Interna-
tional Conference on Software Engineering and Knowledge Engineering,
SEKE 2020, KSIR Virtual Conference Center, USA, July 9-19, 2020,
2020, pp. 519–524.

[26] Y. Wang, K. Shi, and Z. Niu, “A session-based job recommendation
system combining area knowledge and interest graph neural networks,”
in The 32nd International Conference on Software Engineering and
Knowledge Engineering, SEKE 2020, KSIR Virtual Conference Center,
USA, July 9-19, 2020, 2020, pp. 489–492.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

320

Deep Self-Attention for Sequential
Recommendation

Beichuan Zhang, Zhijiao Xiao∗ and Shenghua Zhong
College of Computer Science and Software Engineering, Shenzhen University, China

zhangbeichuan2019@email.szu.edu.cn, {cindyxzj, csshzhong}@szu.edu.cn

Abstract—Sequential recommendation aims to recommend the
next item that a user will likely interact with by capturing
the useful sequential patterns from users’ historical behaviors.
Recently, it has become an important and popular component in
various e-commerce platforms. As a successful network, Trans-
former has been widely used to adaptively capture the dynamics
of users’ historical behaviors for sequential recommendation. In
recommender systems, the size of embedding is usually set to be
small. Under small embedding, the dot-product in Transformer
may have the limitation on calculating the complex relevance
between keys and queries. To address the common but neglected
issue, in this paper, we present a new model, Deep Self-Attention
for Sequential Recommendation (DSASrec), which proposes a
chunking deep attention to compute attention weights. The
chunking deep attention has two modules: a deep module and
a chunking module. The deep module is used to improve the
nonlinearity of the attention function. The chunking module is
used to calculate attention weights several times like the multi-
head attention in Transformer. Extensive experiments on three
benchmark datasets show that our model can achieve state-of-
the-art results. Our implementation is available in PyTorch 1.

Keywords—Recommender System, Transformer, Dot-product,
Chunking Representation, Deep Learning

I. INTRODUCTION

Recommender system has become an important prevalent
component in real-world applications. Learning the embed-
dings of users and items is an essential topic in recommender
systems [1]–[4]. Beyond using the embeddings of users, se-
quential recommendation considers the sequential patterns in
users’ historical behaviors as the pre-existing features of users.
To exploit the sequential patterns, Transformer [5] has been
widely deployed to sequential recommendation. For example,
SASrec [6] tried to capture the dynamics of users’ historical
behaviors via Transformer instead of using Recurrent Neural
Networks (RNNs). BERT4rec [7] introduced a deep bidirec-
tional sequential self-attention model and a Cloze objective to
the field of recommender systems.

Although the previous methods have been proven effec-
tive, the previous methods fail to consider the dot-product
in Transformer may have the limitation on calculating the
complex relevance between keys and queries. In most cases,
Transformer is used in the field which has high dimensional

1https://github.com/Book1996/DSASrec
DOI reference number: 10.18293/SEKE2021-035

i1 i2 i3 i4 i5

u4

u3

u2

u1 1 1
1 1 1
1 1 1

1 1

1

1

i6

y

x

v1

v2

v3

v4

v4

Fig. 1. An example of dot-product’s limitation. Since u4 is most similar to
u1, u4 only can be piloted as the red vectors. However, no matter how u4 is
piloted, it can not satisfy this relationship: s41 > s43 > s42.

embeddings. For example, Transformer paper and GPT [8] pa-
per used 512-dimensional vectors and 768-dimensional vectors
to represent words, respectively. In recommender systems, the
size of embedding is usually set to be small. For example,
SASrec used 50-dimensional vectors to represent items. NCF
[9] used 64-dimensional vectors to represent items and users.
The size of embedding vector has a great influence on the
limitation of dot-product [9]. Suppose we have a user-item
interaction graph G as Figure 1(left). There are the similarity
relations between u1, u2 and u3 as s23 > s12 > s13, where sab
indicates the similarity of user a and user b. When we project
the users into 2D space, the geometric relations of u1, u2 and
u3 can be expressed by dot-product as in Figure 1(right). There
are other similarity relations about u4 as s41 > s43 > s42.
However, the relations s41 > s43 > s42 can’t be expressed
accurately in the 2D space. If we place v4 closest to v1 as the
red vectors in Figure 1, v4 is closer to v2 than v3. It would
contradict s41 > s43 > s42. Thus, under small embeddings,
using dot-product may lead to that the complex relevance
between keys and queries is ignored.

To address the aforementioned problems, in this paper, we
present a new model, Deep Self-Attention for Sequential Rec-
ommendation (DSASrec). DSASrec takes a user’s historical
behaviors and a candidate item as input and outputs the user’s
preference for the candidate item. Specifically, we first project
users’ historical behaviors into vector representations and then
apply a self-attention mechanism to predict users‘ preferences.
Distinct from existing works [6], [10], we propose a chunking
deep attention (CDA) to compute attention weights. The
chunking deep attention has two modules: a deep module and a
chunking module. The deep module in CDA is used to improve
the nonlinearity of attention function. The chunking module in

321

Embedding Layer

…

Item 1

Item 2

Item n

…

User Behavior

Next item

Prediction

…

M
atM

ul

C
hunking D

eep
A

ttention

Deep Self-Attention Block (DSAB)

A
dd &

 N
orm

Feed Forw
ard

A
dd &

 N
orm

B×

Matrix O

On

Fig. 2. The network architecture of DSASrec. Matrix O indicates the output of DSAB. On indicates the n− th row of O, which combines information of
n items. On is used to compute the user’s preference for the (n+ 1)− th (next) item.

CDA is used to calculate attention weights several times like
the multi-head attention in Transformer. We perform extensive
experiments on four standard large real-world datasets, and the
results show our model can achieve state-of-the-art results. To
justify the designs in our model, we further conduct ablation
studies on DSASrec. The results show each component of
DSASrec has contributions to performance. To summarize, this
work makes the following main contributions:
• We point out the dot-product in Transformer may have

the limitation on calculating the relevance of keys and
queries when the size of embedding is set to be small.

• We propose a new model DSASrec, which applies chunk-
ing deep attention instead of the multi-head attention in
Transformer to model attention weights.

• We demonstrate our proposed can achieve state-of-the-art
results by extensive experiments on four standard large
real-world datasets.

II. RELATE WORK

A. Attention Mechanism

Attention mechanism can be described as a weighted sum of
values, where the weights assigned to each value are computed
by a compatibility function [5]. Attention mechanism has
become more and more popular in various tasks such as
recommender system [6],machine translation [11] and Multi-
media [12]–[14]. Recently, Transformer [5] was proposed and
achieved promising empirical results in machine translation.
Due to the efficiency of Transformer, substantial research
focuses on improving the performance of Transformer. For
example, Transformer-XL [15] introduced a segment-level
recurrence mechanism and a novel positional encoding scheme
to learn sequential dependency beyond a fixed-length with-
out disrupting temporal coherence. Transformer-XL learned
dependency that is 80% longer than RNNs and 450% longer
than vanilla Transformers. Reformer [16] replaced dot-product
attention by using locality-sensitive hashing and reduced the
complexity of dot-product. Synthesizer [17] proved that us-
ing dot-product to learn attention weights from token-token
(query-key) interactions was useful but not that important.

B. Sequential Recommendation

Most early researches in sequential recommendation use
Markov Chains (MCs) to estimate users’ preference for items.
FPMC [18] combined Matrix Factorization (MF) and MC for
each user owning a personalized transition matrix. Extensive
experiments showed FPMC could outperform MF and MCs.
Fossil [19] fused similarity-based methods with MC to tackle
sparsity issues and the long-tailed distribution of datasets.
With progress in deep learning, Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN) based methods
have proliferated. Since the MC-based methods were difficult
to consider all users’ historical behaviors, GRU4Rec [20]
introduced a ranking loss function and used Gated Recurrent
Unit (GRU) [21] to exploit users’ historical behaviors. Caser
[22] argued that not all adjacent actions had dependency
relationships. Hence, they proposed a CNN-based model that
regarded users’ historical behaviors in the latent space as an
“image”. Inspired by Transformer [5], several models were
proposed to adaptively capture the heterogeneous, polysemous
relationship between items in dynamic sequence for sequential
recommendation. For example, SASRec [6] balanced long-
term pattern and predictions based on relatively several pre-
vious actions via Transformer. SASrec is over ten times
faster than RNN and CNN-based methods with GPUs and
achieved state-of-the-art results. TiSASrec [10] combined the
advantages of absolute position and relative time intervals to
learn the weights of different items. BERT4rec [7] employed
the deep bidirectional self-attention to model user behavior
sequences. SSE-PT [23] introduced additional personalized
embeddings to improve the performance of Transformer for
sequential recommendation. Although the previous methods
have been proven effective, they ignore the limitation of dot-
product when the size of embedding vector is small.

III. PROPOSED METHOD

In this section, we present the architecture of DSASrec,
which concludes an embedding layer, stacked deep self-
attention blocks, and a prediction layer as Figure 2.

322

A. Problem Formulation

In sequential recommendation, let U = {u1, u2, ..., u|U |} be
a set of users, I = {i1, i2, ..., i|I|} be a set of items, and Su =
{su1 , su2 , ..., su|Su|} be a historical interaction sequence for a
user u ∈ U , where sut ∈ I is the item that u has interacted with
at time step t. Given the interaction history Su, the sequential
recommendation seeks to predict the next item that user u will
interact with.

B. Embedding Layer

Following the prior works [6], [10], we firstly transform the
sequence Su = {su1 , su2 , ..., su|Su|} into a fixed-length sequence
{su1 , su2 , ..., suN}, where N is a hyper-parameter meaning max-
imum sequence length. If the length of Su is less than N , we
add zero-paddings to the left side. If the length of Su is greater
than N , we only consider the most recent N interactions.
Then, we create an item embedding matrix M ∈ R|I|×d
and apply a lookup layer on M to transform Su into vector
representations, where d is latent dimensionality. We inject
a learnable position embedding P ∈ RN×d. Thus, the input
embedding Eu corresponding with Su is defined as:

Eu =

Msu1

+ P1

Msu2
+ P2

...
MsuN

+ PN

 . (1)

C. Deep Self-Attention Block

1) Deep Module: An attention function can be described
as mapping a query and a set of key-value pairs to a weighted
sum of the values. In Transformer, the attention function is
defined as:

Attention(Q,K, V) = Softmax(
QKT

√
d

)V, (2)

where Q ∈ RN×d,K ∈ RN×d, V ∈ RN×d. N is the length of
sequence length and d is latent dimensionality as Section III-B
shows. To address the limitation of dot-product, our method
replaces the matrix multiplication term QKT with a multi-
layer perceptron (MLP). The deep attention can be defined
as:

Deep Attention(Q,K, V) = Softmax(MLP (QK))V, (3)

where QK ∈ RN×N×d is the matrix that includes all key-query pairs
and MLP: RN×N×d → RN×N . The element of QK is defined as:

QKmn = Qm||Kn, (4)

where Qm is m − th row of Q, Kn is n − th row of K and || is
the concatenation operation. Recall that we add zero-paddings to the
left side, if the length of Su is less than N . And our model should
consider only the first h items when predicting the (h+1)− th item.
Thus, some key-query pairs are useless and should not be used to
compute corresponding weights. Formally, there are three cases that
would let QKmn be an useless key-query pair: Case 1: m < n; Case
2: Qm represents pad item; Case 3: Kn represents pad item. In order
to alleviate the computing cost of MLP, we highly optimize our code
to no longer use these useless key-query pairs.

2) Chunking Module: Transformer has found it beneficial to
linearly project the queries, keys and values several times with dif-
ferent, learned linear projections. We keep the multi-head mechanism
to disentangle different information from representation by splitting
the queries, keys and values evenly into P chunks as follows:

K = (K1;K2; ...;KP),

Q = (Q1;Q2; ...;QP),

V = (V 1;V 2; ...;V P),

(5)

where Kj , Qj , and V j ∈ RN× d
P . The chunking deep attention

(CDA) are defined as:

CDA(Q,K, V) = Concat(head1, ..., headh),

where headj = Deep Attention(Qj ,Kj , V j).
(6)

3) Self-Attention: Recently, a self-attention method was pro-
posed which used the same objects as queries, keys, and values [5].
Following previous methods [6], [10], we apply the self-attention
mechanism to capture the sequential patterns in users’ historical
behaviors. The deep self-attention (DSA) in our case is defined as
follows:

DSA(Eu) = CDA(Eu, Eu, Eu). (7)

Following Transformer, we employ two position-wise fully connected
feed-forward networks (FFN) with a ReLU activation in between to
strengthen the performance of DSA as follows:

A = LayerNorm(Eu +Dropout(DSA(Eu))),

A′ = ReLU(AW1 + b1)W2 + b2,

Zu
1 = LayerNorm(A+Dropout(A′)),

(8)

where W1 ∈ Rd′×d, b1 ∈ Rd′ ,W2 ∈ Rd×d′ , b2 ∈ Rd are model
parameters, d′ is a hyper-parameter and Zu

1 ∈ RN×d indicates the
output of the first deep self-attention block. For the sake of simplicity,
we define the entire deep self-attention block (DSAB) as follows:

Zu
1 = DSAB(Eu). (9)

We stack DSABs to capture more complex feature transition. The
b− th DSAB is defined as:

Zu
b =

{
DSAB(Eu) b = 1,
DSAB(Zu

b−1) b > 1.
(10)

D. Prediction Layer
After an embedding layer and B deep self-attention blocks, the

behaviors sequence Su is transformed into Zu
B ∈ RN×d. Following

the prior works [6], [10], we calculate user u’s preference for item
o ∈ I through a dot-product operation as follows:

yuo,j = zjM
T
o . (11)

where zj denotes the j−th row of Zu
B , Mo denotes the embedding of

item o and yuo,j denotes the possibility of item o being the (j+1)−th
item for user u given the previous j items.

E. Model Training
Following previous methods [6], [23], we adopt a binary cross

entropy loss to optimize DSASrec, which is defined as:

−
∑
u∈U

∑
1≤j<N

[
log(σ(ŷuoj ,j) +

∑
o′ /∈Su

log(σ(1− ŷo′,j))

]
, (12)

where σ is Sigmoid function, o′ indicates a negative item and oj
indicates an expected item. It is worth noting that when our model
inputs a sequence {su1 , su2 , ..., su|Su|−1} and its expected output is

323

Table I. The statistics of the datasets

Dataset Users Items
avg.

actions
/user

avg.
actions
/item

Samples

Beauty 52,240 57,289 6.9 7.6 0.4M
Games 31,013 23,715 12.1 9.3 0.3M
Steam 334,730 13,047 11.0 282.5 3.7M

ML-1M 6,040 3,416 163.5 289.1 1.0M

a ‘shifted’ version of the same sequence: {su2 , su2 , ..., su|Su|} during
training process. Thus, oj can be defined as:

oj =

{
0 if Su

j is a padding item
Su
j+1 if 1 ≤ j < N

(13)

For alleviating calculation, as in [6], [23], we randomly generate one
negative item o′ for each of expected items.

IV. EXPERIMENTS

A. Experimental Setup
1) Compared Methods: To show the effectiveness of our ap-

proach, we compare it with the following state-of-the-art methods:
• GRU4Rec+ [24]. GRU4Rec is an RNN based approach for rec-

ommendations, which introduced a novel ranking loss function
and GRU in sequential recommendation.

• Caser [22]. This method viewed the sequence of recent items
as an “image” and used convolutional filters to learn sequential
patterns as obtained local features.

• SASRec [6]. This method applied Transformer to balance long-
term pattern and predictions based on relatively several previous
actions.

• TiSASrec [10]. This method combined the advantages of abso-
lute position and relative time intervals to learn attention weight.

• BERT4rec [7]. This method employed the deep bidirectional
self-attention to model user behavior sequences.

• SSE-PT [23]. This method introduced additional personalized
embeddings to improve the performance of Transformer model
for sequential recommendation.

2) Dataset: We evaluate our method on four datasets from
three real-world platforms. The four datasets are exactly as same as
SASrec used. We request the three datasets from the SASrec. These
public datasets have different domains, sizes, and sparsity. In the
prepossessing stage, we closely follow the common procedure from
SASrec. For all datasets, we treat a review or rating for an item as
implicit feedback, and we filter out cold-start users and items with
fewer than 5 interactions. Each dataset is split into two parts: (1) the
most recent action for testing, (2) all remaining actions for training.
The statistics of the dataset are shown in Table I.
• MovieLens: A widely used benchmark dataset for evalu-

ating collaborative filtering algorithms. We use the version
(MovieLens-1M) that includes 1 million user ratings.

• Amazon: A series of datasets were introduced in [25]. Followed
by the existing work [6], we consider two categories: ’Beauty’
and ’Games.’

• Steam: A dataset is crawled from Steam by SASrec [6].
It includes rich information like users’ play hours, pricing
information, media scores, categories, and developers.

3) Evaluation Metrics: To evaluate recommendation, we use
the same protocols as previous methods [6]: Hit@10 and NDCG@10.
In the testing phase, for each user, we randomly sample 100 items
and rank these items with the most recent action.

Table II. The recommendation results. Bold scores are the best and
underlined scores are the second best.

Methods Metrics Beauty Games Steam ML-1M

GRU4REC+ Hit@10 0.3949 0.6599 0.8018 0.7501
NDCG@10 0.2556 0.5282 0.5595 0.5513

CASER Hit@10 0.4264 0.5282 0.7874 0.7886
NDCG@10 0.2547 0.3214 0.5381 0.5538

SASrec Hit@10 0.4852 0.7412 0.8716 0.8132
NDCG@10 0.3211 0.5633 0.6211 0.5842

TiSASec Hit@10 0.4629 0.7323 0.8657 0.8125
NDCG@10 0.3016 0.5437 0.6228 0.5711

BERT4rec Hit@10 0.4952 0.7499 0.8755 0.8266
NDCG@10 0.3311 0.5566 0.6315 0.6004

SSE-PT Hit@10 0.5028 0.7634 0.8764 0.8288
NDCG@10 0.3370 0.5622 0.6378 0.6122

DSASrec Hit@10 0.5341 0.7826 0.8803 0.8294
NDCG@10 0.3645 0.5672 0.6416 0.6138

Table III. The computing speed(s) for one epoch. Underlined scores indicates
the computation cost of DSASrec is 30% higher than that of SASrec.

Dimension Datasets Beauty Games Steam ML-1M

50 DSASrec 24 13 70 4
SASrec 23 13 69 4

100 DSASrec 24 17 110 6
SASrec 23 14 91 6

150 DSASrec 27 19 154 7
SASrec 24 15 120 6

200 DSASrec 26 22 200 7
SASrec 34 20 150 7

4) Parameter Settings: The proposed DSASRec is implemented
on PyTorch, we use two deep self-attention blocks, and each deep
self-attention block contains three network layers. The number of
neurons of each layer in MLP is 80, 60, 1, respectively. Item
embeddings in the embedding layer and prediction layer are shared.
The optimizer is the Adam optimizer from [26]. The learning rate is
0.001; batch size is 64; the dropout rate is 0.2 for ML-1m and the
Steam, 0.3 for the other datasets. By following the existing work [6],
the maximum sequence length N is set to 200 for ML-1m and 50
for the other three datasets. For all methods, the embedding size d is
searched in {30, 40, 50, 60}. The learning rate is searched in {0.005,
0.001, 0.0005, 0.0001}. The coefficient λ of L2 regularization term
is tuned in {10−4, 10−5, 10−6, 10−7, 10−8}.

B. Performance Comparison
Table II presents the recommendation performances of state-of-the-

art methods on the four datasets regarding Hit@10 and NDCG@10.
Table III presents the running time(s) of SASrec and DSASrec for
one epoch. The main observations are as follows:
• DSASrec achieves the best results on all datasets. In particular,

DSASrec significantly performs better on sparse datasets (e.g.,
Beauty, Game), where DSASrec’s relative improvements over
the strongest baselines w.r.t. Hit@10 are 6.22%, 2.51% in
Beauty, Games. These results show the high effectiveness of
DSASrec.

• Compared with SASrec, DSASrec significantly performs better
on sparse datasets (e.g., Beauty, Game). This comparison shows
that compared with the dot-product operation, deep neural
networks may need fewer data to learn transition between items.

324

0.4

0.45

0.5

0.55

SASrec TiSASrec BERT4rec

H
it

@
10

Hit@10 on BEAUTY

without DCN
with DCN

0.7

0.72

0.74

0.76

0.78

SASrec TiSASrec BERT4rec

H
it

@
10

Hit@10 on GAMES

without DCN
with DCN

0.84

0.86

0.88

0.9

SASrec TiSASrec BERT4rec

H
it

@
10

Hit@10 on STEAM

without DCN
with DCN

0.785

0.805

0.825

0.845

SASrec TiSASrec BERT4rec

H
it

@
10

Hit@10 on ML-1M

without DCN
with DCN

Fig. 3. Performance of SASrec, TiSASrec and BERT4rec w.r.t the scalability of CDA on HR@10.

Table IV. Performance comparison of DSASrec w.r.t. number of layers in
MLP. Bold scores are the best and underlined scores are the second best.

Layer# Metrics Beauty Games Steam ML-1M

1 layer Hit@10 0.5141 0.7608 0.8634 0.8094
NDCG@10 0.3536 0.5583 0.6204 0.5632

2 layers Hit@10 0.5305 0.7649 0.8686 0.8165
NDCG@10 0.3622 0.5604 0.6252 0.5957

3 layers Hit@10 0.5305 0.7734 0.8803 0.8294
NDCG@10 0.5341 0.5672 0.6416 0.6138

On the other hand, the dot-product operation is more likely
to overfitting when a dataset is sparse. As discussed in [27],
product features are more suitable for memorization, and deep
neural networks can generalize better.

• As discussed in III-C1, we avoid computing useless weights to
alleviate the computing cost of MLP, such as the weights for
pad items. Thus, the computational complexity of the attention
function in our model is O(Cd2/P), where d is the latent
dimensionality, C is the number of valid key-query pairs and
P is the number of chunks. The computational complexity of
the attention function in SASrec is O(N2d), where N is the
maximum sequence length. Table III shows the computational
complexity of attention function in SASrec and DSASrec in
practice. The results show that although CDA generates some
additional computing costs compared with dot-product, in most
cases, the computing cost of DSASrec is not 30% higher than
that of SASrec.

C. Impact of Limitation of Dot-product

Table IV shows the results of DSASrec w.r.t different depths of
MLP in CDA. Figure 4 shows the variances of attention weights
learned by SASrec and DSASrec. The main observations are as
follows:

• Compared with the dot-product, MLP can learn more sophis-
ticated features. Thus, the limitation of the dot-product in
Transformer may be related to nonlinear ability. To verify this,
we conduct DSASrec with different depths of MLP, because
MLP with different depths has different nonlinear ability. Table
IV shows the results of DSASrec w.r.t different depths of MLP.
The results show that stacking network layers from 1 to 3
can boost performance. Overfitting issues emerge in Beauty
when we stack four network layers. This may demonstrate
the representation ability of attention function plays a role in
recommendation performance.

• Figure 4 shows the variances of attention weights learned by
SASrec are lower than that of DSASrec. These results may
indicate the attention weights learned by DSASrec are more
decentralized and diversified and CDA can learn more the
pluralistic relevance between keys and queries.

0

0.01

0.02

0.03

0.04

0.05

Beauty Games Steam ML-1M

The Variances of Attention Weights

DSASrec
SASrec

i1

Fig. 4. The variances of attention weights learned by SASrec and DSASrec.

Table V. Performance of DSASrec and its variants. Bold scores are the best
and underlined scores are the second best.

Architecture Metric Beauty Games Steam ML-1M

Default Hit@10 0.5341 0.7826 0.8803 0.8294
NDCG@10 0.3645 0.5779 0.6416 0.6138

Remove PE Hit@10 0.5205 0.7758 0.8456 0.8115
NDCG@10 0.3558 0.5689 0.6047 0.5888

Remove FFN Hit@10 0.5159 0.7677 0.8551 0.8159
NDCG@10 0.3382 0.5586 0.5743 0.5850

Remove Dropout Hit@10 0.5053 0.7526 0.8635 0.8163
NDCG@10 0.3416 0.5521 0.6337 0.5875

D. Ablation Studies
We perform ablation studies on DSASrec to show how the com-

ponents of DSASrec affect performance. Table V shows the results
of DSASrec and its variants on three datasets.
• Remove PE (Positional Embedding): DSASrec without PE

achieves poor results on all datasets. This indicates the order
information is important to learn the sequential patterns for
sequential recommendation.

• Remove Dropout: On all datasets, this variant is significantly
worse than the default model. This shows the dropout effectively
alleviates overfitting problems in DSASrec.

• Remove FFN: We apply FFN to considers relationship between
elements in vectors. DSASrec without FFN achieves poor
results. Modeling the relationship between elements in vectors
can lead to better performance.

E. Scalability of Chunking Deep Attention
Transformer has been widely used to adaptively captures the

dynamics of the sequential patterns for sequential recommendation.
To show the scalability of CDA, we apply CDA to SASrec, Ti-
SASrec, and BERT4rec. Figure 3 shows SASrec+CDA and TiSAS-
rec+CDA can achieve better performance than SASrec, TiSASrec.
But BERT4rec+CDA achieves poor performance than BERT4rec.
Compared with BERT4rec, SASrec and TiSASrec have relatively
simple structures. The results show CDA may be more suitable for
a relatively simple method that uses Transformer.

325

0.49

0.5

0.51

0.52

0.53

0.54

1 2 4 8

Hit@10 on BEAUTY

0.73

0.74

0.75

0.76

0.77

0.78

0.79

1 2 4 8

Hit@10 on GAMES

Fig. 5. Performance of DSASrec w.r.t different numbers of chunks on Beauty
and Games.

F. Number of Chunks
To study the influence of chunks number, we vary the number of

the chunks of queries, keys, and values in the range of {1, 2, 4, 8}
and show the performance on Beauty and Games datasets in Figure
5 (results on other dataset show similar trends which are omitted
for space). Increasing the number of chunks from 1 to 2 leads to
better performance. However, the recommendation performance drops
when the chunk number increases from 2 to 8. This suggests that the
DSASrec suffers from too fine-grained chunks.

V. CONCLUSIONS

In this paper, we propose a novel self-attention based method
for Sequential Recommendation named DSASrec. It proposes a
chunking deep attention (CDA) to computing the attention weights.
CDA is used to alleviate the limitation of dot-product in Trans-
former. Experimental results on four real-world datasets show that
DSASrec outperforms state-of-the-art techniques and each component
of DSASrec has contributions to performance. In section IV-C,
we demonstrate the performance of attention-based models can be
improved by enhancing the nonlinearity of attention function. The
variances of attention weights learned by dot-product attention are
lower than the attention weights learned by CDA. In the future, we
plan to extend the model by incorporating auxiliary information (e.g.
action types, item knowledge, etc.).

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foun-
dation of China [No. 62002230], the Natural Science Foundation
of Guangdong Province [No. 2019A1515011181], the Science and
Technology Innovation Commission of Shenzhen under Grant [No.
JCYJ20190808162613130], and the Shenzhen high-level talents pro-
gram.

REFERENCES

[1] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009. I

[2] Y. Wang, K. Shi, and Z. Niu, “A session-based job recommendation
system combining area knowledge and interest graph neural networks,”
in The 32nd International Conference on Software Engineering and
Knowledge Engineering, SEKE 2020, KSIR Virtual Conference Center,
USA, July 9-19, 2020, 2020, pp. 489–492. I

[3] R. Song, T. Li, X. Dong, and Z. Ding, “Identifying similar users based
on metagraph of check-in trajectory data,” in The 32nd International
Conference on Software Engineering and Knowledge Engineering, SEKE
2020, KSIR Virtual Conference Center, USA, July 9-19, 2020, 2020, pp.
525–531. I

[4] N. Mu, D. Zha, L. Zhao, and R. Gong, “Collaborative denoising graph
attention autoencoders for social recommendation,” in The 32nd Interna-
tional Conference on Software Engineering and Knowledge Engineering,
SEKE 2020, KSIR Virtual Conference Center, USA, July 9-19, 2020,
2020, pp. 519–524. I

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008. I, II-A,
II-A, II-B, III-C3

[6] W.-C. Kang and J. McAuley, “Self-attentive sequential recommenda-
tion,” in 2018 IEEE International Conference on Data Mining (ICDM).
IEEE, 2018, pp. 197–206. I, I, II-A, II-B, III-B, III-C3, III-D, III-E,
III-E, IV-A1, IV-A2, IV-A2, IV-A3, IV-A4

[7] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec:
Sequential recommendation with bidirectional encoder representations
from transformer,” in Proceedings of the 28th ACM international confer-
ence on information and knowledge management, 2019, pp. 1441–1450.
I, II-B, IV-A1

[8] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018. I

[9] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural col-
laborative filtering,” in Proceedings of the 26th international conference
on world wide web, 2017, pp. 173–182. I

[10] J. Li, Y. Wang, and J. McAuley, “Time interval aware self-attention for
sequential recommendation,” in Proceedings of the 13th International
Conference on Web Search and Data Mining, 2020, pp. 322–330. I,
II-B, III-B, III-C3, III-D, IV-A1

[11] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014. II-A

[12] J. Lin and S. Zhong, “Bi-directional self-attention with relative posi-
tional encoding for video summarization,” in 32nd IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2020, Baltimore,
MD, USA, November 9-11, 2020. IEEE, 2020, pp. 1161–1166. II-A

[13] S. Zhong, A. Fares, and J. Jiang, “An attentional-lstm for improved
classification of brain activities evoked by images,” in Proceedings of
the 27th ACM International Conference on Multimedia, MM 2019, Nice,
France, October 21-25, 2019. ACM, 2019, pp. 1295–1303. II-A

[14] S. hua Zhong, Y. Liu, T.-Y. Ng, and Y. Liu, “Perception-oriented video
saliency detection via spatio-temporal attention analysis,” Neurocomput-
ing, vol. 207, pp. 178–188, 2016. II-A

[15] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdi-
nov, “Transformer-xl: Attentive language models beyond a fixed-length
context,” arXiv preprint arXiv:1901.02860, 2019. II-A

[16] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The efficient trans-
former,” arXiv preprint arXiv:2001.04451, 2020. II-A

[17] Y. Tay, D. Bahri, D. Metzler, D.-C. Juan, Z. Zhao, and C. Zheng,
“Synthesizer: Rethinking self-attention in transformer models,” arXiv
preprint arXiv:2005.00743, 2020. II-A

[18] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing
personalized markov chains for next-basket recommendation,” in Pro-
ceedings of the 19th international conference on World wide web, 2010,
pp. 811–820. II-B

[19] R. He and J. McAuley, “Fusing similarity models with markov chains
for sparse sequential recommendation,” in 2016 IEEE 16th International
Conference on Data Mining (ICDM). IEEE, 2016, pp. 191–200. II-B

[20] T. Donkers, B. Loepp, and J. Ziegler, “Sequential user-based recurrent
neural network recommendations,” in Proceedings of the Eleventh ACM
Conference on Recommender Systems, 2017, pp. 152–160. II-B

[21] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014. II-B

[22] J. Tang and K. Wang, “Personalized top-n sequential recommendation
via convolutional sequence embedding,” in Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining, 2018,
pp. 565–573. II-B, IV-A1

[23] L. Wu, S. Li, C.-J. Hsieh, and J. Sharpnack, “Sse-pt: Sequential recom-
mendation via personalized transformer,” in Fourteenth ACM Conference
on Recommender Systems, 2020, pp. 328–337. II-B, III-E, III-E, IV-A1

[24] B. Hidasi and A. Karatzoglou, “Recurrent neural networks with top-
k gains for session-based recommendations,” in Proceedings of the
27th ACM International Conference on Information and Knowledge
Management, 2018, pp. 843–852. IV-A1

[25] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based
recommendations on styles and substitutes,” in Proceedings of the 38th
international ACM SIGIR conference on research and development in
information retrieval, 2015, pp. 43–52. IV-A2

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014. IV-A4

[27] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & deep
learning for recommender systems,” in Proceedings of the 1st workshop
on deep learning for recommender systems, 2016, pp. 7–10. IV-B

326

A recommender system to assist conceptual modeling with UML

Maxime Savary-Leblanc∗,∗∗ Xavier Le Pallec∗ Sébastien Gérard∗∗

∗Univ. Lille, UMR 9189 CRIStAL, F-59000 Lille, France ∗∗CEA LIST, Palaiseau, France
E-mail: maxime.savary-leblanc@univ-lille.fr

Abstract
This paper explores the understudied field of conceptual

modeling assistance. More specifically, we focused on the
design and application of recommender systems as software
assistants for conceptual modeling. Prior work on such sys-
tems has shown that trust plays a key role in the acceptance
and exploitation of such systems. Consequently, as a starting
point of our research, we applied established methods for con-
structing multi-criteria recommender systems (MCRS) to con-
ceptual modeling in a way which could foster the emergence
of trust. Finally, we chose supervised-learning techniques to
refine and customize the recommendations generated by these
systems. To help us determine the feasibility and practicality
of our approach, we designed and implemented a prototype
system that assists conceptual modeling with UML. Our sys-
tem currently recommends class attributes when constructing
UML class diagrams. A preliminary evaluation of this tool
indicated a strong match between the recommendations pro-
vided by our system and personal choices made by the partic-
ipants.

1 Introduction
Domain knowledge is a prerequisite to produce software

design and implementation tailored to stakeholders’ require-
ments. One common way to formalize that knowledge is
achieved through conceptual models, which are commonly
used to describe or simulate a system. Acquiring such ex-
pertise requires to discuss with knowledgeable stakeholders
and/or to get an access to useful documents, which both might
not always be easily accessible.

In the same time, more and more model samples can be
gathered from multiple sources, what represents an increas-
ing number of already formalized and accessible knowledge
pieces. For example, some companies keep archives of inter-
nal model repositories [1]. There also exist numerous open
source projects that contain models [2] while some model-
ing tools even offer the possibility to create public projects
that are free to browse. However, when it comes to hundreds
of thousands models, the time spent browsing them manually

DOI reference number: 10.18293/SEKE2021-039

and filtering the relevant ones seems unreasonable given the
original problem.

One facility for exploiting this large amount of data is to
build recommender systems [3] whose recommendations are
based on such data. In our work, we decided to investigate the
use of recommender systems to support the conceptual mod-
eling activity. Our general research objective is to develop
a comprehensive general methodology for designing recom-
mender systems for conceptual modeling. As an initial step,
we first developed a working prototype that can serve as a
testbed to help in evaluating and refining our approach. The
specific objective of this phase of our work was to develop a
Multi-Criteria Recommender System (MCRS) that generates
semantically meaningful attribute recommendations for UML
classes. We used Roy’s method to develop our approach and
then performed an initial empirical evaluation as described in
Section 5.

To the best of our knowledge, this is the first semantic rec-
ommender system for UML class modeling. As such, we feel
that it is an important contribution to the modeling commu-
nity. It provides a means of assisting the modeling process
– something that could particularly benefit less experienced
modelers. This can, in turn, lead to a broader adoption of
model-based software engineering by software developers. In
addition and in line with our overall objective, we believe that
the approach applied here can be extended to cover other types
of recommender systems to be used in modeling.

The remainder of the paper is organized as follows. In
Section 2, we explain our approach, while in Section 3, we
identify and formalize suitable recommendation criteria. A
criteria aggregation method is described in Section 4. Section
5 presents the prototype tool and an initial experiment used to
evaluate its suitability and effectiveness. Related work is cov-
ered in Section 6. Finally, Section 7 provides a brief summary
followed by a discussion of potential future work.

2 Methodology
Most recommender systems implement one of the fol-

lowing three common recommendation methods: collabora-
tive filtering [4], content-based techniques [5], or knowledge-
based techniques [6]. Each has advantages and limitations.
Common limitations include overspecialization, cold-start is-

327

sues, and scalability [3]. To deal with these, different ad-
vanced recommendation approaches have been proposed, in-
cluding multi-criteria recommender systems (MCRS) [7].
The quality of modeling recommendations invariably depends
on more than one criterion. Thus, no single-criterion recom-
mendation approach is likely to be adequate, which is why we
chose to build our system as an MCRS. Such systems involve
multiple criteria in selecting the final set of ranked recom-
mendations. Adomavicius and Kwon [8] identify multiple se-
lection techniques, such as rating-based, multi-objective op-
timization, or outranking relations. Because the user’s goal
cannot be inferred with certainty, and because extracting out-
ranking relations between attributes seems semantically unre-
liable, we applied the rating-based selection technique. Thus,
we use scores to determine the candidate attributes to recom-
mend.

We followed Roy’s methodology for analysing multi-
criteria decision-making problems [9], as suggested by [8] to
build our system. To do so, we first define the object of deci-
sion of our system, then a coherent family of criteria to assess
candidate attributes, and finally a utility function which aggre-
gates single criterion into a global score. The object of deci-
sion consists of all context elements that might be involved
in deciding whether a candidate attribute represents an appro-
priate recommendation, as follows: attributes (i) selected by
their nature or their presence in the hierarchy of classes or
packages, (ii) represented in class diagrams, and (iii) tailored
to the user of the modeling tool, who may have previous expe-
rience, personal preferences, and various levels of propensity
to trust. All the candidate attributes can then be filtered and
ranked based on the utility function scores (see Section 4), ac-
cording to how well they perform on each criteria defined in
Section 3.

3 Criteria formalisation
In this section, we describe the criteria and their rationale,

on which each recommendation is assessed.

3.1 In-class recurrence criterion (C1)
In the following, the term ’owner class’ of an attribute

refers to the class that directly owns that attribute.
Rationale. The attribute is often present in classes with

the same name as the owner class.
Selection filter. Attributes owned by classes with the same

name as RC.
Rating approach. The most frequently occurring candi-

date gets the highest score and the least frequently occurring
candidate gets the lowest non-null score. Candidates that do
not appear in a class with the same name as the owner class
get a null score.

3.2 In-class exclusivity criterion (C2)
Rationale. The attribute is only present in classes with the

same name as the owner class.

Selection filter. Attributes owned by classes with the same
name as RC.

Rating approach. Candidates which only appear in
classes with the same name as the owner class get the highest
score. Those that appear equally in all classes of the data set
get the lowest score. Candidates that never appear in a class
with the same name as the owner class get a null score.

3.3 Attribute synergy criterion (C3)
Rationale. The attribute is often present along with other

attributes of the owner class.
Selection filter. Attributes connected to attributes owned

by RC through their presence in a common class. Common
classes are those classes that share the same name.

Rating approach. The more often a candidate and an at-
tribute of RC appear together in a class, the higher the score.
The more that a candidate appears together with different at-
tributes of RC, the higher the score. Candidates which never
appear together in a class get a null score.

3.4 Context similarity criterion (C4)
Rationale. The attribute often describes a class named the

same as the owner class in similar models.
Selection filter. Attributes owned by classes named |RC|

in models which share at least two common classes with
M(RC).

Rating approach. Candidates from models that share the
highest number of classes with M(RC) get the highest score.
Candidates from models which have no class in common get
a null score.

4 Utility Function
The third step of our approach consists in constructing a

utility function that aggregates the score of each single cri-
terion into a global score, on which to base the ranking. In
defining what makes a good explanation in recommender sys-
tems, [10] argue that ”justifying [a] recommendation is just
half of the solution, the second half is to make it scrutable”.
To that end, in this section we first select an aggregation
method that enhances system transparency. Then we em-
phasize support for context adaptability, and, finally, propose
a determination process that allows system control through
scrutability.

4.1 Utility Function selection
Adomavicius and Kwon [8] identify two major tech-

niques for dealing with multi-criteria ratings to produce an
overall rating: heuristic-based and model-based techniques.
Heuristic-based techniques compute the score of each item
for a given user, based on data derived from observing one
specific user, using some heuristic assumption. To perform
matching operations, these techniques often require specific
knowledge about multiple users, based on their profile and

328

from collaborative filtering. In contrast, model-based tech-
niques generate a predictive model, typically using statistical
or machine-learning methods that best explain the observed
data. Once the model becomes available, they use it to esti-
mate the score of individual recommendations.

In our case, the lack of data about the profiles of all
users rules out heuristic-based techniques. On the other hand,
model-based techniques using machine-learning methods en-
able the system to learn directly from the user, resulting in
finely-tuned data. Consequently, we take a machine-learning
model-based approach to determine the overall utility func-
tion. Note that, for greater system transparency, the aggre-
gation process must be explainable. Therefore, rather than
relying exclusively on machine-learning processes, which are
rarely fully explainable, we define the utility function as a
weighted sum of criteria rating functions.

We define this function as follows:

Let (a, b, c, d) ∈ [0; 1]4 where a+ b+ c+ d = 1,

overallRC : |A| → [0; 1]
|p| 7→ a× s1 + b× s2 + c× s3 + d× s4

with s1, s2, s3, s4 the scores for criteria 1 to 4
(1)

The machine-learning process is used to determine the values
of the weights a, b, c, and d.

4.2 Context adaptability
Adomavicius and Kwon [11] also note that the aggregation

function can have different scopes: total (i.e., when a single
aggregation function is learned based on the entire data set),
user-based, or item-based (i.e., when a separate aggregation
function is learned for each user or item).

In the context of recommending UML attributes for
classes, we identify four different possible Contexts i.e. sit-
uations. The system will provide recommendations for the
following:

• Context 1: A class owning no attributes and no other
classes in the model.

• Context 2: A class owning one or more attributes and
no other classes in the model.

• Context 3: A class owning no attributes in a model but
containing one or more other classes.

• Context 4: A class owning one or more attributes in a
model and also containing one or more other classes.

Each of the above contexts has access to different infor-
mation so that not all of the criteria can be applied equally
to all of them. For instance, the context similarity criterion
C4 relies on the presence of other classes in the model and is,
therefore, not applicable to contexts 1 and 2. Consequently,

we define the overall utility function in context k overallk,RC

as:

overallk,RC(|p|) = ak×s1+bk×s2+ck×s3+dk×s4 (2)

This results in four different utility functions correspond-
ing to the four different contexts. They are determined indi-
vidually in the course of the machine-learning process.

4.3 Utility function determination
The quality of a recommender system depends primarily

on its ability to propose items that the user is likely to choose
rather than items the user is unlikely to choose. Therefore, a
high-quality recommender system must fit user preferences.
Our system offers the possibility to reflect these preferences
by assigning values to the weights of the four overall utility
functions. This can be done manually, but finding suitable val-
ues would likely lead to suboptimal results. Instead, we chose
a machine-learning approach to automatically determine these
weights.

We collect labelled data through a dedicated interface
(presented in section 5.1, and in the web page) during a
preference-elicitation phase. This interface first presents mul-
tiple situations (a class diagram with recommendation target
class) one at a time. A list of unranked candidates —potential
recommendations— is displayed for each situation. Using
this interface, the user is asked to remove all attributes that
do not fit semantically in the presented situation. Once this
is completed, the user is then asked to create a ranked list
of the top 10 best recommendations from the displayed ele-
ments. This task should be repeated for multiple situations
in different contexts a sufficient number of times in order to
collect enough information to determine the four utility func-
tions. Once this data is collected, it is used to calculate ak,
bk, ck, dk weights in such a way that they maximize the Mean
Top Average Precision metric defined in Section 5.2.2.

5 Implementation and Evaluation
In this section we first describe the implementation of our

solution followed by a description of the initial evaluation and
its results. More details about the implementation and its be-
haviour are available online1.

5.1 Implementation
Recommender system. Our implementation conforms to

the standard three-tier architecture pattern2: the data tier, the
application tier, and the presentation tier. The data tier con-
sists of a Neo4j3 server which holds the full models data set
represented as a graph. The application tier is a Spring Boot4

server exposed as an API which is responsible for computing

1https://hufamo.univ-lille.fr/modeling-assistant
2https://www.tandfonline.com/doi/abs/10.1080/10580539608906981
3https://www.neo4j.com
4https://spring.io/projects/spring-boot

329

the scores and the output of the utility function, to produce
recommendations. Finally, the presentation tier is a Papyrus5

plugin which presents recommendations to the user and make
it exploitable.

Supervised Learning Platform. The aim of the super-
vised learning approach is to determine a combination of a,
b, c, d values that maximizes the accuracy of the system for
a specific context. Initially, we start the learning process with
equal values for these weights. These values are then varied
using a predefined increment while maintaining the constraint
specified by equation 1. For each configuration of a, b, c, and
d, we calculate the chosen evaluation metric for the system
and compare it to the previous maximum value. The high-
est value is stored as well as the associated configuration of
weights. After all configurations are analysed, the one that
maximized the chosen metric is selected. This algorithm is
coded in Java as part of the application tier. To compute accu-
racy, the algorithm exploits the labelled data created through
our dedicated interface. The labelling interface is a web ap-
plication coded in HTML/CSS/JS that enables labelled data
collection. It takes JSON files and class diagram pictures as
input and outputs JSON files containing user preferences as
output.

5.2 The evaluation
The preliminary evaluation of our approach is based of as-

sessing improvements in the quality of the recommendations,
as well as the adequacy of system control, information trans-
parency, and system transparency. To the best of our knowl-
edge, no similar approach can be found in the literature. A
replication package contained the labelled data, the original
files and the metrics source code is available online6.

5.2.1 Data gathering

The evaluation involved data from over 95’000 models. These
contained approximately 634’000 classes and 616’000 at-
tributes. The models were retrieved from the GenMyModel7

public repositories by courtesy of Axellience. For quality pur-
poses, we only selected models greater than a minimum size
(over 10 kilobytes).

We gathered labelled data according to the method de-
scribed in Section 4.3. From this, we obtained 9,858 la-
belled attributes from 30 participants: 9 senior and 4 junior
researchers, 3 senior and 12 junior developers from industry,
and 2 M.Sc. students. Prior to starting the labelling exer-
cise, participants were asked to answer questions about their
familiarity with UML and the extent of their modeling work.
On average, participants estimated their knowledge of UML
class diagrams to range between fair and good (mean: 3.5 on
5-point Likert scale, std. deviation: 1.0). This assured us that

5https://www.eclipse.org/papyrus/
6https://hufamo.univ-lille.fr/modeling-assistant
7https://www.genmymodel.com

participants had a relatively good understanding of the context
and consequently, that the information gathered was semanti-
cally meaningful. Participants were asked to respond to up to
20 examples of different situations: 5 per context. In order to
minimize the impact of participant fatigue on the results, the
20 examples were randomly displayed and participants were
allowed to respond in several sessions.

5.2.2 Evaluation metrics

To more accurately evaluate the attribute recommendations,
we compared the ranked results of our system with the ranked
preferences as chosen by the users who created their top-5
ranked list. Consequently, we computed metrics for just the
top-5 recommended attributes; i.e., the five attributes with the
highest scores.

Precision@5 (P@5) is the proportion of recommended
items that a user deemed as belonging in the top-5 list of rele-
vant attributes. In our case, relevant attributes were those that
were not excluded by the user from the candidate list.

P@5(set) =
n° of relevant items in system top-5

5
(3)

TopPrecision@5 is the proportion of recommended items
in the top-5 list provided by the recommender system that are
also included in the top-5 set chosen by the user.

TP@5(set) =
n° of common items in user and system top-5

5
(4)

TopAveragePrecision@5 (TAP@5) takes ranking into
consideration in evaluating the mean average precision of the
top-5 of the system. Mean Average Precision (MAP) is a pop-
ular metric for measuring recommendation algorithms in in-
formation retrieval. We defined TAP@5 as follows:

TAP@5(set) =
5∑

n=1

P (n)× pos(n)

R
(5)

where pos(k) indicates whether the element from system top-
5 in position k matches the position of the element in a user’s
top-5 list, while R refers to the number of elements for which
pos(k) = 1; P(k) is the ratio of correctly recommended ele-
ments over top-k recommended elements.

These metrics can be computed for each ranked set of
attributes. Therefore, as users provided several sets of at-
tributes, we considered the means of these metrics as follows:

Mm(S) =
∑
s∈S

m(s)

N
(6)

where m is the metric for which the mean is calculated (i.e.,
MP, MTP, and MTAP); S is the data set for which the mean
was computed, and N is the number of elements in S.

330

Table 1. Labelled data distribution
General Ctx. 1 Ctx. 2 Ctx. 3 Ctx. 4

Training 8,146 2,462 2,338 1,765 1,581
(205 sets) (50 sets) (43 sets) (59 sets) (53 sets)

Testing 1,712 544 562 303 303
(40 sets) (11 sets) (10 sets) (9 sets) (10 sets)

Total 9,858 3,009 2,900 2,068 1,884
(245 sets) (61 sets) (53 sets) (68 sets) (63 sets)

Table 2. Learned overall functions
Context Overall Function

Context 1 0.80× s1 + 0.20× s2
Context 2 0.03× s1 + 0.01× s2 + 0.96× s3
Context 3 0.51× s1 + 0.03× s2 + 0.46× s4
Context 4 0.56× s1 + 0.03× s2 + 0.29× s3 + 0.12× s4

5.2.3 Metrics results

We obtained 245 sets of labelled data from users, which con-
stitute a corpus of 9,858 attributes distributed for training and
testing phases, as presented in Table 1. We trained our overall
rating functions with 81% (205 sets) of the total labelled data
set and obtained the functions presented in Table 2. The goal
of the training was set to the maximization of the MTP@5
metric, as it is the most representative possible improvement
of our system when compared to unassisted user selections.

The added value of using machine-learning is demon-
strated by the evolution of the metrics before and after the
machine-learning process. Both situations only differ in the
the values and distribution of weights in the utility functions.
We set up the initial configuration (i.e. before ML) by set-
ting the weight values to be equal. For instance, we define
the initial aggregation function for Context 4 as overall4 =
0.25×s1+0.25×s2+0.25×s3+0.25×s4. The final config-
uration corresponds to the application of the utility functions
defined in Table 2.

We evaluated the overall utility functions on a specific test-
ing data set, which represents 19% of the full labelled data set,
(see Table 1). The other 81% were used for training purposes.
The results of the metrics evaluation are presented in Table 3.

5.3 Discussion
The initial general MP@5 is pretty high (87.0%). The low

impact of the learning process on this score (+4.5%) indi-
cates that the different criteria already strongly converge to

Table 3. Testing data set metrics measures
Metric General Ctx. 1 Ctx. 2 Ctx. 3 Ctx. 4

Initial MP@5 87.0% 83.6% 90.0% 84.4% 90.0%
Initial MTP@5 34.7% 23.6% 38.7% 36.7% 40.0%

Initial MTAP@5 27.8% 4.5% 22.5% 11.1% 35.0%

Final MP@5 91.5% 92.7% 90.0% 93.3% 90.0%
(+4.5%) (+9.1%) (-) (+8.9%) (-)

Final MTP@5 51.0% 56.4% 49.3% 52.2% 46.0%
(+16.3%) (+32.7%) (+10.7%) (+15.5%) (+6.0%)

Final MTAP@5 42.5% 50.0% 35.0% 50.8% 45.0%
(+14.7%) (+45.5%) (+12.5%) (+39.7%) (+10.0%)

recommend user-relevant attributes, and that the impact of
the weights on the overall rating functions are, in that case,
secondary. The impact of the supervised-learning process be-
comes more important according to the desired quality of the
recommendations. Indeed, the initial low value of MTP@5
increases from 34.7% to 51.0% after the learning process.
This means that, on average, more than two attributes of the 5
first recommendations of the system are attributes that partic-
ipants included in their top-5 best recommendations. Follow-
ing the learning step, MTP@5 shows the most significant in-
crease among all metrics (+16.3%). The utility functions were
defied so as to optimize this metric. MTAP@5 takes differ-
ences in recommendations ranking between system and user
top-5 into account. Only high-quality recommendations in-
crease this metric, which explains why it has the lowest initial
values for all contexts. With a final value of 42.5%, MTAP@5
indicates that, on average, more than 2 attributes of the 5 first
recommendations are in participants’ top-5, likely to be in top
positions and ordered as the participants expected.

5.4 Evaluation results
The empirical results obtained indicate that our approach

provides acceptable results (on average, more than 4 recom-
mended attributes out of 5 are deemed relevant, and also 2
recommendations out of 5 appear in users’ top-5 rankings).
However, as pointed out earlier, it is too early to make any
firm conclusions about the effectiveness of our approach com-
pared to alternatives until further evaluations are performed.
In addition, we can draw the following conclusions from the
evaluation:

• the initial effectiveness measure that we proposed here
looks as if it could serve as a common metric for future
related work.

• The defined criteria do seem to reflect information trust-
worthiness. Moreover, the rationale behind them can be
easily explained, which means that they do support in-
formation transparency.

• The linear utility function approach we used allows any
overall score to be traced to each criterion used to de-
rive it. This enables users to understand the inner mech-
anisms of the system and thus supports system trans-
parency.

• The utility function can either be set manually or defined
using supervised-learning. These settings allow users to
have control over the results that are presented giving
them control of the system.

6 Related work
In this section, we review published work in the following

related areas: (i) tools that help with semantics-related issues
involved in modeling, and (ii) recommender systems for soft-
ware engineering.

331

6.1 Conceptual modeling assistance

Although a lot of work has been done on supporting soft-
ware engineering with software assistants, not much of it
has been applied to modeling. Segura et al. [12] recognize
the need for assistance during modeling activities and intro-
duce Extremo, an Eclipse plugin for modeling. They pro-
pose a framework for integrating diverse data sources into the
Eclipse modeling environment. However, the data sources,
such as model repositories, must be provided by the user.
Koschmider et al. [13] propose a recommendation-based ed-
itor for business process modeling. Their system provides
users with recommendations about partial process models.

Kogel [14] describes the early stages of a work on model-
ing recommendations and proposes a prototype providing un-
ranked recommendations. Elkamel et al. [15] present a UML
class recommender system that recommends new classes for
a UML model. This system measures the similarity between
current model classes and existing ones from a repository
to recommend the closest matches. In a similar fashion,
Cerqueira et al. [16] proposed a content-based approach for
recommending UML sequence diagrams.

The above papers highlight both the novelty of and the
need for semantic assistance in modeling activities. Surpris-
ingly, while class diagrams remain among the most widely
exploited UML diagrams [17], almost no effort has been con-
ducted to address support for their design.

6.2 Recommender systems for software engineering

Only a few recommendation systems have been applied to
modeling to date. In fact, Dyke et al. [18] identify recom-
menders for modeling as a promising new area of research,
since recommender systems have already found their way into
general software engineering [19] and many of the software
lifecycle processes, as defined in ISO/IEC 12207 [20].

Multiple works [21] [22] investigated the application of
recommender systems to the field of requirements engineer-
ing. Sharma and Sodhi proposed a recommender system [22]
to help in dealing with the manual effort required to identify
and analyse relevant architectural patterns in the context of a
particular set of software requirements. A variety of recom-
mender systems focus on the software construction process,
from providing code examples to suggesting modifications
[19]. The work described in [23] provide developers with
recommendations about API usages and parameters. In [24],
Allamanis et al. propose an algorithm which suggests mean-
ingful class and method names to enhance software quality.
Some works also involve recommenders for finding relevant
answers to developer’s technical questions [25].

All of the above clearly identifies a gap in support for rec-
ommender systems in semantic-based assistance for concep-
tual modeling.

7 Conclusion and Future Work
In this paper, we are seeking to support the conceptual

modeling task. As an initial step we proposed, implemented,
and evaluated a modeling recommender system. The initial
evaluation, involving both practitioners and students and a
prototype implemented with Papyrus, indicates that the ap-
proach holds promise. A replication package was provided to
serve as first comparison point for future works in the domain.

Our plan is to generalize the approach realized in the proto-
type for other types of models, such as activity and sequence
diagrams, to move towards our greater objective of a generic
framework for building design-assisting recommender sys-
tems. We also plan to conduct further work specifically fo-
cusing human-centric aspects. This includes ways to provide
users with explanations about recommendations, but also the
types of interaction recommender systems should propose to
best fit users’ mental design process.

References
[1] Z. Yan, R. Dijkman, and P. Grefen, “Business process

model repositories – framework and survey,” Informa-
tion and Software Technology, vol. 54, no. 4, pp. 380 –
395, 2012.

[2] R. Hebig, T. H. Quang, M. R. V. Chaudron, G. Rob-
les, and M. A. Fernandez, “The quest for open source
projects that use uml: Mining github,” in Proceedings of
the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, ser. MOD-
ELS ’16. New York, NY, USA: Association for Com-
puting Machinery, 2016, p. 173–183.

[3] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang, “Rec-
ommender system application developments: A survey,”
Decision Support Systems, vol. 74, pp. 12–32, Jun. 2015.

[4] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen,
Collaborative Filtering Recommender Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 291–
324.

[5] M. J. Pazzani and D. Billsus, Content-Based Recommen-
dation Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 325–341.

[6] R. Burke, “Knowledge-based recommender systems,” in
ENCYCLOPEDIA OF LIBRARY AND INFORMATION
SYSTEMS. Marcel Dekker, 2000, p. 2000.

[7] N. Manouselis and C. Costopoulou, “Analysis and Clas-
sification of Multi-Criteria Recommender Systems,”
World Wide Web, vol. 10, no. 4, pp. 415–441, Dec. 2007.

[8] G. Adomavicius and Y. Kwon, “Multi-Criteria Recom-
mender Systems,” in Recommender Systems Handbook,

332

F. Ricci, L. Rokach, and B. Shapira, Eds. Boston, MA:
Springer US, 2015, pp. 847–880.

[9] B. Roy, Multicriteria Methodology for Decision Aiding.
Springer Science & Business Media, Nov. 2013, google-
Books-ID: lf7lBwAAQBAJ.

[10] N. Tintarev and J. Masthoff, “A survey of explanations
in recommender systems,” in 2007 IEEE 23rd Inter-
national Conference on Data Engineering Workshop,
2007, pp. 801–810.

[11] G. Adomavicius and Y. Kwon, “New recommendation
techniques for multicriteria rating systems,” IEEE Intel-
ligent Systems, vol. 22, no. 3, pp. 48–55, 2007.

[12] Ángel Mora Segura and J. de Lara, “Extremo: An
eclipse plugin for modelling and meta-modelling assis-
tance,” Science of Computer Programming, vol. 180, pp.
71 – 80, 2019.

[13] A. Koschmider, T. Hornung, and A. Oberweis,
“Recommendation-based editor for business process
modeling,” Data & Knowledge Engineering, vol. 70,
no. 6, pp. 483 – 503, 2011.

[14] S. Kögel, “Recommender system for model driven soft-
ware development,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017. New York: Association for Com-
puting Machinery, p. 1026–1029.

[15] A. Elkamel, M. Gzara, and H. Ben-Abdallah, “An uml
class recommender system for software design,” in 2016
IEEE/ACS 13th International Conference of Computer
Systems and Applications (AICCSA), 2016, pp. 1–8.

[16] T. Cerqueira, L. Marinho, and F. Ramalho, “A Content-
Based Approach for Recommending UML Sequence
Diagrams,” Jul. 2016.

[17] D. Akdur, V. Garousi, and O. Demirörs, “A survey on
modeling and model-driven engineering practices in the
embedded software industry,” Journal of Systems Archi-
tecture, vol. 91, pp. 62–82, Nov. 2018.

[18] A. Dyck, A. Ganser, and H. Lichter, “On design-
ing recommenders for graphical domain modeling en-
vironments,” in 2014 2nd International Conference on
Model-Driven Engineering and Software Development
(MODELSWARD), 2014, pp. 291–299.

[19] M. Robillard, R. Walker, and T. Zimmermann, “Rec-
ommendation systems for software engineering,” IEEE
Softw., vol. 27, no. 4, p. 80–86, Jul. 2010.

[20] “Iso/iec/ieee international standard - systems and soft-
ware engineering – software life cycle processes,” IEEE
STD 12207-2008, pp. 1–138, 2008.

[21] N. Hariri, C. Castro-Herrera, J. Cleland-Huang, and
B. Mobasher, Recommendation Systems in Require-
ments Discovery. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 455–476.

[22] S. Sharma and B. Sodhi, “Apr: Architectural pattern
recommender,” in Proceedings of the Symposium on
Applied Computing, ser. SAC ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p.
1225–1230.

[23] F. Thung, S. Wang, D. Lo, and J. Lawall, “Automatic
recommendation of api methods from feature requests,”
in 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2013, pp. 290–
300.

[24] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Sug-
gesting accurate method and class names,” in Proceed-
ings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2015. New
York, NY, USA: Association for Computing Machinery,
2015, p. 38–49.

[25] T. Du, J. Cao, Q. Wu, W. Li, B. Shen, and Y. Chen, “Co-
coqa: Question answering for coding conventions over
knowledge graphs,” in 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), 2019, pp. 1086–1089.

333

Evaluating Visual Explanation of Bug Report Assignment
Recommendations

Shayla Azad Bhyan and John Anvik

Department of Mathematics and Computer Science
University of Lethbridge, Alberta, CANADA
E-mail: [s.bhuyan, john.anvik]@uleth.ca

Abstract

Software development projects typically use an issue
tracking system where the project members and users
can either report faults or request additional features.
Each of these reports needs to be triaged to determine
such things as the priority of the report or which devel-
opers should be assigned to resolve the report. To assist
a triager with report assigning, an assignment recom-
mender has been suggested as a means of improving the
process. However, proposed assignment recommenders
typically present a list of developer names without an
explanation of the rationale. This work presents the
results of a small user study to validate our approach
to visually explaining bug report assignments.

1. Introduction

As the need for global and distributed software
projects grows, so does the need for finding people with
the required expertise for a given task. Recommenda-
tion systems have been proposed as a means for im-
proving the achievement of this goal [1–4]. The typical
recommendation system provides a textual list of rec-
ommendations with no explanation for why each rec-
ommendation was made. As described by Herlocker
et al. [5], most current recommendation systems are a
black box where transparency is not ensured.

Providing transparency by incorporating the reason-
ing and data behind a recommendation is an important
feature of an effective recommendation system [1, 6],
as recent work in “Explainable Artificial Intelligence”
shows [7,8]. Effective visualizations can help to provide

This work is supported by Alberta Innovates and the Natural
Sciences and Engineering Research Council of Canada.

DOI reference number: 10.18293/SEKE2021-054

this transparency for a recommender system that uses
multidimensional data and improve user acceptance
rates for recommendations. Making efficient visualiza-
tion of the recommendations can show how different di-
mensions were applied in making a recommendation to
improve transparency [6], as well as improving a user’s
acceptance rate of recommendations [1]. Trintarev et
al. [9] surveyed a group of movie-goers and found that
the explanations behind the recommendations are as
important to users as the recommendations.

Bug report1 triage recommenders are an example of
such a recommender system in software engineering.
Bug report triage is the process where a project mem-
ber, typically a project manager, decides what to do
with a bug report. When projects receive many bug re-
ports every day, bug report triage becomes a significant
software maintenance issue [10–12]. Also, bug report
triage is a tedious task that often shifts development re-
sources away from improving a product to instead man-
aging the project. Within the area of bug report triage
recommenders, assignment recommenders are the most
commonly researched (e.g. [4, 10, 13]). Typically, pro-
posed assignment recommenders provide a textual list
of recommended developers’ names (e.g. [10, 14, 15]).
Despite years of research, assignment recommenders
have yet to be meaningfully integrated into products
such as Bugzilla, GitHub and Jira. Prior studies (e.g.
[16]) and informal discussions with developers indicate
that one of the barriers to the adoption of such a sys-
tem is the lack of explanation, leading developers to
question and perhaps not trust the recommendations.
It is these discussions that motivated this work.

This paper presents an evaluation of our initial
work towards providing transparency for bug report
triage assignment recommendations using visual expla-
nations. We explore the use of stacked horizontal bars,

1We use the term ”bug report” to refer to items in a project’s
issue tracking system.

334

a pie chart, and a data table. To assess the impact of
the use of these visualizations, we conducted a small
user study.

To the best of our knowledge, this area of bug re-
port assignment recommenders has not been explored
in the literature. We believe that part of the reason
for this is that these recommenders are created typi-
cally using machine learning algorithms that make it
hard to provide explanations. For example, the two
most commonly used algorithms are Support Vector
Machines (SVM) [17, 18] and the Random Forest al-
gorithm [19, 20] where determining the rationale for
the recommendations is near impossible. Instead, we
focused on the use of Multinomial Na¨ıve Bayes and
Topic Modelling, both of which use probabilistic mod-
els. The use of a probabilistic model makes for an
easier determination of recommendation rationale. In
contrast to Multinomial Na¨ıve Bayes which has been
commonly used in the past, the use of Topic Modeling
in this area is relatively new.

2. Visualization of Assignment Recom-
mendations

To provide an assignment recommendation for a new
bug report, first, the report is turned into a vector of
features. Next, the features of the new bug report are
given to the trained classifier. In the case of Multino-
mial Näıve Bayes, for each potential developer, the set
of features that are common between their instances
and the new bug report are collected. Then the sum
of the conditional probability of each of these features
is determined to represent the expertise score of that
developer for that bug report. Finally, developers are
ranked based on expertise scores. In most cases, bug
reports have a lot of relevant words in common. If all
of these words were displayed, the graphs would have
too much information and be hard to read and under-
stand. Therefore, we chose to display only the most
relevant terms based on the TF-IDF score. We empir-
ically found that providing more than five terms did
not significantly improve the accuracy.

When choosing the visualizations to explore, we fo-
cused on simplicity and familiarity to potential users.
Therefore, we chose the data-table format, stacked bar
chart and pie chart, as they are commonly used in a
variety of applications and are familiar to a wide range
of people. Also, we sought visualizations that would
allow for the display of information about relative con-
tributions. In our case, that means the individual prob-
abilities of terms or the dominant topic in a bug report
will have towards the ranking of developers. Finally,
these forms of visualization have been previously used

in similar contexts [1, 21,22].

Figure 1 shows these three types of visual represen-
tation for an assignment recommendation using Multi-
nomial Näıve Bayes. The pie chart presents the im-
portant features from each report based on their con-
ditional probability values. If a user clicks on the pie,
a new web page opens. This new page shows a pie for
each developer and each pie shows the overall condi-
tional probability values for the corresponding recom-
mended developer. The data table shows these same
values for each important feature for each developer.
The stacked bar chart however shows developers hori-
zontally where each feature is represented by a differ-
ent colour. The developer who has the highest sum
of conditional probability values for all of the selected
features is shown at the bottom.2

For the Topic Modelling classifier, the cluster with
the shortest distance to the new bug report is deter-
mined and the ranked list of developers for that cluster
forms the recommendation list. The pie chart shows
the recommended developer names and their solved
bug report rate for a specific topic. The data table
gives the list of developer names with the exact num-
ber of reports that the developer solved related to that
topic. The stacked bar chart also shows the developer
names horizontally with their score. The colour of the
bar is related to the selected topic.

3. Evaluation

Our empirical study3 sought answers to three re-
search questions. First, do developers find visual ex-
planations of assignment recommendations easy to un-
derstand? Second, do developers trust visual explana-
tions of assignment recommendations? Lastly, which
of the three investigated visualizations is preferred?

The web application used in our study consisted of
two parts: a web browser plug-in and a web service. To
present a subject with visual explanations for the as-
signment recommendations, we created a web browser
plug-in for Google Chrome 4.

To use the plug-in, first, a user opens a bug re-
port in the web browser from a Bugzilla server. We
configured the plug-in to only work with bug re-
ports from Mozilla projects (i.e. those with the URL
https://bugzilla.mozilla.org), as that was our
chosen dataset. Next, the user clicks on a button

2That the top recommendation is shown at the bottom is a
result of the graphics library used, not an intentional choice.

3An analytical evaluation of the underlying recommenders
was conducted before the study. See [23] for these details.

4https://chrome.google.com/webstore/detail/recommend-
expertise/clpcpddhohohhfcnkiknfopaeikbngid

335

labelled “Recommend Experts” in the plug-in in the
browser. This makes a request to the web service
with the bug report’s id and opens a new browser win-
dow containing the response from the web service - an
HTML page showing the assignment recommendations
in a visual form. Figure 1 shows one of the four vi-
sualization web pages that are returned by the web
service.5

When given the bug report id, the web service
queries the issue tracking system for the title and de-
scription of the requested report. Stop words are re-
moved and stemming applied to the text before being
passed to a classifier. The results from the classifier
are then used to create the visualizations. As previ-
ously mentioned, only the top five (5) recommended
developers are shown to avoid information overload.

3.1. User Study

The user study consisted of a within-subject study
where all participants received treatment. Our user
study6 consisted of three parts: a demographic survey,
presentation of the visualizations with an accompany-
ing survey, and a post-usage survey.

The demographic and post-usage survey was con-
ducted using Qualtrics, and the visualization survey
integrated into the web pages was generated by the
web service. Participants were asked to complete the
demographic survey first, then install the browser plug-
in and go through the list of bug reports, and then
complete the post-usage survey.

To recruit participants for our study we posted on
Reddit in channels like r/learnmachinelearning and
r/AskComputerScience. The criteria for participation
was to either be in a two-year computer science post-
graduate degree (i.e. in an M.Sc.-like program) or have
more than one year of software development experi-
ence. Interested participants were asked to contact the
primary researcher for a study id and further instruc-
tions. We were able to recruit fourteen participants.

As previously noted, this research direction is new in
the software engineering area. Participants could have
been recruited from the Bugzilla project (i.e. the data
set used for training the assignment recommender), but
we chose to conduct a small study first to assess the
viability of our approach before approaching specific
project developers. In other words, the purpose of
the user study was to gain a general understanding
of the effectiveness of visually representing bug report
assignment recommendations. By having participants

5Examples of the other visualizations can be found in [23].
6The study was reviewed by the University of Lethbridge

Ethics Committee and assigned protocol number #2019-070.

that were not associated with the particular project
for which the assignment recommender was created,
we sought to determine a base case for future investi-
gations in this area.

To assess the effectiveness of the visualizations, each
participant was given the same set of fifteen (15) links
to pre-selected bug reports for the Bugzilla software
product. The selected bug reports were randomly cho-
sen from those that had a status of Open (i.e. not
Resolved). This was done so that the reports reflected
the general level of difficulty of reports present in the
issue tracking system for the product (i.e. no consid-
eration was given for the complexity of the bug report
in their selection) and so that participants were not bi-
ased towards the recommendations by examining “the
correct answer“ of who should have been recommended
as the assignee.

After clicking on a link for a bug report, the partici-
pant was taken to the actual bug report in the Mozilla
project’s issue tracking system. The participant would
then click “Recommend Experts” in the plug-in and
the web service would provide the recommendations as
part of one of four randomly selected web pages. The
participant would also be asked one of two sets of ques-
tions depending on the presented visualizations.

The intent of two of the web pages was to present
participants with a single type of visualization (stacked
bar or pie chart) with data from each of the recom-
menders. In this way, we could determine if partici-
pants preferred the use of one visualization approach
over another. The intent of the other two web pages
was to determine if participants preferred a particular
type of classifier.

For the web pages that presented results from the
two different classifiers (Multinomial Näıve Bayes and
Topic Modelling), participants were asked several ques-
tions: Did they think the visualizations increased their
understanding of the recommendation? Did they trust
the recommendations? Did they think the visualiza-
tions provided enough information? If not, what visu-
alization did they think was missing?

For the web pages where the results from the same
classifier were presented, but the visualization differed
(i.e. bar vs. pie vs. table), the participants were asked
similar questions as before. Did they trust the rec-
ommendations? Did they think the visualizations pro-
vided enough information? If not, what visualization
did they think was missing?

After participants finished using the browser plug-in
on the fifteen bug reports, or however many they chose
to do, they were asked to complete the post-usage sur-
vey. This survey asked their thoughts about our ap-
proach to providing visual explanations of bug report

336

Figure 1. Visualization of recommendations using Multinomial Naı̈ve Bayes classifier.

assignment recommendations. Examples of questions
asked included: How important is the visual explana-
tion of the recommendations to you? How would you
improve the explanation of the recommendations? Did
you think that one visualization was enough? Which
combination of visualizations would you want for ex-
plaining an assignment recommendation?

4. Results

We found that most participants took an hour to
complete the study, although one participant took
much longer (2.5 hours) 7

The occupations reported by the participants were:
student (3), quality analyst (3), application developer
(5), project manager (1), and application architect (1).
The participants identified as 64% male and 36% fe-
male, and just over half (57%) of the participants had
a graduate degree (Masters or Ph.D.). Participants’ de-
velopment experience varied from less than three years
(1), four to nine years (7), and more than nine years
(6). Most of the participants (71%) reported having
logged a bug report, which indicates that most of them
had some form of first-hand knowledge of how bug re-
port assignment works. When asked about their level
of familiarity with machine learning, two (2) reported

7When asked, the participant responded that this was due to
interest in the approach and wanting to fully understand it.

themselves as beginners, and the rest considering them-
selves to have advanced knowledge.

4.1. Visualisation of Assignment Recommendations

Table 1 shows the results for the questions where we
were trying to determine if there was a preference for
one visualization over another. We can see that there
was a slight preference for the stacked bar chart over
the pie chart. We can also see that more than 70%
of participants felt that these visualizations provided
enough information. There was no notable difference in
the preferred visualizations for developers with differ-
ent experience levels. This may be a result of the par-
ticipants not being intimately familiar with the project.
Note that no participants preferred the data table over
the other two, with one participant commenting “it is
not interesting.”

Regarding trust in the recommendations, we found
that trust in both the Topic Modelling classifier and the
Multinomial Näıve Bayes classifier was high, at 94%
and 85%, respectively.

Participants felt that these visualizations provided
them with enough information to make an informed
decision (Multinomial Näıve Bayes – 97%, Topic Mod-
elling – 100%). Table 2 shows that for both types
of classifiers, most of the participants preferred the
stacked bar chart over the other two data represen-
tations. As might be expected, participants preferred

337

Table 1. Visualization Preference.
Question Stacked Bar Pie Chart

Do you think these visualizations increase your understanding of
the recommendation?

77.00% 76.09%

How much do you trust these recommendations? (1 being not
trustworthy at all to 5 being you trust this fully.)

3.46 3.41

Do you think these visualizations provide you enough informa-
tion?

79.00% 77.78%

Table 2. Preference for specific visualizations.

Chart Type Multinomial
Näıve Bayes

Topic
Modelling

Stacked Bar 56.10% 76.19%
Data Table 29.26% 7.14%
Pie Chart 14.63% 14.7%

the data table over the pie chart, feeling that the data
table was more informative, especially for the Multino-
mial Näıve Bayes classifier.

A few of the participants provided answers to the
question regarding if they felt that a visualization was
missing something. One participant suggested that in-
stead of showing percentage values, show the actual
values as was done in the bar chart. Another partic-
ipant commented that they found it to be too much
work to click on the pie chart every time they wanted to
see the detailed explanation for the word-based recom-
mendations. A few participants commented that they
preferred the word-based recommender to the topic-
based recommender.

When examining the responses regarding trust
across an individual user’s session, we observed that for
the first few times that they were presented with rec-
ommendations, their level of trust was low (e.g. ratings
of 2). However, as they used the plug-in more, their
level of trust increased (e.g. ratings of 5) quickly.

The results from our post-usage survey showed that
more than half of the participants wanted to see more
than one visual representation of the recommendations.
Also, the majority (75%) felt that it was “very im-
portant” or “extremely important” to represent recom-
mendations with explanations in a visual manner.8

5. Threats to Validity

Although in our study we trained our classifier us-
ing data from a single Mozilla project - Bugzilla, we

8See [23] for a more detailed discussion of the study results.

do not feel that this limits the generalizability of our
results. As our focus was on the representation of the
recommendations, not the accuracy of the recommen-
dations, our results are not dependent on the project
used. Similarly, the study participants were from a
wide range of occupational backgrounds, which further
supports the generalizability of the results. Finally,
generalizability related to using an open-source project
vs. a commercial project or few projects vs. many
projects were not deemed to be a concern.

That the participants in the user study were not
associated with the Mozilla projects may have resulted
in inaccurate feedback. As this was a pilot study, we
plan to address this threat in a future study where we
recruit project members of the dataset used for training
the recommender system. Such a study is expected
to provide more detailed comments regarding trust in
the recommendations and if the information provided
for explanation is sufficient for the task of bug report
assignment.

There is a possibility that our results may suf-
fer from social desirability bias (i.e. ”please the re-
searcher” bias). Based on the trend where participants
initially reported that they had low trust in the recom-
mendations and then the trust level improved, we do
not feel that such bias had a significant impact overall.
However, we cannot discount this possibility.

6. Conclusion

This work investigated the use of visualization for
explaining bug report assignment recommenders. To
accomplish this, we created a web service that pro-
vides explanations of assignment recommendations for
two types of recommenders using three visualizations.
We found that developers did prefer visual explana-
tions, with 75% of participants stating that the visual
explanations increased their understanding of the as-
signment recommendations. We also found that devel-
opers gained trust in the recommendations over time
and that the developers preferred a stacked bar chart.

338

References

[1] S. Bostandjiev, J. O’“Tasteweights: a visual in-
teractive hybrid recommender system,” in Proc.
of the 6th ACM Conf. on Recommender Systems,
2012, pp. 35–42.

[2] J. O’Donovan, B. Smyth, B. Gretarsson, S. Bo-
standjiev, and T. Höllerer, “Peerchooser: Vi-
sual interactive recommendation,” in Proc. of the
SIGCHI Conf. on Human Factors in Computing
Systems, 2008, pp. 1085–1088.

[3] K. Verbert, D. Parra, P. Brusilovsky, and E. Du-
val, “Visualizing recommendations to support ex-
ploration, transparency and controllability,” in
Proc. of the 2013 Int’l Conf on Intelligent User
Interfaces, 2013, pp. 351–362.

[4] J. Xie, Q. Zheng, M. Zhou, and A. Mockus, “Prod-
uct assignment recommender,” in Proc. of the 36th
Int’l Conf. on Softw. Eng., 2014, pp. 556–559.

[5] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Ex-
plaining collaborative filtering recommendations,”
in Proc. of the 2000 ACM Conf. on Computer Sup-
ported Cooperative Work, 2000, pp. 241–250.

[6] D. Parra, “Beyond lists: Studying the effect of
different recommendation visualizations,” in Proc.
of the 6th ACM Conf. on Recommender Systems,
2012, pp. 333–336.

[7] C. T. Wolf and K. E. Ringland, “Designing acces-
sible, explainable ai (xai) experiences,” 2020.

[8] R. Hughes, C. Edmond, L. Wells, M. Glencross,
L. Zhu, and T. Bednarz, “Explainable ai (xai):
An introduction to the xai landscape with practi-
cal examples,” in SIGGRAPH Asia 2020 Courses,
2020.

[9] N. Tintarev and J. Masthoff, “Effective explana-
tions of recommendations: user-centered design,”
in Proc. of the 2007 ACM Conf. on Recommender
systems, 2007, pp. 153–156.

[10] J. Anvik, L. Hiew, and G. C. Murphy, “Who
should fix this bug?” in Proc. of the 28th Int’l
Conf. on Softw. Eng., 2006, pp. 361–370.

[11] J. Anvik and G. C. Murphy, “Determining imple-
mentation expertise from bug reports,” in Proc. of
the 4th Int’l Workshop on MSR, 2007, pp. 2–10.

[12] C. C. Williams and J. K. Hollingsworth, “Bug
driven bug finders,” in Proc. of the Int’l Work-
shop on MSR, 2004, pp. 70–74.

[13] T. T. Nguyen, A. T. Nguyen, and T. N. Nguyen,
“Topic-based, time-aware bug assignment,” ACM
SIGSOFT Softw. Eng. Notes, vol. 39, no. 1, pp.
1–4, 2014.

[14] C. Teyton, M. Palyart, J.-R. Falleri, F. Morandat,
and X. Blanc, “Automatic extraction of developer
expertise,” in Proc. of the 18th Int’l Conf. on Eval-
uation and Assessment in Softw. Eng., 2014, p. 8.

[15] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang,
J. Zhao, and P. Ou, “Automatic parameter recom-
mendation for practical api usage,” in Proc. of the
34th Int’l Conf. on Softw. Eng., 2012, pp. 826–836.

[16] J. Anvik and G. C. Murphy, “Reducing the ef-
fort of bug report triage: Recommenders for
development-oriented decisions,” 2011.

[17] K. Oku, S. Nakajima, J. Miyazaki, and S. Uemura,
“Context-aware svm for context-dependent infor-
mation recommendation,” in Proc. of the 7th Int’l
Conf. on Mobile Data Management, 2006, p. 109.

[18] J. A. Xu and K. Araki, “A svm-based personal
recommendation system for tv programs,” in 12th
Int’l Multi-Media Modelling Conf., 2006, pp. 4–pp.

[19] H. Zhang, F. Min, and S. Wang, “A random for-
est approach to model-based recommendation,”
Journal of Information & Computational Science,
vol. 11, no. 15, pp. 5341–5348, 2014.

[20] H.-R. Zhang and F. Min, “Three-way rec-
ommender systems based on random forests,”
Knowledge-Based Systems, vol. 91, pp. 275–286,
2016.

[21] Z. Lu, D. Szafron, R. Greiner, P. Lu, D. S.
Wishart, B. Poulin, J. Anvik, C. Macdonell, and
R. Eisner, “Predicting subcellular localization of
proteins using machine-learned classifiers,” Bioin-
formatics, vol. 20, no. 4, pp. 547–556, 2004.

[22] C. Treude, P. Gorman, L. Grammel, and M.-A.
Storey, “Workitemexplorer: Visualizing software
development tasks using an interactive exploration
environment,” in Proc. of the 34th Int’l Conf. on
Softw. Eng., 2012, p. 1399–1402.

[23] S. A. Bhuyan, “Visual representation of bug
report assignment recommendations,” Master’s
thesis, University of Lethbridge, Lethbridge,
Alberta, CANADA, 2019. [Online]. Available:
https://hdl.handle.net/10133/5651

339

A Practical User Feedback Classifier for Software Quality Characteristics

Rubens dos Santos1, Karina Villela2, Diego Toralles Avila1, and Lucineia Heloisa Thom1

1Federal University of Rio Grande Do Sul – Institute of Informatics, Porto Alegre, Brazil,
risantos@inf.ufrgs.br, dtavila@inf.ufrgs.br, lucineia@inf.ufrgs.br

2Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany,
karina.villela@iese.fraunhofer.de

Abstract

It is common practice for users to provide feedback on
apps through social media or app store reviews. This feed-
back is a rich source of requirements for these apps. How-
ever, manually analyzing vast amounts of user feedback is
unfeasible, so automated user feedback classifiers are useful
tools. This research work presents a user feedback classifier
based on Machine Learning (ML) for the classification of re-
views according to software quality characteristics complaint
with the ISO25010 standard. We developed this approach by
testing several ML algorithms, features, and class balancing
techniques for classifying user feedback on a data set of 1500
reviews. The maximum F1 and F2 scores obtained were 60%
and 73%, with recall as high as 94%. This approach does not
replace human specialists, but reduces the effort required for
requirements elicitation.

1. Introduction

Traditional Requirements Engineering (RE) techniques
such as interviews and focus groups are often used to elicit
the requirements of software applications. However, these
techniques are not suitable for software applications whose
intended users are a large, heterogeneous, geographically dis-
tributed group (the so-called crowd) [4]. On the other hand,
the crowd’s opinion is accessible to software engineers in
user feedback found in app stores and social media, and the
RE community has acknowledged this as a relevant source
of software requirements (CrowdRE) [4]. As manually ana-
lyzing vast amounts of user feedback is time-consuming and
requires a lot of human effort [7], the RE community has
worked on tools to automatically process user feedback and
facilitate the extraction of requirements [2, 6, 8, 9, 11, 15]. A
particular cluster of tools consists of classifiers, i.e., tools that
classify feedback into predetermined categories.

In a previous study, we performed a systematic literature
review (SLR) on classifiers [13], finding a lack of studies ad-
dressing categories related to software quality. Out of 43
reviewed studies, only nine report the use of usability as a
classification category. The same was found to be the case
for other software quality characteristics (e.g., five studies
mention performance, nine portability, and six protection).
Among all studies analyzed, only three [5, 11, 15] use classi-
fication categories based on the ISO25010 standard [1]. One
investigated all characteristics but automatically classified
only usability and selected sub-characteristics [5], another re-
ports issues in mapping spontaneous and unstructured user
feedback onto the systematic structure of ISO20510 [15].
Based on this finding, we decided to work on the definition
and implementation of a user feedback classifier based on
Machine Learning (ML) for software quality using categories
derived from ISO25010. The categories of the envisioned
classifier should cover the software quality characteristics of
ISO25010, but be tailored to fit the nature of user feedback.
The goal is to support the elicitation of software quality re-
quirements from a crowd by filtering non-relevant feedback
and identifying feedback that might provide requirements
concerning software quality characteristics.

To achieve this goal, we extracted and labeled 1500 re-
views from popular apps available in the Apple App Store
and Google Play. This data set was used to train and evalu-
ate a selection of ML algorithms, features, and class balanc-
ing techniques. The very high recall (94%) of the classifier
with the best evaluation results demonstrates that this classi-
fier can successfully select feedback relevant for quality re-
quirements.

This work is organized as follows: Section 2 presents a
summary of our SLR and highlights related work. Section
3 presents our classification approach, including the defini-
tion of categories, the creation and labeling of the data set of
app reviews, the training algorithm, and the evaluation of the
results. Section 4 concludes this work.

DOI reference number: 10.18293/SEKE2021-055

340

risantos@inf.ufrgs.br
dtavila@inf.ufrgs.br
lucineia@inf.ufrgs.br
karina.villela@iese.fraunhofer.de

2. Background

The SLR we reported in [13] provides a comprehensive
summary of user feedback classifiers in CrowdRE, includ-
ing: 1) what algorithms and features were used in each ap-
proach, 2) which kinds of user feedback were classified (e.g.,
Apple App Store or Google Play reviews), 3) information on
the data sets used to test the classifiers, and 4) the efficacy
of the results (e.g., F-measure, precision, and recall). While
some approaches use dictionary-based approaches, regular
expressions, or parsing, the vast majority of the reviewed
work uses supervised ML. Popular ML algorithms include
Naive Bayes (NB), Support Vector Machine (SVM), Logistic
Regression (LR), Random Forest (RF), and Decision Trees
(DT). These algorithms have been often used alongside Bag-
of-Words (BOW), Stop Words, and Term Frequency–Inverse
Document Frequency (TF-IDF) as ML features. When we
looked at the efficacy of the results, we concluded that any
of the aforementioned ML algorithms could provide good-
quality results as well as poorer results. The strong variance
in the setup of the studies and their efficacy suggests that it
is still unclear what the most suitable ML approach for user
feedback classification in a given circumstance is, and that
choosing combinations of ML algorithms and ML features
for the targeted circumstance still has a key role in research
on such classifiers. In the following, we will focus on related
work that addresses software quality.

Groen et al. [5] report on two CrowdRE studies related to
software quality: 1) an exploratory study on the presence of
ISO25010’s software quality characteristics in user feedback,
where five people manually labeled online reviews, and 2) the
identification and test of language patterns regarding usabil-
ity. Similar to us, they argue that research on CrowdRE has
focused on functional aspects and neglected quality aspects,
but unlike the vast majority of the work on CrowdRE and
from our work, they suggest using language patterns to iden-
tify quality-related statements. In any case, our work based
on ML is not restricted to usability.

Lu and Liang [11] propose an ML feature called AUR-
BoW for user feedback classification that is also based on
ISO25010 quality characteristics. The authors also tailored
them to better fit user feedback. The new ML feature is
compared to three other features (BOW, TF-IDF and Chi
Squared) in combination with three ML algorithms (NB, J48,
and Bagging). Instead of proposing new classification tech-
niques in our work, we investigated a broader set of ML al-
gorithms, features, and class balancing techniques.

Wang et al. [15] also proposed a user feedback classifier
based on ISO25010’s software quality characteristics. In their
work, they tested four ML algorithms combined with TF-
IDF. We tested five ML algorithms combined with three ML
features and three class balancing techniques. Furthermore,
Wang et al. [15] used raw ISO25010 software quality charac-

teristics and reported problems in doing so, while we propose
tailoring them in order to better address the nature of user
feedback and the goals and capabilities of end users.

3. A Classifier for Software Quality

The methodology for defining and implementing our clas-
sifier consists of the following steps: First, we defined the
classification categories to be used in the classifier (step 1).
In parallel, we defined the criteria for the selection of user
feedback to compose our data set (step 2). Afterwards (step
3), we extracted user feedback according to the criteria de-
fined in step 2 and manually labeled the data set according to
the categories defined in step 1. Then we performed a statis-
tical analysis on the labeled data set in order to define which
classification techniques to use (step 4). The next step (step
5) was to carry out an efficacy evaluation to find out the best
combination of ML techniques for the data set we had cre-
ated. Finally, we analyzed the results of the evaluation (step
6).

3.1. Definition of Classification Categories

Wang et al. [15] reported problems in using the ISO25010
standard to classify user feedback, such as the rare explicit
reference to some ISO25010 characteristics in user feedback.
In particular, they mentioned: “During the pilot labeling...
we found that functional suitability, compatibility, maintain-
ability, and security were seldom observed in app reviews.”
There are several aspects to be considered to understand this
phenomenon: 1) Maintainability is certainly not a concern
of end users, who do not have access to the source code or
sketches of software projects; 2) security has often not been
one of the end users’ priorities, but their perception of its
relevance is changing, especially due to the introduction of
the General Data Protection Regulation in Europe; and espe-
cially 3) end users are not experts on RE or software quality
and provide feedback based on their observations using their
normal vocabulary. In this sense, they do not mention func-
tional suitability or security explicitly, but rather complain
about or request (security) features that, if improved or in-
cluded, would increase the quality of the app in their opinion.
They might not mention compatibility, but they may praise,
e.g., the fact that files created using an app can be loaded into
another one. The classification categories of a classifier for
software quality characteristics must take into account these
aspects.

As a consequence, we tailored the set of the ISO25010
standard’s software quality characteristics (functional suit-
ability, performance efficiency, compatibility, usability, reli-
ability, security, maintainability, and portability) to fulfill the
purpose of automated classification of user feedback. Like
other researchers [11, 15], we took into consideration only

341

the set of software quality characteristics, since user feedback
often does not present enough information to allow its clas-
sification into sub-characteristics. Our tailoring consisted of:
1) excluding maintainability and 2) merging some character-
istics either to increase the total number of relevant reviews
per category, which contributes to the classifier’s efficacy, or
to deal with the difficulty of distinguishing between them dur-
ing user feedback analysis, regardless of the feedback analy-
sis being automated or carried out by humans. Thus, com-
patibility and portability were merged into a single category
called compatibility because both characteristics refer to the
relationship between the app that is the object of the review
and another element (software or hardware) in the app’s en-
vironment. Performance efficiency and reliability were also
merged into performance because end users observe the be-
havior of apps, but usually are not capable of indicating the
cause of a problem they observed [14]. For example, a frozen
screen could be caused by too many users using the platform
simultaneously (a performance efficiency problem) or by a
software fault that was not foreseen (a reliability problem).
Finally, we merged security into functional suitability, as se-
curity mechanisms perceived by end users are mostly imple-
mented as functions that process a certain security-relevant
input and provide a certain security-relevant output. The fea-
tures requested in the user feedback “Why can’t I use FaceID
or a password to secure the app?” are some examples.

A user review can be classified into more than one cat-
egory as it may contain several statements. A review that
cannot be classified into any of the four adopted categories
is classified as “others”. Thus, the categories of our clas-
sifier are: functional suitability, performance, compatibility,
usability, others.

3.2. User Feedback Selection

In this step, we determined the source of the user feed-
back, selected the specific apps about which to collect user
feedback, and extracted a set of reviews to be manually la-
beled (i.e., to compose the data set). A manually labeled user
feedback data set is needed to test our classifier and, as we
are adopting an ML approach, also to train it.

We collected reviews about six different apps available
both in the Apple App Store and Google Play (Table 1). Both
platforms are prominent sources of user feedback chosen by
other classifier studies [13]. We selected two popular apps
from three business-related categories: Business, Productiv-
ity, and Navigation. We determined the popularity of the
apps based on the Apple App Store ranking of the downloads
of each of the selected app categories and the estimate pro-
vided by a list of most downloaded Google Play apps from
Wikipedia [16]. We adopted this procedure to avoid sam-
pling bias, which is a prevalent problem in collecting reviews
[12]. We also deliberately avoided choosing direct competi-

Table 1: Selected apps and corresponding attributes.

App App Category Downloads
Microsoft OneNote Productivity 500M+
Google Drive Productivity 5B+
Indeed Job Search Business 100M+
Slack Business 10M+
Uber Navigation 500M+
Google Maps Navigation 5B+

tor apps, as this work did not aim at comparing similar apps.

3.3. Data Extraction and Manual Labeling

We collected all reviews provided in 2017-2018 about the
chosen apps together with all available metadata, which re-
sulted in a database with 163,662 reviews. We also extracted
the reviews’ star rating. Manually labeling all reviews in this
database would be unfeasible. Therefore, we used simple
SQL queries to randomly extract 250 reviews from each app,
50 for each star rating. The goal of selecting 50 reviews per
star rating was to increase the ratio of requirements relevant
reviews. For all apps chosen, most of the reviews had ei-
ther 1 or 5 stars, and most of those were short and useless
for requirements engineers. For example, a 5-star review that
only says “Awesome” or “Cool” is not relevant for our pur-
pose. However, training and testing data sets should include
all types of reviews, so we purposefully chose not to exclude
reviews with 1 or 5 stars completely, but decreased the pro-
portion of such reviews in our data set.

The extracted 1500 reviews were then put into a spread-
sheet for the labeling process according to the categories pro-
posed in Section 3.1. Some studies in this field split reviews
into sentences before manual labeling; we did not do this be-
cause this process breaks up the context of the text.

The first author of this paper performed the labeling pro-
cess alone. Therefore, we decided to perform a posterior val-
idation of the data set labeling. In this validation, another
author re-labeled a random sample of 150 reviews (10% of
the data set). We analyzed inter-labeler reliability using Co-
hen’s kappa coefficient [10]. This coefficient was 0.59 for
functional suitability, 0.65 for performance, 0.83 for compat-
ibility, 0.84 for usability, and 0.75 for others. According to
Landis and Koch [10], the interpretation of these values is as
follows: moderate agreement for functional suitability, sub-
stantial agreement for performance and the category “others”,
and almost perfect agreement for compatibility and usabil-
ity. These results suggest that our data set is consistent even
though inter-labeler agreement varies among categories.

3.4. Statistical Analysis

After labeling the data set, we performed a statistical anal-
ysis to understand its characteristics and facilitate the next

342

425

249

123

157

640Other

Usability

Compatibility

Performance

Functional

0 200 400 600
Number of Reviews

C
at

eg
or

y

Figure 1: Distribution of the data set into categories

steps. Figure 1 shows the distribution of the reviews among
the classification categories. One should keep in mind that a
review may contain several statements and therefore be clas-
sified into several categories. According to Fernandez et al.
[3], balanced data sets are preferred for training ML algo-
rithms, i.e., in binary classifications such as ours, half of the
reviews should be classified within a category and half out-
side of it. As seen in Figure 1, our data set is imbalanced,
but an imbalanced training data set can be treated with class
balancing techniques [3].

Figure 2 shows for each app the average star rating of the
reviews classified into each category. This kind of analysis,
performed here on the manually labeled data set but to be
supported by our classifier later, allows identifying an app’s
strengths and weaknesses. Users are, e.g., satisfied with the
performance of Google Drive and the usability of Indeed Job
Search. Categories with a low average star rating indicate op-
portunities for improvement, which can then be investigated
in-depth. This kind of information is very valuable to sup-
port the evolution of the analyzed apps or the development of
competing apps. As 1500 random reviews may not be enough
to perform such an analysis, Figure 2 is only illustrative.

Furthermore, we analyzed the words most correlated to
each category using the Chi Squared technique. The results
are shown in the word clouds in Figure 3 and provide addi-
tional validation of the manual labeling. As expected, Fig-
ure 3a shows that the words “feature”, “ability”, “able”, and
“option” are very correlated to functional suitability. The
word “password” is also among the correlated words, which
makes sense as we merged functional suitability with secu-
rity. Moreover, the other correlated words refer to specific
app features, for example “search”, “notifications”, “upload”,
and “email”. Figure 3b shows words correlated to usability
such as “hard”, “friendly”, “intuitive”, “confusing”, “easy”,
and “interface”, whereas Figure 3c shows that the words “bat-
tery”, “network”, “crashing”, “slow”, “sync”, and “time” are
closely correlated to performance. Finally, Figure 3d shows
that when users want to talk about portability or compatibil-

ity, they usually mention devices, platforms or other apps that
they want to use or are using together with the app that is the
object of the review.

3.5. Automated Classification and Evaluation

This work aimed to discover the best combination of ML
algorithms, features, and class balancing techniques for au-
tomatically classifying user feedback into software quality
characteristics. As it would not be feasible to test all pos-
sible combinations within the time and effort constraints, we
analyzed NB, LR, DT, RF, and SVM as ML algorithms and
BOW, TF-IDF, and Stop Words as ML features because they
yieled the most relevant evaluation results in our SLR [13]
and were available in the SciKit library1. Furthermore, we
searched the literature for methods to solve the class imbal-
ance problem, finding the following class balancing tech-
niques: undersampling, SMOTE, and Cost-Sensitive Learn-
ing (CSL) - Balanced, 1:2, 1:5 and 1:10 [3]. Such class bal-
ancing techniques were only applied in the training data set.

The automated classification consisted of exhaustively
testing all combinations of the selected techniques and gener-
ating their evaluation metrics. As Stop Words is a secondary
feature, it was used in all combinations.

Algorithm 1: Automated Classification and Evalua-
tion

initialize final confusion matrices;
for every combination of classification techniques do

initialize intermediate confusion matrices;
for 10 times do

shuffle the data set;
initialize partial confusion matrices;
for every fold from 10-fold cross-validation
do

train classifier with the other 9 folds;
generate predictions for test fold;
compute partial confusion matrix from
predictions;

end
add partial confusion matrices into a
intermediate confusion matrix;

end
add intermediate confusion matrices into a final
confusion matrix;

end
calculate evaluation metrics from final confusion
matrices;

We used 10-fold cross-validation in this study. The com-
plete pseudo-code is shown in Algorithm 1. The code was im-

1https://scikit-learn.org/stable/

343

https://scikit-learn.org/stable/

2.22.3

3.5
3.1

2.5
1.9

2.6

4.1

2.6 2.8

2.22.2

3.6

2.3

3.4

2.72.5

3.9

2.4 2.62.72.8

3.7

2.5 2.52.42.5

3.4

2.3

3

1

2

3

4

5

Functional Performance Compatibility Usability Other
Categories

A
ve

ra
ge

 S
ta

r
R

at
in

g

App

Google Drive

Google Maps

Indeed

OneNote

Slack

Uber

Figure 2: Average star rating by category.

(a) Functional suitability (b) Usability (c) Performance (d) Compatibility

Figure 3: Word clouds of the reviews of each category.

plemented in Python 3.6.9 interpreter, with SciKit Learn im-
plementation of the algorithms, features, SMOTE, and CSL.
As part of this work, we implemented undersampling and
10-fold cross-validation. The code is open and available at
https://s.fhg.de/reviewsClassifier.

3.6. Analysis of Results

Tables 2 and 3 show the best results obtained from the ap-
plication of the ML techniques to our data set. Table 2 shows
the best F1 scores for each class balancing technique and each
category, whereas Table 3 shows the best F2 scores. The cor-
responding ML model is included in parenthesis following
the format: (algorithm/feature). The maximum scores per
category are highlighted in bold. It is interesting to observe
how much the class balancing techniques increased the clas-
sification efficacy. Table 2 shows relatively low maximum F1
for each category. Comparing our maximum F1 scores to the
maximum F1 scores obtained by classifiers used in similar
studies (65.4% in [11] and 62.8% in [15]), we found that our
F1 results were not satisfactory. Hence, it is not possible to
use the ML model highlighted in bold in Table 2 to replace
human specialists, which would not be possible anyway due
to the complexity of the requirements elicitation task. We
propose using F2 to select the best ML models because F2
emphasizes the ML model’s recall more than its precision.
Ensuring a low number of false negatives is more important
when supporting human specialists in deep investigation of

potential requirements. Our F2 scores are satisfactory, show-
ing great recall measures. For example, the best classifier for
functional suitability had an F2 score of 0.73 with 94% re-
call. With the support of our classifier, almost no relevant
reviews will be lost due to classification mistakes (false neg-
atives). Hence, we conclude that our classifier is capable of
helping specialists focus on reviews that can provide quality
requirements without causing loss of information.

4 Conclusion

In this work, we presented a user feedback classifier for
software quality characteristics based on the ISO25010 stan-
dard [1]. In order to implement it using ML techniques, we
manually classified 1500 reviews. The data set was highly
imbalanced, which represents a true challenge in the field of
ML classification. To address this problem, we adopted three
class balancing techniques in our investigation: undersam-
pling, SMOTE, and CSL.

We also performed statistical analyses on this data set,
showing, e.g., the words most closely correlated with each
category, which confirmed the quality of our manual labeling
of the reviews and gave an idea of the kind of analyses the
results of an automated user feedback classifier can support.

Our approach consisted of investigating the efficacy of dif-
ferent combinations of ML algorithms, features, and tech-
niques found in the literature. The final results of the

344

https://s.fhg.de/reviewsClassifier

Table 2: Best F1 score for each class balancing technique according to the classification categories.

Functional Suit. Performance Compatibility Usability
None 0.52 (SVM/TFIDF) 0.52 (SVM/BOW) 0.52 (SVM/BOW) 0.52 (SVM/BOW)
Undersampling 0.55 (SVM/BOW) 0.55 (SVM/BOW) 0.54 (SVM/BOW) 0.52 (SVM/BOW)
SMOTE 0.50 (SVM/BOW) 0.50 (SVM/TFIDF) 0.50 (SVM/TFIDF) 0.50 (SVM/TFIDF)
CSL (Balanced) 0.60 (LR/TFIDF) 0.54 (SVM/TFIDF) 0.59 (DT/TFIDF) 0.52 (LR/TFIDF)
CSL (1:2) 0.55 (LR/TFIDF) 0.53 (SVM/TFIDF) 0.53 (SVM/TFIDF) 0.52 (SVM/BOW)
CSL (1:5) 0.59 (LR/TFIDF) 0.57(LR/TFIDF) 0.56 (LR/TFIDF) 0.55 (LR/TFIDF)
CSL (1:10) 0.57 (LR/BOW) 0.56 (LR/BOW) 0.56 (LR/BOW) 0.55 (LR/BOW)

Table 3: Best F2 score for each class balancing technique according to the classification categories.

Functional Suit. Performance Compatibility Usability
None 0.50 (SVM/BOW) 0.49 (SVM/BOW) 0.49 (SVM/BOW) 0.48 (SVM/BOW)
Undersampling 0.53 (SVM/BOW) 0.55 (SVM/BOW) 0.55 (SVM/BOW) 0.54 (SVM/BOW)
SMOTE 0.54 (SVM/BOW) 0.53 (SVM/TFIDF) 0.53 (SVM/TFIDF) 0.52 (SVM/TFIDF)
CSL (Balanced) 0.65 (LR/TFIDF) 0.61 (LR/TFIDF) 0.61 (LR/TF-IDF) 0.59 (LR/TFIDF)
CSL (1:2) 0.54 (LR/TFIDF) 0.51 (SVM/TFIDF) 0.50 (SVM/BOW) 0.50 (SVM/BOW)
CSL (1:5) 0.72 (LR/TFIDF) 0.66 (LR/TFIDF) 0.63 (LR/TFIDF) 0.60 (LR/TFIDF)
CSL (1:10) 0.73 (LR/TFIDF) 0.70 (LR/TFIDF) 0.68 (LR/TFIDF) 0.65 (LR/TFIDF)

automated classification are almost equivalent to those of
other studies (e.g., F1 score of 60% for functional suitabil-
ity against 62.8% in [15] and 65.4% in [11]).

There is still room for improvement in our work. The data
set could be labeled manually by a second specialist and pos-
sible inconsistencies could be discussed, which could make
the manual classification even more reliable. Furthermore,
new training techniques have been proposed during the de-
velopment of this work, meaning that we could extend our
automated classification and evaluation to include them. Fi-
nally, this work showed that our classifier cannot replace hu-
man specialists, but it can significantly reduce the number of
reviews that need to be analyzed manually without causing
loss of information, which means that less effort is required
from specialists.

Acknowledgments

This study was part of a bachelor’s thesis and was partially
funded by the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.
Diego Toralles Avila is a CAPES scholarship holder through
the Programa de Apoio à Pós-Graduação (PROAP).

References

[1] ISO/IEC 25010:2011. URL https://www.iso.org/
standard/35733.html. [Online; accessed 12. Feb. 2021].

[2] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang. Ar-miner: mining
informative reviews for developers from mobile app marketplace. In
Proc. of ICSE 2014, pages 767–778. ACM, 2014.

[3] A. Fernández, S. Garcı́a, M. Galar, R. C. Prati, B. Krawczyk, and
F. Herrera. Foundations on Imbalanced Classification, pages 19–46.
Springer International Publishing, 2018.

[4] E. C. Groen, J. Doerr, and S. Adam. Towards crowd-based require-
ments engineering a research preview. In Proc. of REFSQ 2015, pages
247–253. Springer International Publishing, 2015.

[5] E. C. Groen, S. Kopczynska, M. P. Hauer, T. D. Krafft, and J. Doerr.
Users - the hidden software product quality experts? In Proc. of RE
2017, pages 80–89. IEEE, 2017.

[6] E. Guzman, M. Ibrahim, and M. Glinz. A little bird told me: Mining
tweets for requirements and software evolution. In Proc. of RE 2017,
pages 11–20. IEEE, 2017.

[7] E. Guzman, M. Ibrahim, and M. Glinz. Prioritizing user feedback from
twitter: A survey report. In Proc. of CSI-SE 2017, pages 21–24. IEEE,
2017.

[8] S. Hedegaard and J. G. Simonsen. Extracting usability and user ex-
perience information from online user reviews. In Proc. of CHI 2013,
pages 2089–2098. ACM, 2013.

[9] P. C. Kaur, T. Ghorpade, and V. Mane. Topic extraction and senti-
ment classification by using latent dirichlet markov allocation and sen-
tiwordnet. In Proc. of AICTC 2016, pages 1–6. ACM, 2016.

[10] J. R. Landis and G. G. Koch. The measurement of observer agreement
for categorical data. Biometrics, 33(1):159–174, 1977.

[11] M. Lu and P. Liang. Automatic classification of non-functional require-
ments from augmented app user reviews. In Proc. of EASE 2017, pages
344–353. ACM, 2017.

[12] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang. The app sam-
pling problem for app store mining. In Proc. of MSR 2015, pages 123–
133. IEEE, 2015.

[13] R. Santos, E. Groen, and K. Villela. An overview of user feedback
classification approaches. In Proc. of REFSQ Workshops, 2019.

[14] D. Singh. Guidelines for the automatic analysis of user feedback from
twitter. Master’s thesis, Technical University of Kaiserslautern, 2019.

[15] C. Wang, F. Zhang, P. Liang, M. Daneva, and M. van Sinderen. Can
app changelogs improve requirements classification from app reviews?
an exploratory study. In Proc. of ESEM 2018, pages 1–4. ACM, 2018.

[16] Wikipedia contributors. List of most-downloaded Google
Play applications — Wikipedia, The Free Encyclopedia.
URL https://en.wikipedia.org/w/index.php?
title=List_of_most-downloaded_Google_Play_
applications&oldid=1007296458. [Online; accessed
18-February-2021].

345

https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://en.wikipedia.org/w/index.php?title=List_of_most-downloaded_Google_Play_applications&oldid=1007296458
https://en.wikipedia.org/w/index.php?title=List_of_most-downloaded_Google_Play_applications&oldid=1007296458
https://en.wikipedia.org/w/index.php?title=List_of_most-downloaded_Google_Play_applications&oldid=1007296458

Improved Multiple Part Algorithm (IMPA) to
extract multiple solutions for RNA sequence

classification problem
Naoual Guannoni∗, Faouzi Mhamdi†, Mourad Elloumi‡

∗†‡ Laboratory of Technologies of Information and Communication and Electrical Engineering (LaTICE),
National Higher School of Engineers of Tunis (ENSIT), University of Tunis, Tunisia

∗Faculty of Science of Tunis, University of Tunis el Manar, Tunis, Tunisia
† Higher Institute of Applied Languages and Computer Science of Beja,University of Jendouba, Tunisia

∗nawel.gannouni90@gmail.com, †faouzi.mhamdi@ensi.rnu.tn, ‡Mourad.Elloumi@gmail.com

Abstract—The methods, which extract knowledge from Next
Generation Sequencing Data (NGS) are highly requested nowa-
days. The attention to analysis biomedical data is increasing
proportionally. In this work, we focus to elicit and discovery
a higher amount of knowledge by computing many classification
models in a single run, and therefore to identify most of the
features related to an investigated class. Major efforts have
been made in this field and a last algorithm is proposed”
Multiple Part” for data analysis and extraction of new and
more knowledge from them. In this paper, we propose a new
version of Multiple Part algorithm which integrates a heuristic
evaluation method and a feature elimination technique in order
to extract multiple and equivalent solution for biomedical data.
In order to prove the validity of our algorithm, we analyze an
RNA-seq of cancer diseases data sets extracted from The Cancer
Genome Atlas (TCGA). Furthermore, we validate our approach
by comparing it with the existing methods. Experimental results
show the efficacy of our proposed algorithm.

Index Terms—Multiple solution, Multiple Part, Camur, Merit,
heuristic method, IMPA.

I. INTRODUCTION

The cancer mechanism becomes more worldwide major
public health issue. Since cancer is one of the leading causes
of mortality, many researches have been developed in order
to understand its mechanisms and discover new knowledge
to prevent and to treat this serious disease [1]. In recent
years RNA-seq protocol counting the RNA fragments that
are aligned on a reference genome. In this scenario, it is
important to identify informative genes with high prognostic
value to distinguish between healthy tissue and tumoral tissue
types. In this work, we focus on the amelioration and the
adoption of a new algorithm for classifying RNA-seq case-
control samples, which is able to compute multiple human
readable classification models. In the past, such problems
have been solved by the use of supervised and unsupervised
machine learning algorithms such as decision tree, rule-based,
ensembles decision tree, neural networks and Support Vector
Machines (SVM) [2] [3] [4] [5]. These techniques have been
also used to improve diagnosis of diseases such as Alzheimer,
Breast Cancer or Meningitis [6] [7] [1].The big limits with the

DOI reference number: 10.18293/SEKE2021-137

application of these machine learning algorithms are related to
the managing of the huge amount of data. In fact, for biological
datasets, a high learning time is needed for data analysis and
the extraction of new knowledge from them [8]. Also, all
these classical algorithms compute just a single classification
method that contains few of features. While our goal is the
extraction and the discovery of the maximum knowledge from
these RNA sequence datasets by computing many alternative
and equivalent classification models.
Multiple and equivalent solutions extraction from biological
datasets is a novel concept which has recently caught the
attention of researchers. Obtaining a set of efficient solutions
with a better compromise between the features and with a
reduced running time is the goal of this study. More details
about these works are presented in the rest of the paper. All
these methods can on one side provide a relevant number of
rules (solutions) with low performance. On the other side, the
number of extracted rules at each iteration can be insufficient
compared to the big RNA-sequence datasets used.
In this work, we propose a new algorithm to optimize Multiple
Part algorithm for classifying RNA-seq case-control samples.
This algorithm integrates a discretization method, a feature
elimination technique and a heuristic evaluation method for
each subset of selected features. The final aim of this work
is to provide a more compact, human interpretable models
that can aid biologists or doctors to make a decision about the
classification of diseases. The rest of this article is organized as
follows. In section 2 we present a literature review about meth-
ods to extract multiples and equivalent solutions. In section 3
we describe our proposed algorithm (IMPA). The experiments
and their results are discussed in section 4. Finally, in section
5, We report the conclusion and we present future works.

II. LITERATURE REVIEW

A number of previous studies have been focused on the ex-
traction of multiple and equivalent solutions in biomedical data
classification problems. One approach is presented in Fiscon
et al, [9], where the authors proposed meta-heuristic approach
based on an evolutionary algorithm to find a solution for
identifying a large number of small species-specific genomic

346

subsequences. One other work proposed by Gholami et al.,
[10], this classification-based approach is based on recursive
feature elimination RFE method. The limit of this algorithm is
that at each iteration, only a single variable should be chosen
to remove. This would be inefficient in many high dimensional
applications such RNA-sequence datasets.
In recent years, several works pointed to extract multiple solu-
tions interpretable by human using rule and tree-based classifi-
cation algorithms. Valerio et al, [11], proposed a new algorithm
Camur (Classifier with a Alternative and Multiple Rule-based
model). This algorithm able to extract, multiple, alternative and
equivalent rule-based models (Ripper). These rules represent
the most relevant set of features related to the case and control
samples. In 2016, Fiscon et al, [9], proposed a metaheuristic
approach in order to find solutions for identifying a large
number of small species-specific genomic subsequences. This
approach aims to extract multiple solutions using rule and
tree-based classification algorithms. In 2017, Fabrizio Celli,
et al, [1] developed a new algorithm called Big Biomedical
data classifier (BIGBIOCL). This algorithm able to classify
a large DNA methylation dataset. BIGBIOCL is inspired by
Camur algorithm in order to apply classification methods to
big datasets. In 2019, Guannoni et al, [8] proposed a new
method that extracts multiple and equivalent classification
methods. This method Called” Multiple Part” algorithm that
integrates rule-based classification method (Part) and a feature
elimination technique in order to obtain more interpretable
models in a reduced execution time. In the first, this method
iteratively computes the rule-based classifier, then it computes
the power set of the features present in the rules, iteratively
eliminates these combinations from the data sets, and execute
again the classification procedure until a stopping criterion
is verified. Experimental results show that” Multiple part” is
an important algorithm for extracting multiple, equivalent and
alternative solution in a reduced execution time.

III. THE PROPOSED ALGORITHM: IMPROVED MULTIPLE
PART ALGORITHM (IMPA)

We propose an enhanced version of” Multiple Part algo-
rithm” which specifies the quality of each combination of the
features found in the rule using an heuristic evaluation method.
We called our proposed method as IMPA (Improved Multiple
Part Algorithm). IMPA is new algorithm inspired by” Multiple
Part” in order to extract multiple and equivalent solutions with
higher performance and in few time executions. It is a tool
to obtain knowledge by extracting several alternative classi-
fication models for gene features in RNA-seq data. Through
evaluation of the possible combination to delete, and through
iterative deletion of selected features, extraction of equivalent
classification models is possible using IMPA algorithm. The
implementation of our new algorithm is essentially based on
feature elimination method by evaluating each power set of
features. One of the reasons is that the merit function for
evaluation the set of features enables to evaluate the worth of
a subset of features by considering the individual predictive

ability of each feature as well as with the degree of redundancy
between them.

A. Steps of the IMPA algorithm

IMPA implements the following steps:

1) Compute Rule-based method (PART): our algorithm
executes at first a rule-based algorithm (Part) that extract
a set of logic rules "if CONDITION then CLASS" rules
which provide an immediate relationship between the
class and one or more features (genes).

2) Computes the power set of the features present in the
rule: IMPA calculates the power set of the features
present in the rule after each iteration. Then, all the
combination are stored in a memory list.

3) Discretize the data set: to computes the score of each
combination, we need to discretize continuous features.
A copy of the training data is first discretized then passed
to compute the quality of each combination features. In
this work we choose to use the discretization method
of Fayyad and Irani [12] because it has been showed
that the number of classification errors generated by
this method is comparatively smaller than the number of
errors generated by the other discretization algorithms.

4) Compute the quality of each combination features using
merit function: we use a correlation based heuristic
evaluation function for computing the score of each set
of combination feature. This function called” Merit func-
tion”. Merit function is a measure that calculates feature-
class and feature-feature correlations using a measure
called symmetrical uncertainty (SU) correlation. This
function enables to evaluate the heuristic” merit” of
feature subsets. It ranks the feature subsets according
to a correlation based heuristic evaluation function [13].
The subset with the lowest merit is considered the first
combination to be eliminated from the data set at time.
let Pk is a subset of features (one combination), we
define the Merit function associated with Pk as follows:

Merit(P k) =
j ∗ ryx√

j + j ∗ (j − 1) ∗ rxx
(1)

where j=|P k| is the number of subset features, ryx is the
average of the correlations between the subset features
and the class and rxx is the average inter-correlation
between subset features.
The numerator of Equation 1 can be considered to
provide an indication of the predictive of the class a
set of features are; The denominator represents how
much redundancy there is among the features [13].
Merit function uses SU to measure correlation. SU [14]
associated with two features x1 and x2 is defined by:

SU(x1, x2) = 2 ∗ [GI

H(x1) +H(x2)
] (2)

more details about the SU function is presented in [14].
The advantage of the Merit function is that is allows to

347

compare subsets of feature in different sizes. Thus, it
allows to evaluate the contribution of a new feature.

5) Scores all possible features combination: after comput-
ing a score of each possible combination, we sort the
list of combination in ascending order according to the
score (The worst Merit to the best Merit).

6) Perform feature elimination method: eliminates all the
possible combinations of features by starting with the
worst Merit and run the analysis again at each time. The
feature elimination is iterated in two execution-mode:
• A loose feature elimination mode: in the first, a
classification with the PART algorithm is performed.
This mode takes the results from the first classification
and build the combinations (power set) of the found
features, whose combinations are iteratively eliminated
according to the worst score from the data set. After each
elimination of the feature combination, a classification
step is built. The new extracted features that are present
in the current classification model are added to the
features list and are going to be processed in the next
iterations. In loose mode, once a feature is removed it
inserted again in the data set.
• A strict feature elimination mode: in the first, a
classification with the PART algorithm is performed. The
features appear from the first model are extracted and
then eliminated one by one according to the worst score.
A classification is iterated after each elimination on the
resulting data set. In the strict mode, once a feature is
eliminated it is never inserted again in the data set.

7) Our proposed algorithm performs again the classification
procedure until a stopping criterion is verified: the
reliability (F-measure) < a given threshold, maximum
number of iterations (Max-iter) is reached, or the list of
features has been completely treated.

In the final, we obtain a several of relevant number of
equivalent classification models e.g.,” IF feature <1.50 then the
sample is NORMAL” with higher performance. These rules
composed of a list of relevant genes related to a particular
class.

B. Execution example of our IMPA algorithm

Given a data set of RNA-seq data related to Breast cancer
with two class tumoral and normal:
• IMPA extracts through the first execution a model composed
of a set of rules, e.g.,(ADHFE1 ≥ 4.69)AND(ACSBG1 ≥
0.37)OR(HBBP1 ≤ 0.04) then normal
• The rules contain a set of three features (genes) S1
={ADHFE1, ACSBG1, HBBP1}.
• The power set is computed: P1 ={{ADHFE1}, {ACSBG1},
{HBBP1}, {ADHFE1, ACSBG1}, {ADHFE1,HBBP1},
{ACSBG1,HBBP1}, {ADHFE1, ACSBG1, HBBP1 }}.
• Discretize the dataset.
• Compute the quality of each combination features using merit
function. P1= Merit {{ADHFE1}=0.7, P2= Merit{ACSBG1}
=0.3, P3=Merit {HBBP1}=0.1, P4=Merit{ADHFE1,
ACSBG1}=0.04, P5=Merit{ADHFE1,HBBP1}=1.18,

P6=Merit {ACSBG1,HBBP1}=0.130, P7=Merit{ADHFE1,
ACSBG1, HBBP1}=0.175
• Sort the list of combination in ascending order: {P4, P3,
P6, p7, p5, P2, P1}.
• The first item of the power set is eliminated from the data
set and the classification is performed, which provides a new
set of features, S2 = {HBBP1, ADH4}.
• The first power set P1 is completely performed.
• After the treating of P1, the power set P2 from S2 is
computed and the classification is performed.
• The algorithm continues again the classification procedure
until one of the stopping criteria is verified.

IV. EXPERIMENTAL STUDY AND RESULTS

A. Description of the dataset

Our experimental analysis in focused on RNA-seq data
related to Breast cancer disease (BRCA). These data are
extracted from public available data of The Cancer Genome
Atlas (TCGA) [15] [16]. The data set of BRCA composed of a
matrix in comma separated value format, which is the input of
our algorithm. The rows of the matrix correspond to a set 59
samples that represent the sequenced tissues of the patients.
The columns correspond to 20532 features which represent
the gene expression profile. The last column represents the
class e.g., normal - tumoral. Each cell contains the gene
expression measure Reads Per Kilobase per Million mapped
reads (RPKM) value for each gene expression measure. [17].

TABLE I: Data matrix of breast cancer RNA-seq data

Sample ID ANO8 Clorf27 TRPM6 Class
A8-A09D 2.64 5.42 0.38 Breast cancer

BH-A0DH 1.46 6.47 0.76 Normal
GM-A2D9 3.13 14.21 0.61 Breast cancer

..........
GM-A2DB 3.86 5.15 0.59 Breast cancer

Concept and experimental study: We compare in the
experimental study the obtained results of IMPA with results
of CAMUR and” Multiple Part” [8]. Our comparison will be
based on the number of extracted models, the performance of
the models, the number of relevant features and the execu-
tion time. In fact, our goal is to validate a new supervised
classification algorithm able to extract multiple models by
building hundreds of classification iterations on a massive
number of relevant features in few hours. We choose to variate
the iteration numbers (Iter-nb) between 20 and 150. Also, we
variate the minimum number of F-measure on 0.8 and 0.9.
We use for each parameter the two-execution mode” strict”
and” loose”. For evaluating the classification models, we adopt
the accuracy and the F -measure equations. –Our proposed
algorithm is implemented in JAVA language programming.
The experimentation has been executed on a laptop with an
on 2.71 GHz Intel (R) Core (TM)i7 CPU and 32 GB of RAM.
Table III reports the genes that are most represented in the

rules. Table IV, Table V and Table VI represent the classifica-
tion result, the number of extracted rule (Nb-rule), the number

348

Fig. 1: The process of IMPA algorithm.

TABLE II: Classification rules example extracted from Camur,
multiple part and IMPA with a classification accuracy ≥ 90%.

Extracted rules
of Camur

Extracted rules of
Multiple Part

Extracted rules of IMPA

(ADH4 | 127 ≥
0.26) ‖ (AHDC1
| 27245 ≥ 11.02)
⇒ normal

(ACSM2B | 348158
≤ 0.02) AND
(HBBP1 | 3044
≤ 0.04) ⇒ BRC

(ADHFE1| 137872 ≥ 4.69)
AND (ACSBG1 |23205 ≥
0.37) OR (HBBP1 | 3044≤
0.04) ⇒ normal

of extracted features (Nb-f), the average accuracy (Aver-acc)
of each rule and the running time of each classification.

V. DISCUSSION

From the tables we can conclude some considerations
regarding the link between the number of extracted rules, the
number of features, the accuracy of the rules and the execution
time. The running time of our IMPA algorithm is faster than
Camur but not for the” multiple Part”. Multiple Part remain
the faster because it uses a faster method for extracted rules

TABLE III: The most represented genes in the rule using
IMPA algorithm: extracted genes related to breast cancer.

Features Occurence
RAG1AP1 55974 5

HOXA7 3204 5
CDC A855143 5
LOC 572558 3

RERGL 79785 3

(Part) while our algorithm used the same method of extracted
rules but it integrated more calculation instructions. Figure 2
show this difference of execution time.
From Table IV, when we variate the number of iterations
between 20 and 80, all the iterations are executed for the
three algorithms. Then, the number of extracted rules and the
number of relevant genes for IMPA algorithm are higher com-
pared to the other algorithms. Since all the iteration number
are executed for all the algorithms, the execution time of IMPA
is less than Camur but not less to Multiple Part. In addition,
by varying the iteration number between 100 and 150, not all
the iteration are executed for Camur , so a small number of
accurate rules are extracted in these analyses. By comparing
Multiple Part and IMPA, all the iteration are executed but
the number of accurate rules (accuracy 0.8) of IMPA is
larger compared to Multiple Part. Therefore, the number of
relevant features is larger than Multiple Part. Hence, our IMPA
algorithm can produce more higher equivalent classification
models with higher accuracy than the other algorithms. Figure
4 shows this difference in term of extracted rules. We can
explain this difference by the heuristic evaluation method that
we have integrated for our algorithm before handle the feature
elimination method. This method enables to evaluate the”
Merit” of each combination of features to be eliminated.
On the other hand, as shown in Figure 3, The accuracy of
extracted rules of IMPA in all cases is in the range [0.99, 1].
This mean that it extract always compact rules with the higher
performance compared to the other algorithms.
As shown in Table III, the most represented genes extracted
from the rules are RAG1AP1 with id 55974, HOXA7 with
id 3204 and CDCA with id A855143. These genes are the
most involved in the breast cancer classification models.
Many studies have shown that HOXA7 plays a critical role
in regulating the proliferation of estrogen receptor -positive
cancer cells [18]. A recent study shows that RAG1AP1 is the
new biomarker candidate of breast cancer development [19].
Another study shows that CDCA plays a crucial role for the
prevention of this disease [20]. We can conclude that such
information in the extracted rules IMPA can be considered as
an important result to help biologists and doctors in analyzing
the genetics of breast cancer disease.
Using loose feature elimination mode (Table V), all the
algorithms completed all the iterations but they extract only a
few numbers of extracted rules. The cause can be that after the
first execution, the extracted rules do not exceed the f-measure
value (0.8). In Table V, since almost all the algorithms provide

349

Fig. 2: Execution time of Camur, Multiple Part and IMPA.

Fig. 3: Average Accuracy of extracted rules of Camur, Multiple
part and IMPA

a few numbers of rules, our IMPA algorithm provides more
rule number compared to the other algorithm and there are
not classification errors compared to CAMUR. In Table VI
the number of iterations is not treated for CAMUR because
the stopping criteria is reached (f-measure smaller than 0.9).
For multiple Part and IMPA, all the iteration are executed
but they give all a few numbers of rules. The cause can
be that the extracted rules does not contain the features
and therefore the power set list to be removed is empty
for each iteration. Thereby, IMPA algorithm provides more
several efficient classification rules with high performance and
remains faster then the other algorithms.
From this detailed analysis we can conclude that our IMPA
algorithm is an elegant algorithm that is able to extract more
multiple classification models with high accuracy for the
RNA-sequence classification problem. Therefore, it enables to
identify most of the features related to the investigated class.
Our algorithm operating efficiently because the integration of
the heuristic method to evaluate the feature subset which is
based it can help to provide more accuracy human interpretable
models. Moreover, our algorithm can be efficient and can
provide thousands of equivalent solutions in one single run.

VI. CONCLUSION

In this work, we presented a new algorithm (IMPA) enables
to extract multiple and equivalent models for RNA-sequence
classification problem. Our proposed algorithm adopted a

Fig. 4: Extracted rule number of Camur, Multiple Part, IMPA

feature elimination technique and integrated an heuristic eval-
uation method for each subset of selected features in order
to provide more accuracy rules for each classification model.
IMPA is applied on a set of RNA-seq data focusing on Breast
cancer from TCGA. After the experimental study, we prove
that our proposed algorithm is a reliable technique for extract
more compact rules with more relevant features than multiple
Part and CAMUR. It can also ignore redundant and duplicate
rules to be executed when ordered and evaluates the power set
of features to be eliminated.
In a future work, we plan to more ameliorate the execution
time of our algorithm to be applied on big data set. As another
future work we can extend the analyses to another biolog-
ical data set, e.g., RNA-sequece data of COVID-19, DNA-
methylation values and DNA-Barcoding in order to confirm
the validity of our approach. Also, we are investigating the
possibility to validate the extracted genes by domain experts
with deep analysis.

REFERENCES

[1] F. Celli, F. Cumbo, and E. Weitschek, “Classification of large dna
methylation datasets for identifying cancer drivers,” Big Data Research,
2018.

[2] E. Weitschek, G. Fiscon, and G. Felici, “Supervised dna barcodes
species classification: analysis, comparisons and results,” BioData min-
ing, vol. 7, no. 1, p. 4, 2014.

[3] M. Elloumi and A. Y. Zomaya, Biological Knowledge Discovery Hand-
book: Preprocessing, Mining and Postprocessing of Biological Data.
John Wiley & Sons, 2013, vol. 23.

[4] N. Guannoni, R. Sassi, W. Bedhiafi, and M. Elloumi, “A comparison
between classification algorithms for postmenopausal osteoporosis pre-
diction in tunisian population,” in International Conference on Informa-
tion Technology in Bio-and Medical Informatics. Springer, 2016, pp.
234–248.

[5] F. Previtali, P. Bertolazzi, G. Felici, and E. Weitschek, “A novel
method and software for automatically classifying alzheimer’s disease
patients by magnetic resonance imaging analysis,” Computer methods
and programs in biomedicine, vol. 143, pp. 89–95, 2017.

[6] G. D’Angelo, R. Pilla, C. Tascini, and S. Rampone, “A proposal for
distinguishing between bacterial and viral meningitis using genetic
programming and decision trees,” Soft Computing, vol. 23, no. 22, pp.
11 775–11 791, 2019.

[7] A. A. Mohamed, W. A. Berg, H. Peng, Y. Luo, R. C. Jankowitz, and
S. Wu, “A deep learning method for classifying mammographic breast
density categories,” Medical physics, vol. 45, no. 1, pp. 314–321, 2018.

[8] N. Guannoni, F. Mhamdi, E. Weitschek, and M. Elloumi, “Novel
algorithm to extract multiple solutions for rna sequence classification
problem,” in 2019 International Conference on High Performance
Computing & Simulation (HPCS). IEEE, 2019, pp. 856–863.

350

TABLE IV: Results of classification analysis with Camur, Multiple Part and IMPA using Strict execution mode (F-measure=0.8).

Parameters Camur Multiple Part proposed method
Strict
mode,F-
measure=0.8

#
iter

Nb-
rules

Aver
acc

Nb-
f

Exec
/min

iter Nb-
rules

Aver
acc

Nb-f Exec
/min

iter Nb-
rules

Aver
acc

Nb-f Exec
/min

Iter-nb=20 20 18 0.96 22 00:38 20 20 0.99 20 00:14 20 22 1 25 00:38
Iter-nb=40 40 40 0.963 47 01:18 40 40 0.99 40 00:20 40 43 0.99 48 01:16
Iter-nb=60 60 64 0.97 82 01:54 60 57 0.982 63 00:26 60 66 0.99 71 02:13
Iter-nb=80 80 80 0.96 96 03:25 80 69 0.985 82 00:32 80 87 0.985 96 03:33
Iter-nb=100 85 86 0.96 101 03:28 100 90 0.987 103 00:35 100 115 0.99 130 03:40
Iter-nb=120 88 91 0.95 111 04:01 120 110 0.99 123 00:47 120 125 0.99 134 04:10
Iter-nb=140 100 97 0.95 113 04:24 140 130 0.99 143 01:06 140 160 0.987 173 03:50
Iter-nb=150 140 132 0.95 167 5:05 140 150 0.99 153 01:52 150 180 0.99 183 04:16

TABLE V: Results of classification analysis with Camur, Multiple Part and IMPA using loose execution mode (F-measure=0.8).

Parameters Camur Multiple Part proposed method
loose mode,
F-measure
=0.8

#
iter

Nb-
rules

Aver
acc

Nb-
f

Exec
/min

iter Nb-
rules

Aver
acc

Nb-f Exec
/min

iter Nb-
rules

Aver
acc

Nb-f Exec
/min

Iter-nb=20 20 3 0.972 3 00:21 20 2 1 2 00:09 6 5 0.99 4 00:19
Iter-nb=40 40 2 1 2 00:17 40 2 1 2 00:09 5 4 1 3 00:18
Iter-nb=60 60 2 0.958 2 00:16 60 2 1 2 00:09 5 5 0.99 3 00:14
Iter-nb=80 80 2 0.958 2 00:15 80 2 1 2 00:09 6 5 1 4 00:22
Iter-nb=100 100 3 0.972 3 00:18 100 2 1 2 00:09 8 7 0.99 6 00:30
Iter-nb=120 120 4 1 4 00:16 120 2 1 2 00:09 6 5 1 4 00:22
Iter-nb=140 140 4 0.958 4 00:15 140 2 1 2 00:09 6 5 1 4 00:18
Iter-nb=150 150 3 0.972 3 00:17 160 2 1 2 00:09 4 3 1 2 00:10

TABLE VI: Results of classification analysis with Camur, Multiple Part and IMPA using Strict execution mode (F-measure=0.9).

Parameters Camur Multiple Part proposed method
Strict mode,
F-measure
=0.9

#
iter

Nb-
rules

Aver
acc

Nb-
f

Exec
/min

iter Nb-
rules

Aver
acc

Nb-f Exec
/min

iter Nb-
rules

Aver
acc

Nb-f Exec
/min

Iter-nb=20 20 22 0.97 22 00:47 20 20 1 20 00:14 20 22 1 25 00.61
Iter-nb=40 24 28 0.982 32 00:46 40 47 0.985 40 00:19 40 43 0.99 48 01.16
Iter-nb=60 20 21 0.98 21 00:47 60 57 0.981 63 00:27 60 64 0.981 70 01.20
Iter-nb=80 46 40 0.97 60 01:29 80 69 0.985 82 00:33 80 80 0.99 88 01:34
Iter-nb=100 52 53 0.98 70 02:16 100 91 0.981 103 00:45 100 110 0.99 125 02:05
Iter-nb=120 63 77 0.97 92 02:37 120 110 0.996 123 00:46 120 123 0.996 133 03:21
Iter-nb=140 49 46 0.96 53 02:10 140 132 0.99 143 00:51 140 150 0.996 169 02:40
Iter-nb=150 68 67 0.968 78 03:10 150 144 0.992 153 01:17 150 177 0.993 179 02:43

[9] G. Fiscon, E. Weitschek, E. Cella, A. L. Presti, M. Giovanetti,
M. Babakir-Mina, M. Ciotti, M. Ciccozzi, A. Pierangeli, P. Bertolazzi
et al., “Missel: a method to identify a large number of small species-
specific genomic subsequences and its application to viruses classifica-
tion,” BioData mining, vol. 9, no. 1, p. 38, 2016.

[10] B. Gholami, I. Norton, A. R. Tannenbaum, and N. Y. Agar, “Recur-
sive feature elimination for brain tumor classification using desorption
electrospray ionization mass spectrometry imaging,” in Engineering
in Medicine and Biology Society (EMBC), 2012 Annual International
Conference of the IEEE. IEEE, 2012, pp. 5258–5261.

[11] V. Cestarelli, G. Fiscon, G. Felici, P. Bertolazzi, and E. Weitschek, “Ca-
mur: Knowledge extraction from rna-seq cancer data through equivalent
classification rules,” Bioinformatics, vol. 32, no. 5, pp. 697–704, 2015.

[12] U. Fayyad and K. Irani, “Multi-interval discretization of continuous-
valued attributes for classification learning,” 1993.

[13] M. A. Hall, “Correlation-based feature selection for machine learning,”
1999.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
“Numerical recipes in c,” 1988.

[15] J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. M. Shaw, B. A.
Ozenberger, K. Ellrott, I. Shmulevich, C. Sander, J. M. Stuart, C. G.
A. R. Network et al., “The cancer genome atlas pan-cancer analysis

project,” Nature genetics, vol. 45, no. 10, 2013.
[16] F. Cumbo and E. Weitschek, “An in-memory cognitive-based hyper-

dimensional approach to accurately classify dna-methylation data of
cancer,” in International Conference on Database and Expert Systems
Applications. Springer, 2020, pp. 3–10.

[17] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold,
“Mapping and quantifying mammalian transcriptomes by rna-seq,” Na-
ture methods, vol. 5, no. 7, p. 621, 2008.

[18] Y. Zhang, J.-C. Cheng, H.-F. Huang, and P. C. Leung, “Homeobox
a7 stimulates breast cancer cell proliferation by up-regulating estrogen
receptor-alpha,” Biochemical and biophysical research communications,
vol. 440, no. 4, pp. 652–657, 2013.

[19] M. P. Świtnicki, M. Juul, T. Madsen, K. D. Sørensen, and J. S. Pedersen,
“Pincage: probabilistic integration of cancer genomics data for perturbed
gene identification and sample classification,” Bioinformatics, vol. 32,
no. 9, pp. 1353–1365, 2016.

[20] N. N. Phan, C.-Y. Wang, K.-L. Li, C.-F. Chen, C.-C. Chiao, H.-G. Yu,
P.-L. Huang, and Y.-C. Lin, “Distinct expression of cdca3, cdca5, and
cdca8 leads to shorter relapse free survival in breast cancer patient,”
Oncotarget, vol. 9, no. 6, p. 6977, 2018.

351

Attention Guided Filter for Jointly Extracting
Entities and Classifying Relations

Shaoze Chen1, Su Wang2, Wenxin Hu∗2
1School of Computer Science and Technology, East China Normal University, Shanghai, China

2School of Data Science Engineering, East China Normal University, Shanghai, China

Abstract—Jointly extracting entities and classifying relations
aims to detect all possible triples from unstructured text with a
single model. Tagging-based method effectively improves the per-
formance of jointly relation extraction. However, some tagging-
based approaches ignored that one entity pair may exist multiple
relations and others set an empirical threshold value for selecting
one or more relevant relations, which becomes the bottlenecks
of the model. As a solution, we propose the attention guided
filter, namely, AGFRel, which introduces transformer blocks to
learn the number of relations for every entity pair to filter
out irrelevant relations. Moreover, each module of the model
has a multi-head attention guided layer to highlight valuable
information. Extensive experimental results show that AGFRel is
capable of gaining better performance on various tasks including
overlapping triples extraction and multiple triples extraction. On
NYT and WebNLG public datasets, our model obtains F1 score
90.8 and 91.9 respectively and achieves a new state-of-the-art
performance.

Index Terms—transformer, attention mechanism, joint extrac-
tion model, NYT, WebNLG

I. INTRODUCTION

Relation Extraction aims to extract relational triples from
unstructured text. It plays a crucial role in many applications
of natural language processing, such as biomedical knowledge
discovery [1] and knowledge base construction [2].

Pipeline-based approach is an intuitive method to extract
triples. It first recognizes all entity mentions in the text and
then classifies relations for each entity pair. This method
mechanically decomposes the relation extraction task into
two independent sub-tasks: named entity recognition (NER)
and relation classification (RC), which ignores the relevance
between them and results in error propagation [3]. The joint
extraction models are proposed to tackle this problem. It
can share information and simultaneously extract entities and
relations in a single model. The first joint tagging-based
model is proposed by [4], which sets a new label for each
token containing entity position information and relation type
information. This tagging-based method achieves a significant
improvement but cannot solve the overlapping problem: two
relational triples share one or two entities. [5] further divides
the overlapping problem into three scenarios (see Figure 1)
: Normal, SingleEntiyOverlap (SEO) and EntityPairOverlap
(EPO). [6, 7] propose different decomposition strategies and
tagging schemes to handle SEO cases. Although these models

∗Corresponding author: wxhu@cc.ecnu.edu.cn
The source code of this paper: https://github.com/almbreeder/AGFRel
DOI reference number: 10.18293/SEKE2021-153

Fig. 1. Examples of Normal, SingleEntiyOverlap (SEO) and EntityPairOver-
lap (EPO) classes.

can achieve better performance, they ignore the EPO cases
that an entity pair has multiple relations. [8] makes an attempt
to handle EPO cases, which artificially sets a threshold to
determine the number of relations in entity pairs. Such an ap-
proach results in a situation where manual adjustment requires
extra workload to achieve good performance on a particular
dataset. Meanwhile, a fixed threshold affects the performance
of relation classification and generalization of the model. On
the other hand, these models cannot handle the nested entity
problem since their tagging scheme merely serves as a yes or
no decision when they detect the span of entities. The problem
of missing nested entities misleads the model to extract wrong
triples.

In this paper, we propose a novel method to extract overlap-
ping triples and handle the nested entity problem. Our main
idea is to predict the number of entities and relations firstly,
and then derive the corresponding triples. More precisely, our
model is composed of two modules: subject extractor (SE)
and relation extractor (RE). Each module of our model has
a multi-head guided layer to filter out useless information
and highlight valuable information. SE aims to extract all
possible subjects. RE is comprised of two components. The
transformer component is used to recognize the number of
relations under a specific subject, and the other component
predicts the probability distribution of relations. We propose
a novel tagging scheme that annotates the relation numbers
at the start and end positions. In the tagging process, if the
number of relations is greater than 0, the token is regarded as
an object candidate. We then use the nearest strategy to detect
the span of entities. Finally, one or more relations in entity
pairs are derived from mapping the probability distribution of
relations. We evaluate our model on NYT [9] and WebNLG

352

[10] public datasets and experiments show that our model has
better performance than previous models.

In general, our contributions are as follows:
• We propose a novel model, Attention Guided Filter

(AGFRel), which can learn the exact number of relations
in the sentences. It means that the model can solve the
overlapping problem in different scenarios.

• We adopt a novel tagging scheme to handle the nested
entity problem. Our tagging scheme counts the number
of occurrences of the entities and marks these values on
the corresponding entities’ first and last tokens.

• We embed the self-attention mechanism into our model
to reduce the effect of irrelevant entities and highlight the
crucial features.

• Our model achieves the most effective results on the
NYT and WebNLG datasets. We further conduct various
experiments on our model, including overlapping triples
extraction and multiple triples extraction, and results
show that our model exceeds baseline.

The rest of this paper is organized as follows. In section II,
there is a brief overview of related work. In section III, we
display our network architecture. Experiments and discussions
are conducted in section IV. Finally, we conclude with a
summary of our main contributions and results.

II. RELATED WORK

Most researchers treated relation extraction as two sub-
tasks: NER and RC. The NER task aims to extract all entity
mentions in the context. The RC task aims to recognize
the relation between entities in a given text. Early works
used the pipeline approach that makes two sub-tasks work
independently. Such an approach suffers from error propa-
gation since it disregards the correlation between NER and
RC tasks. [3, 11, 12] proposed traditional joint models to
mitigate propagation error, which need complex feature en-
gineering and heavily rely on manual effort. The joint relation
extraction model based on neural networks was studied to
solve this problem and achieved state-of-the-art performance.
Most neural models like [13] combined entity extraction and
relation classification in a network through sharing encoder
parameters. [4] first introduced a united tagging schema that
can represent entity type and relation simultaneously, which
converted the relation extraction task to a sequence tagging
problem without identifying entity and relation separately.
Previous works cannot handle the overlapping problem. To
handle the overlapping problem, lots of models have been
proposed and can be categorized into three classes.

The first class of works used the sequence-to-sequence
(seq2seq) method to extract triples. [5] divided triples into
three classes and proposed a neural model CopyRE that uti-
lizes copy mechanism to extract triples. [14] employed a neural
encoder-decoder model for extracting relations that encoder
predicts one word at a time like translation machine. [15]
applied reinforcement learning into the sequence-to-sequence
model to handle the triples extraction order problem. However,

the proposed seq2seq models hardly decode the whole span
of entities.

The second class designed Multi-task learning (MTL) strat-
egy to extract relation facts. Among these works, [16] in-
troduced multi-task learning based on CopyRE to deal with
its drawback that cannot recognize multi-token entity. [17]
encoded given texts with convolutional neural networks (CNN)
to capture the feature of relation facts. [18] gained consider-
able improvement through building relation-weighted graph
convolutional networks (GCN). [19] designed a novel multi-
task learning architecture that enables dynamic interaction and
mutual learning between NER and RC, which improves the
ability to extract triples. Although effective, they lack the
elegance to handle complex scenarios, such as EPO cases.

The third class method converted relation extraction to a
sequence labeling problem. [6] proposed a tagging scheme
based position-attention mechanism, which can solve SEO
cases. [7] presented a novel decomposition strategy that hi-
erarchically decomposes the extraction task into two sequence
labeling problems but lacks the elegance to solve EPO cases.
Unlike previous works, [8] proposed a new framework that
maps subject to object and achieved reasonable performance
in EPO cases.

Actually, these models that set an empirical value to select
multiple relations inevitably lead to performance degradation.
Besides, the sentences contain numerous triples in most cases.
When extracting a specific triple, the model will be interfered
with by other triples’ feature information. As a result, these
models cannot adapt to complex scenarios. Our model is based
on a unified tagging scheme to extract triples. We utilize
attention mechanism [20] to predict the number of relations
for a given entity pair and then extract relations in a given
triple.

III. METHODOLOGY

This section describes our proposed method. We first intro-
duce the architecture of our model, where the shared encoder
captures semantic features of a sentence, subject extractor rec-
ognizes subjects, and relation extractor predicts triples under
a given subject. Then, we detail the novel tagging scheme of
our method that converts the extraction task to the sequence
labeling problem. Finally, we define the training objective.

A. Model Architecture

As shown in figure 2, our model consists of three parts:
shared encoder, subject extractor (SE), and relation extractor
(RE). We use the BERT [21] as a backbone to encode contex-
tual features. The SE recognizes subjects and the RE predicts
relations and objects according to these features. Formally, we
extract a triple Tj in the sentence S and we model this process
as:

P (Tj |S) = P (sj |S)P (rj |S, sj)P (oj |S, sj , rj) (1)

where sj , rj and oj represent subject, relation and object
respectively in the triple Tj .

Eq.(1) illustrates the process of extracting triples. The first
step of extracting triples in our model is to identify the

353

Fig. 2. The architecture of AGFRel.

subjects according to the semantic information of sentences.
The difference is that our model does not directly identify the
corresponding objects or relations. In order to solve the over-
lapping problem, we predict a relation probability distribution
table for each subject and utilize transformer encoder to predict
the number of relations. Finally, our model adopts the nearest
match strategy to decide the span of objects. RE takes the
concatenation of the sentence representation and the hidden
representation of relation probability distribution as input to
improve the accuracy of prediction. Meanwhile, an attention
guided layer is embedded in each module of model. Such a
mechanism ensures that the module filters out noises from
other irrelevant triple features.

B. Shared Encoder

The model AGFRel utilizes a pre-trained BERT model
to extract feature information from a given sentence S =
{x1, ..., xn}, due to the excellent performance on different
natural language processing tasks. BERT model employs trans-
former networks as the core component to obtain context-
sensitive embeddings. We use WordPiece embeddings [22] to
represent the words.

hi = BERTshared(xi) (2)

where hi is hidden state at position i, xi is a one-hot vector
of word indice. In the training process, we fine-tune the
parameters of pre-training model to make it better adapt to
relation extraction task in different scenarios. The NER and
RC task use a shared encoder, which is to pass hi into
corresponding module for prediction.

C. Subject Extractor

SE aims to recognize all candidate subjects. We embed
a multi-head layer to decode the vector hi. The attention

mechanism allows SE to capture the interactions between two
arbitrary positions and filter out the interference from other
triples. Besides, the key component of BERT encoder is also
self-attention mechanism, so the encoder and decoder maintain
consistency.

hsbji =MultiHead(hi) (3)

P (ysbji) = σ(W sbj
i ∗ hsbji + bsbji) (4)

Tagsbj(xi) = argmax
k

P (ysbji = k) (5)

where hsbji denotes hidden representation of word xi and
P (ysbji) is the probability distribution of the number of sub-
jects. W sbj

i and bsbji are learnable parameters of the multi-head
layer. σ is the sigmoid activation function.

Subject extractor minimizes the sum of negative log prob-
abilities of extracting subject candidates as below:

Lsbj = −
1

n

n∑
i=1

logP
(
ysbji = ŷsbji

)
(6)

Here, n is the length of the input sentence, ŷsbji is the true tag
of the i-th word.

D. Relation Extractor

RE attempts to predict relational triples (s, r, o) from a
sentence. Different from subject extractor, relation extractor
needs to break down task into two steps. Firstly, we predict the
probability distribution over the relation type r between each
word and a given subject. The architecture of this component
is similar to subject extractor. The specific operation is as
follows:

hreli =MultiHead(hi + hsk) (7)

Pr(y
rel
i) = σ(W rel

i ∗ hreli + breli) (8)

354

Fig. 3. An example of scheme tagging.

where hsk is the k-th subject hidden state and Pr(y
rel
i) is

the probability of identifying relation type r between the
word xi and the subject sk. The context and subject are the
main sources to support the prediction [23]. We adopt multi-
head mechanism to fuse hidden representation hi with subject
feature hsk into a single vector hreli . It is worth noting that
the gold subject is directly used in the training process, but
not the subjects extracted by model. Secondly, we predict the
number of relations between each word and a given subject
as follows:

hnumi = Trans(hi + hreli) (9)

P (ynumi) = σ(Wnum
i ∗ hnumi + bnumi) (10)

Tagrel(xi) = argmax(P (ynumi = ŷnumi)) (11)

We denote the Transformer block as Trans(x). P (ynumi =
ŷnumi) is the probability of identifying the number of rela-
tions between the word xi and the subject sk. The value of
Tagrel(xi) not only represents the number of relations, but
also is used to recognize objects.

Relation extractor minimizes the sum of negative log prob-
abilities of extracting relations as below:

Lrel = −
1

n

n∑
i=1

logP
(
yreli = ŷreli

)
− 1

n

n∑
i=1

logP (ynumi = ŷnumi)

(12)

Here, n is the length of the input sentence, ŷreli and ŷnumi

are the true tag of the i-th word. P (∗) is the probability of
identifying true tags.

E. Novel Tagging Scheme

Figure 3 shows an example of how the sentences are tagged.
Since identifying an entity needs to detect its start and end

position, we label these critical positions with a non-zero
number and the remain with 0. These labels have different
meanings for different extractors. Labels in SE represent the
number of subjects at their current position. For RE, labels
indicate the number of relations between the object and
corresponding subject. Relations can be extracted through the
relation probability distribution table as shown in figure 2, in
which the value of row i and column j means the probability
that the j-th token is relation i.

For example, the word ”Andrew” in start tag sequence and
the word ”Cuomo” in end tag sequence are both labeled 1, thus
”Andrew Mark Cuomo” is a subject. When the given subject
is ”Andrew Mark Cuomo,” RE labels the word ”New” as 2,
”York” as 1 and ”City” as 1, which naturally solves the nested
entity problem. The word ”New” will be used two times to
form two different triples in this sentence. The relations of
two entity pairs can be inferred from the relation probability
table, which are both ”Born in.”

Note that our tagging scheme is an improvement of ETL [7],
which labels the entity’s position with entity type or relation
type. This tagging method is unable to express multiple rela-
tions and nested entities. Our tagging method uses digital tags
to represent these essential information, which helps model
solve the nested entity problem and the overlapping problem.

F. Training Objective
The module SE and the module RE jointly extract triples

according to our tagging scheme. The training objective of
AGFRel is comprised of two components: the loss function
for SE Lsbj and the loss function for RE Lrel. We try to give
different weights to the loss function of two parts and found
that slightly increasing the weight of RE could make the model
fit faster in the early stage. However, it does not help improve
the performance of the model. The joint loss is given by:

L = Lsbj + Lrel (13)

355

TABLE I
MAIN RESULTS ON NYT AND WEBNLG DATASETS. THE BEST PERFORMANCE IS MARKED AS BOLD-TYPE.

model
Exact Match Partial Match

NYT WebNLG NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

NovelTagging 32.8 30.6 31.7 52.5 19.3 28.3 - - - - - -
CopyRE - - - - - - 61.0 56.6 58.7 37.7 36.4 37.1
GraphRel - - - - - - 63.9 60.0 61.9 44.7 41.1 42.9
CopyMTL 75.7 68.7 72.0 58.0 54.9 56.4 - - - - - -
ETL-Span 85.5 71.7 78.0 84.3 82.0 83.1 - - - - - -

WDec - - - - - - 94.5 76.2 84.4 - - -
RIN 83.9 85.5 84.7 77.3 76.8 77.0 87.2 87.3 87.3 87.6 87.0 87.3

CasRelLSTM - - - - - - 84.2 83.0 83.6 86.9 80.6 83.7
CasRelBERT - - - - - - 89.7 89.5 89.6 93.4 90.1 91.8

AGFRelLSTM 86.5 86.7 86.6 84.3 86.5 85.4 85.8 85.4 86.0 86.9 83.5 85.2
AGFRelBERT 87.9 91.0 89.4 87.0 85.8 86.4 90.7 91.0 90.8 92.1 91.7 91.9

The model minimizes the total loss L over all model param-
eters with stochastic gradient descent algorithm.

IV. EXPERIMENT

A. Datasets

We evaluate AGFRel on two public datasets NYT and
WebNLG. NYT dataset was sampled from 294K articles in
New York Times corpus by distant supervision method and
consists of 24 predefined relation types. The WebNLG dataset
was created by Natural Language Generation (NLG) tasks.
We use the datasets preprocessed by [5], which contains 246
predefined relation types. It is worth mentioning that there
are two methods for extracting relations. [5, 8] use partial
match method simplifying an entity to the last word of an
entity. [7, 16] use exact match method to extract the whole
of entities. For fair comparisons, we use partial match and
exact match to conduct experiments. We use the preprocessed
datasets released by [5]. NYT dataset contains 5000 sentences
for validation and 5000 sentences for testing. WebNLG dataset
contains 500 sentences for validation and 703 sentences for
testing. In order to validate the effectiveness of extracting
overlapping triples, the test set was divided into three parts:
Normal, SEO, and EPO. The statistics are stated in Table II.

TABLE II
STATISTICS OF THE DATASETS IN OUR EXPERIMENTS.

class Train Valid Test Normal SEO EPO

NYT 56195 5000 5000 3266 1297 978
WebNLG 5019 500 703 246 457 26

B. Evaluation Metrics

We adopt the standard micro Precision (Prec.), Recall
(Rec.), and F1 score to evaluate results in line with all the
baselines. In the exact match task, the triples are considered
correct when the whole span of entities and relations are both
recognized correctly. The partial match task only needs to
recognize the tail of entities and relations.

C. Implementation Details

We use Adam [24] with the learning rete 1e−6 to optimize
the parameters of our model and set the batch size as 32.
Dropout is applied to word embeddings and hidden states
with a rate of 0.4. In this paper, we propose two models
with LSTM and BERT encoder, and keep the network of
decoder and encoder uniform respectively. The model with
LSTM stacks two-layer BiLSTM as the encoder, one layer
BiLSTM as decoder. The initial word embeddings we used
are the 300 dimensions Glove [25]. The other one uses the
base cased version of BERT as encoder, which contains 110M
parameters. The maximum length of sentences is limited to
100 words. We implement model using Pytorch [26] on a
Linux machine and train the model using Tesla V100 GPU.
We choose the model that performed best on the validation
set to analyze the test set.

D. Comparison Models and Results

We compare our model with three kinds of models in recent
years: (1) seq2seq-based methods, including CopyRE [5] and
WDec [14], (2) MLT-based methods, including GraphRel [18],
CopyMTL [16] and RIN [19], (3) tagging-based methods,
including NovelTagging [4], ETL-Span [7] and CasRel [8].
Table I shows the results of our models and other baseline
methods. We note that our model surpasses all the baseline
methods and achieves the state-of-the-art F1 score. We pro-
pose two versions of AGFRel to conduct experiments. The
AGFRelLSTM uses the LSTM as shared encoder and replaces
the multi-head guided layers as LSTM.

In the exact match task, our model AGFRelBERT achieves
improvements of 4.7% and 4.3% in F1 scores on NYT and
WebNLG datasets over the state-of-the-art models. Even with
the AGFRelLSTM also has a relative 1.9% F1 score improve-
ment on NYT dataset compared with MLT-based model RIN,
and a relative 2.3% F1 score improvement on WebNLG dataset
compared with tagging-based model ETL-Span. These results
prove the effectiveness of our method.

In the partial match task, the performance of AGFRelBERT

is close to CasRelBERT on WebNLG dataset. We deem that it

356

TABLE III
F1 SCORE ON SENTENCES WITH DIFFERENT OVERLAPPING PATTERN AND DIFFERENT

TRIPLE COUNT.

Method Number of triples Overlapping pattern

N = 1 N = 2 N = 3 N = 4 N = 5 Normal SEO EPO

CopyRE 67.1 58.6 52 53.6 30 66 48.6 55
GraphRel 71 61.5 57.4 55.1 41.1 69.6 51.2 58.2

CasRelBERT 88.2 90.3 91.9 94.2 83.7 87.3 91.4 92

AGFRelBERT 88.1 91.6 93.2 94.5 86.5 87.9 92.3 92.7

is because (1) the last word of the entity losses key semantic
information, i.e., Apollo 12 is regarded as 12, which impedes
models from extracting correct triples. (2) The performances
are already saturated since the training sentences are too small
for the model to learn the way to distinguish 246 relation types
properly. The training sentences of NYT dataset are far more
than WebNLG dataset. Our model achieves an improvement
of 1.2% in F1 score. Besides, we find that CasRelBERT shows
an imbalance between precision and recall on WebNLG. We
consider that CasRelBERT sets a high threshold value to select
relations, which sacrifices recall.

We observe that AGFRelBERT gains better performance on
partial match task than exact match task. In the partial match
task, model only needs to detect the last token of entities.
We speculate that the performance gap is due to increased
difficulty for the NER task. Although we mentioned that the
last word of entities could not represent the original meaning
of entities, entities that contains many words will also affect
AGFRel since our tagging scheme is only to label the start
and end position of entities.

E. Analysis on Different Sentence Types

To verify the ability of our model in handling the overlap-
ping problem and extracting multiple relations, we conduct
further experiments on NYT test set. We firstly divide the
test set of NYT into five subclasses, each of which means
a sentence contains N triples. The results are shown in
table III. We observe that CopyRE and GraphRel present a
decreasing trend with the increasing number of triples in a
sentence. Our model and CasRelBERT present an upward
trend on the whole and are less affected by the number of
triples. We attribute the difference to the reason that tagging-
based methods simplify the complexity of tasks by converting
relation extraction task to a sequence labeling problem. In the
most challenging class(N ≥ 5), our model achieves better
performance than CasRelBERT , since we introduce attention
mechanism to eliminate the impact of irrelative triples. We
also compare the results under different types of triples.
AGFRelBERT outperforms baselines in all scenarios, which
proves the validity of our tagging scheme for solving the
overlapping problem.

V. CONCLUSION

In this paper, we propose an end-to-end sequence labeling
model AGFRel for joint extraction of entities and relations

based on a novel decomposition strategy. Compared to pre-
vious sequence labeling models, our model can learn the
exact number of relations for each entity pair to filter out
relation distracters in sentences. Our experiments show that
our results exceed the baseline and achieve the optimal F1
score. Moreover, it has a good performance in handling the
overlapping problem and extracting multiple triples. In the
future, we will utilize GCN to encode the document-level text.
The overlapping problem and nested entity problem also exist
in the biomedical domain. It is beneficial to apply our method
to biomedical information extraction tasks.

ACKNOWLEDGMENTS

We thank all viewers who provided thoughtful and con-
structive comments on this paper. This work is funded by the
Fundamental Research Funds for the Central Universities. East
China Normal University, Shanghai 200241, China. The exper-
iment is completed with the support of ECNU Multifunctional
Platform for Innovation (001).

REFERENCES

[1] C. Quirk and H. Poon, “Distant supervision for relation
extraction beyond the sentence boundary,” in Proceedings
of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1,
Long Papers, 2017, pp. 1171–1182.

[2] Y. Zhang, V. Zhong, D. Chen, G. Angeli, and C. D.
Manning, “Position-aware attention and supervised data
improve slot filling,” in Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, 2017, pp. 35–45.

[3] Q. Li and H. Ji, “Incremental joint extraction of entity
mentions and relations,” in Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2014, pp. 402–412.

[4] S. Zheng, F. Wang, H. Bao, Y. Hao, P. Zhou, and B. Xu,
“Joint extraction of entities and relations based on a novel
tagging scheme,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2017, pp. 1227–1236.

[5] X. Zeng, D. Zeng, S. He, K. Liu, and J. Zhao, “Extracting
relational facts by an end-to-end neural model with copy
mechanism,” in Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), 2018, pp. 506–514.

357

[6] D. Dai, X. Xiao, Y. Lyu, S. Dou, Q. She, and H. Wang,
“Joint extraction of entities and overlapping relations us-
ing position-attentive sequence labeling,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 6300–6308.

[7] B. Yu, Z. Zhang, X. Shu, Y. Wang, T. Liu, B. Wang,
and S. Li, “Joint extraction of entities and relations
based on a novel decomposition strategy,” arXiv preprint
arXiv:1909.04273, 2019.

[8] Z. Wei, J. Su, Y. Wang, Y. Tian, and Y. Chang, “A novel
cascade binary tagging framework for relational triple
extraction,” in Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, 2020,
pp. 1476–1488.

[9] S. Riedel, L. Yao, and A. McCallum, “Modeling relations
and their mentions without labeled text,” in Joint Euro-
pean Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2010, pp. 148–163.

[10] C. Gardent, A. Shimorina, S. Narayan, and L. Perez-
Beltrachini, “Creating training corpora for nlg micro-
planners,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), 2017, pp. 179–188.

[11] X. Yu and W. Lam, “Jointly identifying entities and
extracting relations in encyclopedia text via a graphical
model approach,” in Coling 2010: Posters, 2010, pp.
1399–1407.

[12] M. Miwa and Y. Sasaki, “Modeling joint entity and rela-
tion extraction with table representation,” in Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1858–1869.

[13] M. Miwa and M. Bansal, “End-to-end relation extraction
using lstms on sequences and tree structures,” in Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
2016, pp. 1105–1116.

[14] T. Nayak and H. T. Ng, “Effective modeling of encoder-
decoder architecture for joint entity and relation ex-
traction,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 05, 2020, pp. 8528–
8535.

[15] X. Zeng, S. He, D. Zeng, K. Liu, S. Liu, and J. Zhao,
“Learning the extraction order of multiple relational facts
in a sentence with reinforcement learning,” in Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019, pp. 367–377.

[16] D. Zeng, H. Zhang, and Q. Liu, “Copymtl: Copy mech-
anism for joint extraction of entities and relations with
multi-task learning,” in Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 34, no. 05, 2020, pp.
9507–9514.

[17] H. Adel and H. Schütze, “Global normalization of con-
volutional neural networks for joint entity and relation
classification,” in Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing,
2017, pp. 1723–1729.

[18] T.-J. Fu, P.-H. Li, and W.-Y. Ma, “Graphrel: Modeling
text as relational graphs for joint entity and relation
extraction,” in Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, 2019,
pp. 1409–1418.

[19] K. Sun, R. Zhang, S. Mensah, Y. Mao, and X. Liu, “Re-
current interaction network for jointly extracting entities
and classifying relations,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020, pp. 3722–3732.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Proceedings of the 31st
International Conference on Neural Information Process-
ing Systems, 2017, pp. 6000–6010.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. N. Toutanova,
“Bert: Pre-training of deep bidirectional transformers for
language understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2018,
pp. 4171–4186.

[22] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,
J. Klingner, A. Shah, M. Johnson, X. Liu, Łukasz Kaiser,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,
G. Kurian, N. Patil, W. Wang, C. Young, J. Smith,
J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes,
and J. Dean, “Google’s neural machine translation sys-
tem: Bridging the gap between human and machine
translation,” arXiv preprint arXiv:1609.08144, 2016.

[23] H. Peng, T. Gao, X. Han, Y. Lin, P. Li, Z. Liu, M. Sun,
and J. Zhou, “Learning from context or names? an empir-
ical study on neural relation extraction,” in Proceedings
of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020, pp. 3661–3672.

[24] K. Da, “A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[25] J. Pennington, R. Socher, and C. D. Manning, “Glove:
Global vectors for word representation,” in Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014, pp. 1532–1543.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai-
son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in
Neural Information Processing Systems, vol. 32, 2019,
pp. 8026–8037.

358

Multi-Label Classification of Parrott’s Emotions

Abhijit Mondal, Swapna S. Gokhale
Dept. of Computer Science & Engineering

Univ. of Connecticut, Storrs, CT 06269
{abhijit.mondal,swapna.gokhale}@uconn.edu

Abstract

Mining for latent emotions embedded in tweets can offer
clues about users’ affective state on a broad range of topics
ranging from their mental health to political opinions. This
paper presents a multi-class supervised learning approach
to group tweets into six emotions (joy, sadness, anger, fear,
love, and surprise) defined according to the Parrott’s frame-
work. After extensive pre-processing, linguistic and meta-
data features extracted from a corpus of tweets are used to
train popular machine learning classifiers. The performance
of these classifiers is evaluated using accuracy, sensitivity,
and specificity computed based on a multi-class confusion
matrix approach. Our framework can detect common emo-
tions of joy and sadness with excellent accuracy (> 90%),
anger and fear with moderate accuracy (75% − 85%), and
love and surprise with lower accuracy (50%− 60%). Over-
all, the accuracy of our framework still outperforms that of
contemporary approaches for all the six emotions. Further
analysis of an example multi-class confusion matrix indi-
cates that lower accuracy values for love and surprise may
arise because love is often confused with joy, whereas sur-
prise is mixed up with the positive emotion of joy and the
negative emotion of fear. Moreover, this confusion could be
attributed to an under-representation of these emotions in
the data. This highlights the need for building high-quality,
balanced benchmark data sets for training multi-label emo-
tion classifiers.

1 Introduction

Social media platforms such as Twitter, Facebook and
Instagram offer a forum for people to share and communi-
cate with large audiences as they go about their daily lives.
Twitter is one of the most popular social media platforms,
with nearly 330 million monthly active users on an average
as of 2019 [3]. Twitter’s large, active user base generates

DOI reference number: 10.18293/SEKE2021-158

volumes of textual content in the form of tweets. This con-
tent shared by the users is interactive, spontaneous, conver-
sational, and unfiltered. Tweets thus contain a treasure trove
of information that can offer clues about users’ opinions,
thoughts, and feelings on a variety of topics from politics to
restaurants to even their mental health.

The plethora of information embedded in these tweets
has attracted significant attention in their mining and anal-
ysis. A large body of work has focused on detecting and
classifying the sentiment and/or polarity of the tweets [21].
In binary sentiment analysis, tweets are grouped according
to positive and negative polarities, whereas in multi-class
analysis they are grouped into more than two classes ac-
cording to the strength of the embedded sentiment. Tweets,
however, also contain affective information (moods, emo-
tions, and feelings) of the users, and they can also be mined
for these emotions. Emotion mining can thus be viewed as
a deeper, more advanced form of sentiment analysis [12].
This detailed, granular information that can be extracted
from tweets can support a range of applications such as tar-
geted advertising, recommending books, music and videos,
predicting the movements of stock markets, launching tele-
vision programs, detecting and monitoring mental health
problems, and gathering public opinion on politically and
socially sensitive issues.

Emotion classification can be binary, where opposing
emotions such as joy and sadness or love and hate are for-
mulated into targeted two-way detection problems. Binary
emotion classification problems can also be formulated by
combining all the positive emotions such as love, joy, and
trust into one class, and all the negative emotions includ-
ing hate, sadness and disgust into another class. Plutchik’s
wheel provides a natural anchor for formulating such two-
way problems, as opposing emotions are placed on the two
opposite ends of each axis on a wheel [11]. Multi-label clas-
sification of emotions, on the other hand, involves grouping
tweets into many classes; these classes are usually chosen
in a manner that is convenient based on the data, or are in
some cases inspired by a psychological framework such as
the Plutchik’s wheel [15], the Parrott’s framework [13] or

359

the Ekman’s atlas of emotions [6]. Overall, in the literature,
multi-label classification shows lower accuracy for all the
classes or is seen to trade away the accuracy of one class
for the other [14, 9, 19]. This could occur because all the
emotions in a multi-class problem may not be expressed to
a similar degree, that is, the data could be unbalanced. An-
other reason could be that these uncommon emotions are of-
ten confused or mistaken for the commonly occurring ones.
To the best of our knowledge, other than the fact that multi-
label emotion detection is a challenging problem, very little
is known in the way of reasons behind the challenge. This
objective of this paper is to present a framework that can
classify a corpus of tweets into multiple emotions with good
accuracy over contemporary approaches. A secondary ob-
jective is to gain deeper insights into the challenges involved
in building high accuracy multi-label classifiers through a
more in-depth analysis. The approach is built around a re-
cently annotated data set [16], which tags each tweet with
one of six emotions. We map these six labels to the six
basic emotions defined by the Parrott’s model [13]. We
extensively pre-process these tweets, extract linguistic and
metadata features, and train five popular machine learning
models using these features. We evaluate the performance
of these models using accuracy, sensitivity, and specificity,
computed based on the multi-class confusion matrix ap-
proach.

Our results indicate that the more basic and common
emotions of joy and sadness can be identified with excel-
lent accuracy (> 90%), anger and fear with moderate ac-
curacy (75%− 85%), and love and surprise with low accu-
racy (50% − 60%). With these accuracy values, our clas-
sifiers still perform better than the current approaches for
all the emotions. The classifiers show higher specificity
compared to sensitivity, which means that they are better
at ruling out a specific emotion rather than identifying it
affirmatively. An analysis of an example multi-class con-
fusion matrix indicates that love is often confused with joy,
whereas surprise is mixed up with the positive emotion of
joy and the negative emotion of fear, which could explain
the low detection accuracy for these emotions. This con-
fusion could occur because love and surprise are complex
emotions which embody both positive and negative feel-
ings. Moreover, because of their complexity, these emo-
tions could be underrepresented in our corpus compared to
the other classes; especially joy and sadness. Therefore, one
of the ways in which the accuracy of multi-label emotion
classification may be improved is by building high-quality
training data sets, with a balanced representation of all the
involved emotions.

The rest of the paper is organized as follows: Section 2
presents the emotion classification model. Section 3 de-
scribes the steps in the classification framework. Section 4
discusses the results. Section 5 compares and contrasts re-

lated research. Section 6 concludes the paper and offers
directions for future research.

2 Emotion Classification Model

We used the data set made available by Saravia et al [16].
This set of tweets was collected using a set of hashtags,
which served as noisy labels for subsequent distance-based
annotations. Each tweet is labeled into one of six emo-
tions: joy, sadness, anger, fear, love, and surprise. Anno-
tated tweets were split into train and test data sets, with the
total number of tweets in these partitions being 16000 and
2000 respectively. The number and percentage of tweets
in the train/test partitions for the six emotions are summa-
rized in Table 1. The table shows the imbalance between
the emotions; joy and sadness are the most common; fear,
anger and love form the next tier; whereas surprise is the
most rare. However, the train/test split was conducted us-
ing stratified sampling because the ratio of test to train is
maintained between 11% and 13% for all the emotions.

Emotion Train Test Test/Train
% # %

Joy 5362 33.5% 695 34.75% 13.00%
Sadness 4666 29.17% 591 29.55% 12.67%

Fear 1937 12.10% 224 11.20% 11.57%
Anger 2159 13.50% 275 13.75% 12.73%
Love 1304 8.15% 159 8.00% 12.19%

Surprise 572 3.58% 66 3.3% 11.54%

Table 1: Summary of Tweets Per Emotion

We referred to the three most popular models of emo-
tions to formulate the multi-label classification problem.
These are the Gerrod Parrott’s model containing six ba-
sic human emotions [13], the Plutchik’s wheel of emo-
tions [15], and the Ekman’s atlas of emotions [6]. The emo-
tion labels in our data coincide exactly with Parrott’s model,
providing us a natural anchor for our six-way classification
problem.

3 Classification Framework

This section describes the classification framework.

3.1 Data Pre-processing

Our data consisted of the text of the tweets and its
emotion label. It was relatively clean, and there were no
emoticons, punctuations, links, hashtags and other mark-
ers. So, the pre-processing steps were relatively straightfor-
ward. First we tokenized all the words using white spaces.

360

In the second step, we removed the stop words using the
stop words list in NLTK library [18]. In the third step, we
removed proper nouns (names of persons, cities, etc). and
other non-English words by checking the presence of every
word against the NLTK list.

3.2 Feature Extraction

We considered two linguistic features: Term Frequency-
Inverse Document Frequency (TF-IDF) vectorization and
n-grams using the bag-of-words approach. These features
were extracted using the TF-IDF vectorizer class of Scikit-
Learn library [2]. TF-IDF refers to a scoring measure used
in information retrieval or summarization. It measures the
relevance of a word in a document by assigning an addi-
tional weight to frequent words. We computed the TF-IDF
scores for the topmost 1000 unigrams.

We extracted six meta-data features from the text of each
tweet prior to pre-processing. These include the number of
characters, number of words, number of stop words, and
number of unique words, TextBlob and Vader sentiment
scores. TextBlob calculates the sentiment polarity for each
tweet, which ranges from −1 to +1, where −1, 0 and +1
indicate negative, neutral and positive respectively. Vader
computes a compound score as a normalized and weighted
composite score obtained by analyzing each word in a tweet
for its direction of sentiment – a negative (positive) valency
for negative (positive) sentiment. It therefore ranges from
−1 to +1 depending on the net sentiment of the tweet. We
used both TextBlob and Vader scores because Vader may
be more sensitive to sentiments than TextBlob, even though
TextBlob may be better correlated with reviewer scores [1].

3.3 ML Models

We employed the following common machine learning
models for classification. Implementations of these models
in the Scikit-Learn and Keras libraries were used.

• Random Forests (RF): Random Forests is an ensem-
ble learning classification technique based on decision
trees. The number of decision trees is set to 30 and
the number of features used by each tree is equal to the
squared-root of the number of total features. Finally,
each tree was allowed to grow fully up to its leaves.

• Support Vector Machines (SVM): Support Vector
Machines is a classification method that estimates the
boundary (called hyper-plane) with the maximum mar-
gin. We used SVMs with linear kernel with other de-
fault parameters.

• Multi-Layer Perceptron (MLP): Multi-layer Percep-
tron is a deep neural network that consists of input,

hidden, and output layers. Our MLP model consisted
of 3 hidden layers with 10, 5, and 2 neurons respec-
tively, along with the rectifier linear unit (ReLu) acti-
vation function.

• Gradient Boosting (GB): Gradient Boosting is an-
other ensemble learning classifier which builds classi-
fier trees such that each tree takes a small step towards
the minimization of classification error from the pre-
vious tree. The algorithm continues until maximum
number of trees are built or there is no significant im-
provement in minimizing the error. Finally, predictions
for the test data are obtained by combining predictions
of the trees built in each stage using a weighted sum.
We used 100 estimators, with a maximum depth of 1.

• Neural Network (NN): We build a neural network
with three layers having 30, 10 and 6 neurons respec-
tively. We arrived at this architecture through exper-
imentation, considering that our data was of medium
complexity with about 1000 features.

3.4 Performance Metrics

For multi-label classification, the first step in defining the
performance metrics is the computation of the multi-class
confusion matrix, which represents how many of the tweets
originally in that class are classified accurately as belong-
ing to that class. Also, for a given class it represents the
number of tweets that are mis-labeled by a classifier as be-
longing to each of the other five classes. Finally, we divided
each of these six counts by their sum to obtain a normalized
accuracy measure. For example, let 500 tweets be originally
labelled as “surprise”. Now, suppose if 400 of these tweets
were labelled correctly by the classifier as “surprise” but the
other 100 tweets were mis-labelled. Further, suppose that
these 100 tweets were mis-labelled equally among the other
five classes meaning each of the other five classes included
20 of these tweets. Next, we divide these six counts by 500
to compute the six elements in the normalized multi-class
confusion matrix as 0.8, 0.04, 0.04, 0.04, 0.04, and 0.04.
We repeat this process to calculate all 36 entries in the con-
fusion matrix. The accuracy for each class is defined as the
percentage of tweets labeled correctly from that class, and
refers to the diagonal elements in the confusion matrix.

Alongside multi-label classification accuracy, we also
calculated two other performance metrics, namely, sensi-
tivity and specificity. Sensitivity and specificity together of-
fer insights into the bias of a classifier towards a particular
class. However, these two performance metrics are mainly
used in the context of binary classification problems, as they
need us to define positive and negative classes in order to be
able to compute true and false positives, and true and false

361

negatives. Therefore, we transformed this multi-label clas-
sification problem as six “one vs rest” classification prob-
lems. For example, to calculate the sensitivity and speci-
ficity for surprise, we considered the “surprise vs rest” clas-
sification problem. We designated the positive class as “sur-
prise” and all the other classes together formed the negative
class. True positives (TP) are the tweets which are correctly
classified as “surprise”, true negatives (TN) include tweets
originally not from the “surprise” class and are also not la-
beled as “surprise” by a classifier. Similarly we can define
false positives (FP) as those tweets that were incorrectly la-
beled as “surprise”, and false negatives (FN) as those tweets
that were originally labeled as “surprise” but the classifier
labeled them incorrectly with one of the other five classes.

Equation (1) shows the expressions for sensitivity and
specificity. Sensitivity of “surprise” class is the percentage
that a tweet labeled as “surprise” is correctly classified as
such. We note that sensitivity is identical to multi-label ac-
curacy. If a highly sensitive classifier classifies a tweet into
an emotion class, then it can be fairly certain that it actually
does. Specificity of “surprise” class is the percentage that a
tweet which is not labeled as “surprise” is classified as such.
If a highly specific classifier says that the tweet does not ex-
hibit an emotion, then we can be fairly certain that it indeed
does not. Generally, there is a trade-off between sensitivity
and specificity. A classifier with a high sensitivity usually
has low specificity, and vice versa.

After computing the sensitivity/accuracy and specificity
for each emotion, we compute the aggregate unweighted
and weighted values of these metrics across all classes. The
weight for each class is given by the percentage of tweets in
that class in the training data set.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

(1)

4 Results & Discussion

The data was already split into train and test sets for
model training and performance evaluation. Table 2 shows
the per-class accuracy for the five models. With our un-
weighted and weighted overall accuracy values of 74%
and 83% for the NN model, our approach outperforms
many contemporary approaches with accuracy values in the
ranges of 50− 60% [4, 19, 9].

Tables 2 and 3 summarize the sensitivity/accuracy and
specificity values for the six classes by the five classifiers.
Across all the emotions, sensitivity values are lower than
their corresponding specificity values. All specificity val-
ues are around or over 95%, meaning that the classifiers are
excellent at negative differentiation, that is, they can iden-

tify with near certainty, the absence of a specific emotion.
Lower sensitivity values indicate that the classifiers are less
capable of zeroing in on a specific emotion. The classi-
fiers can identify joy and sadness with excellent accuracy,
fear and anger with moderate to low moderate accuracy, but
struggle with love and surprise; more so with surprise than
with love. Albeit low, our accuracy in detecting surprise
still exceeds the accuracy of the contemporary works that
have simply been unable to detect this emotion [14]. Neu-
ral networks offer the best specificity across all the emo-
tions. Sensitivity produces mixed results among models; for
each emotion the best model for sensitivity is different and
is identified in the parentheses: joy (SVM), sadness and fear
(NN), anger and love (MLP), and surprise (RF). Generally,
the difference in sensitivity/accuracy between the models is
small for all emotions except for surprise, where MLP di-
verges significantly.

To understand why the classifiers may struggle with the
emotions of love and surprise, we take a closer look at an
example multi-class confusion matrix from the SVM model
(matrices from other models show similar trends) as shown
in he Figure 1. This matrix shows how the tweets from each
class are mis-classified into the other five classes. From the
figure, it can be seen that love is most likely to be confused
with joy while surprise is most likely to be confused with
either joy or fear. Therefore, the expression of love is al-
most always positive, whereas, surprise can be expressed
in both positive and negative senses; and it embodies both
these emotions. This confusion, which leads to lower accu-
racy for love and surprise could be due to class imbalance;
Table 1 shows that only 8% tweets are labeled as love, and
an even lower 3% tweets are labeled as surprise.

joy sadness fear anger love surprise
predicted label

joy

sadness

fear

anger

love

surprise

tru
e

la
be

l

0.93 0.03 0.01 0.01 0.02 0.01

0.06 0.88 0.02 0.03 0.01 0.01

0.07 0.09 0.77 0.05 0.00 0.02

0.10 0.14 0.01 0.73 0.01 0.00

0.30 0.08 0.01 0.00 0.62 0.01

0.17 0.06 0.26 0.00 0.00 0.52

0.0

0.2

0.4

0.6

0.8

Figure 1: Multiclass confusion matrix (SVM)

362

Model Joy Sadness fear Anger Love Surprise Unweighted Weighted
NN 0.91 0.91 0.84 0.75 0.64 0.53 0.74 0.83
RF 0.87 0.82 0.71 0.68 0.50 0.64 0.68 0.76

SVM 0.93 0.88 0.77 0.73 0.62 0.52 0.74 0.83
MLP 0.84 0.88 0.79 0.78 0.76 0.17 0.77 0.67
GB 0.84 0.79 0.76 0.77 0.61 0.46 0.71 0.78

Table 2: Sensitivity/Accuracy of ML Classifiers

Model Joy Sadness fear Anger Love Surprise Unweighted Weighted
NN 0.95 0.96 0.94 0.98 0.98 0.99 0.97 0.96
RF 0.84 0.89 0.99 0.99 0.99 0.99 0.95 0.91

SVM 0.90 0.93 0.98 0.98 0.99 0.99 0.96 0.94
MLP 0.95 0.94 0.96 0.96 0.96 0.99 0.96 0.95
GB 0.86 0.89 0.98 0.98 0.99 0.99 0.95 0.91

Table 3: Specificity of ML Classifiers

5 Related Research

Prevalent research efforts have mined emotions sur-
rounding specific events such as the presidential elec-
tion [20] or the Brazilian soccer league [5], or natural dis-
asters such as the California Camp Fire [10] and the MERS
outbreak [4]. However, extracting them from a general cor-
pus remains relatively unaddressed.

Many research works formulate multi-label classifica-
tion problems over a set of emotions; the chosen set may be
completely ad hoc, inspired by a psychological framework
such as the Ekman’s atlas of emotions [6] or the Plutchik’s
wheel [15], or a combination of psychology and heuris-
tics. For example, Wang et. al. [19] annotated a data set
of 2.5 million tweets based on hashtags related to emotion
words, and classified them into seven emotions, six basic
plus “thankfulness”. Their classification accuracy is around
60%, and this performance is further improved by about
5% [9]. Jaishree et. al. [14] label tweets by combining
the scores from NRC word-level lexicon tool and emotion-
based hashtags. Their problem considered 8 basic emotions
on the Plutchik’s wheel, however, their multi-label classi-
fication problem was completely unable to detect surprise,
and registered low scores for fear. A smaller set of 4 emo-
tions is also used by some [7, 17]. Although Mohammed et.
al. formulate their problem based on the Plutchik’s wheel,
they ultimately boil it down to binary classification by us-
ing the one vs. other method [8]. Generally, multi-label
emotion classification suffers from either low accuracy for
all classes or sacrifice the accuracy of some for the oth-
ers. The accuracy values of our approach are higher for all
the emotions compared to these contemporary approaches.
Moreover, a detailed analysis sheds further light into those

emotions that are difficult to detect, and how they could be
confused with the others.

6 Conclusions and Future Research

Simultaneous differentiation between multiple emotions
from content shared on social media platforms remains a
challenging problem. This paper proposes a classification
framework based on supervised machine learning that can
identify six emotions of joy, sadness, anger, fear, love, and
surprise defined in the Parrott’s framework from a corpus of
tweets. Relying on extensive pre-processing of tweets, fol-
lowed by the extraction of linguistic and metadata features
to train popular machine learning models, our classification
framework can identify joy and sadness with excellent ac-
curacy, anger and fear with moderate accuracy, and love
and surprise with low accuracy. Moreover, the aggregate
accuracy of our approach is better than contemporary ap-
proaches. Through a detailed analysis, we develop insights
into why love and surprise could be difficult to detect, and
offer that one plausible explanation for this difficulty could
stem from an under-representation of these two emotions in
the data.

Our future research involves building a high-quality bal-
anced data set that can be used to train classifiers for multi-
label emotion classification. Experimenting with identi-
fying emotions surrounding high profile events related to
Covid-19 such as vaccinations, or the passage of the Amer-
ican Rescue Plan Act of 2021 is also a topic of the future.

363

References

[1] K. Arunachalam. “Evaluation of Python Packages for
Sentiment Analysis”, 2019 (last accessed on October
19, 2019). https://www.linkedin.com/
pulse/evaluation-python-packages-
sentiment-analysis-karthikeyan-
arunachalam/.

[2] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa,
A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer,
A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,
A. Joly, B. Holt, and Gaël Varoquaux. “API Design
for Machine Learning Software: Experiences from
the Scikit-learn project”. In Proc. of ECML PKDD
Workshop: Languages for Data Mining and Machine
Learning, pages 108–122, 2013.

[3] J. Clement. “Number of Monthly Active Twit-
ter Users Worldwide from 1st Quarter 2010 to
1st Quarter 2019”, 2019 (last accessed on March
5, 2020). https://www.statista.com/
statistics/282087/.

[4] H. J. Do, C. Lim, Y. J. Kim, and H. Choi. “Analyzing
Emotions in Twitter during a Crisis: A Case Study of
the 2015 Middle East Respiratory Syndrome Outbreak
in Korea”. In Proc. of Intl. Conf. on Big Data and
Smart Computing, pages 415–418, 2016.

[5] A. Esmin, R. De Oliveira Jr, and S. Matwin. “Hier-
archical Classification Approach to Emotion Recog-
nition in Twitter”. In Proc. of Intl. Conf. on Machine
Learning and Applications, volume 2, pages 381–385,
2012.

[6] S. Handel. “Classification of Emotions”.
https://www.theemotionmachine.com/
article-limit/, 2011.

[7] S. S. Ibraheim, S. S. Ismail, K. A. Bahansy, and M. M.
Aref. “Multi-Emotion Classification Evaluation via
Twitter”. In Proc. of Intl. Conf. on Intelligent Com-
puting and Information Systems, pages 60–67, Cairo,
Egypt, 2019.

[8] M. Jabreel and A. Moreno. “A Deep Learning-based
Approach for Multi-label Emotion Classification in
Tweets”. Applied Sciences, 9(6):1123, 2019.

[9] O. Janssens, M. Slembrouck, S. Verstockt, S. V.
Hoecke, and R. V. de Walle. “Real-time Emotion Clas-
sification of Tweets”. In Proc. of Intl. Conf. on Ad-
vances in Social Network Analysis and Mining, pages
1430–1431, August 2013.

[10] N. H. Khun, T. T. Zin, M. Yokota, and H. Y. Thant.
“Emotion Analysis of Twitter Users on Natural Disas-
ters”. In Proc. of Global Conf. on Consumer Electron-
ics, Osaka, Japan, October 2019.

[11] Abhijit Mondal and Swapna S. Gokhale. Mining emo-
tions on plutchik’s wheel. In 2020 Seventh Interna-
tional Conference on Social Networks Analysis, Man-
agement and Security (SNAMS), pages 1–6, 2020.

[12] R. M. Ohashi. “From Sentiment Analysis to Emo-
tion Recognition: A NLP Story”, July 2019 (last ac-
cessed on March 3, 2020). https://medium.
com/neuronio/bcc9d6ff61ae.

[13] G. W. Parrott. Emotions in Social Psychology: Essen-
tial Readings. Psychology Press, 2001.

[14] J. Ranganathan, N. Hedge, A. S. Irudayaraj, and
A. A. Tzacheva. “Automatic Detection of Emotions in
Twitter Data-A Scalable Decision Tree Classification
Method”. In Proc. of the RevOpID 2018 Workshop on
Opinion Mining, Summarization and Diversification,
2018.

[15] Plutchik Robert. Emotion: Theory, research, and ex-
perience. vol. 1: Theories of emotion, 1980.

[16] E. Saravia, H. Liu, Y. Huang, and Y. Chen. “CARER:
Contextualized Affect Representations for Emotion
Recognition”. In Proc. of the 2018 Conf. on Empir-
ical Methods in Natural Language Processing, pages
3687–3697, Brussels, Belgium, November 2018.

[17] F. M. Shah, A. S. Reyadh, A. I. Shaafi, and F. T.
Sithil. “Emotion Detection from Tweets using AIT-
2018 Dataset”. In Proc. of Intl. Conf, on Advances in
Electrical Engineering, Dhaka, Bangladesh, Septem-
ber 2019.

[18] Bird Steven and L Edward. Nltk: the natural language
toolkit. In Proceedings of the COLING/ACL on Inter-
active presentation sessions, pages 69–72, 2006.

[19] W. Wang, L. Chen, K. Thirunarayan, and A. P. Sheth.
“Harnessing Twitter “Big Data” for Automatic Emo-
tion Identification”. In Proc. of Intl. Conf. on Privacy,
Security, Risk and Trust and Intl. Conf. on Social Com-
puting, pages 587–592, 2012.

[20] U. Yaqub, S. Chun, V. Atluri, and J. Vaidya.
“Sentiment-based Analysis of Tweets during the US
Presidential Election”. pages 1–10, 06 2017.

[21] L. Yue, W. Chen, X. Li, W. Zuo, and M. Yin. “A Sur-
vey of Sentiment Analysis in Social Media”. Knowl-
edge and Information Systems, (60):617–663, July
2018.

364

https://www.linkedin.com/pulse/evaluation-python-packages-sentiment-analysis-karthikeyan-arunachalam/
https://www.linkedin.com/pulse/evaluation-python-packages-sentiment-analysis-karthikeyan-arunachalam/
https://www.linkedin.com/pulse/evaluation-python-packages-sentiment-analysis-karthikeyan-arunachalam/
https://www.linkedin.com/pulse/evaluation-python-packages-sentiment-analysis-karthikeyan-arunachalam/
https://www.statista.com/statistics/282087/
https://www.statista.com/statistics/282087/
https://www.theemotionmachine.com/article-limit/
https://www.theemotionmachine.com/article-limit/
https://medium.com/neuronio/bcc9d6ff61ae
https://medium.com/neuronio/bcc9d6ff61ae

On Conducting Tests in Software Engineering
Courses during the COVID-19 Pandemic

Pankaj Kamthan
Computer Science and Software Engineering

Concordia University
Montreal, Canada

pankaj.kamthan@concordia.ca

Abstract—The circumstances presented by the COVID-19
pandemic have had a severely debilitating impact on education,
in general, and software engineering education, in particular.
This paper describes the author’s experience over three
semesters in conducting oral and written tests in six software
engineering-related courses with around 500 students overall.
The technical as well as non-technical challenges encountered are
discussed, and educational lessons based on the reactions and
responses of students are given. The proposed concepts, decisions,
and processes herein are effectively generalizable and potentially
applicable to other types of courses and to (not necessarily
pandemic-related) online teaching-related situations in general.

Keywords-collusion and plagiarism; conceptual model; distance
education; e-learning; formative and summative assessment; online
teaching and learning

I. INTRODUCTION

The COVID-19 pandemic was an unprecedented, disruptive
event of 2020 that continues to have severe ramifications on a
global scale in 2021. To prevent infections, to mitigate and
control the rate of transmission, and to minimize
hospitalizations, the governments everywhere have been
compelled to declare community lockdowns, and to closing or
restricting access to all those sectors of society that necessitate
a large number of people congregating in closed spaces for a
prolonged period of time, including educational institutions [1].
In order to continue to remain operational, the educational
institutions have inexorably resorted to a suitable combination
of e-learning, distance education, and online teaching and
learning [2]. This paper reports the experience at a University
of conducting tests in six courses over three semesters, Spring
2020, Summer 2020, and Fall 2020, in such an environment.
These courses are part of an undergraduate program (namely,
Introduction to Software Engineering and Object-Oriented
Methods with UML), and a graduate program (namely,
Advanced Software Architectures, Software Comprehension
and Maintenance, Software Engineering Development
Processes, and Software Measurement), topics of which are
aligned with a taxonomy of software engineering education [3].

The rest of the paper is organized as follows. In Section II,
relevant background is provided and related work is discussed.
The specifics of the tests, along with associated challenges and
lessons learned are presented in Section III. In Section IV,
directions for future research are outlined briefly. Finally, in
Section V, concluding remarks are given.

II. BACKGROUND AND RELATED WORK

The COVID-19 pandemic has obligated teachers from
around the world, at every level, in all disciplines, to improvise
and innovate in order to continue to provide an acceptable level
of education. The notions of e-learning, distance education, and
online teaching and learning have existed for quite some time.
Indeed, they have been practiced to varying degrees over the
years, especially since the inception of the Web, and their
advantages and disadvantages are known [4, 5]. However, they
have garnered special attention, assumed renewed significance,
and seen a broad adoption during the COVID-19 pandemic.

The sudden transition from offline to online teaching has
led to, somewhat expectedly, mixed results for administrators,
teachers, and students [6, 7, 8, 9]. In [10], the experience, both
before and after the declaration of COVID-19 as a pandemic,
of conducting tests using MyElearning in a digital electronics
course is described. In [11], the experience of conducting a test
comprising multiple choice questions and a case study-based
question using Google Forms, Google Drive, and WhatsApp in
a multimedia systems course has been given. In [12], issues
related to conducting unproctored online tests using a question
bank and Examplify in a general chemistry course are explored.
There have been relatively few detailed reports specific to test
procedures, processes, and practices during the COVID-19
pandemic, and that, in part, forms the motivation for this paper.

III. THE TESTS

The courses in question had a number of components of
assessment, including tests. The tests were conducted in
alignment with the principles of online teaching [13].

A. Students

In some cases, the students were geographically distributed
across different cities within the same country (Canada) and, in
other cases, across different cities in different countries
(Canada, China, France, India, and Morocco). In order to
prepare the students for oral and written tests, they were (1)
told that the standard of questions and problems would be same
as in an offline teaching environment, and (2) given sample
questions/answers and problems/solutions, as the case may be,
well in advance so that they could practice and familiarize
themselves with the unique style of the upcoming tests. The
students were either accustomed to the technologies and tools
used for the tests, or learned them readily on their own.

DOI reference number: 10.18293/SEKE2021-025

365

B. Technology and Tool Environment

The technologies and tools for the tests were provided by
the University, and were deemed suitable for online tests [14].
The syllabus, schedule, and other pertinent details of the tests
were announced on Moodle, a course management system. The
tests were conducted in real-time using Zoom, a cloud-based
video communications software-as-a-service (SaaS). The
students submitted their written tests on a special-purpose
electronic assignment submission system (EAS) supported by
the University. The access of each of these systems required a
username-password-based authentication. The students were
given the alternative to submit their tests via e-mailing the
teacher in the event that a submission on the EAS was not
possible for technical reasons (say, if the system was
unavailable because it was overloaded or was non-operational).

C. Oral Tests

The COVID-19-related regulations of the University were
such that they allowed the students to attend the lectures
without using any audio or video on their side. (The students
were given the right to turn their camera and/or microphone off
during the lectures, and many did exercise that right.) The
purpose of the oral test was, therefore, not only about an
assessment of their verbal aptitude or ability to answer
technical questions in a relatively short period of time, but also
to improve personal rapport between the teacher and the
students, by being able to see them, speak to them, and hear
them ‘in person’, in real-time.

1) Description of the Prerequisites, Regulations, and the
Process of Oral Tests

There was one oral test per course. The duration of the test,
depending on the class size, lasted between 2 hours to 8 hours.
A pool of questions was prepared in advance of the test. To
reduce repetition and to decrease the possibility of students
who were tested earlier to help those who were tested later, the
number of questions exceeded the class size. The questions
were either open or closed, but mostly closed for which
answers were also prepared in advance of the test. The teaching
assistants were consulted to ensure that the questions were
within scope of the syllabus and answerable within the time
allowed. The examiners during the test included the teacher and
all the teaching assistants for that course. Each student was
given a specific time slot of 10-minute duration. The students
were prohibited from entering a time slot not allotted to them,
as that would distract the students who were scheduled and
expected to be present during that slot. There was a small
penalty if they did, and some in fact did. (This would be
overcome in due course by the use of Zoom’s ‘Waiting Room’
feature.) In cases where the class size was rather large, which
would make the overall duration of the oral test prohibitively
long, multiple students were given the same time slot.

The process for the oral test was similar to an interview
process, and is shown in Fig. 1 as a UML Activity Diagram
with swimlanes representing the actors involved. Each student
was asked 3 to 4 questions. The students in the same time slot
were usually asked different questions, unless one of the
students could not answer a question, at all or properly, in
which case the same question was posed to another student in

the same time slot. The examiners rotated in asking questions.
The initiator of a question (namely, the teacher or one of the
teaching assistants) was pseudo-random (that is, not
predetermined). The students were not allowed to revisit a
question that they could not answer earlier. This was done to
prevent students seeking external help, such as asking someone
or checking the Web for a possible answer. The session was
recorded in case a student may wish to revisit answers that the
student provided, and some students did. The marks were
determined and recorded in real-time by the examiners.

Figure 1. A UML Activity diagram for the oral test process.

2) Challenges and Lessons Learned from Oral Tests
 Scope of Questions. The questions did not include any

that would require the need for calculating, diagramming,
or programming. In case of a question with an open
answer, some students attempted to give a rather lengthy,
albeit correct, answer. For consideration of time, such
students had to be interrupted and were told to stop
speaking to allow sufficient time for other questions
(and/or for other students to have their turn to be asked).

 Understanding Questions. In some cases, the students
had difficulty listening to a question, perhaps due to
technical (audio) problems or due to the way it was read
and spoken by an examiner. In such cases, the question
was repeated, verbatim or with a slight variation.

 Quality of Responses. The quality of responses varied
considerably among the students. There were primarily
three types of problems: (1) incorrect or partially incorrect
answer, (2) answer not matching the question, and (3)
over-answering (correct answer that was annotated with
extraneous statements that were not always correct). It is
unclear whether those students whose verbal responses
was deemed problematic would have said or done
anything different if they had more time, if were allowed
to express their answers in writing, or if they were in an
offline teaching environment.

 Student Anxiety. There were some students who had
never been in an interview or given an oral test previously,

366

and were therefore noticeably, as their facial expression
and/or body language implied, unusually anxious.

 Duration of Test. The duration of the test was not an issue
for the students, but was somewhat exhausting for the
examiners in those cases where it exceeded 4 hours.

 Collusion and Plagiarism. In spite of the steps taken to
prevent collusion or plagiarism, it did appear from the
nature and/or the promptness of the answers to non-trivial
questions that some students either attempted to
collude/plagiarize, or may even have colluded/plagiarized
successfully. (For example, in a few cases, the students
appear to look elsewhere for an unusually long period of
time as if they were staring at another person or at a
different screen.) However, in absence of concrete
evidence, no cases were pursued. In case of a suspicion,
the responses given by the students to the original question
were dismissed, and they were asked an ‘extra question’
after being reminded to look directly at the camera at all
times while answering.

D. Written Tests

1) Description of the Prerequisites, Regulations, and the
Process of Written Tests

There were two written tests per course. The tests assumed
that the students had access to (at least) the lecture notes, a
calculator, a dictionary, Zoom, and the ability to upload
documents to the EAS. The students were provided with a
Microsoft Word or LATEX template, depending on the course,
and were expected to give a solution to each problem in the
template provided. The students were told that the problems
would be based strictly on the syllabus specified, and, to
discourage the use of sources that were not permitted on the
test, the solutions that included claims based on querying a
public search engine would not get credit. To encourage the
students to make proper use of the time allowed, they were also
told to place attention on quality, not quantity, in writing, and
that, in general, they should avoid overwriting. The students
were also told that for each problem, certain space and certain
time were allocated, and that they should manage both space
and time. The students were told that, in general, they were not
to communicate, including seek clarification on a problem, as
the ability to read and understand the problems given was part
of the test. However, in case of an emergency, they could
communicate privately with the teacher either by e-mail or by
using the chat feature of Zoom. Finally, the students were told
that it would be in their interest to have their technical
environment ready in advance of the test. This included Zoom
running, Microsoft Word template open, and the EAS URL in
the Web user agent entered before the test commenced.

The process for the written test is shown in Fig. 2 and Fig. 3
as a collection of UML Activity Diagrams from the
perspectives of the examiner and the student, respectively. In
Fig. 2, T is the time allocated for a problem on a particular
page/screen. The URL for a rendezvous on Zoom was
announced privately (rather than publicly, for security reasons)
on Moodle. The tests had 20 to 24 problems each, depending
on the course. In each test, every problem was allocated a
certain amount of time, which ranged from 2 to 6 minutes. The

tests proceeded as follows. At the start of a test, a screen
rendering a PDF document was shown with a problem
statement and the duration for that problem. There was one
problem per page (and, therefore, per screen). For each
problem, the students were given a 1-minute verbal reminder
before the duration of that problem lapsed. Upon the lapse of
duration for a given problem, the screen was shifted to the next
problem, in a sequential manner. There was no backtracking,
meaning it was not possible for the students to go back to any
of the problems shown previously. At the end of the test, the
students were to upload their tests on the EAS, and everyone
did. There was per-minute penalty for a late submission,
regardless of the reason, and some students were penalized.

The tests were not proctored, despite the possibility. The
students were not required to have their camera on, and none of
them did. To avoid disturbing the others taking the test, the
students were also told not to use their microphone under any
circumstance, and, again, none of them did.

Figure 2. A UML Activity diagram for the written test process from an

examiner’s perspective.

Figure 3. A UML Activity diagram for the written test process from a

student’s perspective.

367

2) Challenges and Lessons Learned from Written Tests
 Problems Requiring Mathematical Notation. The

problems required solutions with only simple and short
mathematical expressions, if at all, as typesetting
mathematics can be tedious and rather time consuming.

 Quality of Writing. The quality of writing varied
considerably among the students. It is unclear whether
those students whose writing was deemed problematic
would have done anything different if they had more time
or if they were in an offline teaching environment.

 Quality of Diagramming. The students were informed in
advance that they may need to draw simple UML Class
Diagrams, UML Component Diagrams, and/or UML Use
Case Diagrams. The syntactic, semantic, and/or pragmatic
quality of the diagrams varied, primarily because of the
time allocated to problems that required diagramming was,
as self-reported by the students, deemed insufficient.

 Weak Internet Connection. There were a few students
who were on a Wi-Fi connection that, as self-reported by
those students, turned out to be not reliable enough for the
tests. These students had to repeatedly reconnect to Zoom.

 Students with Disabilities. The University regulations
require that the students who are registered with the Access
Centre for Students with Disabilities (ACSD) be given
special accommodation during the tests. In particular, the
students registered with the ACSD are, in some cases,
given extra time for the tests, where the exact extra time is
on a per case basis, depending on the student. In some of
the courses, there were students registered with the ACSD,
and, for such students, the test process was repeated with a
longer than usual duration.

 Collusion and Plagiarism. In spite of the steps taken to
prevent collusion and plagiarism, there were a few cases
where, as the evidence suggested clearly, some students
got together in small groups and copied from each other.
These cases were duly identified, pursued, and reported.

E. Discussion

The students were solicited to provide feedback on their
experiences, with the tests and otherwise, in the courses. There
were no objections from the students regarding the fairness of
any of the tests. The nature of the types of problems or the
differences in time zones did not seem to have any notable
impact on the performances of the students in any of the tests.

IV. DIRECTIONS FOR FUTURE RESEARCH

There are several established ways of, as well as technical
environments for, conducting an online test [4, 14]. It could be
useful to analyze and compare the degree of comfortableness,
individual as well as communal behavior, performance, and the
extent of learning of students in written tests as described in
this paper with the same or similar group of students (1) in an
offline teaching environment, (2) using a different style of
question/answer or problem/solution methodology, and/or (3)
using a different set of technologies and tools, and is therefore
of research interest.

V. CONCLUSION

The obstacles presented by the COVID-19 pandemic to
(software engineering) education go beyond that of those
typical of ‘conventional’ distance education or online teaching
and learning. However, this paper has shown that using only
basic technologies and tools, it is possible to conduct verbal
and written tests, with acceptable outcomes, albeit with
associated challenges, some of which could, hopefully, be
overcome in due course with better planning and preparation.

ACKNOWLEDGMENT

This paper is dedicated to the indelible memories of Terrill
Fancott and Peter Grogono, who passed away in 2020 and
2021, respectively. They inspired and guided the author over
the years in many matters related to software engineering
education. The author is grateful to CUPFA for a Professional
Development Grant and to his teaching assistants for useful
discussions.

REFERENCES
[1] E. M. Onyema, N. C. Eucheria, F. A. Obafemi, S. Sen, F. G. Atonye, A.

Sharma, and A. O. Alsayed, Impact of Coronavirus Pandemic on
Education. Journal of Education and Practice, 11(13): 2020, 108-121.

[2] J. L. Moore, C. Dickson-Deane, and K. Galyen, E-Learning, Online
Learning, and Distance Learning Environments: Are They the Same?
Internet and Higher Education, 14: 2011, 129-135.

[3] S. Pizard and D. Vallespir, Developing a Taxonomy for Software
Engineering Education through an Empirical Approach. CLEI Electronic
Journal, 23(2): 2020, 1-23.

[4] A. W. Bates, Teaching in a Digital Age: Guidelines for Designing
Teaching and Learning, Second Edition. Tony Bates Associates, 2019.

[5] A. Alenezi, The Role of e-Learning Materials in Enhancing Teaching
and Learning Behaviors. International Journal of Information and
Education Technology, 10(1): 2020, 48-56.

[6] M. H. Rajab, A. M. Gazal, and K. Alkattan, Challenges to Online
Medical Education during the COVID-19 Pandemic. Cureus, 12(7):
2020, 1-11.

[7] H. K. Al-Mohair and S. Alwahaishi, Study on Students’ Experiences
about Online Teaching during COVID-19 Outbreak. Technium Social
Sciences Journal, 8: 2020, 102-116.

[8] S. Motogna, A. Marcus, and A.-J. Molnar, Adapting to Online Teaching
in Software Engineering Courses. The Second ACM SIGSOFT
International Workshop on Education through Advanced Software
Engineering and Artificial Intelligence (EASEAI 2020), Virtual Event,
USA, November 9, 2020.

[9] N. Tuaycharoen, University-Wide Online Learning during COVID-19:
From Policy to Practice. International Journal of Interactive Mobile
Technologies, 15(2): 2021, 38-54.

[10] D. Idnani, A. Kubadia, Y. Jain, and P. Churi, Experience of Conducting
Online Test during COVID-19 Lockdown: A Case Study of NMIMS
University. International Journal of Engineering Pedagogy, 11(1): 2021,
49-63.

[11] M. L. George, Effective Teaching and Examination Strategies for
Undergraduate Learning during COVID-19 School Restrictions. Journal
of Educational Technology Systems, 49(1): 23-48, 2020.

[12] T. M. Clark, C. S. Callam, N. M. Paul, M. W. Stoltzfus, and D. Turner,
Testing in the Time of COVID-19: A Sudden Transition to Unproctored
Online Exams. Journal of Chemical Education, 97: 2020, 3413-3417.

[13] A. W. Bangert, The Seven Principles of Good Practice: A Framework
for Evaluating On-Line Teaching. Internet and Higher Education, 7:
2004, 217-232.

[14] L. Dawley, The Tools for Successful Online Teaching. Idea Group,
2007.

368

 Revisiting UML Class Relationship Recovery for Online Education

Dionysis Athanasopoulos
School of Electronics, Electrical Engineering, and Computer Science

Queen’s University of Belfast, Northern Ireland, UK
D.Athanasopoulos@qub.ac.uk

Abstract

UML recovery has been a long-standing challenge for
the software-engineering community. The complete re-
covery of UML class relationships needs the employment
of both static and dynamic code analyses. However, the
dynamic-code analysis is not usually applicable at the de-
sign time of programs and especially for incomplete pro-
grams in online education. To overcome this restriction,
we propose a formally defined set of mappings between
UML relationships and object-oriented relationships that
are based on static-code analysis exclusively. We evalu-
ate the precision and the recall of our mappings on student
projects against ground-truth UML diagrams and against
diagrams recovered by existing UML class recovery tools.

1 Introduction

The motivation of our research come from a real story.
It all started a few weeks ago in the labs of a computer-
science school. Amelia1, an undergraduate student, wanted
in the context of a software-design module to take online
feedback on her UML class diagrams2 that visualize the de-
sign of her Object-Oriented (OO) programs. Class diagrams
describe the static structure of OO programs by showing the
program’s classes, fields, methods, and class relationships.

Amelia generally feels confident to build up a UML di-
agram only if she can map it to the source-code elements
that implement the diagram. In other words, she prefers first
writing (a skeleton of) her OO programs and then mapping
them to UML diagrams via using her favorite integrated de-
velopment environment, IDE (e.g., Eclipse3). The program
that she has started developing today contains classes that
are related to each other in various ways. Amelia found it
difficult to build the diagram on her own and especially, to

DOI reference number: 10.18293/SEKE2021-170
1Please note that the persona names in our story are fake.
2https://www.uml.org
3https://www.eclipse.org

differentiate the usage of the various kinds of arrows that
UML provides. In particular, she was confused while she
was mapping the implementation-level relationships of her
program to UML class arrows.

Thus, Amelia needed an online tool that takes as input
her OO programs and outputs a visual medium for her pro-
grams. Such a tool should be quite precise with respect to
the usage of the UML arrows. Moreover, the tool should be
able to work on incomplete programs that cannot necessar-
ily be executed. In other words, the tool should be based on
the static-code analysis of OO programs. Amelia thought
such a tool is a necessary classroom assistant in the era of
online education that has recently stressed.

Luckily for Amelia, her module owner, Bob, suggested
to her to use a freeware (e.g., ObjectAid4) that can be in-
tegrated with her IDE and recover UML diagrams from in-
complete Java programs. Amelia was happy to see that the
tool can draw UML diagrams by just dragging and dropping
Java classes, providing a visual medium for Java programs.
However, when she used the tool for her programs, she was
concerned about the arrows used by the tool used for some
Java class relationships in the recovered diagram. To dou-
ble check the diagram, Amelia discussed her concerns with
the module owner. Bob drew his own diagram and verified
Amelia’s concerns about the precision of the tool, as anal-
ysed in a next section of the current paper.

Overall, existing UML recovery tools that use static-
code analysis are not precise enough for online learning pur-
poses. Moreover, the state-of-the-art research approaches
that could be adopted for overcoming this limitation are not
completely based on static-code analysis (e.g., [1, 2]) or
they do not satisfy the lifetime and the share-ability object
properties required for recovering the UML composition re-
lationship (e.g., [3]).

We contribute an initial version of an automatic approach
that takes as input an OO program and outputs the expected
UML class relationships. To this end, we formally define
the concepts of OO classifier, OO relationship, and UML
relationship via using static-code syntactic analysis exclu-

4https://www.objectaid.com/home

369

https://www.uml.org
https://www.eclipse.org
https://www.objectaid.com/home

sively. We further propose a formally defined set of map-
pings between OO and UML relationships that satisfy the
required lifetime and the share-ability properties5. We fi-
nally evaluate the precision and the recall of our mappings
on existing student projects against ground-truth UML di-
agrams and against diagrams recovered by existing profes-
sional UML class recovery tools.

The rest of the paper is structured as follows. Section 2
presents the related research approaches. Section 3 defines
the concept of OO relationship. Section 4 maps OO rela-
tionships to UML relationships. Section 5 evaluates the ef-
fectiveness of our approach. Finally, Section 6 summarizes
our contribution and proposes future research directions.

2 Related Work

UML class diagrams represent OO classifiers (e.g., class,
interface), fields, methods, and classifier relationships. The
UML standard6 defines the following kinds of relationships
between classifiers: dependency, inheritance, realization,
association, aggregation, and composition. The association
can be a directed or a unidirectional relationship.

We organize the existing approaches of the round-trip en-
gineering between UML diagrams and OO programs into
three categories. The first-category approaches generate
source code from UML diagrams based on UML to OO
mappings [4]. Other approaches recover business processes
from UML sequence diagrams by using a set of heuristics
[5]. The second-category approaches define consistency
links between UML diagrams and source code [6, 7, 8, 9].

The third category includes reverse-engineering ap-
proaches that recover (parts of) UML diagrams from OO
source code. [10] recovers UML use-case diagrams by us-
ing trace-ability links between use-case elements and clas-
sifiers. [11] recovers UML behaviour diagrams from source
code by identifying patterns in the source code. [1, 2, 12] re-
cover UML relationships by identifying mappings between
UML and OO relationships. [13] apply heuristics to static
and semantic analysis of Java classes.

Our approach belongs to the third category and is related
to [1, 2, 3]. [1, 2] recover UML relationships via checking
the following set of properties for objects: multiplicity, ex-
clusivity, and lifetime. However, static and dynamic code
analyses are used to confirm the properties.

[14, 3] recover composition relationships via checking
the non-accessibility property for objects. To this end,
[14, 3] check whether a reference to an object is exported
by its owner object to a third-party object. However, [15]
states that the definition of composition based on the non-
accessibility property is not consistent with the UML spec-

5We have left as future work the possible consideration of semantic
code analysis (e.g., lexical analysis).

6https://www.omg.org/spec/UML

ification. [15] further states that the lifetime and the share-
ability properties are the properties that should be used for
recognizing composition relationships. [15] specifies an
OCL formalization of the above properties. However, the
complete verification of the above properties needs both
static and dynamic code analyses.

Program 1 OO Skeleton of the Flight-Booking Program
1: class BOOKING (ABSTRACT)
2: int id; B Built-in field.
3: String name;
4: double price;
5: function BOOKING(int id, String n, double p, double e)
6: this.id := id;
7: this.name := n;
8: this.price := p;
9: this.extraPrice := e;

10: class ECONOMY EXTENDS BOOKING
11: int seat;
12: function ECONOMY(int id, String n, double p,int s,double e)
13: super(id, n, p, e);
14: this.seat := s;
15: class BUSINESS EXTENDS BOOKING
16: String menu;
17: function BUSINESS(int id,Stringn,doublep,Stringm,double e)
18: super(id, n, p, e);
19: this.menu := m;
20: class PRINTING
21: function PRINTBUSINESSPRICE(Business b) B Reference.
22: print(. . .);
23: function PRINTECONOMYPRICE(Economy e)
24: print(. . .);
25: class FLIGHT
26: Printing c := new Printing(); B Developer-defined field.
27: List<Business> bList; B Owned object(s).
28: List<Economy> eList;
29: function ADDB(int id, String n, double p,String m,double e)
30: Business b := new Business(id, n, p, m, e);
31: c.printBusinessPrice(b);
32: if bList = null then bList := new ArrayList<Business>
33: bList.add(b);
34: function ADDE(int id, String n, double p, int s, double e)
35: Economy e := new Economy(id, n, p, s, e);
36: c.printEconomyPrice(e);
37: if eList = null then eList := new ArrayList<Economy>
38: eList.add(e);
39: class BOOKINGSYSTEM
40: function MAIN
41: Flight f := new Flight(); B Local variable.
42: f.addB(20, “Tom”, 100, “Chicken”, 1000);
43: f.addE(5, “Sam”, 100, 5, 10);

3 Object-Oriented Relationships

We illustrate our definitions via using a running exam-
ple. We take an example that corresponds to a small part of
an OO flight-booking system. The program calculates the
total price of a booking and prints out the overall booking
information. The Java-like pseudo-code of the classes of
the above program is provided in Prog. 1.

Classifier fields and methods. A classifier mainly con-
sists of classifier-level fields (e.g., built-in data-types, ob-
jects of other classifiers) and/or methods.

Owned object reference. An A classifier can be associ-
ated to an object of a B classifier even if A has not created the

370

https://www.omg.org/spec/UML

B object. In this case, A is associated with a reference to the
B object (line 21 of Prog. 1). If A does not create a B object
but A has a reference to the object that is kept in the fields
of A, then A has an owned reference to the object. To distin-
guish the case of an object reference owned by the classifier
that created the object, we further use the term owned ob-
ject. If A creates a B object stored in the fields of A, then A

has an owned object (line 27 in Prog. 1). The definitions of
the concepts of owned object and reference are provided in
the remainder of this section.

Object finalization. By default, all the references to an
object are freed when a program finishes its execution. A
classifier method may explicitly finalize an object via using
a reference to the object before the termination of the pro-
gram. If an A classifier has a reference to a B object and this
reference has been finalised by another classifier, then A has
lost/cannot refer to the B object.

Definition 1 (OO Classifier) A classifier, c, includes (i) its
name n whose prefix is its package path (this combination
can uniquely identify the classifier in a program); (ii) its
kind k (concrete class, abstract class, interface, enum); (iii)
a (possibly empty) set of generic classifiers gi that c ex-
tends/implements; (iv) a (possibly empty) set of classifier-
level developer-defined fi fields (owned objects), along with
their maximum li multiplicity; (v) a (possibly empty) set of
the di classifiers whose object references are explicitly fi-
nalized by c; (vi) a (possibly empty) set of the ri object ref-
erences that are owned by c; (vii) a (possibly empty) set
of the methods of c; (viii) a (possibly empty) set of the ui

classifiers (along with their maximum li multiplicity) whose
objects are created by c. If the object is created by using a
combination of generic and concrete classifiers, then the ui

set includes both the generic and the concrete classifiers.

c =
(
n, k, {gi}, {(fi, li)}, {di}, {ri}, {mi}, {(ui, li)}

)
Definition 2 (Method) A method is characterized by (i) its
name n; (ii) a (possibly empty) set of argi arguments that
are developer-defined classifiers (along with their maximum
li multiplicity); (iii) its (possibly absent) ret developer-
defined return type (along with its maximum l multiplicity).

m =
(
n, {(argi, li)}, (ret, l)

)
Definition 3 (Owned Object) A c1 classifier owns an ob-
ject of a c2 classifier if the c2 object belongs to the
developer-defined fields of c1 and the c2 object has been
created by the c1 classifier. To put it formally, a c2 object is
owned by c1 if the following condition is evaluated as true.

ownedObj(c2, c1) := c2 ∈ c1.{fi} ∧ c2 ∈ c1.{uj}

Definition 4 (Owned Reference) A c1 classifier just owns
a reference to an object of a c2 classifier if the c2 object

reference belongs to the developer-defined fields of c1 but
the c2 object has not been created by the c1 classifier.

ownedRef(c2, c1) := c2 ∈ c1.{fi} ∧ c2 /∈ c1.{uj}

Definition 5 (Associated Reference) A c1 classifier is as-
sociated with a reference to an object of a c2 classifier if the
c2 reference does not belong to the developer-defined fields
of c1, the c2 object has not been created by the c1 classifier,
and the c2 object is included in the arguments of a method
of the c1 classifier.

assocRef(c2, c1) := c2 /∈ c1.{fi} ∧
c2 /∈ c1.{uj} ∧ c2 ∈ c1.mk.{argl}

4 OO and UML Relationship Mapping

According to [15], composition should be defined based
on the lifetime and the share-ability properties. The share-
ability property requires that an object of a classifier, along
with the references to the object, must be owned by at most
one composite classifier. The lifetime property requires that
the object of a composite classifier cannot be outlived by
its owned objects. In other words, when the object of a
composite classifier is finalized, its owned objects and the
references to the owned objects are finalized too.

Definition 6 (Object Share-ability) A c1 classifier shares
a c2 object with a c3 classifier if there is a reference owned
by c3 to the c2 object that is created and owned by c1.

share(c1, c2, c3) := ownedObj(c2, c1) ∧ ownedRef(c2, c3)

To compare the lifetime between an object of a compos-
ite classifier and its owned objects via using OO relation-
ships, we define and prove the following theorem that is
based on the object share-ability.

Theorem 1 (Composite object lifetime) The lifetime of
an object of a c1 composite classifier is longer than or the
same to the lifetime of an object of a c2 classifier that is
owned by c1 if there is no other c3 classifier that explicitly
finalizes the c2 object and c3 does not own a reference to
the c2 object. If c3 owns a reference to the c2 object, then
c1 should explicitly finalize c2.

life(c1, c2) := ownedObj(c2, c1) ∧ c2 /∈ c3.{di}
(@c3 : ownedRef(c2, c3) ∨ c2 ∈ c1.{di})

Proof 1 We assume that a c2 object is owned by a c1 object
and we examine all the possible cases with respect to the
ownership of the c2 object/references and the finalization
time of the objects.

371

(a) If c3 explicitly finalizes c2, then c1 cannot use its owned
c2 and consequently, the lifetime comparison of c1 and
c2 is meaningless (the second condition is false).

(b) If c3 does not explicitly finalize c2, c3 owns a reference
to c2, and

(i) c1 is finalized without finalizing c2 (swallow final-
ization), then c2 has longer lifetime than c1 be-
cause there is a live reference to c2 in the c3 object
(both third and fourth conditions are false)

(ii) c1 and c2 are finalized together (deep finaliza-
tion), then c1 and c2 have the same lifetime and c3
cannot use c2 because c2 has been finalized (the
first, second, and fourth conditions are true).

(c) If c3 does not explicitly finalize c2, if there is no c3 ob-
ject that owns reference(s) to c2 and

(i) c1 is finalized without finalized c2 (swallow final-
ization), then there is no left object that uses c2
and we consider that the lifetime of c1 and c2 is
the same (the first, second, and third conditions
are true)

(ii) c1 and c2 are finalized together (deep finaliza-
tion), then c1 and c2 have the same lifetime (all
conditions are true).

Illustrative example. The Flight object owns a
Business object in Prog. 1, but there is no reference to
the same Business object owned by another object. Ac-
cording to Theorem 1, the lifetime of the Flight object is
longer or the same to the lifetime of the Business object.

Definition 7 (Composition) A c1 classifier is composed by
a c2 classifier if there is no c3 classifier that shares with the
c1 classifier the same c2 object and the lifetime of the c1
object is longer or the same to the lifetime of the c2 object.

comp(c1, c2) := @ c3 : share(c1, c2, c3) ∧ life(c1, c2)

Illustrative example. The Flight object in Prog. 1
owns a Business object, there is no reference to the same
Business object that is owned by another object, and the
Flight and the Business objects have the same lifetime.
In this case, the Flight and the Business classes have a
UML composition relationship.

Aggregation relates a composite classifier and its owned
objects/references. To capture this relationship, we use the
owned object and reference relationships (Def. 3 and Def.
4), without the composite and the owned objects/references
satisfying the lifetime and the share-ability properties.

Definition 8 (Aggregation) A c1 classifier aggregates a c2
classifier if c1 owns c2 object(s)/reference(s) but c1 does not
have a composition relationship with c2.

aggr(c1, c2) := (ownedObj(c1, c2) ∨
ownedRef(c1, c2)) ∧ ! comp(c1, c2)

According to the UML standard, association exists when
a classifier is associated with references to object(s) of an-
other classifier. In other words, the association can be
defined by using Def. 4. But if the former classifier is
composite that owns the object(s)/reference(s) of the lat-
ter classifier, then the classifiers may have a composi-
tion/aggregation relationship.

Definition 9 (Association) A c1 classifier is associated
with a c2 classifier if a c1 object does not own a c2 ob-
ject/reference and the c1 object is associated with a refer-
ence to a c2 object: assoc(c1, c2) := assocRef(c1, c2)

Please note a set of binary associations can be combined
to form N-ary associations that may exist. However, the
current work focuses on the recovery of binary associations,
leaving as future work the recovery of N-ary associations.

Definition 10 (Realization) A c1 classifier realizes a c2
classifier if c2 is an interface and c1 implements c2.

impl(c1, c2) := c2 = c1.gi ∧ c2.k = “interface′′

Definition 11 (Inheritance) A c1 classifier inherits from a
c2 classifier if c1 extends c2 and c2 is concrete/abstract
class: inher(c1, c2) := c2 = c1.gi ∧ c2.k = “class′′

The dependency generally indicates that a source clas-
sifier uses an object of a target classifier. But if
the former is a composite classifier that owns the ob-
ject(s)/reference(s) of the latter, then the classifiers have a
composition/aggregation relationship. Otherwise, if the for-
mer uses a reference to an object of the latter, then the clas-
sifiers have an association relationship.

Definition 12 (Dependency) A c1 classifier depends on
a c2 classifier if a c1 object does not own a c2 ob-
ject/reference, the c1 object is not associated with a c2 ob-
ject reference, and c2 is the return type of a c1 method or c1
has created the c2 object.

dep(c1, c2) := ! ownedObj(c1, c2) ∧ ! ownedRef(c1, c2) ∧
! assocRef(c1, c2) ∧ (c2 ∈ c1.{ui} ∨ c2 = c1.mj .ret)

Overall example. Applying our definitions on Prog.
1, we took as output the UML class diagram of Fig. 2.
On the contrary, the diagram generated by the professional
ObjectAid UML recovery tool is presented in Fig. 1.
Comparing the two diagrams, we observe that the diagrams
differ in five out of the seven UML relationship arrows.

372

Table 1. The dataset that we used for the effectiveness evaluation of the UML Recoverer.
ID Num. of Classifiers Num. of Fields Num. of Num. of Method Arguments Num. of Method Return-Types

Total Concrete Abstract Interface Enum. Total Dev. defined Methods Total Dev. defined Total Dev. defined
1 15 15 0 0 0 27 6 33 62 3 11 0
2 23 23 0 0 0 79 40 112 64 36 68 19
3 23 13 1 9 0 66 16 92 90 12 22 0
4 30 29 1 0 0 69 38 102 60 17 48 6
5 31 21 7 3 0 54 16 154 123 43 97 12
6 36 30 2 4 0 48 20 168 124 36 128 20
7 34 23 2 9 0 26 8 89 81 36 33 6
8 44 35 3 6 0 99 58 216 107 40 112 25

Figure 1. The diagram recovered by
ObjectAid for Prog. 1.

5 Experimental Evaluation

We implemented in Java the UML Recoverer research-
prototype of our approach. We evaluate the effectiveness
of the UML Recoverer on anonymized student projects
against ground-truth UML diagrams and diagrams recov-
ered by existing professional UML class recovery tools.
The number of the classifiers of the projects ranges from 15
to 44 (Table 1) and the number of their UML relationships
ranges from 20 to 170 relationships. Searching for exist-
ing (free to use) UML class recovery Eclipse plug-ins in the
Eclipse Marketplace, we found that the most widely used
tools currently are the ObjectAid7 and the UML Lab8. To
assess the effectiveness of the recovered binary UML re-
lationships, we compare them against manually extracted
relationships via using the precision and recall metrics [16].

The precision results are depicted in the first chart of
Fig. 3. We observe the precision of the UML Recoverer

steadily equals 1.0 in all projects (independently of the
project cases). On the contrary, the precision of the other
tools ranges from 0.37 to 0.86 and from 0.04 to 0.53,
respectively. The recall results are depicted in the sec-
ond chart of Fig. 3. We observe the recall of the UML

Recoverer ranges from 0.79 to 1.0. In particular, the
lower the number of the abstract classes and the inter-
faces a project includes, the higher the recall of the UML

7https://www.objectaid.com/class-diagram
8https://www.uml-lab.com/en/uml-lab/videos/

reverse-egnineering

Figure 2. The diagram recovered based on our
definitions for Prog. 1.

Recoverer is. This is due to the fact that the UML

Recoverer does not capture association relationships to
late-binding cases. The recall of the other tools ranges from
0.43 to 0.85 and from 0.05 to 0.53, respectively.

To explain why the precision and the recall values of
the two tools is very low in some cases, we inspected the
numbers of the UML relationships recovered by the tools
and we made the following observations. The two tools
do not recover the aggregation and the composition rela-
tionships at all. In particular, the ObjectAid considers as
dependencies/associations the relationships that are aggre-
gations or compositions. The UML Lab considers as asso-
ciations the relationships that are dependencies, aggrega-
tions or compositions. The number of the associations re-
covered by the UML Recoverer is slightly lower than the
ground-truth number. The reason is the late binding to ob-
jects. In particular, there are methods in the student projects
that accept as input objects of abstract classes/interfaces and
the UML Recoverer identifies the association to abstract
classes/interfaces but not to concrete classes.

6 Conclusion and Future Work

We formally defined a set of mappings between UML re-
lationships and OO relationships via using static-code anal-
ysis exclusively. A future direction of our work is the com-
parison of our algorithm against UML class recovery ap-
proaches that apply dynamic-code analysis. Another inter-

373

https://www.objectaid.com/class-diagram
https://www.uml-lab.com/en/uml-lab/videos/reverse-egnineering
https://www.uml-lab.com/en/uml-lab/videos/reverse-egnineering

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Java Project ID

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Java Project ID

R
ec

al
l

0

0.2

0.4

0.6

0.8

1

1.2

UML Recoverer ObjectAid UML Lab

Figure 3. The precision and the recall results
for the three recovery tools.

esting future direction would be the recovery of N-ary asso-
ciations. Finally, the employment of semantic code analysis
could further enrich the effectiveness of our approach.

References

[1] Y. Guéhéneuc and H. Albin-Amiot, “Recovering bi-
nary class relationships: Putting icing on the uml
cake,” in ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Ap-
plications, 2004, pp. 301–314.

[2] Y. Guéhéneuc, “A reverse engineering tool for pre-
cise class diagrams,” in Conference of the Centre for
Advanced Studies on Collaborative research. IBM,
2004, pp. 28–41.

[3] A. Milanova, “Composition inference for UML class
diagrams,” Automated Software Engineering, vol. 14,
no. 2, pp. 179–213, 2007.

[4] W. Harrison, C. Barton, and M. Raghavachari, “Map-
ping UML designs to java,” in ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Lan-
guages & Applications, 2000, pp. 178–187.

[5] M. C. Leonardi, M. V. Mauco, L. Felice, G. Mon-
tejano, D. Riesco, and N. C. Debnath, “Recovering
business process diagrams from UML diagrams,” in
IEEE International Conference on Computer Systems
and Applications, 2010, pp. 1–6.

[6] H. M. Chavez, W. Shen, R. B. France, B. A. Mechling,
and G. Li, “An approach to checking consistency be-
tween UML class model and its java implementation,”
IEEE Transactions on Software Engineering, vol. 42,
no. 4, pp. 322–344, 2016.

[7] D. Torre, Y. Labiche, M. Genero, and M. Elaasar, “A
systematic identification of consistency rules for UML
diagrams,” Journal of Systems and Software, vol. 144,
pp. 121–142, 2018.

[8] D. Torre, Y. Labiche, M. Genero, M. T. Baldas-
sarre, and M. Elaasar, “UML diagram synthesis tech-
niques: a systematic mapping study,” in ACM Interna-
tional Workshop on Modelling in Software Engineer-
ing, MiSE@ICSE, 2018, pp. 33–40.

[9] D. Torre, Y. Labiche, M. Genero, M. Elaasar, and
C. Menghi, “UML consistency rules: a case study
with open-source UML models,” in ACM Interna-
tional Conference on Formal Methods in Software En-
gineering, 2020, pp. 130–140.

[10] M. Grechanik, K. S. McKinley, and D. E. Perry, “Re-
covering and using use-case-diagram-to-source-code
traceability links,” in ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
2007, pp. 95–104.

[11] J. Niere, “Recovering uml diagrams from java code
using patterns,” in Workshop on Soft Computing Ap-
plied to Software Engineering, 2001, pp. 1–9.

[12] M. J. Decker, K. Swartz, M. L. Collard, and J. I.
Maletic, “A tool for efficiently reverse engineering ac-
curate UML class diagrams,” in IEEE International
Conference on Software Maintenance and Evolution,
2016, pp. 607–609.

[13] A. M. Sutton and J. I. Maletic, “Mappings for ac-
curately reverse engineering UML class models from
C++,” in IEEE Working Conference on Reverse Engi-
neering, 2005, pp. 175–184.

[14] A. Milanova, “Precise identification of composition
relationships for UML class diagrams,” in IEEE/ACM
International Conference on Automated Software En-
gineering, 2005, pp. 76–85.

[15] H. M. Chavez and W. Shen, “Formalization of UML
composition in OCL,” in IEEE International Confer-
ence on Computer and Information Science, 2012, pp.
675–680.

[16] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern
Information Retrieval. ACM Press/Addison-Wesley,
1999.

374

DOI reference number: 10.18293/SEKE2021-172

 Extracting Prerequisite Relations among Concepts
from the Introduction of Online Courses

Zesong Wang Kui Xiao* Zeqing Qin Shihui Wang
School of Computer Science and School of Computer Science and School of Computer Science School of Computer Science and

Information Engineering Information Engineering Hubei University of Technology Information Engineering
Hubei University Hubei University Wuhan, China Hubei University

Wuhan, China Wuhan, China qzqhbut@163.com Wuhan, China
201822111920089@stu.hubu.edu.cn xiaokui1024@hotmail.com wsh@hubu.edu.cn

 (*Corresponding author)

Abstract—Affected by the COVID-19 pandemic, teaching tasks
have gradually shifted from offline to online, which expanded
online education resources unprecedentedly. “Concept” is a
professional vocabulary in the curriculum. Exploring the
prerequisite relations among concepts is of great significance to
educational planning. This research extracts concepts from online
course introduction and proposes a mixed method for extracting
concept prerequisite relations. Experiments on public data set
show that this method outperforms existing ones. Tests were also
carried out on the datasets of eleven schools, which proves that this
model has good scalability.

Keywords- prerequisite relations; educational planning; online
education resources

I. INTRODUCTION

Concepts are professional vocabulary covered in the course.
Usually, dependencies among concepts exist. This is called
prerequisite relations. In recent years, the extracting of
prerequisite relations among concepts has become a focus of
researchers. Prerequisite relations among concepts have played
a significant role in many applied fields of smart education, such
as curriculum planning and design [1,2], student knowledge
status tracking [3], concept map building [4,5], learner ranking
[6,7,8], document reading list generation [9,10], and so on.

With the rise of online education platforms such as MOOC,
many universities launched their own courses on it, making
online education resources richer in recent years. To make it
easier for students choosing courses, online courses are
generally equipped with a course introduction, which highlights
the key knowledge of the course by condensing its core content.
Based on concepts extracted from the online course introduction,
a dependency extracting research was carried out. This research
proposes a mixed method for extracting prerequisite relations
among concepts. By analyzing the course introduction, the
attributes of Wikipedia articles in accordance with
corresponding concept, 10 different features are built and used
to analyze whether prerequisite relations exist.

The structure of this article is as follows: Section 2 reviews
the related work of prerequisite relation mining; Section 3
introduces the method of this article and constructs 10 different
features. Section 4 conducts an experimental exploration of the

proposed method. Finally, a conclusion of this research is drawn
in Section 5.

II. RELATED WORK

Talukdar et al. [11] first study prerequisite relations mining
between Wikipedia concepts. The author believes that if the
Wikipedia article of concept B contains a link to concept A, then
A may contain some background knowledge needed to learn
before view B, which means A is a prerequisite of B. For these
linked concept pairs, the author uses the MaxEnt classifier to
predict the prerequisite relations among them.

Liang, C. et al. [12] propose a method based on concept
reference distance (RefD) to predict the relations between two
Wikipedia concepts. Specifically, each concept in Wikipedia can
be replaced by its “set of related concepts”. If most of the
concepts in the “set of related concepts” of concept B contain a
link to concept A, and concept B is rarely cited by the “set of
related concepts” of concept A. Then concept A may be a
prerequisite of concept B. Zhou, Y et al. [13] use machine
learning methods to predict the prerequisite relationship of
Wikipedia concepts. The author establishes four sets of features
of concept pairs, including link-based, category-based, text-
based, and time-based features, six different classifiers are used
for experiments. Sayyadiharikandeh et al. [14] propose a method
for inferring the prerequisite relation between concepts based on
Wikipedia clickstream data. Clickstream is the user’s operation
log on the Wikipedia platform. This is the first time that
researchers have used user interaction behavior to predict the
prerequisite relation between concept pairs.

The above methods are all based on the content of the
Wikipedia article. Besides, some researchers carry out research
on the recognition of the curriculum concept prerequisite
relations based on learning resources. Some analyzes the
prerequisite relations between the curriculum concepts in the
MOOC video [15]. Liang, C et al. [16] analyze the content of the
university curriculum introduction to extract the main concepts
and infer the prerequisite relationship between them, which is
closely related to this research. However, the author only
considers the influence of course attributes on prerequisite
relations. In this research, course attributes and Wikipedia
attributes are all adopted to identify the prerequisite relations
between those concepts.

375

Figure1. The overview of the flow chart in this research

III. METHOD
A concept has many different attributes, such as the

frequency and order in the online course introduction. In
Wikipedia, each concept is an article with its own content. Links,
clickstreams, classification, and other attributes of that article
can be used for prediction. To better explore the prerequisite
relations between these concepts, features are designed from the
two aspects of “Course-based attributes” and “Wikipedia-based
attributes”. In Fig.1, “graph algorithm” is a concept extracted
from course introduction. Fig.1 shows the flow chart of our
method.

A. Course-based attributes
In this part, features are designed by using the frequency,

position of the concept in the online course introduction, and the
learning order between courses. Four features are included in
this part. The description of elements is defined as Table Ⅰ.

TABLE Ⅰ. ELEMENTS RELATED TO COURSE-BASED ATTRIBUTES

Elements Description

iC One course

aw One concept

(,)i aTid C w The -tf idf value of aw in iC ’s course introduction

()icon C Set of concepts extracted from iC ’s course introduction

()aexist w Course that have aw in the introduction

(,)b aorder w w
The course whose position of bw is before the position of

aw in the introduction

(,)i ar C w Whether aw is an important concept of iC
(,)i jZ C C Whether course iC depends on course jC

 Concept appearance
The introduction of a course can be viewed as a series of

“concepts”, ()aexist w represents courses that have aw in the
introduction, (,)a bCa w w represents the probability that bw
appears in the course introduction where aw appears.

() ()
(,)

()
a b

a b
a

exist w exist w
Ca w w

exist w
=

 (1)

When introducing a new concept, the leading concept is
introduced at the same time, which is also regarded as
background knowledge. So when (,)a bCa w w is larger and

(,)b aCa w w is smaller, aw is more likely to depend on bw . That
is to say, the frequency of bw in the course introduction that has

aw is very high. On the contrary, bw as background knowledge,
the frequency of aw in the course introduction has bw is not
obvious. This also reasonably fits the general laws of cognition.
Based on this assumption, the first feature is proposed to be
“ (,)a bCaf w w ”:

(,) (,) (,)a b a b b aCaf w w Ca w w Ca w w= − (2)

 Concept order
The concepts contained in the course introduction can be

regarded as an ordered list, and the position of each concept can
be viewed as its index number.

The same concept may appear multiple times in a course
introduction, the first appearance of the concept is taken as its
position in this course introduction. (,)b aorder w w represents the
course whose position of bw is before the position of aw in the
introduction.

(,)
(,)

() ()
b a

a b
a b

order w w
Co w w

exist w exist w
=

 (3)

In a course introduction, we believe that bw is more likely
to become the background knowledge of aw , if the probability
of bw appearing before aw is higher, and the probability of

aw appearing before bw is smaller. The second feature is
proposed to be “ (,)a bCof w w ”:

 (,) (,) (,)a b a b b aCof w w Co w w Co w w= − (4)
 Concept in course

Each course has a corresponding introduction. The course iC
can be represented by a vector on the concept space

1 2(, ,......,)mw w w . The value in the vector is the -tf idf value of the
different concepts in the iC ’s course introduction. E.g:

1 {0,0.23,0.014,0,0.56,0,...,0.13,0}C =

Assuming that aw appears in the course introduction of iC ,

bw appears in the course introduction of jC , and jC needs to be
studied before learning iC , this course sequence possibly means
that aw depends on bw . For two concepts, if they appear in
multiple course pairs with a fixed sequence, then the relationship
between these two concepts can be expressed as (5):

1 1

(,) (,) (,) (,)
n n

a b i a j b i j
i j

Cr w w r C w r C w z C C
= =

= (5)

(,)i ar C w indicates whether aw is an important concept of iC .
When the -tf idf value of aw in iC is greater than a specified

“An introduction to advanced topics in graph algorithms. Focusing on …”

WikipediaCourse
Introduction

Frequency

Order

Course
sequence

Category

Clik

Link

Based on Course Based on Wikipedia

Graph algorithms
Concept X

Concept Z

Concept Y

Prerequisite relation with others

376

threshold, it is an important concept of iC . In case of that, the
value of (,)i ar C w is 1, otherwise the value is 0. For course iC ,
this threshold is defined as the average value of -tf idf of the
concepts contained in iC ’s introduction.

()

(,)
1, if (,)>(,) ()
0, else

j i

i j
w con C

i ai a
i

Tid C w
Tid C wr C w con C

∈

=

 (6)

(,)i jZ C C represents whether iC depends on jC , and the
value is 1 or 0, where 1 means that you need to study jC before
learning iC , and 0 indicates other cases. The third feature
“ (,)a bCrf w w ” is defined as (7):

(,) (,) (,)a b a b b aCrf w w Cr w w Cr w w= − (7)
 Concept related to course

Because the content of the online course introduction is often
limited, some concepts that are closely related to the course
cannot appear in the course introduction. For example,
“knapsack problem” is the concept often explained in course
“Algorithm Design and Analysis”, but the online course
introduction may only include more coarse-grained concept like
“dynamic programming method”. Therefore, we have to
establish connections between the course and concepts that are
not included in its introduction.

For a course iC and a concept aw , aw does not appear in
the introduction of iC . However, aw may has a strong connection
with the concepts in the introduction of the course, their
relevance can be expressed as (8):

()

()

() ()
(,)

()
(,)

(,)
j i

j i

a j
i j

w con C a
i a

i j
w con C

exist w exist w
Tid C w

exist w
t C w

Tid C w
∈

∈

=

 (8)

jw is a concept extracted from the course introduction of iC .
The more frequent the appearance of aw and jw in same time,
the higher the correlation between aw and jw is. Compare with
all concepts included in iC , (,)i at C w describes a relevance
between the concept aw and the course iC .

If two concepts aw and bw are in correspondence to such
courses respectively, and there is a fixed order relationship
between the course pair, then the relationship between these two
concepts can be expressed as (9):

1 1
(,) (,) (,) (,)

n n

a b i a j b i j
i j

Cs w w t C w t C w z C C
= =

= (9)

On this basis, the fourth feature “ (,)a bCsf w w ” is defined as
(10):

(,) (,) (,)a b a b b aCsf w w Cs w w Cs w w= − (10)

B. Wikipedia-based attributes
 The attributes of concepts in Wikipedia are also used to

identify the prerequisite relations between different concepts.
Liang et al. [12] propose the idea “set of related concepts” for
the first time and believe that for a pair of concepts, if there is a
prerequisite relation between their related concept sets, it means
that there is also a prerequisite relation between the two concepts.

We have innovated this approach. For aw , we regard the
concepts that both belong to the same Wikipedia category
(Category) as aw and has a link relationship with aw as the
related concept sets of aw , denoted as ()aS w .

In what follows, we consider the prerequisite relation
between concepts from the perspectives of “concept to concept”,
“concepts to set” and “set to set” respectively. Some elements
used in this section are defined as Table Ⅱ.

TABLE Ⅱ. ELEMENTS RELATED TO WIKIPEDIA ATTRIBUTES
Elements Description

()aS w Related concept sets of aw
()awC→ The set of concepts have clickstream point from aw
()awC← The set of concepts have clickstream point to aw

 Category information in Wikipedia
In Wikipedia, each concept belongs to one or more

categories. If the level of one category is above the level of
another, the higher-level category usually contains more abstract
concepts while the lower-level category usually contains
concepts that are more concrete. These concrete concepts often
rely on abstract concepts [1,13]. Therefore, we design the
following features.

1) Concept to Concept
root represents the root node in the Wikipedia category.

(,)alen root w represents the shortest path length from aw to root
node, which is also the level of the concept in the Wikipedia
system. As is shown in Fig.2, (,)=2alen root w ， (,)=2blen root w ，

(,)=3clen root w .

Figure 2. Level of concepts in Wikipedia classification

The larger the value of (,)alen root w , the more concrete the
value of aw is ; The smaller the value of (,)alen root w , the more
abstract the content of aw is . If (,)blen root w is smaller than

(,)alen root w , it means that bw has a higher level than aw and its

Root

Category A

wb

Category B

Category C

wcwa

377

content is more abstract than aw . Then bw may be a prerequisite
of aw , so we define the fifth feature “ (,)a bWaf w w ” as (11):

 (,) (,) (,)a b a bWaf w w len root w len root w= − (11)
2) Concept to Set

The average level between related concept set and concept
are explored by using “the set of related concepts”. If the level
of the set of aw ’s related concepts is below bw on average, and
the level of the set of bw ’s related concepts is above aw on
average, then we think that bw is more likely to a prerequisite of

aw . And the sixth feature “ *(,)a bWaf w w ” is defined as (12):

 ()()*

(,)(,)
(,)

() ()
j bi a

i ai b
w S ww S w

a b
a b

Waf w wWaf w w
Waf w w

S w S w
∈∈= −

 (12)

3) Set to Set
We also design features between sets. We consider that for a

pair of concepts (,)a bw w , if the average level of aw ’s related
concept set is below the average level of bw ’s related concept
set, then bw is more likely to be a perquisite of aw , So we define

the seventh feature “ **(,)a bWaf w w ” as (13)

()()**

(,)(,)
(,)

() ()
j bi a

ji
w S ww S w

a b
a b

len root wlen root w
Waf w w

S w S w
∈∈= −

 (13)

 Clickstream in Wikipedia
Wikipedia usually publishes user clickstream data logs in the

past 30 months1. Clickstream refers to the action that a user
browses a Wikipedia article immediately after another article.
User usually clicks on the link of one article to jump to another
article to continue brows in, those two articles are often closely
related [14]. Clickstream records data of this type.

1) Concept to Concept
After browsing a Wikipedia article for a concept, people

often continue to browse other related concepts to view the
background knowledge. If there is a clickstream from aw to bw ,

bw may be a prerequisite of aw .Therefore, we define the
eighth feature “ (,)a bWkf w w ” to identify the prerequisite relations
between concepts.

()1, w
(,)

0, else

aw
b

a b
C

Wkf w w → ∈=

 (14)

2) Concept to Set
Liang et al. [12] use the link in the Wikipedia article of the

concept to identify the dependency between concepts. We
improve this approach with more precise clickstreams.
Clickstream data is different from links, which are made by real
users. Since people tend to browse the background knowledge
when browsing new knowledge, we believe that if most of the

aw ’s related concepts having a clickstream pointing to bw , but

1 https://dumps.wikimedia.org/other/clickstream/

bw is the opposite, then bw maybe a background knowledge of

aw , bw is more likely to be a prerequisite of aw . Therefore,
we define the ninth feature “ *(,)a bWkf w w ” as follows:

 ()()*

(,)(,)
(,)=

() ()
j bi a

i ai b
w S ww S w

a b
a b

Wkf w wWkf w w
Wkf w w

S w S w
∈∈ −

 (15)

3) Set to Set
From the perspective of set to set relations, we use
(,)a bOut w w to indicate the intersection of all clickstream from

()aS w and ()bS w ; (,)a bIn w w represents the intersection of all
clickstream to ()aS w and ()bS w .

()

()
(,) ()i

i a

w
a b b

w S w

Out w w C S w→
∈

=

 (16)

()

()
(,) ()i

i a

w
a b b

w S w

In w w C S w←
∈

=

 (17)

If (,)a bOut w w is larger and (,)a bIn w w is smaller, it means
that users often browse related concepts of bw after browsing
related concepts of aw , but rarely continue to browse related
concepts of aw after browsing the related concepts of bw ,
which shows that bw may be a prerequisite of aw . So we define
the tenth feature as “ **(,)a bWkf w w ”.

** (,) (,) (,)a b a b a bWkf w w Out w w In w w= − (18)

IV. EXPERIMENT

A. Datasets
Liang et al. [16] crawled the data of 654 computer science

courses from the online course websites of 11 Well-known
universities, which include the introduction of each course and
the learning order between courses2. Among these courses, 861
pairs of courses have fixed learning sequence. We will verify the
proposed method on this data set. The data set were cleaned, we
obtain 1312 concept pairs with dependencies and 2448 concept
pairs without dependencies. Table 3 shows the detailed
information of this set, “Concept prerequisite relations”
represents the number of concept pairs that have dependencies.

TABLE 3. UNIVERSITY COURSE DATA SET
Universities #Courses #Course

pairs
#Concept

prerequisite

relations

Caltech 41 56 461
Illinois 72 97 554
CMU 65 78 618
Iowa 38 50 395

Maryland 34 54 455

2 https://github.com/harrylclc/eaai17-cpr-recover

378

MIT 165 220 712
MSU 33 59 390

Princeton 16 20 292
PSU 77 98 479

Purdue 20 16 282
Stanford 93 113 711

B. Evaluation Results
This research uses five cross-validations to evaluate the

proposed method. Six commonly used machine learning
classifiers were used to predict the prerequisite relations among
concepts. They are Random Forest (RF), Naive Bayes (NB),
Multilayer Perceptron (MLP), and Support Vector Machine
(SVM), Logistic Regression (LR), and AdaBoost. All classifiers
are implemented using python program and sklearn library, and
the parameters are default ones. Specific experimental results are
shown in Table 4.

It can be seen from Table 4 that the prediction results of
different classifiers are quite different. The random forest
classifier has the best performance. It is better than other
classifiers in metrics such as Accuracy, Precision, Recall, and F1,
reaching 84.18%, 80.66%, 73.18%, and 76.26%, respectively,
which is similar to the conclusions of related studies [13,15].

Support vector machines (SVM) performs poorly, with index
values such as Recall and F1 being only 15.13% and 24.16%. It
is estimated that because the feature values are all specific values,
and the range of these values is quite different, it is difficult to
form a better hyperplane in the two types of samples to classify
the samples. We will use random forests for following
experiments.

TABLE 4 CLASSIFICATION RESULTS OF THE METHOD PROPOSED IN
THIS PAPER(%)

Classifier Accuracy Precision Recall F1

RF 84.18 80.66 73.18 76.26
NB 73.54 55.48 66.67 47.51

MLP 74.20 55.09 69.59 45.59
SVM 69.90 60.00 15.13 24.16
LR 75.23 66.67 43.70 52.79

AdaBoost 74.70 63.33 47.90 54.55

C. Comparison With Baselines
We select three baseline methods for comparison. The first

is the method of calculating the concept reference distance
(RefD) proposed in [12]. The author used two ways to define the
weight of each related concept. One is equal (the weight of all
related concepts is 1), the other is tf-idf (the weight of all related
concepts is their tf-idf value). We name them “RefD-equal” and
“RefD-tfidf”.

The second method is a concept dependency recognition
method based on optimization technology(CPR) proposed in
[16]. This is the first time that the course learning sequence is
used to calculate the prerequisite relations of concepts. The third
method is the concept prerequisite relations prediction method
(EPR) proposed in [13] using features such as link, category, text,
and creation time. The specific experimental results are shown
in Table 5.

TABLE 5 COMPARISON WITH BASELINE METHOD(%)

 RefD-
equal

RefD-
tfidf

CPR EPR Proposed
method

Accuracy 62.257 60.651 50.927 79.755 84.176

Precision 65.490 64.223 56.083 72.044 80.658

Recall 62.437 64.166 62.277 68.685 73.180

F1 63.254 64.194 55.953 70.291 76.264

The proposed method outperforms other methods in all
metrics. It should be noted that neither RefD nor CPR uses
machine learning classifiers in the classification task. The EPR
method uses conventional classifiers to classify as in this article,
and their performances are significantly better than RefD and
CPR methods, which shows that artificially established features
can indeed provide effective help for the recognition of
dependencies between concepts.

D. Analysis of Feature Contribution
TABLE 6 FEATURE CONTRIBUTION ANALYSIS(%)

Course-
based

attributes

(,)a bCaf w w 80.701(-4.13)

79.610

(-5.42)

79.610

(-5.42)

(,)a bCof w w 81.850(-2.76)

(,)a bCrf w w 81.970(-2.62)

(,)a bCsf w w 81.503(-3.18)

Wikipedia-
based

attributes

(,)a bWaf w w 82.022(-2.56)

80.459

(-4.41)
76.375
(-9.27)

*(,)a bWaf w w 82.026(-2.55)

** (,)a bWaf w w 81.649(-3.00)

(,)a bWkf w w 81.975(-2.61)
80.390

(-4.50)
*(,)a bWkf w w 81.426(-3.27)

**(,)a bWkf w w 81.293(-3.43)

To explore the importance of each feature in the
classification task, we analyze the contribution of them. Table 6
shows the changes in the average accuracy after removing each
feature in turn. The contribution of “Wikipedia-based Attributes”
is greater than that of “Course-based Attributes”. When the
features based on Wikipedia were removed, the average
accuracy falls by 9.27%, and when the features based on course
attributes were removed, the average accuracy falls by 5.42%.
This may be due to the number of features in “Based on
Wikipedia” is slightly more than that in “Based on course”.

Among the features of “Course-based Attributes”,
(,)a bCaf w w contributed the most, and the average accuracy

falls by 4.12% after removal. The contribution of (,)a bCrf w w is
the smallest, which may be due to that only few concept pairs
were involved.

Among the features of “Wikipedia-based Attributes”, when
the features of “Category” are removed, the average accuracy
falls by 4.41%. While the features of “Clickstream” are removed,
the average accuracy falls by 4.50%. There is little difference
between these two groups. Compared with individual concepts,
the use of “related concept sets” improves feature’s
contributions greatly.

379

E. Cross-School Testing
The overall data set is composed of data from 11 schools. To

figure out the results of the intersection of different school data
sets and the average accuracy under cross-school conditions. We
first use the data sets of 11 schools to train the classifiers to
explore the average accuracy of each school respectively. And a
“cross-school test” is conducted to explore the scalability and
adaptability of the model in the cross-school situation.

Fig.3 shows the experimental results. Take Caltech as an
example, “In-school Training” represents the use of Caltech’s
data set to train the classifier and test the accuracy of the school’s
internal prediction; “Out-of-school Training” means using the
data sets of other ten schools as the training set, and Caltech’s
data set as the testing set to verify the accuracy of prediction.

Figure 3. Cross-school testing

It can be seen from Fig.3 that compared with the accuracy of
training the classifier on the overall data set (84.18%), the
accuracy of training the classifier on a single school data set of
“In-school Training” is generally low. This is also because the
size of the data set decreases when trainings were performed in
single school.

The accuracy rate of each school in the “Out-of-school
Training” training is slightly lower than that of the “In-school
Training”, but the gap is not very significant. This may be caused
by the unbalanced division of the data set. On average, the
accuracy of the “Out-of-school Training” to “In-school Training”
ratio in 11 schools is 94.34%, close to 95%. This proves that our
model has excellent scalability and universality. If the data
volume is larger, the trained model can better adapt to the
prediction of the prerequisite relation in an unknown situation.

V. CONCLUSION AND FUTURE WORK

This research proposes a new method to extracting
prerequisite relations among concepts from online course
introduction, using the course attributes and Wikipedia attribute
design features together. Experiments show that this method is
superior to existing baselines.

Due to the limitation of the data set, this research only
conduct experiment in the field of computer science. In the
future, we will create concept pair data sets from online courses
in different majors and languages, further verify and improve the
model we proposed. Besides, we will also try to analyze various
types of learning resources such as online video subtitle data and
textbooks, using them to extract the prerequisite relationships
between concepts.

ACKNOWLEDGMENT
This research was supported by The National Natural

Science Foundation of China (No.61977021), The Technology
Innovation Special Program of Hubei Province(No.2018-
ACA139,No.2019ACA144), The Research Project of Hubei
Provincial Department of Education (No.D20191002).

REFERENCES
[1] Agrawal, R., Golshan, B., & Papalexakis, E. (2016). Toward Data-Driven

Design of Educational Courses: A Feasibility Study. Journal of
Educational Data Mining, 8(1), 1-21.

[2] Limongelli, C., Gasparetti, F., & Sciarrone, F. (2015, June). Wiki course
builder: a system for retrieving and sequencing didactic materials from
wikipedia. In 2015 International Conference on Information Technology
Based Higher Education and Training (ITHET) (pp. 1-6). IEEE.

[3] Chen, P., Lu, Y., Zheng, V. W., & Pian, Y. (2018, November).
Prerequisite-driven deep knowledge tracing. In 2018 IEEE International
Conference on Data Mining (ICDM) (pp. 39-48). IEEE.

[4] Yang, Y., Liu, H., Carbonell, J., & Ma, W. (2015, February). Concept
graph learning from educational data. In Proceedings of the Eighth ACM
International Conference on Web Search and Data Mining (pp. 159-168).

[5] ALSaad, F., Boughoula, A., Geigle, C., Sundaram, H., & Zhai, C. (2018).
Mining MOOC Lecture Transcripts to Construct Concept Dependency
Graphs. International Educational Data Mining Society..

[6] Gasparetti, F., De Medio, C., Limongelli, C., Sciarrone, F., & Temperini,
M. (2018). Prerequisites between learning objects: Automatic extraction
based on a machine learning approach. Telematics and Informatics, 35(3),
595-610.

[7] Manrique, R., Sosa, J., Marino, O., Nunes, B. P., & Cardozo, N. (2018,
December). Investigating learning resources precedence relations via
concept prerequisite learning. In 2018 IEEE/WIC/ACM International
Conference on Web Intelligence (WI) (pp. 198-205). IEEE.

[8] Vuong, A., Nixon, T., & Towle, B. (2011, July). A Method for Finding
Prerequisites Within a Curriculum. In EDM (pp. 211-216).

[9] Gordon, J., Aguilar, S., Sheng, E., & Burns, G. (2017, September).
Structured generation of technical reading lists. In Proceedings of the 12th
Workshop on Innovative Use of NLP for Building Educational
Applications (pp. 261-270).

[10] Koutrika, G., Liu, L., & Simske, S. (2015, April). Generating reading
orders over document collections. In 2015 IEEE 31st International
Conference on Data Engineering (pp. 507-518). IEEE.

[11] Talukdar, P.P., Cohen, W.W.: Crowdsourced comprehension: predicting
prerequisite structure in wikipedia. In: Proceedings of the Seventh
Workshop on Building Educational Applications Using NLP pp. 307–315.
Association for Computational Linguistics, (2012).

[12] Liang, C., Wu, Z.h., Huang, W.y., Giles, C.L.: Measuring prerequisite
relations among concepts. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing pp. 1668–1674(2015).

[13] Zhou, Y., Xiao, K.: Extracting Prerequisite Relations Among Concepts in
Wikipedia. In 2019 International Joint Conference on Neural Networks
(IJCNN) (pp. 1-8). IEEE, (2019, July).

[14] Sayyadiharikandeh, M., Gordon, J., Ambite, J. L., Lerman, K.: Finding
Prerequisite Relations using the Wikipedia Clickstream. In Companion
Proceedings of The 2019 World Wide Web Conference (pp. 1240-1247).
(2019, May).

[15] Pan, L., Li, C., Li, J., & Tang, J. (2017, July). Prerequisite relation learning
for concepts in moocs. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (pp.
1447-1456).

[16] Liang, C., Ye, J., Wu, Z., Pursel, B., & Giles, C. (2017, February).
Recovering concept prerequisite relations from university course
dependencies. In Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 31, No. 1).

50

55

60

65

70

75

80

Ac
cu

ra
cy

 %

In School Training Out of School Training

380

A Technical Capability Evaluation Model Based
Concept and Prerequisite Relation in Computer

Education
Jiwen Luo, Tao Wang, Junsheng Chang, and Xiaoting Guo
National Key Laboratory for Parallel and Distributed Processing

College of Computer, National University of Defense Technology
Changsha, 410073, China

Email: {luojiwen18, taowang2005, cjs7908, guoxiaoting18}@nudt.edu.cn

Abstract—Effectively assessing the results of users’ online
learning and enhancing social recognition has become a ma-
jor development direction for online education platforms. For
computer education, this article constructs a technical capability
assessment model. This model integrates professional concepts in
the field of computer science and extracts knowledge concepts
from educational resources. The model first extracts candidate
concepts, then uses a graph propagation algorithm to quantify
candidate concepts and obtains concepts from them, and finally
uses prerequisite relationships to further quantify the concepts
mastered by students. The model combines the prerequisite
relationship among concepts to quantify the skills that students
have mastered. It can not only effectively evaluate the user’s
skill mastery but also lays a foundation for subsequent course
recommendations and career recommendations for users. The
model is tested in the real learning environment of 250 students.
This model has been proved to own certain practicability and
reliability by Kendall rank correlation coefficient, which is used
as an evaluation index.

Index Terms—concept extraction; technical capability evalua-
tion model; online learning

I. INTRODUCTION

In recent years, massive online open courses (MOOCs) have
been developing rapidly, providing convenient education for
more than 100 million users worldwide [1]. A survey from
Coursera shows that MOOCs are indeed beneficial to learners
who complete the course. As the survey implies, 61% and 72%
of respondents reflected that MOOCs benefit education and
career respectively [2]. However, with the rapid development
of MOOCs, related problems and challenges have emerged as
well, such as poor continuous learning, high dropout rate, lack
of personalized training, insufficient practical training, and so
on. Meanwhile, MOOCs platforms have been criticized for
their low completion rate [3]. The average course completion
rate of edX is only 5%, and the completion rate of China’s
MOOCs platform—XuetangX is 4.5% [4].

To enhance the autonomy and continuity of users’ learning,
MOOCs platforms have made some efforts to expand their

This research was partially supported by the National Key Research and
Development Program of China (No. 2018AAA0102304).

DOI reference number: 10.18293/SEKE2021-187

social recognition. The MOOCs platform launched a micro-
degree certification model. For example, Udacity’s data anal-
ysis micro-degree certificate is completed in cooperation with
Facebook and MongoDB.

Besides, online education platforms and job search websites
have started cooperation. In 2015, LinkedIn, an American
professional networking site, announced the acquisition of
Lynda, an online teaching site founded in 1995. LinkedIn’s
CEO Jeff Weiner said, “The mission of LinkedIn and the
mission of lynda.com are highly aligned. Both companies seek
to help professionals be better at what they do. lynda.com’s
extensive library of premium video content helps empower
people to develop the skills needed to accelerate their careers.
When integrated with the hundreds of millions of members
and millions of jobs on LinkedIn, lynda.com can change the
way in which people connect to opportunity [5].”

With the rapid development of information technology,
computer professionals are often required to possess a variety
of knowledge. Paying attention to the recruitment needs of
computer professionals, we find that the requirements in the
recruitment notice mainly focus on technical capabilities,
including mastery of programming languages, technical frame-
works, related tools, related project experience, and so on. For
example, different programming languages, algorithms, data
structures, computer networks, technical frameworks, front-
end and back-end development, etc.

For online education platforms, providing competency cer-
tification and increasing employment opportunities will be the
development direction of the platform to enhance its user
stickiness. For users, obtaining certification on the education
platform and increasing employment opportunities will be
their motivation for continuous learning.

Therefore, to increase the user stickiness of online education
platforms and promote better adaptive learning of students,
this article proposes a technical capability evaluation model
to measure the breadth of knowledge acquired by students
for computer education. This model mainly evaluates the
knowledge points that students have mastered on the online
learning platform. For computer-related majors, skill points
are a key factor in their employment.

381

The main contributions of this article are summarized
as follows:
• Extract candidate concepts from online education re-

sources.
• Evaluate the quality of candidate concepts and extract

high-quality phrases to complete the concept extraction
of educational resources.

• Mine the prerequisite relationships of concepts from an
existing open-source knowledge base.

• Integrate the relationship between knowledge to quantify
the score of each concept.

• Construct a technical ability evaluation model based on
the above content.

The main innovations of this article are listed below:
• Integrate MOOCCube1 (A Large-scale Data Repository

for NLP Applications in MOOCs) datasets and use graph
propagation algorithms to label teaching resources in the
computer education field.

• Combine the prerequisite relationship to quantify the
score of concepts.

• Train a technical ability evaluation model based on the
users’ online learning data in a real environment.

The mark of educational resources completed in this article
can be used for follow-up tracking of students’ learning status,
provide help to understand the mastery of specific knowledge
points and serve as the basis for recommending courses
and other recommended applications. On the one hand, the
technical ability assessment model proposed in this paper can
help users understand their knowledge. On the other hand, it
can accurately recommend talents for the job market.

II. RELATED WORK

Related work mainly includes the following three aspects:
student ability assessment in online education, curriculum
concept extraction, and prerequisite relationship extraction.

Capability Assessment. In recent years, students’ ability
models of online education mostly measure the change of
students’ ability in the field of knowledge tracking [6]–[8],
which evaluates the knowledge mastered by students based on
the marked knowledge points. Some researchers excavate and
analyze students’ learning activities [4] and make summative
evaluations of students’ performance [9], [10]. There is also
some corresponding work in the comprehensive evaluation of
students that combines online learning process data and results
data [11]. However, the evaluation of students’ technical ability
in the field of computer education remains unsolved.

Concept extraction. About concept extraction in the field
of natural language processing, researches mainly comprise
supervised and unsupervised methods. Supervised methods are
used to train classifiers. Unsupervised methods are commonly
used in TF-IDF, TextRank, and so on. Different from key-
word extraction, concept extraction of MOOCs resources is
faced with fewer relevant documents, short texts, and fewer
words (usually only the corresponding document introduction

1http://moocdata.cn/data/MOOCCube

provided by teachers, which can be regarded as PPT with
subtitles), especially the courses of computer major, which
have the characteristics of domain knowledge extraction and
are highly professional. There are few studies on keyword
extraction of MOOCs resources, such as the course concept
extraction [12] and course concept expansion [13].

Prerequisite relationship extraction. Inferring concept
prerequisites from course dependencies or video-based course
data are relatively new areas. Some of classical methods
include CGL [14], CPR-Recover [15], MOOC-RF [16], and
PREREQ [17].

To the best of our knowledge, our paper is the first to
quantify concepts score based on prerequisite relationships
after the completion of concept extraction, and apply it to
student ability assessment.

III. OUR APPROACH

Based on the concept extraction of educational resources,
we constructed a a technical ability evaluation model, which
includes a candidate concept extraction module, a prerequisite
relationship extraction module, a candidate concept score
quantification module, and a parameter fitting module. This
is shown in Figure 1.

Fig. 1. Overview of our approach.

The candidate word extraction module mainly performs key-
word extraction. The prerequisite relation extraction module
extracts knowledge concepts with prerequisite relations from
the existing knowledge base. The candidate concept scoring
and quantification module use graph propagation algorithms
to combine sequential knowledge concepts after constructing
the knowledge graph. Perform quantitative scoring, and the
parameter fitting module is result-oriented to test the impact
of different functions and coefficient settings on the technical
capability evaluation model.

The technical ability assessment model is designed to
measure the technical ability of students. Technical ability is
represented by the knowledge points mastered by students.
Knowledge points are concepts acquired from educational
resources. The acquisition of the concept mainly includes the

382

following three steps. The first step is to extract keywords
or candidate concepts from educational resources. The second
step is to obtain high-quality phrases from candidate concepts.
The third step is to evaluate high-quality phrases to obtain
concepts. The third step depends on the human judgment after
high-quality phrases were scored.

A. Candidate Concept Extraction

For computer-related majors, skill points are a key factor in
their employment. The recruitment needs of Internet compa-
nies often lead to technical requirements. Therefore, we mine
the skills that students may master from the courses they have
completed.

We want to extract domain-specific concepts from these
educational resources (such as lectures, video captions, knowl-
edge introductions, etc.). First, we extract candidate concepts
(i.e. keywords) from educational resources.

A course corpus D is composed of |D| courses in the same
subject area.

D = {Coursej}|D|j=1 (1)

Each Course is composed of mj educational resources.

Coursej = {Mij}i=1,...,mj
(2)

Course concept C can be considered as a collection of topics
taught in the course. Formally, each concept in the set of
course concepts C can be expressed as a candidate, which is
defined as a k-gram in D.

The problem could be formally defined as: given a set
of educational data in one domain, extract domain-specific
concepts C from D . C is a collection of concepts.

C = {candidatei}|C|i=1 (3)

The pseudocode for candidate word extraction (i.e. extract
C from D) is Algorithm1. We employ the linguistic pattern
((A | N)+ | (A | N) ∗ (NP)?(A | N)∗)N [18] to
determine whether a candidate word is a noun. The isNoun()
function is used in pseudocode. Candidate concept extraction
mainly includes preprocessing, word segmentation, part-of-
speech tagging, judging whether it is in the vocabulary and
whether it satisfies the defined linguistic pattern.

Through the above algorithm, we complete the candidate
word extraction, but not all phrases extracted are domain-
specific. For example, basic theory is a good phrase, but it
is not a domain-specific concept. A domain-specific concept
should satisfy (1) Phrasal: it is a semantically and syntac-
tically correct phrase. (2) Informational: it is a scientific or
technical concept related to the course in D [12]. Therefore,
we construct a weighted undirected graph and use the graph-
based propagation algorithm to sort the vertices of the graph
to identify high-quality candidate words.

Besides, not all phrases from candidate concepts extraction
are domain-specific, e.g., the basic theory is a good phrase,
but it is not a domain-specific concept. A high-quality phrase
should combine the phraseness and informativeness informa-
tion [19].

Algorithm 1 Candidate concept extraction
Require: course corpus D
Ensure: course concept C

1: preprocess educational material M . remove special char-
acters and convert it to lowercase
M = process(M)

2: for m in D do
3: tmp = cut(M)
4: seg = [(t.word, t.f lag) for t in tmp]
5: n = len(seg)
6: for i in range(n) do
7: phrase = seg[i][0]
8: flag+ = seg[i][1]
9: for j in range(i+ 1,min(n+ 1, i+ 7)) do

10: if phrase not in res and phrase in vocabs
and isNoun(config, flag) then

11: candidate.add(phrase)
12: end if
13: if j < n then
14: phrase+ = seg[j][0]
15: flag+ = maker + seg[j][1]
16: end if
17: end for
18: end for
19: end for
20: return candidate

We construct a weighted undirected graph and use the
graph-based propagation algorithm to sort the vertices of the
graph to identify high-quality candidate words(i.e. concepts or
key points) [12].

B. Construction of Graph

First, a weighted undirected graph G = (V,E) was con-
structed, where V is the vertex set of G and E is the edge set
of G . Each vertex V is a phrase pi ∈ P with a quality score
Q (pi). P is a set of high-quality phrases extracted from D,
and P = {pi}|P |i=1.{

Q (pi) = 1, if pi in concept seed
Q (pi) = 0, if pi not in concept seed (4)

Concept seed is a high-quality professional vocabulary
based on the text material to be processed. For each
edge (pi, pj) ∈ E, its weight w (pi, pj) is the semantic
relatedness of the two phrases pi and pj . We used a pre-
trained BERT [20] model to get pre-trained word contextual
embeddings, and then obtained the semantic representation of
each phrase via the vector addition of its word vectors. Finally,
the semantic relatedness of two phrases is defined as the cosine
similarity of their vectors.

C. Graph Propagation Process

The sorting method based on propagation was performed
on a graph G. It is assumed that the high-confidence concept
in the graph can propagate its confidence value to neighbor

383

nodes with high semantic relevance to discover other potential
domain-specific concepts [21]. This section contains step to
obtain high-quality phrases from candidate concepts.

Each vertex pi has a confidence score conf (pi) of being a
domain-specific concept and confk (pi) is the score of pi in
the k − th iteration of the propagation.

We set the initial confidence score of each vertex as
conf0 (pi) = 1. The propagation functions are defined as:

confk+1 (pi) = 1/Z

(∑
pj∈A(pi)

sk (pj , pi)

|A (pi)|

)
(5)

The voting score function as follows.

sk (pj , pi) = opf (pi, pj) ·Q (pj) · e (pi, pj) · confk (pj) (6)

sk (pi, pj) is the voting score that pj propagates to pi in the
k − th iteration which is determined by opf (pi, pj), Q (pj),
e (pi, pj), and confk (pj).
opf (pi, pj) is the overlapping penalty between pi and pj . If

pi and pj contain one or more identical words, we say they are
overlapping and should be penalized during the propagation
process.{

opf(pi, pj) = 1, if not overlapping
opf(pi, pj) = λ, if overlapping λ ∈ (0, 1)

(7)

Q (pj) is the quality score of of pj , e (pi, pj) is the se-
mantic relatedness between pi and pj , and confk (pj) is the
confidence score of pj in the k − th iteration.
confk+1 is the new confidence score of pi, which is

dependent on the average voting score of vertexes in A (pi).
A (pi) is the vertex set that will propagate the voting scores to
pi in each iteration. After each iteration, the confidence scores
should be normalized, so Z is the normalization factor.

To determine when the iteration process stops, a termination
set F was introduced. Ark(F) is the average ranking of con-
cepts in F after the k − th iteration, if Ark+1(F) > Ark(F)
the propagation process terminates.

D. Prerequisite Relationship Extraction

To reasonably determine the weight of concepts extracted
from educational resources, we need to consider the concept
relationships. For example, if a user has mastered the width-
first search algorithm, he or she may already have mastered
adjacency lists before. In other words, mastering the concept
of B means that a user has mastered the concept of A. That
is to say, A is the prerequisite concept of B. Prerequisite
relationship is also called pre-order relationship.

Prerequisite relationships are incorporated into the assess-
ment model, which makes the ability scores depend on not
only the number of learning courses but also the difficulty and
quality of learning. We use files in the MOOCCube database
to extract the prerequisite relationship in the computer science
field based on a simple text matching algorithm.

E. Technical Capability Evaluation Model

The technical ability scoring model is defined as:

Score =
n∑

i=1

α
m∑
j=1

sc (concepti) (8)

concepti stands for high-quality conceptual phrase(i.e. con-
cept). n represents the number of completed learning ma-
terials. m represents the number of concepts possessed by
a learning material, and sc() is a function to quantify the
concepts score.

1) The parameter α: α can be set according to the
difficulty of the learning materials. (1) According to the time
of completing the learning material, the outlier data can be
removed, and the average value can be calculated and then
normalized. (2) If the learning material has a marked difficulty
coefficient, α can be obtained after quantifying the difficulty
coefficient. The experiment in this article used the second
method.

2) The function sc(): Inspired by the graph propagation
algorithm, concepts that are more related to other concepts
should be more basic and common knowledge points. To ex-
plore the possible effects of different functions on the results,
our experiment tested different functions for performance
evaluation.

As for the setting of α and sc(), this article is result-oriented
to make the constructed scoring model relatively reliable.

IV. EXPERIMENTS

A. Datasets

The experiments were based on the data of EduCoder2, an
actual web-based online programming teaching platform.

Fig. 2. A task challenge page belongs to EduCoder

In concepts extraction, 9243 challenge tasks of the platform
were used for candidate concepts extraction. The text descrip-
tion of challenge tasks was mainly used here. In MOOCCube,
358 pairs of prerequisite relations about computer science
concepts were extracted. On the EduCoder platform, the

2https://www.educoder.net/

384

technical capability evaluation model was trained based on the
data of the 250 most active users, these users have completed
50190 tasks in total.

When extracting keywords, the input text was tokenized and
annotated with part-of-speech (POS) tags by jieba3. BERT is
a pre-trained model in the candidate concepts ranking module,
and the seed file selected 4884 computer science concepts
extracted on MOOCCube.

In our experiments, a total of 548 candidate words were
extracted, which were matched to the corresponding challenge
task. After the candidate words were extracted, the graph
propagation algorithm was used to calculate the confidence
score of the candidate words, where the penalty factor λ was
set to 0.5. We used the graph propagation algorithm in the
concept sorting module to calculate the score of each concept,
deleted concepts with a score of 0, and manually deleted some
concepts that were not knowledge points. Finally, we got 412
concepts.

The 412 concepts were matched with 358 pairs of prerequi-
site concepts extracted in MOOCCube, and 85 pairs of prereq-
uisite concepts were identified in the concepts we extracted.
Table I shows some prerequisite concepts in MOOCCube by
extraction.

TABLE I
SOME PREREQUISITE CONCEPTS IN MOOCCUBE

Prerequisite concept Subsequent concept
serial search breadthfirst search

array hash function
search insertion sort

computational science dynamic allocation
realm name wide area network

Before determining the parameter α and the function sc(),
the score of a concept that is in the prerequisite relationship
pairs will be recalculated. If A is the prerequisite concept of
B, then the score of concept B is the sum of the scores of all
concepts in set A, where A is a collection of concepts and B
is a single concept.

B. Evaluation Metrics

Kendall’s Tau [22] was used to compare the technical ability
score ranking of users evaluated by this model and the actual
user score ranking on the online education platform. Kendall’s
Tau is a non-parametric measure of relationships between
columns of ranked data.

The Tau correlation coefficient returns a value of -1 to 1.
-1 means that the rank correlation of the two sequences is
completely opposite, 0 means that the sequence is not related,
and 1 means that the sequence is completely consistent.

Kendall′s Tau = (C −D)/N (9)

3https://github.com/fxsjy/jieba

C is the number of concordant pairs and D is the number
of discordant pairs. With n denoting the number of elements
in the list, N is the total number of element pairs and can be
calculated as below:

N = 1/2n(n− 1) (10)

C. Experiment Results

α was set to 0-10, which corresponded to the difficulty
of challenge tasks. The difficulty of tasks in the EduCoder
platform was divided into five levels, which can also be
regarded as the difficulty levels of educational resources.

Different function types were assigned to sc(), Table1
shows the calculation results of a linear function and an
inverse proportional function. The value in the TableII to
control sequence is Kendall’s Tau obtained by comparing the
similarity between the ranke calculated by skill score model
and the true rank of users.

We used the equal division method to enumerate the coef-
ficients between [-100,100]. The results showed that only the
positive and negative of the coefficients and the choice of the
function will affect Kendall’s Tau value, the absolute value
of the function coefficients does not affect on the result. The
conclusion is consistent with Kendall’s Tau’s consideration of
the relativity of ranking.

The paper lists four examples of positive and negative, and
the coefficients of the two functions are taken as [-2,-1,1,2].
The data in Table II is calculated the 250 users when the
prerequisite relationship between concepts were considered.

TABLE II
KENDALL’S TAU IN DIFFERENT FUNCTION

Fuction
Function coefficient -2 -1 1 2

Linear function 0.479 0.479 0.521 0.521
Inverse proportional function 0.483 0.483 0.517 0.517

Fixed the technical ability evaluation model Score (let sc()
be a linear function, and the function coefficient is 1) and
got the user data of the top 50, top 100, top 150, top 200,
and top 250 in EduCoder. We separately calculated Kendall’s
Tau value between the user ranking in the Score model and
the actual user ranking without considering the prerequisite
relationship. Table III shows that when the prerequisite rela-
tionship between concepts is considered, the score calculated
by the score model is closer to the actual ranking.

TABLE III
KENDALL’S TAU IN DIFFERENT USER NUMBER

50 100 150 200 250
No prerequisites relations are considered 0.653 0.652 0.611 0.542 0.515

Prerequisites relations are considered 0.647 0.654 0.614 0.552 0.521

We have counted the data of the user who ranked first
on the EduCoder platform. According to the technical ability
evaluation model, the top ten concepts obtained by the user
after learning on the platform are: data, methods, objects,

385

arrays, graphs, strings, input and output, algorithm, model,
and attribute.

D. Discussion
The effectiveness of the technology capability evaluation

model mainly depends on the concepts extracted from educa-
tional resources.

This model integrates a large-scale MOOCs database and
takes the prerequisite relationship between concepts into ac-
count. When Kendall’s Tau is greater than 0.5, it indicates that
the sorted list has a certain similarity.

By comparing various simple functions sc(), it can be found
that the score of each concept has a low impact on the score
of the user’s final technical ability evaluation model. What
really matters is the ranking of scores between concepts. If
a better evaluation model of the users’ technical abilities was
expected, the order of user learning sequences and knowledge
mining need to be comprehensively considered. The sequence
and relevance of concepts can be used to initialize the concept
graph differently to improve the graph propagation algorithm
in order to better build the technical capability evaluation
model.

The model has certain limitations. Our experiment believed
that when a user completes a task (or learning a course)
in an online education platform, the user has mastered the
knowledge concept corresponding to the task (or the course)
and accumulates scores for the corresponding concept. It does
not take into account the time and quality of the user’s
completion, so the description of the user’s technical ability
is more like a description of the technical breadth of the user.
In addition, there’s still plenty of scope for improvement to
distinguish whether the keywords extracted from the model
belong to the knowledge concept of a specific domain.

V. CONCLUSION AND FUTURE WORK
To improve the social recognition of online education plat-

forms, this paper constructed a technical ability evaluation
model in the computer field based on the learning records of
students on the online education platform. The technical ability
evaluation model based on concepts and prerequisite relations.
Its construction is mainly completed by extracting candidate
concepts, calculating the importance of candidate words using
graph propagation algorithm, recalculating the importance of
candidate words using pre-order relations, and constructing a
technical ability score model. The prerequisite relations in our
research were extracted from the concept relations in the field
of computer science and technology in MOOCCube.Therefore,
the research conclusions of this paper are only applicable to
the field of computer education. But theses research ideas can
be extended to other fields.

In the future, the model is planned to be deployed on the
online education platform. For online education platforms,
this model can serve as a basis to provide students with
ability certification, and can also provide students with job-
hunting advice. A more promising direction in the future is to
combine with job-hunting websites to achieve the matching of
vocational skills and employment recommendations.

ACKNOWLEDGMENT

Thanks Yue Zhou and Ruolin Sun for their effective sug-
gestions during the writing process.

REFERENCES

[1] Shah D. Year of MOOC-based degrees: A review of MOOC stats and
trends in 2018 [J]. Class Central. 2019.

[2] Chen Z, Brandon A, Gayle C, et al. Who’s Benefiting from MOOCs,
and Why. 2015.

[3] He J, Bailey J, Rubinstein B, et al. Identifying at-risk students in massive
open online courses [C]. In Proceedings of the AAAI Conference on
Artificial Intelligence. 2015.

[4] Feng W, Tang J, Liu T X. Understanding dropouts in MOOCs [C]. In
Proceedings of the AAAI Conference on Artificial Intelligence. 2019:
517–524.

[5] Hirsch-Allen J. The Many Reasons Why LinkedIn Bought Lynda.com.
2015.

[6] Piech C, Spencer J, Huang J, et al. Deep knowledge tracing [J]. arXiv
preprint arXiv:1506.05908. 2015.

[7] Xiong X, Zhao S, Van Inwegen E G, et al. Going deeper with deep
knowledge tracing. [J]. International Educational Data Mining Society.
2016.

[8] Yeung C-K. Deep-IRT: Make deep learning based knowledge trac-
ing explainable using item response theory [J]. arXiv preprint
arXiv:1904.11738. 2019.

[9] McBroom J, Yacef K, Koprinska I, et al. A data-driven method for
helping teachers improve feedback in computer programming automated
tutors [C]. In International Conference on Artificial Intelligence in
Education. 2018: 324–337.

[10] Ruipérez-Valiente J, Muñoz-Merino P, Gascón-Pinedo J, et al. Scaling
to Massiveness With ANALYSE: A Learning Analytics Tool for Open
edX [J]. IEEE Transactions on Human-Machine Systems. 2017, PP (6):
1–6.

[11] Luo J, Lu F, Wang T. A Multi-Dimensional Assessment Model and
Its Application in E-learning Courses of Computer Science [C]. In
Proceedings of the 21st Annual Conference on Information Technology
Education. 2020: 187–193.

[12] Pan L, Wang X, Li C, et al. Course concept extraction in moocs via
embedding-based graph propagation [C]. In Proceedings of the Eighth
International Joint Conference on Natural Language Processing (Volume
1: Long Papers). 2017: 875–884.

[13] Yu J, Wang C, Luo G, et al. Course concept expansion in moocs
with external knowledge and interactive game [J]. arXiv preprint
arXiv:1909.07739. 2019.

[14] Liu H, Ma W, Yang Y, et al. Learning concept graphs from online
educational data [J]. Journal of Artificial Intelligence Research. 2016,
55: 1059–1090.

[15] Liang C, Ye J, Wu Z, et al. Recovering concept prerequisite relations
from university course dependencies [C]. In Proceedings of the AAAI
Conference on Artificial Intelligence. 2017.

[16] Pan L, Li C, Li J, et al. Prerequisite relation learning for concepts
in moocs [C]. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
2017: 1447–1456.

[17] Roy S, Madhyastha M, Lawrence S, et al. Inferring concept prerequisite
relations from online educational resources [C]. In Proceedings of the
AAAI Conference on Artificial Intelligence. 2019: 9589–9594.

[18] Justeson J S, Katz S M. Technical terminology: some linguistic prop-
erties and an algorithm for identification in text [J]. Natural language
engineering. 1995, 1 (1): 9–27.

[19] Shang J, Liu J, Jiang M, et al. Automated phrase mining from massive
text corpora [J]. IEEE Transactions on Knowledge and Data Engineer-
ing. 2018, 30 (10): 1825–1837.

[20] Devlin J, Chang M-W, Lee K, et al. Bert: Pre-training of deep bidi-
rectional transformers for language understanding [J]. arXiv preprint
arXiv:1810.04805. 2018.

[21] Lu W, Zhou Y, Yu J, et al. Concept extraction and prerequisite rela-
tion learning from educational data [C]. In Proceedings of the AAAI
Conference on Artificial Intelligence. 2019: 9678–9685.

[22] Nelsen R. Kendall tau metric [M]. Encyclopedia of Mathematics, EMS
Press, 1994.

386

Triangle Counting by Adaptively Resampling over
Evolving Graph Streams

Wei Xuan†‡ and Huawei Cao† and Mingyu Yan† and Zhimin Tang† and Xiaochun Ye† and Dongrui Fan†
†Institute of Computing Technology, Chinese Academy of Sciences, China

‡University of Chinese Academy of Sciences, China
Email: {xuanwei, caohuawei, yanmingyu, tang, yexiaochun, fandr}@ict.ac.cn

DOI reference number: 10.18293/SEKE2021-012

Abstract—Triangle counting is a fundamental graph mining
problem, widely used in many real-world application scenarios.
Due to the large scale of graph streams and limited memory
space, it is appropriate to achieve the estimation of global and
local triangles by sampling. Existing streaming algorithms for
triangle counting can be generalized into two categories. One
is Reservoir-based methods employing a fixed memory budget,
whose size is difficult to set for accurate estimation without any
prior knowledge about graph streams. The other is Bernoulli-
based methods, which sample edges by a given probability with
uncontrollable memory budget. In this work, we propose a
novel and bounded-sampling-ratio method, called BSR-Sample,
by adaptively resizing memory budget upwards over evolving
graph streams. BSR-Sample can keep the sampling ratio always
greater than or equal to a specified threshold with available
memory space. Then, we design BSR-TC, a single-pass streaming
algorithm for both global and local triangle counting, based on
BSR-Sample. Experimental results show that BSR-TC achieves
accuracy of at least 99.8% for global triangles, when the ratio
of initial memory budget to whole graph streams ≥ 0.002%
and given threshold = 20%. And our proposed BSR-TC can
gain more advantage than the state-of-the-art algorithms over
the continuous growth of graph streams.

Index Terms—Evolving Graph Streams, Triangle Counting,
Bounded Sampling Ratio

I. INTRODUCTION

There has been a burst interest in graph streams in recent
decades, covering lots of real-world application scenarios,
such as social networks, E-commerce, traffic networks [1],
[2]. Graph streams are a continuous sequence of data items,
often abstracted as edge streams, expressing entities and the
relationships between these entities [3]. Triangle counting has
many important applications and is widely used in graph data
mining. For instance, the number of triangles can be used
to detect communities [4], study clustering coefficient and
connectivity [5] of social networks to improve user experience,
discovery spam emails [6] to ensure the safety of customer
services, etc.

Due to the large scale of graph streams and limited memory
space, it is almost infeasible to calculate the real number
of triangles by storing the entire graph streams. On the one
hand, it will consume much more time on the communications
between memory and secondary storage by storing the graph
streams data into secondary memory. On the other hand,
the fully dynamic characteristics of evolving graph streams
also induces the difficulties of accurately counting global and

local triangles within limited memory space. In the past few
decades, there have been plenty of research [7]–[11] on stream
sampling methods, which sample a small population of graph
streams to compute the number of triangles as accurate as
possible.

According to whether memory budget consumed by various
sampling methods is fixed or not, we can classify the sampling
methods into two categories: Reservoir-based sample and
Bernoulli-based sample. The former will initially set a fixed
memory budget, which stores the uniform sample chosen
from graph streams. However, its sampling ratio monotonously
decreases along the growing graph streams after the number
of input edges exceeds memory budget. On the contrary, each
member of the population has the same probability to be
chosen and the inclusion variables are jointly independent in
the Bernoulli-based sample. Thus, the memory budget used
by Bernoulli-based sampling can vary in principle from 0 to
the entire population size, which may exceed the available
memory space and cannot be bounded to an expected value.

So far, existing streaming algorithms for triangle counting
either fail to maintain a stable sampling ratio or controllable
memory budget with the growth of graph streams. Taking
full advantage of the characteristics of bounded sampling
ratio and efficient utilization of memory budget, we propose
a novel sampling method, called bounded-sampling-ratio
sample (BSR-Sample), to maintain the sampling ratio greater
than or equal to a specified threshold, when there is enough
memory budget. The main contributions of this paper are as
follows:

• Propose a novel and general sampling method, BSR-
Sample, to keep the sampling-ratio great than or equal
to a specified sampling ratio threshold, when available
memory is enough large. To the best of our knowledge,
BSR-Sample is the first attempt to adaptively increment
memory budget with the continuous growth of graph
streams. The highlight of this method is that we are able
to maintain a bounded-sampling-ratio, without requiring
any prior knowledge about the scale of graph streams.

• BSR-TC, a streaming algorithm for both global and
local triangle counting over evolving graph streams, is
proposed based on BSR-Sample. Compared with previous
work for triangle counting, it is capable of discovering
more triangles and attain higher accuracy by adaptively

387

resizing memory budget upwards.
• Experimental results performed on real-world datasets

show that BSR-TC can obtain more accurate estima-
tion than the state-of-the-art sampling methods, with
the growth of graph streams. Meantime, BSR-TC can
keep stable results for both global and local triangle
counting with the same specified threshold, regardless of
differently initial memory budget.

The rest of this paper is organized as follows. In Section II,
we review the related works. Then, we discuss the motivation
of our work in Section III. In Section IV, BSR-Sample and
BSR-TC are proposed and introduced in detail. In Section V,
experiments are conducted using real-world datasets. In Sec-
tion VI, we conclude our work.

II. RELATED WORK

In this section, we mainly introduce two categories of
sampling methods, Bernoulli-based sample, and Reservoir-
based sample, for triangle counting over graph streams. They
are distinguished by whether consumed memory budget is
fixed or not, as illustrated in Table I.

A. Reservoir-based sample

These sampling methods set a fixed memory budget, which
is of importance considering the limited memory space. Vitter
discussed optimized sampling algorithms in details based on
the naive reservoir sampling method, and these optimizations
improved the speed by an order of magnitude [12]. The main
idea is to skip over a number of records rather than process
all the records, reducing the called number of random number
generators. However, the optimized Reservoir-based sampling
methods are not suited for triangle counting, because they fail
to update the estimations for every edge. Gemulla et al. further
proposed a novel sampling method based the naive reservoir
sampling, called Random Pairing (RP), which handled both
edge insertions and deletions for graph streams by the strategy
of using future inserted edges to compensate for previous
deletions [13]. [14] utilized temporal locality, where future
edges were more likely to form triangles with recent edges
than older ones, to improve the estimation accuracy. TRI-
EST was the first one to estimate triangles in fully-dynamic
graph streams, involving both edge insertions and deletions
by Reservoir-based sampling methods and its variants [15].
[16] proposed a family of algorithms for global and local
triangle counting, called ThinkD, to further improve TRIEST
by leveraging unsampled edges to update the estimations of
triangles.

B. Bernoulli-based sample

The Bernoulli-based sampling method is relatively simple
and efficient for it just needs an initial sampling probability to
sample edges over graph streams. Therefore, this sampling
method attracts considerable attention to count triangles in
evolving graph streams. Ahmed et al. proposed a general
sampling framework called graph sample and hold (gSH) for
big-graph analytics by one single pass [17]. The gSH utilizes

TABLE I: Comparison of sampling methods. Note that the
number of current edges is more than initial reservoir size
and available memory space is enough large for the sake of
simplicity.

Sampling Method Sampling Ratio Memory Budget

BSR-Sample (Proposed) ≥Threshold Adaptive
Reservoir-based sample Decreased F ixed
Bernoulli-based sample Fixed Increased

different sampling probabilities based on the graph properties
of interest, e.g. gSH(p, q) samples the current arriving edge
with probability p when it depends on previously sampled
edges, otherwise holds the edge with probability q. Later
Ahmed et al. proposed a new framework called graph priority
sampling (GPS) for sequentially sampling over evolving graph
streams [18]. Two estimation approaches are proposed to attain
unbiased estimation of various graph properties, which are
post-stream estimation and in-stream estimation. Lim et al.
proposed a memory-efficient and accurate method for local
triangle estimation over graph streams, called MASCOT [19].
It achieves best performance of both accuracy and memory
efficiency of local triangle counting, by the means of “uncon-
ditional counting before sampling”.

III. MOTIVATION

The sampling ratio of Reservoir-based sample will mono-
tonically decrease after the size of arriving edges exceeds the
capacity of memory budget, which inevitably affect the esti-
mation results, as shown by Figure 1. The memory budget of
Bernoulli-based sample is not fixed or monotonically increases
over the evolving datasets. Figure 2 shows that the sample size
of Bernoulli-based sample fluctuates around the real value.
Therefore, for the Bernoulli-based sample, it is difficult to
allocate appropriate memory space for triangle counting over
evolving graph streams.

Considering the characteristics of graph streams, we obtain
observations which pose huge challenge for accurate triangle
counting.

Observations:
• In real application scenarios, the scale of graph streams

is unknown in advance.
• The evolving graph streams usually grow upwards as a

whole.
• Memory space is limited to store all edges of graph

streams.
These observations above lead to new challenges for global

and local triangle counting over evolving graph streams, as
described below.

Proposed problems:
• How to maintain an appropriate sampling ratio and how

much memory space to allocate for accurate global and local
triangle counting, without knowing any prior knowledge of
evolving graph streams?

Goals:
• Maintain a bounded-sampling-ratio to achieve accurate

and stable estimation of global and local triangle counting.

388

104 105

0.00

0.03

0.06

Memory Budget

G
lo

b
al

 E
rr

o
r

103

105

#
 D

is
co

v
er

ed
 T

ri
an

g
le

s

105 106

0.00

0.02

Memory Budget

G
lo

b
al

 E
rr

o
r

105

106

107

#
 D

is
co

v
er

ed
 T

ri
an

g
le

s

105 106 107

0.000

0.004

0.008

Memory Budget

G
lo

b
al

 E
rr

o
r

106

107

108

#
 D

is
co

v
er

ed
 T

ri
an

g
le

s

106 107

0.0000

0.0006

0.0012

Memory Budget

G
lo

b
al

 E
rr

o
r

107

108

#
 D

is
co

v
er

ed
 T

ri
an

g
le

s

(a) Dblp (b) Skitter (c) LiveJournal (d) Orkut

Fig. 1: The blue line represents the number of discovered trian-
gles, and the green line represents global error. For Reservoir-
based sampling methods, both the number of discovered
triangles and the accuracy of global triangles are positively
correlated with memory budget.

0 50 100

4.19

4.20

4.21

#
 S

am
p

le
d

 E
d

g
es

 (
1

0
5
)

Trials
0 50 100

4.435

4.440

#
 S

am
p

le
d

 E
d

g
es

 (
1

0
5
)

Trials

0 50 100

1.3866

1.3872

1.3878

#
 S

am
p

le
d

 E
d

g
es

 (
1

0
5
)

Trials
0 50 100

4.6860

4.6872

4.6884

#
 S

am
p

le
d

 E
d

g
es

 (
1

0
5
)

Trials

(a) Dblp (b) Skitter (c) LiveJournal (d) Orkut

Real Bernoulli

Fig. 2: The sample size of Bernoulli-based methods fluctuates
around the real one with sampling probability p=0.4.

• Control Consumed memory budget to improve the effi-
ciency of memory usage.
• Develop single-pass streaming algorithm to avoid multi-

repeated and redundant operations.
• And no need to access slower secondary storage.
In general, Reservoir-based sample may induce the sam-

pling ratio to monotonically decrease, which will damage
the accuracy of estimations over evolving graph streams.
Bernoulli-based sample cannot accurately calculate the size
of memory budget. Therefore, we propose a novel Reservoir-
based sample method, called BSR-Sample, which keeps a
bounded sampling ratio and takes advantage of both methods
above. BSR-Sample can maintain the sampling ratio greater
than or equal to a given threshold and enable the memory
budget to adaptively increase under control within available
memory space. The comparison of the three sampling methods
is illustrated in Table I.

IV. DESIGN AND ANALYSIS

In this section, we firstly introduce the overview of BSR-
Sample and BSR-TC. Then, we show the implementation of
these algorithms in detail.

A. Overview

Our proposed BSR-Sample always maintains the sampling
ratio greater than or equal to a specified sampling-ratio thresh-
old by leveraging multi-sets of Reservoir-based sample. Then,
we propose BSR-TC using BSR-Sample method for triangle
counting. As illustrated in Figure 3, BSR-Sample takes edges
from graph streams as input, and outputs a set of sampled
edges to BSR-TC for both global and local triangle counting.
• Estimation. BSR-TC firstly estimates the number of

global and local triangles for each arriving edge from the
evolving graph streams, rather than samples them. Here, we

e1e2e3e4ei

Edge Streams

1

2

3

Estimation

Sampling

Sample Pool

Current Sample Set

PROCEDURE

1. Estimation: Global & local triangle

counting

2. Sampling: Using reservoir-based

sampling algorithms

3. Checking: Determining whether to

join sample pool or not

Checking

BSR-Sample

Fig. 3: The framework of BSR-Sample & BSR-TC.

call this mechanism as “first counting, then sampling”, which
improves the estimation accuracy by leveraging more edges to
participate in statistics analysis.
• Sampling. The whole sampling set of BSR-Sample is di-

vided into two parts: the current sampling set and the sampling
pool. The former is used to maintain dynamically updated
edges, which are sampled based on the naive Reservoir-based
sample. The sampling ratio of the current sampling set is
always greater than the specified threshold. BSR-Sample will
remove the sampled edges into sampling pool once it equals
the threshold, and allocates new memory budget as the current
sampling set.
• Checking. In this procedure, BSR-Sample determines

whether to enable the current sampling set join into the sam-
pling pool. When the sampling ratio of the current sampling
set equals the specified sampling-ratio threshold, BSR-Sample
will remove the entire current sampling set into sampling pool,
and then create a new sampling set to substitute for current
sampling set. Through adaptively incrementing the current
sampling set, BSR-Sample is capable of keeping a bounded-
sample-ratio when the available memory is large enough.
And BSR-Sample can ensure the estimation accuracy without
requiring any prior knowledge about evolving graph streams.

B. Algorithm Description

Here, we first introduce the sampling method of proposed
BSR-Sample. Then, we analyze how to estimate global and
local triangles by BSR-TC over evolving graph streams. We
utilize the naive Reservoir-based sample for the current sam-
pling set to sample edges.

Here, Θ is the totally available memory space. Sc is the
current samping set. Sp is the samping pool, and S(i)p is the
ith single sampling set of Sp. S = Sc ∩ Sp, NS

u is the set of
neighbors of the node u in S.M is the initial memory budget.
R is a specified sampling-ratio threshold. Let M/R is T .
Note that, to simplify the description, we initialize the current
sampling set and each single sampling set in the sampling pool
to a same size.
• CountTriangle (Lines 8-20 of Algorithm 2). In this

function unit, CountTriangle first checks whether each node
of the arriving edge(u, v) is contained in S (lines 9-14),

389

Algorithm 1: Bounded-Sampling-Ratio Sample (BSR-
Sample)

Input: (1) {e(1), e(2), · · · }: a graph stream;
(2) M: initial memory budget;
(3) R: specified sampling ratio threshold.

Output: S: a set of sampled
edges.

1 for each new arriving edge et = (u, v) do
2 SampleEdge((u, v),Sc).
3 CheckRatio((u, v),Sc,Sp).
4 end
5 Function SampleEdge(et,Sc)
6 tc ← t %M
7 if tc ≤M then
8 Sc ← Sc + {(u, v)}
9 end

10 else if a generated random number (0, 1) ≤M/tc
then

11 choose a random edge (m,n) from Sc
12 Sc ← Sc − {(m,n)}
13 Sc ← Sc + {(u, v)}
14 end
15 End
16 Function CheckRatio(et,Sc,Sp)
17 tc ← t %M
18 if M/tc = R and Θ ≥M then
19 remove the current sampling set Sc into

sampling pool Sp
20 create a new Sc with size M
21 Θ← Θ−M
22 end
23 End

which is the output of BSR-Sample in Algorithm 1. Then,
we count the common neighbor NS

u,v of nodes u and v(line
15). For each node c in NS

u,v , we updates both global and
local triangle counting by 1/pcuv (lines 16-19). Note that
Sc and S(i)p in Sp are produced by the naive Reservoir-
based sample, respectively. Therefore, BSR-TC is unbiased
for triangle counting, where the expected value equals the
real number of triangles. To compute the probability pcuv that
BSR-TC discovers the triangle (c, u, v), we divide discovered
triangles into 4 types, depending on the positions (Sc or Sp)
of edges (u, c) and (v, c). When a new edge e(t+1) = (u, v)
arrives and forms a triangle with a node c, pcuv is calculated
by following formula (1).

pcuv =

min{1,M
tc
× M− 1

tc − 1
}, {(u, c), (v, c)} ∈ Sc

min{1,M
tc
} ×R, {(u, c), (v, c)} ∈ Sc ∪ S(i)

p

R×R, {(u, c), (v, c)} ∈ S(i)
p

R× M− 1

T − 1
, {(u, c), (v, c)} ∈ S(i)

p ∪ S(j)
p , ∀i 6= j

(1)

Algorithm 2: BSR-Sample for Triangle Counting
(BSR-TC)
Input: S: set of sampled edges.
Output: (1) ∆: global triangle counting;

(2) ∆u: local triangle counting for node u.
1 ∆ ← 0
2 for each new arriving edge et = (u, v) do
3 CountTriangle((u, v)).
4 SampleEdge((u, v),Sc).
5 CheckRatio((u, v),Sc,Sp).
6 end
7 Function CountTriangle((u, v))
8 if u /∈ V then
9 V ← V ∪ {u} and ∆u ← 0

10 end
11 if v /∈ V then
12 V ← V ∪ {v} and ∆v ← 0
13 end
14 NS

u,v ← NS
u ∩N S

v

15 for each c ∈ NS
u,v do

16 ∆← ∆ + 1/pcuv; ∆c ← ∆c + 1/pcuv;
17 ∆u ← ∆u + 1/pcuv; ∆v ← ∆v + 1/pcuv;
18 end
19 End

• SampleEdge (Lines 5-15 of Algorithm 1). This func-
tion determines whether to sample the arriving edges from
graph streams. We first calculate the order of edge streams
occurring in the current sampling set Sc (line 6). For Sc, we
adopt the naive Reservoir-based method to sample the arriving
edge with probability min{1,M/tc}.
• CheckRatio (Lines 16-23 of Algorithm 1). Once the

sampling ratio of Sc reaches a specified threshold R and there
is enough memory space, CheckRatio will remove Sc into Sp
(line 18-19). Meanwhile, new memory budget is allocated to
restart a new round Reservoir-based sampling from scratch.
Thus, BSR-Sample can keep the sampling ratio greater than
or equal to R without knowing any knowledge about evolving
graph streams.

V. EXPERIMENTS

We show that BSR-TC suffices to provide accurate estima-
tion for both global and local triangle counting, without requir-
ing any knowledge about graph streams. Compared with the
state-of-the-art streaming algorithms (ThinkDAcc, MASCOT
and WRS), BSR-TC always maintains a bounded sampling-
ratio to discover more triangles along with the continuous
growth of graph streams, and so as to obtains more accurate
results and efficient memory usage. Therefore, BSR-TC has
adaptive characteristics for triangle counting over evolving
graph streams.

A. Experimental Setup

We perform experiments on a server with Intel Xeon Gold
6148 processors and 64-bit Red Hat Linux OS. Each experi-

390

TABLE II: Summary of the real-world graph streams used in
our experiments.

Name # Nodes # Edges Summary

Dblp 317, 080 1, 049, 866 Collaboration network
Skitter 1, 696, 415 11, 095, 298 Internet topology graph

LiveJournal 3, 997, 962 34, 681, 189 Friendship network
Orkut 3, 072, 441 117, 185, 083 Online social network

0.0 4.0x107 8.0x107 1.2x108

-0.1

0.0

0.1

0.2

G
lo

b
al

 E
rr

o
r

Evolving Graph Streams
0.0 4.0x107 8.0x107 1.2x108

-0.02

-0.01

0.00

0.01

0.02
G

lo
b

al
 E

rr
o

r

Evolving Graph Streams

(a) Memory Budget (104) (b) Memory Budget (105)

BSR-TC ThinkDAcc WRS

Fig. 4: Scalability. BSR-TC is always more accurate and
stable than ThinkDAcc and WRS. Here, We calculate the
global error rate every 500,000 edges for evolving graph
streams, based on the Orkut dataset.

ment entails 100 runs to guarantee the statistical stability of
assessment. All experiments are conducted on the real-world
graphs from [20], which are summarized in Table II. Suppose
that the scale of these datasets is unknown to simulate real
application scenarios.

B. Evaluation Metrics

We use the following metrics to evaluate the accuracy of
global and local triangle counting, respectively.
• Global Error. Let x̂ be the ground truth of the global

triangles, and x be the estimated value of x̂. Considering x̂
may be equal with 0, we add 1 to both x̂ and x. Let c denote
the number of runs for each experiment. Then, the global error
is

1

c

∑c

i=1

|x̂− x|
x̂+ 1

• Local Error. Let x̂u be the ground truth of the local
triangles for each node u ∈ V , and xu be the estimated value
of x̂u. Considering x̂u may equal 0, we add 1 to both x̂u and
xu. Then, the local error is

1

c

∑c

i=1

{
1

|V|
∑

u∈V

|x̂u − xu|
x̂u + 1

}
C. Performance

Since BSR-TC is a first exploration of triangle counting
by adaptively resizing memory budget over evolving graph
streams, there are no existing streaming algorithms for similar
comparisons. For the sake of illustration, we use ThinkDAcc,
MASCOT and WRS as the baselines, which are state-of-the-
art streaming algorithms for triangle counting. Here, we define

2E-4 0.002 0.02 0.2
10-1

101

103

105

#
 D

is
co

v
er

ed
 T

ri
an

g
le

s

2E-4 0.002 0.02 0.2

101

103

105

107

#
 D

is
co

v
er

ed
 T

ri
an

g
le

s

2E-4 0.002 0.02 0.2

101

103

105

107

#
 D

is
co

v
er

ed
 T

ri
an

g
le

s

2E-4 0.002 0.02 0.2

102

105

108

#
 D

is
co

v
er

ed
 T

ri
an

g
le

s

(a) Dblp (b) Skitter

(c) LiveJournal (d) Orkut

BSR-TC ThinkDAcc MASCOT

Fig. 5: Accuracy. More triangles are discovered by BSR-TC,
when η < R.

the ratio of initial memory budget against whole graph streams
as η, and set the threshold R to 20%.
• Scalability (maintain accuracy over evolving streams).

In real application scenarios, it is challenging to set appropriate
parameters, such as memory budget, for triangle counting,
because the scale of graph streams is always increasing as
time flies. As shown in Figure 4, when initial memory budget
is 104 edges, the global errors of both ThinkDAcc and WRS
fluctuate between -0.15 and 0.2 as graph streams evolves,
while BSR-TC is almost always equal to zero. This is because
the memory budget of ThinkDAcc and WRS is fixed and is
difficult to set appropriately without any knowledge about
the scale of graph streams. Our proposed BSR-TC can keep
stable and high accuracy by the adaptively resampling method
over evolving graph streams.
• Accuracy (regardless of small η). Figure 5 shows BSR-

TC discovers more triangles than ThinkDAcc and MASCOT
by adaptively resampling method, when η is less than R. By
sampling the first edges in memory budget with probability 1,
ThinkDAcc always discovers more triangles than MASCOT.
Figure 6 depicts that BSR-TC achieves accuracy of at least
99.8% for global triangles and 60.0% for local triangles,
respectively, when η ≥ 0.002% and R = 20%. Under this
condition, BSR-TC gains accuracy of 100× for global trian-
gles than ThinkDAcc. Therefore, our proposed BSR-TC can
maintain high accuracy by adaptively incrementing memory
budget to maintain a bounded sampling ratio R over the
growth of graph streams, even though the initial η is small.

VI. CONCLUSIONS

We propose a single-pass and bounded-sampling-ratio
method, BSR-Sample, by adaptively resizing memory budget
under control without requiring any prior knowledge about
graph streams. BSR-Sample allocates new memory budget to
restart a new round of sampling based on standard reservoir

391

(a) Dblp (b) Skitter (c) LiveJournal (d) Orkut

BSR-TC ThinkDAcc MASCOT

10-4 10-2

10-4

10-2

100

G
lo

b
al

 E
rr

o
r

10-4 10-2

10-3

10-1

G
lo

b
al

 E
rr

o
r

10-4 10-2

10-4

10-2

100

G
lo

b
al

 E
rr

o
r

10-4 10-2

10-4

10-2

G
lo

b
al

 E
rr

o
r

10-3 10-1

0.2

0.7

1.2

L
o
ca

l
E

rr
o

r

10-3 10-1

0.0

1.0

2.0

L
o
ca

l
E

rr
o

r

10-3 10-1

0.2

0.8

1.4

L
o
ca

l
E

rr
o

r

10-3 10-1

0.2

0.6

1.0

L
o
ca

l
E

rr
o

r

Fig. 6: Accuracy. BSR-TC is more accurate than state-of-the-art streaming algorithms for global and local triangle counting.
Here, the X -axis denotes η.

sampling, when current sampling ratio is less than a given
threshold. Then, by the mechanism as “first counting, then
sampling”, we propose BSR-TC for global and local triangle
counting based on BSR-Sample. To the best of our knowledge,
BSR-TC is the first attempt to adaptively resize memory
budget over evolving graph streams. Compared to state-of-the-
art streaming algorithms, BSR-TC can obtain more accurate
and stable estimation of triangles over evolving graph streams.

VII. ACKNOWLEDGMENT

This work was supported by the National Natural Science
of China (11904370, 61872335, 61732018, 61672499), the
Innovation Project of the State Key Laboratory of Computer
Architecture (CARCH4509), and the Open Project Program
of the State Key Laboratory of Mathematical Engineering and
Advanced Computing (2019A07).

REFERENCES

[1] N. K. Ahmed, J. Neville, and R. Kompella, “Network sampling: From
static to streaming graphs,” ACM Transactions on Knowledge Discovery
from Data (TKDD), vol. 8, no. 2, pp. 1–56, 2013.

[2] S. Wasserman, K. Faust et al., “Social network analysis: Methods and
applications,” 1994.

[3] A. McGregor, “Graph stream algorithms: a survey,” ACM SIGMOD
Record, vol. 43, no. 1, pp. 9–20, 2014.

[4] A. Zakrzewska and D. A. Bader, “A dynamic algorithm for local commu-
nity detection in graphs,” in 2015 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM).
IEEE, 2015, pp. 559–564.

[5] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,” Social
networks, vol. 31, no. 2, pp. 155–163, 2009.

[6] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient algorithms
for large-scale local triangle counting,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 4, no. 3, pp. 1–28, 2010.

[7] K. Kutzkov and R. Pagh, “Triangle counting in dynamic graph streams,”
in Scandinavian Workshop on Algorithm Theory. Springer, 2014, pp.
306–318.

[8] C. C. Aggarwal, “On biased reservoir sampling in the presence of stream
evolution,” in Proceedings of the 32nd international conference on Very
large data bases, 2006, pp. 607–618.

[9] C. E. Tsourakakis, “Fast counting of triangles in large real networks
without counting: Algorithms and laws,” in 2008 Eighth IEEE Interna-
tional Conference on Data Mining. IEEE, 2008, pp. 608–617.

[10] B. Wu, K. Yi, and Z. Li, “Counting triangles in large graphs by random
sampling,” IEEE Transactions on Knowledge and Data Engineering,
vol. 28, no. 8, pp. 2013–2026, 2016.

[11] P. Wang, Y. Qi, Y. Sun, X. Zhang, J. Tao, and X. Guan, “Approximately
counting triangles in large graph streams including edge duplicates with
a fixed memory usage,” Proceedings of the VLDB Endowment, vol. 11,
no. 2, pp. 162–175, 2017.

[12] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software (TOMS), vol. 11, no. 1, pp. 37–57, 1985.

[13] R. Gemulla, W. Lehner, and P. J. Haas, “Maintaining bounded-size
sample synopses of evolving datasets,” The VLDB Journal, vol. 17, no. 2,
pp. 173–201, 2008.

[14] K. Shin, “Wrs: Waiting room sampling for accurate triangle counting
in real graph streams,” in 2017 IEEE International Conference on Data
Mining (ICDM). IEEE, 2017, pp. 1087–1092.

[15] L. D. Stefani, A. Epasto, M. Riondato, and E. Upfal, “Triest: Counting
local and global triangles in fully dynamic streams with fixed memory
size,” ACM Transactions on Knowledge Discovery from Data (TKDD),
vol. 11, no. 4, pp. 1–50, 2017.

[16] K. Shin, S. Oh, J. Kim, B. Hooi, and C. Faloutsos, “Fast, accurate
and provable triangle counting in fully dynamic graph streams,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 14, no. 2,
pp. 1–39, 2020.

[17] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella, “Graph sample
and hold: A framework for big-graph analytics,” in Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2014, pp. 1446–1455.

[18] N. K. Ahmed, N. Duffield, T. Willke, and R. A. Rossi, “On sampling
from massive graph streams,” arXiv preprint arXiv:1703.02625, 2017.

[19] Y. Lim and U. Kang, “Mascot: Memory-efficient and accurate sampling
for counting local triangles in graph streams,” in Proceedings of the
21th ACM SIGKDD international conference on knowledge discovery
and data mining, 2015, pp. 685–694.

[20] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

392

Influence Maximization with Consideration of
PageRank Centrality and Propagation Probability

Qi Chen,Rong Yan*
Inner Mongolia Key Laboratory of Mongolian Information Processing Technology

College of Computer Science, Inner Mongolia University
Hohhot, China

Email: 1254560848@qq.com,csyanr@imu.edu.cn

Abstract—Influence Maximization (IM) problem has been
attracted considerable interest and attention in last decades.
However, the centrality algorithm-based methods were with low
time complexity but made the acceptability of diffusion vaguely.
The main purpose of our work is to select the influential nodes
according to the available budget to maximize the impact cov-
erage. Based on the traditional independent cascade model, this
paper mainly solves the IM problem, designs two effective PRTH
algorithms based on PageRank and propagation probability
threshold, and combines PageRank of PRTH processed graph
with degree discount algorithm to get an algorithm named PRDD.
Experiments on four datasets show that the two algorithms have
better performance than the existing algorithms in the aspect of
influence diffusion.

Index Terms—influence maximization, PageRank, degree dis-
count, propagation probability

I. INTRODUCTION

Identifying an initial seed set of users who would even-
tually affect the maximum number of users is the Influence
Maximization (IM) problem. It is of great significance in
controlling public opinion, rumors and advertising marketing,
and it has been become a hot research field due to the increase
in the number and scale of interaction between users in social
networks. At the same time, it also brings massive data to the
network, and the value of network data is also increasing. IM
was first used in marketing, which is called viral marketing.
The spread pattern of viral marketing [1] is based on mutual
trust between two users. The purpose of viral marketing is to
influence their friends, promote products or pass information
to their friends, and then expend this scheme maximization
as much as possible, as well as the coverage of information.
One of the most active areas of interest in the last decade
has been impact maximization and how content or products
are adopted by users, which was first introduced in the work
of Kempe et al. [2]. Then, in view of the challenge of this
problem, kinds of research work have been carried out. Kempe
et al. [2] considered IM problem as a combinatorial problem,
and proposed an effective greedy algorithm, which can achieve
high influence spread among all existing methods, but losing
in time complexity. Great efforts followed the work of Kempe
et al. [2] and tried to reduce the running time, such as
CELF [3] and CELF++ [4]. However, few greedy algorithm-
based methods are feasible for large-scale network, while the

heuristic method, such as degree discount, instead can achieve
an acceptable impact in running time [5].

At present, the existing centrality algorithm-based methods
merely use the node degree as a measurement, but ignore
the node PageRank. In this paper, we devise a new top-
k selection algorithm based on PageRank centrality and
propagation probability threshold (PRTH). We calculate The
influence diffusion and marginal gain by successive iterative
updating. Furthermore, we propose a new PRDD algorithm by
combining PRTH with degree discount algorithm to alleviate
the effect of the point aggregation. These above algorithms
make it possible to calculate the influence diffusion directly
and accurately. Through experimental analysis, our algorithm
has achieved acceptable results, compared with the current
mainstream algorithm in terms of influence diffusion.

The remainder of the paper is organized as follows. Section
2 reviews the related work. Section 3 explains the design and
implementation of our methods in detail. Experimental results
on four large datasets are provided in Section 4. Finally in
Section 5, we conclude this paper.

II. RELATED WORK

IM problem was firstly proposed by Domingo et al. [1] from
the perspective of algorithm. Next, Kempe et al. [2] formulated
the issue of IM in the social network, and proposed two widely
influence diffusion models: Linear threshold model (LT) and
Independent Cascade model (IC). As for a non-deterministic
polynomial-time (NP)-hard problem, Kempe et al. [2] pro-
posed a greedy approximation algorithm with (1-1/E) ap-
proximation ratio to address this issue. Experimental results
showed that the proposed algorithm was more effective than
the traditional random methods. However, greedy algorithms
in large-scale social networks were inefficient and inaccurate
with poor time complexity and memory consumption. The
reason mainly is that the greedy approximation ratio method
requires tens of thousands of Monte Carlo simulations. In
recent years, much efforts were proposed to effectively address
IM problem. The related research includes the greedy-based
methods and the heuristic-based methods.

Pursuing low time complexity is the question surround the
greedy-based algorithms. lots of researchers tried to improve
the greedy-based methods and provide kinds of effective

DOI reference number:10.18293/SEKE2021-027
393

versions. Leskovec et al. [3] proposed CELF algorithm to
enhance the greedy algorithm by using sub module char-
acteristics in node selection process. The CELF algorithm
could obviously reduce the evaluation times than the simple
greedy algorithm. Goyal et al. [4] proposed a modified CELF
algorithm, called CELF++, which can significantly reduce the
amount of computation and obtain the better results. Chen
et al. [5] designed a new scheme to improve the greedy
algorithm, and combined their model with CELF algorithm
to get a faster greedy algorithm. Furthermore, they proposed
the prefix of exclusion maximum impact tree by using local
tree model to approximate influence propagation.

Heuristic-based algorithms try to improve the propaga-
tion effect, and much heuristic-based literatures are based
on centrality. Chen et al. [6] exploited a degree discount
heuristic algorithm, which nearly matched the performance
of the greedy algorithms for the IC model, and improved
upon the pure degree heuristic in the other cascade models.
Nandi et al. [7] proposed a new method called DegGreedy to
maximize the influence spread based on node neighborhoods,
which could provide higher influence spread and good effi-
ciency in terms of scalability. Deng et al. [8] proposed two
centrality-based edge activation probability algorithms under
the IC model, which named NewDiscount and GreedyCIC,
with considering edge probability. Taheri et al. [9] utilized
HellRank centrality measure to identify the most influential
users based on the Hellinger distance between a node pair in
a bipartite graph. Cui et al. [10] proposed a degree-descending
search strategy to obtain all nodes that have the influence
spread as the degree centrality. Lattanzi et al. [11] designed a
random node centrality algorithm based on the phenomenon
of friendship paradox. Mohammed et al. [12] proposed a new
algorithm called PrKa based on Katz centrality. In their work,
the propagation probability threshold permitted to compute
the influence over all the paths and selected the one that
maximizes the influence. Recently, Ding et al. [13] proposed
a new realistic independent cascade (RIC) model and several
greedy maximization algorithms. Maji et al. [14] modified
the k-shell method and compared several variants. Banerjee
et al. [15] proposed a hop-based heuristic method based on
‘expected earned benefit’.

III. METHODOLOGY

Firstly, we give some denotes for the work. We consider
the social network as a undirected graph G=(V ,E), where V
denotes a group of users, E denotes a group of relationships.
We represent the number of users in the network as |V | and
|E| as the number of edges.

A. Algorithm (PRTH): Pagerank centrality and propagation
probability threshold algorithm.

In this paper, we assume that the larger the PageRank value
is, the more important the node is, and the information is easy
to spread from important nodes to other nodes. But you can
imagine such a situation, when a node connects many edge
nodes with degree 1, its PageRank value will be very high, but

it is not so important. According to the above assumptions,
we solve the problem by the following methods. We set a
weight for each edge and take the average of ownership as
the threshold. Then the edge whose weight is less than the
threshold is removed. This method can effectively remove the
edge nodes, making the distribution of PageRank points more
concentrated in the central area, also for the propagation path
of nodes wider.

Next we will introduce our PRTH algorithm. Firstly, we
construct a undirected graph. Next, we need to get the PageR-
ank value of each node in the graph. Then, we calculate the
edge weight divided by the value of each user with the sum
of the PageRank of the two users connected using the edge.
Through the above description, we can obtain the node pair
weight using equation (1):

weight(u, v)=
pagerank(u)

pagerank(v) + pagrank(u)
(1)

Where u and v denote two different nodes, respectively.
Through equation (1), we can clearly conclude that the weight
of u to v is different from that of v to u. So here we choose
the maximum weight of each edge pair as the weight of the
each edge pair.

With these steps we get a weighted graph. After that, we
introduce the threshold of propagation probability, which is
reserved only when the weight of the edge reaches this value.
The probability is simply calculated by the average of the
weight of the edges and the number of edges. Therefore,
we obtain the maximum propagation probability threshold th
using the equation (2):

th=

∑E
e weightmax(e)

|E|
(2)

After removing the unqualified edges, we get a new graph.
Next, we will calculate the PageRank value in the new graph
again and arrange it in descending order afresh. Finally, the
top-k node set before sorting are selected as the final seed
node set. We use Algorithm 1 to accomplish it.

B. Algorithm (PRDD): Combining pagerank with degree dis-
count.

Previously, we have concluded that PRTH algorithm can
make the node distribution closer to the center. Unfortunately,
we found that the node aggregation occurs occasionally in the
experiments, and PRTH algorithm may become unstable as
the number of seed nodes increases. Furthermore, we propose
an algorithm named PRDD to modify the situation. In this
algorithm, we fuse the index of PRTH and the index of degree
discount in the original graph, so as to improve the ability of
preventing aggregation.

In this section, we will introduce the influence maximization
model combining PageRank and degree discount. First of all,
we need to calculate the PRTH and the degree discount of the
graph. Secondly, we normalize the two values of PageRank
and degree discount, and then combine the two indicators
through a linear parameter α, which can be computed by

394

Algorithm 1 PRTH

Input:
original graph G=(V ,E);
seed size k.

Output:
top-k node set S.

1: page=pagerank(G);
2: for i in G.edges() do
3: w1=

page(i(0))
page(i(0)+page(i(1)) ;

4: w2=
page(i(1))

page(i(0))+page(i(1)) ;
5: weightmax=max(w1, w2);
6: end for
th=

∑|E|
e=1 weightmax(e)

|E| ;
7: for i in G.edges() do
8: if i < th then
9: remove edge i;

10: end if
11: end for
12: thp=pagerank(G);
13: S is the sorted top-k nodes;
14: return S;

equation (3). The best value of α is from 0.1 to 0.3 in the
experiments.

PD(v)=(1−α) ∗ p(v)

max pagerank
+α ∗ dd(v)

max degree
(3)

Algorithm 2 gives the specific process for combining
PageRank with degree discount algorithm (PRDD).

IV. EXPERIMENTAL RESULTS

In this section, we conduct our experiments on four undi-
rected graphs. We focus on the performance of the algorithm
in terms of running time and influence diffusion.

A. Datasets and Experiment Settings

First, we introduce the datasets used in the experiments. We
use a social network dataset Facebook 1 and three datasets of
academic collaboration network: CA-HepTh 2, NetHEPT and
NetPHY 3.

1) Facebook: This dataset of ‘circles’ (or ‘friends lists’) is
from Facebook. The data of Facebook is collected from
survey participants.

2) CA-HepTh: Arxiv HEP-TH (High Energy Physics -
Theory) collaboration network is from the arXiv 4 and
covers scientific collaborations between authors papers
submitted to High Energy Physics - Theory category.

3) NetHEPT: It is an academic collaboration network from
arXiv. In this dataset two of them are connected by an
undirected link, if they co-authored at least one paper.

1http://snap.stanford.edu/data/ego-Facebook.html
2http://snap.stanford.edu/data/ca-HepTh.html
3https://www.microsoft.com/en-us/research/wp−content/uploads/2016/02/weic-

graphdata.zip
4https://arxiv.org/

Algorithm 2 PRDD

Input:
G=(V ,E);
PageRank value thp in new graph G;
seed size k;
ratio parameters α of PRDD.

Output:
seed set S.

1: Initial S = φ and PD = φ;
2: for i in G do
3: d(i)=degree(i);
4: dd(i)=0;
5: t(i)=0;
6: if i in thp then
7: p(i)= th(i);
8: else
9: p(i)= 0;

10: end if
11: end for
12: max degree=max(d);
13: max pagerank=max(p);
14: for v in G do
15: PD(v)=α∗ dd(v)

max degree + (1− α) ∗ p(v)
max pagerank ;

16: end for
17: for i in G do
18: u=argmax(PD|i ∈ V \S);
19: S=S ∪ (u);
20: for neighbor v of u and v ∈ V \S do
21: t(v)+=1;
22: dd(v)=d(v)− 2 ∗ t(v)− 0.1 ∗ t(v) ∗ (d(v)− t(v));
23: PD(v)=α∗ dd(v)

max degree + (1− α) ∗ p(v)
max pagerank ;

24: end for
25: end for
26: return S

4) NetPHY: It is an academic collaboration network among
the researchers. In this dataset two of them are connected
by an undirected link, if they co-authored one paper.

Table I gives the detailed description of the datasets.

TABLE I: The description of the datasets.

Datasets Nodes number Edges number Avg. degree
Facebook 4,039 88,234 43.69

CA-HepTh 9,877 25,998 5.26
NetHEPT 15,233 58,891 7.73
NetPHY 37,154 231,507 13.4

As for both above algorithms, we conduct the experiments
under the IC model with probability p set to 0.1. The seed
size k varies from 10 to 50, and the number of iteration is set
to 1000.

B. Baseline

In the experiments, five baseline algorithms are compared.
The descriptions are presented as below.

395

1) Degree algorithm: This algorithm selects the degree
centrality of the top-k propagator with the highest degree
centrality.

2) Pagerank [16] algorithm: This algorithm counts the
number and quality of links from a node to all other
nodes to determine the importance of the node.We also
choose the first k values as nodes.

3) Degree Discount [6] algorithm: This algorithm selects
the seed set according to the degree center degree score
of nodes, and discounts the edge combined with the next
selected seed from the degree calculation of nodes.

4) PrKatz [12] algorithm: This algorithm is relied on the
use of a combination of Katz centrality and propagation
probability threshold tested over each edge for each user
in the network.Its parameters are the same as those in
the article [12] = 1, = 0.0015.

5) RIS [17] algorithm: This algorithm generates reverse
reachable set to find the maximum seed nodes.

C. Evaluation and Analysis

First of all, we did an experiment to explore the effect of a
on the results. We set the value of a from 0.1 to 0.9, and we
did experiments on all data sets. In this paper, we present the
experimental results on Facebook and NetPHY datasets. We

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3054

3054.5

3055

3055.5

3056

3056.5

3057

3057.5

3058

IN
FL

U
E

N
C

E

FACEBOOK

Fig. 1: The result on Facebook.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5800

5850

5900

5950

6000

6050

IN
FL

U
E

N
C

E

NetPHY

Fig. 2: The result on Facebook.

can see that the best a value is between 0.1 and 0.3.Similar
conclusions can be obtained on the other two datasets.

Next, we compared the baseline method with four datasets
as follows:

Figure. 3 shows the effect of all algorithms in the Facebook
dataset. Compared with other datasets, this dataset has much
more edges.

10 15 20 25 30 35 40 45 50

SEED NUMBER

2940

2960

2980

3000

3020

3040

3060

IN
FL

U
EN

C
E

PRTH
PRDD
Degree Discount
Degree
Pagerank
PrKatz
RIS

Fig. 3: The comparison on Facebook.

From Fig. 3, we can see that PRDD algorithm performs
better in this dataset, while PageRank algorithm performs
better merely at the beginning. Generally speaking, these four
algorithms, including PageRank algorithm, PRTH algorithm,
PrKatz algorithm and RIS algorithm, have similar effect.
There is a gap between the Degree Discount algorithm and
the above four algorithms, especially when k is set to 10,
the Degree algorithm performs the worst. In Facebook, RIS
algorithm performs best, which shows that RIS algorithm is
more suitable for the dataset with more edges. From Fig. 3,
we can see that our algorithm is not much better than other
algorithms for the dataset with large average degree.

Figure. 4 shows the effect of several algorithms in CA-
HepTh dataset. CA-HepTh has the minimum average degree
compared with other three datasets.

10 15 20 25 30 35 40 45 50

SEED NUMBER

400

500

600

700

800

900

1000

IN
FL

U
EN

C
E

PRTH
PRDD
Degree Discount
Degree
Pagerank
PrKatz
RIS

Fig. 4: The comparison on CA-HepTh.

From Fig. 4, we can see that the effect of PRTH algorithm
and PRDD algorithm is similar, and the result of PRDD
algorithm is slightly higher than that of PRTH algorithm. Also,

396

we found that PrKatz algorithm achieved good results in this
dataset, and the Degree Discount algorithm follows. At the
same time, PageRank, Degree and RIS perform poorly. From
this dataset, we can see that PRTH and PRDD have similar
effect on relatively small-scale dataset.

Figure. 5 shows the influence diffusion comparison of our
algorithms against with the baseline algorithms on NetHEPT.
From Fig. 5, we can see that the PRTH algorithm is slightly

10 15 20 25 30 35 40 45 50

SEED NUMBER

600

650

700

750

800

850

900

IN
FL

U
EN

C
E

PRTH
PRDD
Degree Discount
Degree
Pagerank
PrKatz
RIS

Fig. 5: The comparison on NetHEPT.

stronger than the original PageRank algorithm in the initial
stage, and the latter two are almost the same. The reason is
that there are many nodes with large pagerank value, which
makes the PRTH algorithm not play a very important role.
The two algorithms appear in the later period, and the growth
slowly down, which is consistent with the conclusion that
when the number of nodes becomes more, there will be point
aggregation. For PRDD algorithm, we can intuitively see that
its growth is relatively stable. In the early stage, the effect
of PRDD algorithm is slightly worse than PRTH algorithm
and original Pagerank algorithm. However, in the later stage,
PRDD algorithm has been realized anti super, so we can see
that the integration of degree discount and PRTH accomplish
a better effect. At the same time, we can also conclude that
the PRDD algorithm get a better improvement compared with
the original Degree Discount algorithm. The overall effect of
the PrKatz algorithm is similar to that of the Degree Discount
algorithm. Moreover, we also find that RIS algorithm does not
perform well in NetHEPT.

Figure. 6 shows the influence diffusion comparison of our
algorithms against with the baseline algorithms on NetPHY.

From Fig. 6, we can find that the performance of the
original Pagerank algorithm is poor, and the performance of
PRTH algorithm works much better. It can be seen that PRTH
algorithm plays a great role in NetPHY. But the disadvantage
is that when k is 30, there is a relatively large fluctuation. We
have already analyzed that the main disadvantage of PRTH
is that it will be node aggregation. From the above results,
we can see that there are more node aggregation at k is
30. On the contrary, PRDD algorithm is more smoother and
more effective than PRTH algorithm. Compared with PRDD,
the original Degree Discount algorithm has a big gap. RIS

10 15 20 25 30 35 40 45 50

SEED NUMBER

5500

5600

5700

5800

5900

6000

6100

6200

IN
FL

U
E

N
C

E

PRTH
PRDD
Degree Discount
Degree
Pagerank
PrKatz
RIS

Fig. 6: The comparison on NetPHY.

algorithm is better than PrKatz algorithm in NetPHY.
Figure. 7 shows the running time of several algorithms on

four datasets. Obviously, we can see that PrKatz algorithm
runs the longest in four datasets. The reason is that it takes a
long time to calculate the Katz centrality at the beginning.
The second is RIS algorithm. RIS algorithm takes a long
time because it needs to calculate the path. In all datasets,
Degree algorithm gains the shortest time. Because Degree
algorithm only needs to calculate the degree of each point and
sort. Similarly, Pagerank algorithm only needs to calculate the
Pagerank value of each point and sort. However, the calcula-
tion time of Pagerank is longer than that of degree, but it is
much less than that of Katz centrality. So in all datasets, the
time of Pagerank algorithm is the third shortest. As shown in
Fig. 7, we can conclude that Degree Discount algorithm takes
the second shortest time. Compared with Degree algorithm,
Degree Discount algorithm needs much calculation cost. But
its time-consuming is still shorter than Pagerank algorithm. We
can know that there is a big gap between the calculation of
Degree and Pagerank. Our algorithms, PRTH and PRDD, rank
fourth and third in time-consuming, respectively. PRDD takes
a longer time than PRTH, because PRDD combines PRTH and
Degree Discount, so the time of PRDD is longer than the sum
of PRTH and Degree Discount. Because PRTH algorithm is
based on the calculation of Pagerank value, the time cost of
it will be longer than Pagerank algorithm.

V. CONCLUSION

In this paper, we exploit two algorithms PRTH and PRDD
to tackle IM problem. Our algorithms still provide acceptable
results compared to other known methods, and make it pos-
sible to calculate the influence spread directly and accurately.
Experimental results show the effectiveness of our model
that can better influence diffusion. PRTH performs better in
moderately degree datasets when there are fewer seed nodes
in the network, while PRDD performs better when there are
more seed nodes in the network.

ACKNOWLEDGEMENTS

This research is supported by the National Natural Science
Foundation of China (Grant No. 61866029) and the Post-

397

10 20 30 40 50

SEED NUMBER

0

50

100

150

200

250

300

350

T
IM

E

PRTH PRDD Degree Discount Degree Pagerank PrKatz RIS

(a) Facebook

10 20 30 40 50

SEED NUMBER

0

5

10

15

20

25

30

35

40

45

50

T
IM

E

PRTH PRDD Degree Discount Degree Pagerank PrKatz RIS

(b) CA-HepTh

10 20 30 40 50

SEED NUMBER

0

10

20

30

40

50

60

T
IM

E

PRTH PRDD Degree Discount Degree Pagerank PrKatz RIS

(c) NetHEPT.

10 20 30 40 50

SEED NUMBER

0

50

100

150

200

250

300

350

400

T
IM

E

PRTH PRDD Degree Discount Degree Pagerank PrKatz RIS

(d) NetPHY.

Fig. 7: Time comparison on four datasets.

graduate Innovation and Entrepreneurship Foundation of Inner
Mongolia University (Grant No. 11200-121024).

REFERENCES

[1] M. Richardson and P. Domingos, “Mining knowledge-sharing sites
for viral marketing,” in Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
New York, NY, USA, jul 2002, pp. 61–70.

[2] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, New York, NY, USA, aug 2003, pp. 137–146.

[3] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance, “Cost-effective outbreak detection in networks,” in
Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, aug 2007,
pp. 420–429.

[4] A. Goyal, W. Lu, and L. V. Lakshmanan, “CELF ++: Optimizing the
greedy algorithm for influence maximization in social networks,” in
Proceedings of the 20th International Conference Companion on World
Wide Web, New York, NY, USA, mar 2011, pp. 47–48.

[5] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in so-
cial networks,” in Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, NY,
USA, jun 2009, pp. 199–208.

[6] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, New York, NY, USA, jul 2010, pp. 1029–
1038.

[7] G. Nandi, U. Sharma, and A. Das, “A novel hybrid approach for
influence maximization in online social networks based on node neigh-
borhoods,” in Advances in Electronics, Communication and Computing,
Singapore, oct 2018, pp. 509–520.

[8] X. Deng, Y. Dou, T. Lv, and Q. Nguyen, “A novel centrality cascading
based edge parameter evaluation method for robust influence maximiza-
tion,” IEEE Access, vol. 5, pp. 22 119–22 131, oct 2017.

[9] S. M. Taheri, H. Mahyar, M. Firouzi, E. Ghalebi, R. Grosu, and
A. Movaghar, “Hellrank: a hellinger-based centrality measure for bi-
partite social networks,” Social Network Analysis and Mining, vol. 7,
no. 22, may 2017.

[10] L. Cui, H. Hu, S. Yu, Q. Yan, Z. Ming, Z. Wen, and N. Lu, “Ddse: A
novel evolutionary algorithm based on degree-descending search strategy
for influence maximization in social networks,” Journal of Network and
Computer Applications, vol. 103, pp. 119–130, jul 2018.

[11] S. Lattanzi and Y. Singer, “The power of random neighbors in social
networks,” in Proceedings of the Eighth ACM International Conference
on Web Search and Data Mining, New York, NY, USA, feb 2015, pp.
77–86.

[12] M. Alshahrani, Z. Fuxi, S. Mekouar, and S. Huang, “Top-k influential
users selection based on combined katz centrality and propagation
probability,” in 2018 IEEE 3rd International Conference on Cloud
Computing and Big Data Analysis (ICCCBDA), Chengdu, China, jun
2018, pp. 52–56.

[13] J. Ding, W. Sun, J. Wu, and Y. Guo, “Influence maximization based
on the realistic independent cascade model,” Knowledge-Based Systems,
vol. 191, p. 105265, mar 2019.

[14] G. Maji, S. Mandal, and S. Sen, “A systematic survey on influential
spreaders identification in complex networks with a focus on k-shell
based techniques,” Expert Systems with Applications, vol. 161, no.
113681, dec 2020.

[15] S. Banerjee, M. Jenamani, and D. Pratihar, “Earned benefit maximiza-
tion in social networks under budget constraint,” Expert Systems with
Applications, p. 114346, nov 2020.

[16] R. S. Wills, “Google’s pagerank: The math behind the search engine,”
The Mathematical Intelligencer, vol. 28, no. 4, pp. 6–11, sep 2006.

[17] B. Christian, B. Michael, C. Jennifer, and L. Brendan, “Maximizing
social influence in nearly optimal time,” in Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, USA, jan
2014, pp. 946–957.

398

Grasping or Forgetting? MAKT: A Dynamic
Model via Multi-head Self-Attention for

Knowledge Tracing
Deming Sheng, Jingling Yuan*, Xin Zhang
School of Computer Science and Technology,

Wuhan University of Technology,
Wuhan 430070, China

Email: shengdeming@whut.edu.cn, yjl@whut.edu.cn, xinz@whut.edu.cn

Abstract—The outbreak of the COVID-19 pandemic
arises enormous attention to online education then knowl-
edge tracking is an increasingly crucial task with its vigor-
ous development. However, the surge of student historical
interactions and the lack of prior knowledge is engendering
a sequence of issues, such as the decrease in prediction
accuracy while the increase in training time. Simultaneously,
most existing approaches fail to provide in-depth insights
into why a student is likely to answer the question incorrectly
and what affects the knowledge state of the student. To
address those issues, we propose a multi-head self-attention
model named MAKT for dynamic knowledge tracing, which
makes the prediction results interpretable at the model
and instance level. The customized multi-head self-attention
layer has high training efficiency owing to its parallelization
capability and spends about 6 seconds in each epoch on a
single GPU. We further visualize the attention weights of
MAKT and student knowledge acquisition tracking, finding
that not all historical interactions are equally important but
the recent interactions profoundly establish the knowledge
state of students. In the end, extensive experiments on three
datasets demonstrate the robustness and superiorities of
MAKT, improving ACC by 1.14 % and AUC by 1.20 %
on average.

Index Terms—MOOC, Knowledge Tracing, Educational
Data Mining, Attention Mechanism, Sequence Modeling

I. INTRODUCTION

Online education systems, such as Massive Online
Open Course (MOOC), Intelligent Tutoring System (ITS)
and Online Judge (OJ) Systems, have a long history
dating back to the 1980s [1], [2] and have still witnessed
the proliferation with the computer-aid technology and
artificial intelligence in recent years. Specifically, students
in these systems can finish a series of appropriate tests
individually according to their needs and acquire the
necessary knowledge in the process of solving relevant
exercises. As shown in Fig.1, the availability of such
exercising process offers an opportunity to model student
learning in terms of predicting student performance (e.g.,

DOI reference number: 10.18293/SEKE2021-031

Fig. 1. An example of the learning process.

forecasting whether or not this student can answer an
exercise correctly in the next time) and tracking student
knowledge state (e.g., estimating the mastery level of key
knowledge components based on historical data.).

Knowledge tracing has undergone many paradigm
shifts in the past forty years and many approaches have
been developed from both educational psychology and
data mining areas, such as sparse factor analysis [3],
deep learning [4], topic modeling [5] and matrix fac-
torization [6]. Hidden Markov Model (HMM) was tradi-
tionally utilized in Bayesian Knowledge Tracing (BKT)
and its variants [7]. More recently, a series of Recurrent
Neural Network (RNN) based sequential models have
been proposed to capture these long term dependencies
between the student historical interactions, such as DKT
[4] and DKT+ [8]. Simultaneously, Convolutional Neural
Network (CNN) is gradually employed to model individ-
ualization in the student learning process [9].

Nonetheless, there are still three main challenges in the
knowledge tracking task: (1) Long sequence information
modelling and (2) Hidden relationship mining between
exercises and (3) Interpretation of the prediction results.
Existing approaches have achieved certain results in the
first two points, but failed to provide in-depth insights into

399

why a student is likely to answer the question incorrectly
and what affects the knowledge state of the student.

In this paper, we propose a Multi-head Self-Attention
model for Knowledge Tracing (MAKT). MAKT can
effectively improve the predicted performance and dy-
namically track the knowledge state. More importantly,
MAKT has excellent interpretability and the potential to
exploit the implicit relationship between exercises without
prior knowledge. In summary, our main contributions in
this paper are three folds:

• We customize a multi-head self-attention layer to
model individualization, positional encoding rather
than the traditional RNN-based model is utilized to
capture sequence information.

• We perform extensive experiments on three different
datasets and demonstrate that MAKT in addition
to showing its robustness and superiorities, supports
parallel computing.

• We visualize attention weights and student knowl-
edge acquisition tracking, offer intuitive and in-depth
insights on the predicted result at both the model and
instance level.

II. RELATED WORK

Cognitive diagnosis refers to predict student perfor-
mance by discovering student states from the exercis-
ing records in educational psychology. The traditional
cognitive diagnostic models can be divided into two
groups: continuous models and discrete models. Taking
item response theory (IRT) as an example of the con-
tinuous model, IRT utilizes the logistic regression based
on the student ability and the exercise (item) difficulty to
assume student performance [10]. Discrete models, such
as Deterministic Inputs, Noisy-And gate model (DINA),
leverage the student knowledge components proficiency
by a binary latent vector with a given Q-matrix to improve
prediction results [11].

Knowledge Tracing is an essential task for evaluating
the knowledge state of a student based on his past
interaction. Bayesian knowledge tracing (BKT), followed
by Hidden Markov Model (HMM), models the latent
knowledge state as a set of binary variables to trace
it. Further extensions incorporate more side information
about student’s prior knowledge and exercise difficulty
into BKT [7]. More recent approaches leverage factor-
ization methods to model individualization with a latent
vector that depicts student’s knowledge state [6].

Another line of research includes methods based on
Deep Learning, which has achieved great success. Deep
Knowledge Tracing (DKT) [4] employs Long Short Term
Memory (LSTM) to model student exercising process
while DKT+ [8] exploits a regularization term on the
foundation of DKT to further improve the predicted

TABLE I
NOTATIONS

Notations Description
b The bias vector
i The i-th dimension of embedding

r, r̂ The actual and predicted label
E The latent embedding matrix
Q The knowledge matrix
D The dimension of latent embedding
E The total number of exercises
H The number of Heads
N The number of Encoders
S The total number of students
T The time of learning sequence
W The weight matrix
X The input of layer

Q,K, V The query, key and value matrix

performance. Memory Augmented Recurrent Neural Net-
work (DKVMN) [12] is proposed to bridge the gap
between exercises and knowledge concepts for a better
performance prediction. CKT [9] utilizes a hierarchical
convolutional network to model individualization.

III. THE PROPOSED MODEL

A. Problem Definition

In an online education system, suppose there are
S students, E exercises, and K knowledge concepts,
where students do these exercises individually at different
times. As shown in Fig.1, the knowledge tracing (KT)
task can be formalized as follows: given a learning se-
quence xs = {(e1, k1, r1), (e2, k1, r2), ..., (eT , kK , rT)}
or xs = {(e1, r1), (e2, r2), ..., (eT , rT)} with T learn-
ing interactions of a certain student s, we aim to as-
sess the knowledge state of students after each learn-
ing interaction. Here et represents the exercise being
answered at learning interaction t ∈ T and rt ∈
{0, 1} indicates whether the exercise et has been an-
swered correctly (1 stands for right and 0 else). In
short, knowledge tracing aims to estimate the proba-
bility P [rt = 1|(e1, k1, r1), ..., (eT−1, kK , rT−1), eT] or
P [rt = 1|(e1, r1), ..., (eT−1, rT−1), eT].

In the following, we will specify the probabilistic
modelling and parameter learning of MAKT. For better
illustration, the key notations are summarized in Table I.

B. Model of MAKT

The framework we propose approach is showed in
Fig.2. The core part of our framework is the multi-head
self-attention layer, which utilizes the attention mecha-
nism to better model the learning process of students.

Input Embedding. We firstly transform learning se-
quence of student into an interaction embedding matrix
ES×2D, where 2D is the latent dimension. Following
[13], we extend the answer value rt to a zero vector
er = (0, 0, ..., 0) with the same D dimensions as the

400

Fig. 2. An illustration of the proposed model.

exercise embedding ek and integrate them into the input
embedding as follows:

x =

{
[er
⊕

ek] , if rt = 0
[ek
⊕

er] , if rt = 1
(1)

Considering the actual situation of different datasets,
the original information is distinct, and we adopt two
methods to initialize ek in this paper. If one exercise re-
lates to one knowledge concept or more, we can construct
a binary knowledge matrix QE×K . However, The number
of feature categories is massive, resulting in the generated
matrix being high-dimensional and sparse. Hence, we
employ an embedding layer to reduce dimensionality and
reshape it into a D-dimensional space (QE×K EE×D).
The other method is to randomly initialize EE×D with an
embedding layer, for it will be updated automatically in
the later training process.

Position Embedding. We do not utilize the recurrent
and convolution units but the positional encoding to
capture sequence information, for the positional encoding
is superior in long-distance feature capture capability and
operational efficiency. There exist multiple options for
position coding [14] and the widely adopted one can be
formulated as follows:

PE(t, 2i) = sin(t/10000i/D)

PE(t, 2i + 1) = cos(t/10000i/D)
(2)

Where t is the absolute sequence of each interaction
and i is the i-th dimension of the input embedding x.
The adopted positional encoding sine and cosine functions
have periodicity. For a fixed-length deviation ∆, PEt+∆

can be expressed as a linear change of PEt, which is
convenient for the model to learn a relative sequence
relationship between interactions.

Self-Attention. We employ the scaled dot-product at-
tention mechanism [15] rather than additive attention,
for this attention mechanism is more computationally
efficient and space-saving. The calculation process of self-
attention is as follows:

Q = WQ(x + ep),K = WK(x + ep), V = WV (x + ep)

Attention(Q,K, V) = softmax(
QKT

√
dk

)V

(3)
where Q,K, V represent the query, key and value

matrix, W∗ ∈ RD×d∗ is the corresponding weight matrix
and d∗ = D/H . The purpose of scaling through

√
dk is to

avoid too large dot product because when the dot product
is too large, the gradient through softmax will be small.
And softmax facilitates the gradient calculation of back
propagation, and smooth the result to the [0, 1] interval.

Multi-head Attention. In order to better satisfy paral-
lel calculation while learning different aspects of attention
in different subspaces, the attention weight of H (Fol-
lowing [15], we set H to 8) head will be calculated as
follows:

Multi− head(Q,K, V) = Concat(head1, ..., headH)WO

headj = Attention(Qj ,Kj , Vj), 1 ≤ j ≤ H
(4)

Where WO ∈ RHD×dk is the corresponding weight
matrix.

Add & Norm. The Add & Norm layer is composed
of Add and Norm. Inspired by ResNet [16], Add is a
residual connection, usually used to solve the problem
of multi-layer network training, allowing the network to
focus only on the current difference. Norm refers to layer
normalization [17], usually utilized in the RNN structure.
Layer normalization converts the input of each layer of
neurons into the same mean and variance, which can
speed up the convergence. The calculation formula is as
follows:

X = LayerNorm(X + Multi− head(X))

X = LayerNorm(X + FFN(X))
(5)

Feed Forward Network. The encoder block consists
of sequentially aligned N copies (Following [15], we
set N to 6) of encoder layers. A single encoder layer
is a multi-headed self-attention layer followed by a feed
forward network (FFN) which is defined by:

FFN(X) = ReLU(W1X + b1)W2 + b2 (6)

where W1,W2 and b1, b2 are weights and biases, re-
spectively. In the end, a fully connected network with
sigmoid activation is leveraged to obtain the final proba-
bility r̂t of the student:

r̂t = Sigmoid(WX + b) (7)

401

TABLE II
STATISTICS OF ALL DATASETS

DataSet Statistics DensityStudents Concepts Records Avg.length
ASSIST2009 4,151 110 325,637 78 0.71

STATICS2011 333 1,223 189,297 568 0.46
Synthetic-5 4,000 50 200,000 50 1.00

C. Objective Function

To learn all parameters in MAKT and the input embed-
ding matrix RS×2D in the training process, the objective
function is to minimize the negative log likelihood of the
observed sequence of student responses. We employ the
cross-entropy loss between the prediction r̂t and actual
label rt with the Adam optimizer [18]:

L = −
T∑

t=1

(rtlog(r̂t) + (1− rt)log(1− r̂t)) (8)

IV. EXPERIMENTS

A. Data Insights

We adopt two real-world public datasets and one syn-
thetic dataset to show the effectiveness of MAKT. Table
II shows the statistics of all datasets.

ASSIST2009: ASSIST2009 is obtained from an on-
line tutoring system named ASSISTments, which covers
student response records in 2009 [19]. ASSISTments
provides high school math study trajectories, but the
original version contains some repeated records, which
will make the experimental results less reliable [20].
Hence, the updated version is utilized in this paper and the
number of skills reduces from 113 to 110. The updated
dataset contains two different versions of skill-builder
and non-skill-builder and we adopt the former, which
makes the preprocessing of knowledge tracing task more
convenient.

STATICS2011: STATICS2011 is collected from en-
gineering mechanics courses in a college [12]. Each
exercise contains multiple problem-solving steps in the
strength study concept. Since there are fewer different
exercises in this dataset, we regard the problem names
and the problem-solving step names as skills.

Synthetic-5: Synthetic-5 is a simulation dataset to
imitate virtual students learning virtual concepts in 2015
while many works have proved that this dataset is well
structured [4]. It is worth noting that each problem has
no specific actual concept and each exercise is simulated
from five hidden knowledge concepts, also containing the
structural relationship between the concepts, the degree
of exercise difficulty and the factors that contribute to
the growth of knowledge structure in the student learning
process.

B. Comparison methods

To illustrate the effectiveness of MAKT, we compare
our model with many other models as follows:

DKT [4]: DKT is a deep learning method that utilizes
a simple recurrent neural network (RNN or LSTM) to
model the exercising process for prediction. We select an
LSTM architecture and consider each unique exercise id
as a concept associated with the exercise.

DKT+ [8]: DKT+ leverages a regularization term
based DKT to enhance the consistency in prediction,
which effectively alleviates the two problems in DKT.
One is that DKT fails to reconstruct the observed input.
The other is the predicted performance for knowledge
components across time-steps is not consistent.

DKVMN [12]: DKVMN is a Memory Augmented
Recurrent Neural Network where in the relation between
different knowledge components are assumed by a key
matrix and the student proficiency of each knowledge
component by a value matrix.

CKT [9]: CKT is a Convolutional Knowledge Tracing
method to model individualization. CKT measures the
prior knowledge from the historical learning interactions
and utilizes a hierarchical convolutional layer to extract
individualized learning rates based on continuous learning
interactions of students.

C. Evaluation Metrics

For providing robust evaluation results, the perfor-
mance was evaluated in terms of Accuracy (ACC) and
Area Under Curve (AUC), which widely adopted in the
binary classification task. Generally, a larger ACC and
AUC value demonstrate better performance.

D. Experimental Results

Student Performance Prediction: The performance
comparison results on three datasets are shown in Table
III. We use bold to mark the best performance and
underline to indicate the best performance other than
MAKT. We can observe that MAKT consistently out-
perform other baseline models on all datasets, which
demonstrates the robustness and superiorities of MAKT.
Additionally, MAKT gains higher promotions on dataset
ASSIST2009 and STATICS2011 with the longer learning
sequence length, which indicates that MAKT can capture
the core interactions without falling into certain local
irrelevant interactions. For the Synthetic-5 dataset, we
suspect that a possible reason for the low improvement is
that since the number of knowledge concepts in Synthetic-
5 is fairly small (five virtual concepts), this hidden
relationship between exercises is not distinguishable and
MAKT only leverages the sequence relationship modelled
by its self-attention mechanism.

Visualization of Attention Weights: Benefiting from
the attention mechanism, MAKT can offer an intuitive

402

TABLE III
RESULTS OBTAINED WITH DIFFERENT MODELS USING THERE DATASETS.

Datasets ACC AUC %Improv.DKT DKT+ DKVMN CKT MAKT DKT DKT+ DKVMN CKT MAKT
ASSIST2009 0.7721 0.7734 0.7632 0.7761 0.7878 0.8215 0.8234 0.8112 0.8256 0.8384 1.5075 // 1.5504

STATICS2011 0.8127 0.8129 0.8113 0.8156 0.8286 0.8273 0.8287 0.8275 0.8304 0.8453 1.5939 // 1.7943
Synthetic-5 0.7511 0.7523 0.7525 0.7542 0.7563 0.8254 0.8262 0.8284 0.8278 0.8297 0.2784 // 0.1569

Average 0.7786 0.7795 0.7757 0.7820 0.7909 0.8247 0.8261 0.8284 0.8279 0.8378 1.1381 // 1.1958

Fig. 3. Visualization of attention weights on different datasets.

0.0

0.2

0.4

0.6

0.8

1.0

(a) ASSIST2009

0.0

0.2

0.4

0.6

0.8

1.0

(b) STATICS2011

0.0

0.2

0.4

0.6

0.8

1.0

(c) Synthetic-5

Fig. 4. An example of individualized knowledge tracing result of student.

and in-depth insight on the prediction result with the
attention weights visualization, which makes the learning
process interpretable at the model level. Fig.3 shows the
heatmap of the attention weight matrix on three datasets,
each small block depicts the average attention weights of
different interaction. An interesting observation is that not
all historical interactions are extremely important and the
higher weight parameters blocks are concentrated towards
the diagonal of the matrix, which can be explained by
the forget behaviour rule of the student learning process,
that is, the recent interactions profoundly establish the
knowledge state of students. Simultaneously, a consid-
erable number of blocks with high attention parameter
weights are still scattered in the matrix. Combining
with three different datasets, we further find that these
interactions share the same knowledge concept with the
final interactions, which can be identified by MAKT. A
more inspiring conclusion is that the attention mechanism
can dig out the hidden relationship between a series of
exercises through their attention weights, which benefits

the construction of Knowledge Graph in the real world.
Visualization of Knowledge Acquisition Tracking:

To make an intuitive and in-depth insight at the instance
level, we visualize the predicted mastery levels (i.e.,
calculated by Eq.(7)) of an exemplified student with the
attached knowledge concepts at each interaction during
the exercising process. For better visualization, we filter
the six most frequent knowledge concepts rather than
distinguishing each specific exercise. As shown in Fig.4,
we can notice that the current knowledge state is related
to both the original knowledge state and the recent in-
teractions. MAKT can dynamically obtain the knowledge
state of the student based on his historical data, which
is considered meaningful for further online education
auxiliary applications in the real world.

Training efficiency: Comparing the other baseline
methods, the computational efficiency of MAKT is ex-
tremely competitive under the same condition. As shown
in the Table IV, MAKT only spends about 6 seconds in
each epoch on a single GPU which is 11.7 less than
the time taken by DKT+, 7 times less than the time

403

TABLE IV
TRAINING EFFICIENCY COMPARISON OF DIFFERENT MODELS ON

THE ASSIST2009 DATASET.

DKT DKT+ DKVMN CKT MAKT
CPU 605 969 344 181 82
GPU 42 70 29 14 6

taken by DKT, 4.8 times less than the time taken by
DKVMN and 2.3 times less than the time taken by CKT.
Similarly, MAKT outperforms these models on a single
CPU because of its parallelization capability.

V. CONCLUSION

In this paper, we propose a multi-head self-attention
based model named MAKT for dynamic knowledge trac-
ing. Specifically, MAKT leverages the historical learning
interactions to effectively predict student performance
on future exercises and dynamically track the student
knowledge state. Simultaneously, MAKT has excellent
interpretability and high training efficiency owing to the
multi-head self-attention layer, which can offer insights
from different levels and support parallel computing.
In the end, extensive experimental results demonstrate
that MAKT outperforms other baseline models in both
ACC and AUC metrics on three different datasets, which
indicates the robustness and superiorities of MAKT.

REFERENCES

[1] M. Yazdani, “Intelligent tutoring systems survey,” Artif. Intell.
Rev., vol. 1, no. 1, pp. 43–52, 1986.

[2] J. Rickel, “Intelligent computer-aided instruction: a survey or-
ganized around system components,” IEEE Trans. Syst. Man
Cybern., vol. 19, no. 1, pp. 40–57, 1989.

[3] A. S. Lan, C. Studer, and R. G. Baraniuk, “Time-varying learning
and content analytics via sparse factor analysis,” in The 20th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’14, New York, NY, USA - August 24 - 27,
2014, S. A. Macskassy, C. Perlich, J. Leskovec, W. Wang, and
R. Ghani, Eds. ACM, 2014, pp. 452–461.

[4] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. J. Guibas,
and J. Sohl-Dickstein, “Deep knowledge tracing,” in Advances in
Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015, pp. 505–513.

[5] W. X. Zhao, W. Zhang, Y. He, X. Xie, and J. Wen, “Automatically
learning topics and difficulty levels of problems in online judge
systems,” ACM Trans. Inf. Syst., vol. 36, no. 3, pp. 27:1–27:33,
2018.

[6] J. Vie, “Deep factorization machines for knowledge tracing,” in
Proceedings of the Thirteenth Workshop on Innovative Use of
NLP for Building Educational Applications@NAACL-HLT 2018,
New Orleans, LA, USA, June 5, 2018, J. R. Tetreault, J. Burstein,
E. Kochmar, C. Leacock, and H. Yannakoudakis, Eds. Association
for Computational Linguistics, 2018, pp. 370–373.

[7] Z. A. Pardos and N. T. Heffernan, “KT-IDEM: introducing item
difficulty to the knowledge tracing model,” in User Modeling,
Adaption and Personalization - 19th International Conference,
UMAP 2011, Girona, Spain, July 11-15, 2011. Proceedings, ser.
Lecture Notes in Computer Science, J. A. Konstan, R. Conejo,
J. Marzo, and N. Oliver, Eds., vol. 6787. Springer, 2011, pp.
243–254.

[8] C. Yeung and D. Yeung, “Addressing two problems in deep
knowledge tracing via prediction-consistent regularization,” in
Proceedings of the Fifth Annual ACM Conference on Learning
at Scale, London, UK, June 26-28, 2018, R. Luckin, S. Klemmer,
and K. R. Koedinger, Eds. ACM, 2018, pp. 5:1–5:10.

[9] S. Shen, Q. Liu, E. Chen, H. Wu, Z. Huang, W. Zhao, Y. Su,
H. Ma, and S. Wang, “Convolutional knowledge tracing: Modeling
individualization in student learning process,” in Proceedings of
the 43rd International ACM SIGIR conference on research and
development in Information Retrieval, SIGIR 2020, Virtual Event,
China, July 25-30, 2020, J. Huang, Y. Chang, X. Cheng, J. Kamps,
V. Murdock, J. Wen, and Y. Liu, Eds. ACM, 2020, pp. 1857–
1860.

[10] S. P. Reise, Item Response Theory. SAGE Publications, 2016.
[11] J. D. L. Torre, “The generalized dina model framework,” Psy-

chometrika, vol. 76, no. 2, pp. 179–199, 2011.
[12] J. Zhang, X. Shi, I. King, and D. Yeung, “Dynamic key-value

memory networks for knowledge tracing,” in Proceedings of
the 26th International Conference on World Wide Web, WWW
2017, Perth, Australia, April 3-7, 2017, R. Barrett, R. Cummings,
E. Agichtein, and E. Gabrilovich, Eds. ACM, 2017, pp. 765–774.

[13] Q. Liu, Z. Huang, Y. Yin, E. Chen, H. Xiong, Y. Su, and G. Hu,
“EKT: exercise-aware knowledge tracing for student performance
prediction,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 1, pp.
100–115, 2021.

[14] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” in Proceedings of
the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, ser. Proceedings
of Machine Learning Research, D. Precup and Y. W. Teh, Eds.,
vol. 70. PMLR, 2017, pp. 1243–1252.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, Eds., 2017, pp. 5998–6008.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 2016, pp. 770–778.

[17] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang,
Y. Lan, L. Wang, and T. Liu, “On layer normalization in the
transformer architecture,” in Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, ser. Proceedings of Machine Learning Research,
vol. 119. PMLR, 2020, pp. 10 524–10 533.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” in 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015.

[19] M. Feng, N. T. Heffernan, and K. R. Koedinger, “Addressing
the assessment challenge with an online system that tutors as it
assesses,” User Model. User Adapt. Interact., vol. 19, no. 3, pp.
243–266, 2009.

[20] X. Xiong, S. Zhao, E. V. Inwegen, and J. Beck, “Going deeper with
deep knowledge tracing,” in Proceedings of the 9th International
Conference on Educational Data Mining, EDM 2016, Raleigh,
North Carolina, USA, June 29 - July 2, 2016, T. Barnes, M. Chi,
and M. Feng, Eds. International Educational Data Mining Society
(IEDMS), 2016, pp. 545–550.

404

Deep Similarity Preserving and Attention-based
Hashing for Cross-Modal Retrieval

1st Shubai Chen
College of Computer and Information Science

Southwest University
Chongqing, China

chansuba@email.swu.edu.cn

3rd Yu Chen
College of Engineering and Technology

Southwest University
Chongqing, China

cy1034429543@email.swu.edu.cn

2nd Song Wu∗

College of Computer and Information Science
Southwest University
Chongqing, China

songwuswu@swu.edu.cn

4th Yuan Yuan
College of Computer and Information Science

Southwest University
Chongqing, China

yy199801@email.swu.edu.cn

Abstract—With the fast progress of deep neural networks and
the quick search efficiency of hashing, deep cross-modal hashing
(CMH) methods have attracted more and more attention. Gen-
erally speaking, the existing CMH methods simultaneously learn
hash functions and hash codes in an end-to-end architecture.
However, they primarily focus on the hash codes generation
stage neglected the losing of rich semantic information in the
hash representations learning stage. Besides, the single-label
supervision information is leveraged, while most instances are
labeled by multiple categories. Thus, we propose a novel Deep
Semantic Preserving and Attention-based Hashing (DSPAH) for
cross-modal retrieval. In the DSPAH, we first use a cross-
level attention block to emphasize significant parts of hash
representations and oversee unnecessary ones. Moreover, a Fine-
Grained Similarity Criterion (FGSC) is proposed to explore the
multiple semantic of image or text instances, helping to learn
robust and optimal hash codes. Extensive experiment results on
two large-scale public datasets have shown the competition of
our proposed DSPAH.

Index Terms—Deep cross-modal hashing, Fine-grained simi-
larity criterion, Cross-level attention

I. INTRODUCTION

Due to the rapid development of search engines and social
networks, exponential growth can be seen in multimedia data
such as images, text, audio, and video. Thus how to efficiently
and effectively retrieve information across these modalities has
become a hot spot called multi-modal retrieval. To be specific,
one may want to obtain all semantically related instances from
the datasets given a text description. However, due to the
discrepancies in distribution and inconsistent representations
among different modalities, this has raised a significant chal-
lenge to unify the gap effectively and efficiently.

Especially, cross-modal retrieval is the most pervasive
method of multi-modal retrieval, which aims to map original
data (images or text) into similarity preserving embedding

DOI reference number: 10.18293/SEKE2021-050

in a common latent space [1]. In this way, instances that
share similar semantic information may have shorter distances,
dissimilar otherwise. The cross-modal retrieval methods can
be grossly split into two classes. Traditionally, real-value
latent representations is adopted such as [2]–[5]. However,
the real-value methods may cause high computational costs
and heavy storage burdens. Thus, another popular method
called cross-modal hashing (CMH) is proposed to save storage
and accelerate the retrieval speed, which leverages Manifold
Learning to generate compact hash codes from original high-
dimension data.

As the Superior performance of deep learning, Deep Neural
Networks (DNN) has shown robust capability in various ap-
plications such as [6]–[10]. To take advantages of DNN, many
cross-modal hashing methods are proposed including deep
cross-modal hashing (DCMH) [11], self-supervised adversarial
hashing (SSAH) [12], self-constraint and attention-based hash-
ing network (SCAHN) [13], triplet-based deep hashing (TDH)
[14] and multi-label semantics preserving hashing (MLSPH)
[15]. However, there are still some issues that need to be solved
in the deep CMH community. Firstly, the existing deep CMH
methods use a ’hard’ metric policy to measure the similarity
between instances, judged by if two instances share at least
one label. However, the simple approximation has neglected
the fact that most instances in large-scale cross-modal datasets
have multiple labels. Secondly, the hash representations gener-
ation and hash codes projection is the equally important part
of cross-modal hashing methods. Furthermore, most of the
existing deep CMH methods concentrate more on the hash
codes generation stage. However, hash representations with
less semantic information and spatial relevance may fail to
generate optimal hash codes.

A superior Deep Similarity Preserving and Attention-based
Hashing (DSPAH) is proposed to solve these problems men-
tioned above. The framework of DSPAH is illustrated in Fig. 1

405

which corporately learns hash representations and binary codes
in an end-to-end architecture. The DSPAH consists of two
main components in the hash representations generation stage.
CNN model is leveraged to learn rich semantic information
from image-modality and text-modality. Moreover, the CNN
model is followed by a cross-level attention level where multi-
level hash representations are concatenated together as the in-
put. Thus the context relationship and informative information
can be obtained by the final hash representations. Moreover,
to take advantage of multi-label information, a novel Fine-
Grained Similarity Criterion (FGSC) is proposed to build
a similarity matrix, which can better explore the semantic
relationship among multiple labels.

The core contributions of DSPAH are listed as follows:
• Firstly, a cross-level attention block is proposed to explore

intensive semantic information. In this module, hash rep-
resentations generated from multi-level are concatenated
based on the CBAM attention mechanism and further
integrated by the adaptive attention matrix, exploring
the context correlation and global dependence from both
channel and spatial view.

• Secondly, a multi-label preserving calculate criterion
called FGSC is proposed to effectively obtain the multi-
label information constraint, further generating robust
hash codes.

• Finally, the DSPAH is applied on two large-scale cross-
modal datasets, and the experimental results illustrate the
superiority of our proposed DSPAH compared with other
state-of-the-art methods.

The rest of this paper is organized as follows. The detailed
description of DSPAH for cross-modal retrieval is presented
in section 2. The experimental results and evaluations are
illustrated in section 3. Finally, we conclude this paper in
section 4.

II. PROPOSED METHOD

A. Problem Defination

We use GT denotes the transpose of G and ‖·‖F denotes the
Frobenius norm. The sign(·) is an element-wise sign function
defined as follows:

sign(x) =

{
1 x ≥ 0
−1 x < 0

(1)

The proposed DSPAH can be expanded to all kinds of
modality (e.g. image, text, audio and video) and we mainly
concentrate on image-modality and text-modality in this paper.
Thus we use oi = (vi, ti, li) to denote the ith training
instance, vi ∈ Rdv , ti ∈ Rdt and li ∈ Rdl are image,
text and label feature vector with dimension dv , dt and dl.
Moreover, the fine-grained similarity matrix is defined as S =
{Svt, Svv, Stt}, where Svv =

{
Svvij | i, j = 1, 2, . . . , N

}
∈

RN×N and Stt =
{
Sttij | i, j = 1, 2, . . . , N

}
∈ RN×N de-

notes the intra-modality similarity matrix of image and text,
Svt =

{
Svtij | i, j = 1, 2, . . . , N

}
∈ RN×N denotes the inter-

modality similarity matrix between image and text.

The most important task of our proposed DSPAH is
learning two discriminative hash functions h(v)(v) and
h(t)(t) for image-modality and text-modality using the
training-set O and similarity matrix S. In the hash rep-
resentations generation stage, hash representations learned
from image-modality and text-modality are represented
by F = {fvi | i = 1, 2, · · · , N} ∈ RN×c and G =
{gti | i = 1, 2, · · · , N} ∈ RN×c. In hash codes projection
stage, B = {Bi | i = 1, 2, · · · , N} ∈ RN×c denotes the final
hash codes from F and G by simply using a sign function
B = sign(F +G).

B. Network Architecture of DSPAH

The overview architecture of DSPAH is illustrated in Fig.
1, which consists of the multi-level hash representations gen-
eration and attention-based interaction module.

Speaking of multiple-level hash representations generation,
both the image-network and text-network use Resnet as the
bone network because of its remarkable performance on com-
puter vision applications. Especially, the original text data is
represented as Bag-of-Words (BoW) vectors and fused into
multi-scale BoW representations. To be specific, a multi-scale
pooling policy is conducted on the BoW vectors to explore
global features, and these vectors are resized into the same
length. Furthermore, to facilitate the Resnet [16], these vectors
are stacked together to make up a matrix. Therefore, the
rich semantics context in text-modality is further explored.
For both image-modality and text-modality, we propose cross-
level attention to capture the context relationship and global
dependency. To be specific, the hash representations from
intermediate layers are generated by global average pooling
(GAP) and convolution layer with a kernel size of 1 × 1.
The novel CBAM [17] is leveraged to capture the context
relationship and global dependency in intermediate layers.
Finally, all of these hash representations are weighted together
as the final hash representations by multiplying the adaptive
attention matrix. Therefore, the final hash representations can
fully obtain the semantic information.

C. Hash Function Learning

In large-scale cross-modal datasets, multi-labels for a single
instance(e.g., image and text) are pretty common. However,
most previous cross-modal retrieval methods measure the
similarity by only one shared label, neglecting the fine-grained
similarity among instances. Thus, we propose a new similarity
measurement policy called Fine-Grained Similarity Criterion
(FGSC) to explore the semantic relationship among instances
better. The FGSC of inter-modality can be defined as follows:

Svtij =
lvi ∩ ltj√
lvi × ltj

(2)

where lvi denotes the label vector of ith image instance and
ltj denotes the label vector of jth text instance. lvi ∩ ltj denotes

the number of shared labels of vectors ith and text.
√
lvi × ltj

406

Fig. 1. The overview architecture of our proposed DSPAH consists of two parts: (1) multi-level hash representations generation: the networks are divided
into several blocks which are weighted by CBAM attention, and then the multi-level hash representations are multiplied by an adaptive attention matrix.
Finally, these multiple layers are concatenated together as the final hash representations. (2) multi-label similarity preserving: this is based on the Fine-Grained
Similarity Criterion (FGSC), which better explores the correlation and relationship of inter-and intra-modality instances.

is the geometric mean of these two label vectors. Similarly,
the FGSCs of intra-modality instances are defined as follows:

Svvij =
lvi ∩ lvj√
lvi × lvj

(3)

Sttij =
lti ∩ ltj√
lti × ltj

(4)

where Svvij denotes the similarity across image-modality and
Sttij denotes the similarity across text-modality. Besides, S =
{Svt, Svv, Stt} ∈ (0, 1). Thus, the hamming-based loss func-
tion is no longer suitable for the continuous similarity value. In
this paper, the Mean Square Error (MSE) based loss function
is adopted to fit the FGSC. Following the common protocol
proposed in DCMH, the inner product < ∗, ∗ >, ∗ ∈ (f, g)
are leveraged to measure the semantic similarity of hash
representations. Therefore, the MSE loss can be defined as
follows:

Linter =
n∑

i=1,j=1

∥∥∥∥ 〈fi, gj〉+ c

2
− svtij · c

∥∥∥∥2 (5)

Lintra-image =
n∑

i=1,j=1

∥∥∥∥ 〈fi, fj〉+ c

2
− svvij · c

∥∥∥∥2 (6)

Lintra-text =
n∑

i=1,j=1

∥∥∥∥ 〈gi, gj〉+ c

2
− sttij · c

∥∥∥∥2 (7)

where fi and gj are used to denote the hash representations of
the ith image instance and jth text instance. c is the length of
hash codes. Since the inner product 〈∗, ∗〉 ∈ [−c, c], the value
range of 〈∗,∗〉+c2 will be the same as s∗∗ij · c.

The purpose of FGSC-based MSE loss is to generate modal-
specific and discriminative hash representations G and F .
However, there is a gap between the hash codes and hash
representations. Moreover, during the learning procedure of
FGSCC-based MSE loss, the similarity between B(v) =
sign(F) and B(t) = sign(g) has been ignored. Since the aim
of CMH methods is to learn high-quality hash functions and
hash codes, we also need to keep the semantic similarity of
B(v) and B(t). Another constraint B(v) = B(t) = B is added
to keep the modal invariance. Accordingly, the quantization
loss is defined as follows:

Lq =
1

c

(
‖B − F‖2F + ‖B −G‖2F

)
(8)

III. OPTIMIZATION

By assembling the above loss functions, the final overall
loss function is given as follows:

min
B,θx,θy

L =Linter + Lintra−image + Lintra−text + Lq
(9)

where θx, θy denote the network parameters of the image-
modality and text-modality. An alternating optimization strat-
egy is employed to optimize equation 9. Some parameters will
be optimized while others are fixed. The whole optimization
algorithm for DSPAH is outlined in Algorithm 1.

IV. EXPERIMENT AND DISCUSSION

This section evaluates the proposed DSPAH on two large-
scale public datasets, MIRFlickr-25K [18], and NUS-WIDE
[19] compared with other state-of-the-art methods.

A. Datasets

MIRFLICKR-25K [18] is a standard benchmark which
contains 25,000 image-text pairs collected from Flickr website

407

Algorithm 1: Optimization algorithm of DSPAH.

Input: Training set {vi, ti, li}Ni=1, intra-modality and
inter-modality similarity matrix Svv, Stt, svt;

Output: Optimized parameters θx and θy of neural
networks and binary codes B;

1 Initialization: Initialize the parameters of neural
networks, the batch size is set to nv = nt = 128,
initialize hash representations of each modality: F and
G, set iteration number iter and other
hyper-parameters.

2 for t=1 to iter do
3 Update the parameter θx of image-network by BP

algorithm:

∂L
∂fik

=
∑
j∈N

(
fTi fj + c− 2 · svvij · c

)
· fjk

+
∑
j∈N

(
fTi gj + c− 2 · svtij · c

)
· fjk

+
2

c
(F −B)

Update the parameter θy of text-network by BP
algorithm:

∂L
∂gik

=
∑
j∈N

(
gTi gj + c− 2 · sttij · c

)
· gjk

+
∑
j∈N

(
fTi gj + c− 2 · svtij · c

)
· gjk

+
2

c
(G−B)

4 end
5 Update binary codes B

B = sign(β(F +G))

Until a fixed number of iterations or convergence;

of different group. Each image is related to several textual
descriptions. 20,015 instances of image-text pair with at least
one of twenty-four labels are selected, which is similar to
DCMH [11]. The text-modality instances are transferred into
1,386-dimensional BoW vectors.

NUS-WIDE [19] The NUS-WIDE includes 268,468 image-
text pairs which all belong to 81 categories. A 1,000-
dimensional BoW vector is generated for each text-modality
instance. In this paper, 190,421 image-text pairs with 21
most common labels have remained, and all instances without
supervised information are removed.

We use 10,000 and 10,500 image-text pairs in MIRFLICKR-
25K and NUS-WIDE for training. Besides, we stochastically
choose 2,000 and 2,100 instances for the query items, and the
remained are treated as the retrieval items.

B. Implementation Details

The DSPAH is conducted on a server with two Nvidia Xp
GPU, and the code is written by Pytorch [20] framework.
The Resnet-34 with four blocks is utilized to learn rich hash
representations. For the image network, the parameters are
initialized by the pre-trained model on ImageNet [21]. In terms
of the text network, the Normal distribution with N

(
µ, σ2

)
with µ = 0 and σ = 0.1 is leveraged to initialize the
parameters. Moreover, pooling sizes of 1, 5, 10, 15, 30 and
50 of BoW vectors are implemented to construct the multi-
scale text matrix. We use the SGD as the optimization, and
the learning rate is set from 10−1.5 to 10−6.5 on 300 epochs
with a mini-batch size of 128.

C. Evaluation and Baselines

To compare the DSPAH with other state-of-the-art methods,
we adopt the Mean Average Precision (MAP) and PR Curves
to measure the hamming ranking and hash lookup. The details
of MAP is defined as follows. Given a query instance q, the
Average Precision (AP) is defined as:

AP (q) =
1

nq

nrerrieval∑
i=1

pqiI(i) (10)

where nq is the number of semantic similar instances of
query instance q in database, nretrieval is the number of total
instances in database. pqi indicates the probability of instances
of top i instances in retrieval set being similar to the query q.
I(i) is an indicator function, where I(i) = 0 denotes the ith
instance is dissimilar to the query q, I(i) = 1 otherwise. For
the nquery instances, the Mean Average Precision (MAP) is
defined as follows:

MAP =
1

nquery

nquery∑
j=1

AP (qj) (11)

Several baseline methods are compared with DSPAH in-
cluding CMSSH [22], SCM [23], GSPH [24], DCMH [11],
CMHH [25], PRDH [26], CHN [27], SepH [28] and SSAH
[12]. The MAP results is illustrated in Table I and the PR
Curves is demonstrated in Fig. 2 and Fig. 3. From the results,
we can get the following observation.
• The DSPAH significantly outperforms other state-of-the-

art methods on 16, 32, 64 bits of hash codes in terms of
MAP and PR Curves, which clearly shows its superiority.
The advance of DSPAH is partly because the cross-level
attention dramatically improves the hash representations
of interest to concentrate on the vital part and ignore the
unconsidered ones.

• The SSAH and DSPAH surpass other deep architecture-
based CMH methods and show competitive results, which
indicates the importance of preserving multiple semantic
labels. The FGSC we proposed in this paper may have the
ability to unify the inter-and intra-modality heterogeneity.

• Deep CMH methods such as DCMH, CMHH, SSAH,
CHN, and PRDH distinctly attain better performance than
other shadow-based CMH methods, including CMSSH,

408

MIRFLICKR-25K NUS-WIDE
Method Image query Text Text query Image Image query Text Text query Image

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
CMSSH [22] 0.5600 0.5709 0.5836 0.5726 0.5776 0.5753 0.3092 0.3099 0.3396 0.3167 0.3171 0.3179

SCM [23] 0.6354 0.5618 0.5634 0.6340 0.6458 0.6541 0.3121 0.3111 0.3121 0.4261 0.4372 0.4478
SePH [28] 0.6740 0.6813 0.6830 0.7139 0.7258 0.7294 0.4797 0.4859 0.4906 0.6072 0.6280 0.6291

DCMH [11] 0.7316 0.7343 0.7446 0.7607 0.7737 0.7805 0.5445 0.5597 0.5803 0.5793 0.5922 0.6014
CHN [27] 0.7504 0.7495 0.7461 0.7776 0.7775 0.7798 0.5754 0.5966 0.6015 0.5816 0.5967 0.5992

PRDH [26] 0.6952 0.7072 0.7108 0.7626 0.7718 0.7755 0.5919 0.6059 0.6116 0.6155 0.6286 0.6349
SSAH [12] 0.7745 0.7882 0.7990 0.7860 0.7974 0.7910 0.6163 0.6278 0.6140 0.6204 0.6251 0.6215
CMHH [25] 0.7334 0.7281 0.7444 0.7320 0.7183 0.7279 0.5530 0.5698 0.5924 0.5739 0.5786 0.5889

DSPAH 0.7978 0.8097 0.8179 0.7802 0.7946 0.8115 0.6498 0.6787 0.6834 0.6396 0.6529 0.6792
TABLE I

MEAN AVERAGE PRECISION (MAP) COMPARISON RESULTS

Fig. 2. Performance on MIRFlickr-25K evaluated by PR Curves

GSPH, SCM, and SePH. This reveals the robust and
advanced character of deep neural networks, obtaining
richer semantic information than the hand-crafted fea-
tures. Therefore, better results can be observed.

V. CONCLUSION

In this paper, cross-level attention and a Fine-Grained
Similarity Criterion (FGSC) are proposed, with the vision of
learning context-relevant hash representations and generating
optimal hash codes. Besides, the attention mechanism can bet-
ter enhance the ability to focus on the image’s and text’s ’right’
area. Evaluations conducted on two datasets demonstrate the
significant performance of DSPAH compared with other CMH
methods. In the future, we are going to use different metrics
to investigate the similarity of embeddings.

ACKNOWLEDGMENT

The authors appreciate helpful comments from the re-
viewers on improving our work. This work was supported

by the NSFC(61806168), Fundamental Research Funds for
the Central Universities (SWU117059), and Venture & Inno-
vation Support Program for Chongqing Overseas Returnees
(CX2018075).

REFERENCES

[1] P. Kaur, H. S. Pannu, and A. K. Malhi, “Comparative analysis on
cross-modal information retrieval: A review,” Computer Science Review,
vol. 39, p. 100336, 2021.

[2] Y. Wang, F. Wu, J. Song, X. Li, and Y. Zhuang, “Multi-modal mutual
topic reinforce modeling for cross-media retrieval,” in Proceedings of the
22nd ACM international conference on Multimedia, 2014, pp. 307–316.

[3] X. Mao, B. Lin, D. Cai, X. He, and J. Pei, “Parallel field alignment
for cross media retrieval,” in Proceedings of the 21st ACM international
conference on Multimedia, 2013, pp. 897–906.

[4] A. Karpathy, A. Joulin, and L. F. Fei-Fei, “Deep fragment embeddings
for bidirectional image sentence mapping,” in Advances in neural
information processing systems, 2014, pp. 1889–1897.

[5] S. Wu, A. Oerlemans, E. M. Bakker, and M. S. Lew, “Deep binary codes
for large scale image retrieval,” Neurocomputing, vol. 257, pp. 5–15,
2017. [Online]. Available: https://doi.org/10.1016/j.neucom.2016.12.070

409

Fig. 3. Performance on NUS-WIDE evaluated by PR Curves

[6] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S.
Lew, “Deep learning for visual understanding: A review,”
Neurocomputing, vol. 187, pp. 27–48, 2016. [Online]. Available:
https://doi.org/10.1016/j.neucom.2015.09.116

[7] X.-F. Han, H. Laga, and M. Bennamoun, “Image-based 3d object
reconstruction: State-of-the-art and trends in the deep learning era,”
IEEE transactions on pattern analysis and machine intelligence, 2019.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[9] S. Wu, A. Oerlemans, E. M. Bakker, and M. S. Lew, “A comprehensive
evaluation of local detectors and descriptors,” Signal Processing Image
Communication, p. S0923596517301170, 2017.

[10] Y. Wang, X. Tang, J. Fan, and G. Xiao, “Weakly supervised
instance segmentation of SEM image via synthetic data,” in IEEE
International Conference on Bioinformatics and Biomedicine, BIBM
2020, Virtual Event, South Korea, December 16-19, 2020, T. Park,
Y. Cho, X. Hu, I. Yoo, H. G. Woo, J. Wang, J. C. Facelli, S. Nam,
and M. Kang, Eds. IEEE, 2020, pp. 2672–2679. [Online]. Available:
https://doi.org/10.1109/BIBM49941.2020.9312978

[11] Q.-Y. Jiang and W.-J. Li, “Deep cross-modal hashing,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 3232–3240.

[12] C. Li, C. Deng, N. Li, W. Liu, X. Gao, and D. Tao, “Self-supervised
adversarial hashing networks for cross-modal retrieval,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4242–4251.

[13] X. Wang, X. Zou, E. M. Bakker, and S. Wu, “Self-constraining and
attention-based hashing network for bit-scalable cross-modal retrieval,”
Neurocomputing, 2020.

[14] C. Deng, Z. Chen, X. Liu, X. Gao, and D. Tao, “Triplet-based deep
hashing network for cross-modal retrieval,” IEEE Transactions on Image
Processing, vol. 27, no. 8, pp. 3893–3903, 2018.

[15] X. Zou, X. Wang, E. M. Bakker, and S. Wu, “Multi-label semantics
preserving based deep cross-modal hashing,” Signal Processing: Image
Communication, vol. 93, p. 116131, 2021.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision & Pattern
Recognition, 2016.

[17] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, “Cbam: Convolutional block
attention module,” 2018.

[18] M. J. Huiskes and M. S. Lew, “The mir flickr retrieval evaluation,” in
Proceedings of the 1st ACM international conference on Multimedia
information retrieval, 2008, pp. 39–43.

[19] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide:
a real-world web image database from national university of singapore,”
in Proceedings of the ACM international conference on image and video
retrieval, 2009, pp. 1–9.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019, pp. 8026–8037.

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[22] M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Paragios, “Data
fusion through cross-modality metric learning using similarity-sensitive
hashing,” in Computer Vision & Pattern Recognition, 2010.

[23] D. Zhang and W.-J. Li, “Large-scale supervised multimodal hashing with
semantic correlation maximization.” in AAAI, vol. 1, no. 2. Citeseer,
2014, p. 7.

[24] Devraj, Mandal, Kunal, N, Chaudhury, Soma, and Biswas, “Generalized
semantic preserving hashing for cross-modal retrieval.” IEEE Transac-
tions on Image Processing A Publication of the IEEE Signal Processing
Society, 2018.

[25] Y. Cao, B. Liu, M. Long, and J. Wang, “Cross-modal hamming hash-
ing,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 202–218.

[26] E. Yang, C. Deng, W. Liu, X. Liu, D. Tao, and X. Gao, “Pairwise
relationship guided deep hashing for cross-modal retrieval,” in Thirty-
first AAAI conference on artificial intelligence, 2017.

[27] Y. Cao, M. Long, J. Wang, and P. S. Yu, “Correlation hashing network
for efficient cross-modal retrieval,” arXiv preprint arXiv:1602.06697,
2016.

[28] Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-preserving hashing
for cross-view retrieval,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3864–3872.

410

An Efficient ROS Package Searching Approach
Powered By Knowledge Graph

Long Chen1, 2, Xinjun Mao1, 2
∗
, Yinyuan Zhang1, 2, Shuo Yang1, 2, Shuo Wang1, 2

1College of Computer,National University of Defense Technology, Changsha, China
2Key Laboratory of Software Engineering for Complex Systems, National University of Defense Technology, Changsha, China

{chen long, xjmao, yinyuanzhang, yangshuo11, wangshuo15} @nudt.edu.cn

Abstract—Over the past several years, the Robot Operating
System (ROS), has grown from a small research project into the
most popular framework for robotics development. It offers a
core set of software for operating robots that can be extended
by creating or using existing packages, making it possible
to program robotic software that can be reused on different
hardware platforms. With thousands of packages available per
stable distribution, encapsulating algorithms, sensor drivers, etc.,
it is the de facto middleware for robotics. However, finding the
proper ROS package is a nontrivial task because ROS packages
involve different functions and even with the same function, there
are different ROS packages for different tasks. So it is time-
consuming for developers to find suitable ROS packages for
given task, especially for newcomers. To tackle this challenge,
we build a ROS package knowledge graph, ROSKG, including
the basic information of ROS packages and ROS package char-
acteristics extracted from text descriptions, to comprehensively
and precisely characterize ROS packages. Based on ROSKG, we
support ROS packages search with specific task description or
attributes as input. A comprehensive evaluation of ROSKG shows
the high accuracy of our knowledge construction approach. A
user study shows that ROSKG is promising in helping developers
find suitable ROS packages for robotics software development
tasks.

Index Terms—Knowledge Graph, ROS package searching,
NLP

I. INTRODUCTION

Writing software for robots is difficult, particularly as the
scale and scope of robotics continue to grow. As a framework
for building robotics software, ROS is designed with the
promise of making development easier through modular design
and code reuse1. It offers an abstraction layer between the
hardware and application layers, providing hardware manipu-
lation primitives that hide the heterogeneity of the underlying
hardware, as well as helping manage the communication
between robots.

ROS also provides a package management system to sim-
plify code reuse, so developers can contribute their own
applications back to ROS in the form of packages. It is widely
used by robotics developers and contains 6,191 packages
across its 13 distributions2. The ROS architecture and package

DOI:10.18293/SEKE2021-063
* Corresponding author.
1http://wiki.ros.org/ROS/Introduction
2https://index.ros.org/stats/

system have led to the success of ROS: ROS is considered as
the de facto standard for robot programming [4].

When developers need a new feature, developers use a
search engine to look for an existing package that implements
the feature. But for beginners, since they do not know the
ecosystem well, they may choose the inappropriate ROS pack-
age during the reuse process, causing the task to fail [4]. For
ROS-based robotics software development, ROS Wiki3 is the
most commonly used knowledge search community, especially
for newcomers. It provides the most basic keyword search
function to meet the most basic requirements for developers to
find knowledge to solve tasks. Like many other search engines,
what it returns are related web links, not direct answers to the
task, so developers need to find relevant software packages
from the detail page of these web links. Moreover, it can
return a limited number of links (Related ROS packages, Q&A
posts, tutorials), and requires the developer to click on the
link and read the details page to obtain relevant information.
Once the searched keywords are not included in the relevant
ROS package, it becomes difficult to retrieve and developers
need to constantly adjust according to the existing retrieval
information, which is time-consuming.. So the current search
for ROS package knowledge does not meet the needs of
developers well.

In this paper, we focus on extracting the rich semantic
expression of ROS package and its related information(e.g.,
related dependencies and messages, etc.). Based on this, we
can more effectively characterize the ROS package to better
support the recommendation of the related ROS package.
Specifically, we firstly design a web crawler framework to
obtain ROS package descriptions and some structured infor-
mation (e.g., sensor, motor and robot which ROS package
belongs to). Then we use natural language processing methods
to parse the description text to obtain more fine-grained
features. In order to make up for the lack of description
information, we extract and analyze features from the ROS
package names. Finally, we apply our approach to the Kinetic
distribution of the ROS packages, and obtain 25,484 entities
and 62,854 relationships. All the above information serves as
the foundation for constructing a comprehensive Knowledge
Graph of ROS package (ROSKG) to enable efficient ROS

3http://wiki.ros.org/

411

package search. We conduct two experiments to evaluate our
approach. A comprehensive evaluation of ROSKG shows the
high accuracy of our knowledge construction approach. A user
study shows that ROSKG is promising in helping developers
find suitable ROS package for robotics software development
tasks.

Our main contributions are summarized as follows:
• We introduce the idea of using knowledge graph based

on semantics representation of package information for
the task of ROS package searching. To the best of our
knowledge, this is the first study to build a knowledge
graph of ROS package and address the problem of ROS
package selection.

• We leverage techniques of relation linking and text pro-
cessing to convert semi-structured and unstructured ROS-
related knowledge into a knowledge graph, and develop
a search engine, which uses natural language as query
input, to solve ROS package searching problems.

• We evaluate the quality of the key steps for ROS package
knowledge graph construction and the usefulness of the
knowledge graph on ROS package searching.

The rest of the paper is organized as follows. In the
next section, we review some related works. The details of
our approach are presented in Section III. We provide the
evaluation of our work in Section IV. We discuss the threats of
validity in Section V. Finally, we conclude our work in Section
VI.

II. RELATED WORK

A. ROS

In recent studies, researchers pay more attention to the
ecology of ROS and the dependencies between ROS packages,
etc. Pichler et al. studied the interdependencies between ROS
packages on GitHub, BitBucket, and the rosdistro, and how
quality propagates through the dependency network [10]. In
an empirical study consisting of interviews and a survey
with ROS developers, Estefo et al. investigated the difficulties
that ROS users encounter when reusing ROS packages, main
contribution bottlenecks in ROS ecosystem [4]. In a separate
prior study, Estefo et al. studied code duplication in ROS
packages [3]. Alami et al. conducted a qualitative study to
better understand quality assurance practices within the ROS
community [1]. Kolak et al. focused on ecosystem structure,
collaboration, code reuse, and ecosystem health. They found
that the most widely used ROS packages belong to a small
cluster of foundational working groups (FWGs) [6].

The above is mainly concerned with the problems of ROS
ecosystem and the status quo of ROS packages reuse but does
not involve how to better realize ROS packages reuse.

B. Knowledge Graph in Robotics Development

Recently, knowledge graphs as a form of structured knowl-
edge have drawn great research attention from both the
academia and the industry [5], but few researchers have studied
the knowledge graph about robotics development. Zamanirad
et al. designed a bot programming platform that dynamically

 Task of
Searching

ROS Package

Entity
Linking

Characteristics
Matching

KG Construction

ROS Package Search

Structured
Content

 Text
Description

Internal
Information of
ROS Package

Hardware

ROS
Package

Meta-
package

Feature
Extraction

Functionality
& Category

Mining the Deep
Characteristics

Characteristics
Extraction

(TOP-K)
Search Result

KG of
ROS

Package

Fig. 1: The Overall Framework of Our Approach

synthesizes natural language user expressions into API invoca-
tions and constructed an API knowledge graph to encode and
evolve APIs to help robot understand the natural language
spoken by humans [14]. Although their knowledge graph is
applied in the field of robot, it is not specific to the robotics
software development, what we are more concerned about.

III. METHODOLOGY

We propose a knowledge graph based approach to overcome
the barriers mentioned above. Fig. 1 presents the key steps
in our approach, which contains two main parts: mining
ROS package knowledge graph from official website page
information and searching ROS package based on the mined
knowledge graph. We first use the popular web crawler tool
Scrapy4 to crawl structured content and text description. Then
we extract package-related knowledge from structured content
and establish connections, including the relevant content of the
software package what it provides (launch file, service, plugin
and message, etc), metapakckage (A set of ROS packages
related to a certain function) and the hardware to which
it belongs (sensor, motor or robot, etc). In order to get
more characteristics information about ROS packages, we
use natural language processing methods to obtain category
and functionality from the description text to express ROS
packages more abundantly. Since the description information
of the ROS package is not very complete, and some even
do not have it at all, therefore we extract features from the
package name. At last, we build a knowledge graph called
ROSKG based on the knowledge above for retrieval.

A. ROS Package Characteristic Extraction

Category and functionality: In order to dig out more
information about the ROS package, we parse the package
description sentence to extract the category and functionality
of the package. We first use Stanford CoreNLP tool [9]
to obtain the Part-of-Speech(POS) tags of the description
sentence. Tokenization is used to break the text into words,
phrases, or symbols. POS will represent the category of
words which has similar grammatical properties. Then we

4https://scrapy.org/

412

S

Category

ROS NNP interface NN

for IN Category

the DT grid JJ map NN library NN

to TO Functionality

manage VB two-dimensional JJ grid NN maps. NN

Fig. 2: Result of Category and Functionality Chunking

use rule-based chunking technique [15] to chunk category and
functionality of the package. In our system, the category and
functionality are identified by the regular expressions as shown
in Table I. The terms in the table have the same meaning as
[15]. Specifically, we extract verb (or verb phrase) followed
by noun (or noun phrase) as functionality and noun (noun
phrase) as category. We stipulate that noun and noun phrase
in functionality do not belong to category. For example, The
description of ROS package “grid map ros”, “ROS interface
for the grid map library to manage two-dimensional grid
maps.”, we chunk category “ROS interface” and “the grid map
library”; functionality “manage two-dimensional grid maps” as
shown in Fig. 2.

TABLE I: Regular Expression of Different Chunks
Name Regular Expression

Functionality (MD)*(VB.*)+(CD)*(DT)?(CD)*(JJ)*(CD)*-
(VBD|VBG)*(NN.*)*(POS)*(CD)*(VBD|VBG)*-
(NN.*)*(VBD|VBG)*(NN.*)*(POS)*(CD)*(NN.*)+

Category (CD)*(DT)?(CD)*(JJ)*(CD)*(VBD|VBG)*(NN.*)*-
(POS)*(CD)*(VBD|VBG)*(NN.*)*-
(VBD|VBG)*(NN.*)*(POS)*(CD)*(NN.*)+

Feature: Not all ROS packages have description informa-
tion, which are even incomplete or missing. It is not enough
to rely on description information to characterize the ROS
package. We notice that the words that make up a package
name can well reflect its characteristics. For example, turtle-
bot3 in the package turtlebot3 navigation reflects this package
belonging to the robot turtlebot3, and navigation reflects that
it is a package of the navigation type.

After the above analysis, we extract the last word of the
package name of all ROS packages and analyze. However,
there are many words that are just different in expression,
but the actual meaning is the same in the robot software
development process. So we classify words with the same
meaning into one category and use one of the words to
represent them. For example, “msg” is the abbreviation of
“message”, “message” is the singular form of “messages”,
so we use “message” to represent them. After the above
processing, we select words that appear more than 5 times and
analyze their actual meaning. Then we give their definitions.
As shown in table II, we show the most frequent words (top
10) and their definitions.

B. Linking Entity to ROS Package

Since the category and functionality of ROS package is
originally extracted from the description of ROS package, the
connection is naturally established. In this phase, we mainly
introduce how to link the extracted entities to ROS package,

TABLE II: Definitions of ROS Package Features (TOP 10)
Feature Definition

Message packages related to message types, which contains
specific message definitions, e.g., geometry msgs

Description packages related to URDF description,
e.g., heron description

Config packages automatically generated with all the
configuration, including launch files and scripts,
e.g., hironx moveit config

Driver packages related to driver of hardware,such as
camera, sensor, robot, e.g., dynamixel driver

Gazebo packages related to gazebo simulation,
e.g., turtlebot3 gazebo

Control packages related to controller to ensure the
safe operation, e.g., roch safety controller

Support packages to support to realize certain functions,
e.g., choreo kr5 arc support

ROS packages related to ROS wrapper, e.g., packml ros

Tool packages related to additional tool kit,
e.g., nodelet topic tools

including package feature introduced in Section III-A and
hardware entities.

Hardware linking:Through the analysis of the package
name above, we find that in general, the first word of the
package name is likely to represent hardware information. So
we construct an entity dictionary, which contains all hardware
words, and we match hardware entities crawled from ROS
Wiki with the dictionary to establish the linking. In order
to more accurately match and establish relationship with
ROS package, we have also sort out synonyms for hardware
entities. For example, “Velodyne HDL-64E 3D LIDAR” is
often referred to simply as “Velodyne”. Furthermore, we take
the hardware dictionary to match the description to establish
potential relationship.

Feature linking: According to the source of the feature,
it is mainly reflected in the package name. But we find
that some packages contain more than one feature, such as
“ainstein radar gazebo plugins”, which includes gazebo and
plugin feature. So we split the package name according to
the underscore and use the constructed feature dictionary to
match to establish a relationship with ROS package. Hardware
entities are generally more domain-oriented vocabularies, and
feature entities are some commonly used vocabularies with a
higher frequency, so hardware can establish potential relation-
ships through description information. If the feature entities
do the same, it may establish many relationships that don’t

413

ROS Package

Robot
Category Robot

Launch
File

Function

Plugin

include

includebelong to

belong to

Service

Message

Metapackage

belong
 to

provide

Category

is

Sensor/Motor

Sensor/Motor
Category

Feature

has function

is

is

provide

ha
s f

ea
tur

e

has dependency

has

has

involved

Fig. 3: Conceptual Schema of ROS Package Knowledge Graph

exist.
The other relationship can be naturally established by

structured data, such as dependency, metapackage which the
package belongs to. These relationships can establish relation-
ships between packages that seem to be unconnected on the
surface, for example, the ROS package “turtlebot3 navigation”
depends on the other ROS package “amcl”.

C. ROSKG Empowered ROS Package Search

For a specific ROS package searching, the ROSKG can
group the ROS package that have the same attributes, e.g.,
sensor, robot, metapackage, etc, so developers can perform
search tasks based on these attributes and view the related
content, such as service, message, etc.

For ROS package searching related to specific tasks, given
a query phrase or sentence in natural language description,
which may not involve entities such as package names, we
first use the parsing techniques mentioned in Section III-B to
detect functionality and category in the query. We use the start-
of-the-art pre-trained word embedding BERT [2] to separately
vectorize the components in the query and the components in
the description sentence in the knowledge graph. The function-
alities and categories extracted from the description sentence
have been vectorized in advance. We then compute the phrase
similarity by the cosine similarity of phrase embedding. After
matching the functionalities and categories compartments of
the query sentence and the components in the ROSKG, we
rank the ROS package in the ROSKG by the sum of the
similarity of the matched counterparts. Finally we give top 10
ROS packages according to the similarity under the premise
that above the user-specified threshold (generally 0.8).

D. Proof-of-Concept Implementation

We apply our knowledge graph construction methods de-
scribed in Section III-B and Section III-C to the Kinetic
distribution and use Neo4j5, a graph database, to construct the
knowledge graph for the ROS package. The resulting ROSKG
consists of 25,484 entities and 62,854 relationships. Related
concepts and their relations can be explained by the conceptual
schema shown in Fig. 3.

5http://neo4j.com/

IV. EVALUATION

We conduct evaluations to explore the following research
questions:

• RQ1: How is the intrinsic quality of the knowledge
captured in the constructed ROSKG?

• RQ2: How does ROSKG perform in ROS package
searching task compared with ROS Wiki engine?

A. RQ1: Quality of The Constructed ROSKG

The knowledge is extracted from two main sources: struc-
tured document content and textual description. Since knowl-
edge extracted from structured information is intrinsically
accurate, we mainly evaluate the accuracy of the knowledge
extraction from text (i.e., functionality extraction, category
extraction, feature linking).

1) Protocol: Similar to previous studies [8] [11] [13], we
adopt a sampling method [12] to ensure that the ratio observed
in the sample is within 5 confidence interval, and is extended to
the population at 95% confidence level. We randomly select
349 functionalities, 369 categories, and 342 feature links to
conduct the experiment.

Two developers (who are not involved in this study and
familiar with ROS) independently perform the examination.
All decisions are binary (the accuracy rates are Acc1 and Acc2
respectively). For the data instances that the two annotators
disagree, they have to discuss and come to a consensus. We
compute the final accuracy after resolving the disagreements
(AccF) and compute Cohen’s Kappa agreement (Kap.) [7] to
evaluate the inter-rater agreement. Based on the consensus
annotations, we evaluate the quality of the created knowledge
about ROS package.

2) Results and Analysis: The results are shown in Table III.
We can see the agreement rate are all above 0.78, indicating
substantial or almost perfect agreement. The accuracy is
generally high (above 0.91) except for the category extracted
from description sentences(above 0.73).

TABLE III: Accuracy of ROS Package Knowledge
Aspect Acc1 Acc2 AccF Kap.
Functionality 92.3% 91.7% 92.0% 0.78
Category 77.0% 73.4% 75.3% 0.80
Feature Linking 100.0% 100.0% 100.0% 1.00

Typical problems of ROS package characteristics extrac-
tion include: 1) POS tagging or dependency parsing error,
e.g., “This package” from sentence “This package contains
numerous examples of how to use SMACH” is tagged as a
noun; 2) meaningless characteristics, e.g., “is a ROS-Package”
from sentence “This is a ROS-Package for libviso2 a library
for visual odometry..” is extracted as a functionality of the
ROS package “libviso2”; 3) incomplete sentences caused
by incorrect HTML parsing or sentence splitting, e.g., “The
move base package provides an implementation of an action
(see the”; 4) overly simplistic description sentence, e.g., de-
scription sentence just repeats the ROS package name, but is
extracted as a category.

414

TABLE IV: Statistic of 11 Tasks including Subtasks in “ROS Robotics Projects”
Task Subtask Related package

1.Use ROS, opencv and dynamixel servo 1-1 driver for V4L USB camera usb cam
servos for face detection and tracking 1-2 servo motor for dynamixel dynamixel motor

1-3 opencv vision opencv
2.Build a chatbot like Siri in ROS 2-1 to translate commands sound play
3.Use ROS to control embedded circuit 3-1 ROS for arduino platforms rosserial arduino
boards 3-2 ROS for TivaC Launchpad boards rosserial tivac
4.Operate the robot remotely using gestures 4-1 turtlebot simulation turtlebot gazebo

5.Object detection and recognition 5-1 object detection and recognition find object 2d
object recognition

6.Use ROS and TensorFlow for deep learning 6-1 convert ROS message to OpenCV image data type cv bridge
6-2 use OpenCV capture object to capture camera image cv camera

7.Run ROS on MATLAB and Android 7-1 Android development package android core
rosjava

8.Building an autonomous mobile robot 8-1 to generate maps map server
9.Use ROS to create self-driving cars 9-1 Velodyne HDL-64E 3D LIDAR velodyne
10.Use VR headsets and Leap Motion to 10-1 gesture sensor leap motion
remotely control robots 10-2 visualization tool rviz

11.Control the robot through the network

11-1 websocket interface rosbridge suite
rosbridge server

11-2 to set and publish joint state values for a given URDF joint state publisher
11-3 HTTP Streaming of ROS Image in Multiple Formats web video server

The feature linking have 100% accuracy, which is unsur-
prising because the features are extracted form package name
and manually checked and filtered. So the feature linking can
maintain a better result.

Our ROS package characteristics and relationship extrac-
tion methods for constructing ROS package knowledge
graph are basically accurate, which can support practical
use.

B. RQ2: Usefulness Evaluation

We evaluate the usefulness of ROSKG in ROS package
searching tasks, that is, choosing the most suitable ROS
package for the specific task.

1) Task: We extract the main tasks from the book “ROS
Robotics Projects”6 written by Lentin Joseph, which is an
introductory book for ROS learners and has a high authority.
As shown in Table IV, the book mentions 11 ROS robotics
development tasks, and each task involves several subtasks,
each of which contains 1-2 ROS packages. Finally, we summa-
rize 18 subtasks, involving 21 ROS packages. The participants
can formulate any query they wish based on the search task
descriptions and the hints from previous search results.

2) Baseline: We use ROS Wiki’s search engine as the
baseline tool. For ROS-based robotics development, ROS Wiki
is the most commonly used knowledge search community,
especially for newcomers.

3) Protocol: We recruit 6 master students from our school
and all of them have almost no ROS-based robotics software
development experience. We believe these students are quali-
fied for our study. Furthermore, they also simulate the target
audience that our tool aims to assist, i.e., developers who may
lack relevant knowledge in finding suitable ROS packages for
the specific task. Then we randomly allocate them into two

6http://wiki.ros.org/ROS Robotics Projects

TABLE V: Accuracy of ROS Package Knowledge
Experimental Group

Ave Task Time(seconds) #Correct Answers
P1 55.4 13
P2 53.9 14
P3 56.4 16
Ave±stddev 55.2±1.0

Control Group
P4 79.8 12
P5 83.6 12
P6 88.2 14
Ave±stddev 83.9±3.4

equivalent groups: the control group uses the ROS Wiki’s
search engine (P1-P3), while the experimental group uses our
ROSKG to complete the tasks (P4-P6).

4) Results and Analysis: Table V shows the average task
completion time and the number of correct answers by each
participant in the two groups. We can see that two groups
have the similar answer correctness but the experimental group
complete the task faster with narrower standard deviation than
the control group. The participant in the experimental group
completed the tasks 52.0% faster (55.2 seconds on average)
than the control group.

Through interviews with participants, we know that the
control group participants often have to scroll the document
back and forth in ROS Wiki and compare several documents
to pinpoint and cross-validate the function of ROS packages.
In contrast, the experimental group participants can view ROS
package information in a more structured way, which can help
them understand the function of the ROS package faster. We
also look into the correct answer rate for each task, for some
tasks, both search engines perform well, such as Task#6/11.
But neither our search engine nor ROS Wiki performs well on
Subtask#5-1. That’s because the information about the ROS

415

package “find object 2d” cannot be obtained from our query
statement.

ROS Wiki can return very relevant online documents for
user queries, including tutorials, Q&A post and documents,
but not everyone can find the correct ROS package through
these resources. For example, the answer to Subtask#8-1 is
hidden in a Q&A post, P6 finds it but P4&P5 don’t.

We find that the participants have difficulty in choosing
since there are many similar packages related to the task.
For example, P5 searches both “rviz” and “octovis” for
Subtask#10-2. The relevant information for the two result actu-
ally contain “visualization tool”, but “octovis” is a specialized
tool for “OctoMap”, which may not meet the current task. P3
makes the similar mistake when carrying out the Subtask#1-2.

One of the biggest problems with ROS Wiki search is that
its search method is only keyword matching and only show
one page. Once the searched keywords are not included in
the relevant ROS package, it becomes difficult to retrieve and
time-consuming. For example, participants in control group
all return the wrong answer for Subtask#2-1, because the
information of the highest ranked ROS package only contains
keywords “commands” and “translate” separately, not phrases
“translate commands”. But for our search engine, we use the
fuzzy query method, even if it is not able to match keywords
completely, we can return the relevant software package based
on the similarity.

Although by no means conclusive due to the small-scale
of our study, our pilot user study demonstrates that our
approach significantly decreases the amount of time devel-
opers need for ROS package search tasks.

V. THREATS TO VALIDITY

A threat to internal validity is that some software packages
do not have descriptive information, that is to say, no textual
information is provided, which will make it impossible to link
to the corresponding software package via natural language.
Another threat to internal validity is that our database is
not complete enough to include all distributions of ROS
packages. In the future, we will continue the collection work
through automatic methods, which will contribute to further
development.

The major threat to external validity is the generalization of
our results and usefulness study is small scale. In the future,
we will reduce this threat by applying our approach to more
open tasks related to robotic software development and release
our knowledge graph for public evaluation.

VI. CONCLUSION

In this paper, we propose an efficient ROS package search
approach based on knowledge graph. We leverage advanced
NLP techniques for extracting the rich characteristics to better
represent ROS packages. Our evaluation confirms the quality
of different kinds of knowledge in the knowledge graph, and
the usefulness of the generated ROS package search results. In
the future, we will refine text processing techniques and design

more rules to select meaningful characteristics to improve and
extend our approach.

ACKNOWLEDGEMENT

This work was supported in part by the National Key
Research and Development Program of China under Grant
2018YFB1004202.

REFERENCES

[1] Adam Alami, Yvonne Dittrich, and Andrzej Wasowski. Influencers of
quality assurance in an open source community. In 2018 IEEE/ACM 11th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), pages 61–68. IEEE, 2018.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[3] Pablo Estefó, Romain Robbes, and Johan Fabry. Code duplication in
ros launchfiles. In 2015 34th International Conference of the Chilean
Computer Science Society (SCCC), pages 1–6. IEEE, 2015.

[4] Pablo Estefo, Jocelyn Simmonds, Romain Robbes, and Johan Fabry.
The robot operating system: Package reuse and community dynamics.
Journal of Systems and Software, 151:226–242, 2019.

[5] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S
Yu. A survey on knowledge graphs: Representation, acquisition and
applications. arXiv preprint arXiv:2002.00388, 2020.

[6] Sophia Kolak, Afsoon Afzal, Claire Le Goues, Michael Hilton, and
Christopher Steven Timperley. It takes a village to build a robot: An
empirical study of the ros ecosystem. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
430–440. IEEE, 2020.

[7] J Richard Landis and Gary G Koch. An application of hierarchical
kappa-type statistics in the assessment of majority agreement among
multiple observers. Biometrics, pages 363–374, 1977.

[8] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei
Liu, and Xuejiao Zhao. Improving api caveats accessibility by mining
api caveats knowledge graph. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 183–193. IEEE,
2018.

[9] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose
Finkel, Steven Bethard, and David McClosky. The stanford corenlp nat-
ural language processing toolkit. In Proceedings of 52nd annual meeting
of the association for computational linguistics: system demonstrations,
pages 55–60, 2014.

[10] Marc Pichler, Bernhard Dieber, and Martin Pinzger. Can i depend on
you? mapping the dependency and quality landscape of ros packages.
In 2019 Third IEEE International Conference on Robotic Computing
(IRC), pages 78–85. IEEE, 2019.

[11] Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming
Zhu, and Jianling Sun. Api-misuse detection driven by fine-grained
api-constraint knowledge graph. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 461–472.
IEEE, 2020.

[12] Ravindra Singh and Naurang Singh Mangat. Elements of survey
sampling, volume 15. Springer Science & Business Media, 2013.

[13] Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai,
Bing Xie, and Tuo Wang. A learning-based approach for automatic
construction of domain glossary from source code and documentation. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 97–108, 2019.

[14] Shayan Zamanirad, Boualem Benatallah, Moshe Chai Barukh, Fabio
Casati, and Carlos Rodriguez. Programming bots by synthesizing natural
language expressions into api invocations. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 832–837. IEEE, 2017.

[15] Xuejiao Zhao, Zhenchang Xing, Muhammad Ashad Kabir, Naoya
Sawada, Jing Li, and Shang-Wei Lin. Hdskg: Harvesting domain specific
knowledge graph from content of webpages. In 2017 ieee 24th inter-
national conference on software analysis, evolution and reengineering
(saner), pages 56–67. IEEE, 2017.

416

KatGCN: Knowledge-Aware Attention based
Temporal Graph Convolutional Network for

Multi-Event Prediction
Xin Song, Haiyang Wang, Kang Zeng, Yujia Liu, and Bin Zhou∗

College of Computer, National University of Defense Technology
Changsha,China

Email: {songxin, wanghaiyang19, zengkang, liuyujia, binzhou}@nudt.edu.cn

Abstract—Social events are due to gradually changing relations
between entities including citizens, organizations, and national
governments. Predicting multiple co-occurring events of different
types in the future can help analysts understand social dynamics
better and make quick and accurate decisions in advance.
However, due to the overlook of the knowledge (e.g., event
actors and different relations between them), existing methods
are insufficient to model the structural and temporal dependence
of events with different types simultaneously to better realize the
prediction of future multiple co-occurring events. In the paper,
we propose a novel Knowledge-aware attention based temporal
Graph Convolutional Network (KatGCN) for predicting multiple
co-occurring events of different types. We model social events as
temporal event graph and extract static features (e.g., event back-
ground, topic keywords) from event content to enhance semantic
of event graph. We design knowledge-aware attention based
graph aggregation method to capture the structure dependence
of co-occurring events with different types. We apply temporal
encoding to capture the temporal dependence between temporally
adjacent events. Empirical results on five-country datasets show
that KatGCN outperforms state-of-the-art methods. Further
studies verify the effectiveness and interpretability of our model.

Index Terms—multi-event prediction, knowledge-aware atten-
tion, temporal Graph Convolutional Network

I. INTRODUCTION

Social events such as protests, cooperation, and fights occur
frequently and have a significant impact on society. It is
highly desirable to predict multiple co-occurring events of
different types, aka, multi-event, in advance to reduce the
potential social upheaval and damage caused. Prior work
[1] [2] mainly focused on predicting the scale of events or
whether a given-type event will occur in the future. They have
achieved good performance in the prediction of given-type
events. However, as for multi-event prediction, they ignore
the potential dependence of multiple co-occurring events given
that different models are trained for different types of events.

Currently, social events are often extracted from news
articles and structured as temporal knowledge graph with
additional textual features [3], also called temporal event
graph. As shown in Fig. 1, temporal event graph is a sequence
of event graph in ascending time order. Each event graph with
a timestamp is composed of multiple co-occurring events of

∗Corresponding author
DOI reference number:10.18293 / SEKE2021-089

t-kTime: ...

...

t-1

Israeli

Iran

 Abduct, hijack, or
take hostage

British

 Reject

Use unconventional
violence

Iran

Israeli

20190701 20190706

American

Threaten

British

Express intent
to cooperate

Threaten

Iran

t

Iran denies claims
about seizure of British

oil tanker in Gulf.

BritishIsraeli

?

? ?

American American

Fig. 1. An example of temporal event graph. It is composed of multiple
co-occurring events of different types under different timestamps.

different types, including event actors (as nodes) and event
types (as edges). For instances, an event that occurred on t−1,
was Iran reject British. Identifying knowledge of temporal
event graph, such as event actors and their relations, can
provide historical clues for predicting multiple co-occurring
events of different types at the future timestamp t. In addition,
event content also contains some important features (e.g.,
background information), such as Gulf, oil tanker etc. Incorpo-
rating such information can enhance the semantic expression
of temporal event graph for better prediction.

However, realizing such multi-event prediction problems in
the real world faces many challenges:
• C1: Unstructured event content can enhance the semantic

expression of event graphs. How to achieve heteroge-
neous data fusion is a challenging issue.

• C2: Multiple co-occurring events imply the structural
dependence. How to adaptively model the local neigh-
borhood information of event graphs to capture structural
dependence remains a challenge.

• C3: Event types among actors in a temporal event graph
change significantly over time. How to model the tempo-
ral dependence between temporally adjacent events with
different types is also a key issue.

To address the aforementioned challenges, we proposed
a novel Knowledge-aware attention based temporal Graph
Convolutional Network (KatGCN) to predict multiple co-
occurring events with different types in the future timestamp.
Specifically, we model the social events from open source
media as temporal event graph, and extract the background
information and topic keywords from event content to en-
hance semantic. To capture the local structural dependence

417

of multiple co-occurring events, we design the knowledge-
aware attention based graph aggregation method. Finally,
we leverage the long-short term memory network to encode
temporal dependence over temporal event graph for multi-
event prediction.

Our contributions are summarized as follows:
• We design a novel knowledge-aware attention based

graph aggregation method to capture the structural de-
pendence of multiple co-occurring events.

• We develop a new model KatGCN for multi-event pre-
diction, which integrates event content, structural depen-
dences of event graphs and temporal dependence.

• We conduct extensive experiments on five-country
datasets to verify the effectiveness of KatGCN and
demonstrate the interpretability through a case study.

II. RELATED WORK

Our work is closely related to many literatures on events
prediction and knowledge graph learning.

A. Spatio-Temporal Event Prediction

Most existing machine learning methods for event predic-
tion are only suitable for Euclidean or grid like data. For
example, a linear regression model [4] utilized tweet frequency
to predict the occurrence time of future events. Zhao et al [5]
designed a new predictive model based on topic model that
jointly characterizes temporal evolution in terms of both the
semantics and geographical burstiness. Besides, more complex
models, such as multi-task multi-class deep learning model
(e.g., SIMDA [6], MITOR [1]), was proposed to predict the
subtypes of future events and the scale of spatial events.
Recently, Graph Convolutional Network (GCN [7]) has been
proposed to address non-Euclidean data in many domains,
such as social networks. For instance, DynamicGCN [2] was
proposed to encode temporal text features into graphs for
forecasting societal events and identifying their context graphs.
Besides, REGNN [8] was proposed to learn the impact of
historical actions and the surrounding environment on the
current events for real-time event prediction.

B. Knowledge Graph Representation

Knowledge graphs (KG), which store real-world facts, is a
form of multi-relation graphs. Since each fact changes over
time, temporal knowledge graph (TKG) is generated.

Extensive studies have been done on modeling static, multi-
relation graph data. For example, RGCN [9] was proposed
to deal with the multi-relation graph directly by extending
GCN, but it may face over-parameterization as the number
of relations increases. Recently, attention mechanism has
been applied to knowledge graph representation due to high
efficiency and flexibility in modeling graph data. Wang et
al [10] developed a novel model KGAT, which explicitly
models the high-order connectivity in KG, propagating the
embeddings from a node’s neighbors to refine the node’s
embedding. Besides, RGHAT [11] was proposed to effectively
utilize the neighborhood information of an entity. But the

above methods aim to learn the embeddings of nodes and
ignore the embeddings of relations. Therefore, CompGCN [12]
was proposed to jointly embed both nodes and relations in a
multi-relation graph by leveraging a variety of entity-relation
composition operations from knowledge graph embedding
techniques, which solves the over-parameterization problem.

There are also attempts to model TKG. RE-NET [13] was
designed to predict future interactions. EvolveGCN [14] has
been proposed for link prediction to capture the dynamism
of the graph sequence through using an RNN to evolve the
GCN parameters. In addition, a graph learning framework
Glean [3] based on event knowledge graphs was developed
to incorporate both relational and word contexts.

III. METHODOLOGY

We provide the technical details of our proposed model
KatGCN. Fig. 2 shows an overview of KatGCN. The key
objectives are (1) integrating the semantic features of event
content into event graphs; (2) utilizing neighborhood informa-
tion to capture the structural dependencies between multiple
co-occurring events; (3) encoding temporal dependence over
different timestamps for multi-event prediction.

A. Problem Definition

Temporal Event Graph (TE graph). TE graph is built on
a sequence of event graphs in ascending time order [3]. Each
event graph is a multi-relation directed graph with a times-
tamp, where entities represent event actors and relations rep-
resent event types. Let E be a finite set of entities (nodes) and
R be a finite set of relations (edges). An event can be defined
as a quadruple (subject entity, event type, object entity)t,
represented as (s, r, o)t, where s, o ∈ E and r ∈ R. We
denoted a set of events at time t as Gt = {(s, r, o)t}. A TE
graph can be presented as G = {Gt−k,Gt−k+1, . . . ,Gt}.

Problem Formulation. We transform the task of multi-
event prediction into a multi-label classification problem to
model the occurrence probability of different events at t+ 1:

{Gt−k,Gt−k+1, . . .Gt}
model→ P (Yt+1 | Gt−k, ...,Gt) (1)

Where Yt+1 ∈ R|R| is a vector of event types.

B. Semantic Enhancement

For challenge C1 of Section I, we introduce the se-
mantic enhancement module. We use the pre-trained model
sent2vec [15] to get the initial embedding vector h(•) ∈ Rd of
entities, relations and keywords. However, entities, relations
and event content are always closely related. Therefore, we
extract background and topic keywords from the event content
to enhance the semantic expression of event graphs.

1) Entity Semantic Enhancement: We introduce the entity
semantic enhancement to incorporate backgrounds into event
graphs. For instance, as shown in fig. 1, an event (Iran Reject
British) mentioned that Iran denies claims about seizure of
British oil tanker in Gulf. Words such as oil tanker, Gulf, show
the event background, which can further enhance the semantic
integrity of event graphs to improve prediction results.

418

Knowledge-Aware Attention

1e

2e

3e 4e
1r

2r

3r

3r
4r

5e

6e

Relation-aware
attention

Entity-aware
attention

t-k t-k+1

TE graph 4e 3e
5e

7e
1r 2r

4r

Semantic
Enhancement

Graph
Aggregation

1e

2e

3e 4e
1r

2r

3r

3r
4r

5e

6e

4e

5e
3e

6e 7e
5r

6r 7r
1r

Semantic
Enhancement

Semantic
Enhancement

Semantic
Enhancement

Node
embedding

Edge
embedding

Node
embedding

Edge
embedding

Node
embedding

Edge
embedding

Temporal
Encoding

LSTM LSTM LSTM
Prediction

MLP

t

Knowledge-Aware
Attention

CompGCN

Knowledge-aware
attention

CompGCN

Knowledge-aware
attention

CompGCN

1e

2e 3e 5e 6e

1r 2r 3r
1 1,e r

1 2,e r
1 3,e r

3 1 2| ,e e r
2 1 1| ,e e r

5 1 3| ,e e r 6 1 3| ,e e r

Graph Aggregation

1e 5e

6e

3r

+

3e

2e

2r

1r

+

1 3,e r

Wq

1 2,e r

1 1,e r

...

...

2 1 1| ,e e r

3 1 2| ,e e r

6 1 3| ,e e r
5 1 3| ,e e r

Fig. 2. System framework of the proposed model KatGCN for multi-event prediction. Input data consists of temporal event graph based on social events;
We introduce semantic enhancement module to enrich the semantic information of event graph. Then, we design a knowledge-aware attention based graph
aggregation method to capture the structural dependencies between multiple co-occurring events. Finally we feed the sequence of TE graph embedding into
LSTM to capture the temporal dependence, and add a multi-layer perceptron (MLP) to predict the probability of co-occurring events at t+ 1.

For a given entity e in Gt, we obtain the top ten relevant
background words based on TF-IDF algorithm from all the
event content at t to enhance the semantic of e, as follows:

h′e,t = tanh

Wf ·

he,t ;
∑

word ∈Tope10,t

hword

 ∈ Rd (2)

Where Wf ∈ Rd×2d is a learnable weight matrix, and ; is the
concatenation operator. If e has no related words, we use zero
vector to represent semantic. Then we can get the new entity
embedding vector h′e,t (includeing h′s,t or h′o,t) at t.

2) Relation Semantic Enhancement: Event graphs contain
many edges, which represent event types. Obviously, events
with the same event type have similar topic keywords. For
example, protest events usually include such words as demon-
strate, strike, disturbance, etc. But Yield events usually contain
such words as surrender, ousted, etc. To expand the difference
between different event types for better relations embedding,
we extract topic words for each event type based on LDA
model [16] to enhance the semantic of relation r, as follows:

h′r,t = tanh

Wk ·

hr,t ;
∑

word ∈Li,t&r→Li

hword

 ∈ Rd

(3)
Where Li,t = [li,1, . . . , li,n]t is i-th row of topic keywords
matrix Lt generated from LDA model at t, which represents
a set of keywords of n topics for i-th event type in Gt. Thus,
we can get a new relation (edge) embedding vector h′r,t at t.

C. Knowledge-Aware Attention based Graph Aggregation

For challenge C2 of Section I, we design a novel knowledge-
aware attention based graph aggregation method to fully cap-

ture the structural dependence between multiple co-occurring
events.

1) Knowledge-Aware Attention: Considering that the event
graph is a multi-relation graph, the embedding of relations
(edges) cannot be ignored. Motivated by GAT [17], we pro-
pose a new knowledge-aware attention mechanism, including
entity-aware attention and relation-aware attention, to distin-
guish the importance of neighboring entities and relations.

Relation-Aware Attention. Considering that different rela-
tions have different weights when expressing the same entity,
we design relation-aware attention. For entity s, the relation-
aware score represents the weight of each outgoing relation
connected to the entity, defined as:

ats,r = Attention
(
W1h′s,t,W1h′r,t

)
(4)

αts,r =
exp

(
LeakyReL U

(
mT · ats,r

))
∑
rj∈Ns

exp
(

LeakyReLU
(
mT · ats,rj

)) (5)

Where h′s,t, h
′
r,t ∈ Rd are the embedding vectors of entity

s and relation r at t, respectively. W1 and m are training
parameters. Ns is a set of relations with s as the subject entity.
The relation-aware attention score αs,r represents the weights
of outgoing relations r when representing the entity s.

Entity-Aware Attention The weights of neighboring en-
tities under the same relation may also be different, which
inspires the entity-aware attention. We design entity-aware
attention to capture the difference in importance between
different entities based on the same relation. We regard the
object entities based on the same relation as a group, then we
calculate the entity-aware attention score, which is defined as:

bto|s,r = Attention
(
W2a

t
s,r,W2h′o,t

)
(6)

419

βto|s,r =
exp

(
LeakyReLU

(
nT · bto|s,r

))
∑
oj∈Ns,r

exp
(

LeakyReLU
(
nT · btoj |s,r

)) (7)

Where h′o,t is the embedding of the entity o under relation r
and entity s. Ns,r represents a set of object entities of s under
relation r. W2 and n are training parameters. The entity-aware
attention score βto|s,r shares all the object entities information
of the same subject entity under the same relation at t, which
is beneficial to capture the association between different co-
occurring events under the same relation.

2) Graph Aggregation: The event graph is multi-relation
directed graph. We need to get the embedding of entities and
relations to get the event graph representation. Inspired by
CompGCN [12], we design a novel knowledge-aware attention
based CompGCN to learn the the event graph representation.

Specifically, We leverage the entity-relation composition
operation [18] based on the knowledge-aware attention to
incorporate the embedding of entities and relations into the
GCN. For an entity s in Gt, we apply the knowledge-aware
attention based CompGCN to update its embedding vector:

h
′,(l+1)
s,t = f

 ∑
(r,o)∈N(s)

W (l)
q Φ

(
αts,r h

′,(l)
r,t , β

t
o|s,r h

′,(l)
o,t

)
(8)

Here, Φ : Rd × Rd → Rd is a composition operator. We
choose multiplication as Φ. h

′,(l)
r,t and h

′,(l)
o,t denote feature

embedding in l-th aggragation layer for relation r and entity
o, respectively. Wq is a relation-specific parameter. f(•) is
the ReLU activation function. Next, we update the embedding
vector of relation r in Gt :

h
′,(l+1)
r,t = W

(l)
relh

′,(l)
r,t (9)

Where, W (l)
rel is a learnable transformation matrix in the l-

th layer, which can project all the relations to the same
embedding space as entities, so that the prediction task can
perform operations on the nodes and edges uniformly.

To summarize, the advantage of our graph aggregation
lies in distinguishing the importance of different neighboring
entities and relations. We apply two layers to realize the
aggregation of two-hop neighborhoods. For Gt, we obtain
the embedding matrix He

t of entities and Hr
t of relations.

D. Event Prediction

1) Temporal Encoding: For challenge C3 of Section I,
we utilize a temporal encoding module to capture temporal
dependence between temporally adjacent events. Given a
sequence of embedding matrix of entities and relations, i.e.,{

He
t−k:t,H

r
t−k:t

}
, we apply LSTM to encode historical infor-

mation in the TE graph, aiming to model temporal dependence
from the graph sequence. To reduce the spatial of feature
embeddings and obtain salient feature, we employ the max
pooling operation over the embedding matrix of entities and
relations, respectively. Then, we feed them into the LSTM

model to get the historical global embedding Xt:

Xt = LSTM ([p (He
t) ; p (Hr

t)] ,Xt−1) (10)

Where, p(•) represents the max pooling operation applied
element-wise over all nodes or edges.

2) Multi-event Prediction: Through temporal encoding, we
have obtained the historical embedding Xt up to time t. Then,
we model the probability of multiple co-occurring events in
the future timestamp t+ 1 based on TE graph:

P (Yt+1 | Gt−k, ...,Gt) = σ (WµXt) (11)

We feed the Xt into a MLP to calculate the probability of
different event types. We define the MLP as a linear softmax
classifier parameterized by Wµ. σ is a nonlinear function.

Next, we adopt the categorical cross-entropy [19] loss:

L = − 1

|R|
∑
i∈R

yi ln

(
exp (ŷi)∑
j∈R exp (ŷj)

)
(12)

Where ŷi is the model prediction for event type i before the
nonlinear function (σ) in (11) .

IV. EXPERIMENTS AND RESULTS

We evaluate the performance of KatGCN for multi-event
prediction. We aim to answer the following key questions:
(1) Whether KatGCN achieve satisfactory predicting results
compared with other baselines; (2) Whether different modules
in KatGCN can improve the experimental results better; (3)
Whether the results of KatGCN have better interpretability.

A. Datasets and Evaluation Metrics

The experimental evaluation was conducted on the Global
Database of Events, Language, and Tone event data (GDELT1).
It contains political events designed to assess national and
international crisis events. These events are divided into 20
main types and 220 subtypes such as Appeal, Yield, Protest
etc. Each event is coded into 58 fields including date, actor
attributes (actor1, actor2), event type, source (event URL) etc.
In this paper, we focus on all subtypes of events and select
country-level datasets from five countries (Iran, Iraq, Saudi
Arabia, Syria, and Turkey) from January 1, 2018 to June 20,
2020. We split the dataset of each country into three subsets,
i.e., train(80%), valid(10%), test(10%). The time granularity
is one day. We use the three metrics to evaluate the results of
the experiment, including F1-score, F2-score and Recall.

B. Comparative Methods

We compare KatGCN with some state-of-the-art baselines:
• DNN: We feed TF-IDF text features to a deep neural

network for events prediction.
• RE-NET [13]: It contains a recurrent event encoder and

a neighborhood aggregator to infer future facts.
• Glean [3]: This is a temporal graph learning method with

heterogeneous data fusion for predicting multi-event.
Next, we conduct ablation studies:

1https://www.gdeltproject.org/

420

TABLE I
PREDICTION RESULTS OF KATGCN AND BASELINES OVER ALL DATASETS.

Method Iran Iraq Saudi Arabia Syria Turkey

F1 F2 Recall F1 F2 Recall F1 F2 Recall F1 F2 Recall F1 F2 Recall

DNN 49.08 54.71 59.62 53.07 58.44 65.57 47.21 51.72 55.81 54.86 59.07 60.59 57.71 59.46 65.67
RE-NET 56.20 60.21 62.99 55.46 62.04 68.82 54.82 59.06 66.25 56.08 63.58 68.97 60.04 64.77 70.52
Glean 57.20 64.88 73.06 59.05 70.25 74.60 56.18 63.24 70.16 58.65 65.47 73.21 61.55 67.04 73.47

KatGCN-semantic 66.15 77.04 79.62 66.04 72.05 76.50 62.88 67.01 72.99 59.94 67.70 77.03 67.02 70.67 77.52
KatGCN-attention 60.54 68.02 71.93 64.09 69.03 75.29 59.01 62.55 69.55 57.90 62.54 71.20 63.05 68.34 74.37
KatGCN 68.33 78.83 79.95 67.34 72.37 77.59 64.07 68.67 73.69 61.27 68.75 77.25 67.66 72.84 78.26

50 100 150 200

0.65

0.70

0.75

0.80

F1
F2
Recall

(a) Embedding Dimensions(d)

F1 F2 Recall0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
1-layer
2-layer
3-layer
4-layer

(b) Layers of Aggregation(l)

5 7 10 14
0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

F1
F2
Recall

(c) Time Step of History(k)

Fig. 3. Sensitivity Analysis.

• KatGCN-semantic: without the semantic enhancement
module. We only consider the structure-graph information
and temporal dependency in the TE graph.

• KatGCN-attention: without the knowledge-aware atten-
tion module. We only use the classical CompGCN to
achieve event graph aggregation.

C. Experiments Results

We evaluate the prediction performance of our proposed
model across five datasets. To avoid errors caused by random-
ness, we obtain an average of 10 experiments on each dataset.
Table. I presents comparison and ablation results.

1) Prediction Performance: Our model KatGCN outper-
forms all other baselines on five datasets. From the above
comparison results, we have the following observations:
• The difference of F-score and Recall across different

datasets may be due to the different distribution of event
types in each country.

• The DNN has the weakest performance than other meth-
ods, which shows that simple static features ignore the
potential relations between events with different types and
are less effective in multi-event prediction.

• KatGCN presents the best performance on the five
datasets. The reason is that we introduce a knowledge-
aware attention mechanism to make full use of the
neighborhood information of the event graph.

• Graph based methods (RE-NET, Glean, KatGCN) are ob-
viously better than static features based methods (DNN),
which shows that the graphs can model structural depen-
dence between different events (e.g., sharing actors).

2) Ablation Experiments: From the results of ablation ex-
periments, we can observe the following findings:
• Overall, the results of the variant methods show poorer

performance than KatGCN.
• The performance of KatGCN-attention drops signifi-

cantly, which suggests knowledge-aware attention plays
an important role in the performance improvement.

• The semantic enhancement is also essential, which can
slightly improve the performance of multi-event predic-
tion by enriching the semantics of event graphs.

D. Sensitivity Analysis

We study the parameter sensitivity analysis of KatGCN,
mainly including: the embedding dimensions (d), layers of
graph aggregation (l), and the time step of history (k):

1) Embedding Dimensions: We study how the embed-
ding dimensions affect the model performance. As shown in
Fig. 3(a), the performance improves obviously with d increases
when d is below 100. Higher d will not bring significant
performance improvement and may cost more training time.

2) Layers of graph aggregation: The number of layers
l represents the hops of neighbors that nodes aggregate.
Fig. 3(b) shows the impact of different l. Compared with 1-
layer, 2-layer significantly improves the performance. But the
performance is almost unchanged when l increases. We infer
that there is overfitting due to the increase in parameters.

3) Time Step of History: We need to encode events infor-
mation of past k time step. Fig. 3(c) illustrates the performance
with different k. The performance reaches the best when k is
7. But larger k is not likely to go higher performance.

E. Case Study

We present a case to show how the proposed model identi-
fies historical event information to predict multi-event in the
future. Then we verity the interpretability of knowledge-aware
attention based graph aggregation method via an example.

1) Identify historical events: We select a series of social
events from the Iran datasets as a case. We utilize the TE
graph of past week to successfully predict multiple events on
January 16, 2020. As shown in Fig. 4, we describe a series of
social events about the shooting down of Ukraine International
Airlines Flight. We find that student initiated an event of
demonstrate or rally on January 11. Then, government criticize
or denounce Ukrain on January 12 and citizen try to express
intent or negotiate to Iran and threaten the Tehran on January

421

Tehran
Iran

Citizen Student

R
ej

ec
t

0.
06

2

Ukrain

Ex
pr

es
s i

nt
en

t t
o

m
ee

t
or

 n
eg

ot
ia

te

0.
09

5

Regime Host a visit 0.008

(a) Historical TE graph

0.062
0.0430.035

0.006

(c) Knowledge-Aware Attention Scores(b) Prediction Result

2020-01-16

Threaten
Use conventional military force

Express intent to meet or negotiate

Demonstrate or rally

0.54

0.49

0.43

0.4

Tehr
an

GOV

IranCitiz
en

Express intent to
meet or negotiate

Stud
ent

Ukr
ain

Criticize or
denounce
2020-01-12

2020-01-11

Pol
ice

U
se

 c
on

ve
nt

io
na

l
m

ili
ta

ry
 fo

rc
e

20
20

-0
1-

15

2020-01-13

Fig. 4. An example temporal event graph about the social event the shooting down of Ukraine International Airlines Flight for our case study.

13 and 14 respectively. The events that occurred between
different actors and temporal dependence were successfully
captured by our model. In the prediction result, our model
correctly predicted the possible events on January 16.

2) Interpretability: Benefiting from the knowledge-aware
attention, we show the interpretability of our model. As shown
in Fig. 4, We take some co-occurring events on January 13,
2020 as an example. we chose citizen as the central actor, and
calculated different attention scores of neighboring relations
and entities during aggregation. We observe that the event of
Fight with small arms and light weapons has larger attention
score. Besides, for the event of Express intent to meet or
negotiate, the entity Ukrain has a larger attention score than
Iran. This is the result we expected, and also consistent with
the historical events and our prediction result.

V. CONCLUSION

In the paper, we propose a Knowledge-aware attention
based temporal Graph Convolutional Network (KatGCN) for
multi-event prediction. Specifically, we first model social
events as TE graph and extract event background and topic
keywords from event content to enhance semantic expression
of event graphs. Then, we design a knowledge-aware attention
based graph aggregation method to fully use the neighborhood
information and capture structural dependency between co-
occurring events. Finally, we utilize temporal encoding to
capture temporal dependence between temporally adjacent
events. Experiments on five-country datasets show KatGCN
significantly outperforms the state-of-the-art baselines and has
interpretability. Future work will consider predict event actors
of different events to infer a complete social event.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China under Grants No.2018YFC0831703 and Postgradu-
ate Scientic Research Innovation Project of Hunan Province
CX20200015.

REFERENCES

[1] Y. Gao and L. Zhao, “Incomplete label multi-task ordinal regression for
spatial event scale forecasting,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, 2018.

[2] S. Deng, H. Rangwala, and Y. Ning, “Learning dynamic context graphs
for predicting social events,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
pp. 1007–1016, 2019.

[3] S. Deng, H. Rangwala, and Y. Ning, “Dynamic knowledge graph based
multi-event forecasting,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
pp. 1585–1595, 2020.

[4] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock
market,” Journal of computational science, vol. 2, no. 1, pp. 1–8, 2011.

[5] L. Zhao, F. Chen, C.-T. Lu, and N. Ramakrishnan, “Spatiotemporal
event forecasting in social media,” in Proceedings of the 2015 SIAM
international conference on data mining, pp. 963–971, SIAM, 2015.

[6] Y. Gao, L. Zhao, L. Wu, Y. Ye, H. Xiong, and C. Yang, “Incomplete label
multi-task deep learning for spatio-temporal event subtype forecasting,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 3638–3646, 2019.

[7] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016.

[8] W. Luo, H. Zhang, X. Yang, L. Bo, X. Yang, Z. Li, X. Qie, and
J. Ye, “Dynamic heterogeneous graph neural network for real-time event
prediction,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 3213–3223,
2020.

[9] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional net-
works,” in European semantic web conference, pp. 593–607, Springer,
2018.

[10] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge
graph attention network for recommendation,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 950–958, 2019.

[11] Z. Zhang, F. Zhuang, H. Zhu, Z. Shi, H. Xiong, and Q. He, “Relational
graph neural network with hierarchical attention for knowledge graph
completion,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, pp. 9612–9619, 2020.

[12] S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar, “Composition-based
multi-relational graph convolutional networks,” 2019.

[13] W. Jin, M. Qu, X. Jin, and X. Ren, “Recurrent event network: Au-
toregressive structure inference over temporal knowledge graphs,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 6669–6683, 2020.

[14] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. Schardl, and C. Leiserson, “Evolvegcn: Evolving graph
convolutional networks for dynamic graphs,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, pp. 5363–5370, 2020.

[15] P. Gupta, M. Pagliardini, and M. Jaggi, “Better word embeddings
by disentangling contextual n-gram information,” in NAACL-HLT (1),
pp. 933–939, Association for Computational Linguistics, 2019.

[16] D. Blei, A. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach.
Learn. Res., vol. 3, pp. 993–1022, 2003.

[17] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[18] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of
relational machine learning for knowledge graphs,” Proceedings of the
IEEE, vol. 104, no. 1, pp. 11–33, 2015.

[19] A. K. Menon, A. S. Rawat, S. Reddi, and S. Kumar, “Multilabel
reductions: what is my loss optimising?,” 2019.

422

SolDetector: Detect Defects Based on Knowledge
Graph of Solidity Smart Contract

Tianyuan Hu, Zhenyu Pan, Bixin Li
School of Computer Science and Engineering

Southeast University, Nanjing, China

Abstract—Smart contract security is one of core security issues
in the application of blockchain. In recent years, attacks on
smart contracts occur frequently, there are a lot of researches
concerning on smart contract security issues. However, almost
all solutions proposed in these researches are low precision
and high False Negative Rate(FNR). In this paper, we propose
a defect detection method for checking security of Solidity
smart contract based on knowledge graph. Therefore, we first
construct knowledge graph of smart contracts by fully integrating
syntax and semantic information of Solidity source code; then,
we define defect patterns by analyzing defect characteristics;
furthermore, we define inference rules for defects based on
knowledge graph and defect patterns; finally, we detect defects
by SPARQL query. We also implement a tool named SolDetector
and perform experiment on three different datasets, which shows
that SolDetector is effective and efficient.

Index Terms—smart contract, knowledge graph, defect detec-
tion

I. INTRODUCTION

As a distributed public ledger technology in peer-to-peer
network, blockchain provides an innovative method to store
information, execute transactions, and build trust in an untrust-
ed environment. Even though Blockchain technology provides
many new mechanisms to solve security issues compared to
traditional technologies. However, blockchain security is a
bottleneck affecting its wide use because of the existence
of vulnerabilities in smart contracts, consensus protocols,
infrastructure code, etc.

Ethereum, as a representative of public chain, uses a high-
level programming language called Solidity to write its s-
mart contract. In Ethereum, a smart contract is actually a
collection of codes, including various functions and various
states generated by the code running process. It is compiled to
Ethereum Virtual Machine (EVM) instructions for blockchain
deployment. Once published on Ethereum platform, smart
contracts will be executed on all nodes in the network as
a program, and cannot be modified. If the deployed smart
contract’s code is insecure, software vulnerabilities may be
exploited by malicious attackers. As smart contract code
involves digital assets, it may cause huge losses once the
defects of the contract code are used. Thus, how to ensure
the security of the smart contract is very important.

Over the past few years, the automated analysis tools
for smart contracts have made progress. Mainstream defect

This paper was supported by the National Key Research and Development
Program of China(No.2019YFE0105500).

DOI reference number: 10.18293/SEKE2021-133

detection methods can be divided into static analysis [1]–[3]
and dynamic analysis [4], [5]. Static analysis focuses on syntax
analysis of source code, which is not suitable for complex logic
analysis. For some defects with complex logic, static analysis
has a low precision. Dynamic analysis has a high precision
because it detects real smart contract vulnerabilities during
contract executions. But dynamic analysis fails to achieve
sufficient code coverage, which ignores some syntax errors
and produces false negatives. So there are two open challenges
in detecting smart contract.

How to increase the precision of the contract defect detec-
tion method and keep low false negatives?

How to detect more defect types of smart contract and
extend the method flexibly?

In this paper, we propose a defect detection method for
smart contract in Solidity based on knowledge graph to
improve the precision and find more defects. We summarize
our contributions as follows:
• The knowledge graph of smart contract is constructed,

including the ontology layer and the instance layer.
• A defect detection method is proposed for checking

security of Solidity contract based on knowledge graph,
which realizes defect localization by inference rules and
SPARQL.

• A tool called SolDetector is implemented to fully auto-
mate the analysis of contracts.

• An evaluation is performed to demonstrate the effective-
ness and efficiency of SolDetector over three different
datasets including 24,583 smart contracts.

The rest of the paper is organized as follows. Section II
introduces the background knowledge of smart contract defect
and knowledge graph. Section III discusses the knowledge
graph construction of smart contract. Section IV details defect
detection of smart contract based on knowledge graph. Section
V evaluates SolDetector by experiment. Section VI discusses
related work. Finally, Section VII concludes the paper and
suggests future work.

II. BACKGROUND KNOWLEDGE

A. Smart contract defect

A contract defect is an error, flaw or fault in a smart
contract that causes it to produce an incorrect or unexpected
result, or to behave in unintended ways [6]. Smart contract
defects are mainly caused by coding and may be related to

423

developers, implementation language, compilers, and execu-
tion mechanism of blockchain system. We collected smart
contract researches and 16 kinds of contract defects with
characteristics are concluded, including Missing Reminding
Execution Results defect, Balance Manipulation defect,Integer
Overflow and Underflow defect, etc.

B. Defect pattern

The defect pattern is an abstract representation for defects
capturing defect characteristics, including core elements, re-
lationships between elements and restrictions on elements. A
reasonable definition of defect pattern implies satisfaction of
the contract defect. For example, a defect pattern of Reentran-
cy defect is defined as below.

1. ReentrancyPattern ≡
2. ∃ containAssignment. Assignmentu
3. ∃ callFunction. FunctionCallu
4. (Assignment, follow, FunctionCall)u
5. (FunctionCall, without, gasLimitation)
In the definition, a pattern is composed of core elements,

relationships and other restrictions. Core elements in Reen-
trancy defect pattern are Assignment(line2) and Function-
Call(line3). The relationship between Assignment(line2) and
FunctionCall is follow(line4). There is also a gasLimitation
on FunctionCall(line5). A core element involved in the defect
pattern can be described as a class in knowledge graph.
Similarly, a relationship can be described as a object property
between two classes, which restricts the logical relationship
between elements. Specific defects not only have logical rela-
tionship restrictions between elements, but also have limitation
on elements themselves(line5).

C. Knowledge graph

Knowledge graph is a technical to describe knowledge and
construct connections between all things in the world using
graph models [7]. It consists of nodes and edges. Nodes
are individuals or abstract concepts. Edges are properties
of individuals or relationships between individuals. Based
on knowledge graph, we can identify, discover and infer
complex relationships between things and concepts from data.
Knowledge inference is the process of inferring unknown facts
or relations based on existing facts or relations in the graph
and applying certain rules to draw logical conclusions. The
knowledge graph of smart contracts represents the basic syntax
and semantic of smart contracts. Furthermore, more complex
unknown facts that can be obtained by inferring.

III. KNOWLEDGE GRAPH CONSTRUCTION OF SMART
CONTRACT

Fig.1 depicts knowledge graph construction process. Knowl-
edge graph is constructed based on the source code of a smart
contract. Combined with Solidity grammar, Abstract Syntax
Tree (AST) is generated to extract information for building
knowledge graph. The knowledge graph of smart contract in-
tegrates two layers: ontology layer describing abstract concepts
and instance layer describing concrete facts.

Fig. 1. Knowledge graph construction process

A. Ontology layer

Ontologies are artifacts used to model and represent knowl-
edge related to a specific domain in an explicit way [8]. A
typical ontology consists of a finite number of terms and
relations between them. Terms are important concepts of the
given domain. The smart contract focused in the paper is
written in Solidity. Therefore, how to model and represent
the Solidity by ontology is illustrated in this section.

The purpose of ontology layer is to represent Solidity in
terms of concepts and relations. In this paper, the ontology
layer describes code elements and corresponding relationship
of Solidity source code. Code elements are modeled as classes
and relationships between code elements are modeled as object
properties.

For example, a Solidity code snippet is shown in Fig.2.
The contract has four main code elements, including a s-
tate variable, a function, a function call and an assignment.
Four main classes can be abstracted from the code snip-
pet, including Contract, Function, StateVar, FunctionCall and
Assignment. Correspondingly, relationships between classes
can be concluded, such as hasStateVar, containAssignment.
Hence, object properties can be abstracted as hasFunction,
containAssignment and hasStateVar.

The illustration of the class and object property for the
code snippet1 can only represent part of key elements. Full
knowledge graph definition of smart contract contains 13 types
of classes and 26 types of object properties.

Fig. 2. Solidity code snippet1

B. Instance layer

As the definition of classes and object properties in ontology
layer, the next step is to extract required information from
source code to build the instance layer and construct the entire
knowledge graph. In Fig. 1, the information extractor extracts
key facts as individuals and attaches relationships between
individuals based on AST of source code. An abstract syntax
tree parser ANTLR generates AST of smart contract source

424

code. Information in each AST node can be assessed by visitor.
The tool can be extended to support other smart contract
language by adding an ANTLR grammar. To deal with the
instance extraction for multiple classes or object properties,
the node visitor is defined for each class. A node visitor is
responsible for the individuals generation of one class. Details
of extracting individual and relationship are illustrated below
with the explanation for the code snippet1.

Extracting individual. Class is an abstract concept used to
describe key code elements in smart contract. Each component
in source code can be extracted as an individual belonging to
a class. Given the class Function in the code snippet1, it’s
visitor enumerates all Function and generates an individual of
Function with name “withdraw”.

Extracting relationship. Relationship between individuals
can be extracted according to the object property definition.
Relationship between different individuals can be extracted
during the nested visits by visitor, which is called syntax
relationships in this paper. For instance, when the visitor from
the Contract node to the Function node, hasFunction property
associates Function individual withdraw with it’s declaring
Contract SimpleWithdraw.

In addition, relationships include not only syntax relation-
ship defined in smart contract, but also logical relationship. For
the code snippet1, the logical relationship is currently reflected
in order of execution statement within a function, as reflected
by follow, e.g. (Assignment, follow, FunctionCall) (Line4 and
Line3). Finally, the knowledge graph constructed for the code
snippet1 is shown in the Fig. 3. More specific description are
omitted for brevity.

We use OWL as an ontology description language, which
is a rich vocabulary description language that can characterize
relationships between classes, types of properties and charac-
teristics of properties. The proposed method refers to OWL
documents as a knowledge graph. In OWL, line numbers are
stored in the individual name and help to localize defects in
source code.

Fig. 3. The knowledge graph of the code snippet1

IV. DEFECT DETECTION OF SMART CONTRACT

Based on knowledge graph of smart contract, we conduct
defect detection process as shown in Fig.4. The process
consists of two main steps: knowledge inference and defect
localization.

Fig. 4. Defect detection process

A. Knowledge inference

In this step, indirect knowledge is inferred upon the knowl-
edge graph which contains facts extracted from the source
code. The inference process infers the indirect relationships
between code elements from known facts and relationships.
For example, direct logical relationship of two adjacent code
elements represented by “follow” in instance layer. Indirect
logical relationship can be inferred from basic relationships.
The facts can be expressed as triples. By matching triples, the
inference rule for logical relationship can be expressed as:

(?A follow ?B), (?B follow ?C)⇒ (?A follow ?C)

In the rule, the variables start with a question mark (?) denote
matched subjects or objects of triples [9]. The indirect logical
relationship between A and C can be inferred. Similarly, the
inference rule for judging types of s state variable in and
arithmetic operations can be expressed below, which is critical
for identifying Integer Overflows and Underflow defect.

(?x is Assignment), (?x assignObject ?y),

(?y typeName ?type), (?type like ′uint′)

Inference rules are applied to capture complex relationships
and abstract elements satisfying the definition of the defect
pattern. Even basic fact from AST are not sufficient, complex
relationships and code details critical to defect detection can
be drawn by inference rules. An example that recognizes
Reentrancy defect by inferring is explained below. In Fig.5,
the inference rule of Reentrancy defect is shown. In contract
SimpleReentrancy, Functionwithdraw calls a function (1) re-
alizing transferring by “call” and contains an assignment (3)
subtracting the transferring amount from credit[msg.sender].
According to Reentrancy defect pattern, the contract contains
main code elements of Assignment and FunctionCall. Besides,
FunctionCallrequire realizes transferring by “call”, which has
no gas limitation (2). Combined with the logical relationships
inference rule, it is inferred that Assignmentcredit[msg.sender] fol-
lows FunctionCallrequire (4). Therefore, FunctionCallrequire
and Assignmentcredit[msg.sender] may lead a malicious contract
calls back into the contract before the first invocation of the
function is finished. Because SimpleReentrancy contains all
code elements in Reentrancy defect and meet other restrictions,
the contract has Reentrancy defect.

In this section, only one example is given. For other contract
defects, inference rules are customized according to defect

425

Fig. 5. Inference of Reentrancy defect

characteristics. Furthermore, inference rules are universal for
smart contract in different program language.

B. Defect localization

The inference rules use SPARQL language to query and
manipulate the knowledge graph data. Based on all available
definition in ontology layer and instance layer, the SPARQL
of a defect is able to utilize main elements and restrictions.
From the perspective of defect matching, SPARQL enables
flexible search strategies based on knowledge expressed in
higher levels. Based on triple matching, SPARQL query is
conducted on knowledge graph. Successful triple matching
will return an individual name, which shows a defect is found;
otherwise, no defect is found. Due to the line number is stored
in each individual name, there are following two cases of
successful SPARQL query.

(1) Case1: A defect pattern is satisfied (e.g., Integer Over-
flow and Underflow defect) and an individual name containing
specific location is returned, which indicates the defective
statement.

(2) Case2: A defect pattern is satisfied (e.g., Frozen Ether
defect) and the contract individual name is returned. Thus, the
contract has this defect and cannot be localized to specific line.

For example, one challenge in identifying Integer Overflows
and Underflow defect is judging the type of an operation
variable in an assignment. We illustrate the SPARQL query
of Integer Overflow and Underflow defect as shown in Fig.6.

SPARQL simplifies the access to knowledge graph data to
with strong expressiveness and speed optimization. Further-
more, it provides a unified interface for the management of
knowledge graph data. Compared to hard-coded algorithms,
SPARQL supports flexible defect detection strategies. SPAR-
QL can be added based on available vocabularies according
to the inference rule for new contract defect.

query.png

Fig. 6. SPARQL query of Integer Overflow and Underflow defect

V. EVALUATION

To put the proposed method into practice, we have im-
plemented SolDetector based on Jena. It integrates the Antlr
generating AST and information extractor building knowledge
graph for smart contract dynamically. The defect inference
rules are executed by SPARQL query engine on OWL files.

We use three datasets to evaluate SolDetector. Dataset1
consists of 179 smart contracts selected from test datasets of
three popular analysis tools [1], [2], [10] and has been attacked
in a real-world, totaling 31,904 lines of the code. Dataset2
consists of 15,623 smart contracts crawled from Etherscan in
2018, totaling 4,197,965 lines of the code. Dataset3 consists
of 8,781 smart contracts crawled from Etherscan in 2020,
totaling 5,215,734 lines of the code. There is no restriction
on Solidity contract versions and contracts’ lines. It is useful
to estimate the efficiency of SolDetector for massive contracts
with different Solidity version.

A. Effectiveness of SolDetector

To evaluate the effectiveness of defect detection, we run
SolDetector on three datasets and use measurements listed
below. 1) TP indicates the number of vulnerable contracts
detected by the tool correctly. 2) FP indicates the number of
vulnerable contracts detected by the tool incorrectly. 3) TN
indicates the number of contracts without defects detected by
the tool correctly. 4) FN indicates the number of contracts free
of defect detected by the tool incorrectly. Precision, Recall,
FDR and FNR can be calculated as: Precision = TP/(TP+
FP)× 100%, Recall = TP/(TP + FN)× 100%, FDR =
FP/(TP +FP)×100%, FNR = FN/(TP +FN)×100%.

Dataset1 contains famous vulnerable contracts with distinct
defect characteristics, While Dataset2 and Dataset3 consist of
contracts randomly crawled. In order to simplify the evalua-
tion, the careful analysis is mainly aimed at Dataset1 and 10%
contracts of Dataset2 and Dataset3 were randomly selected to
calculate TP, TN, FP, FN. Evaluation of SolDetector is shown
in Table I.

For Dataset1, SolDetector successfully detected 125 real
vulnerable contracts. Meanwhile, it mistakes 4 safe contracts
as vulnerable. The number of vulnerable contracts omitted
by SolDetector is 12. We manually analyze 12 vulnerable
contracts omitted by the tool. There are 7 contracts containing
Reentrancy, 2 contracts containing Balance Manipulation, 1

426

TABLE I
EVALUATION OF SOLDETECTOR ON THREE DATASETS

Dataset Selected contract number Vulnerable contract number TP TN FP FN Precision Recall FDR FNR
Dataset1 179 137 125 38 4 12 96.90% 91.24% 3.10% 8.76%
Dataset2 1562 1285 1275 5 272 10 82.42% 99.22% 17.58% 0.78%
Dataset3 878 658 655 11 209 3 75.81% 99.54% 24.19% 0.46%

contract containing Unprotected Suicide, 1 contract containing
Useless Code, and 1 contract containing Erroneous Construc-
tor Name. The FNR of Reentrancy defect is the highest, which
is mainly resulted from the diverse code forms of Reentrancy
defect. Although we have abstracted the inference rule for
Reentrancy defect, the defect is manifested in various forms of
code. Thus, only one SPARQL query is not enough. We can fix
this problem by adding new inference rules for various forms
of Reentrancy defect according to each different defective
contract code. Similarly, the inference rules of Useless Code
defect are diverse. We just abstract one situation that the
assignment containing the useless operation “==”, missing
unused variables and other forms. More inference rules need
to be enriched. Two contracts containing Balance Manipula-
tion defect are not detected. The main reason is that some
expressions do not conform to the conventional code form of
this defect, such as “If(0!=this.balance)”. In general, most of
the false negative can be solved by expanding the inference
rules and the SPARQL query.

For Dataset2 and Dataset3, the high Recall is mainly due
to the fact that randomly crawled contracts may have no
transaction and Ether and contain a large number of duplicate
codes. Moreover, a contract may contain multiple defects.
Only if all defects within a contract are detected, the detection
is considered successful, which leads to the low Precision.

B. Efficiency of SolDetector

To evaluate the efficiency of SolDetector, we recorded time
consumed for the experiment on three datasets. As shown
in Table II, the time cost of SolDetector is mostly for the
construction of the knowledge graph and the defect location.
It is dependent on the size of the contract code and the
defect number. It took on average 0.15s, 0.17s and 0.23s
to check a single smart contract by using SolDetector on
Dataset1, Dataset2 and Dataset3 respectively. For knowledge
graph construction, analyzing each smart contract only cost
0.04s, 0.04s and 0.05s respectively. For 16 kinds of defects
detection, defecting each smart contract cost 0.11s, 0.13s and
0.18s respectively. Because the average lines of smart contract
in Dataset3 is larger than that in Dataset2, so the average time
of construction and detection for Dataset3 is larger.

C. Comparison experiment

We conduct comparison with SmartCheck (SC) to demon-
strate the advantages and disadvantages of SolDetector (SD).
SmartCheck is an extensive static analysis tool working on
Solidity source code. The empirical research [11] shows that
SmartCheck tool is statistically more effective than Securify

[10], Oyente [12] and Mythril [5]. Hence, we compare Sol-
Detector with SmartCheck. We do not consider tools based on
dynamic analysis, such as ContractFuzzer.

Since it is too expensive to run SmartCheck on all 20k+
contracts, we only run it on the Dataset1 that is manually
annotated with defects. For a fair comparison, we focus
our evaluation exclusively on 8 kinds of defects that can
be detected by both tools, including Missing Reminding
Execution Results(D1), DelegateCall(D2), Frozen Ether(D3),
Missing Return Statement(D4), Dependency of Timestam-
p(D5), Unchecked Send(D6), Balance Manipulation(D7), Tx-
Origin(D8). The comparison of detection result is shown in
Fig.7.

Fig. 7. Comparison of detection result between SD and SC

The following result can be drawn: 1) for seven defects,
Recall of SolDetector is greater than or equal to SmartCheck.
2) for eight defects, FNR of SolDetector is less than or equal
to SmartCheck.3) for only one defect (D7), SolDetector has a
lower Recall of 81.82%. In general, SolDetector has a higher
Recall and lower FNR, which shows the advantage of our
method in detecting defects.

Furthermore, we also compare SolDetector with other tools
to demonstrate it’s efficiency. Tool’s efficiency is related to
the defect number that can be detected and the contract
size. Efficiency information are collected from corresponding
papers. SolDetector can detect more defects than Securify [10]
and SmartShield [13]. Moreover, Securify and SmartShield
cost 30s and 28s per contract, which shows that both of them
are inefficient. SmartCheck is suitable for more defects and
lager contract, whose average time is 1.66s per contract that
is longer than SolDetector’s average time. Thus, SolDetector
is the fastest tool, followed by SmartCheck, Securify and
SmartShield.

427

TABLE II
TIME CONSUMPTION OF SOLDETECTOR

Dataset1 Dataset2 Dataset3
Contract number 179 15623 8781

Average lines 178 lines per contract 268 lines per contract 594 lines per contract
Construction time 7s 571s 466s

Average construction time 0.04s per contract 0.04s per contract 0.05s per contract
Detection time 19s 2035s 1507s

Average detection time 0.11s per contract 0.13s per contract 0.18s per contract

VI. RELATED WORK

As a distributed public ledger technology in peer-to-peer
networks, blockchain is increasingly used in various fields.
However, there are still security issues in smart contracts,
which affects further promotion of blockchain technology.
It is necessary to fully analyze potential security threats to
avoid defects as much as possible. At present, the existing
smart contract defect detection methods focus on symbolic
execution, model checking, fuzzy testing and other methods.

Oyente [12] is the first tool to detect security problems of
Ethereum smart contract. It builds control flow graph from
bytecode to check whether there is any vulnerable pattern
in the contract. By analyzing dependency diagram of the
contract, Securify [10] deduces exact semantic information
from the code. It combines compliance patterns and violation
patterns constructed by semantic facts to localize contract de-
fects. ZEUS [3] combines abstract interpretation and symbolic
execution to model contract. While ZEUS does at LLVM
intermediate level and cannot determine the exact location.
SmartCheck [1] translates Solidity source code into an XML-
based intermediate representation and checks it against XPath
patterns. sFuzz [4] complements existing testing engines based
on symbolic execution like Oyente [12] and Teether [14].

SolDetector makes up the shortcomings of static analysis
and dynamic analysis. Knowledge graph construction for smart
contract can be easily modified according to detection needs
for any new code elements. Even though Solidity grammar
updates and new code element are added, it is easier to extract
information by generating AST with our customized Solidity
grammar. Moreover, new defect patterns and corresponding
inference rules can be flexibly expanded. A detection method
suitable for more known defects and can be extended flexibly
for new defects is significant.

VII. CONCLUSION

In this paper, we propose SolDetector, a tool for smart
contract defect detection. SolDetector fully integrates syntax
and semantic information of smart contracts to construct
knowledge graphs by a personalized pluggable information
extractors. Smart contract will be scanned for 16 kinds defect
by inference rules and corresponding SPARQL, which realizes
the defect localization efficiently.

Our method cannot analyze the contract execution state,
which leads to a high FNR for Reentrancy defect. Combining
static with dynamic analysis might be a potential way to

address the disadvantage. The method proposed in this paper
provides a sound basic for the combination of static and
dynamic analysis. In future work, we will track and analyze
the execution information to enrich the knowledge graph of
smart contracts.

REFERENCES

[1] S.Tikhomirov, E.Voskresenskaya, I.Ivanitskiy, R.Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis
of ethereum smart contracts,” in 2018 IEEE/ACM 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 9–16.

[2] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain, 2019, pp.
8–15.

[3] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing
safety of smart contracts,” in Network and Distributed System Security
Symposium, 2018, pp. 18–33.

[4] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “Sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 778–788.

[5] Mythril: An open-source security analysis tool for ethereum smart
contracts. [Online]. Available: https://github. com/trailofbits/manticore

[6] J. Chen, X. Xia, D. Lo, J. Grundy, and T. Chen, “Defining smart contract
defects on ethereum,” IEEE Transactions on Software Engineering,
2020.

[7] N. Guarino, “Formal ontology, conceptual analysis and knowledge rep-
resentation,” International Journal of Human-Computer Studies, vol. 43,
no. 5-6, pp. 625–640, 1995.

[8] M. Savic, G. Rakic, Z. Budimac, and M. Ivanovic, “A language-
independent approach to the extraction of dependencies between source
code entities,” Information and Software Technology, vol. 56, no. 10,
pp. 1268–1288, 2014.

[9] R. Xiong and B. Li, “Accurate design pattern detection based on
idiomatic implementation matching in java language context,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering, 2019, pp. 163–174.

[10] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67–82.

[11] R. M. Parizi, A. Dehghantanha, K. K. R. Choo, and A. Singh, “Empirical
vulnerability analysis of automated smart contracts security testing on
blockchains,” in Proceedings of the 28th Annual International Confer-
ence on Computer Science and Software Engineering, 2018, pp. 103–
113.

[12] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254–269.

[13] Y. Zhang, S. Ma, J. Li, K. Li, and D. Gu, “Smartshield: Automatic
smart contract protection made easy,” in 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering, 2020,
pp. 23–34.

[14] J. Krupp and C. Rossow, “Teether: Gnawing at ethereum to automatically
exploit smart contracts,” in 27th USENIX Security Symposium, 2018, pp.
1317–1333.

428

SMART: Towards Automated Mapping
between Data Specifications

S. Kalwar∗, M. Sadeghi∗, A. Javadian Sabet∗, A. Nemirovskiy∗ and M. Rossi†
∗ Dipartimento di Elettronica, Informazione e Bioingegneria

† Dipartimento di Meccanica
Politecnico di Milano

Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
Email: firstname.lastname@polimi.it

Abstract—The ability to perform automated conversions be-
tween data conforming to different specifications is a key ingre-
dient to achieve interoperability among heterogeneous systems—
which, in turn, is at the basis of the creation of so-called
Systems of Systems. These conversions require the definition
of mappings between concepts of separate data specifications,
which is typically a hard and time-consuming task. In this paper,
we present a technique to automatically suggest mappings to
users, based on both linguistic and structural similarities between
terms. The approach has been implemented in our prototype
tool, SMART (SPRINT Mapping & Annotation Recommendation
Tool), and it has been validated through tests carried out using
specifications from the transportation domain.

Keywords—Ontology, linguistic similarity, structural similarity,
automated mapping, natural language processing

I. INTRODUCTION

In recent years there has been a growing interest in the
development and deployment of so-called Systems of Systems
[1], [2], where independent, heterogeneous systems built using
different technologies interact to provide complex services. A
paradigmatic example of this trend is found in the transporta-
tion domain, especially in the European Union, where initia-
tives are underway to create a Single European Transportation
Area [3], and in particular a Single European Railway Area
[4]. Most prominently, the EU Shift2Rail Joint Undertaking
[5], especially within its Innovation Programme 4, aims to
provide users with a “one-stop-shop” solution that allows them
to handle multi-modal trips across borders, using a single
application that integrates many different services (shopping,
booking, ticket issuing, etc.) from heterogeneous providers
of different Nations. This requires the integration of services
offered by transport operators from different countries, which
typically use different standards and specifications to describe
data such as travel offers, booking information, etc. This
heterogeneity of data representations significantly hinders the
interoperability of the systems to be integrated, and it can
be mitigated through the adoption of suitable conversion
mechanisms between data specifications. Scrocca et al. [6]
developed a promising data conversion approach, following
the schema described in [7] and shown in Figure 1.

In this schema, a reference ontology acts as “pivot”
between data specifications A and B, whereby specification A

DOI reference number: 10.18293/SEKE2021-161

is “lifted” to the ontology (i.e., the concepts in specification
A are mapped to those in the ontology), and then the latter
is “lowered” to specification B. The approach has proven
to be effective [6] and, although it originated from projects
focusing on the transportation domain and has been tested
using transportation data, it is general and can be applied to
any other domain where a reference ontology is available.

At its core, the schema of Fig. 1 relies on declarations—
expressed in suitable notations—that precisely establish cor-
respondences between terms of specifications A, B with
concepts in the reference ontology. The creation of these
mappings, however, is typically a time-consuming activity,
which must be carried out by users who have a good level of
familiarity with the data specifications and with the reference
ontology.

This paper presents a technique that aims at easing the
process of creating mappings between concepts in different
data specifications and ontologies by: (i) suggesting to users
potential mappings between the terms in a specification and
those of an ontology; (ii) allowing them to review and con-
firm/revise the suggested mappings; and (iii) automatically
generating the necessary annotations and declarations that
enable the conversion technique of [6].

Syntactic Model
Standard A

Syntactic Model
Standard B

Semantic Model
Reference Ontology

Fig. 1. General schema of conversion mechanism (from [6], [7]).

The technique builds on the principles laid out in [8]. It
assumes that data specifications are provided as XSD files,
and it is based on two main steps. First, it looks for linguistic
similarities between the terms of a given data specification
and those in the reference ontology, thus creating an initial
mapping. Then, it uses the structure of the specification and

429

of the ontology (i.e., how terms are related to one another) to
refine—and possibly extend—the linguistic mapping.

The technique has been implemented in a prototype tool,
called SMART (SPRINT Mapping & Annotation Recommen-
dation Tool), as part of the SPRINT [9] project, which aims
to define an innovative Interoperability Framework [10]. The
tool supports users in the creation and review of the mappings,
and then in the generation of the corresponding annotations.
The technique and the tool have been validated through a
set of mapping experiments involving data specifications and
ontologies from the transportation domain.

The paper is structured as follows: Sect. II overviews some
relevant related works; Sect. III describes the procedures for
generating the suggested mappings and the corresponding an-
notations; Sect. IV briefly describes the SMART tool; Sect. V
presents the results of the validation, and Sect. VI concludes.

II. RELATED WORK

In the domain of mappings between XML-based data and
ontologies, most works focus on automatically transforming
XML Schemas into newly-created ontologies capturing the
implicit semantics existing in the structure of XML documents.
For example, Rodrigues et al. [11] specify mappings between
the elements of an XML Schema and those (classes, object
and datatype properties) defined by an OWL ontology. OWL
elements are identified by their URI references [12], while the
mapped XML nodes are identified by XPath [13] expressions.

When transforming XML-based information into an ontol-
ogy, two approaches are most common: in the first approach,
mapping rules between elements of the XSD and OWL stan-
dards are used to generate an ontology from an XSD file;
in the second approach, instead, the generated ontology is
populated from XML instances. Hacherouf et al. [14] focus on
the first approach. They use a set of transformation patterns
based on the Janus method [15] to translate an XSD block
to an equivalent ontology element. The Janus method uses a
greater number of XSD elements [16] compared to the work in
[11], where transformation rules are limited to the most-used
XSD elements (xsd:element, xsd:attribute, xsd:complexType).
Some works follow a linguistic approach to translate XML-
based information into ontologies. Among them, An et al. [17]
propose a heuristic algorithm for finding semantic mappings
based on tree pattern formulas [18]. Yin et al. [19] define
a method to create mappings between the concepts of two
different ontologies. The method divides each ontology into
several sub-trees using a classification method [20], and builds
mappings between the root nodes of the identified trees in the
ontologies. Word similarity is defined based on the assumption
that the longer the common substrings between two terms, the
more similar they are, and it is computed using the Longest
Common Substring algorithm [21]. Shen et al. [20] present a
method to compute contextual similarity between two words.
The idea is that two concepts can be mapped when they either
have high word similarity and low context dissimilarity, or low
word similarity and high context similarity.

Our proposed technique is unique in that it employs a two-
step process that combines both a linguistic and a structural
approach to map elements between XSD specifications and
ontologies. This has the advantage that, even when schema
elements do not correspond structurally, they might still be
linguistically similar, which makes it possible to establish
suitable correspondences. Some works (e.g., the Janus method
[15]) cover a greater range of XSD features than our approach
when transforming XSD schemas into OWL ontologies. How-
ever, on the one hand, we pursue a different aim, in that we
do not generate new ontologies, but identify correspondences
between existing elements; on the other hand, our approach
exploits both linguistic and structural features, and we leave
for future work the extension of the breadth of XSD features
taken into account by the algorithms.

The next section provides some details about the proposed
technique.

III. METHODOLOGY

The overall workflow of the approach implemented in
the SMART tool is depicted in Fig. 2. Given a pair of
specifications, SMART identifies a set of mapping sugges-
tions, where each suggestion is a pair of terms—one from
each specification—accompanied by a Confidence Score (CS).
Then, the selector module receives the mapping suggestions
and allows the user to manually inspect them; during the
inspection, the user can confirm or modify the mappings, and
even suggest new pairs, if necessary. Alternatively, the user
can let the SMART tool automatically choose the suggestions
with the highest CS. Finally, the pipeline sends the Confirmed
Mappings to the Annotation Generation module to produce
the annotations.

Fig. 2. Overview of the workflow implemented in the SMART tool.

430

The rest of this section describes the procedure for gen-
erating the pairs of suggested mappings, whereas Section IV
provides an overview of the implementation of the tool.

A. Mapping Algorithm

Given two different data specifications, the Mapping Al-
gorithm’s primary idea is to identify linguistically and struc-
turally similar terms. The algorithm uses two main techniques:
(i) linguistic mapping and, then, (ii) structural mapping. The
former applies Natural Language Processing (NLP) and Ma-
chine Learning (ML) techniques to identify similar terms.
The latter, instead, exploits the source and target data spec-
ifications’ structures to refine—and possibly extend—the set
of mappings. Algorithm 1 details the flow of the Mapping
Algorithm. For clarity and brevity, some parts have been
encapsulated in sub-algorithms that are shown as algorithms
2, 3 and 4.

The algorithm takes as input two specifications. Typically,
one of them is represented by an XSD file (X in line 2 of Alg.
1), whereas the other is an ontology represented by an OWL
file (O). However, the algorithm can also work when the input
files are both XSD files, or both ontologies.

Algorithm 1 Mapping Algorithm
1: procedure SMARTMAPPING
2: input: X: XSD file, O: OWL file
3: output P: set of triples 〈xt, ot, s〉, xt ∈ X, ot ∈ O, s:Confidence score
4: xName← (X.Attribute.name ∪ X.Element.name)
5: xType← (X.Attribute.type ∪ X.Element.type)
6: xCl← X.ComplexTypes
7: xObPr← {xb|xb ∈ xName if XType(xName) = ComplexType}
8: xDtPr← {xd|xd ∈ xName if XType(xName) = Datatype}
9: oCl← O.Class

10: oObPr← O.ObjectProperty
11: oDtPr← O.DatatypeProperty
12:
13: . Create initial mapping between terms using linguistic similarity
14: mappedClass← W2VlinguisticMap(xCl, oCl)
15: mappedObjProp← W2VlinguisticMap(xObPr, oObPr)
16: mappedDataProp← W2VlinguisticMap(xDtPr, oDtPr)
17:
18: . New mappings between object properties (Alg. 2)
19: mappedObjProp← AddObjPropFromClasses(

mappedObjProp,mappedClass,
xObPr, oObPr)

20:
21: . New mappings btw. classes based on classes & obj. prop. (Alg. 3)
22: mappedClass← AddClassesFromClassesAndObjProp(

mappedObjProp,mappedClass,
xCl, oCl)

23:
24: . New mappings between classes based only on properties (Alg. 4)
25: mappedClass← AddClassesFromObjProp(

mappedObjProp,mappedClass,
xCl, oCl)

26:
27: return mappedClass ∪ mappedObjProp ∪ mappedDataProp
28: end procedure

Linguistic Mapping: The proposed linguistic mapping
technique exploits the model presented in [22] built using
the Word2Vec (W2V) algorithm [23] pre-trained on Google
News dataset (about 100 billion words) [24]. In the rest of
the work, we refer to this W2V pre-trained model whenever

Algorithm 2 New Object Properties
1: procedure ADDOBJPROPFROMCLASSES
2: input: mappedObjProp, mappedClass, xObPr, oObPr
3: output P: set of triples 〈xt, ot, s〉, xt ∈ X, ot ∈ O, s:Confidence score
4:
5: propList← ∅
6: foreach (xcj , ocj , sj) ∈ mappedClass do
7: foreach (xci, oci, si) ∈ mappedClass do
8: foreach (xp, op) ∈ xObPr× oObPr do
9: if xci = xp.ComplexType & oci = op.Domain &

10: xcj = xp.Type & ocj = op.Range then
11: s← (si + sj)/2
12: propList← propList ∪ {(xp, op, s)}
13: end if
14: end foreach
15: end foreach
16: end foreach
17: return mappedObjProp ∪ propList
18: end procedure

we use the expression W2V model. The linguistic mapping
technique consists of the following five steps.

a) Initialization: This step loads the W2V model and
outputs its unique terms as a vocab list and its similarity vector
(i.e., the keyed vector representation of the terms).

b) Pre-processing the specifications: We assume that
the XSD specification represents the knowledge as a set of
ComplexTypes containing Elements and Attributes, along with
their types, which can be either DataType or ComplexElement.
On the other hand, the ontology represents knowledge as a
set of Classes and related Properties. Properties can be either
DataTypeProperty or ObjectProperty. A Property corresponds
to a relation between its domain (represented by a Class) and
its range (which can be a Class or a DataType). Inspired
by the mapping rules introduced in [11], we designed a set
of transformation rules presented in Table I. Then, this step
parses the XSD and the ontology files and builds three sets
of terms from each file. Lines 4-11 of Alg. 1 show the steps
to obtain these sets. The sets extracted from the XSD file
are xCl, xObPr, xDtPr, where xCl (resp., xObPr, xDtPr) is
the set of candidate terms to be mapped to Classes (resp.,
ObjectProperties, DataTypeProperties) in the ontology. Con-
cerning the ontology, instead, oCl (resp., oObPr, oDtPr) is the
set of terms corresponding to Classes (resp., ObjectProperties,
DataTypeProperties) in the ontology.

In the following steps (which are encapsulated in the
application of the W2VlinguisticMap function on lines 14-
16), mappings between pairs of terms from the various sets are
created, depending on their nature, using a linguistic approach.

c) Finding n similar terms: The W2V model is applied
separately to the six sets of terms to get n similar words for
each term, where n is a configuration parameter (a positive
integer). We tested various values for n (3, 5, 10, 20) to find a
good balance between accuracy and efficiency of the approach,
and we finally settled on n = 3. For instance, if x and y are
the number of terms from the two specifications (XSD file and
ontology), respectively, after obtaining n similar terms using
the W2V model, the resulting matrices will have size x·(n+1)
(for the XSD file) and y · (n + 1) (for the ontology)—notice

431

TABLE I
XSD TO OWL STRUCTURAL MAPPING RULES

XSD OWL Type and Name
<xsd:complexType name = "A"> Class(A)
<xsd:complexContent> SubClassof(B)
<xsd:extension base = "B">
Where B is another ComplexElement
<xsd:complexType name = "A"> ObjectProperty(hasE1)
<xsd:complexContent> Domain(Class(A))
<xsd:extension> Range(Class(B))
<xsd:element name = "E1" type= "B">
Where B is another ComplexElement
<xsd:complexType name = "A"> ObjectProperty(hasAttr1)
<xsd:complexContent> Domain(Class(A))
<xsd:extension> Range(Class(B))
<xsd:attribute name = "Atr1" type = "B">
Where B is another ComplexElement
<xsd: complexType name = "A"> DataTypeProperty(hasAttr1)
<attribute name = "Attr1" type = "D"> Domain(Class(A))
Where D is a DataType Range(DataType(D))
<xsd:complexType name = "A"> DataTypeProperty(hasE1)
<xsd:complexContent> Domain(Class(A))
<xsd:extension> Range(DataType(D))
<xsd:element name = "E1" type = "D">
Where D is a DataType

that each original term is also included. Table II provides an
example of the resulting matrix. The left-most column shows
the terms from each specification, whereas the others show the
words suggested through the W2V model for each term.

TABLE II
MATRIX REPRESENTATION AFTER STEP (C)

(A): W2V suggestions for terms in the first specification
Term SimilarTerm1 SimilarTerm2 SimilarTerm3
Itinerary Itinerary Itineraries CruiseTour
EffectiveDeparture Departs SuccessionPlan DepartsArrives

(B): W2V suggestions for terms in the second specification
Term SimilarTerm1 SimilarTerm2 SimilarTerm3
Trip Trip Travels FliesInto
departureTime departing abruptdeparture departures

d) Match terms in the first specification to those in the
second specification: In this step, each term from each matrix
produced in step (c) for the first specification is matched
to the terms in the corresponding matrix for the second
specification. Therefore, the matrix obtained for set xCl is
matched to the one of oCl (within the W2VlinguisticMap
invocation on line 14), and similarly for the other sets of
terms. The W2V similarity vector (discussed in step (a)) is
used to compute the cosine similarity [25] (CS) for each
pair of terms 〈MatTermS1,MatTermS2〉, where MatTermS1
(resp., MatTermS2) is a term of the matrix obtained for the
first (resp., second) specification (notice that the matrices
include the original terms retrieved from the specifications).
CS ranges from 0 to 1, where the higher the value, the
higher the similarity. The resulting triplets have the form
〈MatTermS1,MatTermS2,CS〉. We set 0.5 as cut-off threshold,
and consider a triplet as a potential generator of a mapping
(according to the rule described in step (e)) if its CS value is
greater than or equal to the threshold.

e) Count number of matches: In this step we take each
triple 〈MatTermS1,MatTermS2,CS〉 obtained in step (d), and
we trace it back to its pair of original terms 〈TermS1,TermS2〉
from the first and second specifications, respectively. For
example, consider again Table II. Imagine that, after step
(d), we have a triple 〈Itineraries,Travels, 0.677〉. We trace
it back to the original pair of terms 〈Itinerary,Trip〉, and
we increase by 1 the counter of the number of matches
between Itinerary and Trip. In this way, for each pair of
original terms 〈TermS1,TermS2〉 we count the number of
matches, and we compute the similarity value CSts1,ts2
for the pair as the average of the CS values of the
triples 〈MatTermS1,MatTermS2,CS〉 that trace back to it.
At the end of this step, we produce a set of triples
〈TermS1,TermS2,CSts1,ts2〉.

Step (e) concludes the linguistic part of the mapping
procedure. The rest of the algorithm (lines 19-27), which
is explained next, refines and extends the suggestions by
exploiting the structure of the two specifications.

Structural Mapping: The proposed structural mapping
technique relies on the rules presented in Table I. More
precisely, we use the structure of the ontology as guidance
to further refine the mappings returned by the linguistic
mapping. First of all, notice that the results produced by
the linguistic mapping are stored in three sets of triples of
the form 〈TermS1,TermS2,CSts1,ts2〉 named mappedClass,
mappedObjProp and mappedDataProp, where TermS1 and
TermS2 are names of Classes, ObjectProperties, or DataProp-
erties, depending on the set. Notice that, for the sake of
structural mapping, we consider as Classes, ObjectProperties
and DataProperties also elements from XSD specifications
when they match the rules of Table I (e.g., a ComplexType
is considered, for structural mapping purposes, as a Class).

In this step we consider that each specification defines
triples of the form 〈Domain,ObjectProperty,Range〉. In the
following, we indicate a triple from the first (resp., sec-
ond) specification as 〈DomainS1,ObjectPropertyS1,RangeS1〉
(resp., 〈DomainS2,ObjectPropertyS2,RangeS2〉).

We perform the following refinements of the mappings.
(i) Suggest properties if domains and ranges

match: If, in mappedClass, DomainS1 is mapped to
DomainS2 and RangeS1 is mapped to RangeS2, then triple
〈ObjectPropertyS1,ObjectPropertyS2,CSops1,ops2〉 is added
to set mappedObjProp, where CSops1,ops2 is the average of
the confidence scores of the mappings between domains and
ranges—i.e., pair 〈ObjectPropertyS1,ObjectPropertyS2〉 is
suggested with confidence score CSops1,ops2. This step is
performed by the procedure invoked at line 19 of Alg. 1; in
particular, the addition of each single new pair is performed
by lines 9-13 of Alg. 2.

(ii) Suggest domains (resp., ranges) if properties
and ranges (resp., domains) match: If ObjectPropertyS1
is mapped to ObjectPropertyS2 in mappedObjProp and
RangeS1 is mapped to RangeS2 in mappedClass, then pair
〈DomainS1,DomainS2〉 is suggested with confidence score
CSds1,ds2, where CSds1,ds2 is the average of the confidence

432

scores of the mappings between properties and ranges. Simi-
larly, if ObjectPropertyS1 is mapped to ObjectPropertyS2 and
DomainS1 is mapped to DomainS2, then we suggest pair
〈RangeS1,RangeS2〉). This step is performed by the procedure
invoked at line 22 of Alg. 1, which is detailed in Alg. 3.

Algorithm 3 New Classes Based on Properties and Classes
1: procedure ADDCLASSESFROMCLASSESANDOBJPROP
2: input: mappedObjProp, mappedClass, xCl, oCl
3: output P: set of triples 〈xt, ot, s〉, xt ∈ X, ot ∈ O, s:Confidence score
4:
5: rangeList, domainList← ∅
6: foreach (xci, oci, si) ∈ mappedClass do
7: foreach (xpj , opj , sj) ∈ mappedObjProp do
8: foreach (xc, oc) ∈ xCl× oCl do
9: . Domain and property are mapped, we map range

10: if xci = xpj .ComplexType & xc = xpj .Type &
11: oci = opj .Domain & oc = opj .Range then
12: s← (si + sj)/2
13: rangeList← rangeList ∪ {(xc, oc, s)}
14: end if
15: . Property and range are mapped, we map domain
16: if xci = xpj .Type & xc = xpj .ComplexType &
17: oci = opj .Range & oc = opj .Domain then
18: s← (si + sj)/2
19: domainList← domainList ∪ {(xc, oc, s)}
20: end if
21: end foreach
22: end foreach
23: end foreach
24: return mappedClass ∪ rangeList ∪ domainList
25: end procedure

(iii) Suggest domains and ranges if proprieties match: In
this case, if ObjectPropertyS1 is mapped to ObjectPropertyS2
in mappedObjProp, we suggest pairs 〈DomainS1,DomainS2〉
and 〈RangeS1,RangeS2〉, both with confidence score that is
60% that of the mapping between the properties (i.e., that
is equal to 0.6 · CSops1,ops2). This step is performed by the
procedure invoked at line 25 of Alg. 1 (see also Alg. 4).

Algorithm 4 New Classes Based on Properties
1: procedure ADDCLASSESFROMOBJPROP
2: input: mappedObjProp, mappedClass, xCl, oCl
3: output P: set of triples 〈xt, ot, s〉, xt ∈ X, ot ∈ O, s:Confidence score
4:
5: rangeList, domainList← ∅
6: foreach (xp, op, s) ∈ mappedObjProp do
7: foreach (xci, oci) ∈ xCl× oCl do
8: foreach (xcj , ocj) ∈ xCl× oCl do
9: if xci = xp.ComplexType & oci = op.Domain &

10: xcj = xp.Type & ocj = op.Range then
11: s← (s ∗ 0.6)
12: domainList← domainList ∪ {(xci, oci, s)}
13: rangeList← rangeList ∪ {(xcj , ocj , s)}
14: end if
15: end foreach
16: end foreach
17: end foreach
18: return mappedClass ∪ rangeList ∪ domainList
19: end procedure

Although the algorithms presented above assume that one
specification is given as an XSD file, and the other as an
ontology, indeed they have been adapted to also work when
the input specifications have the same format (i.e, they are both
XSD files, or both ontologies). More precisely, if both inputs

are XSD files, then the algorithm simply performs the same
pre-processing step explained in point (b) of the linguistic
mapping on both files, to extract a set of "candidate classes"
xCl1, xCl2 from each file, which are then used in the rest of
the algorithm instead of xCl and oCl (similarly for object and
data properties).

B. Annotation Generation

The suggested mappings, following a review of the user,
are sent to the the annotation generation module for the final
step of the process (see Fig. 2). The annotation generation
module is composed of two pipelines, one for each type of
annotations supported. More precisely, it can produce either
Java annotations compatible with the approach presented
in [7], or YARRRML rules compatible with the converter
presented in [6]. Since the annotation generation step is tightly
linked to the conversion approach depicted in Fig. 1, it assumes
that the first specification is given in terms of an XSD file,
whereas the second is an ontology. The rest of this section
provides a brief description of the two pipelines.

Java annotation pipeline: In this case, the module
analyzes each suggested mapping, and produces a corre-
sponding Java annotation. More precisely, it first determines
whether the mapping concerns Classes of Properties. De-
pending on the case, it fills the appropriate template (i.e.,
@Rdfs<TYPE>("<ONTOLOGY NAME>: <TARGET TERM>"))
and outputs a suitable annotation. For example, lines 2 and
4 in Fig. 3 show a pair of annotations for Class and Property
mappings, respectively. For instance, if the term “GeoPoint”
(in the XSD specification) is mapped to term “GeoCoordi-
nates”, which is a Class in the reference ontology (in this case,
the IT2Rail Ontology [26], see also Sect. V), the annotation
will be @RdfsClass(“IT2Rail: GeoCoordinates”). Then, the
annotation generation module uses the JAXB package [27] to
create, from the XSD file, the Java classes to be annotated.
In the final step of the pipeline, the module, for each mapped
term of the XSD specification, parses the Java files to find the
term’s declaration, then it inserts the corresponding annotation
appropriately (see lines in bold in Fig. 3). Finally, the user
receives a zipped folder containing the annotated Java classes.

YARRRML generation pipeline: YARRRML [28] is
a human-readable text-based representation for declarative
Linked Data generation rules. The YARRRML generation
module first identifies the structural relationships between the
terms in the XSD specification. More precisely, the module
extracts, for each term of the XSD file corresponding to a
Class, its Properties and stores those for which there is a
suggestion in the confirmed mappings. Next, according to
YARRRML’s syntax, the module generates the appropriate
prefixes and mappings blocks. The prefixes block contains
the required namespaces (e.g., the ontology’s namespace). In
the mappings block, instead, the module defines, for each
term corresponding to a Class in the XSD specification, the
following three elements: (i) data source location, (ii) subjects’
generation, and (iii) predicate-object annotations. As the result,
the user receives the YARRRML declarations in a .yml file.

433

1 ...
2 @RdfsClass("IT2Rail:GeoCoordinates")
3 public class GeoPoint extends FSMID
4 { @RdfProperty(propertyName = "IT2Rail:hasLatitude")
5 @XmlAttribute(name = "Latitude", required = true)
6 protected BigDecimal latitude;
7 ...

Fig. 3. Example of Java annotations for Class and a Property (in bold).

IV. TOOL

The current version of the SMART prototype is comprised
of two containerized components: a RESTful API and a
web server hosting a front-end built with Angular [29], both
communicating using JSON standard.

The API is designed to allow multiple simultaneous user
requests by relying on the FastAPI [30] framework; the
asynchronous environment coupled with the NginX [31] web
server allows the tool to manage high throughput of parallel
requests. Although NginX can handle up to thousands of
requests at once, the API is limited by the number of resources
the mapping process requires (e.g., in our experiments, each
run was using up to 8GB of RAM): requests that would
require SMART to exceed the available processing power are
enqueued for when the tool will become available again.

After uploading and selecting the specification files to be
mapped, the user can send a mapping request to the server.
Every incoming request is given a unique identifier and is
handled separately by the tool, allowing it to store and retrieve
results asynchronously. Once a request has been parsed, the
tool spawns a separate process to handle the computationally
heavy mapping process and relinquishes the control until this
operation is completed. The process itself can take several
minutes to complete.

Fig. 4. SMART term selection example.

Available from github.com/alexander-nemirovskiy/s2r_mapping_ui.git.

TABLE III
DATASETS DESCRIPTION

Specification Type Number of terms
NeTEx XSD 91
FSM XSD 113
IT2Rail Ontology 543
Transmodel Ontology 231
Neptune XSD 89

Once the mapping phase is completed, the user receives
a selection of up to 3 most-similar ontology terms for each
source term in the XSD file, each associated with its CS value
(see Sect. III-A) discretized as high (CS ≥ 0.75), medium
(0.30 ≤ CS < 0.75) and low (CS < 0.3) confidence. The user
can either confirm the suggested mapping, select one of the
alternatives, or add a choice of their own making as they see
fit, as shown in Fig. 4. In this case, SMART has selected the
ontology term Trip as a possible mapping for the XSD term
Itinerary with a medium CS rating. The “Other” input field
is used to create a new alternative if the user is not satisfied
with SMART recommendations. In addition, Fig. 4 shows that,
for the GeoPoint term of the XSD file, SMART suggested
a term (PointOfInterest), but the user decided to change the
mapping to GeoCoordinates. Alternatively, the user can choose
the automatic mapping process, in which the tool automatically
selects the term with the highest CS value for each pair. After
the selection has been made in either way, the user can proceed
with the annotation generation phase based on the pipeline
selected at the beginning of the mapping process, then the
annotated files can be downloaded.

V. VALIDATION

We evaluated the effectiveness of the approach on a few
case studies involving specifications from the transportation
domain. In particular, this section focuses on the accuracy of
the Mapping Algorithm (see Sect. III-A), which is the core
of the approach, in terms of its ability to suggest meaningful
mappings. More precisely, we took five specifications (XSD
files from NeTEx [32], FSM [33] and Neptune [34], and the
IT2Rail [26] and Transmodel [35] ontologies) from the trans-
portation domain, we used the Mapping Algorithm to generate
suggested mappings between various pairs of specifications,
then we manually evaluated the accuracy of the suggestions
output by the algorithm (before the review of the user).

Table III collects the basic information (type of
specification—XSD file or ontology—and number of
terms) about the five specifications used, which are briefly
introduced in the following. The IT2Rail ontology was created
in the project by the same name [26] and it is at the basis
of the ontology that is currently being developed within the
Shift2Rail Innovation Programme 4. Transmodel (short for
“Public Transport Reference Data Model”) is a European
Standard that covers various areas of the transportation

A short video of the tool is available at github.com/alexander-
nemirovskiy/s2r_mapping_ui/raw/master/docs/SMART_demo.mp4.

434

https://github.com/alexander-nemirovskiy/s2r_mapping_ui.git
https://github.com/alexander-nemirovskiy/s2r_mapping_ui/raw/master/docs/SMART_demo.mp4
https://github.com/alexander-nemirovskiy/s2r_mapping_ui/raw/master/docs/SMART_demo.mp4

domain, such as network topology representation, scheduling,
operation monitoring, fare management, etc. Recently, a
full-fledged ontology [35], which we have used for our
evaluation, has been defined starting from the Transmodel
standard. NeTEx [32] is a CEN technical standard for
exchanging public transport schedules and data. NeTEx is a
large standard, which is divided into three parts, each covering
a subset of Transmodel standard. For our experiments, we
considered a subset of NeTEx, focusing on the description
of the infrastructure (stop points, vehicles, etc.). FSM
(short for “Full Service Model”, [33]) is a standard for
representing information about ticketing and reservations in a
heterogeneous transport environment. Finally, Neptune [34] is
the reference format used in France to exchange information
concerning public transport (itineraries, timetables, etc.).

Each test case examines a different combination of specifi-
cations. Table IV lists the combinations that we tried. For each
test case, we carefully assessed the output results to determine
the accuracy of the mapping suggestions. For this purpose, we
relied on the documentation of each specification describing
the terms in the dataset. We categorized each suggested pair
as Correct, Incorrect, Ambiguous, or Unfeasible.

0

20

40

60

80

100

120

Chart Title

49

18 7

31

32
39

13
26

319 14 10 9

6

18
20 33

8 14

a. NeTEx to
IT2Rail

b. FSM to
Transmodel

c. NeTEx to
Transmodel

d. FSM to
IT2Rail

e. Neptune
to NeTEx

FINAL 2 correct

Fig. 5. Detailed results of the evaluation, where the numbers in the bars
correspond to the number of pairs in each category, for each test case.

The first two categories are self-explanatory. A pair is
deemed Ambiguous if there is not enough information about
the meaning and usage of a term in the specification to evaluate
the correctness of the suggestion. A mapping is considered
Unfeasible if no equivalent representation of the term in the
first specification is available in the second one. Given this
categorization, the accuracy of the results of each test case was
computed as the percentage of the Correct mappings over the
sum of Correct and Incorrect ones. Both the Ambiguous and
the Unfeasible categories are excluded from the computation
as they do not provide a meaningful contribution for it, since
the pair either lacks a clear definition, or there is no alternative
for the first term in the second specification.

TABLE IV
VALIDATION RESULTS (WHERE Ambiguous AND Unfeasible MAPPINGS ARE

NOT CONSIDERED WHEN COMPUTING THE ACCURACY)

Spec1 Spec2 Accuracy Execution Time
NeTEx IT2Rail 67% 360s
FSM Transmodel 48% 312s
NeTEx Transmodel 72% 240s
FSM IT2Rail 78% 360s
Neptune NeTEx 67% 345s

Table IV presents, for each test case, the corresponding
accuracy, and the time that it took to generate the suggested
mappings using the procedure of Sect. III-A. For our exper-
iments, we deployed the tool on a general-purpose Amazon
EC2 instance with 32GB Memory, 8 vCPU 3.0 GHz Intel
Xeon processor, and up to 1Gb/s connection speed. The du-
ration of the mapping generation process depends on the size
of the input specifications; however, as shown in Table IV, no
experiment took more than 6 minutes. For completeness’ sake,
Figure 5 provides, in addition to a graphical representation of
the share of each category of mapping for each test case, the
number of elements in each category. On average, SMART’s
accuracy is 66.4%, ranging from 48% to 78% (recall that,
when computing the accuracy, we do not count Ambiguous
and Unfeasible mappings in the denominator of the ratio).

VI. CONCLUSION

This paper presented a tool-supported approach to suggest
mappings between terms of separate data specifications; this is
the basis for converting data between different data formats,
which is a core enabler of interoperability in heterogeneous
Systems of Systems. The approach, which is also able to
automatically create, from selected mappings, annotations
compatible with the conversion mechanisms introduced in
[6], [7], has been validated on various test cases from the
transportation domain, showing promising results.

In the future, we will refine both the underlying suggestion
mechanism and the supporting SMART tool. In particular, we
plan to explore the possibility of using domain-specific models
(e.g., tailored to the transportation domain) for the linguistic
mapping part of the procedure, instead of the general-purpose
one used in this work; this would improve the accuracy of the
first step of the procedure. In addition, we plan to extend the
structural mapping part of the algorithm with richer rules, able
to handle a wider range of features of XSD files.

ACKNOWLEDGMENT

This work was supported by Shift2Rail and the EU Horizon
2020 research and innovation programme under grant agree-
ment No: 826172 (SPRINT).

REFERENCES

[1] M. Jamshidi, Systems of systems engineering: principles and applica-
tions. CRC press, 2017.

[2] P. Uday and K. Marais, “Designing resilient systems-of-systems: A
survey of metrics, methods, and challenges,” Systems Engineering,
vol. 18, no. 5, pp. 491–510, 2015.

435

[3] “Roadmap to a single european transport area – towards a competitive
and resource efficient transport system,” European Commission,
White Paper. [Online]. Available: https://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=COM:2011:0144:FIN:EN:PDF

[4] “Single european railway area: better rules on interoperability,
noise and access for persons with reduced mobility.”
[Online]. Available: https://ec.europa.eu/transport/modes/rail/news/
2019-05-16-single-european-railway-area_en

[5] “Shift2Rail.” [Online]. Available: http://www.shift2rail.org/
[6] M. Scrocca, M. Comerio, A. Carenini, and I. Celino, “Turning transport

data to comply with EU standards while enabling a multimodal transport
knowledge graph,” in The Semantic Web – ISWC 2020, ser. LNCS, 2020,
pp. 411–429.

[7] A. Carenini, U. Dell’Arciprete, S. Gogos, M. M. Pourhashem Kalle-
hbasti, M. G. Rossi, and R. Santoro, “ST4RT–semantic transformations
for rail transportation,” in Transport Research Arena, 2018, pp. 1–10.

[8] M. Hosseini, S. Kalwar, M. G. Rossi, and M. Sadeghi, “Automated
mapping for semantic-based conversion of transportation data formats,”
in Int. Work. On Semantics For Transport, vol. 2447, 2019, pp. 1–6.

[9] “SPRINT – Semantics for PerfoRmant and scalable INteroperability of
multimodal Transport.” [Online]. Available: http://sprint-transport.eu

[10] M. Sadeghi, P. Buchníček, A. Carenini, O. Corcho, S. Gogos, M. Rossi,
R. Santoro et al., “Sprint: Semantics for performant and scalable
interoperability of multimodal transport,” in 8th Transport Research
Arena TRA 2020, 2020, pp. 1–10.

[11] T. Rodrigues, P. Rosa, and J. Cardoso, “Mapping xml to exiting owl
ontologies,” in Int. Conf. WWW/Internet. Citeseer, 2006, pp. 72–77.

[12] “owluri.” [Online]. Available: http://www.w3.org/Addressing/
[13] J. Clark, S. DeRose et al., “XML path language (xpath),” 1999.
[14] M. Hacherouf, S. Nait-Bahloul, and C. Cruz, “Transforming XML

schemas into OWL ontologies using formal concept analysis,” Software
& Systems Modeling, vol. 18, no. 3, pp. 2093–2110, 2019.

[15] I. Bedini, C. Matheus, P. F. Patel-Schneider, A. Boran, and B. Nguyen,
“Transforming xml schema to owl using patterns,” in IEEE 5th Int.
Conference on Semantic Computing. IEEE, 2011, pp. 102–109.

[16] M. Hacherouf, S. Nait-Bahloul, and C. Cruz, “Transforming XML
documents to OWL ontologies: A survey,” Journal of Information
Science, vol. 41, no. 2, pp. 242–259, 2015.

[17] Y. An, A. Borgida, and J. Mylopoulos, “Constructing complex semantic
mappings between XML data and ontologies,” in International Semantic
Web Conference. Springer, 2005, pp. 6–20.

[18] A. Marcelo and L. Leonid, “XML data exchange: Consistency and query
answering,” in Proc. of the Symp. on Princ. of Database Systems, 2005.

[19] C. Yin, J. Gu, and Z. Hou, “An ontology mapping approach based on
classification with word and context similarity,” in 12th Int. Conference
on Semantics, Knowledge and Grids (SKG). IEEE, 2016, pp. 69–75.

[20] Z. Zhen, J. Shen, and S. Lu, “Wcons: An ontology mapping approach
based on word and context similarity,” in Int. Conf. on Web Intelligence
and Intelligent Agent Technology, vol. 3, 2008, pp. 334–338.

[21] M. A. Babenko and T. A. Starikovskaya, “Computing the longest
common substring with one mismatch,” Problems of Information Trans-
mission, vol. 47, no. 1, pp. 28–33, 2011.

[22] “word2vec tool.” [Online]. Available: https://code.google.com/archive/
p/word2vec/

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[24] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” arXiv
preprint arXiv:1310.4546, 2013.

[25] D. Jatnika, M. A. Bijaksana, and A. A. Suryani, “Word2vec model
analysis for semantic similarities in english words,” Procedia Computer
Science, vol. 157, pp. 160–167, 2019.

[26] “IT2Rail – Information Technologies for Shift2Rail.” [Online].
Available: http://it2rail.eu/

[27] J. Fialli and S. Vajjhala, “The java architecture for XML binding
(JAXB),” JSR Specification, January, 2003.

[28] P. Heyvaert, B. De Meester, A. Dimou, and R. Verborgh, “Declarative
Rules for Linked Data Generation at your Fingertips!” in Proceedings
of the 15th ESWC: Posters and Demos, 2018.

[29] Google, “Angular.” [Online]. Available: https://angular.io/
[30] S. Ramírez, “FastAPI.” [Online]. Available: https://fastapi.tiangolo.com/
[31] F5, Inc., “Nginx.” [Online]. Available: https://www.nginx.com/

[32] “NeTEx.” [Online]. Available: https://github.com/NeTEx-CEN/NeTEx/
tree/master/xsd

[33] “FSM – Full Service Model.” [Online]. Available: https://tsga.eu/fsm
[34] “Neptune.” [Online]. Available: http://www.normes-donnees-tc.org/

category/neptune/
[35] “transmodel.” [Online]. Available: https://oeg-upm.github.io/snap-docs/

tm-organisations.owl/documentation/index-en.html

436

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0144:FIN:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0144:FIN:EN:PDF
https://ec.europa.eu/transport/modes/rail/news/2019-05-16-single-european-railway-area_en
https://ec.europa.eu/transport/modes/rail/news/2019-05-16-single-european-railway-area_en
http://www.shift2rail.org/
http://sprint-transport.eu
http://www.w3.org/Addressing/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
http://it2rail.eu/
https://angular.io/
https://fastapi.tiangolo.com/
https://www.nginx.com/
https://github.com/NeTEx-CEN/NeTEx/tree/master/xsd
https://github.com/NeTEx-CEN/NeTEx/tree/master/xsd
https://tsga.eu/fsm
http://www.normes-donnees-tc.org/category/neptune/
http://www.normes-donnees-tc.org/category/neptune/
https://oeg-upm.github.io/snap-docs/tm-organisations.owl/documentation/index-en.html
https://oeg-upm.github.io/snap-docs/tm-organisations.owl/documentation/index-en.html

Incorporating Presuppositions of Competency Questions into Test-Driven
Development of Ontologies

Jedrzej Potoniec1,2, Dawid Wisniewski1 Agnieszka Ławrynowicz1,2

1 Faculty of Computing and Telecommunications, Poznan University of Technology, Poland
2 CAMIL Center for Artificial Intelligence and Machine Learning, Poznan University of Technology, Poland

E-mail: {jpotoniec,dwisniewski,alawrynowicz}@cs.put.poznan.pl

Abstract

Ontology authoring is a complicated and error-prone pro-
cess since the knowledge being modelled is expressed using
logic-based formalisms, in which logical consequences of the
knowledge have to be foreseen. Many approaches intended
to make this task easier, use competency questions (CQs), be-
ing questions expressed in natural language to trace both the
correctness and completeness of the ontology at a given time.
However, CQs hold so-called presuppositions that have to
be satisfied by the ontology to obtain meaningful answers
from CQs. Moreover, CQs have to be expressed using a
formal language, like ontology query language (SPARQL-
OWL), to query the ontology. In this paper, we propose an
extension of test-driven ontology development approach by
formalization of presupposition satisfaction tests in terms
of SPARQL-OWL queries, as well as providing translations
of CQs into SPARQL-OWL queries if presupposition tests
are passed. We provide a detailed description of the pro-
posed framework and how to incorporate such tests in the
workflow of test-driven development of ontologies. It is the
first framework available for formalization of SPARQL-OWL
queries out of CQs with their presupposition tests.

1. Introduction

Competency Questions (CQs) are questions expressed in
natural language, which aim to define the scope of an ontol-
ogy as part of the ontology requirements specification [14].
They are, subsequently, formalized using a relevant language,
such as SPARQL [6], to automatically validate whether the
ontology meets the requirements [7, 4, 2].

Ontologies can be expressed in vastly varying modeling
styles, using varying modeling patterns [9], and varying
features of an ontology modeling language such as the Web
Ontology Language (OWL) [11]. Consider the following
CQ: What software has an open source licence?. If one

models different applications as different individuals, one
can easily construct a suitable query in SPARQL [6] to list
all instances of the class Software. However, if one models
different applications as different classes, one must query
for subclasses of the class Software instead.

The particular formalizations to express the tests have
also varied, depending on factors such as features of the
modeled domain, and included axioms and axiom sets [2],
SPARQL-OWL [7, 16] or even methods based on instance
assertions mimicking mock-objects [7].

In this paper, we consider formalising CQs using
SPARQL-OWL [8], a variant of SPARQL with an OWL
2 DL entailment regime, that enables to handle the formal se-
mantics of ontologies expressed in OWL 2 and assumptions
underlying reasoning in OWL. Specifically, OWL makes an
assumption, different from the Closed World Assumption
made in databases: the Open World Assumption states that if
a fact cannot be proved, it does not necessarily mean that it is
false. Firstly, SPARQL-OWL will allow us to use features of
the OWL and OWL reasoning. Secondly, it will also allow
us to express queries with answers different than true/false,
e.g., SELECT queries expressing list questions.

CQs not only encode explicit intents of their creators, but
also implicit assumptions, so-called presuppositions [13, 4].
The notion of presuppositions comes from linguistic prag-
matics, where a presupposition of a statement is a proposition
whose truth is a precondition to assess whether the sentence
is true or false. If the presupposition does not hold, then the
sentence cannot be assessed either as true or false. Consid-
ering a question sentence, a presupposition has to be true in
order for the question to have an answer. For example, the
question What software has an open source licence?
presupposes that software can have a licence, and if not, then
the question cannot be answered.

In this paper, we provide a methodology for formalizing
CQs into their corresponding formalized queries and asso-
ciated presupposition queries as testing artefacts with the
interpretation of their results. We consider the following sce-

DOI reference number: 10.18293/SEKE2021-165

437

nario: 1) Domain expert states CQs 2) Ontology engineer(s)
create(s) the ontology 3) During ontology development, CQs
are translated into SPARQL-OWL queries, so queries and
answers can be obtained and verified after vocabulary is mod-
elled. The scenario is analogous to software engineering,
where one states unit tests before the software exists, and
then, during development, these tests measure the quality
of the software and may help to decide when the authoring
process is complete.

We aim to address the following research questions: RQ1:
What does it mean that a CQ is answerable? RQ2: What
does it mean for CQ-driven ontology authoring that a presup-
position is satisfied or not when it comes to testing? RQ3:
How to handle presuppositions in the workflow of test-driven
development of ontologies?

Our contributions are as follows: (a) a formalization of
presuppositions using SPARQL-OWL ASK queries, (b) a
model for testing list questions that considers presupposition
tests with their interpretation, (c) incorporating presupposi-
tion tests into the workflow of test-driven ontology engineer-
ing, (d) a dataset of SPARQL-OWL queries enhanced with
their presupposition queries.

The remainder of the paper is structured as follows.
Sect. 2 describes related work. Sect. 3 introduces the formal-
ization of presuppositions as SPARQL-OWL ASK queries, a
model of testing, and describes the incorporation of presup-
positions into the test-driven ontology engineering workflow.
We conclude in Sect. 4.

2. Related Work

2.1. Analysis of CQs

Ren et al. [13] analysed CQs and determined patterns
in the form of CQ archetypes (e.g., “Which [CE1] [OPE]
[CE2]?”) containing placeholders for presupposed ontology
elements. Bezerra et al. [1] also proposed CQ patterns with
placeholders for ontology elements, e.g. “Does <class>+
<property><class>?”, functioning as Controlled Natural
Language.

Wiśniewski et al. [16] and Potoniec et al. [12] analysed
the natural language text of CQs itself, and a subsequent step
of semantic analysis in order to find patterns. Next, they anal-
ysed the relation between the found CQ patterns and their
respective SPARQL-OWL signatures (abstract representa-
tions of SPARQL-OWL query meaning), which revealed that
one CQ pattern may be realized by more signatures and vice
versa. Wiśniewski et al. [17] proposed a machine learning
based approach to parse CQs with a model trained on over
46,000 automatically generated CQs .

Fernández-Izquierdo et al. [5] collected a corpus of onto-
logical requirements annotated with lexico-syntactic patterns
(named CORAL). The lexico-syntactic patterns have OWL

constructs associated to them. These constructs were ex-
tracted from the ontology design patterns (ODPs) associated
with the given lexico-syntactic pattern.

2.2. Test-driven development of ontologies

There are several tools proposed for test-driven devel-
opment (TDD) for ontologies. Tawny-OWL [15], an ontol-
ogy development framework, provides predicate functions to
query the reasoner, and its answer is true/false. TDDOnto is a
Protégé plugin which avails of the Protégé’s syntax and uses
the reasoner through the OWL API [7]. TDDOnto2, which
extends TDDOnto, rigorously proves the correctness of the
testing algorithms of TDDOnto, Tawny-OWL, or SCONE [3].
It generalises the algorithms of Keet and Ławrynowicz [7] to
cover any OWL 2 class expression in the axiom under test.

When it comes to testing results, all the mentioned tools
except TDDOnto2 give only limited information about the
result of any test, being pass/fail in Tawny-OWL and SCONE.
More precisely, only “axiom entailed” by the ontology is a
pass and all the others statues are test failures. TDDOnto
also reports missing vocabulary. TDDOnto2 specifies failure
statuses more precisely, being either “inconsistent”, “inco-
herent”, or “absent”.

All TDDOnto2 tests are expressed using axioms which
can be tested in terms of their truth values availing of a rea-
soner, with a purpose of checking whether the knowledge
encoded directly via the axiom is already covered in the on-
tology (is entailed). However, when it comes to CQs, which
are questions associated often with ’gold standard’ answers,
they are more naturally expressed as queries, such as list
queries (i.e., queries with a result being a list of objects).
Therefore, in this paper, we explore such direction.

Another aspect of the mentioned tools is that they do not
consider presuppositions. Indeed, binary questions (such
as on the truth value of an axiom) do not have presupposi-
tions [13] since they simply ask whether there is an answer
satisfying the constraint. In this paper, contrary to the men-
tioned works, we consider presuppositions as we deal with
SPARQL-OWL SELECT queries.

3. Incorporating presuppositions into TDD for
ontologies

3.1. Presuppositions in CQs

Linguistic research on pragmatics reveals that a list ques-
tion, starting with WH-words like what, which etc. always
makes a presupposition that some object(s) fulfil the predi-
cate of the question [10]. A presupposition can be generated
by replacing the WH-word with the corresponding indefi-
nite pronoun, e.g., Who left the door open? presupposes
Someone left the door open [10]. It is possible to deny

438

the presupposition, e.g., No-one left the door open [10].
From this we infer that a CQ always assumes, either ex-

plicitly or implicitly, some domain for its answer. Moreover
some elements of the domain must be capable of fulfilling
the predicate (a positive presupposition), yet the elements
of the domain not necessarily fulfil the predicate (a negative
presupposition).

3.2. Model of testing with presuppositions

Let us denote by O an OWL 2 ontology [11], and by
C,D a named class or a class expression. Denote by Q a
formalization of a CQ in the form of a SPARQL-OWL query,
and a positive presupposition query by PQ+, and a negative
presupposition query by PQ−. Below, we formalize presup-
position tests availing of SPARQL-OWL queries plus the
interpretation of their results.

A presupposition query PQ is a SPARQL-OWL
ASK query with only the following basic graph pattern
(BGP) in the WHERE clause: C rdfs:subClassOf
owl:Nothing. Note, that we use such formulation since
there is no direct syntax for satisfiability checking.
Definition 3.1 (Presupposition test). Let Ψ(PQ) de-
note the solution sequence, as defined by [6], of the
presupposition query PQ under the OWL 2 DL en-
tailment regime over the ontology O. If O |=
Crdfs:subClassOfowl:Nothing, then Ψ(PQ) 6=
∅ and the answer to PQ is true, denoted µ(PQ) = true,
meaning the presupposition is not satisfied. Otherwise,
Ψ(PQ) = ∅ and the answer to PQ is false, denoted
µ(PQ) = false, meaning the presupposition is satisfied.

Furthermore, we define the model of testing for SPARQL-
OWL SELECT queries Q as for those queries that have pre-
suppositions. SPARQL-OWL ASK queries Q as correspond-
ing to binary questions do not have presuppositions [13]
since they simply ask whether there is an answer satisfying
the constraint.

Let us now introduce the model of testing. We start from
a CQ, for instance Which pizzas contain chocolate?. This
induces a positive (informal) presupposition There may
exist pizzas with chocolate, and a negative presupposition
There may exist pizzas without chocolate. Both the CQ,
and associated presuppositions are formalized as SPARQL-
OWL queries.

Any list question (formalized as SPARQL-OWL query)
can be considered as restricting a certain class expression C
with another class expression D, i.e., a question about C and
D. Then positive presupposition means that there are some
objects that are both C andD, and if negative presupposition
is satisfied, it means that there are objects that are C but
not D. Non-fulfillment of a positive presupposition means
that the ontology determines the answer: the intersection
of C and D is necessarily an empty set; failure to meet

CQ

Formalized CQs

Select tests

Stop

pass (the knowledge is
already present)

missing vocabulary

vocabulary present

Add vocabulary

Update ontology with
 axiom(s)

Translate
natural language CQ to

SPARQL-OWL

fail

Run tests
(ontology incconsistent or

incoherent?)

Run tests

fail

pass (entailed) Refactor ontology
 and regression

testing

Stop

Vocabulary
present

Positive
presupposition

satisfied

Negative
presupposition

satisfied

Stop
answer determined

Stop
answer determined

Figure 1. Incorporating presupposition tests into the work-
flow of TDD for ontologies. Grey boxes represent the steps
associated with our contribution, while white boxes repre-
sent the steps in the (simplified) preexisting methodology

negative presupposition means that the ontology determines
the answer: the intersection of C and D is equivalent to C.
If answers to all presuppositions of Q are false, then we can
ask the query Q and interpret the obtained result.

Definition 3.2 (Model for testing (SELECT query)). Given
a consistent and coherent ontology O, a SPARQL-OWL
query Q asking about the intersection of the class ex-
pressions Ci and Di, and its positive presuppositions
PQ+

i (there are objects being both Ci and Di), and a
corresponding negative presuppositions PQ−

i (there are
objects being Ci, but not Di), (i=1...n), then the result of
testing Q, PQ+

i , and PQ−
i against O is:

testO(Q) =

µ(Q) = C if ∃i µ(PQ+

i) = true (i.e, unsat.)

µ(Q) = ∅ if ∃i µ(PQ−
i) = true (i.e., unsat.)

compute the answer toQ if ∀i µ(PQi) = false

3.3. Presuppositions in TDD workflow

Test-driven approach to ontology authoring has been
shown to be theoretically and technologically a worthy solu-

439

tion and the recommended TDD ontology authoring work-
flow has been proposed [2]. Here, we extend the workflow
with new additions to incorporate checking question answer-
ability, presuppositions and list questions. The extended
workflow is depicted in Fig. 1. Grey boxes represent the
steps of the extended TDD workflow, which we incorpo-
rate and focus on in this paper. In particular, to determine
query answerability, we not only need to check whether there
is an answer to a query consistent with our intention, but
whether the query can be constructed at all, including check-
ing whether there is relevant vocabulary. Then, positive and
negative presupposition tests serve to further check whether
constructing a list query is meaningful.

Only after these steps, one can construct a SPARQL-OWL
query out of a natural language CQ.

3.4. Dataset

In https://tinyurl.com/3v4rfp6f we provide
a dataset constisting of SPARQL-OWL CQ query templates
and their corresponding SPARQL-OWL query templates for
presuppositions. The dataset is an extension of a preexisting
dataset of SPARQL-OWL formalization of CQs [12, 16]. In
the templates any IRIs referring to any concrete ontology
are replaced by placeholders denoted by angle brackets and
the same placeholder in the CQ query template and in the
presuppositions templates should be replaced by the same
value during materialization.

4. Discussion & conclusions

Answering RQ1, the notion of answerability of a CQ has
two levels. It may seem that it is sufficient for the necessary
vocabulary to be present in the ontology. While this always
yields some query, and thus some answers, it fails to con-
sider the reason for the answers, which may go against the
intent of the CQ. One must thus consider the presuppositions
inherent to the CQ and test them beforehand. Only when the
presuppositions are satisfied the answer to the query follows
the intent of the CQ.We thus claim that a CQ is (meaning-
fully) answerable if the necessary vocabulary is present and
all the presuppositions are satisfied.

Addressing RQ2, we introduced in Sect. 3.2 the notion of
a presupposition query. We formalized the way of handling
such a query in order to create a presupposition test and
offered guidelines to extract presuppositions from a CQ
formalized as a SPARQL-OWL query.

Regarding RQ3, we extended the workflow of TDD for
ontologies to incorporate presuppositions. In Sect. 3.3 we
explained that an unsatisfied presupposition denotes that an
answer for the CQ is predefined in a way that is incompatible
with the intent of the query.

Being able to automatically provide correct SPARQL-
OWL query recommendations and their presupposition tests
as formalizations of ontology competency questions for a
given ontology is a promising idea which can lead to reduc-
tion of time required to author the ontology. Using an already
existing dataset of CQs and their translations to SPARQL-
OWL helped us to get the first insight into the problem. We
hope that our model for extending TDD for ontologies with
presupposition tests, together with a new dataset, will incent
further research into more commonsense-aware knowledge
engineering.

References

[1] C. Bezerra et al. CQChecker: A tool to check ontologies in
OWL-DL using competency questions written in controlled
natural language. L&NLM, vol. 12:pp. 115–129, 01 2014.

[2] K. Davies et al. More effective ontology authoring with
test-driven development and the TDDonto2 tool. IJAIT, vol.
28(7):pp. 1950023:1–1950023:25, 2019.

[3] R. Denaux, D. Thakker, V. Dimitrova, and A. G. Cohn. Inter-
active semantic feedback for intuitive ontology authoring. In
Proc. of FOIS’12, pages 160–173. IOS Press, 2012.

[4] M. Dennis et al. Computing authoring tests from competency
questions: Experimental validation. In Proc. of ISWC, pages
243–259, 2017.

[5] A. Fernández-Izquierdo et al. CORAL: A corpus of ontologi-
cal requirements annotated with lexico-syntactic patterns. In
Proc. of ESWC, LNCS, pages 443–458. Springer, 2019.

[6] S. Harris and A. Seaborne. SPARQL 1.1 query language.
W3C recommendation, W3C, Mar. 2013.

[7] C. M. Keet and A. Lawrynowicz. Test-driven development
of ontologies. In ESWC, pages 642–657. Springer, 2016.

[8] I. Kollia et al. SPARQL query answering over OWL ontolo-
gies. In Proc. of ESWC, Part I, pages 382–396, 2011.

[9] A. Lawrynowicz et al. Discovery of emerging design patterns
in ontologies using tree mining. Semantic Web, vol. 9(4):pp.
517–544, 2018.

[10] J. Lyons. Semantics, vol. 2. Cambridge Univ. Press, 1977.
[11] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 web

ontology language structural specification and functional-
style syntax (second edition). Technical report, W3C, 2012.

[12] J. Potoniec et al. Dataset of ontology competency questions
to sparql-owl queries translations. Data in Brief, 29, 2020.

[13] Y. Ren et al. Towards competency question-driven ontology
authoring. In ESWC, pages 752–767. Springer, 2014.

[14] M. C. Suárez-Figueroa and A. Gómez-Pérez. Ontology re-
quirements specification. In Ontology Engineering in a Net-
worked World, pages 93–106. Springer, 2012.

[15] J. D. Warrender and P. Lord. How, what and why to test an
ontology. CoRR, abs/1505.04112, 2015.

[16] D. Wisniewski et al. Analysis of ontology competency ques-
tions and their formalizations in SPARQL-OWL. JWS, 59,
2019.

[17] D. Wisniewski and A. Ławrynowicz. A tagger for glossary
of terms extraction from ontology competency questions. In
ESWC, Satellite Events, pages 181–185. Springer, 2019.

440

DOI reference number: 10.18293/SEKE2021-009

Ride Hailing Service Demand Forecast by Integrating

Convolutional and Recurrent Neural Networks

Zinat Ara

Department of Information Sciences and Technology

George Mason University

Fairfax, VA, USA

zara@gmu.edu

Mahdi Hashemi

Department of Information Sciences and Technology

George Mason University

Fairfax, VA, USA

mhashem2@gmu.edu, ORCID: 0000-0003-0212-0228

Abstract—Ride hailing services, such as Uber, Lyft, and Grab have

become a major transportation mode in the last decade. Current

ride demand is one of the major factors in such services’ pricing

algorithm. Therefore, forecasting future travel demand for such

services is essential to both drivers and riders. This study

constructs a deep learning based model for ride hailing demand

forecast aiming to achieve high accuracies in solving similar

problems. This study attempts to address a limitation in existing

ride hailing demand prediction models, where the area is divided

into a rectangular grid and all travel demand forecasts are made

between rectangular cells, rather than city neighborhood zones.

The proposed model forecasts travel demand between city

neighborhood zones. The forecast model integrates convolutional

and recurrent neural networks and forecasts the demand for each

pickup-destination pair for a particular hour, during the next day,

by observing the demand over the past two weeks for that

particular hour. Our experiments with a real-world hire vehicle

dataset in New York City showed that the proposed model

outperforms the CNN and LSTM models up to 18.41 % in RMSE

and 22.65% in R2 values.

Keywords- travel demand prediction; deep learning;

convolutional neural network; recurrent neural network

I. INTRODUCTION

Companies, such as Uber, Lyft, Juno, Gett, Grab that allow
passengers to request rides from mobile applications are known
as ride-hailing service companies. Online ride hailing services
have rapidly grown in popularity in recent years. Receiving a
correct approximation of travel demand at a certain time can help
a passenger schedule their future trips more efficiently. On the
other hand, drivers employed by the ride hailing services can
choose to work at times with high demand to maximize their
earnings. This paper proposes a deep learning method
combining convolutional neural network and bidirectional long
short term memory (biLSTM) for predicting travel demand of
ride hailing services.

Space and time are the two indispensable dimensions of
urban ride-hailing demand prediction. For instance, urban ride-
hailing is always strongly linked between the public transport
areas and the tourist regions, and between the residential and the
industrial regions. In the peak hours of workdays morning and
the peak hours of workdays evening, requests from residential
and industrial regions increases significantly. In addition to the
association between space and time, changes of urban ride-

hailing demand are also affected by many other factors including
weather, holidays, and unforeseen incidents such as sport events
or national occasions. There have been extensive studies in
traffic data prediction, including traffic volume, taxi pick-ups,
and traffic in/out flow volume. With the fast developing of
machine learning models, prediction models based on neural
network is getting more attention. Existing methods on traffic
prediction have only considered spatial relation (e.g., using
CNN) or temporal relation (e.g., using LSTM) independently
and state-of-art results are achieved in the work compared with
the traditional statistical learning methods. The main advantage
of CNNs that make them suited to forecasting time series is the
ability to use filters to compute dilations between each cell.
Considering the spatial relation which is the size of the space
between each cell, allows the neural network to better
understand the relationships between the different observations
in the time series. In this paper, we are combining bidirectional
LSTM with CNN for predicting ride hailing demand. Our work
is different from the existing ones [1, 2, 3] as we are not using
longitude-latitude to create grids for defining the location and
the method does not require any graphical representation or
image data as input. A rectangular division of a map can result
in grids which fall into two different regions or have a majority
part of it outside the land area. In either of these cases the
demand calculation can suffer a level of inaccuracy. The study
divides the total space into regions using the NYC Taxi Zones
dataset which creates partitions based on NYC department of
city planning’s neighborhood tabulation areas. Pickup-
destination pairs are created according to their regions and
multiple one-dimensional arrays considering time period fit to
be the input for our CNN. Applying filters, we convolve these
one-dimensional matrices and then run biLSTM for each of them
to predict ride hailing demand. Most of the studies have applied
unidirectional LSTM to handle similar problems but
bidirectional will run the inputs in two ways and can understand
the prediction context better [4].

II. RELATED WORK

Machine learning (ML) and prediction models are used by
researchers to make transportation systems more intelligent [5,
6, 7, 8, 9, 10, 11, 12]. Lam and Liu [13] used the discrete choice
model to analyze the correlation between dynamic pricing and
waiting time in densely populated areas of New York. Gerte et
al. [14] examined the demand for the ride hailing service using

441

a panel based random effects model in order to capture both
heteroscedasticity and autocorrelation effects. The major
challenge of statistical approaches is a lack of predictive
accuracy, particularly under a complex data environment with
different data sources.

Travel demand data has periodicity, so historical travel
demand is used to predict future travel demand. Ma et al. [15]
utilized CNN on images of traffic speed for the speed prediction
problem. In these methods convolution network is applied on the
entire city without any partitions and predictions were done
based on all the regions. As a result, taking account of unrelated
regions for the prediction of the target area may downgrade the
performance. LSTM itself is widely used to process time series
data and traffic prediction. Yu et al. [16] applied long short-term
memory network and autoencoder to capture the temporal
dependency for predicting the traffic volume particularly for
peak-hour and post-accident scenarios. However, the spatial
relation is not measured in these scenarios.

 To capture both spatial and temporal dependences
simultaneously in one end-to-end training model, researchers
have made numerous attempts in recent years. Shi et al. [17]
proposed the conv-LSTM network, which combined CNN and
LSTM in one sequence to sequence learning framework and the
results showed that the conv-LSTM outperformed fully-
connected LSTM on the basis of learning the complex spatio-
temporal features. A study by Ke et al. [18] applied the random
forest framework to select the exogenic variables, ranking their
significance. In addition, the image intensity was examined
which was retrieved from the map sequences of travel time rates
using CNN and LSTM tools for short time passenger demand
forecasting. Rodrigues et al. [20] presented a deep learning
architecture merging the text information with time-series data
and applied the approach to the problem of taxi demand
forecasting in event areas.

Previous methods are mainly designed to predict the taxi
demand in a specific region and ignore the importance of
movement direction between different areas [21]. Rare works
have been done on the prediction considering all combination
including destination and inter-region demands. Liu et al. [22]
aims at predicting the taxi demand between all region pairs in a
future time interval. An approach contextualized spatial-
temporal network is proposed and proved to be effective in
predicting taxi demands both in origin and destination.
However, region partition is done by grid based method and the
spatial and temporal information of taxi demands has not been
fully taken into consideration in this case. Instead of using
traditional matrix Chu et al. [23] developed and manipulated
origin-destination (OD) based tensor to represent OD flows and
applied convLSTM model to predict demand. Grid wise division
is applied for measuring OD tensor. Guo [24] proposed an
integrated CNN-BiLSTM-Attention based model to predict taxi
demand. Pengfeng et al. [21] divided the urban area into H x W
grids based on the longitude and latitude. While calculating
travel demand, they have considered both pickup and destination
location to create a demand matrix. All of these studies divide
area’s latitude and longitude into n×n geographical rectangles to
consider the regions. But a region’s map is not rectangular shape
and dividing it as this can result in grids falling into two different

regions or have a majority part of it outside the land area. In these
cases, demand calculation will be inaccurate.

This paper is considering pickup-destination pairs according
to their regions and create multiple one-dimensional arrays for
different time periods fit to be the input for our CNN. Then
adding bidirectional LSTM layers for each of them to predict
ride hailing demand which will run the inputs in two ways to
better understand the prediction context.

III. DATA DESCRIPTION

One of our primary datasets is collected from NYC Open
Data source which provides a wide range of traffic datasets in
different formats. We have chosen 2018 (January-December) for
hire vehicles trip data. These records are generated from the Ride
Hailing Services (RHS) trip record submissions made by
different commuter vehicles. The RHS trip records include fields
capturing the pick-up date, time, and taxi zone location ID,
which correspond with the NYC taxi zones open dataset. Each
row represents a single trip in a hired vehicle service [25].
Secondly, NYC taxi zones data corresponds to the pickup and
drop-off zones, or location IDs, included in the yellow, green,
and RHS trip records (Uber, Lyft) published to Open Data. The
taxi zones are based on NYC Department of City Planning’s
Neighborhood Tabulation Areas (NTAs) and are meant to
approximate neighborhoods, so one can visualize which
neighborhood a passenger was picked up in, and which
neighborhood they were dropped off in. This dataset provides
the geolocations of neighborhoods where the output is multi
polygons each representing different region with unique location
ID.

Figure 1 Pickup demand pattern in NYC in year 2018

Figure 1 shows the number of requests along Y axis in 2018
for RHS in New York city from January to February based on
pickup datetimes (X axis). From the pattern of the distribution
with respect to time it is certain that passenger requests are
higher in weekdays and comparatively lower in weekends. The
features which have been considered for training in this study
are timestamp, hour, demand, and weekend. These features were
chosen for their higher impact over demand prediction and
availability.

442

IV. METHODOLOGY

A. Non-grid partition

Most of the related studies have [21, 3, 22, 23, 24] used grid

wise rectangular division method where they selected latitude

and longitude value of a city and then divided into n×n

geographical squares. For simplicity we define each square

block unit as pixel. The overall travel demand about one city is

reflected by each pixel’s demand. The grid wise division in

geographical area is shown in Figure 2. But this method has few

problems in following cases:
1. First problem will be the resolution; a pixel may contain

regions with high demand and regions with low demand
so they will combine in the same pixel and that pixel
will basically show their average demand. The larger
the pixel gets this problem becomes more severe
(Figure 2).

2. A pixel may contain only regions with water, no land
area. Demand will be zero in that pixel. These types of
pixels cannot be disregarded in grid wise division
method.

3. If a pixel includes both land and water area, that pixel
will not provide the actual demand of the region. There
is a high chance that demand counts might decreased
for considering non-regional areas into the same pixel.

A geographical map is not a perfect geometric rectangular
shaped object, so partitioning it based on grid is less realistic
option. To avoid this problem geographic information of an area
can be applied to define the boundaries where the area longitude
latitude values are formatted as polygons. This represents each
area boundary precisely and will be useful to solve this problem.
We are utilizing the NYC taxi zones which is based on city
planning’s neighborhood tabulation area and where each region
is partitioned into polygon shape to its approximate
neighborhoods. Instead of using grid based division, partitioning
regions based on its actual geolocation information is more
effective in terms of accuracy for demand calculation. Figure 3
plots the map using geolocations which represents the taxi zones
of NY city and each region has a unique identification number.
In our dataset each trip information for RHS contains pickup and
destination location ID which comes from the polygons. We are
calculating pickup-destination pairs according to their regions
and create multiple one-dimensional arrays considering time
period fit to be the input for our CNN. The raw data is processed
and features are extracted. Then transformed into a matrix as the
format of input data of the prediction framework. 𝑟 is the
number of inter area hire vehicle request from a pickup location
𝑖 to destination 𝑗 during a time period 𝑡 which is represented by

𝑟𝑖𝑗
𝑡 . Similarly, for each pickup-destination pair, we will calculate

the corresponding 𝑟 at time 𝑡 . Finally, the total number of
requests in the city 𝑅𝑡 at period 𝑡 which will consider each pair
count and can be represented in form a matrix:

𝑅𝑡 = [
𝑟11

𝑡 ⋯ 𝑟𝑛1
𝑡

⋮ ⋱ ⋮
𝑟𝑛1

𝑡 ⋯ 𝑟𝑛𝑛
𝑡

]

where n is the number of total area polygons or regions. The
demand prediction problem aims to predict the demand at time

Case 1

Case 2

Case 3

Figure 2 Grid based partitioning and problems associated thereof

interval 𝑡 + 𝑘, where 𝑡 is current timestamp and k is the lag size.
In addition to historical demand data, we also incorporated
influential features such as time of day, day of week, holiday,
weekend and areas of pickup and destination.

Figure 3 Partitions using New York city neighborhood zone

Following are the primary steps of our approach for demand
prediction:

1. Extract pair-wise demand for region based pickup-
destination locations.

2. Create 2D matrix for each time interval's RHS demand
so that each matrix is a temporal snapshot of demand for
all pairs.

3. Each temporal snapshot will be given input to 1D
multivariate CNN model.

4. Compute feature information using CNN, store feature
output in each subsequent array.

443

5. Use each subsequence with feature information from
CNN as a new feature for biLSTM, memorize long-
sequence features from each subsequence, use to predict
the RHS demand for input pairs in future time interval.

B. One dimensional convolution network

A modified version of 2D CNNs called 1D Convolutional

Neural Networks (1D CNNs) has recently been developed [3,

21]. Rather than matrix operations, forward and backward

propagation in 1D CNNs require simple array operations. For

this reason, the computational complexity of 1D CNNs is

significantly lower than 2D CNNs. 1D CNNs with relatively

shallow architectures (i.e., small number of hidden layers and

neurons) are able to learn challenging tasks faster.

Main components of 1D CNN model used in this study are

1) convolution layers where both 1 dimension convolutions and

sub sampling or pooling occur, and 2) fully connected layers

that are indistinguishable to the layers of a typical Multi-layer

Perceptron (MLP). CNN layer first performs a series of

convolutions, the sum of this operation is passed through the

activation function, 𝑓, followed by the pooling operation. This

is the main difference between 1D and 2D CNNs, where 1D

arrays replace 2D matrices for both kernels and feature maps.

As a next step, the CNN layers process the raw 1D data and

learn to extract such features which are used in the prediction

task performed by the MLP-layers. The detailed explanation

about the forward and backward propagation functions can be

found in [26].

C. Bidirectional LSTM

Bidirectional LSTM, or biLSTM, is a sequence processing

model that consists of two LSTMs: one taking the input in a

forward direction and the other in a backwards direction.

biLSTMs effectively increase the amount of information

available to the network, improving the context available to the

algorithm. The model we are using in the experiment consists

of an output layer, a dense layer and a biLSTM layers. The input

of the model requires a fixed-length vector. The dense layer is

used to compress the dimension of the output vector of the

biLSTM layer. The output layer collects the vector from the

dense layer and outputs the desired regression value.

D. Proposed Model: CNN-biLSTM

The convolution layer in proposed model extracts the
correlation between the input features and captures spatial
dependency. Maximum pooling layer calculates the maximum
value in each patch of each feature map. We flatten the output of
the convolutional layers to create a single long feature vector.
Next this tensor is passed through a bidirectional LSTM layer,
which interprets the context from both directions. And it is
connected to the final layer, which is known as dense layer. The
network solves a regression task and final outcome of the model
is number of demands for specific regions at different
timestamps. Figure 5 illustrates the whole structure of the
proposed model. As a desirable neural network to deal with the
long-term dependencies in time series, LSTM is designed to
overcome the vanishing gradients through a special gating
mechanism [24]. LSTM avoids long term dependency problems

Figure 5 CNN-biLSTM architecture

by bringing the cell state, gate, and other schemes. The basic
units of the LSTM network consist of three doors (input gate,
output gate, and forget gate) and two memories (long-term
memory and short-term memory). The input gate aims at
selecting the needed new information and adds it to the cell state.
The forget gate tends to remove the information that is no longer
required by the memory cell, while the output gate decides what
kind of necessary information in the cell should be output.
Generally, the gating mechanisms can ensure the cells in LSTM
network to store and update the essential information over long
periods of time.

Figure 6 An example of the temporal window structure

Figure 6 describes the temporal window structure this paper

uses for predicting the travel demand between a particular

regional pair. Current time is noted by t. The training starts from

2 weeks ago, which in hour count is 24*14=336. Therefore, the

first node is labeled t-336 and the hour count is incremented by

1 day or 24 hours for each consecutive node. The next training

444

row starts by shifting the entire window by one hour which

results in the prediction of the next hour. The diagram shows

the prediction window starting from January 1, 12:00 AM

leading up to predicting the demand for January 15, 12:00 AM

horizontally and vertically shifting 1 hour from above row up

to June 15 11:00 PM to predict demand for June 30 11:00 PM.

The paper also implements some baseline models for

comparison. A typical LSTM model and single one dimensional

convolutional network consisting single CNN, max pool, flatten

and dense layers. Another baseline model is combining CNN

and LSTM models together.

V. RESULTS AND DISCUSSION

In order to compare our framework with the other baseline
models, the experiments are conducted on a real dataset. No. of
parameters for LSTM, CNN layers are 128, for dense layer 97.
32 filters and kernel size 3 is set for convolution layers. New
layer has been added step by step with its previous layer,
parameters are tuned and result is observed with new mode. In
order to evaluate the predicted performance, the root mean
square error (RMSE) and coefficient of determination, or R2 are
used. Root mean square error measures how much error there is
between two data sets. The smaller an RMSE value, the closer
predicted and observed values are:

𝑌𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑋𝑝𝑟𝑒𝑑 (𝑖) − 𝑋𝑎𝑐𝑡(𝑖))2

𝑛

𝑖=1

(10)

The coefficient of determination, or R2, is a measure that
provides information about the goodness of fit of a model.

𝑅2 = 1 −
∑(yi −ŷi)2

∑(yi −y̅i)2 (11)

Table 3 demonstrates the comparison among all models for
2018 NYC RHS dataset. Multiple pickup-destination pairs are
compared and result for sample 5 pairs are shown. We
considered same region based pair where pickup and destination
ids are same and also different id based pairs. It is noted that
CNN-biLSTM model outperforms the baseline models in terms
of RMSE and R2 for any pair. R2 scores vary for different pairs
but it is always closer to 1 which indicates our model works as
expected and is a good fit. The table shows that for some pairs
sequential model LSTM achieved better result than standalone
CNN model and vice versa, however combining them both
always showing a better prediction.

TABLE 3 RMSE AND R2 VALUE COMPARISON AMONG ALL

MODELS FOR 2018 NYC RHS DATA

Regional

pair

Model R2 value RMSE value

Pair 1

LSTM 0.717 76.414

CNN 0.713 45.646

CNN-LSTM 0.718 33.837

CNN-biLSTM 0.720 33.705

Pair 2

LSTM 0.722 17.838

CNN 0.596 21.501

CNN-LSTM 0.714 18.088

CNN-biLSTM 0.731 17.542

Pair 3 LSTM 0.834 10.957

CNN 0.831 11.039

CNN-LSTM 0.838 10.822

CNN-biLSTM 0.840 10.744

Pair 4 LSTM 0.674 24.916

CNN 0.704 23.737

CNN-LSTM 0.728 22.768

CNN-biLSTM 0.729 22.706

Pair 5 LSTM 0.736 20.095

CNN 0.667 22.577

CNN-LSTM 0.740 19.947

CNN-biLSTM 0.742 19.866

The proposed model CNN-biLSTM outperforms all models
which indicates this model is able to capture spatial and temporal
correlations successfully.

Figure 7 Comparing travel demand in one day for a specific origin-

destination pair

Figure 7 demonstrates the travel demand prediction curve for
one day for a specific region pair in 2018. Prediction curves of
all models are compared with the real value. From the
illustration it is noted that CNN-LSTM and CNN-biLSTM
models exhibit a trend similar to real data. Figure 8 depicts the
percentage decrease in RMSE for out proposed model
comparing to baseline models. This measurement is performed
on 2018 RHS dataset. For pair 2 our model achieved the best
accuracy which is 18.41% against the CNN model. Similarly,
for this pair the proposed model achieved 22.65% improvement
over the R2 value. Combining CNN and LSTM has achieved
better performance than standalone CNN and LSTM models,
applying bidirectional recurrent network (biLSTM) further
improves the performance.

Among the state of the art models for ride hail service
demand prediction, Liu et al. [22] achieved an RMSE of 19.85
in predicting only the origins and an RMSE of 1.32 in predicting
demand between origin-destination pairs on NYC-TOD dataset.
Chu et al. [23] achieved an RMSE of 1.015 in predicting taxi
demand in NYC using a MultiConvLSTM. Shu et al. [21]
applied CNN-LSTM model on historical data in Haikou (China)
and obtained lower RMSE values than LSTM. The dataset
applied in all these models is presented for grids and not
neighborhood. On the other hand, the dataset used in our study
is based on city neighborhood zones. There is no method to
convert the data from grid format to neighborhood format, or
vice versa, without making unrealistic assumptions and
significantly lowering the data accuracy. Therefore, a

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
D

em
an

d
 c

o
u

n
t

Hour

LSTM CNN

CNN-LSTM CNN-BiLSTM

Real values

445

meaningful comparison between the accuracy of the grid-based
versus neighborhood-based models would not be possible.

Figure 8 Percentage-wise RMSE decrease (improvement) in the proposed

model (CNN-biLSTM) versus LSTM, CNN and CNN-LSTM.

VI. CONCLUSION AND FUTURE WORK

 Travel demand modeling is an inherent part of smart

transportation system. Forecasting travel demand can help us

manage the hot spot of passenger demand in the next period,

balance supply and demand and schedule vehicle resources for

passengers. In this paper, a convolutional and recurrent network

based deep learning model for ride hailing service demand

prediction is proposed that takes advantage of both temporal

and spatial properties on areal dataset. Proposed models’

performances are significantly beyond baseline models,

confirming that it is better and more flexible for the travel

demand prediction. In addition, we found that rectangular grid

based partition method has several issues to calculate demand.

Therefore, choosing a suitable partitioning method to predict

travel demand is vital and has significant impact on increasing

accuracies. In future, we will further improve the model and test

with different pattern data sets. We want to extend the idea of

utilizing the geojson information for partitioning method while

demand calculation. For calculation, including data from

adjacent cities can be used to verify model suitability.

REFERENCES

[1] T. Kim, S. Sharda, X. Zhou and R. M. Pendyala, "A stepwise

interpretable machine learning framework using linear regression (LR)

and long short-term memory (LSTM): City-wide demand-side
prediction of yellow taxi and for-hire vehicle (FHV) service,"

Transportation Research Part C, 2020.

[2] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye and Z. Li,
"Deep Multi-View Spatial-Temporal Network for Taxi Demand

Prediction," machine learning applications for shared mobility, 2018.

[3] D. Wang, Y. Yang and S. Ning, "DeepSTCL: A Deep Spatio-temporal
ConvLSTM for Travel Demand Prediction," in International Joint

Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazi, 2018.

[4] Y. Bao, Z. Huang, L. Li, Y. Wang and Y. Liu, "A BiLSTM-CNN model
for predicting users’ next locations based on geotagged social media,"

International Journal of Geographical Information Science, pp. 1-22,

2020.

[5] M. Hashemi, "Emergency evacuation of people with disabilities: A

survey of drills, simulations, and accessibility," Cogent Engineering,

vol. 5, no. 1, p. 1506304, 2018.

[6] M. Hashemi, "Automatic inference of road and pedestrian networks

from spatial-temporal trajectories," IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 12, p. 4604–4620, 2019.

[7] M. Hashemi, "Dynamic, stream-balancing, turn-minimizing, accessible

wayfinding for emergency evacuation of people who use a wheelchair,"
Fire Technology, vol. 54, no. 5, p. 1195–1217, 2018.

[8] M. Hashemi, "Reusability of the output of map-matching algorithms

across space and time through machine learning," IEEE Transactions
on Intelligent Transportation Systems, vol. 18, no. 11, p. 3017–3026,

2017.

[9] M. Hashemi, "A testbed for evaluating network construction algorithms
from GPS traces," Computers, Environment and Urban Systems, vol.

66, p. 96–109, 2017.

[10] M. Hashemi, "Intelligent GPS trace management for human mobility
pattern detection," Cogent Engineering, vol. 4, no. 1390813, 2017.

[11] M. Hashemi and H. A. Karimi, "Collaborative personalized multi-

criteria wayfinding for wheelchair users in outdoors," Transactions in
GIS, vol. 21, no. 4, p. 782–795, 2017.

[12] M. Hashemi and H. A. Karimi, "Indoor spatial model and accessibility

index for emergency evacuation of people with disabilities," Journal of
Computing in Civil Engineering, vol. 30, no. 4, p. 04015056, 2016.

[13] C. Lam and M. Liu, "Toward Inclusive Mobility: Ridesharing Mitigates

Geographical Disparity in Transportation," SSRN 2997190, 2020.

[14] R. J. Gerte, K. C. Konduri and N. Eluru, "Is There a Limit to Adoption

of Dynamic Ridesharing Systems? Evidence from Analysis of Uber

Demand Data from New York City," Transportation Research Record
Journal of the Transportation Research Board, 2018.

[15] X. Ma, Z. Dai, Z. He, J. Na, Y. Wang and Y. Wang, "Learning Traffic

as Images: A Deep Convolutional Neural Network for Large-Scale
Transportation Network Speed Prediction," Sensors, 2017.

[16] R. Yu, Y. Li, C. Shahabi, U. Demiryurek and Y. Liu, "Deep Learning:

A Generic Approach for Extreme Condition Traffic Forecasting," in
Proceedings of SIAM International Conference on Data Mining, 2017.

[17] X. Shi, Z. Chen, H. Wang and D.-Y. Yeung, "Convolutional LSTM

Network: A Machine Learning Approach for Precipitation
Nowcasting," Advances in Neural Information Processing Systems, pp.

802-810, 2015.

[18] J. Ke, H. Zheng, H. Yang and X. (. Chen, "Short-term forecasting of
passenger demand under on-demand ride services: A spatio-temporal

deep learning approach," Transportation Research Part C: Emerging

Technologies, vol. 85, pp. 591-608, 2017.

[19] T. Kim, S. Sharda, X. Zhou and R. M. Pendyala, "A stepwise

interpretable machine learning framework using linear regression (LR)

and long short-term memory (LSTM): City-wide demand-side

prediction of yellow taxi and for-hire vehicle (FHV) service,"

Transportation Research Part C, 2020.

[20] F. Rodrigues, . I. Markou and F. Pereira, "Combining time-series and
textual data for taxi demand prediction in event areas: a deep learning

approach," Information Fusion, vol. 49, pp. 120-129, 2019.

[21] P. Shu, Y. Sun, Y. Zhao and G. Xu, "Spatial-Temporal Taxi Demand
Prediction Using LSTM-CNN," in IEEE International Conference on

Automation Science and Engineering, 2020.

[22] L. Liu, Z. Qiu, G. Li, Q. Wang, W. Ouyang and L. Lin, "Contextualized

Spatial-Temporal Network for Taxi Origin-Destination Demand

Prediction," IEEE Transactions on Intelligent Transportation Systems,
pp. 1-13, 2019.

[23] K.-F. Chu, A. Y. S. Lam and V. O. K. Li, "Deep Multi-Scale

Convolutional LSTM Network for Travel Demand and Origin-
Destination Predictions," INTELLIGENT TRANSPORTATION

SYSTEMS, vol. 21, no. 8, pp. 3219-3232, 2020.

[24] X. Guo, "Prediction of Taxi Demand Based on CNN-BiLSTM-
Attention Neural Network," in International Conference on Neural

Information Processing, 2020.

[25] "https://data.cityofnewyork.us/Transportation/2020-For-Hire-Vehicles-
Trip-Data-January-June-/m3yx-mvk4/data," [Online].

0

4

8

12

16

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5

LSTM CNN CNN-LSTM

446

Transfer Learning-based City Similarity
Measurement: A Case Study on Urban Hotel

Ganghua Zhang , Xiaoping Che , Shiyao Wei , Tao Na
School of Software Engineering

Beijing Jiaotong University
Beijing, China

19121730@bjtu.edu.cn, xpche@bjtu.edu.cn

Abstract—With the development of modern cities, multiple
types and wide distribution of urban data has been gradually
collected. Effectively using urban data to solve city development
and planning issues has become a research hot-spot. Currently,
the data scale in modern cities is quite different, and the fitting
degree of machine learning algorithm based on single city is
not mature yet. This paper studies the problem with transfer
learning technique, and trains the prediction model of urban
hotel development scale using multi-source city data. Based on
the location data and related information of 15 different cities, the
relevant knowledge is transferred, and a city feature extraction
and similarity measurement framework is proposed.

Index Terms—Transfer Learning, City Similarity, Scale Pre-
diction

I. INTRODUCTION

In order to solve the optimal location decision-making
problem of enterprises, one of the most direct methods is to
recommend the location of enterprise users. In recent years,
a large number of academic papers have conducted in-depth
research on the location recommendation method [1]–[3]. In
the field of urban computing [4], the measurement of urban
similarity [5] is one of the key issues. At the same time, the
measurement of urban similarity is also the basis of urban
transfer learning. At present, many methods of city similarity
measurement have been explored. One of the dominant meth-
ods is the similarity measurement method [6]–[9] based on
different angle of urban feature vector.

In this paper, the distribution and location of urban hotels
are taken as the specific research object. The application of
transfer learning technology in urban computing is studied
experimentally, and an algorithm visualization system is es-
tablished based on the research results.

The primary contributions are:
• A city similarity measurement algorithm is proposed to

measure city similarity in terms of hotel distribution.
• A transfer learning based deep neural network is proposed

to increase the prediction accuracy.
• A visualization system of urban hotel development scale

prediction is implemented.

II. RELATED WORK

The main content of this paper is to solve the problem of
urban hotel distribution and location optimization with transfer

0DOI reference number: 10.18293/SEKE2021-011

learning. The related research work can be summarized into
three aspects: location recommendation algorithm, city sim-
ilarity measurement and city measurement based on transfer
learning.

A. City similarity measurement

At present, many methods of city similarity measurement
have been explored. One of the dominant methods is the
similarity measurement method based on the city feature
vectors from different angles. For example, Sheng [10] pro-
posed a geographic similarity region search model based
on the approximate search algorithm based on quadtree. In
their paper, K rectangular regions which are most similar
to the target query area are found. The regional similarity
evaluation method and feature extraction method proposed in
their paper have important reference significance for the city
similarity evaluation algorithm. Diserud [11] proposed a multi
site similarity measurement method in the biological field.
The measurement method uses the species information shared
by more than two sites, and avoids the covariance problem
between pairwise similarity in multi-site research.

B. Urban computing based on Transfer Learning

Based on the definition of transfer learning, many papers
have studied the application of transfer learning technology
in the field of urban computing. Wang discussed the general
process of urban transfer learning in Smart City Development
With Urban Transfer Learning [12], and provided guidance for
urban planners and relevant practitioners on how to apply this
novel learning method.

This paper also puts forward the general steps to be followed
in the application of transfer learning in urban planning, as
well as case studies on public safety and traffic management,
and summarizes some possible research directions.

Based on the urban transfer learning guide, a variety of
transfer learning models for urban data have been proposed
and optimized. For example, Yao [13] proposed multi-source
knowledge transfer frameworks of MultiSourceTrAdaBoost
and TaskTrAdaBoost, which can effectively solve the problem
of negative transfer [14] in urban data transfer learning, and
can be applied to class identification and specific object detec-
tion of migrated objects. Tan proposed a multi-source transfer
algorithm [15], which can make different views from different

447

sources and sources complement each other through collabo-
rative training framework, so as to jointly utilize knowledge
from different sources and views, and modify the distribution
differences in different fields.

C. The shortcomings of existing research
There are some shortcomings in the two types of city

similarity research directions introduced in this section. The
first type of similarity research direction based on city feature
vector still has the problems of optimizing the extraction
method of feature vector and the selection of distance measure-
ment method when measuring the city similarity. The problem
of second type is that the standard of city score is not universal.

III. CITY SIMILARITY MEASUREMENT ALGORITHM

The similarity measurement between cities can be carried
out for different data types in cities.

A. Urban similarity computing algorithm architecture
This section introduces the city similarity measurement

algorithm proposed in this paper from the overall architecture
level.

1) Basic concepts: Before introducing the architecture of
city similarity algorithm, several basic concepts need to be
defined clearly.

a) City grid: In order to extract the features of cities and
analyze the regional data better, we put forward the concept
of urban gridding.

The number of POI grid attributes can be defined as the
variable shown in formula (1)

PropAg(i,j) (1)

Where a represents a specific attribute and g (i , j) represents
the coordinates of the lattice.

b) City similarity: The city similarity measurement de-
fined in this paper comes from the perspective of research
objectives, which takes the feature dimensions to be studied
and the related dimensions with strong correlation as the fea-
ture space of the experiment, which can solve the problem of
difficult data acquisition and minimize the impact of redundant
features on the experimental results.

2) Algorithm architecture: After defining the above basic
concepts, the overall architecture of the city similarity mea-
surement algorithm is shown in Fig.1.

The similarity measurement part is the core part of the
algorithm mainly measures the similarity between the macro
feature vectors of two target cities. This algorithm uses Eu-
clidean distance to calculate the distance between the two
macro feature vectors, and takes the measurement results as a
part of the final similarity results.

B. City similarity measurement
This section introduces the city similarity measurement

algorithm in detail from the data preparation, feature extraction
and algorithm construction, which is the basis and premise of
building the transfer learning model introduced in the next
Chapter.

Fig. 1. Urban similarity measurement algorithm architecture

1) Data preprocessing: The grid POI data of 15 different
types of cities are collected as the data sets of this paper, which
are Seoul, Tokyo, Beijing, Shanghai, Chongqing.etc. After
finding the maximum and minimum longitude and latitude
range of each city’s City Hotel, the grid division is carried
out. The part of specific collection and division results are as
follows.

TABLE I
CITY DATA TABLE 1

City Beijing Seoul Tokyo Shanghai Dalian

POI 635096 211089 391174 617870 119411
Grid 957 142 465 667 195

2) Feature extraction: The definition variable a represents
the target prediction characteristics, the variable X represents
the target research city, the variable R represents the grid row
number of the city divided by the target research city x, and
the variable C represents the column number of the city grid:

NumX
grids = r ∗ c (2)

Equation (3) represents the total number of grids in the
target study city X. Then there are:

SumX
A =

i=r,j=c∑
i=0,j=0

PropAg(i,j) (3)

Equation represents the total number of feature a in the
target city. After defining the basic variables that need to be
used in the macro feature vector, the feature vector V of the
macro part of city x is defined V X

m define a S is the 19 feature
dimensions of urban grid, where a is the target feature, B is
the target feature S represents the rest of the features, and the

448

feature vector is defined as 18 dimensions, one of which can
be defined as formula (4).

f(θ)X =

∑r,c
i=0,j=0

Propθg(i,j)∗SumX
A

(
∑S
p=B Propp

g(i,j)
)∗PropA

g(i,j)

NumX
grids

θ ∈ [B,S]

(4)
3) City similarity measurement: The city similarity mea-

surement algorithm proposed in this paper measures the simi-
larity of the target city from two levels, namely, the whole city
level and the single grid level. Among them, the overall level
similarity measurement mainly uses the city macro feature
vector extraction method introduced before. The measurement
formula of the overall level similarity of city X and city Y is
shown in formula (5).

SimY
X =

1

10000 ∗
√∑17

i=0(VX [i]− VY [i])2
(5)

The detailed measurement process is shown by the pseudo
code of algorithm 1 below.

Algorithm 1 GridSim (Rq ,T,k,M,m)
Require: Query grid Rq . The results show that the number of regions

in the first cycle is M; the number of main categories in the region
is m

Ensure: CF-IRF feature similarity (SimCF−IRF)
T
Rq ; location sim-

ilarity (Simi)
T
Rq

1: CMi = ExtractCategory (Ti,m) ;CM =
ExtractCategory (Rq,m)

2: Adjust(Ti, CMi);Adjust(Rq, CM);RT = T1

3: for Ti ∈ T do
4: (SimCF−IRF)

T
Rq = avg

(∑
i SimCF−IRF (Rq, Ti)

)
5: if SimCF−IRF (Rq, Ti) > min (RT) then
6: RT = RT ∪ Ti

7: end if
8: end for
9: (SimCF−IRF)

T
Rq = avg

(∑
i SimCF−IRF (Rq, Ti)

)
10: return (SimCF−IRF)

T
Rq

11: for Rj ∈ RT do
12: Simi (Rq, Rj)
13: end for
14: (Simi)

T
Rq = avg

(∑
i Simi (Rq, Rj)

)
15: return (Simi)

T
Rq

IV. PREDICTION ALGORITHM OF URBAN HOTEL
DEVELOPMENT SCALE BASED ON TRANSFER LEARNING

A. Prediction algorithm of urban hotel development scale

This section will introduce the flow and principle of the
algorithm in detail from three parts: algorithm architecture,
neural network structure and algorithm optimization process.

1) Algorithm architecture: In this paper, the urban hotel
development trend prediction problem is defined as a classifi-
cation problem. The category labels to be predicted represent
the high, medium and low number of urban hotels in the target
grid.

As shown in Fig.1 described before, the similarity between
the target city and other cities is calculated. The city data

with the highest similarity and the target city data are input
into the neural network as the training set for iteration. Then,
the normal Kaiming initialization method is used to set the
initialization parameters of the neural network. The parameter
optimization algorithm in the iteration process is Adam, and
finally the model is compared on the test set The performance
of the model was evaluated. The training process of the model
is shown in algorithm 2.

Algorithm 2 Cycle optimization algorithm
Require: TRD0 - Urban training data; Xd ∈ TRD0- characteristic

distribution of each grid; Y d ∈ TRD0label of each grid
Ensure: θX -parameter

1: Initialization of network structure and Kaiming initialization
2: epoch← 0
3: while epoch < MAXEPOCH do
4: The corresponding relationship between Xd, Yd is calculated
5: ADAM
6: epoch++
7: end while
8: return θX

B. Experimental results

This section introduces the whole process of model training
and the final experimental setup and results.

Beijing is selected as the target experimental city. Firstly,
the similarity between the other 14 cities in the dataset and
Beijing is calculated according to the city similarity measure-
ment method described in Chapter 3. The distribution of the
measurement results is shown in Fig.2(a).

The experimental results of target cities show that the higher
the similarity with the target city, the better the learning
effect is. Therefore, the city similarity measurement algorithm
proposed in this paper can correctly measure the similarity
degree of POI distribution between cities, and then transfer
learning based on the similarity to get the prediction model
of City Hotel development trend The accuracy has been
improved.

C. Algorithm visualization

Based on the prediction model of urban hotel development
scale based on transfer learning, this section visualizes the
established algorithm model and applies the algorithm model
to practical application, which verifies the effectiveness of the
model in practical application. The screen shots of running
results are shown in Fig. 4.

V. SUMMARY AND PROSPECT

According to the given direction of the experiment, we
design and implement the city POI feature extraction methods
of macro level and grid level. With the distance measurement
method of Euclidean distance and cosine similarity, we finally
realize the city similarity measurement algorithm. Using this
algorithm.

Based on the city similarity measurement algorithm, this pa-
per introduces the transfer learning based deep neural network
method, designs and implements the benchmark experiment.

449

(a) Beijing (b) Shanghai (c) Shenzhen

Fig. 2. Similarity distribution of Beijing, Shanghai and Shenzhen

(a) Beijing (b) Shanghai (c) Shenzhen

Fig. 3. Prediction Accuracy of Beijing,Shanghai and Shenzhen

(a) Beijing (b) Shanghai (c) Shenzhen

Fig. 4. Beijing, Shanghai and Shenzhen Prediction Map

At the same time, according to the results of city similarity
distribution, six representative city data are selected to train
the transfer learning model. The experimental results show that
the urban data transfer learning effect and source The results
also verify the correctness and effectiveness of the proposed
method.Finally,a visualization system of urban hotel develop-
ment trend prediction algorithm is designed and implemented.

ACKNOWLEDGMENT

Thanks for the guidance of associate professor Xiaoping-
Che, School of software, Beijing Jiaotong University, and the
help of Tao-Na and Shiyao-Wei in the experiment.

REFERENCES

[1] Y. Li, Y. Zheng, S. Ji, W. Wang, Z. Gong et al., “Location selection
for ambulance stations: a data-driven approach,” in Proceedings of the
23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2015, p. 85.

[2] C. Yin, S. Ding, and J. Wang, “Mobile marketing recommendation
method based on user location feedback,” 2019.

[3] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” ACM Transactions on In-
telligent Systems and Technology (TIST), vol. 5, no. 3, p. 38, 2014.

[4] Shklovski, Irina, Chang, Michele, and F., “Urban computing: Navigating
space and context.” Computer, 2006.

[5] G. Q. Li and S. J. Liu, “The calculation method of similarity degree for
city logistics facilities,” Advanced Materials Research, vol. 219-220, pp.
1621–1624, 2011.

[6] MOVE’19: Proceedings of the 1st ACM SIGSPATIAL International
Workshop on Computing with Multifaceted Movement Data. New York,
NY, USA: Association for Computing Machinery, 2019.

[7] Linden, G., Smith, B., York, and J., “Amazon.com recommendations:
item-to-item collaborative filtering,” Internet Computing, IEEE, vol. 7,
no. 1, pp. 76–80, 2003.

[8] J. Herlocker, J. Konstan, and J. Riedl, “Explaining collaborative filtering
recommendations,” Proceedings of the ACM Conference on Computer
Supported Cooperative Work, 01 2001.

[9] L. Deng and D. Yu, “Deep learning: Methods and applications,” Foun-
dations Trends in Signal Processing, vol. 7, no. 3, 2014.

[10] C. Sheng, Y. Zheng, W. Hsu, M. L. Lee, and X. Xie, “Answering
top-k similar region queries,” in International Conference on Database
Systems for Advanced Applications. Springer, 2010, pp. 186–201.

[11] O. H. Diserud and F. Ødegaard, “A multiple-site similarity measure,”
Biology letters, vol. 3, no. 1, pp. 20–22, 2007.

[12] L. Wang, B. Guo, and Q. Yang, “Smart city development with urban
transfer learning,” Computer, vol. 51, no. 12, pp. 32–41, 2018.

[13] Y. Yao and G. Doretto, “Boosting for transfer learning with multiple
sources,” in 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. IEEE, 2010, pp. 1855–1862.

[14] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big data, vol. 3, no. 1, p. 9, 2016.

[15] B. Tan, E. Zhong, E. W. Xiang, and Q. Yang, “Multi-transfer: Transfer
learning with multiple views and multiple sources,” in Proceedings of
the 2013 SIAM International Conference on Data Mining. SIAM, 2013,
pp. 243–251.

450

DOI reference number : 10.18293/SEKE2021-061

A hierarchical RNN-based model for learning

recommendation with session intent detection

Jinyang Liu

School of Economics and Management

Beihang University

Beijing, China

liujinyang@buaa.edu.cn

Kunyang Wang

Sino-French Engineer School

Beihang University

Beijing, China

wang_ky123@buaa.edu.cn

Chuantao Yin

Sino-French Engineer School

Beihang University

Beijing, China

chuantao.yin@buaa.edu.cn

Xiaoyan Zhang

Sino-French Engineer School

Beihang University

Beijing, China

xiaoyan.zhang@buaa.edu.cn

Hong Zhou

School of Economics and Management

Beihang University

Beijing, China

h_zhou@buaa.edu.cn

Abstract—Since the emergence of MOOCs (Massive Online Open

Courses) in the last decade, online education continuously evolves.

With the abundance of learning resources provided by MOOC

platforms, recommender system can be used to personalize

learners’ learning experience with respect to learning material

consumption. To provide user-adaptive and beneficial

recommendation result, the recommender system should be

designed with respect to properties of the online learning context,

especially the sequential property of learning behaviors. In this

paper, we propose a novel model SOLR, a session-based sequential

model for online learning material recommendation. We use

hierarchical RNN to model online learners’ learning sequences on

both in-session and cross-session levels. Additionally, attention

mechanism is used within sessions to model users’ learning session

intent. The model is able to learn a hierarchical representation of

users’ long-term learning history as well as short-term session

sequential patterns. We conducted comparative experiments with

session-based recommendation baseline methods as well as an

ablation study on real-life MOOC dataset. The results show that

our model achieves better recommendation results and provide

justification for the sequential modeling and model training

mechanism implemented in our model.

Keywords- online learning, MOOC, recommender system, RNN,

smart learning

I. INTRODUCTION

Recent years have witnessed the rise of online learning.
Since the emergence of MOOCs (Massive Online Open Courses)
in the last decade, online education continuously evolves. One
of the biggest online learning platforms Coursera had 37 million
registered users and over 3100 active courses in 2018 [2]. The
abundance of learning resources including digital textbooks,
exercises, video tutorials, on-site forums and blogs creates the
room and necessity for user personalization and adaptation in
online learning systems.

Recommender systems as a form of user personalization play
an important role in online services, such as the field of e-
commerce, online content consuming (video and music
streaming, news, etc.) and social network. Recommendation
techniques are usually classified into three categories:
collaborative filtering, content-based and hybrid
recommendation models [3]. Collaborative filtering studies the
user-item interaction through user behavior or implicit
feedbacks and predicts the user’s preference towards certain
items. Content-based recommender uses item attributes and user
profile as auxiliary information to match users with items.
Hybrid techniques combine two or more strategies to meet
specific requirements of the system [1]. Recently recommender
systems using deep neural network gain much attention for their
ability to incorporate multiple level of abstraction of the data
using neural representation and deep structures and
demonstrated great success in their performances [4][5].

There have been successful attempts applying state-of-art
recommendation techniques for online learning systems.
Collaborative filtering methods have been implemented in early
learning management systems [6][7]. Content-based techniques
combining with domain ontology such as case-based reasoning
and attribute-based matching have been used successfully to
recommend learning materials [8]. Although general approaches
of recommender systems could be transplanted to online
learning platforms, to achieve better performance there are
unique challenges to take into consideration within the online
learning context [9]:

1. Learning activities are organized in a sequential manner.
There’s causality in learners’ learning histories, i.e. their
background knowledge and materials they previously
consumed. The sequential and progressive property is
intrinsic within education which should be paid more
attention to comparing to other recommendation
scenarios such as e-commerce and streaming services.

451

2. A user’s learning path on the platform consists of
several sessions. Within each session users demonstrate
different learning behavior styles and strategies which
should reflect on the materials recommended to them.

To tackle the problems stated above we propose a novel
method using session-based sequential recommendation with
hierarchical recurrent neural network to capture learners’
learning histories as well as their interest within sessions. In
addition we use attention mechanism further enhance the session
intent. Experiments show that our method achieves state-of-the-
art performance in online learning dataset.

II. RELATED WORKS

The concept of sequential recommendation is primarily used
in session-based online activities. For sequential
recommendation it’s important to capture user’s long-term static
preference as well as to predict user’s short-term behavior in
order to recommend the immediate item for user’s need [10].

Traditional sequential recommendation techniques include
sequential pattern mining, Markov Chains, sequential KNN and
session-based matrix factorization. Sequential pattern mining
derives from frequent pattern and association rule mining in that
it mines a collection of ordered frequent patterns and then
performs inference based on predefined support and confidence
thresholds [11]. Markov chains (MCs) based methods postulate
that the item a user consumes next depends on one or several
items he consumed before that. Matrix factorization-based
methods are among the most relevant and efficient methods
nowadays. Twardowski [12] applied factorization machine to
session-based recommendation. Rendle et al. [13] combined first
order MC with factorization method and He et al. [14] used
similarity matrix factorization combining high order MC and
achieved desirable performance on sparse data.

There are several drawbacks in conventional methods.
Sequential pattern mining methods suffer from scalability issues.
Besides, they ignore the users’ differences in their behavior
patterns thus lack the personalization we desire. KNN and matrix
factorization have limited ability to capture sequential propriety
across sessions. Markov Chain based methods fail to capture
users’ long-term behavior tendency.

In recent years deep learning with neural networks has
achieved great advancement in the field of natural language
processing and computer vision. Deep neural models have the
ability to incorporate heterogeneous inherent and contextual
information of the input with low dimensional representations
and reduce the effort of using hand-crafted features. Covington
et al. [15] proposed a deep neural model for YouTube video
recommendation. Cheng, Heng-Tze, et al. [16] proposed a deep-
wide neural network structure recommendation framework.
Both have achieved significant performance improvement
comparing to conventional methods.

Deep neural models that have been adapted to sequential
recommendation problems are mainly Recurrent Neural
Networks (RNNs) and Convolutional Neural Networks (CNNs).
Hidasi et al. proposed GRU4Rec [17], using Gated Recurrent
Unit to model the sequential item interactions and training the
model using mini-batch parallel training. It’s the prototype for

several later improved models [18][19]. By utilizing data
augmentation strategy and improved pairwise loss function
design the GRU4Rec models achieved better performance. The
HRNN4Rec model developed by Quadrana et al. [20] first
applied hierarchical RNN for recommendation to model users’
across-session and inner-session behaviors. Zhang et al. [21]
further enriched the item side information by adding dwelling
time in RNN recommendation scheme. Compared to RNNs,
CNN structure does better in capturing global and non-
consecutive sequential behavior with lower computational costs.
Tang and Wang proposed Caser [22] using convolutional
sequence embedding with horizontal and vertical convolutional
filters to capture the point-level, union-level and skip-item
behaviors.

Attention mechanism was first proposed in natural language
processing for machine translation tasks [23]. It models
machine’s “attention” by assigning different weights to parts of
the input sequences which is ideal for modeling short-term intent
in sequential recommendation problems. NARM [24] leverages
attention mechanism for sessions in its encoder-decoder
structure to model user’s purpose within sessions. Liu et al. [25]
used attention mechanism and calculated the attention
correlation between history and recent items.

III. METHODOLOGY

In this section, we first frame the session-based
recommendation task for online learning. Then we describe our
model including the model structure and training specifications.

A. Session-based Recommendation

A learner’s behavior on learning platform consists of several
consecutive learning sessions which are loosely defined as the
learning material sequences the learner consumes in a period of
time. For example, a learner in one session beginning with
logging in on the platform could revisit the tutorial video he
watched during last session, begin a new video then go to the
course forum for further exploration. To describe the problem
formally, for a user u his whole lifetime activities on the platform
could be represented as a set of sessions: 𝑆𝑢 =
{𝑠𝑢,1, 𝑠𝑢,2, … , 𝑠𝑢,|𝑆𝑢|} . Each session consists of several learning

materials the user consumes: 𝑠𝑢,𝑚 = {𝑖𝑚,1, 𝑖𝑚,2, … , 𝑖𝑚,|𝑠𝑚|}. A

session-based sequential recommender learns the user’s
sequential behavior and learning history and tries to predict the
most suitable material for the user to consume next within the
current session.

Figure 1. Illustration of the model structure

452

B. Model

To tackle the specific problems of online learning
recommendation task, we propose our model Session-based
Online Learning Recommender (SOLR). Our model uses a
hierarchical recurrent neural network structure with GRU to
model users’ learning behavior during sessions and their
learning history. Attention mechanism is leveraged in the
session local encoder to capture users’ session intent. The model
takes in item embeddings, hierarchically encodes users’ local
and global sequential behavior. Within sessions the sequence
representations are fed into a fully connected layer to produce
the recommendation results. The complete model structure is
shown in Fig. 1.

Embedding layer We user an attribute-aware embedding
layer to produce the item representations taking into account the
items’ category and type information. The category information
could be the learning material’s subject and ontology
information. The type information is the material’s form of its
presentation(video, audio, forum thread, etc.). For an item i, the
embedding layer produce the item’s representation:

𝒙𝑖 = 𝐶𝑂𝑁𝐶𝐴𝑇(𝒆𝑖
𝑖, 𝒆𝑖

𝑐 , 𝒆𝑖
𝑡𝑝

) (1)

Where 𝒆𝑖
𝑖 , 𝒆𝑖

𝑐 and 𝒆𝑖
𝑡𝑝

 are the embedding of the item ID,

category information and type information. The embedding

matrices 𝐸𝑖 ∈ ℝ𝐷𝑖×|𝐼| , 𝐸𝑐 ∈ ℝ𝐷𝑐×|𝐶| and 𝐸𝑡𝑝 ∈ ℝ𝐷𝑡𝑝×|𝑇𝑃| each
transforms the item’s ID, category and type one-hot
representation into embedding of dimensions 𝐷𝑖 , 𝐷𝑐 and 𝐷𝑡𝑝.

RNN with GRU A Gated Recurrent Units is a more
elaborated model first introduced to tackle the vanishing
gradient problems in traditional RNN structure [26]. Using the
mechanism of reset and update gates, GRU updates the hidden
units in a selective and weighted manners in each step.
Compared to GRUs, Long Short Term Memory (LSTM)
networks are used more often in NLP tasks. However, [17]
shows that replacing GRUs with LSTM led to worse
performance in session-based recommendation. The activation
of GRU is the interpolation between the previous activation and

the candidate activation �̂�𝑡:

𝒉𝒕 = (1 − 𝒛𝒕)𝒉𝑡−1 + 𝒛𝒕�̂�𝑡 (2)

Where the update gate 𝒛𝒕 is given by:

𝒛𝑡 = 𝜎(𝑊𝑧𝒙𝑡 + 𝑈𝑧𝒉𝑡−1) (3)

And the candidate activation �̂�𝑡 is given by:

�̂�𝒕 = tanh(𝑊𝒙𝑡 + 𝑈(𝒓𝑡⨀𝒉𝑡−1)) (4)

𝒓𝑡 is the reset gate and calculated in a similar manner as 𝒛𝒕:

𝒓𝑡 = 𝜎(𝑊𝑟𝒙𝑡 + 𝑈𝑟𝒉𝑡−1) (5)

Matrices 𝑊𝑧 , 𝑈𝑧 , 𝑊 , U, 𝑊𝑟 and 𝑈𝑟 are all parameters to
learn during training. The whole updating process can be noted
as: 𝒉𝑡 = 𝐺𝑅𝑈(𝒙𝑡 , 𝒉𝑡−1) for simplicity.

Hierarchical RNN The paragraph above describes a classic
RNN structure. However, in the context of session-based user

behavior, the idea of the sequence of sessions differs from a long
item sequence. Users’ learning behavior on learning platforms
shows different inner-session and cross-session patterns. For
example, sessions could be abstracted as learner’s taking one or
several tutorials, following up with certain points of the lectures,
taking exercises or going over all previous sections for
refreshment. Each of those groups of activities within sessions
differs with respect to the sessions’ purposes and behavior
patterns. And the progression of sessions signifies the learners’
accumulation of knowledge and their achievement on learning
paths. Hierarchical RNN was used in HRNN recommender [20]
for session-based recommendation. The idea was to build above
item sequences (i.e. sessions) RNNs another global RNN
encoder to model the session evolution.

The session-level RNN takes within a session each item for
input and predicts items the user is consuming next in this
session. The user-level RNN takes each session’s last hidden
state as input, and updates the hidden state for the next session’s
initialization. We use upper corner s and u to differentiate the
hidden state notations in the two levels. As illustrated in Fig. 1,
the m-th session initialization is calculated as:

𝒉𝑚,0
𝑠 = tanh(𝑊𝑖𝑛𝑖𝑡𝒉𝑚−1

𝑢 + 𝒃𝑖𝑛𝑖𝑡) (6)

Then within the m-th session, GRU propagates through each
step:

𝒉𝑚,𝑡
𝑠 = 𝐺𝑅𝑈𝑠𝑒𝑠𝑠(𝒙𝑡 , 𝒉𝑚,𝑡−1

𝑠) (7)

After the last step’s update, the session hidden state is taken
as input for the user-level update:

𝒉𝑚
𝑢 = 𝐺𝑅𝑈𝑢𝑠𝑒𝑟 (𝒉𝑚,|𝑠𝑢,𝑚|

𝑠 , 𝒉𝑚−1
𝑢) (8)

Operating on two levels, hierarchical RNN models the inner-
session dynamics as well as cross-session user evolution which
can be justified with the real-life online learning experience.

Figure 2. The attention mechanism

Attention layer Attention mechanism is widely used in
sequence modeling. During sequence prediction tasks, attention
mechanism calculates each input’s contribution with respect to
the current prediction. In our model during session propagation,
to predict the current item we use all previously consumed items
to produce a session intent embedding:

453

𝒆𝑚,𝑡
𝑖 = ∑ 𝛼𝑡,𝑗

𝑗=1,…,𝑡−1

𝒉𝑚,𝑗
𝑠 , s. t. ∑ 𝛼𝑡,𝑗

𝑗=1,…,𝑡−1

= 1 (9)

Where the attention weights 𝛼𝑡,𝑗 are attained by using the

query vector 𝒘𝛼 with softmax normalization:

αt,j =
exp(𝐰α𝐡m,j

s T
)

∑ exp(𝐰α𝐡m,l
s T

)l=1,…t−1

(10)

As shown in Figure 2, the intent embeddings are fed to the
fully connected layer to produce the final prediction for the next
item.

C. Model training

We use user session parallel mini-batch training with prefix
data augmentation method which is well established in the
GRU4Rec family [17][18][19]. The user session parallel mini-
batch training method groups sessions by user then sorts sessions
within each group using time stamps. Groups of sessions are fed
to the model and trained parallelly. If any of these user sessions
end the next sessions are put in their places.

The model is trained with pairwise ranking loss function and
negative sampling. The loss function we use is the TOP1 −
max loss, which is an improvement of the classic TOP1 function
by focusing on the most highly ranked negative sample. Given a
set of negative samples 𝑁𝑆, the TOP1 loss function is calculated
as:

𝐿𝑇𝑂𝑃1 =
1

|𝑁𝑠|
∑ 𝜎(𝑟𝑗 − 𝑟𝑖) + 𝜎(𝑟𝑗

2)

𝑗= 1,…|𝑁𝑠|

(11)

Where 𝑟𝑖 and 𝑟𝑗 are respectively the score of the target item

and the score of the negative sample j. The second term in the
sum represents a regularization by punishing the high score
given to irrelevant items. The TOP1-max loss uses the softmax
scores of all negative samples to weight each sample’s
contribution:

𝐿𝑇𝑂𝑃1−𝑚𝑎𝑥 =
1

|𝑁𝑠|
∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑟𝑗) ∙ (𝜎(𝑟𝑗 − 𝑟𝑖) + 𝜎(𝑟𝑗

2))

𝑗= 1,…|𝑁𝑠|

(12)

The loss function focuses on the most wrongly rated items
and alleviates the vanishing gradient problem when the number
of samples increases [19].

Figure 3. User parallel mini-batch training

We use the user parallel mini-batch training mechanism
which is proposed by Quadrana et al. for the HRNN4Rec model.
As shown in Figure 3, we group sessions by user then feed

several user sequences parallelly to the model. In each iteration,
the current mini-batch serves as input for the update of users’
𝐺𝑅𝑈𝑠𝑒𝑠𝑠 and the next mini-batch serves as the ground truth for
training. At end of the session, (8) is used for the update of the
user’s 𝐺𝑅𝑈𝑢𝑠𝑒𝑟 . If one user’s sequence ran out, a new user
sequence will be put in its place with 𝐺𝑅𝑈𝑢𝑠𝑒𝑟 and 𝐺𝑅𝑈𝑠𝑒𝑠𝑠
reset.

For the negative sampling, the original GRU4Rec model as
well as its derived methods including HRNN4Rec all use a
mechanism called batch sampling to speed up the training
process. Batch sampling takes other parallel sessions’ item in the
same batch as the negative samples. However, in the case of
sequential modeling with explicit user representation, this
mechanism suffers from under sampling effect. Because each
user sequence can only be exposed to limited parallel users
during training. Thus, we opt for the commoner popularity-based
sampling mechanism during training.

IV. EXPERIMENTS

The experiments led in this study consist in two parts: 1. To
demonstrate the effectiveness of our model, we compared our
model against five baseline methods for session-based
recommendation on their performance in online learning
material recommendation. 2. We realized an ablation study in
which we deprived our model of its several functionality
modules to show the effectiveness of the mechanisms we
implemented in our model.

A. Dataset

We use the XuetangX dataset of user logs for our
experiments. XuetangX is the largest MOOC platform in China
which has provided over 1000 courses and has more than 10
million registered users. The XuetangX dataset contains users’
activity logs on the platform from August 2015 to August 2017.
There are in total 698 instructor-paced mode (IPM) courses and
515 self-paced mode (SPM) courses. We use users’ activity logs
for SPM courses since during SPM courses users have more
autonomy with respect to learning behaviors. Table I shows the
aggregative description for the dataset:

TABLE I. DATASET OVERVIEW

 Type Total count

logs Video activities

Forum activities

Web page activities
Assignment activities

Total materials count

382,225,471

90,815

5,496,287
3,139,558

1,227,078

enrollment Total

Users

SPM courses

218,274

123,719

515

B. Baseline methods

We compare our model against several baseline models:

• Item-KNN: Calculating the item-item cosine similarity
based on the co-occurrence of items in sessions across

454

users. Regularization is applied to avoid high score. This
method is session-based but non-sequential.

• FOSSIL [14]: A hybrid model fusing matrix
factorization-based similarity model with high order
Markov Chain to take into account both user long-term
preference and short-term sequential pattern. In these
experiments the maximum order of the Markov Chain is
set to 2.

• GRU4Rec [19]: The improved version of GRU4Rec
with prefix and dropout data augmentation mechanism
and loss function with top-k gains. This model doesn’t
have user representations thus lacks personalization.

• HRNN4Rec [20]: The hierarchical RNN model for
session recommendation. It could be seen as our model
without attention mechanism. Similar to the original
model, the model is trained with user parallel mini-batch
training. But we replace the original batch sampling
mechanism with popularity-based negative sampling.

• u-GRU4Rec: A modified GRU4Rec model with
recurrent user representation by joining sessions of the
same user into a long sequence. Same to HRNN4Rec the
model is trained with user parallel mini-batch training
with popularity-based negative sampling.

C. Experimental setups

For our model, the item embedding, session hidden state and
user hidden state are respectively of size 100, 256 and 256. For
item embedding we include a category embedding using the
course label to which the items belong. We train the model with
user session parallel mini-batch training with batch size 500. The
uniform negative sampling size is set to 1024.

For other neural network baseline methods, we use the same
setup for the size of hidden state vectors and training parameters.
For the two models with user representation (u-GRU4Rec and
HRNN4Rec) we didn’t implement the batch sampling method
used in their original methods for its negative effect of under
sampling. Instead we used uniform sampling as used in our
model with the same sampling size.

We use all users’ last session as test data and all their
previous sessions as training data. The evaluation is also carried
in a user parallel fashion.

D. Results and analysis

General performance As shown in Table II, our model
outperforms the baseline models in recall and ranking
evaluations. The following observations can be made:

Compared to the baseline methods’ performances on other
recommendation datasets such as movie and e-commerce
datasets in their original studies, the recall and ranking
evaluations are rather high across models for learning material
recommendation for XuetangX dataset. This can be interpreted
as the unique behavior paradigm on online learning platforms.
Users’ behavior sessions are more or less predefined by the way
the materials are organized. When an online course is curated by
a MOOC provider it’s usually segmented by several learning
sessions i.e. lessons. Users usually follow the material sequences

within the paths of the courses in most part of the learning
activity. Most of the uncertainty happens when users drift away
from the course pages and into the forum threads as well as the
revisiting of former consumed materials across several sessions.

TABLE II. GENERAL PERFORMANCE RESULT

Compared to non-sequential baseline model item-KNN, the
sequential recommendation models have significant higher
scores. This proves that online learning activities are inherently
sequential thus justifies the methodology of using sequential
recommendation techniques in the online learning domain.

Compared to non-neural methods(Item-KNN and FOSSIL),
the three neural network methods have better performances on
both ranking and recall evaluation metrics which proves that
recurrent neural networks are better apt to sequential modeling.

Models with recurrent user representation(u-GRU4Rec,
HRNN4Rec and our model) outperform GRU4Rec model which
is a non-personalized session-based sequential method. This
could be attributed to the differences of the sequential patterns
with respect to personal learning style and preference in the
learning behaviors among users. Models with user
representation are able to incorporate these personalized
sequential patterns into user-distinct recurrent states. Also
HRNN4Rec and our model both have better performances than
u-GRU4Rec which shows the benefit of the hierarchical
recurrent user representation. The traditional RNN structure is
proved to have difficulty in long sequence modeling. The HRNN
structure uses cross-session level update to aggregate the
sequential history and in this case is more fitting to the online
learning scenario.

Overall our model outperformed all the baseline methods on
both recall and ranking evaluation metrics. This could be
attributed to the contribution of the user-level global
representation and the contribution of attention mechanism
within session.

In-session performance analysis We compared the four
sequential recommendation models above with user
representation(FOSSIL, u-GRU4Rec, HRNN4Rec and our
model) in their session-level performances by breaking down the
sequential session recommendation into three stages: begin-
session, mid-session and the end-session. For begin-session
performance we evaluate the recall and ranking ability of each
model on the first two item of the session. The end-session is
seen as the last item in the session and the rest is the mid-session.

Methods

Recall Ranking

HR@5 HR@10 MRR@5 MRR@10

Item-KNN 0.2581 0.3012 0.1403 0.2068

FOSSIL 0.3492 0.4607 0.2711 0.2901

GRU4Rec 0.3601 0.4613 0.2840 0.3006

u-GRU4Rec 0.4364 0.5370 0.2995 0.3470

HRNN4Rec 0.4388 0.5482 0.3010 0.3501

SOLR 0.4565 0.5521 0.3172 0.3754

455

From the results shown in Table III, We can see that our
model and HRNN4Rec have better performance in begin-
session recommendation due to the session initialization using
hierarchical user recurrent representation. With user
representation the model can use the user’s learning history
information and cross-session behavior to predict the beginning
of the user’s next session. In mid-session and end-session
recommendation our model has the best performance among the
four, which is a testament to the session intent detection ability
of the attention mechanism.

TABLE III. SESSION LEVEL PERFORMANCE RESULTS

Figure 4. Session level performance comparison

The effect of the length of user learning history To further
illustrate our model’s strength in users’ learning sequence
modeling we inspected the performances of the neural network
models with respect to the length of users’ learning history. The
users were regrouped into three categories: users with short,
medium and long learning history which contains respectively
users with under 10, 10 to 30 and over 30 learning sessions. The
models put in comparison are u-GRU4Rec, HRNN4Rec and our
model, with the non-personalized GRU4Rec for the control
group.

The results show that u-GRU4Rec with the traditional RNN
structure has declined performance for users with longer
learning history. In this case considering the average items in
one sessions of the XuetangX user logs, the normal RNN
structure has difficulty in modeling learning material sequences
after 200 updates on average. However both HRNN4Rec and
our model show the increase in performance with the growth in
length of user history, with our model achieving higher
performance especially in ranking metric.

We reason that the hierarchical RNN structure’s update
mechanism is close to nature of user’s progression of their
learning activities. Using HRNN the models have a better ability
in modeling the accumulation and abstraction of learning history.

TABLE IV. EFFECTS OF LENGTH OF HISTORY

Figure 5. Performance comparison with different user history length

E. Ablation study

To demonstrate the effectiveness of our design of the model
functionalities and choices for training mechanisms, we realized
an ablation study where three mechanisms in the model are
inspected for their contribution to recommendation performance:
the attention mechanism, item embedding with extra-
information and the popularity sampling mechanism. In each
experiment we remove one of the mechanism and keep the other
two then train and evaluate the model with the dataset.

TABLE V. ABLATION STUDY RESULTS

As shown in Table V, when the popularity-based sampling
is changed to batch sampling used by the original GRU4Rec
series of models, the model suffers from the most severe decline.
This is due to the under sampling effect of using batch sampling
method in user parallel mini-batch training. The model without
the attention mechanism also has performance decline which is
expected according to the comparison between our model and
HRNN4Rec. However, the extra-information embedding with

Models
HR@5 MRR@5

begin mid end begin mid end

FOSSIL 0.2041 0.3510 0.3587 0.1408 0.2782 0.2815

u-GRU4Rec 0.2603 0.4395 0.4497 0.1579 0.2996 0.3105

HRNN4Rec 0.3550 0.4406 0.4404 0.2071 0.3006 0.3230

SOLR 0.3556 0.4531 0.4587 0.2075 0.3141 0.3354

Models
HR@5 MRR@5

short medium long short medium long

GRU4Rec 0.3618 0.3582 0.3601 0.2837 0.2841 0.2830

u-GRU4Rec 0.4025 0.4382 0.4309 0.2989 0.3012 0.2932

HRNN4Rec 0.4101 0.4390 0.4516 0.2972 0.3005 0.3054

SOLR 0.4235 0.4525 0.4628 0.2996 0.3122 0.3241

Methods Recall Ranking

 attention
extra

embed.
sampling HR@5 MRR@5

SOLR

w/o attention - + popularity
0.4421

(-3.15%)

0.3056

(-3.66%)

SOLR

w/o

popularity sampling
+ + batch

0.4404

(-3.61%)

0.2811

(-11.4%)

SOLR

w/o

extra embedding
+ - popularity

0.4522

(-1.02%)

0.3106

(-2.08%)

SOLR + + popularity 0.4565 0.3172

456

course information and material type information doesn’t appear
to have a big effect in recommendation performance. We reason
that this is due to the particular behavior patterns of online
learning with respect to course subject and material type.
Usually the learning materials are organized by curators and
educators such that users can follow through the predetermined
learning path. And most users feel comfortable to do as such.
Most of the randomness appearing in learning sequences is in
session beginning and when users go to materials out of course
structure such as wiki pages and forum threads. Thus most of the
sequential information with respect to the learning materials’
course and type information is learnt during training with only
the embedding of item IDs. Overall the experimentation results
justified the mechanisms used in our model. The HRNN
structure combined with in-session attention mechanism, extra-
information embedding and popularity-based sampling
mechanism has better ability in sequential recommendation and
more adaptive to the online learning context.

V. CONCLUSION

This paper presented a hierarchical recurrent neural network
model with attention mechanism for learning material
recommendation on online learning platform. It captures users’
learning history and session behavior patterns in both global and
session-level. Experiments conducted on real life data from
XuetangX MOOC platform demonstrate the effectiveness of our
model by comparing it to other sequential session-based
recommendation methods. The comparisons of the
performances on session-level and with various user history
lengths show that our model is capable to incorporate long-term
user behaviors and to learn an aggregated representation of user
history. By modeling users’ intent during a session using
attention mechanism, the model can achieve better performance
for recommendation within current session. The experiment
results prove that our model has better compatibility with the
highly sequential online learning behavioral context. We would
further explore the potential of incorporating more material side
information such as tag information and domain ontology which
we believe can contribute to session-based recommendation for
online learning. The model could also be applied in other
domains of recommendation where the user behavior has an
inherently sequential property.

ACKNOWLEDGEMENT

This work is supported by the National Natural Science
Foundation of China (No. 61977003).

REFERENCES

[1] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next
generation of recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE transactions on knowledge and data
engineering 17, 6 (2005), 734–749.

[2] By The Numbers: MOOCs in 2018.
https://www.classcentral.com/report/mooc-stats-2018/

[3] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard
Friedrich. 2010. Recommender systems: an introduction.

[4] Li Deng, Dong Yu, and others. 2014. Deep learning: methods and
applications. Foundations and Trends® in Signal Processing 7, 3–4 (2014),
197–387.

[5] Zhang, Shuai, et al. "Deep learning based recommender system: A survey
and new perspectives." ACM Computing Surveys (CSUR) 52.1 (2019): 5.

[6] Recker, M. M., Walker, A., & Lawless, K. (2003). What do you
recommend? Implementation and analyses of collaborative information
filtering of web resources for education. Instructional Science, 31(4–5),
299–316.

[7] Lynch, C., Ashley, K., Aleven, V., & Pinkwart, N. (2006). Defining ill-
defined domains; a literature survey. In Proceedings of the workshop on
intelligent tutoring systems for ill-defined domains at the 8th international
conference on intelligent tutoring systems (pp. 1–10)

[8] Heraud, J.-M., France, L., & Mille, A. (2004). Pixed: An ITS that guides
students with the help of learners’ interaction log. In International
conference on intelligent tutoring systems, workshop analyzing student
tutor interaction logs to improve educational outcomes. Maceio, Brazil
(pp. 57–64).

[9] Klašnja-Milićević, Aleksandra, et al. E-learning systems: Intelligent
techniques for personalization. Vol. 112. Springer, 2016.

[10] S. Wang, L. Cao, and Y. Wang, “A survey on session-based recommender
systems,” arXiv preprint arXiv:1902.04864, 2019.

[11] N. R. Mabroukeh and C. I. Ezeife, “A taxonomy of sequential pattern
mining algorithms,” ACM Comput. Surv., vol. 43, no. 1, pp. 1–41, 2010.

[12] B. Twardowski, “Modelling contextual information in session-aware
recommender systems with neural networks,” in RecSys, 2016, pp. 273–
276.

[13] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing
personalized markov chains for next-basket recommendation,” in WWW,
2010, pp. 811–820.

[14] R. He and J. McAuley, “Fusing similarity models with markov chains for
sparse sequential recommendation,” in ICDM, 2016, pp. 191–200.

[15] Covington, Paul, Jay Adams, and Emre Sargin. "Deep neural networks for
youtube recommendations." Proceedings of the 10th ACM conference on
recommender systems. ACM, 2016.

[16] Cheng, Heng-Tze, et al. "Wide & deep learning for recommender
systems." Proceedings of the 1st workshop on deep learning for
recommender systems. ACM, 2016.

[17] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based
recommendations with recurrent neural networks,” arXiv preprint
arXiv:1511.06939, 2015.

[18] Y. K. Tan, X. Xu, and Y. Liu, “Improved recurrent neural networks for
session-based recommendations,” in DLRS, 2016, pp. 17–22.

[19] B. Hidasi and A. Karatzoglou, “Recurrent neural networks with top-k
gains for session-based recommendations,” in CIKM, 2018, pp. 843–852.

[20] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi,
“Personalizing session-based recommendations with hierarchical
recurrent neural networks,” in RecSys, 2017, pp. 130–137.

[21] Y. Zhang, H. Dai, C. Xu, J. Feng, T. Wang, J. Bian, B. Wang, and T. Liu,
“Sequential click prediction for sponsored search with recurrent neural
networks,” national conference on artificial intelligence, pp. 1369–1375,
2014.

[22] J. Tang and K. Wang, “Personalized top-n sequential recommendation via
convolutional sequence embedding,” in WSDM, 2018, pp. 565–573.

[23] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” ICLR, 2015.

[24] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive
session-based recommendation,” in CIKM, 2017, pp. 1419–1428.

[25] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “Stamp: short-term
attention/memory priority model for session-based recommendation,” in
SIGKDD, 2018, pp. 1831–1839.

[26] Cho, K., Van Merriënboer, B., Bahdanau, D. and Bengio, Y., 2014. On
the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259.

457

Intelligent Preprocessing Selection for Pavement
Crack Detection based on Deep Reinforcement

Learning
Yan Lin

Beijing University
of Posts & Telecommunications

Beijing, China
linyan@bupt.edu.cn

Guosheng Xu
Beijing University

of Posts & Telecommunications
Beijing, China

guoshengxu@bupt.edu.cn

Siyi Li
Beijing University

of Posts & Telecommunications
Beijing, China

lsy curry@qq.com

Guoai Xu
Beijing University

of Posts & Telecommunications
Beijing, China

xga@bupt.edu.cn

Jie Deng
National Engineering Center

of Road Maintenance Technologies
Beijing, China

dengjie@roadmaint.com

Jiankun Cao
National Engineering Center

of Road Maintenance Technologies
Beijing, China

caojiankun@roadmaint.com

Abstract—With the rapid increase of traffic, the pressure
on road maintenance is gradually increasing. Pavement crack
is a common problem in all kinds of pavement diseases. In
the actual production process, pavement images have different
kinds of noise influence. The proposed algorithm is to select
optimal preprocessing methods for pavement images in various
conditions to improve the accuracy of crack detection. The
algorithm includes two parts, a crack detection network and
an intelligent preprocessing decision system. The crack detection
network identifies the cracks in road images. The intelligent
preprocessing decision system selects the best preprocessing
method for pavement images based on the deep reinforcement
method. The experiment results indicate that the validity and
effectiveness of our proposed method.

Index Terms—crack detection; deep reinforcement learning;
intelligent preprocessing decision system.

I. INTRODUCTION

The highway transportation system is one of the most
important large-scale public infrastructures. With the rapid
growth of traffic, the pressure on road maintenance is gradually
increasing. Pavement crack is a common problem in various
pavement diseases. How to effectively improve the detection
effect of pavement cracks is an urgent problem to be solved.
With the continuous advancement of technology, automatic
image acquisition and detection methods have gradually re-
placed manual detection. In the last few years, with the swift
development of the identification techniques, Kim et al. [1]
discuss the methods of detecting and recognizing road cracks
in 2017. Iqbal et al. present that the image preprocessing is
the basic step of image processing and computer vision. It
includes basic operations, such as noise removal, cropping,
brightness increase, and non-uniformity correction [2]. In the

DOI reference number: 10.18293/SEKE2021-062

actual production process, there may be water stains, uneven
illumination, shadows, and other interference information on
the road surface. Different feature preprocessing methods are
usually adopted for different road noise information. It is
hard to shape a general system to detect pavement cracks in
different conditions. In order to better identify the pavement
cracks, we propose an algorithm that can autonomously select
the optimal preprocessing method for road pavement images
in various conditons. Cracks can be accurately detected when
selecting the most suitable preprocessing method.

II. RELATED WORK

Deep reinforcement learning is based on reinforcement
learning, supplemented by the strong generalization and fea-
ture extraction ability of depth models. Deep reinforcement
learning has made great success in continuous decision-
making problems, such as game playing [3] and machine
control [4]. Reinforcement learning is the problem faced by an
agent that learns behavior through trial-and-error interactions
with a dynamic environment [5].

Deep reinforcement learning has four key elements: en-
vironment, state, action, and reward [6]. A reinforcement
learning model can be built with these elements. The problem
of reinforcement learning is to obtain an optimal policy for
a specific problem, maximizing the reward obtained under
this strategy. The policy is the sequential data that represents
a series of actions [7]. Motivated by the advances and the
features of deep reinforcement learning, we propose an in-
telligent preprocessing system for pavement crack detection
based on deep reinforcement learning method. 1)The system
can choose different preprocessing methods for pavement
images in various conditions. 2) The system selects the optimal

458

Fig. 1. Structure overview. The upper part of the figure shows the crack de-
tection network, wheras the lower part presents the intelligent preprocessing-
decision system.

preprocessing method for a certain image to improve the
accuracy of the crack detection model.

The rest of the paper is structured in the following manner.
In Section III, we describe our proposed system. In Section
IV, we explain the details of the components of the system. In
Section V, we demonstrate the experiments and the analysis
of results. In Section VI, conclusions are provided.

III. SYSTEM OVERVIEW

A. Overall Structure

The general architecture of the proposed algorithm in this
paper is illustrated in Fig. 1. The network is divided into
two parts: the crack detection network and the intelligent
preprocessing-decision system.

The goal of our algorithm is to raise the accuracy of
the crack identification model by autonomously choosing a
suitable preprocessing method for images. We utilize the deep
reinforcement learning method to check the quality of the
features extracted by the crack identification network and to
judge the recognition of the crack identification model. If the
accuracy of crack identification reaches a certain value, then
the crack detection network can output the result. Otherwise,
images will be transformed by the preprocessing method
selected by the intelligent preprocessing-decision system.

The decision ability of the deep reinforcement learning
method is crucial. It can fully understand the abstract features
and make decisions on the basis of the operations of these
features by integrating the functions of automatic feature
extraction. We transform pictures with poor recognition results
and re-value them by using the crack recognition model. Using
the same parameters to raise the accuracy of the crack iden-
tification model is possible through the autonomous learning
ability of the intelligent preprocessing-decision system.

B. Crack Detection Network

Crack detection network is responsible for the feature ex-
traction, road image input, and crack recognition. The network
is composed of several convolutional layers and five pooling

Fig. 2. Structure of the intelligent preprocessing-decision system

layers alternately. These pooling layers can reduce the input
images to their 1/32. Original 2200×3400 images are initially
resized to 704×1088 and then reduced to 22×34 after going
through five pooling layers.

The output of the crack detection network is a 22 × 34
matrix, each element of which represents if the correspond-
ing block contains cracks. The value of 1.0 indicates that
cracks may appear in this block. Such labeling is a one-to-
one correspondence with the output of the neural network,
which can efficiently conduct the end-to-end training of image
labeling. Given the existence of multiple convolutional layers,
the top-level neurons use the context information around its
corresponding block to determine whether the small area is a
crack, effectively utilizing the overall characteristics of images.

The output of the crack identification model and the target
are matrices. Measuring the distance between each element in
the two matrices is necessary. The number of blocks containing
cracks is relatively small, and the number of blocks containing
cracks in each picture can be rather different. We use positive
sample dice coefficient (PSD) to measure the similarity of
vectors as the objective function for training. The common
formula for measuring vector similarity is defined as follows:

PSD =
2|X ∩ Y |
|X|+ |Y |

, (1)

where X represents the output matrix of the crack identifi-
cation network, and Y indicates the manually labeled matrix.
|X| and |Y | represent the L1 norm of the two matrices. X∩Y
indicates the Hadamard product of X and Y . When X equals
Y , PSD = 1; otherwise PSD < 1. The value of PSD
becomes large when the coincidence of X and Y becomes
large. The value is only related to the proportion that the crack
area is correctly identified and has no relation to the number
of crack areas. Therefore, a common evaluation standard for
different pictures exists. In practice, X and Y may be zero at
the same time. To prevent the divide-by-zero error, we add a
smoothing term to this formula:

PSD =
2|X ∩ Y |+ ε

|X|+ |Y |+ ε
(2)

459

C. Intelligent Preprocessing-decision System

In our paper, the intelligent preprocessing-decision system
is a crucial part to improve the ability of the crack detection
model. The main structure of this part is shown in Fig.
2. The system based on the deep reinforcement learning
method judges the current result of the crack identification
and transforms images with bad recognition results by using
the selected preprocessing method. The transformed images
are then placed in the crack identification network again, and
a new round of calculation is performed.

The reinforcement learning method is used to select a
suitable preprocessing method for the pavement images. To
achieve this goal, four main components: environment, state,
action, and reward should be defined.

Intuitively, the environment of the intelligent selection sys-
tem is the feature space composed of the whole pavement
image dataset. An intelligent system must learn which prepro-
cessing method is beneficial for crack identification. It should
transform images with bad recognition results by using the
suitable preprocessing method.

We consider the feature space of images as the state. The
initial state is the feature space of original images. After
preprocessing images, the state is transformed into the next
step, which is the feature space of the transformed images.

The intelligent system involves the preprocessing methods
for pavement images, including Contrast-limited adaptive his-
togram equalization, bilateral filter, and morphological open-
ing operator. We also add no operation on the images to
the action set. Therefore, four actions are performed in total.
In Section III, the reasons for selecting such preprocessing
methods are explained in detail.

The system is trained to obtain the best strategy by the
reward information received. The reward can show the perfor-
mance of the identification algorithm and reflect whether the
result of the crack recognition is better after a certain image
preprocessing method. For each image, the accuracy of crack
identification varies with different preprocessing methods.
We regard the difference between the accuracy of the crack
identification as the measurement of reward. If the accuracy
of the transformed image becomes higher, then the intelligent
preprocessing-decision system can receive a positive reward.
By contrast, the negative reward can be received. That is,

rt =

{
ra, ACCt > ACCt−1
−ra, ACCt ≤ ACCt−1

(3)

where ACCt represents the accuracy of the crack iden-
tification of the current action, and ACCt−1 indicates the
accuracy of the crack identification of the last action. ra is
a positive value to represent the positive reward, and −ra is a
negative value to represent the negative reward of the action.
The structure of the intelligent preprocessing-decision system
can be described in Table I.

IV. ACTIONS

The actions of the intelligent preprocessing-decision system
are to transform the original image. Different preprocessing

TABLE I
ALGORITHM OF INTELLIGENT PREPROCESSING-DECISION SYSTEM

Input: Maximum training cycle Imax, Maximum num-
ber of exploratory rounds Emax. Maximum number of
steps per round Smax, update frequency of target network
Eupdate; Data amount of each batch M , memory pool P ,
and decay parameter γ.
Initialization: Random initialization of eval network
Evalnet parameters θQ, and target network Targetnet

parameters θQ
t

← θQ.
1. while the current training step < Imax:
2. while the current round step < Emax:
3. choose a picture from the training set;
4. obtain the feature matrix of the image as the initial state;
5. if the picture cannot be correctly read:
6. pass
7. while the number of current steps < Smax and the
episode has not finished:
8. select action at, satisfying at = argmaxQ(st, a, θ)

with probability 1 − ε or randomly select action at with
probability ε;
9. transform the image by using the selected preprocessing
method;
10. take the feature of the transformed image as the next
state;
11. calculate the accuracy of the transformed image and
obtain the reward;
12. store the memory(st, at, rt, st+1) into memory pool P ;
13. randomly select data from P ;
14. calculate the target Q value qtarget = rt + γ ×
max(Targetnet(st+1, at+1));
15. perform a gradient descent step on (qtarget −
qeval)

2with respect to network parameters θQ;
16. every Eupdate steps reset θQ

t

= θQ;
17. end
18. end

operations on original images are performed for such trans-
formation. We choose four actions for crack detection and
explain the reasons for selecting these operations. These opera-
tions include Contrast-limited adaptive histogram equalization,
bilateral filtering, morphological opening operator, and direct
output of original images (i.e., without preprocessing method),
a total of four actions.

A. Contrast-limited Adaptive Histogram Equalization

Histogram counts the probability of each gray level appear-
ing in images [8]. Histogram equalization (HE) utilizes the
histogram to adjust the gray value of images for enhancing
their global contrast and making their gray value evenly
distributed in the histogram. The algorithm finds a gray value
mapping:

Db =
Dmax

A0

∑Da

i=0
Hi, (4)

460

where A0 represents the area of the image (the total number
of pixels), Dmax indicates the maximum gray value of the
original image, Da is the gray value of the original image,
Db is the gray level of the converted image and Hi is the
number of i-level grayscale pixels.

Contrast-limited adaptive histogram equalization (CLAHE)
[9] is a good complement to the shortcomings of HE. CLAHE
[10] can preserve further details for images and minimize noise
increase.

Road images can have low or high overall brightness due to
camera lighting. In this case, the contrast between cracks and
surrounding road surfaces is reduced, and the characteristics of
cracks are not obvious, which can cause missing recognition.
The use of HE can effectively improve the contrast between
cracks and surroundings, enhance the characteristic expres-
sions of cracks, and make crack identification easy. CLAHE
algorithm can reduce the noise interference enhanced by HE.
CLAHE can also make processed images reduce noise and
global contrast as much as possible while improving the local
contrast and enhancing crack recognition.

We utilize CLAHE to avoid the problem of excessive
brightness in certain areas of images and maximize the crack
characteristics on the basis of enhancing the local contrast of
images.The basic process is as follows:

1. Split images into m×m pieces.
2. HE of each block is carried out after the slope of the

cumulative return function to avoid the increase of noise
limiting the contrast.

3. Bilinear interpolation is used to eliminate the boundary
between blocks.

B. Bilateral Filter

The purpose of an image filter is to eliminate noise interfer-
ence while preserving the image edge information and contour
as much as possible. Bilateral filter [11] is an edge-preserving
filter based on the Gaussian filter, which only considers the
distance between pixels, whereas bilateral filter considers the
distance and gray value of pixels:

H(y) =
1

k(y)

∑
x∈S

p(x)Gd(x, y)Gr(p(x), p(y)) (5)

k(y) =
∑

x∈S
Gd(x, y)Gr(p(x), p(y)) (6)

In Formulas (5) and (6), Gd(x, y)represents the Gaussian
weight of the distance between pixels x, y and Gr(p(x), p(y))
denotes the gray value Gaussian weight between pixels x,
y. Bilateral filtering can blur image noise by using different
distances of pixels.

Asphalt-stirred stones generally repeatedly flatten Road
surfaces; the largest difference between road surface images
and other kinds of images is that many salt-and-pepper noises
exist in road surface images. Such noises are determined by the
inherent characteristics of roads. These salt-and-pepper noises
may confuse the crack characteristics and cause the missing
recognition or misidentification of the cracks. The bilateral

filter can eliminate these noises to an extent and retain crack
information.

C. Morphological Opening Operator

The two most basic operations in morphological transfor-
mation are erosion and dilation, and the convolution kernel
sliding on original images is used to change pixel values. In
the erosion operation, the center element maintains its original
pixel value when all the pixels in the kernel are 255, otherwise,
it becomes 0. This operation can erode the boundary of the
foreground (white pixels). In the dilate operation, the pixel
value of the center element is 255 as long as one pixel in
the convolution kernel is 255. This operation can swell the
foreground boundary, that is, etch away the background (black
pixels). In mathematical morphology, using 	 for erosion
and ⊕ for dilation is common. The opening operator can be
described as follows:

A ◦B = (A	B)⊕B (7)

Different sizes of the structural elements in the opening can
result in various filtering effects, and the selection of different
structural elements can lead to different segmentation, which
means that different features are extracted. White noise is the
main type of noise in road images. Therefore, the opening
operation that can effectively remove white noise is a suitable
preprocessing method for road images. White noise is removed
after erosion, but black noise is increased, which can affect
the accuracy of crack recognition. Images are then dilated to
remove black noise, which can retain the crack characteristics.
Therefore, the overall noise of images can be reduced, and the
crack feature can be highlighted.

V. EXPERIMENTS AND ANALYSIS

The models used in the experiments are all based on
Python and Pytorch. Pytorch is the python-version of the
torch. A neural network is used in our algorithm, and a few
parameters and computations are needed. Thus, we utilize
GPU (Graphics Processing Unit) to accelerate the training
process [12]. A server with Titan X Pascal GPU, which has
a single-precision floating-point computing power of about 11
TFlops, accomplishes the experiments.

A. Dataset Collection

A dedicated digital camera with a vertical downward shoot-
ing angle takes the road pavement images. The vehicles with
the camera must move along the road at a uniform speed in a
straight line, taking a road pavement picture every two meters.
The road pavement pictures are then numbered in sequence.

To fully reflect the algorithm performance, we collect ap-
proximately 10,000 HD road photos for training and testing.
The road pavement dataset is composed of 8-bit single-channel
gray-scale images. The image size is 2200× 3400 pixels. The
images are sliced into non-overlapping blocks, and each block
includes 100 × 100 pixels. Therefore, 748 labeled blocks are
found in each image. The blocks containing crack pixels are
labeled as “1”, whereas those without obvious crack pixels

461

Fig. 3. Road image and its labels

are labeled as “0”. A matrix M containing only 0 and 1 can
represent a road pavement image. A sample of the labeling
image is illustrated in Fig. 3.

B. Evaluation

1) Comparison with Single Preprocessing Methods: The
crack identification network is trained first. To evaluate our
system, we identify the road cracks by using the crack
identification algorithm with a specific preprocessing method
and the one with the intelligent preprocessing-decision system.
As mentioned in Section III, the preprocessing methods are
CLAHE, bilateral filter, and opening. The intelligent system
selects the most suitable preprocessing method for images. If
the accuracy of the crack detection network improves, then the
system can receive a positive reward. Otherwise, the system
can receive a negative reward. The system finishes a training
step when the accuracy reaches the point of 0.8, or when the
last action is chosen as no operation.

The results rely on common definitions, that is, precision,
recall, and F-1 score. We evaluate the prediction by calculating
the PSD of the models. PSD emphasizes the positive examples
in the prediction, which plays a critical role in our task.

The agent collects the total reward in an episode, and we
periodically calculate the reward during the training process.
We use 7,000 road images as the training dataset. Additional
3,000 pavement images are selected as the test dataset to
evaluate network performance. Adam [13] is used as the
optimization function. We use LeakyRelu [14] as the activation
function to avoid the vanishing gradient problem. The learning
rate of the system is set as 0.001. The greedy parameter of the
greedy policy regularly changes during the training process.
The reward function of the system is set as follows:

reward0 = p2 − p1 (8)

As described in Section II, p2 represents the accuracy of
the crack identification of the current action and p1 indicates
the accuracy of the crack identification of the last action. In
real production, accurately identifying road cracks is crucial.
The results in Table II show that the crack identification
network with our intelligent preprocessing-decision system
achieves higher precision and PSD. Therefore, our method per-
forms better than the one with a single specific preprocessing
method. Although the recall is slightly lower than CLAHE
and opening, our proposed method achieves an overall F1
score of 78.36%, which is higher than the others. Such a score

TABLE II
RESULTS OF DIFFERENT PREPROCESSING METHODS

- Precision Recall F1 PSD
CLAHE 0.5092 0.9722 0.6683 0.5224
Bilateral 0.533 0.9602 0.6854 0.5307
Opening 0.4256 0.9721 0.5920 0.4298

Our system 0.6576 0.9701 0.7836 0.6585

TABLE III
RESULTS BASED ON DIFFERENT REWARDS

- Precision Recall F1 PSD
Reward0 0.6576 0.9701 0.7838 0.6585
Reward1 0.6738 0.9788 0.7981 0.6774
Reward2 0.8874 0.9792 0.9310 0.8906

suggests that our system is helpful for crack identification to
select the most suitable preprocessing method and improve the
identification performance.

2) Comparison with different rewards: To demonstrate the
importance of the reward function, we define the two other
reward functions:

reward1 =

 1, p2 > p1
0, p2 = p1
−1, p2 < p1

(9)

reward2 =

 1, 0.8 > p2 > p1
2, p2 > 0.8 AND p2 > p1
0, else

(10)

Table III shows that the reward function is crucial to system
performance. reward2 function performs better than the two
other reward functions because the values of reward2 function
are always positive, which improves system learning.

3) Comparison with other methods: The last experiments
reveal that our system achieves an improved performance
with reward2. We evaluate the performance of our system-
reward2 with several other existing methods. We select a
few pavement images to show the crack detection results of
different methods. The brighter color in Fig. 4 is detected as
cracks by the corresponding algorithm. Table 4 shows the
results of our system and the common edge and semantic
segmentation methods: richer convolutional networks for se-
mantic segmentation (RCF) [15], fully convolutional networks
for semantic segmentation (FCN) [16], and DeepCrack [17].
Our system improves its performance in all aspects. As shown
in Table IV, our system improves the performance by 17.2%
relative to DeepCrack, second best, in terms of PSD.

VI. CONCLUSION

In the actual road detection work, the detected pavement
images have kinds of background interference. Different pave-
ment images adopt different preprocessing methods. This

462

Fig. 4. Crack detection with different algorithms

TABLE IV
RESULTS OF COMPARED METHODS

- Precision Recall F1 PSD
DeepCrack [17] 0.7495 0.6193 0.6782 0.7595

FCN [16] 0.7208 0.4883 0.5821 0.7319
RCF [15] 0.7118 0.6536 0.6814 0.7299

System-reward2 0.8874 0.9792 0.9310 0.8906

paper proposed a method to select the optimal preprocessing
method for pavement images in various conditions. The algo-
rithm employs the deep learning method to form the strategy
of independent selection of preprocessing method, so as to
improve the detection effect of pavement cracks. The experi-
ments and analysis show that our method performs better in the
detection process which proves the validity and effectiveness
of our method. And we are now planning for further expansion.
In this study, we only select certain preprocessing methods. We
believe that other preprocessing methods can be added to our
system to improve its performance.

ACKNOWLEDGMENT

This work was supported by the National Key Research and
Development Program of China (No. 2018YFB0803605).

REFERENCES

[1] Hyunjun Kim, Eunjong Ahn, Soojin Cho, Myoungsu Shin, and
Sung Han Sim. Comparative analysis of image binarization methods for
crack identification in concrete structures. Cement & Concrete Research,
99:53–61, 2017.

[2] Iqbal Zahid, Khan Muhammad Attique, Sharif Muhammad, Shah Ja-
mal Hussain, ur Rehman Muhammad Habib, and Javed Kashif. An
automated detection and classification of citrus plant diseases using
image processing techniques: A review. Computers & Electronics in
Agriculture, 153:12–32, 2018.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[4] Martin Riedmiller, Thomas Gabel, Roland Hafner, and Sascha Lange.
Reinforcement learning for robot soccer. Autonomous Robots, 27(1):55–
73, 2009.

[5] L. P Kaelbling, M. L Littman, and A. W Moore. Reinforcement learning:
A survey. J Artificial Intelligence Research, 4(1):237–285, 1996.

[6] Zhenxin Wang, Sayan Sarcar, Jingxin Liu, Yilin Zheng, and Xiangshi
Ren. Outline objects using deep reinforcement learning. arXiv:
Computer Vision and Pattern Recognition, 2018.

[7] Abhishek Das, Satwik Kottur, Jose M. F. Moura, Stefan Lee, and
Dhruv Batra. Learning cooperative visual dialog agents with deep
reinforcement learning. In 2017 IEEE International Conference on
Computer Vision (ICCV), 2017.

[8] S Mathavan, Akash Kumar, Khurram Kamal, Michael Nieminen, Hitesh
Shah, and M M Rahman. Fast segmentation of industrial quality
pavement images using laws texture energy measures and k-means
clustering. Journal of Electronic Imaging, 25(5):053010–053010, 2016.

[9] M. S. Hitam, W. N. J. H. W. Yussof, Ezmahamrul Afreen Awalludin,
and Z. Bachok. Mixture contrast limited adaptive histogram equalization
for underwater image enhancement. In International Conference on
Computer Applications Technology, pages 1–5, 2013.

[10] Yudong Zhang, Xueyan Wu, Siyuan Lu, Hainan Wang, Preetha Phillips,
and Shuihua Wang. Smart detection on abnormal breasts in digital
mammography based on contrast-limited adaptive histogram equaliza-
tion and chaotic adaptive real-coded biogeography-based optimization.
Simulation, 92(9):873–885, 2016.

[11] Cristiano Premebida, Luis Garrote, Alireza Asvadi, A Pedro Ribeiro,
and Urbano Nunes. High-resolution lidar-based depth mapping using
bilateral filter. In International conference on intelligent transportation
systems, pages 2469–2474, 2016.

[12] Kristina Doycheva, Christian Koch, and Markus Konig. Gpu-enabled
pavement distress image classification in real time. Journal of Comput-
ing in Civil Engineering, 31(3):04016061, 2017.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. Computer Ence, 2014.

[14] Yun Zhang, Qinglong Hua, Dan Xu, Hongbo Li, and Pengfei Zhao. A
complex-valued cnn for different activation functions in polarsar image
classification. In IGARSS 2019 - 2019 IEEE International Geoscience
and Remote Sensing Symposium, 2019.

[15] Y. Liu, M. Cheng, X. Hu, K. Wang, and X. Bai. Richer convolutional
features for edge detection. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 5872–5881, Los Alamitos,
CA, USA, jul 2017. IEEE Computer Society.

[16] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3431–3440, 2015.

[17] Yahui Liu, Jian Yao, Xiaohu Lu, Renping Xie, and Li Li. Deepcrack: A
deep hierarchical feature learning architecture for crack segmentation.
Neurocomputing, 338:139–153, 2019.

463

Inspect Defect of Power Equipment via Deep Learning Method

Qi Zhang1 , Qingsong Cai1∗ , Jianhui Zheng2

1School of Computer, Beijing Technology and Business University
2School of Sofware, Tsinghua University

qizhang16@yeah.net, caiqs@btbu.edu.cn, zjh19@mails.tsinghua.edu.cn

Abstract- Efficient defect detection is crucial for main-
taining a stable power system. One method is to check the
status of electrical equipment through images or videos
taken by UAVs (unmanned aerial vehicles), overcoming
various difficulties of manual inspection in complex en-
vironments such as high-altitude, snowy or rainy days,
etc. Unfortunately, it is still a difficult challenge to pro-
cess the data returned by UAVs automatically and effec-
tively. This study proposes a defect detection algorithm to
process UAV images of power equipment based on Faster-
RCNN. Additionally, we use multiple optimization strate-
gies to improve the performance of the benchmark al-
gorithm, including feature pyramid network, deformable
convolution, online hard example mining, and data aug-
mentation. Our results show that the average accuracy
of experiments obtains nearly 60% improvement com-
pared to that naive deep learning target detection algo-
rithm. Meanwhile, this method is suitable for various de-
fects of power equipment with high accuracy, thus bene-
fiting thousands of households.

Keywords— power equipment; defect detection; UAV photogra-
phy; deep learning

1 Introduction
Periodical inspection, troubleshooting, and timely repair are es-

sential to the stability of the power system, especially to the long-
distance high-voltage transmission circuit with complex topograph-
ical distributions. The common defects of electric devices are shown
in Fig.1, including foreign matters in the tower, damage of the insu-
lator, abrasion of wires, and corrosion of hardware. If these common
electrical equipment defects are not found and fixed in time, it will
cause extensive equipment damage and paralyze the power grid. To
guarantee the steady operation of these circuit devices, unmanned
aerial vehicle (UAV) photography has become the top choice for an
electric system inspection. UAVs can capture images or videos of
electric devices in a complex environment. In contrast, manual in-
spections often face tremendous challenges under which. And then,
we can make out the defect type and position by processing these
images or videos. Therefore, intelligent analysis of power equip-
ment defects through images or videos obtained by UAVs plays a
significant role in improving fault detection and repair efficiency.

Over the years, tremendous efforts have been made to process the
images obtained by UAVs. In general, these methods can be roughly

∗Corresponding author.
DOI reference number:10.18293/SEKE2021-082

Figure 1: Common defects of power equipment

divided into three categories: The first and the most commonly used
one is manual analysis [1], which is to inspect and analyze graphics
or video information manually, bearing the highest accuracy. But, it
also has obvious drawbacks. The high demand for the quantity and
quality of professionals makes it expensive due to the vast amount of
power infrastructure relying on manual inspection. Meanwhile, in-
specting images manually for an extended period can cause fatigue
and reduce judgment accuracy, thereby omitting some equipment
defects and causing safety hazards. The second one is the traditional
image-based defect detection method that inspects power lines by
analyzing infrared images [2]. This method has satisfactory perfor-
mance in detecting defects that lead to large temperature gradients,
such as local high temperatures caused by wire corrosion. Neverthe-
less, not all power failures will cause temperature changes in power
equipment, and infrared image analysis has its limitations. The third
one is to use deep learning methods, which utilize data-driven train-
ing of convolutional neural networks to locate and classify defects
[3]. Deep learning methods can automatically extract image fea-
tures [4], simplify the image preprocessing process, and effectively
improve target detection efficiency compared with traditional image
fault detection methods.

However, the existing deep learning methods still have some
shortcomings in solving these problems, such as insulator identifi-
cation methods [5], or power transformer fault diagnosis [6], they
can achieve good results under limited data sets. But these methods
can only have satisfactory performance for specific problems, which
do not work for other kinds of defects. Because Faster-RCNN [7]
is widely used in the industry and has high stability, strong versatil-
ity, which can relatively accurately identify multiple defects. This
paper uses the Faster-RCNN algorithm as the benchmark algorithm.
Then we propose an automatic detection method that can recognize

464

Figure 2: Work flow of the defect detection algorithm based on improved Faster-RCNN

various defects in power equipment.
Although Faster-RCNN is already a relatively mature detection

algorithm, defect detection in power systems still faces many chal-
lenges: Firstly, there are so many types of defects to be detected that
it is difficult for the algorithm to locate them accurately in UAV im-
ages. Secondly, complex and diverse backgrounds of pictures will
bring annoying noise to the target detection algorithm, thus boosting
the robustness of the algorithm in different scenarios must be taken
into consideration. Thirdly, UAVs often shoot objects from different
heights and angles, so the captured images’ target has different sizes
and angles. The recognition algorithm needs to be able to detect
targets at multiple scales.

This paper proposes a defect detection method for power equip-
ment aerial images based on the improved Faster-RCNN algorithm.
The system framework is shown in Fig.2: UAV aerial photography
obtains videos or images of power equipment in different environ-
ments and transmits these images to the server after relevant pro-
cessing. The improved Faster-RCNN target detection algorithm can
automatically detect defects in power equipment images and auto-
matically classify them, and then professionals will troubleshoot and
repair the defect.

According to the characteristics of the UAV’s power equipment
images, the improvements made to the original Faster-RCNN algo-
rithm in this paper are as follows: First, to solve the problem of dif-
ferent resolutions and variables camera distances of images, we add
a multi-dimensional feature extraction [8] module to adjust the net-
work structure, combining top-down and bottom-up feature extrac-
tion methods to detect defects of different sizes in images of differ-
ent scales. This improvement allows the algorithm to obtain a larger
receptive field when paying attention to minor electrical equipment
defects. Second, because the defective shapes of power equipment
are primarily irregular, the traditional convolution shape is relatively
single and does not have strong adaptability to defect detection of
power equipment. We use deformable convolution [9] to enhance
the feature extraction of defects of different shapes. Third, we use
online hard example mining (OHEM) [10], and data augmentation
[11] methods to solve the problem that there are generally only a
single or a small number of electrical equipment defects in a single
image captured by UAV. The improved algorithm framework pays
attention to positive samples in the training process. It has a greater
response to the area where the power equipment is located and where
the power equipment is defective. More details are shown in Section
III.

Our major innovations and contributions are as follows:

• This paper proposes an image defect detection method for
power equipment based on deep learning. The method realizes
integrated intelligent processing of defect detection, including
UAV shooting, detecting and classifying defects automatically,
and repairing electrical equipment.

• We add modules to optimize the performance of the native fault
detection algorithm based on Faster-RCNN, including multi-
scale feature extraction, deformable convolution, online hard

example mining, and data amplification.

• Through the 5847 images of UAV’s electrical equipment with
different resolutions for comparison experiments, it is proved
that our algorithm for detecting defects of electrical equipment
improves the accuracy by 60% on average compared with the
benchmark algorithm. The method reduces the problem of
excessive resource consumption in the maintenance of basic
power facilities, and it is of great significance to national life
and economic development.

This paper is organized as follows. In Section II we discuss some
related work. In Section III, We will present our main idea. In Sec-
tion IV we will show our experiment results, and we conclude in
Section V.

2 Related Work
Although UAVs can capture numerous images and videos for

electric equipment, they can not detect the defects of the equip-
ment by automatically surveying those data. Therefore, image post-
processing plays a critical role in defect detection after UVA im-
age acquisition. The conventional processing method relies on the
experience of the workers, which includes processing the images
manually and marking the potential danger information via visual
inspection. The cost of this approach is relatively high due to its
experience dependence, labor enrichment, and material resource de-
pendence. Thus, there is an unmet need to develop novel approaches
to detect defects with better efficiency and lower cost.

Infrared image-based processing is one of the most commonly
used methods for fault detection. Kazuo Yamamoto et al.[12] de-
tected the transmission lines’ faults in power equipment by fusing
infrared images with RGB images, which enlarged the difference
between those two images and contributed to targeting extraction.
Based on this research, Walter Fetter Lages et al.[13] developed a
real-time fault detection module for transmission lines. Although
this method simultaneously provides and visualizes the faults infor-
mation in power lines, it can only detect transmission lines with tem-
perature difference characteristics. Moreover, the detection ability
for some other types of faults is weak. Additionally, the operating
ambient temperature of UAVs is relatively complicated. During the
shooting process, the imaging attitude is uncertain, and there are
many interferences. Furthermore, different infrared devices cannot
work together, which limits the accuracy of the detection.

With the development of modern digital image technology, artifi-
cial intelligence, and other disciplines, diverse methodologies have
been developed to optimize image post-processing and achieve vary-
ing results [14]. Since traditional image processing methods above-
mentioned cannot address the unmet need in fault detection for
power equipment, many scholars turn their attention to deep learning
methods to explore novel detection methods with better efficiency.
With the breakthrough of artificial neural network theory, an artifi-
cial neural network has gradually become an accurate and efficient
solution to learn specific tasks and complete the corresponding tasks.

465

(a) Feature pyramid network module (b) Deformable convolution (c) OHEM and data augmentation

Figure 3: Schematic diagram of improvement

The literature [15] applied the AlexNet as a feature extraction net-
work when using the random forest algorithm to detect insulator fail-
ures. Also, for detecting the fault in insulators, The literature [16] in-
troduced multi-layer perceptrons to extract the location-related fea-
tures and local contour features of the captured images. Moreover,
The literature [17] adopts the neural network method to filter out the
background noise in detecting the transmission line. Notably, with
the combination of convolutional neural network and wavelet trans-
form, The literature [5] can detect faulty transmission lines more
accurately due to the better classification and extraction of fault fea-
tures. However, the deep learning method has made progress in
detecting electrical equipment with drone aerial photography, espe-
cially in accuracy and automation. The types of faults detected by
related studies are relatively single. Most of them are in the prelimi-
nary exploration stage. Unlike the above deep learning methods, we
will describe how to solve the problem more universally by improv-
ing the benchmark algorithm in the next part.

3 The proposed method
This section will introduce how to apply deep learning methods

to identify and classify defects in images. This paper aims to realize
intelligent processing as much as possible. Moreover, the Faster-
RCNN algorithm is widely used in aerial inspection [18] [15] and
has high stability [19]. Therefore, we select the Faster-RCNN as the
benchmark framework for defect detection in UAV images of power
equipment. However, defects are small targets, and the traditional
convolutional layers decrease sensitivity when deepening in the ac-
tual scene, it is easy to ignore small targets. So we select the residual
network [20] Resnet101 as the feature extraction network. As the
overall accuracy of the benchmark algorithem is still not high, we
consider the specific problems encountered in UAV photography to
make three improvements to achieve higher accuracy in the follow-
ing part.

3.1 Feature pyramid network
The detected objects in the images have various scales due to the

different shooting distances and defect sizes. So the algorithm needs
to detect targets of various scales.

Traditional deep feature extraction networks in the shallow layer
can extract more detailed features that contain rich information.
They also have a more incredible response to small-scale targets.
Nevertheless, contextual semantic information misses due to the
lack of receptive fields. The network continues to downsample while
the feature extraction network is deepening. This way increases the
receptive field corresponding to each area in the feature map. The
features extracted at this time contain rich semantic information.
However, the feature extraction networks have a more excellent re-
sponse to large-scale targets while many details in the image are
lost simultaneously. This shortcoming is fatal for defects detection
of power equipment because power equipment defects are generally

small targets. Suppose we can extract multi-dimensional feature in-
formation and can achieve multi-scale feature extraction. In that
case, the accuracy of detecting defects in electrical equipment cap-
tured by UAV will be further improved. So this paper implements
a feature extraction process by extracting multi-scale features from
the bottom-up and fusing the pyramid structure of different stages
from the top-down to achieve the first stage optimization.

Figure 4: The process of multi-scale feature extraction using feature
pyramid network, which integrates the top-down and bottom-down
feature extration methods

Fig. 4 shows the process of feature pyramid network. Firstly, the
feature maps obtained in each stage are fixed as 1x1 convolution,
then the number of channels is fixed as 256. Secondly, the lower-
layer feature map is up-sampled by two times so that the feature
map of the upper layer after convolution can scale the same size as
the feature map of the lower layer. Then the bottom layer feature
map fuses with the up-sampled upper layer feature through convo-
lution and addition so that the high-level semantic information is
merged with the detailed low-level information. Finally, The net-
works use 3x3 convolution to convolve the added feature maps to
eliminate aliasing effects. Fig.3(a) shows the framework with the
feature pyramid network.

3.2 Deformable convolution
The convolutional neural network proposes candidate regions

and generates candidate frames by autonomously learning after the
Faster-RCNN algorithm extracts image features. The corrosion of
hardware is a common type of electrical equipment defect with ir-
regular shapes. Additionally, The convolution kernel of traditional
convolutional neural networks is generally rectangular or square. So
it is a great challenge to detect the defects of the conductive line
using the convolution with a regular structure. A fixed-shaped con-
volution kernel can sample a fixed-shaped area on the entire image,
but the area covered by its receptive field is fixed for a given convo-
lution kernel, which is not a good design. Moreover, The function
of the high-level convolutional layer is to encode low-level features

466

and extract high-level features. However, targets at different loca-
tions often have different shapes and scales, limiting the coverage of
the receptive field area, thereby restricting the detection of targets of
different shapes. In the end, we adopt deformable convolution like
Fig. 5 to accept defects. The convolution adjusts the scale and the
coverage of the receptive field adaptively through learning, which
will improve detection accuracy.

Figure 5: Comparison of the process between deformable convolu-
tion and traditional convolution

The conventional feature map convolution is usually divided into
two steps in target detection:(1) sampling using a regular grid R over
the input feature map x; (2)summation of sampled values weighted
by w. The final result is the value corresponding to the sampling
position of the input feature map on the output feature map. In each
position p0 of the output feature map y, there is Eq.(1),

y(p0) =
∑
pn∈R

w(pn) ∗ x(pn + p0) (1)

where is an enumeration of each position of R. In the variable
convolution, the regular grid R is expanded by the offset(∆pn|n =
1 · · ·N), where N = |R|, the above formula is further transformed
into Eq.(2).

y(p0) =
∑
pn∈R

w(pn) ∗ x(pn + p0 + ∆pn) (2)

After this change, sampling is no longer limited to the area corre-
sponding to the regular grid R, but the offset forms an irregular area.
As shown in Fig.6, the modified network predicts the offsets of each
convolution position by the learned infomation before the convo-
lution operation. After the position of the convolution changed by
the offset, the network can pick the most suitable place to extract
the features. The convolved area can be concentrated on defects as
much as possible.

Figure 6: The process of deformable convolution to locate defects

As shown in Fig.3(b), this paper uses deformable convolution in
the last three stages of Resnet101, enabling the feature extraction
network to convolve appropriate locations at different scales. It im-
proves the accuracy of small target detection.

3.3 Online hard example mining and data
augmentation

There are often few or even no defects in the images of electri-
cal equipment, which means that most of the candidate frames are
based on the background. Thus, it is essential to correctly distinc-
tion foreground and background. Correctly dividing the categories
of positive samples for defect classification is also essential. This
paper uses online hard example mining and data augmentation to
improve the response-ability of the detection framework to targets.

Online hard example mining
In Faster-RCNN, the candidate region generation networks gen-

erate many candidate regions, many of which are negative sample
boxes that do not intersect or intersect with the target box to be de-
tected. These samples are easy to train samples. It is easy to reduce
the loss function of the network by identifying these candidate sam-
ple frames as background. The ratio of the intersection with the
foreground target frame (that is, an area ratio, which comes from
the two candidate frames generated in the feature extraction stage,
and divides their intersecting part and their merged part) of the dif-
ficult to train negative sample is relatively large. However, it does
not exceed the set positive sample threshold. Therefore, it is neces-
sary to focus on training those negative sample frames with a higher
intersection ratio to be detected.

Online hard example mining can find difficult to train samples
during the training process and increase weight of these samples to
the loss function. The traditional method of regional candidate net-
work to propose regional candidate frames is to randomly select 512
candidate frames to calculate the loss function according to the ra-
tio of foreground and background 1:3 after the regression network
refines and classifies the candidate frames. Instead, the online hard
example mining method first calculates the loss of all the candidate
boxes after refinement and classification, sorts the loss from high to
low, and selects a total of 512 positive samples in a ratio of 1:3, and
uses these samples to train network. Furthermore, it can improve
the training effect by using the trained samples to train the network
again. Then, such a method will make the sample’s relative charac-
teristics more evident than the traditional method.

Data augmentation
Data flipping. UAVs often capture images of electrical equip-

ment from different directions, but the defects of the electrical equip-
ment are invariant. It means the defect information will still exist af-
ter flipping an image vertically or horizontally. Therefore, during the
training process, we randomly flip the images and the device defect
frame marked by the image, and the data volume finally increases.
Simultaneously, it improves the robustness of the detector by using
these modified images to train the detector and allows the detector
to learn useful information from images in different directions and
angles.

Data scaling. UAVs usually do not maintain the same height in
the process of photographing electronic equipment, and they cannot
guarantee the same route and height every time. Furthermore, the
resolution of UAVs of different brands is also quite different. There-
fore, the images are randomly scaled to simulate the real environ-
ment in the training process of the model. Then the model will have
a greater response to power equipment defects with different scales.
Fig.3(c) shows that the detection framework with online hard exam-
ple mining and data augmentation is effective in classification and
regression.

467

After making relevant improvements, the next part of the experi-
ment will prove that the improved detection framework has achieved
obvious results.

4 Experiments
In this part, the traditional Faster-RCNN algorithm will be used

as the basic framework to experimentally verify the ability of the im-
proved system framework to detect image defects of power equip-
ment.

4.1 Dataset
This experiment’s data set consists of 5847 images of power

equipment captured by UAVs, collected by one of the largest power
companies in China. There are several types of electrical equipment
defects in these images, such as foreign matters in the tower, damage
of the insulator, abrasion of wires, and corrosion of hardware, and
their resolutions are different. The data is divided into the training
set, the verification set, and the test set at a ratio of 8:1:1. We verify
the validation set when the training phase is completed (all training
data are trained once) in training the model. We save the best model
on the validation set and apply it to the test set to record the final
result.

4.2 Evaluation indicators
Precision and Recall are important indicators for model evalua-

tion. A comprehensive evaluation of recall rate and precision will
be meaningful for evaluating defect detection of power equipment.
Simultaneously, we also add the Average Precision and the mean Av-
erage Precision as measurement indicators according to the accuracy
requirements of power system defect detection. The Average Preci-
sion refers to the average value of the maximum precision under the
condition of calculating different recall rates, shown in Eq.(3):

AP =

∫ 1

0

p(r) dr (3)

where AP stands for the Average Precision, and r refers to the
recall rate. p(r) represents the highest precision when the recall rate
is r. The mean Average Precision refers to the average accuracy of
each category, shown in Eq.(4):

mAP =
AP

C
(4)

where mAP is the average accuracy of multiple types, and C is
the total number of categories of the target to be detected. It should
be noted that when calculating AP and mAP , we uses the predic-
tion frame whose intersection ratio with the real target object’s outer
frame(The ratio of the area of the intersection of the two candidate
frames generated in the feature extraction stage to the area of the
merged part) is more significant than 0.5 as the average accuracy
calculated by the positive sample.

4.3 Comparative experiments
This paper sets up four stages of comparative experiments to

study whether the improvement of Faster-RCNN is useful. Faster-
RCNN with Resnet101 as the feature extraction network is set as
the first group of comparative experiments recorded as experiment
1. Because the improvement of the benchmark system framework
is divided into three parts, three sets of experiments are set to com-
pare with experiment 1 during the investigation. Experiment 2 is
the result of adding multi-scale feature extraction to the benchmark
framework. Experiment 3 is the result of adding variable convolu-
tion based on experiment 2, and experiment 4 is the result of adding

online difficult sample mining and data augmentation based on ex-
periment 3. The intuitive comparison of detection accuracy can re-
flect the effectiveness of the improved target detection framework
for power equipment images.

4.4 Experimental results
As shown in Tab. 1, experiment 2 increases the average accuracy

of experiment 1 by 19.3% after adding multi-scale feature extrac-
tion. According to our analysis, the reason is that the resolution of
images captured by UAVs is relatively large. Images entered into
the network are often reduced by a certain percentage. The fea-
ture extraction network also downsamples the images by 32 times,
which will cause the inherently relatively small defects to be sig-
nificantly reduced or even lost during the down-sampling process.
These small defect features can be well preserved and detected on
the high-resolution feature map after adding multi-scale feature ex-
traction.

BEN FPN DC OHEM/DA mAP

1
√

43
2

√ √
62.3

3
√ √ √

68.1
4

√ √ √ √
69.3

Table 1: The impact of algorithm improvement at each stage on the
mean Average Precision. In particular, BEN stands for the bench-
mark algorithm, FPN stands for feature pyramid network, DC stands
for deformable convolution, OHEM/DA stands for online hard ex-
ample mining and data augmentation.

Additionally, the average accuracy of experiment 3 increased by
5.8% after using deformable convolution because experiment 3 is
more adaptable to the shape of power equipment after adding de-
formable convolution. Finally, the average accuracy of experiment
4 increased by 1.2% by adding online hard example mining. We an-
alyze that the model becomes easier to converge during the training
process and learns from more difficult samples to get a more robust
classification and detection capabilities. So experiment 4 further im-
proves the average accuracy.

Figure 7: Detection accuracy of different algorithm

Fig. 7 shows the performance of different framework improve-
ments in different categories of defects. In the original benchmark
algorithm, this category can hardly be detected since the abnormal
wire is small. With the addition of multi-scale feature extraction,
the defects of this category are significantly increased. Because for-
eign matters in the tower are large and easy to detect, the benchmark
target detection framework already achieve high detection accuracy,
there are still some small-scale targets in this category of defects
because the shooting distance of UAVs is relatively long, so multi-
scale feature extraction can still improve the detection accuracy. De-

468

formable convolution can further improve accuracy when it detects
frayed wires, damaged insulators, and foreign matters in the tower of
different shapes. Finally, the algorithm is easy to jump out of the lo-
cal minimum and converge better after adding online hard example
mining.

1 2 3 4 mAP

BA 3.8 63.7 64.7 39.9 43.2
OA 50.2 85.9 73.6 68.2 69.5
IR 12.210 0.349 0.138 0.709 0.609

Table 2: The accuracy improvement ratio of the improved optimal
algorithm and the benchmark algorithm. 1,2,3,4 respectively repre-
sent abrasion of wires, foreign matters in the tower, damage of the
insulator, and corrosion of hardware. BA,OA,IR respectively rep-
resent the benchmark algorithm, optimal algorithm, increase ratio.
The results show that our algorithm exceeds the benchmark, which
indicates the effectiveness of our approach.

Between comparison of the results of experiment 4 and experi-
ment 1, it can be seen that the benchmark target detection frame-
work is a better solution to the problem that minor defects in high-
resolution power equipment images can hardly be detected. For for-
eign matters in the tower, damaged insulators, and large-scale clamp
corrosion, the three major types of defects’ accuracy are increased
by about 30%, 15%, and 70% respectively. As shown in Tab 2, the
average accuracy of each category has increased by about 60% even-
tually. However, the experimental results show that the accuracy of
this method is still low for small-sized objects such as wires, so the
results left much to be improved. Therefore, we can further try to
use multi-task training methods to detect small-sized objects in a
targeted manner while retaining the existing algorithm framework.
Some results of our experiment are shown in Fig. 8.

Figure 8: Visual display of defect detection: Tower refers to foreign
objects in the tower, cable refers to abnormal conductors, insulator
refers to damaged insulators, and rust refers to metal corrosion

5 Conclusion
In this study, we propose a detect defection algorithm based on

improved Faster-RCNN to process images captured by UAVs. We
use a multi-scale feature extraction method to detect targets of dif-
ferent scales on images of different resolutions with high accuracy.
Meanwhile, we find that traditional convolution cannot adapt flexi-
bly due to the shapes of power equipment are multilateral. We intro-
duce deformable convolution to solve this problem. Moreover, we
improve the performance of defect recognition by studying the atten-
tion degree of the object to be detected in the labeled data. In gen-
eral, this research has improved the accuracy of intelligent detection
of defects in power equipment. Also, it has dramatically reduced the

consumption of human and material resources in the maintenance of
basic power facilities, which has a high application value.

References
[1] Ian Golightly and Dewi Jones. Corner detection and matching for visual tracking

during power line inspection. Image and Vision Computing, 21(9):827–840, 2003.

[2] Mohd Shawal Jadin and Soib Taib. Recent progress in diagnosing the reliabil-
ity of electrical equipment by using infrared thermography. Infrared Physics &
Technology, 55(4):236–245, 2012.

[3] PN Druzhkov and VD Kustikova. A survey of deep learning methods and software
tools for image classification and object detection. Pattern Recognition and Image
Analysis, 26(1):9–15, 2016.

[4] Xin Ma, Mingliang Li, Jinxi Kong, Siming Zhao, Wei Li, and Xiaohui Cui. In-
spect characteristics of rice via machine learning method. International Journal
of Software Engineering and Knowledge Engineering, 2020.

[5] Weiguo Tong, Jinsha Yuan, and Baoshu Li. Application of image processing
in patrol inspection of overhead transmission line by helicopter. Power System
Technology, 34(12):204–208, 2010.

[6] Alamuru Vani and Pessapaty Sree Rama Chandra Murthy. An adaptive neuro
fuzzy inference system for fault detection in transformers by analyzing dissolved
gases. In 2014 The 1st International Conference on Information Technology, Com-
puter, and Electrical Engineering, pages 328–333. IEEE, 2014.

[7] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-
wards real-time object detection with region proposal networks. arXiv preprint
arXiv:1506.01497, 2015.

[8] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2117–
2125, 2017.

[9] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen
Wei. Deformable convolutional networks. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 764–773, 2017.

[10] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based
object detectors with online hard example mining. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 761–769, 2016.

[11] Luis Perez and Jason Wang. The effectiveness of data augmentation in image
classification using deep learning. arXiv preprint arXiv:1712.04621, 2017.

[12] Kazuo Yamamoto and Kimio Yamada. Analysis of the infrared images to de-
tect power lines. In TENCON’97 Brisbane-Australia. Proceedings of IEEE TEN-
CON’97. IEEE Region 10 Annual Conference. Speech and Image Technologies
for Computing and Telecommunications (Cat. No. 97CH36162), volume 1, pages
343–346. IEEE, 1997.

[13] Walter Fetter Lages and Vinı́cius Scheeren. An embedded module for robotized
inspection of power lines by using thermographic and visual images. In 2012 2nd
International Conference on Applied Robotics for the Power Industry (CARPI),
pages 58–63. IEEE, 2012.

[14] Ting Yang, Liyuan Zhao, and Chengshan Wang. Review on application of arti-
ficial intelligence in power system and integrated energy system. Automation of
Electric Power Systems, 43(1):2–14, 2019.

[15] JF Li, QR Wang, and Min Li. Electric equipment image recognition based on
deep learning and random forest. High Voltage Engineering, 43(11):3705–3711,
2017.

[16] Yue Liu, Jianxiang Li, Wei Xu, and Mingyang Liu. A method on recognizing
transmission line structure based on multi-level perception. In International Con-
ference on Image and Graphics, pages 512–522. Springer, 2017.

[17] S Hemamalini et al. Rational-dilation wavelet transform based torque estimation
from acoustic signals for fault diagnosis in a three-phase induction motor. IEEE
Transactions on Industrial Informatics, 15(6):3492–3501, 2018.

[18] Q Chen, B Yan, R Ye, and XJ Zhou. Insulator detection and recognition of ex-
plosion fault based on convolutional neural networks. J. Electron. Meas. Instrum,
31:942–953, 2017.

[19] Hong Zhang and Naiyan Wang. On the stability of video detection and tracking.
arXiv preprint arXiv:1611.06467, 2016.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

469

A method for generating various style Chinese fonts
in the absence of training data
1st Kang Shi

School of Computer Science and Software Engineering
East China Normal University

Shanghai, PR China
51184501142@stu.ecnu.edu.cn

2th Tian-Ming Bu*
Shanghai Key Laboratory of Trustworthy Computing

East China Normal University
Shanghai, PR China
tmbu@sei.ecnu.edu.cn

Abstract—In recent years, the generation of arbitrary
style fonts has drawn broad attention. At present,
the common idea of most methods is to train the
model through a large number of text samples of a
specific style, so that the model can learn the font
style, and then automatically generate all the text of
the style. However, in the case of insufficient sample
data, almost all the current methods fail. In this paper,
we investigate how to generate arbitrary style Chinese
fonts automatically, especially when the sample data of
specific style is insufficient. In order to solve the prob-
lem, we propose a new frame. The method can be used
to generate the fonts of Chinese ancient calligraphers
whose relics are rare. The experimental results show
the effectiveness of the new frame.

Index Terms—text style transfer, generative adver-
sarial network, convolutional neural network

I. Introduction
The text style transfer is an end-to-end image conver-

sion, which is to generate a new image combining the
content of the source image and the style of the target
style image. In the case that there are enough samples
of the target style, after seeing different characters of the
same style font, the generative model can learn the target
style, and then generate all the characters of the style.
But how to automatically generate all the characters in
the target style when there are not enough samples, is a
problem that has not been solved yet.

In order to solve the problem,this paper proposes a new
framework, which is composed of two parts: the first part
is a model which is called the GTPD model, used to get the
probability distribution of the font type of training sample,
and the second part is the text style transfer model. The
GTPD model rebuild training data set based on the font
type probability distribution of a small number of samples
of a specific style. The training data set constructed by
the GTPD model is then used for the training of the text
style transfer model. Further, because the existing text
style transfer models perform not very well, we improve
the existing style transfer models and design a multi-style

This work are supported by National Key Research and Develop-
ment Programs (2019YFB2102600, 2019YFA0706404).
*Corresponding author.
DOI reference number: 10.18293/SEKE2021-114.

transfer model with better performance. The structure of
the new framework is shown in Fig. 1. In summary, the
main contributions of this paper are in two aspects:

• we optimize the existing text style transfer model and
propose a multi-style transfer model. The new model
can not only generate more realistic text, but also
learn multiple different styles of fonts at the same
time. In addition, the new model can also generate
the same font of traditional Chinese characters by
learning the style of simplified Chinese characters.

• we propose a new framework for text style transfer in
the absence of training data.

II. RELATED WORK

Gatys et al. [1] successfully applied the Convolutional
Neural Networks(CNNs) [2] to neural style transfer, break-
ing the bottleneck that one program can only transfer one
style.

When the CNNs were applied to neural style transfer,
some researchers attempted to apply the CNNs to text
style transfer. Yunchen Tian et al. [3] established an open
source project on Github and proposed the Rewrite model.
But the performance was not good. Pengyuan Lyu et
al. [4], based on the Auto-Encoder model, proposed the
Auto-Encoder Guided GAN(AEGAN) model for gener-
ating Chinese calligraphy characters. Compared AEGAN
with pix2pix, the loss function of AEGAN model contains
the reconstruct loss function, which is aim to guide the
transfer to learn the detailed stroke information from auto-
encoder’s low level features. Samaneh Azadi et al. [5]
proposed the multi-content GAN model, and tried to learn
the style through a few Latin characters with a specific
style, and then generated all the Latin characters of that
style. Shuai Yang et al. [6] proposed a scale-controllable
module to empower a single network to continuously
characterize the multi-scale shape features of the style
image and transfer these features to the target text. In
Anna Zhu’s paper [7], the output text font essentially is
the same as the input, except the decoration added on the
output text font. While in our work, the input and output
are different fonts. We solve the problem of style transfer of

470

Fig. 1. The structure of new frame.

different fonts from only a few referenced samples(output
font).

III. PROPOSED METHOD
In this paper, we improve the existing text style transfer

model in some aspects. Firstly, based on the pix2pix
model, constant loss function and category loss function
are introduced to make the generative model perform
better in the generated details. Then, a new framework
is proposed to solve the problem of style transfer cannot
work in the absence of training samples. The multi-style
transfer model and the new framework are described in
detail below.

A. Constant Loss
The learning process of human beings is the process of

analogy. Our generative model is actually to learn how to
map the sample space to the target space, namely, learn
the mapping from a input domain to an output domain.
Inspired by this, we apply the constant loss function
proposed by Yaniv Taigman et al. [8] to our generative
model.

Given two related domains S and T, the generative
model needs not only to learn to map from domain S to
domain T, but also to ensure the correlation between S and
T during the mapping process. Assume that element x ∈ S
and the generative model is G. Since having the same
feature is the premise of analogy learning, we hope that
the feature of x should have a correlation to the feature
of G(x) ∈ T . In this case, we want to find a multivariate
function f, which makes f(x) = f(G(x)).

To solve the above problems, we rebuild our generative
model structure. As shown in Fig. 1, the reconstructed
generative model G is composed of two parts, one is

Fig. 2. The generation results of the model introduce / not introduce
the constant loss function and category loss function.

a multivariate function f, and the other is a generative
function g.

After applying multivariate function f to generative
model, we hope ∥f(x) − f(G(x))∥ is as small as possible.
Thus we have an additional component of the loss function
of generative model G:

Lconstant = Ex∼Dsd(f(x), f(G(x))).

B. Category Loss
Before applying category loss function to our model,

the model once can only learn one target style. Inspired
by AC-GAN [9], we apply category loss function to our
model, so that we can learn several font styles in one
training and realize multi-style transfer model of text. To
let the generative model learn multiple font styles at the
same time, each font corresponds to a category label. The
discriminative model not only determines the authenticity
of the input sample, but also introduces another classifier
to determine the category of the input sample. The loss
function of the discrimination is composed of two parts:
the log-likelihood of the correct source LS , and the log-
likelihood of the correct class LC :
LS = E [logP (S = real | Xreal)]+E [logP (S = fake | Xfake)]

471

Fig. 3. The generation results of different models.

LC = E [logP (C = c | Xreal)] + E [logP (C = c | Xfake)] .

For the generative model, we want the generative model
to “deceive” the discriminative model. To make the dis-
criminative model unable to discriminate the real and
fake of the generated images, the component of the loss
function of the generative model is as follows:

Lcheat = E [(logP (S = fake | Xfake)] .

Furthermore, we also hope that the generated images can
“deceive” the discriminative model, so that the discrim-
inative model fail to determine whether the font type
of the generated images is correct. Therefor, the other
component of the loss function of the generated model is
introduced as:

Lfake-category-loss = E [(logP (C = c | Xfake)] .

C. Muti-Style Transfer Model
The loss function of the discriminative model of the

multi-style transfer model we designed is:

LD = LS + αLC .

The loss function LS is to make the discriminative model
learn to distinguish the authenticity of the input in the
training process, while the loss function LC is to make
the discriminative model learn to distinguish the type of
input in the training process. α is the super parameter of
the model, and our objective in the training discriminative
model is to make LD as large as possible.

The loss function of the generative model of the multi-
style transfer model we designed is:

LG = Lcheat+λLL1(G)+λ2Lfake-category-loss+λ3Lconstant ,

where the definition of LL1(G) is same as it in [10].

D. New Framework
In order to solve the problem that text style transfer

cannot work in the absence of training data, this paper
proposes a new framework, which is composed of GTPD
model and the multi-style transfer model mentioned be-
fore. At present, the training of the existing text style
transfer models requires about 1500 text samples of the
target style. When the sample data of the target style is

insufficient, by using the GTPD model, we firstly get the
probability distribution of the font type based on a small
amount of sample data. Then we reconstruct the training
data set according to the probability distribution of the
font type. Next, the GTPD model will be described in
detail below.

The GTPD model is essentially a multi-classification
model. Unlike the classification task, we don’t want the
GTPD model to tell us the type of font that the input
belongs to. In fact, after the GTPD model is trained, the
input to the GTPD model often does not belong to any
font type in the sample space. Through the probability
distribution of font type got by the GTPD model, we can
see the relationship between target font and fonts in our
sample space to a certain extent, that the output is the
probability distribution. The formula is as follows:

y =
1

M

M∑
i=1

(
pi1, pi2, · · · , piN

)
,

where y represents the average probability distribution
corresponding to M images input, and N represents the
number of font types contained in the GTPD model’s
sample space. In general, after getting y, we take the font
types of the three largest probability values to build the
training data set. The data set constructed contains the
above three fonts, and the quantity ratio is equal to the
probability ratio in the probability distribution. Namely,
m : n : q = px : py : pz, where m, n and q are the numbers
of characters of font x, y and z in the constructed training
data respectively, and px, py and pz are the probability
of font x, y and z respectively.

We use a deep neural network to construct the GTPD
model. As is known to all, the structure of deep neural
network directly affects the performance of the model. We
measure the quality of GTPD model by its classification
accuracy on the test set.

E. Implementation Details
1) Multivariate Function f. The generative model of

CGAN consists of an encoder and a decoder. The network
structure of the generative model includes an encoder and
a decoder. We use encoder to fit multivariate function f.

472

×

Encoder is used to do feature extraction, which is very
suitable for fitting multivariate function f.
2) GTPDModel. The loss function of the GTPDmodel

is cross entropy function. In the case of insufficient sample
data,weuse theexisting fonts in theGTPDmodelsample
space to reconstruct the data set as input to the style
transfer model. The GTPD model sample space should
contain font types as much as possible that have similar
texture to the target style font.

IV. EXPERIMENTS
In this section, we complete a largenumber of compar-

ative experiments. Firstly,we verify the improvement of
generative model consists of constant loss and category
loss function. Then, we demonstrate the effectiveness of
the multi-style transfer model through thecomparison
experiments of different models. Finally, in the absence
of samples of the target style, we carried out a lot of
experiments with the new frame and used it to imitate
the works of ancient calligraphers.
A. Data Set
Wecollect 10 kinds of common fonts and someChinese

calligrapher fonts as our training data set. In our experi-
ments, we all use font Song (宋体) as the standard font.
B. Constant Loss and Category Loss
Wetake font Song as the source font (content) and font

Yan (颜体) as the target style font (style), and randomly
select 1500 simplified characters from these two fonts to
construct a paired data set. The training set and the
verification set are constructed at a ratio of 9:1 respec-
tively. The pix2pix model, the model with constant loss
function only and the model with constant loss function
and category loss function introduced are respectively
trainedusingtheconstructeddataset.AsshowninFig.2,
introducing constant loss function and category loss func-
tion to our model leads to better generationeffect.
C. Comparison with Baseline Methods
In this subsection, we compare our method with the

following baselines for text style transfer.
• Rewrite [3]: Rewrite is a simple top-down Convolu-
tionnetworkwith big convolution kernel size and1
1stride. The network isminimized byL1 loss and total
variation loss.

• Pix2pix [10]: Pix2pix is a conditional GAN based
image translation network, which adopts the skip
connection to connect encoder and decoder. Pix2pix
isoptimizedbyL1distancelossandadversarial loss.

• Auto-encoder guided GAN (AEGAN) [4]: AEGAN
consists of two encoder-decoder networks, one for
image transfer and another acting as an auto-encoder
to guide the transfer to learn detailed stroke informa-
tion.

For comparison, we take font Song as the source font
(content) and font Kai (楷体) as the target style font

(style), and randomly select 1500 simplified characters
from these two fonts to construct a paired data set. The
results are shown in Fig. 3.
The multi-style transfer model can generate the font

of traditional Chinese characters by learning style from
simplified Chinese characters. We randomly select 1500
simplified characters from different font libraries as train-
ingdata.Aftertrainingthemodel,weletthemodeltogen-
erate these types of traditional characters. The generated
results are shown inFig. 4. The simplified characters are
alreadyexist inthefont library,andwegenerate thefonts
of traditional characters corresponding to these simplified
characters.

Fig. 4. The generation results of traditional Chinese characters by
learning style from simplified Chinese characters.

D. New Framework
In the case of insufficient samples of the target style, we

usethenewframeworktoachieve textstyle transfer,and
generatearbitrary characters of the target style. Firstly,we
should train the GTPD model. We randomly select 2500
words from 13 common fonts (方正兰亭超细黑简体、方

正舒体、毛泽东手写体、黑体、中易楷体、隶书、幼圆字

体、华文楷体、华文宋体、华文行楷、手写体、李旭科书

法、柳楷简体) as the training data of the GTPD model.
The output of a GTPD model is a vector of 13
dimensions, each of which corresponds to a font type. A
value per dimension represents the probability that the
input character belongs to that font type.
After training the GTPD model, we randomly select

several characters from Suiliang Chu’s calligraphy work
《雁塔圣教序》as input to theGTPDmodel (font Suiliang
Chu is not one of the sample space fonts). Based on the
output ofGTPDmodel,we reconstruct the training set of
thetextstyle transfermodel.Thenwegeneratethewhole
calligraphy work based on the constructed training set. As
shown inFig. 5, the left is the characters of SuiliangChu
generated by using the new frame, the right comes from
the network, which is the real work of Suiliang Chu.

V. EvALUATION AND DISCUSSIONS
We evaluate our proposed method as well as other

baselines on the database we collected.
1) Effect of the constant loss functionandcategory loss

function: Fig. 2 shows the improvement of the model by
introducing constant loss. It can be seen from the results
that, after constant loss and category loss is introduced,
the generated characters are more similar to the target

473

(a) generated work (b) real work

Fig. 5. The text generated by the new frame and real work.

characters in details. After further observation, it can be
found that there are some polluted pixel points in the
image generated by the pix2pix model. After introducing
the constant loss function , these polluted pixel points
disappear. After introducing category loss function, the
model can not only learn a variety of different font styles
at the same time, but also improve the generation effect.

2) Effect of the muti-style text style transfer: Multi-style
text transfer model is the text style transfer model realized
by introducing constant loss function and category loss
function on the basis of the pix2pix model and adjusting
the structure of the pix2pix model. As shown in Fig. 3,
the multi-style transfer model has a good performance in
the text style transfer.

3) Effect of the new framework: The new framework
is used to solve the problem that the text style trans-
fer models cannot work when the target style sample
is insufficient. We propose the GTPD model to analyze
the style characteristics by a small number of samples,
and then reconstruct the data set for training the multi-
style transfer model. It can be seen from Fig. 5, that the
characters generated by using the new framework are very
close to real characters.

VI. Conclusion and Future Work

In this paper, firstly, we propose a multi-style text
transfer model with good performance. The new model
can not only generate more realistic text, but also learn
multiple different styles of fonts at the same time. In
addition, the new model can also generate all traditional
Chinese characters by learning the style of simplified Chi-
nese characters. And then, we propose a new framework
to solve the problem that the text style cannot work when
the target style sample is insufficient. The new framework
is composed of GTPD model and multi-style transfer
model. The experimental results verify the effect of the
new framework.

In fact, everyone’s writing has a unique style, all belongs
to a kind of font. Experiments in this paper show that each
font corresponds to a different probability distribution of
font type. So how to identity the handwritings through the
probability distribution of font type is one of the future
work.

References
[1] Leon A Gatys, Alexander S Ecker, and Matthias Bethge, “Image

style transfer using convolutional neural networks,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 2414–2423.

[2] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir
Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang,
Jianfei Cai, et al., “Recent advances in convolutional neural
networks,” Pattern Recognition, vol. 77, pp. 354–377, 2018.

[3] Rewrite, “https://github.com/kaonashi-tyc/ rewrite,” .
[4] Pengyuan Lyu, Xiang Bai, Cong Yao, Zhen Zhu, Tengteng

Huang, and Wenyu Liu, “Auto-encoder guided gan for chinese
calligraphy synthesis,” in 2017 14th IAPR International Confer-
ence on Document Analysis and Recognition (ICDAR). IEEE,
2017, vol. 1, pp. 1095–1100.

[5] Samaneh Azadi, Matthew Fisher, Vladimir G Kim, Zhaowen
Wang, Eli Shechtman, and Trevor Darrell, “Multi-content gan
for few-shot font style transfer,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018,
pp. 7564–7573.

[6] Shuai Yang, Zhangyang Wang, Zhaowen Wang, Ning Xu, and
Zongming Guo, “Controllable artistic text style transfer via
shape-matching gan,” in 2019 IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2019.

[7] Anna Zhu, Xiongbo Lu, Xiang Bai, Seiichi Uchida, and Shengwu
Xiong, “Few-shot text style transfer via deep feature similarity,”
IEEE Transactions on Image Processing, vol. PP, no. 99, pp. 1–
1, 2020.

[8] Yaniv Taigman, Adam Polyak, and Lior Wolf, “Unsu-
pervised cross-domain image generation,” arXiv preprint
arXiv:1611.02200, 2016.

[9] Augustus Odena, Christopher Olah, and Jonathon Shlens,
“Conditional image synthesis with auxiliary classifier gans,” in
International conference on machine learning, 2017, pp. 2642–
2651.

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros,
“Image-to-image translation with conditional adversarial net-
works,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 1125–1134.

474

Multi-Fusion with Attention Mechanism for 3D
Object Detection

Ning Wang, Ping Sun*
School of Software Engineering

Tongji University
Shanghai, China

*Corresponding author email: pingsun@tongji.edu.cn

Abstract—Artificial intelligence gradually plays the essential role
in automatic driving, such as 3d object detection. Many state-of-
the-art 3d detection frameworks fuse point cloud data and image
data to perceive the surrounding environment of the vehicle.
However, these approaches focus more on vehicle detections, and
for objects with less point cloud sampling, such as pedestrians and
cyclists, the performance is moderate. In this paper, we propose
the multi-fusion framework with two kinds of attention
mechanisms to solve the above problem and improve the detection
accuracy of 3d objects. The proposed 3d attention mechanism with
voxel sparse information is utilized in the framework. This
framework contains two important modules: point fusion with 2d
attention and voxel fusion with 3d attention. These modules firstly
obtain the image features by projecting the lidar point or 8 vertices
of the voxel to image feature maps. Then, these modules perform
attentive fusion on the voxelized image features, point-wise image
features and lidar data. Our evaluation on the challenging KITTI
dataset, including 3d and bird’s eye view metrics, demonstrates
great improvements, especially at objects with less point cloud
sampling.

Keywords-3d object detection; multi-sensor fusion; attention
mechanism; convolutional neural network

I. INTRODUCTION

With the rapid development of artificial intelligence, great
breakthrough has been made in the automatic driving. 3d object
detection is an essential task in the automatic driving. Compared
with 2d object detection, 3d object detection can obtain richer
information such as the depth, position and volume, which helps
to better perceive the surrounding environment of the vehicle.
Lidar is the most used sensor for 3d object detection. Many early
researches detect 3d objects from lidar point cloud [1, 2].
However, single sensor has its own disadvantages. For example,
lidar cannot obtain intuitive image information. In this work, we
focus on the multi-sensor data fusion for 3d object detection. On
the basis of lidar point cloud data, the fusion of image data is
helpful to give full play to the advantages of each sensor and
improve the perception of multiple environments.

A. Challenges
3d detection algorithms only driven by lidar suffer from the

loss of texture information and the sparsity of point clouds.
Missing texture information causes many false detections
between objects of similar size. Very sparse point clouds of
small or distant objects lead to missed detections.

To address these challenges, recent researches augment lidar
point clouds with image features and learn to fuse features. Some
researches [3, 4] utilize image features to generate 2d proposals,
and then extract 3d features from the lidar points related to these
2d proposals. These approaches rely too much on reliable 2d
detection results. In these methods, for the undetected object in
the image, even if it has obvious features in the point clouds, it
is difficult to detect it. Many algorithms [5, 6] project point
clouds onto image features and then perform feature fusion.
However, these approaches have high dependency on the
reliability of high-resolution lidar point clouds and perform
poorly when the lidar points are not sampled.

B. Our Contribution
To deal with the above problems, the approach that reduces

the reliance on high-resolution lidar point clouds, and increases
the weight of image features when the lidar points are extremely
sparse is expected. In this paper, we propose the multi-fusion
framework with two kinds of attention mechanisms to achieve
the above expectations. The proposed approach extends the
recent algorithm Multimodal VoxelNet (MVX-Net) [6].
Specifically, this proposed framework contains two important
modules: point fusion with 2d attention and voxel fusion with 3d
attention. These modules obtain the image features by projecting
the lidar point or vertices of the voxel to image feature maps.
The combination of these two modules not only ensures the
accurate association between the image features and the point
clouds, but also reduces the dependence on the high-resolution
lidar point clouds.

General attention mechanisms distribute attention according
to image features and can’t be directly applied to voxelized
features. Inspired by the 2d attention mechanism, we propose the
3d attention mechanism for lidar point clouds. This mechanism
takes dynamic voxelized data as the inputs, applies sparse 3d
convolutions and produces a 3-dimensional spatial weight,
which contributes to the selection of the effective voxelized
features. What’s more, considering that the sparsity information
is weak before the attentive fusion, we apply the sparsity feature
to voxelized image features.

The main contributions can be summarized as follows:

• The multi-fusion framework performs attentive fusion
on voxelized image features, point-wise image features
and lidar data. This framework preserves the detailed

DOI reference number: 10.18293/SEKE2021-115

475

image features without overly relying on the
effectiveness of the lidar point clouds.

• 3d attention mechanism is proposed for lidar point
clouds, which contributes to distributing the attention to
voxelized features. What’s more, the sparsity of lidar
point clouds is utilized to enrich the voxelized features
before the attention mechanism.

• Experiments on KITTI dataset demonstrates that our
framework better handles error prone cases, and
effectively reduces false detections caused by similar
shape of point clouds, especially for objects with less
point cloud sampling.

II. RELATED WORK

A. 3D Object Detection From Multi Sensors
The multimodal 3d object detection fuses multi-sensor data,

such as the LIDAR and RGB data. The realization of the
multimodal fusion relies on the synchronization of multiple
sensors in time and the transformation of spatial coordinates.

Two-Stage Algorithm: These algorithms can be divided
into three categories: based on multiple views, based on 2d
proposals and based on semantic segmentation methods.

Multiple Views Method: Chen et al. [7] proposed the MV3D
algorithm, which firstly generates the 3d proposals by the lidar
data and projects them to the bird’s eye view, the front view and
the image view. Then multi-view feature fusions are performed
to refine the proposals. Later, many researches perform the
multi-view fusion of different sensor data based on the 3d region
proposals.

2D Proposals Method: Qi et al. [3] developed F-PointNets.
This algorithm generates a 3d area for each 2d proposal, and
applies PointNet++ [8] to obtain the point cloud features in the
area. Zhao et al. [4] proposed the Point-SENet module to predict
the scale factor and integrated the PointSIFT module to predict
the direction.

Semantic Segmentation Method: In these methods, the
existing semantic segmentation algorithm is used to eliminate
most of the background points, and high-quality proposals are
generated on the foreground points. Yang et al. [9] developed
IPOD to remove most of the background points. Vora et al. [5]
proposed the PointPainting, which appends the semantic
features and the semantic prediction scores to the point cloud
features. The accuracy performance is improved, but the
inference speed is very slow.

The main disadvantage of Two-Stage Algorithms is that the
two-stage operation slows the inference and training speeds, and
requires higher computing resources for the computer. What’s
more, Multiple Views Method firstly generates 3d proposals, and
then utilizes image information to refine the proposals. This
causes these algorithms to rely heavily on 3d proposals
generated from point clouds only. Meanwhile, 2D Proposals
Method pays more attention to reliable 2d detection results and
weakens the effect of 3d point clouds. Therefore, an algorithm
that can balance multimodal feature weights and complement
each other is expected.

One-Stage Algorithm:

Sindagi et al. [6] proposed MVX-Net. This algorithm
projects the non-empty voxels generated by VoxelNet [2] into
the image, and uses a pre-trained network to obtain image
features for each projected voxel feature. Then the combination
of these image features and voxel features generates 3d
detections. Though, the above method reduces the dependency
on the availability of lidar points, the voxel projection reduces
the accuracy of image features. In MVX-Net, authors also
presented the point fusion. However, this method can’t
reasonably select effective image features from high dimensions
and has poor performance in low point cloud sampling.

B. Attention Mechanism
Attention plays an important role in human perception.

Human vision obtains key areas by quickly browsing the whole
picture, and then devotes more attention resources to the key
area to obtain more detailed information, while suppressing
other useless information. The attention mechanism in deep
learning draws on the human attention and is widely used in
various types of deep learning tasks such as natural language
processing, image translation [10] and network pruning [11].

Recently, several researches have applied the attention
mechanism to convolutional neural networks (CNN). Wang et
al. [12] proposed Residual Attention Network, which stacks
attention modules to generate attention-aware features. Hu et al.
[13] proposed SENet which is generated by SE block. This
architecture focuses on the channel relationship and uses global
average pooling features to compute channel-wise attention. S
Woo et al. [14] presented Convolutional Block Attention
Module (CBAM). This module exploits both spatial-wise and
channel-wise attentions and then the attention maps are
multiplied to the feature map for adaptive refinement.

However, these attention mechanisms operate on 2d
convolutions and cannot be directly applied to 3d voxel
operations of point clouds. In addition, the difference between
the voxel and the pixel is that voxels have different densities, and
the application of the previous attention mechanism will lack the
consideration of the density of voxels.

III. MULTI-FUSION FRAMEWORK WITH ATTENTION
MECHANISM

We present a multi-fusion framework with two kinds of
attention mechanisms to fuse the RGB and point cloud features.
Inspired by MVX-Net, the presented framework contains two
important modules: point fusion with 2d attention and voxel
fusion with 3d attention. These modules firstly obtain the
corresponding image features by projecting the lidar point or
vertices of the voxel to image feature maps. Then, these modules
perform the attentive fusion on the lidar data and the image
features. The proposed 3d attention mechanism for lidar point
clouds takes dynamic voxelized data as inputs and applies the
sparse 3d convolution, which helps to generate the effective
voxelized features. What’s more, the sparsity distribution of
voxels is exploited for the attention mechanism, which enriches
the image features with the sparse information.

The overall architecture is illustrated in Fig. 1. First, we
utilize the 2d convolutional neural network which takes RGB

476

Figure 1. The Architecture of the Proposed Multi-fusion Framework

images as inputs and extracts multi-level image features. Next,
voxel features are encoded from lidar point clouds and two
attentive fusion modules are performed to generate fused
features. Then, the 3d backbone network takes the concatenated
features as inputs, and the head network outputs the 3d detection
results.

A. Image Feature Extraction
Residual Network (ResNet) [15] is made up from residual

blocks with skip connections, which effectively increase the
depth of network and the ability to extract features. Balancing
the computing resource and model performance, we eventually
adopt ResNet with 50 layers (ResNet50) as our image backbone.

Feature Pyramid Network (FPN) [16] is a feature extractor
that combines multiple resolution features via a top-down
pathway and lateral connections, which enriches the outputs
with multi-dimensional information. We use FPN as the image
neck network.

Given RGB images, the image backbone network generates
multi-scale features. Then, these feature maps are merged by
element-wise addition in the image neck network, which finally
outputs several sets of image features with rich semantics.

B. Voxel Feature Encoding
Voxel feature encoding (VFE) is a voxel feature learning

network from VoxelNet [2]. The input of VFE is the point cloud
data after the dynamic voxelization, which records the
coordinates of the voxel where the point cloud is located and the
raw features of the point cloud. The VFE network first obtains
point-wise features through FCN learning, and then utilizes max
pooling to generate the locally aggregated features. These
features are regarded as the voxel global features, which are
concatenate to each point-wise feature.

Stacks of such VFE layers transform low-dimensional point
cloud features into high-dimensional voxel features, which will
be the input of the Voxel Fusion with 3d Attention module. In
order to obtain the input of the Point Fusion with 2d Attention

module, the voxel features are discretized into the point cloud
and connected with the initial point cloud feature.

C. Point Fusion with 2d Attention
This module associates lidar point clouds to image features

and perform the attentive fusion to obtain the point-wise features
with additional image features. We adopt point fusion strategy
for the accurate association information, which is described in
MVX-Net [6]. Moreover, this module applies 2d attention to
make fused features more expressive.

The details of this module are illustrated in Fig. 2. Given the
multi-scale image features produced by the image backbone and
point features produced by voxel feature encoding, this module
outputs the attentive fusion features. In details, firstly 5 sets of
256-dimensional image features at different scales are input into
the module. Then the point-wise image features are calculated:

!"# = %&(−1 + 2 ∗ - .,0,12334
#,5

, !) (1)

7 denotes the transformation matrix, 8 denotes preprocessing
parameters,9:;;< denotes the 3d point cloud coordinates and
(=, ℎ) is the width and height of the image. ? represents the
coordinate transformation function and %& represents the
bilinear interpolation function. ! denotes the initial image
features and !"# denotes the point-wise image features.

The 2d channel attention is performed in the above discrete
point features, which is inspired by CBAM [14]. In details, as
shown in Fig. 2, we respectively calculate the channel average
feature and channel maximum feature of 640 dimensions, and
use the sigmoid operation to obtain the 640-dimensional weight
vector. The same attention mechanism is applied to the point-
wise features obtained by VFE to generate the 64-dimensional
weight vector. Then the fusion feature is generated by the
concatenation of two attentive features.

The main advantage of this module is that for point cloud
features with both raw features and voxel features, the attention
mechanism can amplify effective features. In addition, the final

477

Figure 2. Point Fusion with 2D Attention Mechanism

fusion directly performs on the raw point clouds, and this point-
to-point mapping effectively reduces the quantization loss.

D. Voxel Fusion with 3D Attention
This module extracts the image features projected by non-

empty voxels. Then, we combine the voxel sparsity information
with the 3d attention mechanism to take full advantage of multi-
modal features. Voxel fusion effectively reduces the dependence
on the high-resolution point clouds, as described in MVX-Net.
For voxel operations, we propose a 3d attention mechanism and
apply the sparsity information, which are conducive to
extracting effective voxelized features and emphasizing image
features when voxels are sparse.

The module is composed of 3 steps. (1) The extraction of
voxelized image features. (2) The 3d attention mechanism is
applied to obtain the attention vectors of multi-modal voxelized
features respectively. (3) We calculate the voxel sparsity, and
concatenate it with image features.

In detail, we first obtain all non-empty voxels’ 8 vertex
coordinates, and utilize the calibration matrix to project these
point cloud coordinates to pixel coordinates in the image. Then,
the largest rectangle obtained after the projection is utilized as
the region of interest (RoI). Considering the different sizes of the
RoIs, we use RoI Pooling to obtain 128-dimensional feature
vectors from multi-scale image features.

From the discretization features obtained above, we design a
3d attention mechanism to obtain the weights of different voxels,
which is shown in Fig. 3. Inspired by the spatial attention
mechanism in CBAM, we respectively calculate the average and
maximum features of all voxels and perform the concatenation
operation. Then, combined with the voxel coordinates, the 3d
sparse convolutions are performed to generate an @-dimensional
attention vector, where @ represents the number of non-empty
voxels. The same 3d attention mechanism is applied to the voxel
features obtained by VFE.

In addition, we calculate the sparse value inside the voxel to
optimize the image attention vector:

AB = C(?&8 !DE, … , !DEGH, IJKLMJN E
OP3QRST

) (2)

@";UVWX represents the number of point clouds in a voxel, !D
indicates the image feature, AB represents the attention weight

Figure 3. 3D Attention Mechanism

for image data, C denotes the operation of 3d attention and ?&8
denotes the multilayer perceptron.

The main advantage of the proposed 3d attention mechanism
is the selection of the effective voxelized features, thereby
adaptively balancing the multimodal feature weights and
emphasizing the image features when voxels are sparse. What’s
more, the fusion on voxels reduces the dependence on the lidar
point clouds.

E. SECOND Network
The SECOND [17] network improves VoxelNet and refines

3d convolution into 3d sparse convolution. First, we use the
sparse conv layer and FPN to process the fused voxelized
features. The structure of submanifold convolution is applied in
this layer to limit the sparsity of the output, thereby greatly
reducing the calculation of the convolution operation. Next, the
region proposal network generates 3d proposals from the outputs
of sparse conv layers. Then, after regression and refinement, the
3d detection results are generated.

IV. EXPERIMENT RESULTS

A. Implementation Details
Network Settings: The image feature extraction takes

images with the resolution of 1280 × 384 as inputs. We apply
ResNet-50 to subsample the image features and output the
feature maps of four blocks, of which the dimensions are 256,
512, 1024, 2048. Then, FPN is applied as the image neck
network, which outputs five sets of 256-d multi-scale features.
For lidar point clouds, the ranges are [0, 70.4], [-40, 40] and [-3,
1] meters respectively along the X, Y and Z axis, while the voxel
size is [0.05, 0.05, 0.1]. The raw features of point clouds are xyz
coordinates and reflectivity. The Dynamic VFE extracts 64-
dimensional voxelized features from raw features. The anchor
sizes of pedestrians, cyclists and cars are respectively [0.6, 0.8,
1.73], [0.6, 1.76, 1.73] and [1.6, 3.9, 1.56] meters.

Training Details: Adam with decoupled weight decay is
adopted to optimize the network. The learning rate and weight
decay are set as 0.003 and 0.01. The momentum factors are 0.95
and 0.99. What’s more, we utilize warm-up for the first 1000
steps with the initial learning rate 1YZ[. The total epoch is 36
and the batch size is 2. All experiments are based on the open
source 3d detection toolbox mmdetection3d [18] with GPU
NVIDIA GeForce GTX 1080Ti.

478

B. Results on KITTI Dataset
We evaluate our method on the KITTI Object Detection

Benchmark [19]. This dataset contains both 2d and 3d
annotations of cars, pedestrians and cyclists. There are 7481
training samples and 7518 testing samples. Following the
common division rule in [7], the training samples are divided
into 3712 samples as the training set and 3769 samples as the
validation set. The evaluation is on the validation set for all three
object categories.

 We evaluate 3d object detection performance in accordance
with the official KITTI evaluation protocol. For cars, 70%
overlap of the 3d bounding box is required, while for pedestrians
and cyclists, 50% overlap is required. Depending on different
sizes, occlusions and truncations, the evaluation has three levels,
that is easy, moderate and hard. The average precision (AP) at
different levels are respectively calculated for the comparison.

Table I shows the performance of our method on the KITTI
validation set, compared with other state-of-the-art methods.
Considering that most methods only report the performance on
the car category, we perform the comparison on the car category.
Compared with the baseline MVX-Net, improvements in 3d and
BEV are 6.9% and 6.4% respectively in hard mode. Compared
with the 2d proposal method F-PointNet [3] and the 3d proposal
method MV3D [7], the performance of our proposed framework
has improvement in all three modes, especially in the hard mode.

In our analysis, the 2d proposal approaches focus on image
features, which leads to weak processing capabilities in complex
situations with more occlusions. The 3d proposal methods are
overly dependent on point cloud data, resulting in the poor
detection for the objects with less point cloud sampling.
However, in our method, applying multiple attention
mechanisms can reasonably select image data and point cloud
data, and balance the effects of two features. In addition, the
fusion of point-wise and voxel-wise methods can reduce the
dependence on point cloud sampling while ensuring the
accuracy of point cloud feature extraction. Therefore, our
method has more advantages in difficult scenes with more

occlusions or less point cloud sampling, which also enables our
method to achieve better performance in hard mode.

Detection results are shown in Fig. 4. According to the
comparison of column 2, 3, and 4, our method can better detect
objects with low point cloud sampling, such as pedestrians in the
distance. From the comparison in the first column, our method
reduces false detections, which are caused by similar point cloud
shapes.

C. Ablation Study
Ablation experiments are conducted to evaluate the effects

of the 2d attention and 3d attention modules. All ablation studies
are conducted on the pedestrian and cyclist classes, considering
that these modules have a great improvement for objects with
less point cloud sampling, as demonstrated before.

We report the comparison results in Table II. We first
incorporate the 2d attention mechanism on the point fusion
module, which increases pedestrian detection by 3% and cyclist
detection by about 4%, in easy mode. In addition, there are also
improvements in moderate and hard modes. This shows the
effectiveness of the 2d attention mechanism.

We observe that combining the point fusion and voxel fusion
modules, the detection results have not been greatly improved,
which demonstrates that simply combining the above two
modules cannot effectively optimize the detection performance.
However, the integration of voxel fusion and 3d attention
mechanism performs notably better both in pedestrian and
cyclist detections, manifesting the importance of 3d attention
mechanism for the voxel fusion.

Then, we investigate the effect of fusing the above four
modules, that is respectively applying the 2d attention and 3d
attention to the point fusion and voxel fusion module. Table II
shows that this approach gets the best result. Compared with the
baseline experiment, the pedestrian detection is improved by 5%
and cyclist detection is improved by 4%. This shows that 2d
attention and 3d attention mechanisms are beneficial for the
fusion of image features, voxel features and point cloud features.

TABLE I. PERFORMANCE COMPARISON OF OBJECT DETECTION WITH STATE-OF-THE-ART METHODS ON CAR CLASS OF KITTI VALIDATION SET

Method
\]^_ (Car) \]`ab (Car)

Easy Moderate Hard Easy Moderate Hard

MV3D (L) [7] 71.2 56.6 55.3 86.2 77.3 76.3
MV3D (L&I) [7] 71.3 62.7 56.6 86.6 78.1 76.7
F-PointNet (L&I) [3] 83.8 70.9 63.7 88.2 84.0 76.4
VoxelNet (L) [2] 82.0 65.5 62.9 89.6 84.8 78.6
MVX-Net (L&I) [6] 85.5 73.3 67.4 89.5 84.9 79.0
Our Proposed Method (L&I) 86.4 76.3 74.3 89.2 86.4 85.4

TABLE II. ABLATION STUDY IN KITTI VALIDATION SET

Point Fusion 2d attention Voxel Fusion 3d attention
\]^_ (Pedestrian) \]^_ (Cyclist)

Easy Moderate Hard Easy Moderate Hard

� - - - 59.2110 55.5011 50.6946 67.7570 51.2467 48.5160
� � - - 62.7588 57.7813 51.9383 71.5124 52.5746 49.4193
� - � - 59.2497 54.6029 50.3430 67.7148 53.0462 50.1806
� - � � 61.2489 56.6993 51.9426 70.9903 54.1027 50.6354
� � � � 64.2624 58.2686 52.6567 71.6036 53.9948 51.4825

479

Figure 4. Comparison results on the KITTI validation dataset. For each comparison, the upper is the output of MVX-NET [18], while the under is the output of
our proposed model. The color of car, cyclist and pedestrian are respectively white, blue and red.

V. CONCLUSION
A multi-fusion framework is proposed in this paper, which

implements the attentive fusion on image features and lidar data.
We propose the 3d attention mechanism for point cloud data to
amplify the effective voxelized features and contributes to
emphasizing the image features when voxels are sparse. This
framework retains detailed image features without overly
relying on the effectiveness of lidar point clouds. Experiments
show that the framework can better detect the distant or small
objects and effectively reduce false detections caused by similar
point cloud shapes.

REFERENCES
[1] Shi S, Guo C, Jiang L. Pv-rcnn: Point-voxel feature set abstraction for 3d

object detection[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020: 10529-10538.

[2] Zhou Y, Tuzel O. Voxelnet: End-to-end learning for point cloud based 3d
object detection[C]//Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018: 4490-4499.

[3] Qi C R, Liu W, Wu C. Frustum pointnets for 3d object detection from rgb-
d data[C]//Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018: 918-927.

[4] Zhao X, Liu Z, Hu R. 3D object detection using scale invariant and feature
reweighting networks[C]//Proceedings of the AAAI Conference on
Artificial Intelligence. 2019, 33(01): 9267-9274.

[5] Vora S, Lang A H, Helou B. Pointpainting: Sequential fusion for 3d object
detection[C]//Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020: 4604-4612.

[6] Sindagi V A, Zhou Y, Tuzel O. Mvx-net: Multimodal voxelnet for 3d
object detection[C]//2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019: 7276-7282.

[7] Chen X, Ma H, Wan J. Multi-view 3d object detection network for
autonomous driving[C]//Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition. 2017: 1907-1915.

[8] Qi C R, Yi L, Su H. PointNet++ deep hierarchical feature learning on
point sets in a metric space[C]//Proceedings of the 31st International
Conference on Neural Information Processing Systems. 2017: 5105-5114.

[9] Yang Z, Sun Y, Liu S. Ipod: Intensive point-based object detector for
point cloud[J]. 2018.

[10] Kim, Jin Yong, Lee, Myeong Oh, Jo, Geun Sik. DCBlock: Efficient
module for unpaired image to image translation using GANs[C]//SEKE.
2020: 13-18.

[11] Wang X J, Yao W B, Fu H. A Convolutional Neural Network Pruning
Method Based On Attention Mechanism[C]//SEKE. 2019: 343-452.

[12] Wang F, Jiang M, Qian C. Residual attention network for image
classification[C]//Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017: 3156-3164.

[13] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018:
7132-7141.

[14] Woo S, Park J, Lee J Y. Cbam: Convolutional block attention
module[C]//Proceedings of the European conference on computer vision
(ECCV). 2018: 3-19

[15] He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition[C]//Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016: 770-778.

[16] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object
detection[C]//Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017: 2117-2125.

[17] Yan Y, Mao Y, Li B. Second: Sparsely embedded convolutional
detection[J]. Sensors, 2018, 18(10): 3337.

[18] CUHK Multimedia Laboratory. https://github.com/open-mmlab/
mmdetection3d, 2020.

[19] Geiger A, Lenz P, Stiller C, et al. Vision meets robotics: The kitti
dataset[J]. The International Journal of Robotics Research, 2013, 32(11):
1231-1237.

480

SADA: Improved Data Symbolization and
Optimization Method on HAR from Microscopic

Perspective
*

1st Huichao Men
School of Computer Science and Engineering

Northeastern University
Shenyang, P.R.China

candyji@sina.com

2nd Botao Wang
School of Computer Science and Engineering

Northeastern University
Shenyang, P.R.China

wangbotao@cse.neu.edu.cn

Abstract—Nowadays, human activity recognition(HAR) be-
comes a hot topic with broad applications. Some researches have
conducted HAR from microscopic perspective and achieved good
results. In this article, two methods are proposed for further
improvement. Firstly, an improved symbolization method with
stacked sparse autoencoder is proposed for better data sym-
bolization. Secondly, an improved multi-classification Adaboost
is proposed to further optimize the recognition effect, and it
is more suitable for the application scenario of this article. In
the experiments section, firstly, e xperiments a nd a nalysis about
various influencing p arameters a re c onducted, t hen comparison
experiments with several new or representative methods are
carried out, and finally five representative sensor activity dataset-
s(UCI Sports and Daily dataset, Wisdm Phoneacc&Watchacc
dataset, Skoda dataset, HAPT dataset) are used to prove the
universal applicability and achieve satisfactory effect.

Index Terms—Human Activity Recognition, Data Symboliza-
tion, Ensemble Learning, Machine Learning

I. INTRODUCTION
 Human activity recognition is one of the hottest research

topics nowadays. In this article, we mainly conduct research on
sensor data. In some previous researches [1] [2], human activ-
ity recognition combining with NLP models from microscopic
perspective has been proved meaningful in the recognition
of variable length activities, and it has achieved good effect.
Figure 1 is an example of decomposing one activity from
microscopic perspective. In order to further improve the effect,
we conduct deeper research on data symbolization about these
sub-segments, and Adaboost is improved for better recognition
effect, too.

Fig. 1. One Macroscopic Activity Decomposed to a Microscopic Sequence

In the previous research, the main problem is that the
data symbols in an activity sequence are messy and the

DOI reference number:10.18293/SEKE2021-125

(a) Messy Symbols Line (b) Regular Symbols Line

Fig. 2. Comparison Between Messy and Regular Symbols

regularity is weak. Data symbol plays a core role in the
process of migrating from NLP to HAR. The messy symbols
are equivalent to noise points, which is negative on activity
sequence recognition. The logical and regular symbols have
an positive effect on recognition. Therefore, some researches
made some efforts on feature extraction and different symbols
to improve regularity. However, it still has limited effect on
improving sequence recognition.

Figure 2 is a significant comparison between messy and
regular activity symbols in a activity sequence.

Figure 2a shows that a messy symbol connection line like
noise polyline, almost without regularity. However, the regular
symbol connection line (Figure 2b) is more smooth, it is easier
to recognize. The horizontal axis represents the serial numbers
of points in a sequence and the vertical axis represents is the
symbol of one certain point. For example, point 25 to 35 in
Figure 1a can be symbolized as [e,e,b,e,b,f,e,d,d,a,a], while the
same part in Figure 2b is [d,d,b,b,b,b,b,b,b,b]. It is obvious that
the symbol sequence in Figure 1b is more regular, concise, and
easier to recognize.

The symbol points are mainly converted from the data sub-
segments through feature extraction, so a good feature extrac-
tion method [3] beneficial to recognition is very important.
Sparse autoencoder(SAE) is a kind of neural network that
is usually used in feature extraction. Since the activity data
collected by sensor is noisy, and the sparse autoencoder is
more suitable for extracting features from the noisy data, a
feature extraction method based on stacked SAE with good

481

effect is proposed in this article.
Since the obtained data symbols are regular and logical,

like natural language, many NLP recognition models could
be migrated to HAR. In order to improve the effect of basic
recognition models, Adaboost [4], an ensemble learning model
is used in this article. It is usually used to optimize other
machine learning models. In this article, it is further improved
to adapt to the application scenario studied in this article.

In this paper, these contributions are proposed:
(1) Propose a new unsupervised human activity data symbol-
ization method to improve the symbol regularity and logic,
including stacked SAE with L-BGFS and clustering symbol-
ization algorithm. In-depth theoretical analysis of the choice
of clustering algorithm is conducted, too.
(2) An improved Adaboost with multi-classification is pro-
posed. Two weight-setting choices are discussed.
(3) These two parts above form a complete model. Compared
with the previous research, the new model has a better recog-
nition effect.
(4) Comparison experiments of different parameters and verifi-
cation experiments on multiple datasets are conducted, proving
the effectiveness and universal applicability of the proposed
structure. LSTM is one of the most common models applied
to sequence classification and recognition. Therefore, it is used
as a tool to verify the two parts of method proposed in this
article.

II. RELATED WORK

Data symbolization is one of the research focuses in this
article. Feature extraction is the main part of it. In many
articles, statistical features [5] [6], time and frequency fea-
tures [7] [8], deep learning feature extraction method(such as
convolution feature [9]), etc, are the popular feature extraction
methods. They all do not perform best in the research of this
article. Covariance matrices [10], sliding window, enlarging
window, PCA, etc, are methods aiming to expand the amount
of information. Sparse autoencoder is a feature extraction
model based on neural network and it is suitable for noise
data. In this article, it is improved to extract better features.

Adaboost, a sequence ensemble learning method, is usually
used as a tool to optimize various machine learning models. In
this article it is used to optimize activity recognition models.
Many classic multi-classification Adaboost models [4] convert
a binary-classification into a multi-classification, such as Ad-
aboost.MH, Adaboost.M1, and Adaboost.M2. They all have
disadvantages. SAMME is a multi-classification Adaboost
with unsatisfactory stability [11]. GAdaboost is a state-and-
art method with higher effectiveness but lower accuracy [12].

III. PRIOR KNOWLEDGE

In some previous researches [2], activities are decomposed
into sub-segments and converted to data symbols with rele-
vance and logic. This logical relationship is similar to that
in natural language. Therefore, models from NLP could be
migrated to human activity recognition.

Activity-unit is the smallest unit in the activity recognition.
Original activity data is decomposed to sub-segments, then
converted to activity-unit with feature extraction and symbol-
ization. It is similar to ”alphabet”. Activity-combination rep-
resents a group of related combined activity-units with seman-
tic meaning and it reflects the relevance and logical relation-
ship between sub-segments. It is similar to ”word”. Activity-
sequence is a sentence composed of activity-combinations,
which is similar to ”sentence”.

Activities are converted to these forms of data similar to
natural language. The logical relationship of natural languages
is migrated to human activity recognition field. In our research,
we will conduct further exploration based on it.

IV. METHODOLOGY

Figure 3a is the overview of the whole model in this article,
named SADA. It means that SAE and Adaboost are the most
important components in this model. The upper part is the
overall process of it. The two big boxes are detailed figures
of the data symbolization method and the improved Adaboost
method. Details will be introduced in this section.

Firstly, the original training/test data is converted to data
symbols(activity-units) through the improved data symboliza-
tion method. These activity-units compose regular and logical
activity-sentences. Then, training activity-sentences are trained
with the model optimized by improved Adaboost. Finally, the
test activity-sentences are recognized by the trained model.

A. Human Activity Data Symbolization Method Based on
Unsupervised Multi-layer Stacked SAE

As shown in Figure 3b, the structure in this section consists
of two parts: stacked SAE(combining with L-BFGS) and
clustering symbolization method. Because the sub-segments in
activities are all unlabeled data, unsupervised feature extrac-
tion algorithm is necessary to generate data symbols(activity-
units).

Feature extraction is the core part of data symbolization
in this section. Because it is necessary to use unsupervised
algorithm to generate data symbols, the output layer (such as
softmax layer) in common application of SAE is removed.
Data symbols are converted from feature data with cluster-
ing/classification algorithms.

In practical applications, the feature extraction effect of
single-layer SAE is unsatisfactory. This article proposes a deep
learning method of multiple layers stacked SAE to extract
more proper features of activity data sub-segments layer by
layer. As shown in Figure 3b, multiple SAEs are cascaded
in multiple layers. The feature data hi,j of the previous
layer is transferred to the next layer hi+1,j to continue to
extract features. Finally the most representative features are
obtained and the dimension is reduced. L-BFGS is used as the
parameter optimization algorithm in this method. Through this
method, the original data is converted to more representative
feature data. The theoretical analysis of numbers of layers is
described in Section 4..

482

Training
Data

Clustering
Activity-

Unit

Test Data

Stacked-
Sparse-

AutoEncoder
Classificat

ion
Activity-

Unit

Activity-
Adaboost-

Recognition

Activity
Label

Basic Model D1

Basic Model D4

Basic Model D2

Basic Model D3

Layer 1Layer 1Layer 1Layer 1

Feature
Matrix Weight

Data Symbolization Improved Adaboost

(a)Overview of SADA

x1

x4

x3

x2

x6

x5

+1

h14

h13

h12

h11

h15

+1

+1

h23

h22

h21

+1

h32

h31

h42

h41 Cluster
ing/Cla
ssificat
ion b

a

Input Layer1 Layer2 Layer3 Layer4 Activiy-Unit

L-BFGS

(b)Improved Data Symbolization Method

Training
Data 1

Training
Data 3

Training
Data 2

Training
Data 4

Weak
Classifier 1

Weak
Classifier 4

Weak
Classifier 3

Weak
Classifier 2

A1

A4

A3

A2
Strong

Classifier

Same Training Data with
different dynamic sample weights

Test
Data

Decision
Function

Final
Label

(c)Improved Adaboost

Fig. 3. Structure of SADA

Then, the feature data is converted to activity-unit(data
symbol) with clustering algorithm. The principle is to generate
diversified activity-units and minimize the amount of scattered
points(noisy points). Classification symbolization algorithm
usually corresponds to the clustering algorithm which has been
chosen. Theoretical analysis is described in Section 4.3.

The activity-units generated in this part compose activity-
sequences. They are very concise, regular and logical, which
are suitable for human activity recognition.

B. An Improved Adaboost for Optimizing the Human Recog-
nition Model

After the symbolization operation, the regular and concise
activity-units converted from the activity data will be applied
to the recognition models migrated from NLP. In this section,
Adaboost is used to optimize these basic recognition models.
Because of its decision function, basic Adaboost is usually
used for binary-classification. It is not suitable for multi-
classification. Therefore, improving the decision function is
feasible to convert the basic Adaboost to a multi-classification
Adaboost.

Figure 3c shows the process of the improved Adaboost in
this section.

Here is the decision function of basic Adaboost. It is a
binary classifier.

Final Classifier(x) = sign(

N∑
n=1

AnWeak Classifiern(x)) (1)

A is the weak classifier weights generated from iterative
training.

In this section, multiple same activity recognition models
with dynamic sample weights are set as the weak classi-
fiers. Then, they are integrated into a stronger classifier.
In experimental exploration, it is found that although the
average recognition accuracies of some weak classifiers are
declined, the recognition of different categories have achieved
complementary effects, so the overall recognition accuracy can
be improved.

The method in this section includes two parts. Primary
Adaboost weight and fine-tuning weight could both obtain
good accuracy, and the fine-tuning one is better adapt to the

actual application scenarios of this article. Primary weight is
a weight array generated from iterative training without fine-
tuning.

In the training period, the weak classifiers are trained in
the form of iteration and sequence concatenation. Weak
classifiers and primary weight array, A, are obtained in this
period.

1) Improved Adaboost with Primary Weight: In decision
function of test period, a group of weak classifiers’ results
based on test data have been obtained. Then it is converted to
an one-hot matrix(Formula(3)).

This group of formulas is the basic decision function in this
article:

A = [a0, a1, ..., an−1] (2)
Sub Prediciton Onehot = [[0, ..., 1], ..., [0, ..., 1]] (3)
Result Matrix = A× Sub Prediction Onehot (4)

Result Matrix Sum = sum(Result Matrix[row]) (5)
Final Label = max index(Result Matrix Sum) (6)

A is the Adaboost primary weight array of weak classifier-
s. Sub Prediciton Onehot is the one-hot matrix of weak
classifiers’ recognition results. It is a n ∗m matrix. n is the
number of weak classifiers, setting as 4 here. m is the number
of activity categories. Result Matrix is the cross product
of A and Sub Prediciton Onehot. Result Matrix Sum
is an array which is the result of Result Matrix added row
by row. Final Label is the maximum index of it.

2) Improved Adaboost with Fine-tuning Weight: Adaboost
with primary weight has achieved good results. By analyzing
the experiment data, in order to further improve the recognition
effect, a fitting function is applied in this part.

Through the analysis of the parameters generated by mul-
tiple weak classifiers based on three datasets (UCI Dataset,
Wisdm Phoneacc/Watchacc Dataset), an average empirical
constant scale array of the primary weight can be estimated.
Since this constant scale array is just estimated and only
shows the trend, it does not represent the most appropriate
weight ratio for each dataset. Therefore, we adjusts the trend
of estimated ratio and primary weight to fine-tune the weak
classifiers weight array.

483

Fig. 4. An Example of the Trend of Transformed Primary Weight and the
Tangent Function Based on Three Datasets

The image of the relationship between the transformed
primary weight array and average constant scale array looks
like the trend of tangent function(Figure 4). The final fine-
tuning weight is adjusted by approximate function to make it
close to the estimated ratio and suitable for the actual situation
of each dataset. We try to use the transformation of the tangent
function as the form of fine-tuning function.

According to the characteristic of the primary weight in
basic Adaboost, it more depends on the distribution form of the
data. Since the activity types collected by most common sensor
activity datasets are similar, the data distribution patterns are
also similar. Therefore, the trend of average scale array in
many activity datasets are relatively stable. Therefore, the
fitting method here is not just an empirical method, it can be
applied in many datasets and has obtained acceptable results.
Tangent function is just one choice of fitting function. Maybe
there are other functions suitable, too.

In fact, the average constant scale is just a tool for analysis
and it is not applied in actual calculation in this model.

In Figure 4, three polylines represent the weight trend of
three datasets, which is just shown as a similarity expression
of the trend. The original weight line has been transformed
into the form in this figure by stretching and rotating
without changing the trend of the turning point. The only one
curve is the standard trend of tangent function. The vertical
line represents the average scale array. The horizontal line
represents the weight axis after stretched and rotated operation.
The center cross lines are to assist in marking the coordinate
axis of the tangent function. It does not indicate the real
position of the coordinate axis of three polylines and is only
a formal representation. Therefore, this figure shows that the
trends of the primary weight of the three datasets all conform
to the tangent trend.

AN = normalize sort(A) (7)

k = degrees(arctan(
AN0 −ANn−1

2
)) (8)

AWi = tan(
π ∗ k
max

∗ANi) +
AN0 +ANn−1

2
(9)

Formula(7)(8)(9) compose a fitting function group to fine-
tune primary weight. max and min are the maximum and
minimum value of the primary weight array. AW is the fine-
tuning weight array. n is set as 4 here, too. Degree function
converts radians to angles. Based on the fine-tuning weight,
the A in Formula 1 can be replaced by AW .

Here are the total steps of the improved Adaboost in
this section:

(a) Kmeans (b) Meanshift (c) BDC (d) DPC

Fig. 5. Data Symbolization with Different Clustering Algorithms

(1) The whole recognition model is trained with the concise
and regular training activity-sequences based on dynamic
sample weights. Primary weight array A and weak classifiers
are obtained after iterative training.
(2) If primary weight is chosen for the improved Adaboost in
this section, go to Step(4), otherwise go to Step(3).
(3) A is converted to AW through the fitting function group.
(4) One test activity-sequence converted by the improved data
symbolization is tested in weak classifiers and the recogni-
tion results group is converted to an one-hot matrix. The
Result Matrix is the cross product of weight array and one-
hot matrix.
(5) The final label is the index of the maximum of the array
which is the result of Result Matrix added row by row.

After this process, the final label of the activity is
obtained. The time complexity of the improved Adaboost is
in the same order of magnitude as the basic Adaboost.

C. Analysis about Selection of Clustering and Classification
Symbolization Method

Clustering algorithm is an important part of data symbol-
ization. In this article, the selection principle is to ensure
the diversity of activity-units while minimizing the number
of scattered points. Figure 5 shows the difference between
different algorithms.

Center-based and density-based clustering algorithms are
the most commonly clustering algorithms. Meanshift and
KMeans are two representative center-based algorithms. As
shown as Figure 5b, because Meanshift does not set the
clustering number, it clusters most points into one or few
clusters, which makes it difficult to separate different activities
and to distinguish between activities because of rare kinds of
points(activity-units), although it looks concise. And KMeans
most meets the selection principle as shown as Figure 5a. High
parameter-tuning requirement makes it easy for density-based
algorithms to produce scattered points(labeled as -1), as Figure
5c. DPC, a state-of-the-art density-based algorithm, faces the
same problem in Figure 5d.

Finally, KNN is chosen for classification because of its
corresponding algorithm, KMeans.

D. Analysis about Sub-segment Length for Data Symboliza-
tion & Number of Stacked SAE Layers

Sub-segment Length for Data Symbolization: It is an
important parameter in data symbolization. For NLP sequence
recognition, a longer sequence contains more logical informa-
tion between activity-units and it is beneficial to recognition.

484

TABLE I
COMPARISON EXPERIMENTS OF DIFFERENT SUB-SEGMENT LENGTHS

AND DIFFERENT NUMBERS OF STACKED SAE LAYER

Length 10 5 3
Average Acc 0.707 0.802 0.858
QC Numbers 7 12 14

TOP1 Acc 0.987 1 1
Layer 1 3 4

Average Acc 0.766 0.853 0.858
QC Numbers 12 13 14

TOP1 Acc 1 1 1

In order to obtain a longer sequence, the length of sub-segment
must be shorter for a constant length of data.

Number of Stacked SAE Layers: The original SAE is just
a single-layer structure, which cannot meet the requirement
of this research. The multi-layer structure is more conducive
to feature extraction, but after reaching a certain value, the
increasing layer number have little effect on feature extraction,
and the computational cost will increase.

V. EXPERIMENTS

Experiments in this section are taken on 5 sensor datasets,
including UCI Sports and Daily Dataset(19 categories) [13],
WISDM Phoneacc&Watchacc Dataset(18 categories) [6],
HAPT Dataset(6 categories) [14] and Skoda Dataset(10 cate-
gories) [15]. UCI dataset is applied in Section 5.1&5.2 &5.3.
Skoda dataset is applied in Section 5.3.

In this section, WISDM Dataset is a composition structure
of ”combination of main categories and sub-categories”. Dis-
tinction between main categories and the similarity between
sub-categories is very obvious. It is more suitable for two-
layer recognition model, so a set of single body sample is just
for demonstration here.

”QC Numbers” in Table 1&2 represents ”the number of
categories with accuracy over 0.8”.

In this section, LSTM is chosen as the migrated NLP
recognition model to verify the proposed method. According
to the previous research, LSTM is a proper tool to recognize
concise and regular sequence with balanced efficiency and
accuracy. Other NLP model may be proper, too, but it is not
the focus in this article.

A. Comparison Experiments of Different Sub-segment Length
& Different Numbers of Stacked SAE Layer

This part of the experiments in Table 1 verifies the parameter
analysis in Section 4.4. From the upper part of Table 1, it can
be known that a small and proper length value is more suitable
for the HAR in this research. From the lower part of Table 1,
it shows that enough and proper layers are beneficial to feature
extraction and activity recognition. 4-layers-structure achieve
the best, but 3-layers-structure is also satisfactory. A 4-layer
structure is used in later experiments.

TABLE II
ABLATION EXPERIMENTS

Methods WL PL CL DL
Average Acc 0.708 0.382 0.784 0.802
QC Numbers 8 3 9 13

TOP1 Acc 1 1 1 1
Methods DL DML SADA

Average Acc 0.802 0.809 0.858
QC Numbers 13 13 13

TOP1 Acc 1 1 1

B. Progressive Ablation Experiments and Comparison Exper-
iments

The progressive ablation experiments include two parts.
Firstly, since the core part of data symbolization is feature
extraction. Two latest feature extraction methods(WISDM
Feature [6] and PSD [8]) and classical convolve feature [9]
are compared with the proposed data symbolization in this
article(in Table 2). The recognition tool is simple LSTM.

Secondly, Adaboost.M2 [11], a classical multi-classification
model, is compared with simple LSTM and the improved
Adaboost proposed in this article.

In Table 2,(1)WL=WISDM Feature+LSTM (2)PL=PSD
Feature+LSTM (3)CL=Convolve Feature+LSTM
(4)DL=Proposed Data Symbolization in this article+LSTM
(5)DML=Proposed Data Symbolization in this article with
Adaboost.M2+LSTM (6)SADA=Proposed Whole Model in
this article. According to the conclusions in article [1], these
methods are suitable for comparison.

In this section, the ablation experiments prove the effective-
ness and advantages of the two parts of the proposed struc-
ture. WISDM Feature and PSD Feature both do not archive
satisfactory effects. The method based on convolution has
been greatly improved, but it is still poorer than the proposed
data symbolization method. Simple recognition model(LSTM)
without optimization and Adaboost.M2 are also less effective
than the proposed optimization method in this article.

C. Additional Comparison Experiments

The experiments in last section have verified that the two
parts of the method proposed in this article has a better effect
based on previous research.

ILVote [16] is a latest human activity recognition model
based on incremental learning and vote. Transformer [17]
is one of the hottest models nowadays in various research
fields. to prove the proposed method in this article. BERT
[18] is a latest model developed from Transformer, mainly
used for NLP. In this section, they are taken as comparisons
without feature extraction to prove the advantage of our
whole proposed method.

The main shortcoming of ILVote is highly dependent on
manual parameter setting, especially the full activity window
length. In many cases, it is difficult to determine a proper full
activity window length. Therefore, although the theoretical ba-
sis of ILVote is meaningful, it is lack of universal applicability.

485

TABLE III
ADDITIONAL COMPARISON EXPERIMENTS

UCI DL SADA ILVote Transformer BERT
Average Acc 0.802 0.858 0.250 0.279 0.175
QC Numbers 13 13 2 2 2

TOP1 Acc 1 1 1 0.927 0.98
Skoda DL SADA ILVote Transformer BERT

Average Acc 0.730 0.797 0.233 0.108 0.0547
QC Numbers 5 8 1 0 0

TOP1 Acc 1 1 0.85 0.407 0.395

TABLE IV
VERIFICATION EXPERIMENTS BASED ON DIFFERENT DATASETS

Primary Weight UCI WPA WWA SK HA
AA 0.857 0.528 0.364 0.745 0.738

Fine-tuning Weight UCI WPA WWA SK HA
Increase Categories 3 4 6 5 2
Decrease Categories 1 0 3 1 1

AA 0.858 0.553 0.488 0.797 0.754

Because of difficulty to set a proper window length, the results
are unsatisfactory.

In the absence of proper feature extraction in this part of
experiments, the training and test sequences imported into
the Transformer and BERT are very irregular and lack of
logic. Even this state-and-the-art models can not recognize
them well. Therefore, it verifies that the concise and regular
sequence generated by the proposed method in this article is
meaningful.

As shown as the experiments results in Table 3, after ob-
taining regular and logical sequence, LSTM, a most common
NLP model, could achieve good recognition effects.

D. Verification Experiments with Primary Weight and Fine-
tuning Weight

This section is a group of verification experiments based
on the whole structure proposed in this article with prima-
ry weights and fine-tuning weights on 5 datasets. In Table
5(next page):(1)UCI=UCI Sports and Daily Dataset (2)W-
PA=WISDM Phoneacc Dataset (3)WWA=WISDM Watchac-
c Dataset (4)SK=Skoda Dataset (5)HA=HAPT Dataset
(6)FT=Fine-Tuning (7)AA=Average Accuracy

From the Table 4, the proposed model has achieved good
results with primary weights. In case of model with fine-tuning
function on some datasets, although the accuracy of a small
numbers of categories decrease, more categories’ accuracy
increase, and the average accuracy increase, too. For example,
in the experiments results of Skoda and HAPT, only one
activity’s accuracy decreases, and the average accuracy and
the accuracies of most activities all increase.

Experiments in this section prove the universal applicability
and effectiveness of the proposed structure both with primary
weights and fine-tuning weights.

VI. CONCLUSION AND FUTURE WORK

Analyzing activity from microscopic perspective with mi-
grated NLP methods is the foundation of our research. In this

article, we propose a new data symbolization method and an
improved Adaboost for basic recognition models with good
effect and universal applicability. Both of them need be further
improved. In the future, we will continue to take more research
on this topic and try to further improve the recognition effect.

VII. ACKNOWLEDGEMENT

This work is supported by ”the Fundamental Research
Funds for the Central Universities”(N2104002).

REFERENCES
[1]

[2]

[3] Isabelle Guyon and Andr Elisseeff, “An introduction to variable and
feature selection,” Journal of Machine Learning Research, vol. 3, no.
6, pp. 1157–1182, 2003.

[4] Ji Zhu, Ann Arbor, and Trevor Hastie, “Multi-class adaboost,” Stats &
Its Interface, vol. 2, no. 3, pp. 349–360, 2006.

[5] Dorra Trabelsi, Samer Mohammed, Yacine Amirat, and Latifa Oukhel-
lou, “Activity recognition using body mounted sensors: An unsupervised
learning based approach,” in International Joint Conference on Neural
Networks, 2018.

[6] Gary M. Weiss, Kenichi Yoneda, and Thaier Hayajneh, “Smartphone
and smartwatch-based biometrics using activities of daily living,” IEEE
Access, 2019.

[7] Marcin Grzegorzek, Michael Reinhold, and Heinrich Niemann, “Feature
extraction with wavelet transformation for statistical object recognition,”
in Computer Recognition Systems, Proceedings of the 4th International
Conference on Computer Recognition Systems, CORES’05, May 22-25,
2005, Rydzyna Castle, Poland, 2005.

[8] Xiao Li, Yufeng Wang, Bo Zhang, and Jianhua Ma, “Psdrnn: An efficient
and effective har scheme based on feature extraction and deep learning,”
IEEE Transactions on Industrial Informatics, vol. PP, no. 99, pp. 1–1,
2020.

[9] Pradeep Pujari Mohit Sewak, Md.Rezaul Karim, Practical Convolutional
Neural Networks: Implement advanced deep learning models using
Python, China Machine Press, 2019.

[10] Hamza Ergezer and Kemal Leblebicio?Lu, “Time series classification
with feature covariance matrices,” Knowledge & Information Systems,
2017.

[11] YUAN Shun YANG Xinwu, MA Zhuang, “Multi-class adaboost
algorithm based on the adjusted weak classifier,” Journal of Electronics
& Information Technology, 2016.

[12] Mai F. Tolba and Mohamed Moustafa, “Gadaboost: Accelerating
adaboost feature selection with genetic algorithms,” in ECTA, 8th
International Conference on Evolutionary Computation Theory and
Applications, 2016.

[13] Kerem Altun, Billur Barshan, and Orkun Tunel, “Comparative study
on classifying human activities with miniature inertial and magnetic
sensors,” Pattern Recognition, vol. 43, no. 10, pp. 3605–3620, 2010.

[14] Jorge L Reyes-Ortiz, Luca Oneto, Albert Sama, Xavier Parra, and
Davide Anguita, “Transition-aware human activity recognition using
smartphones,” Neurocomputing, vol. 171, pp. 754–767, 2016.

[15] P Zappi, T Stiefmeier, E Farella, and D Roggen, “Activity recogni-
tion from on-body sensors by classifier fusion: sensor scalability and
robustness,” in International Conference on Intelligent Sensors, 2007.

[16] Hengnian Qi, Kai Fang, Xiaoping Wu, Lili Xu, and Qing Lang,
“Human activity recognition method based on molecular attributes,”
International Journal of Distributed Sensor Networks, vol. 15, no. 4,
pp. 155014771984272, 2019.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin, “Attention
is all you need,” arXiv, 2017.

[18] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu
Kim, Chan Ho So, and Jaewoo Kang, “Biobert: a pre-trained biomedical
language representation model for biomedical text mining,” Bioinfor-
matics, Sep 2019.

Huichao Men, Botao Wang, Gang Wu, “Mitar: A study on human activi-
ty recognition based on NLP with microscopic perspective (in press),”
Frontiers of Computer Science, 2020.
Mengyan Yuan, Enqing Chen, and Lei Gao, “Posture selection based on
two-layer ap with application to human action recognition using hmm,”
in IEEE International Symposium on Multimedia, 2017.

486

HARP Pro: Hierarchical Representation Learning
based on global and local features for social networks

Wei Zhang, Jing Yang1, Fanshu Shang
College of Computer Science and Technology

Harbin Engineering University
Harbin, China

1 Corresponding author: Jing Yang (email:yangjing@hrbeu.edu.cn).
DOI reference number: 10.18293/SEKE2021-145.

Abstract—The purpose of network representation learning
methods is to learn the node low-dimensional representations to
accomplish node classification, link prediction, network
visualization, and so on. Most of the network representation
learning methods cannot keep local structural features and global
structural features, resulting in poor performance at
classification tasks for social networks. To solve this problem, we
propose HARP Pro, a novel method for learning latent node
representations which can maintain lower-order and higher-
order hierarchical structures. On the one hand, HARP Pro
coarsens the graph based on the community detection method. It
can preserve the relationships between bridge nodes and
communities. On the other hand, it presents a graph coarsening
method based on Degree to keep the relationships between nodes
and their neighborhood. It can capture the lower-order
hierarchical structure of the graph. Then it puts the hierarchical
information into the network embedding methods iteratively like
HARP. Finally, it obtains node representation vectors which
integrate global and local structural features. Experimental
results on CiteSeer and Blogcatalog dataset show that the
performance of HARP Pro is better than HARP and the baseline
methods, DeepWalk, LINE, and Node2vec. The results reveal
that HARP Pro can sustain local and global structural features.

Keywords-social network; network embedding; community;
graph coarsening; hierarchical structure

I. INTRODUCTION
We are in the era of Big Data. Because of Big Data, there

are countless ties between everyone and everything. So long as
has the place which the ties exist, the network exists, such as
social network, protein network, logistics network,
communication network, and electricity network. Getting
appropriate representations for nodes and exploring the
network is important for content recommendation[12],
information diffusion[13], disease-related genes prediction[14],
and resource assignment[15]. Hence, network embedding has
received considerable attention recently.

The social network is a kind of large-scale network which
has massive, sparse data with noise. The complex network data
is a major challenge to the traditional network analysis methods.
Inspired by word2vec[9], DeepWalk[1] captures path
information with random walks. It regards the paths as
sentences and puts them into the model to learn the
representations. It gets rid of the relational matrix. Thus, its

time complexity is low. However, with the limitation of the
walk length, DeepWalk can only get the local context
information of nodes. Thus, representations it learns just reflect
the local structure of the graph. Unlike the depth-first sequence
of DeepWalk, Node2vec[3] combines depth-first strategy with
breadth-first strategy, enriches the sample space. This method
is still lumbered with the walk length. Therefore, the path
information it gets is still limited in the neighborhood of nodes.
LINE[2] tries to mine the node relationships with first order
similarity and second order similarity to deal with the problem.
But this method just expands the sample space to the second
order area. The global structure cannot be captured by LINE.

Based on the above facts, HARP[4] learns the embedding
in smaller graphs which are obtained by coarsening the original
graph. In this way, the global structure can be embedded into
the original graph iteratively. HARP thinks that the shape of
the input graph is the global structure. Then it maintains this
shape in the process of graph coarsening. Unfortunately, the
external shape is unable to fully reveal the internal hierarchical
structure.

Community structure is ubiquitous in social networks. It is
a known higher-order hierarchical structure. The relationships
between communities constitute the entire network. And inside
the community, hub nodes and bridge nodes string together and
support the communication in the community. Inspired by this
knowledge, we propose HARP Pro, a general meta-method to
maintain the lower-order and higher-order hierarchical
structures of social networks for network embedding.

First, we proposed a local structure coarsening method
based on Degree[10] to maintain the lower-order hierarchical
structure. Then, we presented a global structure coarsening
method based on a community detection method to keep the
higher-order hierarchical structure. Based on these two
methods, we can get a set of coarse-grained graphs. Finally, we
embed the node representation of the higher-order graph into
the lower-order graph to get the final network representation
with global and local features.

II. RELATEDWORK

HARP[4] method consists of three parts: graph coarsening,
graph embedding, and graph representation refinement. The
process of HARP is listed in Table I.

487

mailto:yangjing@hrbeu.edu.cn

In Step 1, HARP provides two graphs coarsening strategies.
One is edge collapsing. They introduce the edge collapsing
algorithm[5] to coarsen the equivalent edges. This strategy can
keep the peer-to-peer structure. The other is the star collapsing.
This strategy merges the leaf nodes to sustain the shape of the
star topology.

TABLE I. HARP

Input:
The original network G0=(N0, E);
Arbitrary graph embedding algorithm EMBED()
Output:
node representations of G0 , φ
Step 1. Coarsen G0 to get smaller graphs G1, G2, … , GL.
Step 2. Put GL in EMBED() to get the node representations of GL, φGL.
Step 3. For i=L-1 to 0 do
Step 4. Set φGL as the input embedding of network Gi, and learn
the node representations φGL;
Step 5. end for
Step 6. return φGL

III. HARP PRO
HARP Pro consists of three parts: graph coarsening, graph

embedding, and graph representation refinement. It is the same
with HARP. The difference between HARP Pro and HARP is
the process graph coarsening. In order to capture the lower-
order and higher-order hierarchical structures, we develop two
kinds of graph coarsening methods.

As we have mentioned above, the community is the higher-
order hierarchical structure of social networks. From a macro
perspective, communities and the relationships between them
form a giant net, which can make information spread through
the whole network. Bridge nodes play a vital role in
transmission between communities. From a micro perspective,
the hub nodes and their followers form the community. Then
the neighborhood of the community member is the lower-order
hierarchical structure that we want to capture. To maintain
these two kinds of hierarchical structures, we need to coarsen
the network based on hub nodes and bridge nodes. Hub node
owns a large number of followers. We can find them with
Degree. Hence, we present a local structure coarsening method
based on Degree.

A. A local structure coarsening method based on Degree
The major steps of the graph coarsening method for local

structure are listed in Table II.

First, we lock the hub node with Degree. Then, we start the
process of coarsening with these nodes. By merging the hub
node and its neighbors, we can coarsen the first-order
neighborhood structure of the original graph G0 and get a new
coarse-grained graph G1. Running this algorithm on graph G1,
we can coarsen the second-order neighborhood structure of the
original graph G0. The output of the algorithm is the new
coarse-grained graph G2.

B. A global structure coarsening method based on
community structure
Utilizing the above method, we can sustain the local

structure in the coarse-grained graphs. For the global structure,
we introduce Louvian[6], a community detection method to get

the community structure of the original graph. Louvian
believes that there are more links inside the community. And
outside the community, links are more sparse.

Firstly, the community structure is employed to find bridge
nodes. Then, we keep them and set them as the new nodes in
the new coarse-grain graph. The rest nodes of the community
will be merged, and regard as the new node in the new graph.
In this way, we can obtain the higher-order hierarchical
structure of the original graph. This process is listed in Table
III.

TABLE II. COARSENING METHOD FOR LOCAL STRUCTURE

Input:
The network Gj.

Output:
This coarse-grained graph, Gi.
Step 1. Sort the nodes in G0 with Degree in descending order, and put
the result in the list, DL;
Step 2. For each node v in DL do
Step 3. Compare the degree of node v, dv with the max degree
of its neighbors, dvm;

If dv> dvm do
Step 4. Combine node v with the reset of its neighbors, set them
as a new node in Gi, and remove these node from DL;
Step 5. If dv=dvm do
Step 6. The neighbor nodes with the max degree will
be kept in in Gi. Combine node v with the reset of its neighbors, set
them as a new node in Gi, and remove these nodes from DL;
Step 7. return Gi

TABLE III. COARSENING METHOD FOR GLOBAL STRUCTURE

Input: The original network G0;
Output: This coarse-grained graph, G3.
Step 1. Use Louvian to get the community attribute of each node;
Step 2. For each community comi do
Step 3. Find the bridge nodes in community comi, set them as
new nodes in G3;
Step 4. Merge the rest nodes of community comi, set them as a
new node in G3;
Step 5. return G3

C. The Framework of HARP Pro
Based on Table II and Table III, we can get three coarse-

grained graphs, G1, G2, and G3. After this procedure, we can
start the graph embedding and graph representation refinement.
The framework of HARP Pro is listed in Table IV.

In Step 1, we run the two graph coarsening method on the
original network G0 respectively, then we can get G1 with the
first-order structure, G2 with second-order structure, and G3
with community structure. In Step 3, we start with G3 to learn
its node representations based on the embedding method. In
Step 4- Step 7, we prolong and refine the representations. If a
node in G3 also appears in G2, we replace this node
representation in G2 with G3’s. Otherwise, node a in G2 is
merged into node b in G3, then a should has identical weights
in word2vec as b. Then the new representation of G2 is
obtained. We go through the same process on G1 and G0.
Finally, we can get new node representations of G0.

488

(a) G3 (b) G2

(c) G1 (d) G0

TABLE IV. HARP PRO

Input:
The original network, G0;
Arbitrary graph embedding algorithm, EMBED().
Output:
The node representations of G0, φ
Step 1. G0, G1, G2, G3←GRAPHCOARSENING(G0);
Step 2. Initialize ��3

’ by assigning zeros
Step 3. ��3 ← EMBED �3, ��3

' ;
Step 4. For i =2 to 0 do
Step 5. ���

' ← PROLONGATE ���+1 , ��+1 , �� ;
Step 6: ��� ← ����� �� , ���

' ;
Step 7: end for
Step 8: return the node representations of G0, φ

IV. RESULTS AND DISCUSSIONS

A. Data Preparation
Two real-world networks are used to evaluate the

performance of different methods. They are CiteSeer[7] and
BlogCatalog[8].

CiteSeer is a kind of citation network. In this network,
nodes represent the authors of papers. Edges are reference
relationships between papers. The labels indicate the research
area of the paper. Papers in this network are classified into six
kinds: AI, IR, ML, DB, Agents, and HCI.

BlogCatalog is a social network of the BlogCatalog website.
Bloggers are the nodes. Edges represent the social relationships
between users. The labels indicate the interests of bloggers.
The interests are divided into 39 classes.

The information about these two datasets is shown in Table
V.

TABLE V. STATISTICS OF NETWORK DATASETS

Network N E C T

CiteSeer 3312 4732 6 Classification

Blogcatalog 10312 333983 39 Classification

N, the number of nodes; E, the number of edges; C, the number of categories; T, multi-label
classification task.

B. Baseline Methods
We use the following network embedding methods to

conduct three parallel experiments:

DeepWalk——DeepWalk uses random walk to capture the
path information of nodes. It treats route sequences as
sentences and puts them into the Skip-gram model to learn the
node embeddings.

LINE——LINE maps nodes to the vector space based on
the density of node relationships. It combines the first-order
relationship with the second-order structure to project nodes
with a strong connection to a similar location based on the
objective function. The Skip-gram model is applied to solve the
objective function.

Node2vec——To improve DeepWalk, Node2vec change
the way of random walk. By tuning the return parameter p and

in-out parameter q, it can explore the node neighborhood with
DFS and BFS. The Skip-gram model is also used in this
method.

C. Parameter Settings
For each baseline method, we embed it with HARP and

HARP Pro to compare the classification performance. Hence,
we conduct three parallel experiments: (1) DeepWalk,
HARP(DeepWalk), and HARP Pro(DeepWalk); (2) LINE,
HARP(LINE) and HARP Pro(LINE); (3) Node2vec,
HARP(Node2vec) and HARP Pro(Node2vec).

 Deepwalk Group: The number of random walks is set
as 40. The walk length t is 10 and the window size is
5. We set the representation size d as 128.

 LINE Group: The representation size d is set as 64, and
the iteration time is 50.

 Node2vec Group: The number of random walks, walk
length, window size and representation size are the
same as the DeepWalk group. We set the in-out
parameter and the return parameter as 1.0.

D. Graph Coarsening
No matter how large the network is, HARP Pro just needs

three times coarsening. One time is to get the global structure.
The second time is to capture the local feature of the original
graph. But for HARP, the coarsening time depends on the scale
of the network. For CiteSeer dataset, HARP needs 18 times to
reach the preset size. And for BlogCatalog, 24 times coarsening
is needed to remain the shape of the network unchanged. We
used Gephi, a network topology visualization tool to draw the
graphs that we got by HARP Pro.

Figure 1. The graph coarsening effect of HARP Pro on CiteSeer dataset.

489

(a)G3 (b) G2

(c) G1 (d) G0

Figure 2. The graph coarsening effect of HARP Pro on BlogCatalog dataset.

Fig. 1 and Fig. 2 show the graph coarsening effect of HARP
Pro on the two datasets. G0 is the original graph. G1 and G2 are
the subgraphs that we got based on Table II, and G3 is the
subgraph with the community structure that we got based on
Table III.

As shown in Fig. 1, CiteSeer network is formed with
multiple ring structures. With two times graph coarsening
based on Algorithm 2. The longitudinal ring structures are kept
in G1 and G2. The ring structures in the other orientation are in
decline. In G3, a few ring structures remain. From G0 to G3, the
scale of the network drastically reduced.

In Fig. 2, BlogCatalog dataset demonstrates a star topology.
With the reduction in the number of nodes, this feature
becomes more obvious.

In general, the graph coarsening method in HARP Pro can
maintain the shape of the original graph.

E. Multi-label Classification
Classification is the most common application of the

network embedding method. In order to observe the
performance of the classification task, we choose some nodes
and their labels randomly as the training dataset. The
proportion of the training dataset is varied from 10% to 90% in
this experiment. To predict the labels of the remaining nodes,
we train a one-vs-rest logistic regression model with L2
regularization. The logistic regression model is implemented by
LibLinear[11].

Fig. 3 and Fig. 4 report Marco F1 scores of the three
parallel experiments.

Figure 3. Detailed multi-label classification result on CiteSeer dataset.

CiteSeer. For the group of DeepWalk, as the size of labeled
data increases, the Marco F1 score of three methods ascends
step by step basically. By contrast, our method owns the
highest score all the time. When the ratio of labeled nodes is
small(10%-50%), the scores of the three methods are close. But
our method is still higher than HARP and Deepwalk. The
relative gain of our method is over 1%. When the ratio of
labeled data is big(60%-90%), the advantages of our method
are obvious. The relative gain of our method is over 5% with
90% labeled data. For the group of LINE, the trend of the curve
is similar to the DeepWalk group. The difference is that the
score of our method and HARP is relatively close. But our
method also consistently outperforms with the relative gain 1%.

490

Figure 4. Detailed multi-label classification result on BlogCatalog dataset.

For the group of Node2vec, our advantage is more obvious.
When the ratio of labeled data is small(10%-60%), the relative
gain of our method remains close to 2% through that period.
When the ratio of labeled data becomes bigger, HARP shows a
downward trend. However, the rising rate of our method is
even greater. In general, our method maintains the leading
position in three parallel experiments.

BlogCatalog. For the group of DeepWalk, both three
methods show the tendency to ascend. The score of the three
methods is close. But the relative gain of our method is 1%
with 10% and 80% labeled data. As for the LINE group, the
situation is a bit different. When the ratio of labeled data is
small(10%-40%), the scores are close. But when the ratio of
labeled data becomes bigger, the difference between our

method and HARP becomes wider. The relative gain of our
method is over 3% with 70% labeled data. HARP and our
method reveal the trend of a fast increase in Node2vec group.
Our method also performs better than Node2vec and HARP.
Generally, the accuracy of HARP Pro in classification is better
performance than HARP and the other baseline methods.

F. Discussion
Compared with Fig. 3 and Fig. 4, we can see the advantage

of our method in CiteSeer is more obvious than Blogcatalog for
the multi-label classification tasks. As shown in Fig. 2,
Blogcatalog data owns plenty of star structures. Star structure is
not a typical community structure. Because the links inside and
outside it are both sparse, the star structure cannot be
distinguished by the community detection method. The global
structure cannot be kept in the graph completely. As for
CiteSeer, the distribution of links between nodes is relatively
uniform. Community structures can be well identified with
Louvain. Thus, the advantage of HARP Pro on BlogCatalog is
smaller.

In summary, HARP Pro is good at learning node
representation of the network with significant community
structures.

V. CONCLUSION
From a microcosmic perspective, nodes and their neighbors

form their own communities. From a macro perspective, the
entire network is constituted by a number of communities.
Inspired by this fact, we propose a networking embedding
method based on community structure and neighborhood
structure, HARP Pro. HARP Pro starts with Degree to coarsen
the first-order and second-order neighborhood structure. It
maintains the local hierarchical information in the subgraph.
Then, HARP Pro merges nodes with community features. It
captures the high-order hierarchical structure. Finally, it obtains
node representation vectors by capturing global and local
structural features. Experimental results on CiteSeer and
Blogcatalog dataset show that HARP Pro performs better than
HARP and the other baseline methods.

Because of the instability of the community detection
method, we introduce more uncertain factors to the model. In
the future, we would like to find a more stable approach to
capture the community feature. And we will take into account
the node influence and the role of the node to learn the network
representation.

ACKNOWLEDGMENT

This paper is supported by the National Natural Science
Foundation of China (No. 61672179, 61370083 and 61402126),
the Natural Science Foundation of Heilongjiang (No.
F2015030), the Distinguished Young Scholars of Heilongjiang
(No. QC2016083), the Postdoctoral Science Foundation of
Heilongjiang (No. LBH-Z14071).

REFERENCES
[1] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: online

learning of social representations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining (KDD '14). Association for Computing Machinery, New York,
NY, USA, pp. 701–710, 2014.

491

[2] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and
Qiaozhu Mei. LINE: Large-scale Information Network Embedding. In
Proceedings of the 24th International Conference on World Wide Web
(WWW '15). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, CHE, pp. 1067–1077, 2015.

[3] Aditya Grover and Jure Leskovec. Node2vec: Scalable Feature Learning
for Networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD '16).
Association for Computing Machinery, New York, NY, USA, pp. 855–
864, 2016.

[4] Chen, H., Perozzi, B., Hu, Y., & Skiena, S. HARP: Hierarchical
Representation Learning for Networks. AAAI, 2018.

[5] Hu, Y., Efficient, High-Quality Force-Directed Graph Drawing.
Mathematica journal, vol. 10, pp. 37–71, 2006.

[6] Blondel V D , Guillaume J L , Lambiotte R , et al. Fast unfolding of
communities in large networks[J]. Journal of Statistical Mechanics
Theory & Experiment, 2008.

[7] Sen, P.; Namata, G. M.; Bilgic, M.; Getoor, L.; Gallagher, B.; and
Eliassi-Rad, T. Collective classification in network data. AI Magazine,
vol. 29, pp. 93–106, 2008.

[8] Lei Tang and Huan Liu. Relational learning via latent social dimensions.
In Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD '09). Association for
Computing Machinery, New York, NY, USA, pp. 817–826, 2009.

[9] Mikolov, Tomas & Chen, Kai & Corrado, G.s & Dean, Jeffrey. Efficient
Estimation of Word Representations in Vector Space. Proceedings of
Workshop at ICLR. 2013.

[10] Bonacich P F. Factoring and weighting approaches to status scores and
clique identification[J]. Journal of Mathematical Sociology, vol. 2, pp.
113-120, 1972.

[11] Fan R E, Chang K W, Hsieh C J, et al. LIBLINEAR: A Library for
Large Linear Classification[J]. JMLR. vol. 9, pp.1871-1874, 2008.

[12] Li J, Yang G. Network embedding enhanced intelligent recommendation
for online social networks[J]. Future Generation Computer Systems. vol.
119, pp. 68-76, 2021.

[13] Bl A, Dpa B , Yl A , et al. Multi-source information fusion based
heterogeneous network embedding[J]. Information Sciences. vol. 534,
pp. 53-71, 2020.

[14] Xiang J, Zhang N R, Zhang J S, et al. PrGeFNE: Predicting disease-
related genes by fast network embedding[J]. Methods, 2020.

[15] Hejja K , Hesselbach X. Online power aware coordinated virtual
network embedding with 5G delay constraint[J]. Journal of Network and
Computer Applications. vol. 124, pp. 121-136, 2018.

492

A Volume-Aware Positional Attention-Based

Recurrent Neural Network for Stock Index Prediction

Xinpeng Yu

School of Electronics and Computer Engineering

Peking University
Shenzhen, China

yuxinpeng@pku.edu.cn

Dagang Li*

International Institute of Next Generation Internet

Macau University of Science and Technology

Macau, China

dagang.li@ieee.org

Abstract—With the rapid development of deep learning, more

researchers have attempted to apply nonlinear learning methods

such as recurrent neural networks (RNNs) and attention

mechanisms to capture the complex patterns hidden in stock

market trends. Most existing approaches to this task employ an

attention mechanism that primarily relies on the information

extracted from input features but fails to consider the other

important factors (e.g., trading volume and position), which can

potentially enhance these attention-based approaches. Motivated

by the observation, we extend the attention mechanism with

features needed for stock performance prediction in this article.

Specifically, we propose a volume-aware positional attention-

based recurrent neural network (VPA-RNN) for this task. First,

we propose a generic method of adding position awareness to the

attention mechanism. Next, the trading volume is incorporated

into the original attention distribution to form a revised

distribution. To evaluate the effectiveness of VPA-RNN, we

collected real stock market data for stock indexes S&P 500 and

DJIA, and the experimental results show that the proposed VPA-

RNN can significantly outperform several existing highly compe-
titive methods.

Keywords-stock index prediction; recurrent neural network;

attention mechanism; volume-aware attention; positional attention

I. INTRODUCTION

Stock performance prediction has received much attention
due to its decisive role in stock investment, which aims to predict
the future price or trend of stocks in order to achieve the
maximum profit from stock investment. Various methods have
been proposed to predict stock performance by many economic
analysts and stock traders.

Li et al. [1] applied a quantile AR model to analyze the
dynamics of stock index returns in China. In addition, the hidden
Markov model (HMM) has been used to make nonlinear
predictions of stock trends. Zhang et al. [2] presented an
approach to predict stock market price trends based on a high-
order HMM for the purpose of considering both short and long-
term time dependence. However, such traditional solutions have
apparent drawbacks, as they lack the capability of modeling the
nonstationary and nonlinear nature of stock prices. To address
this issue, many methods based on deep learning have been
proposed to forecast stock prices in recent years. More
researchers have attempted to apply deep learning methods such
as multilayer perceptions (MLPs) [3] and recurrent neural

networks (RNNs) [4]–[6] to capture the complex patterns hidden
in market trends. Although the traditional RNN is capable of
processing nonlinear data, it is not sufficient to model long-term
dependence on a time series. This motivates the use of gated
memory cells; thus, the famous long short-term memory (LSTM)
network was proposed to better model long-term dependency on
a time series and mitigate the vanishing gradient problem [7].
Accordingly, many studies employ the LSTM neural network in
financial prediction [8]–[10].

However, if the time series is very long, LSTM also suffers
from the problem of vanishing gradients which results in
decreasing performance [11]. To overcome this problem,
researchers have proposed the attention mechanism that
achieved great success in various fields, including neural
machine translation [12], speech recognition [13], and image
processing [14]. Therefore, several recent works introduced an
attention mechanism to stock-related applications [15]-[22]. Li
et al. [16] proposed a multi-input LSTM (MI-LSTM) model,
which can extract valuable information from low correlation
factors and discard their harmful noise by employing additional
input gates controlled by the convincing factors called
mainstream. Furthermore, Qin et al. [17] proposed the dual-stage
attention-based RNN (DA-RNN), drawing inspiration from the
encoder-decoder structure used in machine translation. The DA-
RNN model predicts the stock index of the next day using the
previous values of stock indexes and constituent stock prices as
input. This model consists of an encoder and a decoder. The
encoder is composed of LSTM and an input attention
mechanism that is used to adaptively extract the relevant features
at each time step by referring to the previous encoder hidden
state. The output of the encoder serves as the input of the decoder.
The decoder is composed of LSTM and a temporal attention
mechanism that is used to select the relevant encoder hidden
states across all time steps. In this way, the DA-RNN model can
not only adaptively select the most relevant input features but
also capture the long-term temporal dependencies of a time
series appropriately.

In the abovementioned attention-based stock price prediction
model, the temporal attention mechanism primarily relies on the
information extracted from input features but fails to consider
the other important factors (e.g., trading volume and position),
which can potentially enhance these attention-based approaches.
Motivated by the observation, we extend the temporal attention

DOI reference number: 10.18293/SEKE2021-191

493

mechanism with features needed for stock performance
prediction in this article. On the one hand, the position of the
time step is a key factor in the stock performance prediction task.
It is natural that the time steps closer to the predicted time step
are more important. However, the abovementioned attention
methods take no account of the effects of positions of different
time steps, i.e., identical or very similar time steps are scored
equally regardless of their positions in the sequence. Therefore,
we introduce the positional attention mechanism to the task of
stock performance prediction, which has achieved success in
various fields, including natural language processing (NLP)
[23,24] and speech recognition (SR) [25]. On the other hand,
trading volume is also an important feature that provides
valuable information, as past trading volume predicts both the
magnitude and the persistence of future price momentum [26],
i.e., the time step with higher trading volume is generally more
important, and the attention mechanism should pay more
attention to such time steps. Thus, inspired by several task-
oriented attention mechanisms [27,28], we take advantage of
this feature of stock performance prediction and propose
volume-aware attention to incorporate the trading volume into
the original attention distribution to achieve attention
recalibration.

Combining these two gives a volume-aware positional
attention-based recurrent neural network (VPA-RNN) with
markedly better stock index prediction performance. To justify
the effectiveness of the VPA-RNN, we compare it with the state-
of-the-art approach using the S&P 500 dataset and the DJIA
dataset. Our proposed VPA-RNN achieves the RMSE that is
6.80% and 47.83% lower than that of the best previous model
DA-RNN [17], respectively.

II. RELATED THEORY AND TECHNOLOGY

In this section, we introduce the LSTM and the attention
mechanism, which are the foundations of both the proposed
model and the comparative models in this article.

A. Long short-term memory neural networks (LSTM)

Due to its memory blocks, the LSTM network [7] has a
strong capability of capturing the long-term memory of
sequential data with high prediction capability on chaotic time
series. Hence, many related works adopt LSTM to learn long-
term temporal dependencies from stock data time series [16,17].
For a similar reason, we also use LSTM in this paper. LSTM is
a variant of RNNs that uses a gating mechanism to control the
flow of information into or out of memory. For convenience, in
this study, we use the function LSTM(·,·,·) as shorthand for the
LSTM model in (1):

(ℎ𝑡 , 𝑐𝑡) = LSTM(𝑥𝑡 , ℎ𝑡−1, 𝑐𝑡−1, 𝑊, 𝑏) , (1)

where W and b include all of the weight matrices and bias vectors,
which are determined in the training process.

B. Attention mechanism

Based on recurrent neural networks, sequence-to-sequence
models (S2S) have become popular due to their success in
machine translation [29]-[31], which is composed of encoder
and decoder. The encoder is used to convert the input sentences
into a fixed-length vector and then used by the decoder to
produce output sequences. However, encoder-decoder networks

encounter the long-term dependency problem that their
performance will deteriorate rapidly as the length of the input
sequence increases. To resolve this issue, the attention
mechanism is employed to select parts of hidden states across all
the time steps by allocating adequate attention to key
information [12]. The general attention mechanism is often
implemented by scoring each encoder hidden states ℎ𝑗 in H =
(ℎ1, ℎ2, ⋯ , ℎ𝑛) separately based on the previous decoder hidden

state 𝑠𝑖−1 and normalizing the scores 𝑒𝑖,𝑗 by a softmax function

to generate the attention weight α𝑖,𝑗:

𝑒𝑖,𝑗 = Score(𝑠𝑖−1, ℎ𝑗), (2)

α𝑖,𝑗 =
exp(𝑒𝑖,𝑗)

∑  𝑛
𝑖=1 exp(𝑒𝑖,𝑗)

. (3)

Then, the decoder input 𝑐𝑖 at 𝑖 is the weighted sum of ℎ𝑗 and

calculated as follows:

𝑐𝑖 = ∑  

𝑛

𝑖=1

𝛼𝑖,𝑗ℎ𝑗 . (4)

Under the attention mechanism, the dependencies between
the source and target sequences are not restricted by the
intermediate distance. Consequently, it is helpful for over-
coming the long-term dependency problem, and it was soon
extended into various fields, including stock-related applications
[15]-[22].

III. VOLUME-AWARE POSITIONAL ATTENTION-BASED RNN

In this section, we first introduce the notation used in this
article and the problem we aim to study. Then, the motivation
and details of the proposed VPA-RNN model for stock index
prediction are presented.

A. Notation and Problem Statement

The goal of this work is to predict the closing price of the
next day. Given the previous values of the target as
𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑇)⊤ ∈ ℝ𝑇 where 𝑇 represents the size of the
time window and 𝑦𝑡 is the target at time 𝑡. Similarly, the time
series of all features would be denoted as 𝑋 =
(𝑋1, 𝑋2, … , 𝑋𝑇)⊤ ∈ ℝ𝑇×𝑁 where 𝑁 specifies the number of
features. Hence, 𝑋𝑡 = (𝑥𝑡

1 , 𝑥𝑡
2, ⋯ , 𝑥𝑡

𝑛) ∈ ℝ𝑁 is a vector of all the
𝑁 features at time 𝑡 and 𝑋𝑛 = (𝑥1

𝑛 , 𝑥2
𝑛 , ⋯ , 𝑥𝑇

𝑛) ∈ ℝ𝑇 is the time
series of the n-th feature in time window 𝑇. Thus the VPA-RNN
model aims to learn a nonlinear mapping function 𝐹(·) as
follows:

�̂�𝑇+1 = 𝐹(𝑦1, 𝑦2, … , 𝑦𝑇 , 𝑋1, 𝑋2, … , 𝑋𝑇). (5)

The features used in this paper include open, close, high, low,
adj_close, and volume in the granularity of the trading day.
Adj_close is an abbreviation of the adjusted closing price, which
amends a stock’s closing price to accurately reflect that stock’s
value after adjustments for splits and dividend distributions.
Deemed as the true price of stocks, it is often used when
examining historical returns or performing a detailed analysis of
historical returns. Therefore, this study uses adj_close of the
next day as the target 𝑌.

Among all the features, only the feature volume does not
belong to the type of stock price, which refers to the number of

494

transactions in a trading day. Specifically, we represent the
historical series of volume as 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑇)⊤ ∈ ℝ𝑇, and it
is used to achieve attention recalibration in the next subsection.

B. Proposed Model

The overall structure of our proposed VPA-RNN model is
shown in Fig. 1. Inspired by existing work, we employ a dual-
stage attention-based encoder-decoder neural network. In the
encoder, we introduce an input attention mechanism proposed
by [17], which is used to select the relevant features adaptively.
In the decoder, our proposed volume-aware positional attention
is used to automatically select relevant encoder hidden states
across all time steps. With the help of the proposed attention
mechanism, the decoder can take account of the effects of
volumes and positions of different time steps in order to assign
weight more appropriately.

Figure 1. Graphical illustration of the volume-aware positional attention-
based recurrent neural network.

1) Encoder with input attention
In this paper, the encoder is essentially an LSTM used to

encode the input sequences into a hidden feature representation.
As described above, given the time series of all features
𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑇)⊤ ∈ ℝ𝑇×𝑁 where 𝑁 specifies the number of
features, the encoder learns a mapping from 𝑋𝑡 to ℎ𝑡:

ℎ𝑡 = LSTM1(ℎ𝑡−1, 𝑋𝑡), (6)

where ℎ𝑡 ∈ ℝ𝑚 denotes the hidden state of the encoder at time
𝑡, 𝑚 is the size of the hidden state. In order to select relevant
features in the early stages, an input attention mechanism is
employed, the time series of the n-th feature in time window 𝑇
are denoted as 𝑋𝑛 = (𝑥1

𝑛 , 𝑥2
𝑛 , ⋯ , 𝑥𝑇

𝑛) ∈ ℝ𝑇 , the input attention
mechanism is implemented by a multilayer perceptron referring
to the previous hidden state ℎ𝑡−1 and the cell state 𝑐𝑡−1 in the
encoder LSTM unit:

𝑒𝑡
𝑛 = 𝑣𝑒

⊤ tanh(𝑊𝑒[ℎ𝑡−1; 𝑐𝑡−1] + 𝑈𝑒𝑋𝑛), (7)

where 𝑣𝑒 ∈ ℝ𝑇, 𝑊𝑒 ∈ ℝ𝑇×2𝑚, and 𝑈𝑒 ∈ ℝ𝑇×𝑇 are parameters to
learn, and the bias terms are omitted for succinctness. Then, a
softmax function is applied to the alignment score 𝑒𝑡

𝑛 to ensure
all the attention weights sum to 1:

α𝑡
𝑛 =

exp(𝑒𝑡
𝑛)

∑  𝑁
𝑖=1 exp(𝑒𝑡

𝑖)
, (8)

where α𝑡
𝑛 is the attention weight measuring the importance of

the 𝑛 -th input feature. Finally, we can adaptively select the
features as follows:

�̃�𝑡 = (𝛼𝑡
1𝑥𝑡

1, 𝛼𝑡
2𝑥𝑡

2, ⋯ , 𝛼𝑡
𝑛𝑥𝑡

𝑛)⊤. (9)

Thus, (6) can be updated as:

ℎ𝑡 = LSTM1(ℎ𝑡−1, �̃�𝑡), (10)

where 𝑋𝑡 is replaced by �̃�𝑡 that considers the weights of
different features. Therefore, the encoder can adaptively select
certain features rather than pay attention to all the features
equally.

2) Decoder with volume-aware positional attention
In the decoder, we use another LSTM to decode the encoded

input information. In order to adaptively select relevant encoder
hidden states across all time steps, we employ a temporal

attention mechanism. Specifically, the attention weight 𝑙𝑡
𝑖 of

each encoder hidden state is calculated based upon the previous
decoder hidden state 𝑑𝑡−1 ∈ ℝ𝑝 and cell state 𝑐𝑡−1

′ ∈ ℝ𝑝:

𝑙𝑡
𝑖 = 𝑣𝑑

⊤ tanh(𝑊𝑑[𝑑𝑡−1; 𝑐𝑡−1
′] + 𝑈𝑑ℎ𝑖) , 1 ≤ 𝑖 ≤ 𝑇, (11)

where [𝑑𝑡−1; 𝑐𝑡−1
′] ∈ ℝ2𝑝 is a concatenation of the hidden state

and cell state of the previous LSTM unit. 𝑣𝑑 ∈ ℝ𝑚 , 𝑊𝑑 ∈
ℝ𝑚×2𝑝, and 𝑈𝑑 ∈ ℝ𝑚×𝑚 are parameters to be learned. We omit

the bias terms here for clarity. The attention weight β𝑡
𝑖 that

represents the importance of the 𝑖-th encoder hidden state ℎ𝑖 is
calculated by the formula:

β𝑡
𝑖 =

exp(𝑙𝑡
𝑖)

∑  𝑇
𝑗=1 exp(𝑙𝑡

𝑗)
. (12)

However, such temporal attention mechanism suffers from
two problems: (1) identical or very similar time steps are scored
equally regardless of their positions in the sequence. But the
position of each time step is a key factor in the task of stock
performance prediction. (2) It does not explicitly model the
effect of volume of each time step in the input sequences, which
is another important feature that provides valuable information.
Therefore, we propose a new volume-aware positional attention
mechanism to tackle these challenges, as shown in Fig. 2, which
can evaluate the relative contribution of each time step not only
on the information of encoder hidden states but also on the
global position and volume of each time step.

First, inspired by the position encoding vectors used in [23],
we define a position vector 𝑝𝑖 for each time step in the time
window 𝑇 as follows:

𝑝𝑖 = (
𝑖

𝑇
,

𝑖

𝑇
, ⋯ ,

𝑖

𝑇
) ∈ ℝ𝑚 , 1 ≤ 𝑖 ≤ 𝑇, (13)

where 𝑚 is the dimension of position encoding vectors, that is
the same as the size of the decoder hidden state in order to
facilitate calculation, then we add the position encoding vector

to the calculation formula of 𝑙𝑡
𝑖 , and (11) is updated as follows:

𝑙𝑡
𝑖 = 𝑣𝑑

⊤ tanh(𝑊𝑑[𝑑𝑡−1; 𝑐𝑡−1
′] + 𝑈𝑑ℎ𝑖 + 𝐸𝑑𝑝𝑖), 1 ≤ 𝑖 ≤ 𝑇, (14)

495

Figure 2. Our proposed volume-aware positional attention mechanism.

where 𝐸𝑑 ∈ ℝ𝑚×𝑚 is a learnable parameter. In this way, the
position encoding vector 𝑝𝑖 can provide the important spatial
information of each time step.

Second, inspired by the study of trading volume in [26], we
argue that the volume of a time step to some extent reflects the
importance of this time step. Hence, during the learning process
of the attention mechanism, the effect of volume should be

considered explicitly, we change (14) by multiplying 𝑙𝑡
𝑖 by the

volume of this time step 𝑣𝑡 ∈ ℝ, and the updated formula is as
follows:

𝑙𝑡
𝑖 = 𝑣𝑑

⊤ tanh(𝑊𝑑[𝑑𝑡−1; 𝑐𝑡−1
′] + 𝑈𝑑ℎ𝑖 + 𝐸𝑑𝑝𝑖)𝑣𝑡

1 ≤ 𝑖 ≤ 𝑇
, (15)

then, when the trained model is used to test on the test sequences,
𝑣𝑡 will be replaced by the volume of the corresponding time step
in the test sequences. In this way, the model can learn the
attention weights under the condition that the effect of volume is
considered explicitly, and the original learned attention
distribution without being multiplied by the volume 𝑣𝑡 can
exclude the effect of the trading volume. Then, it can be
multiplied by the volumes of the corresponding time steps in the
test sequences to achieve attention recalibration when testing.

The context vector 𝐶𝑡 is a weighted sum of all the encoder
hidden states ℎ𝑖, and it is distinct at each time step in the decoder.

𝐶𝑡 = ∑  

𝑇

𝑖=1

𝛽𝑡
𝑖ℎ𝑖 . (16)

Then, the given target series 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑇)⊤ ∈ ℝ𝑇 can
be combined with the context vectors:

�̃�𝑡 = �̃�⊤[𝑦𝑡; 𝐶𝑡] + �̃�, (17)

where �̃� ∈ ℝ𝑚+1 and �̃� ∈ ℝ are used to map the concatenation
[𝑦𝑡; 𝐶𝑡] ∈ ℝ𝑚+1 to the size of the decoder input. The newly
calculated �̃�𝑡 is used to update the decoder hidden state:

𝑑𝑡 = LSTM2(𝑑𝑡−1, �̃�𝑡). (18)

Finally, the final prediction result can be obtained by a linear
function:

�̂�𝑇+1 = 𝑣𝑦
⊤(𝑊𝑦[𝑑𝑇; 𝐶𝑇] + 𝑏𝑤) + 𝑏𝑣 , (19)

where [𝑑𝑇; 𝐶𝑇] ∈ ℝ𝑝+𝑚 is a concatenation of the last decoder
hidden state and context vector, and 𝑝 is the size of the decoder

hidden states. 𝑊𝑦 ∈ ℝ𝑝×(𝑝+𝑚) and 𝑏𝑤 ∈ ℝ𝑝 are the parameters

used to map the concatenation to the size of the decoder hidden

states. The linear function with weights 𝑣𝑦 ∈ ℝ𝑝 and bias 𝑏𝑣 ∈
ℝ produces the final prediction result.

C. Training procedure

The minibatch stochastic gradient descent (MGD) and

Adam optimizer are used for the model training with mean

squared error (MSE) as the loss function:

loss =
1

𝑁
∑  

𝑁

𝑖=1

(�̂�𝑇+1
𝑖 − 𝑦𝑇+1

𝑖)
2

. (20)

IV. EXPERIMENTS

In this section, we first describe the two datasets used for
empirical studies. Then, we present the experimental setup,
including parameter settings and evaluation metrics. Finally, we
conduct extensive experiments to evaluate the performance of
the proposed VPA-RNN by comparing it to different baselines.

A. Datasets and Setup

We collected real-world historical data of two stock indexes
from the Yahoo! Finance website: the S&P 500 Index (S&P 500)
and the Dow Jones Industrial Average Index (DJIA), traded
from Jan 3rd, 2000, to Dec 30th, 2020, at a daily frequency, for
a total of 21 years, to test the effectiveness of the proposed VPA-
RNN model. For a fixed time window of size T+1 and a stride
of 1, each sample incorporated input sequences of T time steps
and a target index value for model training and evaluation. All
data from both datasets were normalized to between 0 and 1
using min-max scaling. Then, we divided each dataset into
7:1.5:1.5 ratios in the time dimension as the training set,
validation set, and test set. The basic process of evaluation was
to use the training set to train the model and obtain a classifier
every epoch. Then, the best classifier was selected based on the
validation set and was finally evaluated on the test set.

B. Parameter Settings and Evaluation Metrics

In the experiments of the previous study [17] for DA-RNN,
the length of time window 10 yielded the best results. Hence, in
this study, all the compared models use the same length of time
window as 10 for comparison. In addition, other parameter
settings for the baseline models are selected based on optimal
experimental results. Other parameter settings of our VPA-RNN
model are shown in Table I.

To measure the effectiveness of various methods for stock
index prediction, we consider three different evaluation metrics:
root mean square error (RMSE), mean absolute error (MAE),
and coefficient of determination (R2). Specifically, the smaller
the RMSE and MAE, the closer the predicted value to the true
value; the closer the coefficient R2 to 1, the better the fit of the
model.

496

TABLE I. PARAMETER SETTINGS

MAE =
1

𝑁
∑  

𝑁

𝑖=1

|�̂�𝑖 − 𝑦𝑖|, (21)

RMSE = √
1

𝑁
∑  

𝑁

𝑖=1

(�̂�𝑖 − 𝑦𝑖)
2, (22)

𝑅2 = 1 −
∑  𝑛

𝑖=1 (𝑦𝑖 − �̂�𝑖)
2

∑  𝑛
𝑖=1 (𝑦𝑖 − �̅�)2

, (23)

where 𝑦𝑖 is the true value, �̅� is the mean value of all true values,
and �̂�𝑖 is the predicted value.

C. Results

To evaluate the effectiveness of the proposed VPA-RNN, we
conduct experiments to compare our results with those of the
compared models, including a standard long short-term me-
mory neural network (LSTM), the encoder-decoder network
(Encoder-Decoder) proposed in [32], we change it to perform
stock index prediction as Qin et al. did in [17], and the dual-stage
attention-based recurrent neural network (DA-RNN) proposed
in [17]. Furthermore, we compare our proposed VPA-RNN
model against the setting that only employs its positional
attention mechanism without the volume-aware attention
mechanism (PA-RNN) and the setting that only employs its
volume-aware attention mechanism without the positional
attention mechanism (VA-RNN). All models take the same input
for a fair comparison. For all the compared methods, we train
them ten times and report their average performance. The
comparison results of all the models over the two datasets are
shown in Table II.

As illustrated in Table II, the DA-RNN model outperforms
Encoder-Decoder, which has no attention layer, indicating the
effectiveness of the dual-stage attention mechanism since it is
capable to adaptively extract relevant features and select relevant
hidden states across all time steps. In addition, our proposed PA-
RNN, VA-RNN, and VPA-RNN all show better performance
than Encoder-Decoder and DA-RNN. This suggests that taking
the position of each time step into account and extending the
attention mechanism to be volume-aware can both provide more
reliable attention weights to make more accurate predictions.
With the integration of the positional attention as well as the
volume-aware attention, our proposed VPA-RNN achieves the
best MAE, RMSE, and R2, that increase of 11.76%, 6.80%, and
0.41% and 56.81%, 47.83%, and 15.82% for the S&P 500 and
DJIA datasets, respectively, compared to the DA-RNN model,
indicating the effectiveness of our overall model structure.

TABLE II. STOCK INDEX PREDICTION RESULTS OVER THE S&P 500

DATASET AND DJIA DATASET (BEST PERFORMANCE DISPLAYED IN BOLDFACE)

Models
S&P 500 Dataset DJIA Dataset

MAE
(×𝟏𝟎−𝟐%)

RMSE
(×𝟏𝟎−𝟐%)

𝑹𝟐
(×𝟏𝟎−𝟏%)

MAE
(×𝟏𝟎−𝟐%)

RMSE
(×𝟏𝟎−𝟐%)

𝑹𝟐
(×𝟏𝟎−𝟏%)

LSTM 0.96 1.41 9.77 1.81 2.19 9.18

Encoder-

Decoder 1.28 1.75 9.65 2.92 3.34 8.09

DA-

RNN
1.02 1.47 9.75 2.57 3.22 8.22

PA-

RNN
0.98 1.42 9.77 1.98 2.75 8.70

VA-

RNN
0.94 1.38 9.78 1.49 2.05 9.28

VPA-

RNN
0.90 1.37 9.79 1.11 1.68 9.52

For visual comparison, we show the prediction results of
Encoder-Decoder, DA-RNN, and VPA-RNN over the DJIA
dataset in Fig. 3. We can see that our proposed VPA-RNN
generally fits the ground truth much better than Encoder-
Decoder and DA-RNN, which shows the proposed volume-
aware positional attention mechanism is indeed effective in the
problem of stock index prediction.

Figure 3. DJIA Index vs. Time. Encoder-Decoder (top) and DA-RNN

(middle) are compared with VPA-RNN (bottom).

V. CONCLUSION

In this paper, we note two important factors (e.g., trading
volume and position), which can potentially enhance the

Parameter Parameter Description Value

lr Learning rate 0.001

epoch Number of epochs 1000

batch_size Batch size 128

encoder_lstm_unit Neuron number in encoder LSTM 64

decoder_lstm_unit Neuron number in decoder LSTM 64

activation Activation function Tanh

497

attention mechanism for stock index prediction. Motivated by
the observation, this study proposes a novel volume-aware
positional attention recurrent neural network (VPA-RNN).
Specifically, we add a position vector for each time step in the
input sequences into the calculation formula of attention score to
take the important spatial information into account. Then, we
incorporate the trading volume into the original attention
distribution to achieve attention recalibration. Based upon these
two improvements, the VPA-RNN can take advantage of the
features of stock index prediction and thus provide more reliable
attention weights to make more accurate predictions. Extensive
experiments on the S&P 500 dataset and the DJIA dataset
demonstrated the superior performance of the proposed VPA-
RNN relative to the original LSTM, Encoder-Decoder, and DA-
RNN, indicating the VPA-RNN model has broad application
prospects and is highly competitive. In summary, this work
provides new insight into attention-based stock index prediction
research and can help to develop better predicting models.

In the future, we will investigate whether feeding more
technical indicators and basic information or adding predictions
based on stock-related news can result in more accurate
predictions. Furthermore, it is also promising to apply the
proposed model to more granular trading data, such as hourly or
per-minute transaction data.

ACKNOWLEDGMENT

This work was supported by National Key R&D Program of
China (2019YFB1804400).

REFERENCES

[1] L. Li, S. Leng, J. Yang, and M. Yu, “Stock market autoregressive dy-

namics: a multinational comparative study with quantile regression,”
Mathematical Problems in Engineering, vol. 2016, 2016.

[2] M. Zhang, X. Jiang, Z. Fang, Y. Zeng, and K. Xu, “High-order hidden

markov model for trend prediction in financial time series,” Physica A:
Statistical Mechanics and its Applications, vol. 517, pp. 1–12,2019.

[3] Y. Song and J. Lee, “Importance of event binary features in stockprice

prediction,” Applied Sciences, vol. 10, no. 5, p. 1597, 2020.

[4] R. Akita, A. Yoshihara, T. Matsubara, and K. Uehara, “Deep learning for
stock prediction using numerical and textual information,” in2016

IEEE/ACIS 15th International Conference on Computer andInformation
Science (ICIS). IEEE, 2016, pp. 1-6.

[5] Q. Gao, “Stock market forecasting using recurrent neural network,” Ph.D.
dissertation, University of Missouri–Columbia,2016.

[6] A. M. Rather, A. Agarwal, and V. Sastry, “Recurrent neural networkand

a hybrid model for prediction of stock returns,” Expert Systemswith
Applications, vol. 42, no. 6, pp. 3234–3241, 2015.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] T. Fischer and C. Krauss, “Deep learning with long short-term memory
networks for financial market predictions,” European Journal of

Operational Research, vol. 270, no. 2, pp. 654–669, 2018.

[9] Y. Gu, T. Shibukawa, Y. Kondo, S. Nagao, and S. Kamijo, “Prediction of
stock performance using deep neural networks,” Applied Sciences, vol.

10, no. 22, p. 8142, 2020.

[10] L. Zhang, C. Aggarwal, and G.-J. Qi, “Stock price prediction via
discovering multi-frequency trading patterns,” in Proceedings of the 23rd

ACM SIGKDD international conference on knowledge discovery and
data mining, 2017, pp. 2141–2149.

[11] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,

vol. 5, no. 2, pp. 157–166, 1994.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[13] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in 2013 IEEE international conference on

acoustics, speech and signal processing. Ieee, 2013, pp. 6645–6649.

[14] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2015, pp. 3128– 3137.

[15] G. Liu and X. Wang, “A numerical-based attention method for stock
market prediction with dual information,” Ieee Access, vol. 7, pp. 7357–

7367, 2018.

[16] H. Li, Y. Shen, and Y. Zhu, “Stock price prediction using attentionbased
multi-input lstm,” in Asian Conference on Machine Learning. PMLR,

2018, pp. 454–469.

[17] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell, “A dual-
stage attention-based recurrent neural network for time series prediction,”

arXiv preprint arXiv:1704.02971, 2017.

[18] Y. Yu and Y.-J. Kim, “Two-dimensional attention-based lstm model for
stock index prediction,” Journal of Information Processing Systems, vol.

15, no. 5, pp. 1231–1242, 2019.

[19] Y. Chen, W. Lin, and J. Z. Wang, “A dual-attention-based stock price

trend prediction model with dual features,” IEEE Access, vol. 7, pp. 148
047–148 058, 2019.

[20] Q. Chen, W. Zhang, and Y. Lou, “Forecasting stock prices using a hybrid

deep learning model integrating attention mechanism, multilayer
perceptron, and bidirectional long-short term memory neural network,”

IEEE Access, vol. 8, pp. 117 365–117 376, 2020.

[21] J. Qiu, B. Wang, and C. Zhou, “Forecasting stock prices with long- short
term memory neural network based on attention mechanism,” PloS one,

vol. 15, no. 1, p. e0227222, 2020.

[22] H. Li, Y. Shen, and Y. Zhu, “Stock price prediction using attention-based
multi-input lstm,” in Asian Conference on Machine Learning. PMLR,

2018, pp. 454–469.

[23] Y. Zhang, V. Zhong, D. Chen, G. Angeli, and C. D. Manning, “Position-
aware attention and supervised data improve slot filling,” in Proceedings

of the 2017 Conference on Empirical Methods in Natural Language
Processing, 2017, pp. 35–45.

[24] B. Yang, Z. Tu, D. F. Wong, F. Meng, L. S. Chao, and T. Zhang,

“Modeling localness for self-attention networks,” arXiv preprint arXiv:
1810.10182, 2018.

[25] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” arXiv preprint arXiv:

1506.07503, 2015.

[26] C. M. Lee and B. Swaminathan, “Price momentum and trading volume,”
the Journal of Finance, vol. 55, no. 5, pp. 2017–2069, 2000.

[27] J. Yu, J. Jiang, and R. Xia, “Entity-sensitive attention and fusion network

for entity-level multimodal sentiment classification,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 28, pp.

429–439, 2019.

[28] V. Piratla, S. Sarawagi, and S. Chakrabarti, “Topic sensitive attention on
generic corpora corrects sense bias in pretrained embeddings,” arXiv

preprint arXiv: 1906.02688, 2019.

[29] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation
models,” in Proceedings of the 2013 conference on empirical methods in

natural language processing, 2013, pp. 1700–1709.

[30] K. Cho, B. Van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”

arXiv preprint arXiv: 1409.1259, 2014.

[31] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” arXiv preprint arXiv: 1409.3215, 2014.

[32] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, ̈
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn

encoder-decoder for statistical machine translation,” arXiv preprint arXiv:
1406.1078, 2014.

498

DeepSCC: Source Code Classification Based on Fine-Tuned RoBERTa

Guang Yang Yanlin Zhou Chi Yu Xiang Chen∗

School of Information Science and Technology, Nantong University, Nantong, China
1930320014@stmail.ntu.edu.cn 1159615215@qq.com yc struggle@163.com xchencs@ntu.edu.cn

Abstract

In software engineering-related tasks (such as program-
ming language tag prediction based on code snippets from
Stack Overflow), the programming language classification
for code snippets is a common task. In this study, we pro-
pose a novel method DeepSCC, which uses a fine-tuned
RoBERTa model to classify the programming language type
of the source code. In our empirical study, we choose a cor-
pus collected from Stack Overflow, which contains 224,445
pairs of code snippets and corresponding language types.
After comparing nine state-of-the-art baselines from the
fields of source code classification and neural text classi-
fication in terms of four performance measures (i.e., Accu-
racy, Precision, Recall, and F1), we show the competitive-
ness of our proposed method DeepSCC.

1 Introduction
Recently, multiple programming languages (such as

Java, Python, C++) are often used together in the large-scale
software development process, since different development
tasks often use different programming languages. When de-
velopers ask questions on Stack Overflow [1] [2], the an-
swers to the questions are closely related to the type of pro-
gramming language. Therefore, Stack Overflow needs to
use the correct programming language tag of posts to match
the related answers for users, and the source code classifi-
cation task can effectively solve this problem.

In the previous studies, this task is often modeled as a
text classification problem. Then machine learning meth-
ods can be used to classify the source code’s language type.
For example, Khasnabish et al. [3] used a Naive Bayesian
classifier. Alrashedy et al. [4] used a random forest classi-
fier and XGBoost. Motivated by the research progress of
neural text classification and code semantic learning [5],
we propose a novel method DeepSCC by fine-tuning the
pre-trained model RoBERTa [6] to perform the source code
classification task.

To verify the effectiveness of our proposed method
DeepSCC, we choose a corpus collected from Stack Over-
flow, which contains 224,445 pairs of code snippets and
corresponding language types. We first perform data pre-

* Xiang Chen is the corresponding author.
DOI reference number: 10.18293/SEKE2021-005

processing on this corpus, such as word segmentation, dis-
carding noisy code snippets. Then, we use the corpus to
fine-tuning the RoBERTa model [6]. We compared Deep-
SCC with nine state-of-the-art baselines. For these chosen
baselines, two baselines are selected from the source code
classification field [4, 7], and the remaining baselines are
selected from the neural text classification field [8–12]. In
terms of four performance measures (Accuracy, Precision,
Recall, and F1), we find DeepSCC can outperform these
baselines.

The main contributions of our study can be summarized
as follows:

(1) We propose a novel method DeepSCC by fine-tuning
the pre-trained model RoBERTa [6], which can classify the
language type of the source code. We share our trained clas-
sification model for other researchers to follow and replicate
our study1.

(2) We choose corpus gathered from Stack Overflow as
our experimental subject. Then we choose two baselines
proposed by Alrashedy et al. [4] (i.e., in the source code
classification field) and seven baselines based on TextCNN
and Transformer (i.e., in the neural text classification field).
Final experimental results show that DeepSCC can improve
the performance of source code classification.

2 Related Work
In previous studies on source code classification,

Kennedy et al. [13] proposed a software language model
to recognize the entire source code file from Github. Their
classifier is based on five natural language statistical mod-
els. They gathered corpus from GitHub and considered 19
programming languages. Khasnabish et al. [3] collected
more than 20,000 source code files. These source codes
are downloaded from multiple repositories in GitHub. The
model uses the Bayesian classifier and aims to predict ten
programming languages. Klein et al. [14] collected 41,000
source code files from GitHub as the training set and ran-
domly selected 25 source code files as the test set. How-
ever, their methods, which are based on supervised learning
and feature selection methods, can only achieve 48% ac-
curacy at most. Alrashedy et al. [7] proposed the method
SCC to classify source code snippets via Naive Bayes clas-
sifier, with an accuracy of about 75%. This method can
also distinguish programming language families (such as

1https://huggingface.co/NTUYG/DeepSCC-RoBERTa

499

C, C# and C++) with an accuracy of 80%, and can iden-
tify programming language versions (such as C#3.0, C#4.0,
and C#5.0) with an accuracy of 61%. Recently, Alrashedy
et al. [4] classified the language types for code snippets in
Stack Overflow. They used the random forest classifier and
XGBoost to build classifiers. Different from the previous
studies, we are the first to introduce a pre-trained model
to this task and then proposed a novel method DeepSCC.
The final results show the competitiveness of our proposed
method when compared to state-of-the-art baselines.

3 Method
3.1 Overview of DeepSCC

In this section, we show the framework of DeepSCC
in Figure 1. In particular, we first preprocess the corpus,
including data cleaning, filtering, and word segmentation.
Then we fine-tune the pre-trained model RoBERTa to pre-
dict the type of programming language.

3.2 Data Preprocessing Phase

In this phase, the data cleaning and filtering are con-
sistent with previous work [4]. However, we find that the
previous code classification methods treat the code word
as the basic unit. Its disadvantage is that it cannot effec-
tively solve the out-of-vocabulary (OOV) problem. That
means there exist some words, which are not in the train-
ing set but in the testing set. To solve the OOV problem, we
use the Byte-Pair Encoding (BPE) proposed by Sennrich et
al. [15]. It is a mixture between character-level and word-
level representations. Using BPE can avoid a large number
of ”[UNK]” symbols in the test set, as ”[UNK]” symbols
may decrease the performance of the pre-trained model. For
example, the original code snippet is “def split lines(s): re-
turn s.split(‘\n’)”, and the result after using BPE segmen-
tation is “def”, “Ġsplit”, “ ”, “lines”, “(”, “s”, “)”, “:”,
“Ġreturn”, “Ġs”, “.”, “split”, “(”, “’”, “Ċ”, “’”, “)”. Here
Ġ means that it is the first subword of a subword division.

3.3 Fine-tuning Model Phase

In this phase, we continue to pre-train the RoBERTa
model on the code corpus with the MLM (mask language
model) method, and then use the pre-trained model to fine-
tune the code classification task. RoBERTa [6] is sim-
ilar to Bert (Bidirectional Encoder Representations from
Transformers) [12], and DeepSCC uses Transformer as the
method’s main framework because Transformer can more
thoroughly capture the bidirectional relationship in the text.
In particular, we treat the code as text and use the method
MLM to constantly fine-tuning the roberta-base model2 on
the corpus to obtain our pre-trained language model. Dur-
ing the fine-tuning process, we do not tune the parameters

2https://huggingface.co/roberta-base

of the model’s bias and LayerNorm.weight weights, and use
the AdamW method to fine-tune the other parameters.

Consider that different layers of the neural network can
capture different levels of syntactic and semantic informa-
tion. In our study, we choose the last layer of Encoder as the
feature representation of the whole code snippet, feed it into
the linear layer, and obtain the model prediction label by
Softmax, which can be used to calculate the cross-entropy
loss with the real label. Then we use AdamW as the op-
timizer to perform gradient descent and back propagation
to update the model parameters. Finally, we can obtain our
fine-tuned model.

4 Experiment
4.1 Experimental Subject

We choose the corpus shared by Alreshedy et al. [7]
as our experimental subject. Alreshedy et al. gathered
code snippets from 21 programming languages (i.e., Bash,
C, C#, C++, CSS, Haskell, HTML, Java, JavaScript, Lua,
Objective-C, Perl, PHP, Python, R, Ruby, Scala, SQL,
Swift, Visual Basic, and Markdown). After manual anal-
ysis on their gathered corpus, we find: (1) The number of
the code snippets related to Markdown is only 1,210, which
is significantly lower than that of other languages. (2) In
the code snippets related to HTML, we find most of these
code snippets also include CSS and JavaScript code seg-
ments. Therefore, we remove the code snippets related to
these two languages. Finally, we use 179,556 code snip-
pets for model training and 44,889 code snippets for model
testing via stratified sampling.

4.2 Performance Measures

To compare the performance between our proposed
method and the baselines, we choose the following four
performance measures: Accuracy, Precision, Recall, and
F1. Before introducing these measures, we first illustrate
the following concepts:

• True Positive (TP): The positive sample is successfully
predicted as positive.

• True Negative (TN): The negative sample is success-
fully predicted as negative.

• False Positive (FP): The negative sample is wrongly
predicted as positive.

• False Negative (FN): The positive sample is wrongly
predicted as negative.

Then the four performance measures can be computed as
follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

500

Figure 1: The framework of our proposed method DeepSCC

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2× Precision × Recall

Precision + Recall
(4)

Accuracy is the most intuitive performance measure, and
it is the ratio of the correctly predicted observations to the
total observations. Precision is the ratio of the correct pre-
dicted positive observations to the total predicted positive
observations. Recall indicates how many positive examples
in the sample are predicted correctly. F1 is the average of
Precision and Recall.

4.3 Baselines

In the RQ, we first compare our proposed method Deep-
SCC with two state-of-the-art methods from source code
classification (i.e., Random Forest and XGBoost meth-
ods used in SCC++ [4]). We also choose TextCNN [8]
and Transformer [11] with/without pre-trained word vec-
tors (i.e., FastText [9] or Word2Vec [10]) from the neural
text classification field as baselines. Besides, we also select
BERT [12] as a baseline for the pre-trained model.

4.4 Implementation Details

In our study, we use Pytorch 1.6.0 to implement our pro-
posed method. For baselines in the source code classifi-
cation field, we run their shared code on our preprocessed
corpus. For baselines in the neural text classification field,
we re-implemented these baselines according to the corre-
sponding description by Pytorch. For BERT and RoBERTa,
we pre-train the model in the transformer library.

It needs to be noticed that pre-trained models (i.e.,
BERT and RoBERTa) use the method BPE for code seg-
mentation by default. For other baselines, we choose the
word tokenize method provided by the NLTK library for
code segmentation.

We run all the experiments on a computer with an
Inter(R) Core(TM) i7-9750H 4210 CPU and a GeForce
GTX3090 GPU with 24 GB memory. The running OS plat-
form is Windows 10.

Table 1: The comparison results between DeepSCC and
baselines

Method Accuracy(%) Precision(%) Recall(%) F1(%)
Random Forest 78.728 79.362 78.825 78.874

XGBoost 78.803 79.925 78.891 79.217
TextCNN 82.662 83.561 82.706 82.964

TextCNN+FastText 84.201 84.719 84.285 84.369
TextCNN+Word2Vec 84.600 85.071 84.677 84.764

Transformer 79.035 79.801 79.107 79.272
Transformer+FastText 75.624 76.026 75.526 75.986

Transformer+Word2Vec 74.325 75.050 73.243 73.765
BERT 86.946 87.292 87.004 87.116

DeepSCC 87.202 87.424 87.276 87.135

4.5 Result Analysis

Table 1 shows the comparison results between DeepSCC
and baselines. Table 2 shows the detailed results for each
language type in terms of three performance measures (Pre-
cision, Recall, and F1) and support (i.e., the number of code
snippets related to the given programming language in the
test set).

According to the analysis of the experimental results, we
can find: (1) From Table 1, we can find that our method
can outperform baselines and achieves the best performance
in source code classification. Specifically, it can achieve a
maximum performance improvement of 17%, 16%, 19%,
and 18% in terms of Accuracy, Precision, Recall, and F1
respectively. The results show that the two-way transformer
encoder can learn the deep semantics of the code snippets
more effectively, which is helpful to obtain a better clas-
sification performance. (2) Not all the baselines in the
neural text classification field outperform the baselines in
the code classification field. That means some traditional
machine learning methods can outperform deep learning-
based methods in this task. (3) For baselines in the field
of neural text classification, Transformer is not as effective
as TextCNN in code classification. This may be because
Transformer learns too little code semantics. After adding
pre-trained word vectors (such as Word2Vec and FastText),
the performance of TextCNN can be slightly improved, but
the performance of Transformer is decreased. This shows
that pre-trained word vectors can better capture the feature

501

Table 2: The detailed performance for each programming
language

Precision Recall F1 Support
Bash 0.89 0.84 0.87 2427

C 0.79 0.84 0.81 2396
C# 0.82 0.83 0.83 2407

C++ 0.82 0.82 0.82 2442
CSS 0.85 0.89 0.87 2362

Haskell 0.91 0.94 0.93 2320
Java 0.85 0.87 0.86 2417

JavaScript 0.83 0.82 0.82 2459
Lua 0.92 0.90 0.91 1647

Objective-C 0.90 0.94 0.92 2410
Perl 0.87 0.85 0.86 2378
PHP 0.81 0.86 0.83 2455

Python 0.85 0.87 0.86 2445
R 0.92 0.93 0.92 2362

Ruby 0.90 0.85 0.88 2390
Scala 0.94 0.92 0.93 2341
SQL 0.86 0.84 0.85 2410
Swift 0.96 0.92 0.94 2474

VB.Net 0.92 0.85 0.88 2347

representation of the code when the structure is CNN in
this task. (4) From Table 2, we can find that DeepSCC
can achieve high performance in most of the programming
languages. Then we analyze the cause of the poor perfor-
mance when the programming languages are C/C++ and
CSS/JavaScript. Specifically, 8% of the code snippets with
the actual category of C are predicted to be C++, and 10%
of the code snippets with the actual category of C++ are
predicted to be C. Since C++ is almost a superset of C, this
indicates that some C++ code snippets and C code snip-
pets are indistinguishable, which poses a challenge for the
source code classification problem. 6% of the code frag-
ments with the actual category of CSS are predicted to be
JavaScript, and 7% of the code snippets with the actual cat-
egory of JavaScript are predicted to be CSS. Because CSS
as a style language often appears in the scripting language
JavaScript, it is used to dynamically update page elements.
This leads to the simultaneous appearance of JavaScript and
CSS in the code snippets, which also poses another chal-
lenge for the source code classification problem.

5 Conclusion
In this paper, we propose a novel method DeepSCC for

source code classification, which is based on fine-tuned
RoBERTa [6]. To show the effectiveness of DeepSCC, we
used four widely used performance measures to evaluate the
performance of DeepSCC. The results show the competi-
tiveness of DeepSCC when compared to nine state-of-the-
art baselines from the fields of source code classification
and neural text classification.

Acknowledgement
Guang Yang and Yanlin Zhou have contributed equally

to this work and they are co-first authors. This work is sup-
ported in part by Natural science research project in Univer-
sities of Jiangsu Province (18KJB520041).

References
[1] X. Chen, C. Chen, D. Zhang, and Z. Xing, “Sethesaurus: Wordnet in

software engineering,” IEEE Transactions on Software Engineering,
2019.

[2] K. Cao, C. Chen, S. Baltes, C. Treude, and X. Chen, “Automated
query reformulation for efficient search based on query logs from
stack overflow,” in Proceedings of the International Conference on
Software Engineering, 2021.

[3] J. N. Khasnabish, M. Sodhi, J. Deshmukh, and G. Srinivasaraghavan,
“Detecting programming language from source code using bayesian
learning techniques,” in International Workshop on Machine Learn-
ing and Data Mining in Pattern Recognition, 2014, pp. 513–522.

[4] K. Alrashedy, D. Dharmaretnam, D. M. German, V. Srinivasan, and
T. A. Gulliver, “Scc++: predicting the programming language of
questions and snippets of stack overflow,” Journal of Systems and
Software, vol. 162, p. 110505, 2020.

[5] D. Chen, X. Chen, H. Li, J. Xie, and Y. Mu, “Deepcpdp: Deep learn-
ing based cross-project defect prediction,” IEEE Access, vol. 7, pp.
184 832–184 848, 2019.

[6] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A
robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[7] K. Alreshedy, D. Dharmaretnam, D. M. German, V. Srinivasan, and
T. A. Gulliver, “Scc: automatic classification of code snippets,” arXiv
preprint arXiv:1809.07945, 2018.

[8] Y. Kim, “Convolutional neural networks for sentence classification,”
CoRR, vol. abs/1408.5882, 2014.

[9] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association
for Computational Linguistics, vol. 5, pp. 135–146, 2017.

[10] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their composition-
ality,” arXiv preprint arXiv:1310.4546, 2013.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
arXiv preprint arXiv:1706.03762, 2017.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understand-
ing,” arXiv preprint arXiv:1810.04805, 2018.

[13] J. K. Van Dam and V. Zaytsev, “Software language identification with
natural language classifiers,” in Proceedings of International Confer-
ence on Software Analysis, Evolution, and Reengineering, 2016, pp.
624–628.

[14] D. Klein, K. Murray, and S. Weber, “Algorithmic programming lan-
guage identification,” arXiv preprint arXiv:1106.4064, 2011.

[15] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” arXiv preprint arXiv:1508.07909,
2015.

502

Multi-Granularity Code Smell Detection using Deep
Learning Method based on Abstract Syntax Tree

Weiwei Xu, Xiaofang Zhang
School of Computer Science and Technology

Soochow University
Suzhou, China

Email: xfzhang@suda.edu.cn

Abstract—Code smell refers to poor design that is perceived
to have a negative impact on readability and maintainability
during software evolution, and it implies the possibility of
refactoring. Therefore, the effective detection of code smell is
of great importance. Many approaches including metric-based,
heuristic-based, and machine learning approaches have been
proposed to detect code smells. However, all these methods
use manually selected features, which is highly subjective and
difficult to select the most appropriate features. Recently, deep
learning methods without extensive feature engineering have
been proposed. Nevertheless, these token-based approaches may
not achieve good results because they ignore many semantic
and structural information of source code. To this end, we
propose a novel deep learning approach based on abstract
syntax trees(ASTs) to detect multi-granularity code smells, which
captures the semantic and structural features of code fragments
from the ASTs. The experimental results on four types of smells
show that this approach achieves better results than the state-
of-the-art approaches for detecting code smells with different
granularities.

Index Terms—code smell, abstract syntax tree, deep learning

I. INTRODUCTION

Code smell refers to some bad designs in the code, which
often has a bad effect on the readability and maintainability of
the software. Furthermore, code smell suggests the possibility
of refactoring [1], so detecting code smells in a timely and
effective manner can be a guide for developers in refactoring.
Software engineering researchers have done a lot of research
on the definition, causes, and effects of code smell [2].

A number of approaches have been proposed to detect
different types of code smells in source code. Metric-based
[3] and heuristic-based [4] approaches are the traditional ways
to detect code smells. However, most of them have strong
limitations because they all rely on manually designed heuris-
tics to obtain final results from manually selected features.
Picking the most appropriate features and building heuristics
are very difficult, and computing the corresponding metrics for
the target source code is a considerable amount of work. In
recent years, many scholars have proposed to use machine
learning methods such as Support Vector Machine, Naive
Bayes and Logistic Regression to detect code smells. Although
machine learning methods avoid manually designed heuristics

DOI reference number: 10.18293/SEKE2021-014

[5], existing machine learning methods for detecting code
smells are still in need of further research and improvement
[6]. Machine learning methods require a collection of features
extracted from the source code, i.e., they still require external
tools to compute many metrics of source code.

Recently, Sharma et al. experimented with a deep learning
approach without extensive feature engineering to detect code
smells and verified the feasibility of the approach on several
smells [7]. Deep learning models can learn intrinsic features
during training to classify samples, but existing deep learning
methods have some limitations as follows.

• The deep learning models are token-based. The token-
based code representation may lose the rich semantic and
structural information in the source code.

• Existing methods focus only on code smells with small
granularity, lack of experimentation on code smells with
larger granularity.

• A universally well-performing deep learning model was
not found for different code smells.

To address these problems, we propose a novel abstract
syntax trees(ASTs) based code smell detection approach(AST-
CSD). The approach extracts the ASTs from the code frag-
ments and forms sequences of statement trees by splitting
the complete AST into several subtrees. First, we encode
the sequences of statement trees and then extract semantic
and structural features from the sequences using bi-directional
GRU [8] and maximum pooling. Final vector representations
of code fragments can be obtained after that. At last, the
final detection result is derived through several fully-connected
layers. We apply the AST-based approach to 500 high-quality
Java projects from GitHub. Better results are achieved than the
state-of-the-art deep learning models, not only on one type of
small-grained code smells but also on three types of larger-
grained code smells.

The main contributions of this paper are as follows.

• We propose a deep learning approach based on ASTs to
detect code smells. To the best of our knowledge, we are
the first to conduct research on code smell detection using
deep learning methods based on ASTs.

• In addition to smells with small granularity, we focus on
detection of code smells with larger granularity, bridging

503

Github Java Project

Smell

Detection

Code Fragments

Abstract Syntax
Tree

Statement Tree
Sequence

ASTNN

Result

Smell Report

CodeSplit

Parse

Split

a. Data preprocessing b. Decomposition of ASTs c. Training of ASTNN

Fig. 1. Overview of AST-CSD

the gap of previous work and enabling detection of multi-
granularity code smells.

• For different code smells, we conduct extensive experi-
ments to find out the parameter configuration that makes
the model perform best.

The rest of this paper is organized as follows. Section II
introduces the background; Our AST-CSD approach is intro-
duced in Section III; Section IV describes the experimental
setup and results are in Section V; The conclusion of this
paper and the future work are presented in Section VI.

II. BACKGROUND

A. Code Smell

Fowler and Beck first introduced the notion of code smell
[1] and defined it as “certain structures in the code that
suggest (or sometimes scream) for refactoring.” Code smell
affects the readability and maintainability of programs and has
an impact on the software development and evolution process.

Code smells can be divided into implementation [1], design
[9] and architecture [10] smells in the order of size according
to their granularity or scope [7]. Implementation Smells have
the smallest granularity and scope, and they usually occur on
methods. Design Smells, which are in the middle granularity,
typically occur at the class level. Architecture smells have the
greatest granularity, often involving multiple components, and
their impact is at the system level.

B. Abstract Syntax Tree

An abstract syntax tree (AST) is a tree representation of
the abstract syntactic structure of source code written in a
programming language [11]. The abstract syntax tree clearly
describes the structure of the source code. In many existing
studies, source code is parsed into abstract syntax trees to
produce code representations that capture the semantic rela-
tionships between different code elements [12], [13]. Code
representation based on abstract syntax trees is now being
used for code clone detection [11], defect prediction [14],
auto program repair [15], and other problems. In metric-based
code smell detection methods, abstract syntax trees may also
be used to compute a set of source code metrics [7], [16].

However, these methods do not take advantage of the rich
semantic and structural information in the abstract syntax trees.

C. Motivation

Existing deep learning methods for code smell detection are
token-based. The token-based code representation approaches
treat code fragments as natural language texts. Although
code fragments have some similarity with natural language
texts, code fragments should not be treated simply as natural
language texts because there is rich structural information in
code fragments [17]. For example, two statements located
closely to each other, one outside the loop body and one inside
the loop body, are semantically disjoint. But the token-based
approach does not reflect this disjoint relationship well.

Recent work has demonstrated the superiority of an AST-
based approach to code representation over a token-based
approach [17], [18]. Intuitively, the rich semantic and struc-
tural information in AST will help us in smell detection. For
example, when we detect the code smells such as complex
method, there are three adjacent loop statements in the method,
and the token-based method does not clearly show whether the
three loop statements are nested or not. By contrast in AST,
we can determine by observing whether the three statements
are at the same depth of the tree. Whether the loop statements
are nested or not obviously is critical to judge the complexity
of the method. Therefore, we believe that more semantic and
structural information in the AST-based code representation
approach is of great help in code smell detection.

III. APPROACH

This section introduces the method we use to detect code
smells. Figure 1 gives an overview of our method.

A. Data preprocessing

We first use the CodeSplit1 to split all the projects down-
loaded from Github into class-level and method-level code
fragments. Then we use Designite [19] to find out the smells
contained in the source code and generate smell reports. Based
on the smell report, we divide the code fragments that have

1https://github.com/tushartushar/CodeSplitJava

504

Method
Declarat ion

modifiers protected

finalize

body Try
Statement

catches

block

CatchClause

Statement
Expression

CatchClause
Parameter

IOExcept ion

e

Method
Invocat ion flush

...

Fig. 2. The process of splitting a complete abstract syntax tree into statement trees

Fig. 3. The structure of ASTNN

been split up to corresponding granularity into two categories,
one containing smells and one without.

B. Decomposition of ASTs

We use Javalang2 to parse the code fragment and get the
AST of it, and then we store the AST with its corresponding
label. Figure 2 shows the decomposition of an AST, the left
side of the figure shows the code fragment of a method, and the
right side shows its complete abstract syntax tree. According
to the method of Jian Zhang et al. [17], we split the each
statement like Try statement into two parts which has a header
and a body containing a lot of statements. The statement trees
are marked with dashed lines in Figure 2, and the red node is

2https://github.com/c2nes/javalang

the root node of the statement tree. By preorder traversal, we
obtain a sequence of statement trees. We store the sequences of
statement trees and their corresponding labels of whether they
contain the smell, which are later used to train the ASTNN
model.

C. Training of ASTNN

We use the ASTNN model proposed in [17] and Figure
3 shows the structure of it. The model includes three parts:
encoding statement trees, representing statement sequences
and classification.

1) Encoding Statement Trees: To obtain vector representa-
tions of statements, we use an RvNN-based statement encoder.
There are many syntactic symbols in ASTs, and we obtain
all the symbols in ASTs as a corpus by traversing ASTs in
preorder. Then we use the word2vec [20] to learn unsupervised
vectors of the symbols. Given a statement tree t, let n denote
a non-leaf node and let C denote the number of its children
nodes. In the beginning, the lexical vector of node n can be
obtained by:

vn =We
>xn (1)

where We ∈ R|V |×d is the pre-trained embedding parameters
with the vocabulary size V and the embedding dimension of
symbols d, vn is the embedding of symbol n and xn is its one-
hot representation. Then the vector representation of node n
can be calculated using the following equation:

h = σ(Wn
>vn +

∑
i∈[1,C]

hi + bn) (2)

where Wn ∈ Rd×k is the weight matrix and k is the encoding
dimension, hi is the hidden state of its each child, bn is a
bias term, σ is the activation function, for which we use
identify function in the method, and h is the latest hidden state.
We can recursively compute the vector representations of all
nodes in the statement tree t. Finally, we obtain the vector
representation of the entire statement tree t by maximum
pooling sampling:

et = [max(hi1),max(hi2), ...,max(hik)], i = 1, ...N (3)

where N is the number of nodes in t.

505

2) Representing the Sequence of Statement Trees: In the
previous procedure, we can get vector representations of
all statement trees, so for each AST, we have a sequence
of statement tree vectors. Using this sequence of statement
tree vectors, we then use bi-directional GRU [8] to capture
the naturalness of statements. Finally, we sample the most
important features of these states by means of the max pooling.
At this point, we obtain a vector representation of the code
fragment.

3) Classification: After obtaining the vector representations
of the code fragments, we feed them into a neural network
consisting of several fully connected layers and classify them
into two classes, one containing smells and one without.

IV. EXPERIMENTAL SETTINGS

A. Projects and datasets

We choose to use the same dataset, 500 high-quality Java
projects covering a variety of functions from Github, as used
in [7]. Since implementation smells and design smells occur
at the method level and class level, respectively, and a class
usually contains many methods, if the same number of projects
are used for both types of smells in the experiment, the former
will have a much larger sample size. Consequently, for the im-
plementation smells with small granularity(i.e., method level),
we select 100 projects randomly from 500 projects, while for
smells with large granularity, we use all 500 projects. For
samples with different granularity, we process them separately:
removing duplicate samples and deleting overlong samples
with the length over one standard deviation away from the
mean. The goal of this procedure is to keep the training set
within a reasonable range and avoid wasting memory and
processing resources.

We divide all samples into three parts, 70% as the training
set, 10% as the validation set, and 20% as the test set. To
reduce the impact of the extreme imbalance, we balance the
positive and negative samples in the training set. The number
of both positive and negative samples in the training set is
limited to 5000, and if there are more negative samples than
positive samples, the number of negative samples is reduced
to the same as the positive samples. Table I shows the number
of positive and negative samples used in our experiment.

TABLE I
NUMBER OF POSITIVE(P) AND NEGATIVE(N) SAMPLES

Training Set Validation Set Test set

Smell P N P N P N

Insufficient Modularization(IM) 5000 5000 927 14170 1857 27341
Deficient Encapsulation(DE) 5000 5000 1824 13273 3651 26547

Feature Envy(FE) 1230 1230 175 14922 353 29845
Empty Catch Block(ECB) 359 359 51 4708 103 9418

B. Selection of code smells

To further explore the effectiveness of deep learning meth-
ods in detecting smells with different granularity, in addition
to implementation smells, our experiments focus on the design

TABLE II
VALUES OF HYPER-PARAMETERS FOR CNN MODELS

Hyper-parameter Values

Number of repetitions of the set of hidden unit(N) {1, 2, 3}
Filters in convolution layer(F) {8, 16, 32, 64}
Kernel size in convolution layer(K) {5, 7, 11}
Pooling window size in max pooling layer(W) {2, 3, 4, 5}

TABLE III
VALUES OF HYPER-PARAMETERS FOR RNN MODEL

Hyper-parameter Values

Number of repetitions of the set of hidden unit(N) {1, 2, 3}
Embedding dimensions(E) {16, 32}
LSTM units(U) {32, 64, 128}

smells with larger granularity which are more difficult to
detect.

We choose Insufficient Modularization (IM, i.e., the class
has not been completely decomposed), Deficient Encapsu-
lation (DE, i.e., the declared accessibility of one or more
members of the class is more permissive than actually re-
quired), Feature Envy (FE, i.e., the class has a method that
uses methods and data of other classes more than using its own
ones and seems more interested in a class other than the one
it actually is in). We select these design smells because they
are representative due to their high frequency of occurrence
in the 500 projects.

What’s more, we choose Empty Catch Block (ECB, i.e., a
catch block of an exception is empty), which is an implemen-
tation smell. This smell was also chosen in the experiments of
Sharma et al. [7], and we use it to verify that our model also
has a good performance on small-grained smells.

C. Baseline setting

In this paper, we select the following three baseline methods
proposed by Sharma et al. [7] as comparative methods to
estimate the performance of our proposed method:

1) CNN-1D Model: In this model, each input instance
is represented by a 1D array of tokens. The model extract
features through convolution, batch normalization, and max
pooling layers. Finally, the fully-connected layers are used to
make predictions about whether a given instance belongs to
the positive or negative class.

2) CNN-2D Model: The CNN-2D model is similar to the
CNN-1D model, except that each input instance of CNN-2D
model is a 2D array of tokens, which delineates the source
code statement by statement.

3) RNN Model: The RNN model has the same input as
CNN-1D, but unlike CNN-1D, RNN captures features using
an embedding layer and a LSTM layer.

We obtain the hyper-parameters configurations for the base-
line methods according to [7]. Tables II and III show the values
of the hyper-parameters for the CNN and RNN models. All
combinations of hyper-parameters are performed to confirm
the best configuration of baseline methods.

506

TABLE IV
VALUES OF HYPER-PARAMETERS FOR AST-CSD

Hyper-parameter Values

Number of fully-connected layers(FC) {1, 2, 3, 4}
Embedding and encoding dimensions(EE) {64, 128, 256, 512}
Dimensions of hidden states in GRU(H) {50, 75, 100, 125}

TABLE V
PERFORMANCE OF AST-CSD ON THE OPTIMAL CONFIGURATION

Performance Configuration

Smells P R F-measure FC EE H

IM 0.65 0.92 0.76 2 64 75
DE 0.95 0.95 0.95 2 128 125
FE 0.11 0.53 0.17 2 256 75

ECB 0.26 0.84 0.40 4 512 50

D. Evaluation

Due to the extremely unbalanced distribution of positive
and negative samples in real projects, we avoid comparing
the accuracy of each model because if a model predicts all
samples as negative, it will still have high accuracy. We choose
precision, recall and F−measure as the evaluation metrics.
They are difined as follows:

precision =
True Positive

True Positive+ False Positive
(4)

recall =
True Positive

True Positive+ False Negative
(5)

F −measure = 2× precision× recall
precision+ recall

(6)

V. EXPERIMENTAL RESULTS

In this section, we mainly focus on answering the following
research questions:

RQ1: How does the AST-based approach perform under
different configurations for multi-granularity code smells?

RQ2: Is the AST-based approach better than the token-
based approaches in detecting code smells with different
granularities?

RQ3: Is the AST-based approach significantly superior?

A. RQ1:How does the AST-based approach perform under
different configurations for multi-granularity code smells?

Table IV shows the values of the different hyper-parameters
for our approach. We perform 64 combinations of hyper-
parameters to get the best configuration of our approach.

Table V lists the performance of our AST-based approach
AST-CSD on the optimal configuration. From the table, we
can easily see that the AST-based approach does not perform
equally on the four types of smells, and the combination of
hyper-parameters that make the approach perform optimally
for different smells also varies.

Figure 4 shows the violin plot of performance of the
approach under all configurations for four smells. Among the
four smells, the AST-based method has good performance in

Fig. 4. Violin plot of F-measure exhibit by AST-CSD

detecting Deficient Encapsulation and Insufficient Modulariza-
tion smell. However, this AST-based method did not perform
very well in detecting Feature Envy smell. We believe this is
somewhat related to the extremely unbalanced ratio of positive
and negative samples for this smell, which reaches a ratio
of 353:29845 in the test set. For Empty Catch Block smell,
which is an implementation smell, it can be seen from Figure
3 that different hyper-parameters have a greater impact on the
performance.

B. RQ2: Is the AST-based approach better than the token-
based approaches in detecting code smells with different
granularities?

We first perform parameter search for the baseline methods
to find the combination of hyper-parameters that has the best
performance. Table VI shows the hyper-parameters of the three
token-based methods when they achieve the best performance.

TABLE VI
PERFORMANCE OF THE TOKEN-BASED APPROACHES ON THE OPTIMAL

CONFIGURATION

Performance Configuration

Smells P R F-measure N F K W E U

CNN-1D

IM 0.71 0.80 0.75 3 64 7 4 - -
DE 0.36 0.57 0.43 3 32 5 4 - -
FE 0.05 0.23 0.07 3 64 7 4 - -

ECB 0.24 0.66 0.34 3 32 5 4 - -

CNN-2D

IM 0.54 0.81 0.64 2 8 5 2 - -
DE 0.16 0.43 0.23 3 16 5 4 - -
FE 0.03 0.43 0.06 3 16 7 2 - -

ECB 0.09 0.66 0.15 2 64 7 2 - -

RNN

IM 0.40 0.76 0.50 1 - - - 32 64
DE 0.57 0.79 0.65 2 - - - 32 32
FE 0.03 0.67 0.05 3 - - - 32 128

ECB 0.08 0.65 0.13 3 - - - 16 32

After getting the optimal configurations of each method, we
repeat the training and testing of each approach on the optimal
configuration for 30 times. Figure 5 shows the average per-
formance of the AST-based approach compared to the token-
based approaches on the four smells. As shown in Figure 5,

507

(a) IM (b) DE

(c) FE (d) ECB

Fig. 5. The performance of token-based and AST-based approaches on four
code smells

the AST-based approach achieves better results than the token-
based approaches on all three smells with large granularity. In
addition, the AST-based approach also obtains better results
for smell Empty Catch Block with small granularity.

C. RQ3: Is the AST-based approach significantly superior?

To further analyze the performance of AST-based approach
and baseline approaches, Wilcoxon signed-rank test and Cliff’s
delta test are conducted. If p−value of Wilcoxon signed-rank
test is less than 0.05, the two matched samples are significantly
different. Cliff’s delta test can be used as a complementary
analysis to Wilcoxon signed-rank test, and Cliff’s delta test can
measure the effective level of difference between the two sets
of observation data. Table VII shows Cliff’s delta values(|δ|)
and the corresponding effective levels.

We use the Win/Tie/Loss indicator to compare the perfor-
mance of different methods. Specifically, if the AST-based
method outperforms a baseline method with the p− value of
Wilcoxon signed-rank test less than 0.05 and the Cliff’s delta
value greater than or equal to 0.147, the difference between
these two methods is statistical significant, in which case we
consider AST-CSD to win. Conversely, if the baseline model is
better than the AST-based method and the difference between
them is significant, we consider AST-CSD to lose. In other
cases, we consider them to be tied. What’s more, ‘+’ or ‘-
’ before the effective level is to represent the positive or
negative Cliff’s delta values. ‘+’ means the AST-based method
is superior.

As shown in Table VIII, our AST-based method significantly
outperforms other token-based methods in detecting all four
smells with different granularities.

VI. THREATS TO VALIDITY

A. Internal validity

One of the main factors affecting internal validity is the
experimental environment. We use the Designite tool to detect
smells, which is used to generate labels for the training data,

TABLE VII
MAPPINGS BETWEEN CLIFF’S DELTA VALUES AND THEIR EFFECTIVE

LEVELS

Cliff’s delta Effective levels

|δ| < 0.147 Negligible
0.147 ≤ |δ| < 0.33 Small
0.33 ≤ |δ| < 0.474 Medium
0.474 ≤ |δ| Large

TABLE VIII
WIN/TIE/LOSS INDICATORS ON F −measure VALUES OF TOKEN-BASED

METHODS AND AST-CSD

Smells
AST-CSD AST-CSD AST-CSD

vs vs vs
CNN-1D CNN-2D RNN

IM <0.05(+Medium) <0.05(+Large) <0.05(+Large)
DE <0.05(+Large) <0.05(+Large) <0.05(+Large)
FE <0.05(+Large) <0.05(+Large) <0.05(+Large)

ECB <0.05(+Medium) <0.05(+Large) <0.05(+Large)

Win/Tie/Loss 4/0/0 4/0/0 4/0/0

and view its results as ground truth. Since it is widely used in
related work [7], [19], we think it is reliable to use the tool to
detect code smells. In addition, the code is carefully reviewed
and tested to ensure that the code we used to build the model
was error-free.

B. External validity

External validity refers to the validity of generalization of
research results. In this study, we use 500 open source Java
projects. Experiments on other datasets (non-Java projects or
industrial projects) will help to further validate our approach.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a new deep learning method based
on ASTs to detect code smells. We exploit the rich semantic
and structural information in the AST to generate the final
feature representations of code fragments. Experiments on
smells with different granularities show that our method is
significantly better than state-of-the-art deep learning methods
in terms of F −measure.

As future work, smells with greater granularity, i. e., ar-
chitectural smells, need to be considered. When using deep
learning methods to detect smells with greater granularity,
how to use the numerous components involved in architectural
smells as input is a question worth investigating. What’s
more, it is of great value to extend our approach to other
programming languages, such as Python and C++.

ACKNOWLEDGMENT

This work is partially supported by the National Natural Sci-
ence Foundation of China(61772263, 61772014, 61872177),
Collaborative Innovation Center of Novel Software Technol-
ogy and Industrialization, Undergraduate Training Program
for Innovation and Entrepreneurship of Soochow Univer-
sity(202010285141H), and the Priority Academic Program
Development of Jiangsu Higher Education Institutions.

508

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[2] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158–173, 2018.

[3] M. Salehie, S. Li, and L. Tahvildari, “A metric-based heuristic frame-
work to detect object-oriented design flaws,” in 14th IEEE International
Conference on Program Comprehension (ICPC’06). IEEE, 2006, pp.
159–168.

[4] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2009.

[5] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep learning based
code smell detection,” IEEE transactions on Software Engineering(Early
Access), 2019.

[6] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lu-
cia, “Detecting code smells using machine learning techniques: are we
there yet?” in 2018 ieee 25th international conference on software
analysis, evolution and reengineering. IEEE, 2018, pp. 612–621.

[7] T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “On the
feasibility of transfer-learning code smells using deep learning,” arXiv
preprint arXiv:1904.03031, 2019.

[8] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[9] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

[10] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying ar-
chitectural bad smells,” in 2009 13th European Conference on Software
Maintenance and Reengineering. IEEE, 2009, pp. 255–258.

[11] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020, pp. 516–527.

[12] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[13] H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code.” in IJCAI, 2017, pp. 3034–3040.

[14] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy, A. Ghose, T. Kim,
and C.-J. Kim, “A deep tree-based model for software defect prediction,”
arXiv preprint arXiv:1802.00921, 2018.

[15] Y. Li, S. Wang, and T. N. Nguyen, “Improving automated program
repair using two-layer tree-based neural networks,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering:
Companion Proceedings, 2020, pp. 316–317.

[16] P. Singh, S. Singh, and J. Kaur, “Tool for generating code metrics for
c# source code using abstract syntax tree technique,” ACM SIGSOFT
Software Engineering Notes, vol. 38, no. 5, pp. 1–6, 2013.

[17] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[18] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30,
no. 1, 2016.

[19] T. Sharma, P. Mishra, and R. Tiwari, “Designite: A software design
quality assessment tool,” in Proceedings of the 1st International Work-
shop on Bringing Architectural Design Thinking into Developers’ Daily
Activities, 2016, pp. 1–4.

[20] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” arXiv
preprint arXiv:1310.4546, 2013.

509

FCEP: A Fast Concolic Execution for Reaching
Software Patches

Meng Fan1,2, *Wenzhi Wang1,2, Aimin Yu1, Dan Meng1

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences

Beijing, China
{fanmeng,wangwenzhi,yuaimin,mengdan}@iie.ac.cn

* Corresponding Author: wangwenzhi@iie.ac.cn

Abstract—Software updates that bring new features to the
users or that fix old errors can easily introduce new errors, which
makes it necessary for users to repeatedly consider whether to
update the software to the latest version. Therefore, the security
testing for updated software is indispensable before its releasing.
State-of-the-art increasing number of researchers have been de-
voting to develop new techniques that can automatically generate
high-coverage test suites and detect software errors introduced by
patches. In this paper, we proposed a technique based on concolic
execution to ensure the correctness and reliability of a patch.
Our method generates test inputs to cover the changed lines
of the patch and the relevant function by using a target-based
search strategy which combines the selector based on the mapped
address and the selector based on the priority. A prototype system
called FCEP was implemented and evaluated with 5 C-programs.
The experimental results demonstrated that our method reaches
the new code introduced by patches quickly and achieves a high
coverage.

Index Terms—concolic execution, patch testing, Search strate-
gies

I. INTRODUCTION

The extensibility of software is both a blessing and a
curse. On the one hand, one can easily add new functionality
or patches to fix incorrect behavior. On the other hand,
any software changes may introduce unexpected errors and
security vulnerabilities, which are disasters for users and make
users hesitate to update their software. As matter of fact,
many people prefer to not upgrade their software to the latest
version [1], [2], but rely on earlier versions which also usually
contain serious errors and reduced functionality. Therefore,
it is very necessary to perform a comprehensive test of the
updated software. However, software testing is expensive and
time-consuming as it involves writing a large numbers of
manual test suites to validate various paths. This is a tedious
process that requires an immense amount of work and a good
understanding of the tested system. Some recent testing effort
focuses on code that has changed from one version to the next
[3]–[7].

Patches, as a typical form of software changes, ideally,
should be comprehensively tested, but this level of testing is
still far from being achieved in practice [8]. State-of-the-art
some studies [6], [9], [10] test the patches based on concolic

DOI reference number: 10.18293/SEKE2021-018.

execution [11], [12], which is a program analysis technique
that provides the ability to generate inputs to form high-
coverage test suites. Concolic execution has proved to be a
good choice to comprehensively test real software [13], [14],
with its ability to systematically explore different program
paths. Most of the work on concolic execution is focused on
whole program tests, in which all parts of the program are
treated equally. However, the number of execution paths in
a program is usually exponential in the number of branches,
exploring all possible execution paths is infeasible. That is,
concolic execution faces challenges of path explosions [11],
[15]. An efficient search strategy of concolic execution is very
important to overcome the path explosions challenge in testing
patches. Despite recent progress, the studies still far from
reaching the goal of fast and automatically generating test
cases that contain code changes in the actual program.

In this paper, we have developed an automated testing
method called FCEP based on concolic execution to ensure the
correctness and reliability of patches, which takes advantages
of both static and dynamic analysis to generate test inputs
to cover the changed lines in patches. Instead of exploring
all branches in the candidate list, FCEP searches priorities
branches according to the distance between the uncovered
statements and the targets (e.g. lines in patch). FCEP combines
the exploration of the patch with the exploration of the
function where the patch is located and dynamically adjusts
the search target to conduct a more comprehensive test of the
patch-related functions.

This paper mainly makes following contributions:
• FCEP ensures the reliability and security of software

updates by using a target-based search strategy to test the
patch and the relevance function quickly, which combines
the selector based on the mapped address and the selector
based on the priority, to test the patch and its relevant
function quickly.

• The selector based on the mapped address reaches the
patch quickly by calculating the shortest distance between
candidate states and targets (e.g. lines in patch). The
selector based on the priority comprehensively tests the
relevant function of the patch as soon as possible by
assigning priority to the related states.

• FCEP reduces the false negative by comprehensively

510

testing the relevant function of patches and modifying
the CFG (Control Flow Graph) in real-time based on
the results of concolic execution. For example, guiding
the path search in dynamic analysis only according to
the results of static analysis cannot cover relevant paths
containing indirect jumps.

• We performed experiments on 5 C-programs. FCEP cov-
ered more than 90% of the patch lines and found 34 out of
39 bugs in 5 tested software in the least amount of time.
The experiments showed that FCEP can cover more lines
of code in patches, and can quickly find bugs introduced
by patches.

The rest of the paper is organized as follows: Section II
introduces concolic execution and describes several representa-
tive search strategies found in the literature; Section III details
our approach; Section IV shows the evaluation plan and the
experimental results; Section V discusses related work, and
Section VI concludes.

II. BACKGROUND

a) Concolic Execution: Concolic execution is an auto-
matic test generation techniques based on symbolic execution,
a program analysis technique that can systematically explore
paths through a program. The key idea behind symbolic
execution is to run the program with symbolic values instead
of concrete ones. Then, whenever an encountered branch is
directly or indirectly dependent on the symbolic input, execu-
tion determines the feasibility of both sides of the branch, and
creates two new independent symbolic states which are added
to a worklist to follow each feasible side separately. Finally,
whenever a path terminates or hits an error, the constraints on
that path are solved to produce a concrete input that exercises
the path. Since the number of execution paths in a program is
usually exponential in the number of branches, exploring all
possible execution paths is infeasible. To address this problem,
concolic execution relies on the search heuristic to steers
concolic execution in a way to maximize code coverage in
a given limited time budget [11].

b) Search strategies: Since enumerating all paths of a
program can be very expensive, in many software engineering
projects related to testing and debugging, the search is pri-
oritized by looking at the most promising paths first. Depth-
first search (DFS) and breadth-first search (BFS) are the most
common strategies. DFS expands a path as much as possible
before backtracking to the deepest unexplored branch, while
BFS expands all paths in parallel. DFS is often adopted
when memory usage is at a premium. The breadth-first search
(BFS) strategy traverses the execution tree according to a
BFS order. The BFS strategy prefers branches that appear
early in the execution paths, therefore generating new input
vectors is easier because a smaller number of constraints will
be involved for those branches. Hence, in spite of the higher
memory pressure and of the long time required to complete
the exploration of specific paths, some tools resort to BFS. In
theory, both DFS and BFS strategies can cover all execution
paths in the execution tree. However, as described in the

previous section, real world programs have a nontrivial number
of execution paths and neither strategy scales to even medium-
sized programs [11], [12], [16]. Another popular strategy is
random path selection [14], which has been refined in several
variants.

III. SYSTEM DESIGN AND IMPLIMENTATION

In this section, we first show an overview of FCEP. We
then explain the address mapping technology an the strategy
of path selection.

A. Overview

Fig. 1 demonstrates an overview of FCEP. The inputs of our
technique are: 1) the new version of program and the patch,
and 2) the inputs selected from the test suite. The output is
a set of inputs that trigger crash bugs or cover the code of
patch.

On the one hand, FCEP uses the disassembler to generate
the CFG and the CG (Call Graph) of the new version program.
FCEP marks the position in the CFG for each target which is a
line of the patch, and generates a list of function address ranges
based on the CG. On the other hand, the executor creates a new
state when it encounters a branch. And at the same time, the
address finder searches the address of the next instruction in
the generated CFG for both states. After mapping the new state
to the address of the next instruction, FCEP puts the newly
generated state into the candidate pool to wait for the next
time selecting of the selector to complete concolic execution.

When the path entered with the initial value has executed,
FCEP selects a new execution state by adopting a target-
based search strategy in the candidate pool to perform concolic
execution. Concolic exploration that focuses on target-based
search provides inputs for a crashing path. Our search strategy
infers the paths which are not covered by patches to avoid
exploring large numbers of paths, and to direct the search
towards the paths covered by patch.

Once there is a state that triggers the function where the
patch is located, the target-based search strategy chooses the
new state which falls into the state of the target function
as much as possible. This is mainly because for the testing
of patch, we believe that only covering the line of patch
is far from meeting the testing requirement of ensuring the
security of the patch. At the same time, FCEP uses the concolic
execution to correct the paths which through indirect jumps
or the function pointer calls in the statically generated CFG.
Once indirect jumps or function pointer calls are encountered
in the tested paths, FCEP will splice the related indirect jump
blocks to find more paths.

B. Address Mapping

a) Generate CFG&CG: The first step of our analysis is
determining the differences between the new program version
and its previous version, (i.e. the patch). Theoretically, each
line in the patch is a potential target to our FCEP. Whereas,
many lines can be overlooked in practice because the source
code contains many non-executable lines (e.g., declarations,

511

Fig. 1. A high-level overview of our execution.

comments, blank lines, or lines not compiled into the ex-
ecutable). The patch is divided into several sets according
to the functions they belong to, and each set is processed
separately in the subsequent steps. FCEP selects a line of the
patch in each set as a core target, and this line represents the
core modification of the function as much as possible. FCEP
statically analyzed the new version program using IDA Pro
toolset to establish a control-flow graph (CFG) and a call graph
(CG). FCEP uses a core target to mark possible execution
paths in CFG, and marks the corresponding function call paths
in CG. Note that considering that indirect jumps and pointers
may cause inaccuracy in static analysis, FCEP dynamically
corrects the CFG and CG in real-time in subsequent steps.

b) Build mapping: Concolic Executor uses the initial in-
put to test the new version program. When the path encounters
a branch, executor generates a new path state and notifies the
address finder to find the address of the next instruction for
the new state in the statically generated CFG. FCEP maps the
new state to this instruction address and puts the new state
into the candidate pool so that it can be used in subsequent
path selection. The program to be tested must be translated
into intermediate language to interpret and execute. When a
branch is encountered during the concolic execution, it adds
the newly generated branch state to the execution tree. FCEP
constructs the execution tree following the same method in
static analysis, putting the true branches in the branch state
in the left sub-tree and the false branches in the right sub-
tree. As the true branches and the false branches of the state
have been adjusted to be consistent with the CFG generated
in static analysis while creating the new state, the address of
next instruction corresponding to each branch can be queried
quickly.

c) Dynamically modify CFG&CG: What we need to pay
attention to is that because the static analysis cannot accurately
infer indirect jumps or the function pointer calls, there is a
false negative when using static analysis methods to guide
the concolic execution. If FCEP encounters indirect jumps
or the function pointer calls during concolic execution, it
dynamically modifies the CFG and CG to obtain more accurate
information of path.

C. The Target-based Search Strategy

a) Selector based on the mapped address: New states are
generated where the conditional branch is located by executor,
and FCEP put them into a candidate pool for subsequent
selecting. The selector selects a new state from the candidate
pool following a search strategy to continue the concolic
execution when the execution of a path is finished. Since
the search strategy usually affects the coverage of concolic
execution, careful selection of the algorithm can help to
achieve the desired goal.

Before the start of the test, FCEP has obtained the address
range of each function from the CG, and has selected a path
marked in the CFG which can execution from the function
main to the selected core target. When the execution of the
initial state is finished, FCEP determines whether the state
newly generated hits the target function by the address of the
next instruction, in other words, whether the address is within
the range of the target function. If it hits, FCEP selects the
path closest to the core target to continue running. If there is
no state hits the target function, FCEP looks for the caller of
the target function and confirm whether there is a state hits
the caller. By analogy, FCEP selects the closest one among
states which hit the caller to continue execution. Since it has
been confirmed whether the new state previously generated
hits the target function or its callers, FCEP gives priority to
the new states derived from the current running state to confirm
whether they fall into the target function.

As we all know, code addresses of a program are not com-
pletely continuous, but they are continuous in a same function
of a program. Therefore, when selecting the closest state,
FCEP calculates distance between the new state and the target
using the formula Di = |statei addr − target addr|. For
the target function, the target is a line of patches determined
before running the program, and for other functions in the
call chain of the target function, the target is the line of the
function call.

b) Selector based on the priority: When a new branch
state is generated, FCEP determines whether its next instruc-
tion address hits the target function (that is, the function where
the patch is located). If it hits, FCEP gives priority to the state.
When a path hits the core target code (that is, one line of the

512

Fig. 2. An example of our search strategy.

patch), FCEP continues to select the state that hits the target
function to perform the concolic execution until there is no
state hits the target function or the expected time runs out. In
this step, FCEP only needs to execute the state with priority
until all the states with priority have been executed.

After that, it continues to perform all the above steps for
the next core target code. The purpose of running the states
that hit target function is to test as much code near the patch
as possible. Because for the security testing of patches, only
paying attention to the path covered by the patch code itself
is often unable to meet the requirements. The code near the
patch is often associated with the patch, so it is necessary to
test the function where the patch is located.

D. An Example of Search Strategy

Fig. 2 is an example of the search strategy, and it is a
combination of CFG and CG. Assume that the address range
of each function obtained from CG is FunA(0x00, 0x2F),
FunB(0x40, 0x6F) and FunC(0xA0, 0xAF). The core tar-
get selected in the target function FunC is located at node
n12, and a path sequence selected in the function call chain
passing through the core target is {n0, n4, n5, n10, n12}.
FCEP determines the sequence of the function call node and
its address as {n5 (0x12)}. The execution tree is empty when
the concolic execution starts. Suppose state 0 is the initial
state and it corresponds to the sequence of {n0, n1, n2, n7,
n8} when FCEP runs the program with the initial inputs.
At the same time, this state creates three new branch states
{state 1, state 2, state 3} in the concolic execution. FCEP
queries the address of the next instruction for the three new
states in the CFG (that is, the address of the next block in
the CFG) and puts them into the candidate pool. Assuming
that the address of the next instruction of state 1 is 0x80,
the address of state 2 is 0x06, and the address of state 3 is
0x4F .

When the state state0 is executed, the selector selects a
new state from the candidate pool. FCEP first determines
whether the addresses of the next instruction in the three

newly generated states hit the target function FunC. If there are
some states in the range of the target function, FCEP selects
a state closer to the core target node to continue the concolic
execution. If there is no such state, the address funder queries
whether there are states in the range of the caller function(e.g.
the function FuncA). As shown in the Fig. 2, the three states
do not hit the target function FunC, but there are two states
{state 1, state 2} hit the upper function of FunC, that is,
FuncA. The node n5(0x12) is the point that the FuncA calls
the FunC. FCEP calculates all the distances between the
states and the address of node n5, that is, D1 = 4, D2 = 6,
so it chooses the state 1 which has a smaller distance as the
next execution state.

Assuming the execution path of the state1 is {n0, n4, n5,
n10, n11}. It generates two new states {state 4, state 5},
and their addresses are 0x1F and 0xAE. FCEP gives priority
to judge whether the newly generated states hit the target func-
tion and finds the state 5 has located in the target function,
so this state is selected as the next execution state. After that,
FCEP continues to select the state derived from state 5 in the
target function to complete the concolic execution.

E. Implementation

We implemented the proposed FCEP as a plugin of S2E
[17] which is a general concolic execution framework. This
plugin is mainly composed of three custom modules:

a) Automatic constructing CFG&CG: This module
builds CFG and CG for the tested program and marks the
selected target and path.

b) Address finder and mapping: This module finds the
address of the next instruction in the CFG for the new state
when the executor creates a branch state, and puts the mapped
address into the candidate pool. When indirect jumps or
function pointer calls is executed, this module dynamically
corrects CFG and CG.

c) The target-based selector: This module uses the
target-based search strategy to select a new state to continue
concolic execution after a path is finished. This module
combines the exploration of the patch with the exploration of
the function where the patch is located to dynamically adjust
the search target.

IV. EVALUATION

We evaluated FCEP experimentally with real-world appli-
cation binaries, answering the following research question:

• Effectiveness of generated heuristics: Can FCEP generate
effective search heuristics? What is the coverage for
patches?

• Bug detecting ability: Does FCEP generate effective
search heuristics and how faster FCEP detect target bugs
than the current concolic execution techniques?

We conducted all of the experiments on a computer running
Ubuntu 18.04 64-bit, equipped with a 3.4 GHz Intel Core i7-
6700 CPU and 24 GB of RAM. We evaluated FCEP with
software patches from GNU Coreutils application suite. We
only tested 8 programs that contain errors in the Coreutils

513

TABLE I
INFORMATION OF PATCHES AND BUGS

Targets Lines Func. Target
bugs

Patches Patches
(LoC) (Func)

Coreutils-6.10 4570 93 8 34 8
Grep-2.0 5956 132 6 53 6

Make-3.75 28715 555 10 109 10
Sed-1.17 4085 73 3 71 2
Vim-5.0 66209 1749 12 262 16

Sum 109535 2602 39 529 42
Average 21907 520 7.8 105.8 8.4

TABLE II
LINE COVERAGE FOR PATCHES OF EACH TARGET

Targets LoC of Patch S2E KATCH FCEP
related func. Line cov. Line cov. Line cov.

Coreutils 234 44.80% 69.71% 88.90%
Grep 353 41.61% 58.15% 94.67%
Make 909 53.27% 63.49% 89.07%
Sed 171 29.89% 55.36% 87.63%
Vim 1262 48.52% 70.04% 91.03%

Average 505.8 43.62% 63.35% 90.26%

test set, including: paste, pr, tac, mkdir, mkfifo, mknod, ptx
and seq. Furthermore, we collected real-world bugs (shown in
TABLE I) from SIR [18] C programs which were fixed by the
original developers from Dec 1996 to July 2018. TABLE I
shows the detail of the 8 tools in Coreutils and the 4 software
(Grep, Make, Sed and Vim).

A. Effectiveness

In order to determine the effectiveness of heuristics, we ran
S2E, KATCH [6] and FCEP with the above test software and
patches for 100 hours respectively. The results are displayed
in TABLE II. The second column of the table is the total
number of lines of the function where the patches are located.
FCEP achieved an average line coverage of 90.26%, which is
1.42 (90.26/63.35) times larger than that of KATCH and 2.07
(90.26/43.62) times larger than that of S2E. Because FCEP
not only tests the line of the patch itself, it also tests other
codes in the function where the patches are located, so its
coverage is much higher than other testing tools. Experiment
shows that in the same time, FCEP can concentrate resources
on comprehensive testing where the patches are located.

As a matter of fact, some patches are macro-defined code
blocks which were not compiled in our compiled environment,
so that some patches were not covered. Dynamic symbol exe-
cution for a macro-defined code blocks is a common problem
for they may not be compiled. Some patches are referenced
header files and newly defined variables. For newly defined
variables, the location where the variable is referenced can be
tested. New variable definitions and new header files do not
cause problems because they are reflected in the code which is
really changed and are tested by that code. In our experiments,
the macro-defined code described above is excluded whereas
the remained patches were covered.

TABLE III
TARGET BUGS DETECTED BY AND THE EXECUTION TIME

Targets Bugs T(h) S2E KATCH FCEP* FCEP
Coreutils 8 94 3 6 7 8

Grep 6 92 2 3 5 5
Make 10 126 2 4 5 8
Sed 3 62 2 2 3 3
Vim 12 202 3 6 9 10
Sum 39 576 12 21 29 34

Average # # 48 27.43 19.86 16.94

B. Bug Detecting Ability

Coreutils-6.10 contains 8 vulnerabilities (paste, pr, tac,
mkdir, mkfifo, mknod, ptx and seq) and there are 6, 10,
3, and 12 bugs in Grep, Make, Sed, and Vim, respectively.
TABLE III summarize the number of detected bugs and the
time spending for the three methods. The third column in the
table is the running time of each program. In particular, the
sixth column of the table (FCEP*) lists the data obtained when
the target patches is covered, and does not include the data of
a comprehensive search for the function where the patch is
located.

For a same software, FCEP successfully detected more bugs
than the other two. KATCH found 21, S2E found only 12,
whereas FCEP detected 34 over 39 bugs in total, showing
much higher bug detect rate for patches. Notably, some bugs
are not crash errors so that platform is difficult to detect these
bugs without adding assertions to the code. So FCEP still
missed 5 errors. FCEP found 34 bugs in 576 hours, while
KATCH took 576 hours to find 21 bugs and S2E found 12
bugs. The time period required for FCEP to detect a bug is
16.94 (576/43) on average, whereas those for KATCH and
S2E are 27.43 (576/21) and 48 (576/12) respectively. FCEP*,
which only tests the line where the patch is located and does
not fully test the corresponding function, the time for finding
each bug is 19.86(576/29).

Compared with S2E, FCEP finds more bugs in the same
time. This is because it can reach the code block where the
patch is located more quickly and concentrate resources to
test the location of the target to reduce the exploration of
redundant paths. Compared with KATCH, FCEP can correct
the CFG obtained by static analysis in real time to detect
the corresponding paths which through indirect jumps or the
function pointer calls. Compared with FCEP*, which only
detects the patch code line, FCEP can find more bugs in the
same time because it can perform a more comprehensive test
on the function where the patch is located.

V. RELATED WORK

In recent years, there has been a lot of research on bug
search in programs based on patches, but the technical meth-
ods used are also different. SPAIN [19] is a patch analysis
framework to automatically learn the security patch patterns
and vulnerability patterns, and identify them from the program
binary executables. But SPAIN focus on patches in which only

514

one function is modified for one patch, but do not support
patches where multiple functions are changed for one patch.

Based on derived operation semantic and constraint formula
from patched differences, PVDF [20] computes the semantic
of patches for privilege elevation vulnerabilities. This work is
similar to SPAIN, but it assumes the availability of patches,
and only focuses on one particular vulnerability type. Dif-
ferently, SPAIN attempts to summarize patterns for different
vulnerability types, and only requires the binary programs but
not the patches.

Shadow symbolic execution [10] is a novel technique for
generating inputs that trigger the new behaviors introduced by
software patches. However, Shadow is not fully automatic,
while many of the annotations added could be automated,
manual assistance might still be needed.

Several heuristic-based approaches have been proposed to
guide an execution toward a specific branch. KATCH [6] is a
technique for patch testing that combines symbolic execution
with several novel heuristics based on program analysis that
effectively exploit the program structure and existing program
inputs. Compared with manual testing, despite the increase in
coverage and the bugs found, KATCH was still unable to cover
most of the targets. Because it does not handle with the paths
which through indirect jumps or function pointer calls.

VI. CONCLUSION

Software updates are easy to introduce bugs, so a full test of
the software patch is indispensable, but extremely expensive
and time costing. In this paper, we develop a method called
FCEP to ensure the reliability and security of software updates
by using a target-based search strategy to test the patch and the
relevance function quickly, which search strategy combines the
selector based on the mapped address and the selector based
on the priority. In addition, FCEP reduces the false negative
by comprehensively testing the relevant function of the patch
and modifying the CFG in real-time based on the results of
concolic execution.

Experiments initially show that FCEP can lead to significant
improvements in reducing the number of path to explore and
the time-cost to reach the patch-related code. So it can exclude
uninteresting parts of code during analysis and focuses on
those paths most relevant to the patches. At present, FCEP
can only solve part of the problems of indirect jumps and
function pointer calls. In the future, we will further study the
automatic identification of them.

ACKNOWLEDGMENT

This work is supported by the strategic Priority Re-
search Program of Chinese Academy of Sciences, Grant
No.XDC02010400.

REFERENCES

[1] Zhongxian Gu, Earl T Barr, David J Hamilton, and Zhendong Su. 2010.
“Has the bug really been fixed?” In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, Vol. 1. IEEE, 55–64.

[2] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and
Lakshmi Bairavasundaram. 2011. “How do fixes become bugs?” In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. ACM,
26–36.

[3] Domagoj Babi´c, Lorenzo Martignoni, Stephen McCamant, and Dawn
Song. 2011. “Statically-directed dynamic automated test generation,” In
Proceedings of the 2011, International Symposium on Software Testing
and Analysis. ACM, 12–22.

[4] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and Michael Hicks.
2011. “Directed symbolic execution,” In International Static Analysis
Symposium. Springer, 95–111.

[5] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid.
2011. “Directed incremental symbolic execution,” In Acm Sigplan
Notices, Vol. 46. ACM, 504–515.

[6] Paul Dan Marinescu and Cristian Cadar. 2013. “KATCH: high-coverage
testing of software patches,” In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering. ACM, 235–245.

[7] Kunal Taneja, Tao Xie, Nikolai Tillmann, and Jonathan De Halleux.
2011. “eXpress: guided path exploration for efficient regression test
generation,” In Proceedings of the 2011 International Symposium on
Software Testing and Analysis. ACM, 1–11.

[8] Paul Marinescu, Petr Hosek, and Cristian Cadar. 2014. “Covrig: A
framework for the analysis of code, test, and coverage evolution in
real software,” In Proceedings of the 2014 International Symposium on
Software Testing and Analysis. ACM, 93–104.

[9] David A. Ramos and Dawson R. Engler. “Under-constrained symbolic
execution: Correctness checking for real code.” In Proceedings of the
24th USENIX Conference on Security Symposium (SEC’15). USENIX
Association, pp. 49–64, 2015.

[10] Tomasz Kuchta, Hristina Palikareva, and Cristian Cadar. 2018. “Shadow
symbolic execution for testing software patches,” ACM Transactions on
Software Engineering and Methodology (TOSEM) 27, 3 (2018), 10.

[11] Cristian Cadar and Koushik Sen. 2013. “Symbolic execution for software
testing: three decades later,” Commun. ACM 56, 2 (2013), 82–90.

[12] Ting Chen, Xiao-song Zhang, Shi-ze Guo, Hong-yuan Li, and YueWu.
2013. “State of the art: Dynamic symbolic execution for automated
test generation,” Future Generation Computer Systems 29, 7 (2013),
1758–1773.

[13] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011.
“Parallel symbolic execution for automated real-world software testing,”
In Proceedings of the sixth conference on Computer systems. ACM,
183–198.

[14] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. “KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for Com-
plex Systems Programs,” In OSDI, Vol. 8. 209–224.

[15] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. A Survey of Symbolic Execution Techniques.
ACM Comput. Surv. 51, 3, Article 50 (May 2018), pp.50:1 39, 2018

[16] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra
B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold,
and Phil Mcminn. 2013. “An orchestrated survey of methodologies for
automated software test case generation,” J. Syst. Softw. 86, 8 (August
2013), 1978–2001.

[17] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011.
“S2E: A platform for in-vivo multi-path analysis of software systems.” In
ACM SIGARCH Computer Architecture News, Vol. 39. ACM, 265–278.

[18] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Support-
ing Controlled Experimentation with Testing Techniques: An Infrastruc-
ture and Its Potential Impact. Empirical Software Engineering 10, 4 (Oct.
2005), 405–435.

[19] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and
Fu Song.2017. “SPAIN: security patch analysis for binaries towards un-
derstanding the pain and pills,” In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 462–472.

[20] S. Letian, Fu Jianming, Chen Jing and Peng Guojun, ”PVDF: An
automatic Patch-based Vulnerability Description and Fuzzing method,”
2014 Communications Security Conference (CSC 2014), Beijing, 2014,
pp. 1-8.

515

Leveraging Compiler Optimization for Code Clone
Detection

Shirish Singh
Dept. of Computer Science
Columbia University, USA
shirish@cs.columbia.edu

Harshit Singhal
Dept. of Computer Science & Engineering

The LNMIIT, India
18ucc159@lnmiit.ac.in

Bharavi Mishra
Dept. of Computer Science & Engineering

The LNMIIT, India
bharavi@lnmiit.ac.in

Abstract—Finding similar code in software systems can guide
several software engineering tasks such as code maintenance, pro-
gram understanding, and code reuse. Similar code detection has
been actively studied in the past. In the paper, we propose a novel
approach that leverages compiler optimizations to transform
semantically similar code and detect similar programs. The key
observation of our work is that the compiler optimizations can be
used to smooth out source code level idiosyncrasies introduced by
the developers, thus making the optimized programs, for the same
task, similar in structure. The similarity in structure can then be
used to classify the programs. We conducted experiments on the
Google CodeJam dataset to demonstrate the effectiveness of our
approach. The experimental results show that our technique can
achieve up to 85% accuracy on the program classification task,
which is an improvement of more than 25% over the source code
level classification.

Index Terms—code clones, compiler optimization, reverse-
engineering, code representation

I. INTRODUCTION

Code clone detection is an important problem for software
maintenance and evolution. Several approaches have been
studied for clone detection, which can be subdivided into two
broad categories: a) Static analysis: extraction information
from the code content [1] and b) Dynamic analysis: clone de-
tection based run-time program behavior. [2]. Applications of
code clone detection are manifold, such as code maintenance,
program understanding, malware detection, and code reuse.
In this work, we rely on compiler optimizations to classify
the semantically similar programs. Compiler optimization is a
sequence of transformations performed by the compiler on a
program to produce a semantically equivalent binary that uses
fewer system resources for its execution. Our study’s main
idea relies on the hypothesis that the compiler optimizations
can be used to remove any source code level idiosyncrasies
introduced by the developers, thus making the optimized code,
for the same task, structurally similar. This similarity can then
be used to classify the programs.

A. Motivating Example

Code snippet 1 and 2 represent the multiplication function-
ality using two different methods: simple multiplication and
multiplication by addition. After compiling the snippets with
O3 compiler optimization and then decompiling the binaries

DOI reference number: 10.18293/SEKE2021-032

through Ghidra, we observe that the resultant code is the same,
shown in code snippet 3.

1 int main(int num1, int num2){
2 return num1 * num2;
3 }

Snippet 1: Simple Multiplication

1 int main(int num1, int num2){
2 int multiplication = 0;
3 for(int i = 0; i < num2; i++){
4 multiplication += num1;
5 }
6 return multiplication;
7 }

Snippet 2: Multiplication via repeated addition

1 ulong main(int param_1,int param_2) {
2 return (ulong)(uint)(param_1 * param_2);
3 }

Snippet 3: Ghidra Decompiled Code

As seen in the above code snippets, the main idea be-
hind our study relies on the key observation that the com-
piler transforms the code for optimized performance, and
two semantically similar codes can yield very similar (often
overlapping) optimized binaries. Hence, we leverage these
compiler optimizations to reduce the differences in the source
code introduced by the developers. Figure 1 depicts the key
idea of our work. Two semantically similar developer-written
programs can have a large distance (41) when represented
as vectors. After compiling (with optimizations) and then
decompiling, we observe that the effective distance between
the decompiled programs (42) reduces significantly to deem
them similar. The net change (41 − 42) in the distances
between the original programs and the decompiled programs
results in significant improvements in the clone detection task.

B. Contributions

In this paper, we answer three research questions:
• RQ1: Can compiler optimization be used to smooth out

code level differences introduced by the developer?
• RQ2: Can the compiler optimized code be used to detect

similarity? If yes, then which optimizations are optimal?
• RQ3: Can cross-optimization detect similar code?
The primary contributions of this paper are three-fold:

516

Fig. 1: 41 represents the distance between the vector
representations of two semantically similar source code.42

represents the distance between the vector representations
of the decompiled binaries of the source code.

• We present a novel technique for code clone based on
compiler optimizations. Our approach can also be adapted
to detect similar binaries without source code availability.

• We study the impact of different compiler optimization
levels on code clone detection. We also perform experi-
ments to investigate the impact of cross-optimization on
clone detection.

We conducted experiments on the Google Code Jam dataset
from 2008 to demonstrate the effectiveness of our proposed
approach. The experimental results show that our technique
can achieve accuracy up to 85% on the classification task. We
also study the effectiveness of cross compiler optimizations on
the classification task. To the best of our knowledge, this is the
first work exploring compiler optimized decompiled code for
code clone detection tasks at the source code level. Our work
is a general framework that can be adapted to solve other
challenges such as malware detection, plagiarism detection,
etc.

The remainder of the paper is organized as follows: Section
II explains the background on code clones, compiler optimiza-
tions, and code embedding. Section III discusses the data-set
used in our study. Section IV describes the proposed frame-
work. Section V presents the results of our study, followed
by a discussion section and a section on related work. Section
VIII discusses the limitations of our work. Finally, section IX
discusses the conclusion and future work.

II. BACKGROUND

In this section, we discuss code clones, compiler optimiza-
tions, Ghidra, and code representation through code2vec.

1) Code Clones: Code clones are similar pieces/fragments
of code that are either syntactically or behaviorally similar.
In practice, programmers often use clones via copy/paste to
support rapid software development. For a given code snippet,

there can be several types of clones. Four types of code clones
have been widely studied in literature [3], [4]: Type-1 (textual
similarity), Type-2 (lexical, or token-based, similarity), Type-3
(syntactic similarity), and Type-4 (semantic similarity).

2) GCC Compiler Optimizations: GNU Compiler Collec-
tion (GCC) is the GNU compiler project which supports
several high-level languages, such as C and C++. One core
function of the compiler is to optimize the code for per-
formance. Code optimization has several benefits; it allows
reduced resource consumption, resulting in faster running
machine code and lesser memory usage. The optimization
is performed by doing transformations (optimizations) that
can only be done at the assembly (machine) level for the
target hardware. The GCC optimizer supports six pre-defined
optimization levels: -O1, -O2, -O3, -Ofast, -Og, and -Os [5].
In this work, we utilize -O1, -O2, -O3 optimization levels.

3) Ghidra: Ghidra is a free, open-source reverse engineer-
ing tool developed by National Security Agency (NSA) [6].
It is a comprehensive and expandable framework covering
the complete workflow of binary analysis. Ghidra is often
used for the decompilation of executable binaries, and in this
study, we use Ghidra’s command-line analysis tool to reverse-
engineer the decompiled code of compiler optimized C/C++
code binaries.

4) Code2vec: Code2vec [7] is a neural network architecture
based on attention architecture for representing snippets of
code as continuous distributed vectors or code embeddings.
Originally trained on Java, Code2vec converts the source code
into a set of paths using the code’s underlying Abstract Syntax
Tree (AST) and learns how to combine these paths using an
attention mechanism. Code2vec then represents each function
as a fixed-length code vector which is used to represent the dif-
ferent features of that function. Method embeddings generated
by code2vec serve as a base for a large variety of applications
and analyses such as author attribution, bug detection, and so
on. It has been shown that the generated embeddings can be
aggregated using several aggregation methods such as max,
min, sum, mean, median, and standard deviation to obtain
embeddings at a file-level [8]. We utilize median aggregation
method to represent each program.

III. DATASET

Code Embedding Dataset: Since the original code2vec
model is trained on Java language, we trained a new code2vec
model on C and C++ programs from top 1000 Github reposi-
tories. Because of memory limitations, we excluded the Linux
repository.

Experiment Dataset: Google CodeJam (GCJ) is a yearly
programming competition hosted by Google. In our study
we used GCJ dataset from 2008 [9] provided on Github
[10]. The competition has several rounds, each containing
several problems to be solved by the participants worldwide.
The diverse characteristics of the participant pool introduces
diversity in the submissions for any given programming task.
Participants are allowed to submit their programs in any
language of their choice. In this study, however, we only

517

consider C and C++ programs because of compiler restrictions.
The GCJ dataset can be further sub-divided into two types of
programs: accepted solutions and non-accepted submissions.
In this study, because of ground truth availability, we only
use the accepted solutions. In our study, the submissions
from 2008 GCJ were used to extract the code embedding,
train, and test the classifiers. The 2008 data contained 8,524
solutions written in C/C++ with disproportionate distribution
across different problems. For consistency, we consider six
programming tasks with about 200 randomly sampled submis-
sions. The total size of the dataset was 1,423. We further split
the data into training and test set, containing 1,280 and 143
submissions, respectively. The programs were then compiled
with three different optimization levels (see section II-4) and
then decompiled using Ghidra [6] (see section II-3).

IV. SYSTEM OVERVIEW

Our approach involves four steps: a) Code compilation
using compiler optimizations, b) Code decompilation, c) Gen-
eration of code embedding, and d) Classifying the embedding
in to clusters of similar code. Figure 2 shows the high level
overview of our pipeline. Given a C/C++ program, we first
compile the binary using one of the optimization flags to
generate a binary executable. Then we use Ghidra to reverse
engineer the binary to retrieve the source code. The generated
source code is then fed to the code2vec model to retrieve the
code embedding for the program. The embedding is used to
train a model to classify the programs. In this section, we
discuss all the steps in further detail.

Fig. 2: An overview of our system
A. Compiling Binaries

We use the GCC compiler to generate the GSJ dataset’s
source programs’ binaries in the first step. For every program,
we generate three binaries corresponding to three optimization
levels: O1, O2, and O3. These binaries are then decompiled
using Ghidra reverse-engineering tool to get the source code.
All binaries were compiled for x64 architecture.

B. Ghidra for decompilation

Our study uses Ghidra’s command-line analysis tool to
reverse-engineer the decompiled version of compiler opti-
mized C/C++ code binaries. The study uses command-line
analysis, also known as headless-analysis, since work requires
several files to decompile at once, so it is feasible to use
command-line analysis. We first import all binaries and then

perform analysis to decompile them. The decompiled code is
saved in separate files to generate code vector representations.

C. Code Embedding

The main component of getting code vectors from code2vec
is path extraction. Code2vec first constructs the AST (Abstract
Syntax Tree). Then the syntactic path between AST leaves are
extracted, which form the path-context. Each path and leaf-
values of a path-context is mapped to its corresponding real-
valued vector representation, or its embedding. Then, the three
vectors of each context are concatenated to a single vector that
represents that path-context.

It is important to note that code2vec generated code embed-
ding for methods as opposed to programs or files. Since we
wanted to study program level similarity rather than function
level similarity, we had to generate a single code embedding
for a single file that might contain multiple functions. As
shown in prior research [8], we can get the file level em-
bedding by aggregating the set of method level embedding.
The aggregation method is applied column-wise. The base
aggregation functions used are max, min, mean and median. A
combination of aggregation methods can also be considered. In
our study, median aggregation worked best, so we constructed
the program level embedding using median aggregation.

1) Model Training: Since the base code2vec model is
trained on Java language, we trained a new code2vec model
on C and C++ programs from top 1000 Github reposito-
ries. Code2vec model generation is a two-step process: pre-
processing and model training. For pre-processing step, we
used the pre-processing script provided by code2vec c [11].
We set the maximum leaf node to be processed in the
given method to 320. We pre-processed all C programs in
the repositories; however, some files that did not match the
maximum leaf node size training criteria were removed. The
remaining 1.2 million programs were then used to train the
code2vec model. The model was trained for 40 epochs.

2) Feature Vector Extraction: For getting the code embed-
ding for the classification task, we used the newly trained
code2vec model. We captured code-vector corresponding to
each function in the program. Since we wanted to study
program level similarity rather than function level similarity,
we had to generate a single code embedding for a single file
that might contain multiple functions. To generate one vector
to represent a given program, we used median aggregation
function following prior research [8], which showed that we
can get the file/program level embedding by aggregating the
set of method level embedding. These program level embed-
ding were then used to train and test the classification models.

V. EVALUATION AND RESULTS

A. Experimental Setting

We use five off-the-shelf machine learning algorithms and
one customized DNN to train our models and demonstrate
the effectiveness of the proposed work. We trained five off-
the-shelf machine learning algorithms for classification tasks:
Random Forest (RF), K-Nearest Neighbour (KNN), Support

518

Optimizaion
Models

RF KNN LR DT SVM DNN
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Source 53.14% 52.00% 49.65% 50.71% 56.64% 56.68% 39.86% 42.03% 51.04% 51.35% 58.74% 59.08%
O1 76.22% 76.95% 72.02% 71.56% 83.21% 83.43% 64.33% 64.47% 83.21% 83.30% 83.21% 83.34%
O2 78.32% 78.56% 76.22% 76.49% 84.61% 84.85% 54.54% 55.45% 84.61% 84.96% 83.21% 83.29%
O3 74.12% 74.03% 69.23% 69.90% 79.72% 79.36% 66.43% 65.67% 83.91% 83.77% 83.21% 81.43%

O1,O2,O3 76.22% 76.93% 71.32% 71.12% 86.01% 86.13% 59.44% 61.90% 86.71% 87.07% 86.01% 84.94%

TABLE I: Performance comparison table shows the accuracy and F1-score achieved by each model.

Vector Machines (SVM), Logistic Regression (LR), and De-
cision Tree (DT). We also trained a DNN. The DNN consists
of an input layer (containing 384 neurons corresponding to
the 384 code2vec features), one hidden layer (384 neurons
and ReLu activation), and a softmax output layer (6 classes
corresponding to 6 programming tasks).

We ran our training and testing scripts on a Dell XPS
8930, with Intel i5-9600K 6-core 64GB RAM, running Ubuntu
18.04 and Python 3.7.3. To evaluate the performance of the
model, we use four metrics, namely, accuracy, precision, recall,
and F1-score. Because of space limitations, we only report
accuracy and F1-score.

B. Code Classification

We selected six programming tasks from the 2008 Google
Code Jam dataset, each having about 200 data points. The
dataset’s total size was 1,423 programs, which was split into
training and test set containing 1,280 and 143 programs,
respectively. We then extracted code vectors corresponding to
each program and aggregated the vectors to get a program-
level representation. The process was repeated for decompiled
code for different optimization levels O1, O2, O3. Ultimately,
we compiled four embedding datasets for the classification
task: original programs, O1 optimized, O2 optimized, and O3
optimized programs. In addition to the four datasets, we also
merged all the optimized program embeddings (O1, O2, and
O3) to test the performance of the models.

Fig. 3: Performance comparison chart compares the accu-
racy of each model on the optimization datasets.

We trained the models on the code vector representation of
the programs. Since we had six different classes of programs in
the dataset, we trained multi-class classifiers. Table I summa-
rizes the results of the models. We observe the classification
accuracy is highest in the models trained on O2 optimized
programs. Furthermore, it can be seen that using the best

models, the classifier can correctly classify up to 84.61%
of the decompiled programs vs. only 58.74% of the source
code. We also observe that DNN and SVM models perform
similarly. The models collectively trained on O1, O2, and
O3 optimizations outperform other models trained on single
optimizations, with significant margins.

Figure 3 summarizes the accuracy of all the models. We
can observe that the accuracy is sub-optimal in the case of the
developer written program (depicted as ‘Source’); however,
the accuracy significantly increases if we apply a compiler
optimization. This increase in the accuracy is owed to the
transformations performed by the compiler on the source pro-
gram, which results in similar binaries being constructed from
semantically similar programs written by different developers.

Test Set
Source O1 O2 O3

Tr
ai

n
Se

t Source 51.04% 11.88% 11.88% 11.88%
O1 22.37% 83.21% 65.03% 60.13%
O2 15.38% 72.72% 84.61% 68.53%
O3 18.88% 68.53% 74.82% 83.91%

TABLE II: Performance of cross optimizations (Accuracy)
We also conducted an experiment to study the impact of

cross-compiler optimization on the classification task. We
trained one SVM model on each dataset and evaluated the
models by testing on other datasets. Table II summarizes the
results of the experiment in terms of accuracy. It can be
observed that the models perform the best when tested on the
same set of data it was trained on. This observation implies
that the compiler transformations, under different optimization
levels, produce binaries that are somewhat different from
each other such that the code embedding cannot capture
the similarities. Moreover, we see a unique pattern in the
performance of the models trained on O1 and O3 optimized
programs. For the model trained on O1 optimization, we see
that the performance of the model is better on O2 dataset as
compared with O3. Similarly, the performance of the model
trained on O3 optimization is better on O2 as compared to O1.
This pattern suggests some similarities between close levels
of optimizations. The model trained on the original source
programs exhibits the same pattern. As we move away from
the original program, from O1 to O2 to O3, we observe a
degradation of performance.

Figure 4 depicts the t-SNE plots of the code embedding for
each dataset. It can be observed that source code is harder to
separate, but compiler-optimized decompiled program repre-
sentation shows significant improvement and allows the data
points to separate. The level of separation increases as we
increase the optimization level from O1 to O2. However, the
separation decreases slightly in O3.

519

(a) Source Code (b) Decompiled O1 (c) Decompiled O2 (d) Decompiled O3

Fig. 4: t-SNE of code vectors for different optimization levels. Different colors represent different problems of the GCJ
dataset. We can observe that optimization O2 segregates the data with a clear distinction between the clusters.

VI. DISCUSSION

RQ1: Can compiler optimization be used to smooth out
source code level differences introduced by the developer?

Through the code classification study, we observed that
compiler optimized code has significantly higher accuracy
when compared to the original developer written source code.
Since the code2vec representation relies on the AST of a given
method, the compiler optimizations transform semantically
similar high-level developer written code to programs with
similarly structured ASTs. We also observed in the motivating
example, that two semantically similar code snippets can often
result in similar binary.

RQ1: We observe that it is possible to smooth out source
code level differences by using compiler optimizations.
In particular, optimization techniques can transform, two
separate but similar code snippets, to produce similar output.

RQ2: Can the compiler optimized code be used to detect
similarity? If yes, then which optimizations are optimal?

Through the experiments, we demonstrated that the clas-
sifier trained on compiler optimized programs embedding
can out perform classifier training on the original source
code embedding. In our study, we also observed that O2
optimization performs the best among all optimizations. We
hypothesize that this phenomenon occurs because several O3
optimization flags transforms the loops of the program, thereby
changing the AST of the method, which in turn impacts the
code vector embedding of code2vec model.

RQ2: We show that the compiler optimization O2 performs
optimal transformations for the classification task.

RQ3: Can cross-optimization detect similar code?
We performed a study to learn about the impact of different

optimizations on each other. We trained a DNN model on
each optimization level and tested against the other opti-
mizations. Table II summarizes the performance on cross
compiler optimizations. We observe that each model learns to
classify the programs with the same optimization they were
trained upon. However, the models fail to adopt and perform
sub-optimally on other optimizations. This outcome can be

partially be attributed to vector embedding used to represent
the code. We hypothesize that using a more comprehensive
code representation can lead to improvement in classification
task on cross compiler optimization (see section VIII).

RQ3: Cross compiler optimizations are not effective in
detecting similar code.

VII. RELATED WORK

Code similarity has been extensively studied in literature
[12], particularly type-4 (semantically similar) code clones.
Through a user study, researchers showed that functionally
similar code exists in practice [13]. While static token based
approaches such as SourcererCC[14] and CCFinder[15] have
been studied, advances in computing has paved the path for
two other approaches to code clone detection. We first outline
machine learning approaches based on static features of the
code, followed by dynamic approaches.

A. ML for Code Clone Detection

Deep learning has also been applied for detecting code
clones [16], [17], [18], [19]. Researchers used both struc-
ture or identifiers to detect all four types of code clones
[16]. Their technique relied on a novel code representation
scheme: the terms in code fragments were mapped to vector
representations such that terms used in similar ways map to
similar vectors. Then the model learns discriminating features
for code fragments at different levels of granularity. DeepSim
is another approach that measures code functional similarity
[17] by encoding control flow and data flow graphs into a
semantic matrix. Another similar approach, HOLMES [18]
(that relies on CFG and DFG), performs semantic code clone
detection using program dependency graphs and graph neural
networks by leveraging the structured, syntactic, and semantic
information of the source code. FCCA [19] uses hybrid code
representation by combining unstructured (code as sequential
tokens) and structured (ASTs and CFGs) information of the
code. Authors then train a deep-learning model with attention.
Asm2vec [20] is a binary clone detection system that uses
vector representation of assembly functions to detect clones.

520

B. Dynamic Analysis for Code Clone Detection

Tajima et al. [21] proposed to detect functionally similar
code for newly created methods that do not have test cases.
Authors first extract interface information and PDG from
methods. Then this information is used for similarity detection.
Li et al. [22] proposed a technique based on automatic test case
generation to search semantically equivalent API methods by
running the generated test cases. They consider two methods to
be similar if the methods generate the same output on each of
the generated test cases. Mathew et al. [2] proposed SLACC,
a cross-language clone detection based on runtime behavior. It
uses function I/O to cluster code based on its behavior. Authors
generate 256 inputs per function to find similarity. Compared
to dynamic techniques, our work is lightweight since we do
not need to run the programs.

VIII. THREATS AND LIMITATIONS

Our approach relies on Code2vec embedding that utilizes
ASTs of the program to generate the vector representation.
For Type-I (textual similarity), Type-II (lexical similarity),
and Type-III (syntactic similarity) clones, code2vec produces
significantly similar ASTs because of similarity in syntactic
structure. However, Type-IV code clones are only behaviorally
similar; they have different syntactic structures. Hence, the
underlying ASTs of Type-IV clones are significantly different,
leading to different code2vec vector representation. Moreover,
code2vec has been shown to rely heavily on variable names
for prediction, causing it to be fooled by typos or adversarial
attacks [8]. Our code2vec model was trained on the source
code, and using an obfuscated version of the training data
can potentially improve the performance. Moreover, there are
several techniques in the literature to generate code embedding
that utilize call graphs, ASTs, and other data from the code
[23]. In this work, our framework relies on code2vec embed-
ding. It is possible that other representations, such as Asm2vec
[20], yield better results. We leave this to future work.

IX. CONCLUSION

In this paper, we propose compiler optimization based code
clone detection technique. Our approach relies on the compiler
to smooth out the differences in the source code introduced
by the developer. We observed that O2 optimization yields the
best performance (84.61% accuracy and 84.96% F1-score) for
the classification task among O1, O2, and O3. Our proposed
approach yields an improvement of more than 25% accuracy
over the source code based representation. Furthermore, we
investigated the utility of cross compiler optimization for
classification problem. Our results suggest that the optimiza-
tions yield significantly different binaries making it difficult
for the model to learn optimally. In the future, we plan to
study program representation to accommodate cross compiler
optimization and improve classification performance.

REFERENCES

[1] E. O. Kiyak, A. B. Cengiz, K. U. Birant, and D. Birant, “Comparison
of image-based and text-based source code classification using deep
learning,” SN Computer Science, vol. 1, no. 5, pp. 1–13, 2020.

[2] G. Mathew, C. Parnin, and K. T. Stolee, “SLACC: Simion-Based
Language Agnostic Code Clones,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
210–221. [Online]. Available: https://doi.org/10.1145/3377811.3380407

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and Evaluation of Clone Detection Tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[4] C. K. Roy and J. R. Cordy, “A Survey on Software Clone Detection
Research,” School of Computing TR 2007-541, Queen’s University, vol.
115, 2007.

[5] GCC, “Optimize options (using the gnu compiler collection (gcc)),”
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html, (Accessed on
03/05/2021).

[6] NSA, “Ghidra,” https://ghidrasre.org/, (Accessed on 03/06/2021).
[7] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2Vec: Learning

Distributed Representations of Code,” Proc. ACM Program. Lang.,
vol. 3, no. POPL, pp. 40:1–40:29, Jan. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3290353

[8] R. Compton, E. Frank, P. Patros, and A. Koay, Embedding Java Classes
with Code2vec: Improvements from Variable Obfuscation. New York,
NY, USA: Association for Computing Machinery, 2020, p. 243–253.
[Online]. Available: https://doi.org/10.1145/3379597.3387445

[9] Google, “Code jam - google’s coding competitions,”
https://codingcompetitions.withgoogle.com/codejam, (Accessed on
03/05/2021).

[10] J. Petrı́k, “Jur1cek/gcj-dataset: Collected solutions from google code jam
programming competition (2008-2020).” https://github.com/Jur1cek/gcj-
dataset, (Accessed on 03/08/2021).

[11] A. H. Ali, “code2vec c,” https://github.com/AmeerHajAli/code2vec c,
(Accessed on 03/14/2021).

[12] A. Walker, T. Cerny, and E. Song, “Open-source tools and benchmarks
for code-clone detection: Past, present, and future trends,” SIGAPP
Appl. Comput. Rev., vol. 19, no. 4, p. 28–39, Jan. 2020. [Online].
Available: https://doi.org/10.1145/3381307.3381310

[13] V. Käfer, S. Wagner, and R. Koschke, “Are there functionally similar
code clones in practice?” in 2018 IEEE 12th International Workshop on
Software Clones (IWSC), 2018, pp. 2–8.

[14] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
ercc: Scaling code clone detection to big-code,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), 2016,
pp. 1157–1168.

[15] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[16] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2016, pp. 87–98.

[17] G. Zhao and J. Huang, “DeepSim: Deep Learning Code Functional
Similarity,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p.
141–151. [Online]. Available: https://doi.org/10.1145/3236024.3236068

[18] N. Mehrotra, N. Agarwal, P. Gupta, S. Anand, D. Lo, and R. Purandare,
“Modeling Functional Similarity in Source Code with Graph-Based
Siamese Networks,” arXiv preprint arXiv:2011.11228, 2020.

[19] W. Hua, Y. Sui, Y. Wan, G. Liu, and G. Xu, “FCCA: Hybrid Code Rep-
resentation for Functional Clone Detection Using Attention Networks,”
IEEE Transactions on Reliability, pp. 1–15, 2020.

[20] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2vec: Boosting
static representation robustness for binary clone search against code
obfuscation and compiler optimization,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 472–489.

[21] R. Tajima, M. Nagura, and S. Takada, “Detecting functionally similar
code within the same project,” in 2018 IEEE 12th International Work-
shop on Software Clones (IWSC), 2018, pp. 51–57.

[22] G. Li, H. Liu, Y. Jiang, and J. Jin, “Test-Based Clone Detection: an
Initial Try on Semantically Equivalent Methods,” IEEE Access, vol. 6,
pp. 77 643–77 655, 2018.

[23] Z. Chen and M. Monperrus, “A literature study of embeddings on source
code,” arXiv preprint arXiv:1904.03061, 2019.

521

Which Factors Affect Q-Learning-based Automated Android Testing?
– A Study Focusing on Algorithm, Learning Target, and Reward Function –

Yuki Moriguchi Shingo Takada

Keio University, Japan
{yukim, michigan}@doi.ics.keio.ac.jp

Abstract

With the spread of smartphones, the importance of auto-
mated testing of mobile applications has increased. How-
ever, many current approaches are inadequate, as they
are not able to test functions that are available only on
hard-to-reach GUI, which is a screen that can be reached
only through a specific sequence of input events. To solve
this problem, there has been an increase in testing re-
search based on reinforcement learning, specifically Q-
learning. Each research uses different learning targets and
reward function. Testing research has also been done us-
ing Deep Q-Network, which extends reinforcement learning
in a “deep” way. Although each work has conducted their
own evaluation, it is not clear how the combination of learn-
ing algorithm, learning target, and reward function affects
the result. To bridge this gap, we have conducted an em-
pirical study comparing eight possible combinations. Our
study found that the combination of Deep Q-Network as the
learning algorithm, component as the learning target, and
GUI change ratio as the reward function had the highest
test quality in terms of code coverage.
Keywords: Software testing, Q-learning, Android applica-
tion

1. Introduction

The proliferation of smartphones has led to an increase in
mobile applications. As with conventional software, testing
is an essential part of the development process of mobile
applications. Thus, research on automated testing is being
actively conducted. Unfortunately its performance is still
not adequate. A major reason for this is that GUI screens
which can be reached only through a specific sequence of
input events are not easily reached. As a result, functions
on those screens are often not tested.

In the past several years, reinforcement learning (specifi-
cally Q-learning), as well as a “deep” version of Q-learning
(Deep Q-Network), has been applied to testing in order
to overcome this issue [6] [4] [1] [5] [8] [9]. Reinforce-
ment learning is a type of machine learning, where an agent
adapts to the environment through trial and error. Unlike

DOI reference number: 10.18293/SEKE2021-046

Table 1. Summary of Testing Approaches Us
ing Reinforcement Learning

Paper Learning
Algorithm

Learning
Target

Reward
Function

[1], [4] Q Learning Event Optimistic
Initial
Value
Method

[6], [5], [8] Q Learning Event GUI Change
Ratio

[9] Deep Q Net-
work

Component GUI Change
Ratio

supervised learning, there is no teacher who explicitly in-
dicates the correct output for the state input. Instead, the
agent learns using reward.

Although each work has their own unique points, the ba-
sics are the same. The Q-learning agent interacts with the
Android application to gradually build up a model and then
creates test cases based on the model. The agent searches
for the best input solution that allows it to test as many fea-
tures as possible. Q-learning based testing has been able to
achieve higher code coverage than random testing.

Still, there are some differences that need to be noted.
First, we have already stated above that there is Q-learning
as well as a “deep” version of Q-learning. Second, what
the agent learns (i.e., learning target) differs; most work
targeted events, while one targeted components. Finally,
the function used to calculate the reward differs; some were
based on the GUI change ratio, while others were based on
“Optimistic Initial Value Method.” Table 1 summarizes the
differences. Thus, we see at least three factors that need
to be considered when applying reinforcement learning to
testing, specifically learning algorithm, learning target, and
reward function.

Although each work has conducted their own evaluation,
it is not clear how the three factors affect testing. In order to
bridge this gap, we have conducted an empirical study that
compares the eight combinations that can be made from the
three factors. Table 2 shows the eight combinations that we
target in our study.

In the rest of this paper, we first describe the three fac-

522

Table 2. Eight Combinations based on the Three Factors of Learning Algorithms, Learning Targets
and Reward Functions

ID Related Work Learning Algorithm Learning Target Reward Function
1 [1], [4] Q Learning Event Optimistic Initial Value Method
2 [6], [5], [8] Q Learning Event GUI Change Ratio
3 Q Learning Component Optimistic Initial Value Method
4 Q Learning Component GUI Change Ratio
5 DQN Event Optimistic Initial Value Method
6 DQN Event GUI Change Ratio
7 DQN Component Optimistic Initial Value Method
8 [9] DQN Component GUI Change Ratio

tors that we focus on: learning algorithm, learning target,
and reward function. Section 3 describes the design of our
empirical study. Section 4 discusses the results of our study.
Section 5 discusses threats to validity. Section 6 makes con-
cluding remarks.

2. Factors in Q-learning based testing
This section describes the three factors that we focus on;

learning algorithm, learning target, and reward function.

2.1. Learning algorithm

Q Learning. Q-learning is a learning algorithm for rein-
forcement learning that has been used in the work of Mari-
ani et al. [6], Korogulu et al. [5], Adamo et al. [1], Esparcia
et al. [4], and Vuong et al. [8]. There are two methods of re-
inforcement learning: one based on value functions and the
other based on strategy search. Q-learning is an algorithm
based on value functions. The value function estimates how
good it is for an agent to perform an action in a given state.
The criterion for the estimation is the expected future re-
ward, called the cumulative reward. Since the future reward
depends on which action the agent will take, the number of
values is defined according to a specific strategy. We define
the value function Qπ (s, a) as follows:

Qπ (s, a) = E [R | s, a, π] (1)

The value function returns the cumulative reward that can
be achieved by performing a sequence of actions that starts
from s with action a, and then following the policy π from
the succeeding state.

The optimal Q function Q∗ returns the maximum cumu-
lative reward that can be obtained from a given pair of state
and action.

Q∗ (st, at) = max
π

T−1∑
t>0

(
γtrt | s = st, a = at, π

)
(2)

If the optimal Q value Q∗ (st+1, at+1) for the next step
is known, then the optimal strategy is to take the action that

maximizes r+γQ∗ (st+1, at+1). r is the immediate reward
for the current step. Q∗ satisfies the Bellman equation.

Q∗ (st, at) = r (st, at) + γmax
at+1

Q (st+1, at+1) (3)

γ is the discount rate, which is a value between 0 and 1.
The discount rate determines whether to give more weight
to immediate or cumulative rewards; closer to 0 means more
immediate rewards and closer to 1 means more cumulative
rewards.

The optimal strategy π* is to take the action with the
largest Q value Q*. The Q-learning algorithm iteratively
calculates the value of the Q function based on equation (3).
First, the Q-function is initialized with a default value. Each
time the agent performs an action to go from state st to state
st+1 and receives a reward rt, the Q function is updated as
follows:

Q (st, at)← Q (st, at)+α(rt+γmax
a

Q (st+1, a)−Q (st, a))

(4)
α is the learning rate, which is a value between 0 and 1. It
determines how much the Q-value is to be updated.

On the surface, choosing the action with the largest Q
value seems to be favorable, but there is a need to balance
the trade-off between exploration and exploitation [7]. ϵ-
greedy approach is often used in reinforcement learning.
Simply, a random action is selected with probability ϵ, or
the action with the highest Q-value is selected with proba-
bility 1− ϵ.

Deep Q-Network. This is the learning algorithm used
in the work of Vuong et al. [9]. The strength of neural net-
works lies in their ability to learn from low-dimensional fea-
ture representations and their ability to approximate com-
plex functions. Using the approximation properties of neu-
ral networks, it is possible to approximate the optimal strat-
egy π* and the optimal value function Q∗. The extension
of reinforcement learning with neural networks is deep re-
inforcement learning. One of the best known methods for
deep reinforcement learning is Deep Q-Network (DQN).

523

The optimal value function Q can be obtained by a neural
network by using the weights θ.

Q (st, at, θ) ≈ Q∗ (st, at) (5)

Training is done by adjusting the weights θi at iteration i so
that the mean square error of equation (3) becomes small.
The right term in equation (3) is replaced by the following:

r (st, at) + γmax
at+1

Q
(
st+1, at+1, θ

−
i

)
(6)

2.2. Learning target

Event. Mariani et al. [6], Adamo et al. [1], Esparcia
et al. [4] and Vuong et al. [8] targeted events for learning.
GUI testing tools usually interact with the application under
test by sending events to GUI components. For example, a
click (event) is sent to a button (component) that transitions
to the next page.

Component. Vuong et al. [9] targeted components for
learning. The goal of reinforcement learning algorithms is
to search for hard-to-reach application features in a way that
reveals them. They tried to achieve this goal by considering
the semantics of components and by making components as
the learning target.

2.3. Reward function

Optimistic Initial Value Method. The optimistic ini-
tial value method is a reward function used in the work of
Adamo et al. [1] and Esparcia et al. [4]. It is commonly
used because it is simple to implement and effective for
simple problems. However, so far no theoretical guaran-
tees have been given, and in practice, it is not efficient be-
cause many iterations are required before the correct value
propagates and overrides the optimistic value. As shown
in equation (7), we make the function such that the reward
for unexplored actions is maximized, so that all actions are
explored exhaustively.

R (st, at) =
1

f (st, at)
(7)

st is the state at step t, and at is the action at step t.
R (st, at) is the reward for taking action at in state st.
f (st, at) is the number of times action at is taken in state
st.

GUI Change Ratio. GUI Change Ratio is a reward
function used in the work of Mariani et al. [6] and Vuong
et al. [8] [9]. As shown in equation (8), by considering
the percentage of GUI changes, the reward is determined so
that new features can be explored.

R (st, at, st+1) =
| st+1\st |
| st+1 |

(8)

st is the state at step t, and at is the action at step t.
R (st, at, st+1) is the reward for the transition to state st+1

as a result of taking action at in state st. The right term
in Equation (8) is a ratio that indicates how much the num-
ber of GUIs is changed when the agent transitions from one
state st to the next st+1.

3. Experiment Design
3.1. Overview

We conducted a comparative study of the eight combi-
nations that are shown in Table 2, and aim to answer the
following four research questions:

• RQ1: Which reinforcement learning algorithm is bet-
ter: Q-learning or Deep Q-Network?

• RQ2: Which learning target is better: events or com-
ponents?

• RQ3: Which reward function is better: optimistic ini-
tial value method or GUI change ratio?

• RQ4: Which combination will give the highest test
quality?

The implementation of the eight combinations were done
by extending existing implementations. For combinations
which are based on Q-learning, we extended ClassicQ,
which was originally implemented in [8]. For combinations
which are based on Deep Q-Network, we extended QDroid
which was originally implemented in [9].

We investigated the code coverage for twelve Android
applications to evaluate test quality. Although not perfect,
code coverage is often used to check the quality of test. We
used Androtest [2], an automated test tool evaluation frame-
work, for obtaining code coverage. We measured class cov-
erage, method coverage, block coverage, and line coverage.
Two-hour tests were conducted five times for each of the
twelve applications under test, and the average code cover-
age was calculated.

3.2. Parameter Settings

Two important parameters in Q-learning is discount rate
γ and learning rate α. We took into account the parame-
ter values used in previous work, and also conducted some
trial-and-error executions of our tool. Based on this, we
chose the values for these parameters to be γ = 0.9 and
α = 1.0.

Another important parameter is ϵ. As with [8], the ini-
tial value of ϵ is set to 1 (i.e., always randomly choose an
action), and continually decreased it until ϵ = 0.5.

3.3. Target Applications

The applications to be tested as benchmarks are the
datasets used in Vuong et al. [9]. These applications are the
ones included in Androtest. The dataset consists of twelve
Android applications, as shown in Table 3.

524

Table 3. Twelve Target Applications
App Name LOC URL
AnyMemo 8428 https://f-droid.org/en/packages/org.liberty.android.fantastischmemo/

My Expenses 2935 https://f-droid.org/en/packages/org.totschnig.myexpenses/
Who has my stuffs 729 https://f-droid.org/en/packages/de.freewarepoint.whohasmystuff/

Tippy Tipper 1083 https://github.com/mandlar/tippytipper
Munch Life 254 https://github.com/averyada/MunchLife

Mini Note Viewer 3673 https://f-droid.org/en/packages/jp.gr.java conf.hatalab.mnv/
Mileage 4628 https://f-droid.org/en/packages/com.evancharlton.mileage/

Multi SMS sender 828 https://f-droid.org/packages/com.hectorone.multismssender/
Hot Death 3902 https://f-droid.org/en/packages/com.smorgasbork.hotdeath/

Random Music Player 400 https://f-droid.org/en/packages/com.simplemobiletools.musicplayer/
Dalvik Explorer 1375 https://f-droid.org/en/packages/org.jessies.dalvikexplorer/

Weight Chart 1116 https://f-droid.org/forums/topic/weight-chart/

4. Experiment Results and Discussion

Table 4 shows the average values of class coverage,
method coverage, block coverage, and line coverage for
each of the eight combinations. Table 5 shows the average
method coverage values for each of the combination and
each of the application.

For both Tables 4 and 5, the result in the row with the best
coverage value is in bold font. So, for example, in Table 4,
ID8 had the best class coverage at 62.58%, while ID2 had
the best method coverage for the application AnyMemo at
38.8%. For the results of each application, we only show
method coverage and not the other three coverages due to
space issues, but the tendency was the same.

We now discuss each research question. For each re-
search question, we first discuss based on Table 4 which
gives the overall results, and then discuss based on Table 5
at the application level.

4.1. RQ1: Which reinforcement learning algorithm is
better: Q-learning or Deep Q-Network?

Since we had learning target and reward function as fac-
tors, in order to compare Q-learning and Deep Q-Network,
we compared each of the pair (ID1, ID5), (ID2, ID6), (ID3,
ID7), and (ID4, ID8). When we look at the results of each
of these pairs in Table 4, in all cases the combinations using
Deep Q-Network had the better results. We also conducted
statistical analysis, but we did not obtain a significant dif-
ference in each of the pair.

When we look at the results for each application in Table
5, we can see that this depends on each application. ID8 was
better than (or the same as) ID4 for all applications. But for
the three other pairs, about half had Q-learning better, and
about half had Deep Q-Network better.

� �
RQ1 Answer: Overall, Deep Q-Network was found to
be better than Q-learning, but the difference was not
statistically significant. When looking at each applica-
tion, there was not a clear cut tendency for one over
the other except for ID8, which was better than (or the
same as) ID4 for all applications.� �

4.2. RQ2: Which learning target is better: events or
components?

Similar to RQ1, we compared each of the pair (ID1,
ID3), (ID2, ID4), (ID5, ID7), and (ID6, ID8). In most
cases in Table 4, the combination using components had
a better result. Only the class coverage and line coverage
for the pair (ID5, ID7) had events with the better results.
We also conducted statistical analysis, and we found that
for the pair (ID6, ID8), ID8 (component) was significantly
different (better) than ID6 (event). The difference in other
pairs were not statistically significant.

When comparing for each application (Table 5), again
there was not a clear cut tendency towards either event or
component, except for ID8. ID8 was better than (or the
same as) ID6 in eleven out of twelve applications.� �

RQ2 Answer: Component was found to be better than
event in most cases, but there was one pair where the
difference was found to be statistically significant; ID8
(component) was found to be better than ID6 (event).
This was also seen at the application level.� �

4.3. RQ3: Which reward function is better: optimistic
initial value method or GUI change ratio?

We compared each of the pairs (ID1, ID2), (ID3, ID4),
(ID5, ID6), and (ID7, ID8). Looking at the overall results in
Table 4, for the pairs using Q-learning, i.e., (ID1, ID2) and

525

Table 4. Overall Results: Average
ID 1 2 3 4 5 6 7 8

Class 54.10 53.24 57.38 57.05 58.42 60.03 57.89 62.58
Method 44.80 44.37 47.02 46.41 47.83 48.45 47.88 52.98
Block 40.82 39.90 43.08 41.75 43.25 43.75 43.84 47.95
Line 39.98 39.25 42.33 41.40 43.18 43.48 42.98 47.75

Table 5. Results of each Application: Method Coverage
App Name ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8
AnyMemo 36.0 38.8 26.8 26.0 28.2 28.2 31.4 31.8

My Expenses 29.0 35.2 35.0 39.8 45.6 50.4 30.6 64.4
Who has my stuffs 81.4 69.8 75.2 76.2 76.4 76.4 79.8 80.2

Tippy Tipper 52.8 54.8 54.4 53.8 54.2 54.0 50.4 54.6
Munch Life 51.2 48.0 48.0 48.0 48.0 48.0 48.0 48.0

Mini Note Viewer 42.2 39.6 32.6 37.4 38.0 38.0 41.0 48.2
Mileage 34.4 35.3 27.2 26.4 26.8 27.6 33.6 35.5

Multi SMS sender 37.4 37.2 38.0 36.8 37.0 37.0 35.0 37.2
Hot Death 16.4 17.0 59.2 60.6 59.8 61.2 59.0 64.2

Random Music Player 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0
Dalvik Explorer 80.6 73.8 76.6 64.2 65.4 65.4 77.5 78.6

Weight Chart 22.2 29.0 37.2 33.8 40.6 41.2 34.2 39.0

(ID3, ID4), optimistic initial value method had better re-
sults, but it was not statistically significant. But for the pairs
using Deep Q-Network, i.e., (ID5, ID6) and (ID7, ID8), it
was the opposite, i.e., GUI change ratio had better results.
However, in these cases also, the difference was not statis-
tically significant.

When we look more closely at the application level in Ta-
ble 5, we can see that for the pairs using Deep Q-Network,
change ratio had the same or better results in all but one
case, where in Tippy Tipper ID5 was better than ID6 by just
0.2%, which should be considered as negligible. For the
pairs using Q-learning, there was little difference between
the two reward functions.� �

RQ3 Answer: There was no statistically significant
difference. But there was a tendency for optimistic
initial value method to be better for Q-learning, and
change ratio to be better for Deep Q-Network.� �

4.4. RQ4: Which combination will give the highest test
quality?

From Table 4, we can see that ID8 (Deep Q-Network,
component, GUI change ratio) was found to have the best
results for all types of coverage. We also checked the statis-
tical difference between ID8 and each of the other combi-
nations. Except for the pair (ID1, ID8), the difference was
statistically significant for all other combinations.

This can also be seen in Table 5. ID1 had three apps

with the best results, while ID8 had four. ID8 was better
than ID1, in terms of number of apps with the best results,
although not by much.

We also note that ID2 had two apps and ID3 and ID6 had
one app each with the best result. However, for these four
apps, we can see that the difference with the other combi-
nations were not that large. When compared with ID8, the
difference in these four apps ranged from 0.2% (Tippy Tip-
per) to 7.0% (AnyMemo).� �

RQ4 Answer: The combination of Deep Q-Network,
component and GUI change ratio was found to be the
best combination.� �

4.5. Further Discussion

In Table 5, when comparing the results for ID1 and ID8,
we can also see that the results for ID8 was more stable.
The lowest and second lowest results for ID8 were 31.8%
(AnyMemo) and 35.5% (Mileage), while the two lowest re-
sults for ID1 was 16.4% (Hot Death) and 22.2% (Weight
Chart). Note though that although Mileage was the second
worst result for ID8, it was still the best result among all
eight combinations for Mileage.

Although we focused on the three factors of learning al-
gorithm, learning target and reward function, we must not
forget that other parts still need work, especially being able
to generate “meaningful” strings. For example, in Table 5,
the results of Random Music Player for all combinations

526

was 54%. We manually checked the results, and found that
it wasn’t just the method coverage value itself that was the
same; the methods that were covered were also the same.
This was because one of the functions in Random Mu-
sic Player requires the input of a URL. However, none of
the eight combinations were able to generate a meaningful
URL, and thus all functions (methods) that can be used after
entering a URL could not be tested.

5. Threats to Validity
Internal Validity. We limited each execution to two

hours. Since reinforcement learning is an approach that
learns while executing, there are two possible issues. First,
it may be possible that the coverage would continue to in-
crease if the execution time was longer. Second, the shape
of the coverage curve may differ between execution, i.e.,
some executions may cover more code quickly while oth-
ers may not be as quick. Third, there may be differences
between each execution. Although we cannot completely
negate these possibilities, we tried to minimize these as
much as possible by taking the average of five executions
for each combination and application.

Another threat to internal validity is the parameters of
reinforcement learning. The execution results will vary de-
pending on the parameters values, specifically discount rate
γ, learning rate α, and ϵ-Greedy value ϵ. To mitigate this
threat, we selected parameter values such as discount rate
and learning rate based on empirical analysis reported in
previous studies, as well as some trial-and-error execution
of the combinations.

External Validity. In this study, we targeted twelve An-
droid applications. In terms of sampling bias, it is possi-
ble that completely different results could be obtained if the
current test were conducted on different applications.

Construct Validity. We used code coverage to assess
how good an app was tested. Using code coverage for this
purpose has long been considered to be controversial [3].
Thus, code coverage may not be perfect for comparison.
But code coverage is used in many testing papers, and we
believe that it is adequate enough as one way to compare
testing approaches.

6 Conclusions and Future Work
We conducted an empirical comparative study of An-

droid application testing focusing on the three factors of
learning algorithms, learning targets, and reward functions.
We implemented eight combinations based on these three
factors and executed them on twelve applications, and mea-
sured code coverage. We compared and discussed the eight
combinations based on four research questions. We found
that the combination of Deep Q-Network, component and
GUI change ratio was the best combination (RQ4). For the
other research questions, there was little statistical signifi-

cance, although we did discuss some trends.
Future work includes investigating other Android appli-

cations to eliminate external validity. Also, executing for
more than two hours needs to be considered. Finally, as
was discussed in subsection 4.5, one major issue that needs
to be solved regardless of the three factors is being able to
generate “meaningful” strings when necessary.

References
[1] D. Adamo, M. K. Khan, S. Koppula, and R. Bryce. Reinforce-

ment Learning for Android GUI Testing. In Proceedings of
the 9th ACM SIGSOFT International Workshop on Automat-
ing TEST Case Design, Selection, and Evaluation, A-TEST
2018, pages 2–8, 2018.

[2] Androtest. http://bear.cc.gatech.edu/ shauvik/androtest/. Ac-
cessed: 2021-1-18.

[3] X. Cai and M. R. Lyu. The effect of code coverage on fault
detection under different testing profiles. In Proceedings of
the 1st International Workshop on Advances in Model-Based
Testing, A-MOST ’05, pages 1–7, 2005.

[4] A. I. Esparcia-Alcazar, F. Almenar, U. R. M. Martinez, and
T. E.J. Vos. Q-learning strategies for action selection in the
TESTAR automated testing tool. In Proceedings of META
2016 6th International Conference on Meta heuristics and Na-
ture Inspired Computing, pages 174–180, 2016.

[5] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tan-
riverdi, and Y. Donmez. Qbe: Qlearning-based exploration of
android applications. In 2018 IEEE 11th International Confer-
ence on Software Testing, Verification and Validation (ICST),
pages 105–115, 2018.

[6] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro. Auto-
BlackTest: Automatic Black-Box Testing of Interactive Appli-
cations. In 2012 IEEE Fifth International Conference on Soft-
ware Testing, Verification and Validation, pages 81–90, 2012.

[7] Y. Shen and C. Zeng. An adaptive approach for the
exploration-exploitation dilemma in non-stationary environ-
ment. In 2008 International Conference on Computer Science
and Software Engineering, volume 1, pages 497–500, 2008.

[8] T. Vuong and S. Takada. A Reinforcement Learning Based
Approach to Automated Testing of Android Applications. In
Proceedings of the 9th ACM SIGSOFT International Work-
shop on Automating TEST Case Design, Selection, and Eval-
uation, A-TEST 2018, pages 31–37, 2018.

[9] T. Vuong and S. Takada. Semantic analysis for deep q-
network in android gui testing. In Proceedings of 32nd Inter-
national Conference on Software Engineering and Knowledge
Engineering, pages 123–128, 2019.

527

MACA: A Residual Network with Multi-Attention
and Core Attributes for Code Search

Lian Gu, Zihui Wang, Jiaxin Liu, Yating Zhang, Dong Yang, Wei Dong
College of Computer Science, National University of Defense Technology, Changsha, China

{gulian, wangzihui98, liujiaxin18, zhangyating18}@nudt.edu.cn, yangdong5002@163.com, wdong@nudt.edu.cn

Abstract—Code search technique has gradually become a key
skill to accelerate software development. However, the current
deep learning methods only use the encoded results and ig-
nores the original content of the code. Besides, the feature
expression of the code is too single, which makes the model’s
understanding insufficient. And the last problem is the lack of
separate processing of core attributes, which will cause the model
to lack differentiated learning of the attributes with different
importance. Therefore, we propose a residual network based
on Multi-Attention, so that the model can not only retain the
original content of the code but also allow the code to perform a
large number of combined learning in different aspects to obtain
differentiated features. Then we treat three core attributes and
specific implementation of the code differently so that the model
can pay extra attention to the core attributes. We use 158,201 Java
code-comment pairs for training. In our experimental results, our
model is 9.5% higher than the existing method on the indicator
of MRR and 12% higher on the SuccessRate@1.

Index Terms—code search, deep learning, residual network,
Multi-Attention

I. INTRODUCTION

The code search field can be divided into two historical
development stages. The first stage is based on information
retrieval methods, and its main strategy is keyword matching;
the second stage is based on deep learning methods, and its
main strategy is to build a neural network model from query
sentences to codes to bridge the semantic gap between the
two.

On the one hand, the method based on information retrieval,
because it relied on keywords, leads to limited correctness,
and may not match codes that are highly similar to the
query sentence due to different keywords. On the other hand,
the current deep learning method has three problems. The
first is that the model only uses the encoded result of the
code and discards the original content, which will make the
model lose a certain degree of stability. The second is that
the model’s distributed representation of code features is too
single, which makes the model unable to fully learn the
code features. The last problem is that these models lack
separate processing of core attributes, which will allow code
elements of different importance to be treated equally, so
that core attributes cannot be expressed as they should in the
modeling process. Therefore, we propose a residual network
structure based on Multi-Attention. This structure can not only

Corresponding author: Wei Dong. This work was supported by National
Natural Science Foundation of China (No.62032019, 61690203)

DOI reference number: 10.18293/SEKE2021-079

retain the original content of the code but also allows the
code to learn different aspects of the combination through a
large number of attention mechanisms [1], so as to obtain a
more comprehensive representation of the code. Finally, we
extracted the three core attributes of the method name, return
type, and parameter list separately from the original code
content. Then let the distributed representation of these three
attributes concatenate the existing coding content so that the
model can pay extra attention to the important features of the
code.

Our experimental results show that our method is higher
than other deep learning methods in both SuccessRate and
MRR indicators. This shows that our method effectively
improves the performance of code search.

Our contributions are as follows:
• We find that inputting the core attributes of the code

separately into the model increases the performance of
the model;

• We conduct a comparative experiment on the presence or
absence of Multi-Attention and find that Multi-Attention
can effectively mine the potential information of code and
comments;

• We also set up an experiment, discarding one of the
attributes each time, and find that the method name helps
the model the most.

II. RELATED WORK

The field of code search has always been a popular research
content in academia and industry. It has gone through two
research phases, one is realized by information retrieval tech-
nology, and the other is realized by deep learning.

At the stage where information retrieval technology is the
main method, the code search method has already made many
achievements. One of the typical methods is CodeBroker [2],
which uses annotations to calculate similarity. Besides, Apache
releases Lucene [3], which is an open-source full-text search
engine toolkit, which can perform full-text indexing and search
with high search efficiency. In addition to the full-text search
engine Lucene, there are many code search engines based on
information retrieval, such as Codase [4], Koders [5], Krugle
[6].

Sachdev et al. set up an experiment to compare the effects
of traditional information retrieval methods and deep learning
methods on code search tasks [7]. The results show that
methods based on deep learning can express more precise

528

code

word2vec

initial
embedding multi-attention code

embedding method name

return type

parameters

final
embedding

comment
initial

embedding multi-attention comment
embedding

verbs

nouns

 final
embedding

similarity
concatenate

concatenate

concatenate

concatenate

word2vec

Fig. 1. The structure of the Code-Comment Embedding Neural Network

semantics and achieve better performance. In recent years, a
large number of code search methods based on deep learning
have emerged. A typical method is NCS [7], which trains the
code and query sentence at the same time to obtain a fastText
[8] embedding, and then calculates the weight of the code
according to IF-IDF [9] to obtain the final code representation
vector, and directly averages the embeddings of the query
sentence to obtain its final representation. Cambronero et al.
improves based on NCS and proposes UNIF [10], which
trains a fastText embedding for the code and query sentence
respectively, and this embedding can be fine-tuned in the later
training phase, and the weighting of the code is changed from
TF-IDF to the attention mechanism. Gu et al. split code into
three parts according to the characteristics: method name, API
sequence, and code tokens [11]. And they train an embedding
for each of the three, which encodes the method name and
API sequence through the Recurrent Neural Network, and
encodes the code tokens through the Multi-Layer Perceptron.
Haldar et al. propose a multi-perspective architecture, which
calculates the similarity by capturing both global and local
similarities [12]. Mou et al. embed codes by a tree-based
convolutional neural network [13]. Chen et al. model code
and natural language by training two VAEs [14].

III. METHOD

Our model is a twin tower model based on the deep
structured semantic model(DSSM) framework [15]. The twin
tower model divides the input into two independent terminals,
one for codes and another for comments, and then processes
the two different inputs separately. Among them, each end is

composed of three layers. The first layer is the input layer, also
called the embedding layer. Its function is to process the input
into a numeric vector. The second layer is the presentation
layer, also called the coding layer. Its function is to process
the input vector into a single vector that can represent the
entire input. The third layer is the matching layer. Its purpose
is to score the similarity of the two final representations. The
higher the score, the more similar the two inputs.

A. Input Layer

In the input layer, we usually choose some classic word
vector representations. We choose Word2Vec [16] to learn
word vectors for code and comments respectively. On the code
side, in addition to the coding code itself, we also extracted
the three attributes of the return value, method name, and
parameter list; on the comment side, in addition to the coding
comment itself, we also extracted the commented verbs and
nouns. We believe that these separately extracted features can
better help the model to express.

B. Presentation Layer

The presentation layer is the core of the entire model. Its
role is to encode a collection of word vectors representing code
and comments into a single word vector, which represents the
entire code or comment.

From the framework of the presentation layer, both the
code side and the comment side are two residual network
structures. On the one hand, the model needs to learn new
information from the original content, and on the other hand,
it also needs to retain the original information to a certain

529

extent. Therefore, we use Multi-Attention to generate new
content and then concatenate the original content. This is the
first residual structure that learns new content by itself through
the model. In the second stage, the model also needs to retain
the existing content given artificially. On the code side, these
contents are the return type, parameter list, and method name;
on the comment side, these contents are the verbs and nouns
that appear in the comment.

Because the attention mechanism is only an understanding
of one aspect of the code, we have performed multiple
attention calculations on the code, and we call this process
Multi-Attention. The attention mechanism of each time is
calculated as follows:

ai,k =
exp

(
ak · eTi

)∑n
i=1 exp

(
ak · eTi

) (1)

Among them, ai,k is the weight of each ei vector, and ak
is the attention weight coefficient. The target combined vector
can be calculated as follows:

vk =
n∑

i=1

ai,kei (2)

where vk is the k-th vector of the target vectors.
Finally, the word vector representing the entire code is

cascaded to the new vector generated by Multi-Attention
and is input to the encoding stage as detailed information
together. When summing up the embedding of the four parts,
we directly obtain the final code vector representation by
averaging.

On the comment side, we first extract the verbs and
nouns in the comment sentence through the Natural Language
Toolkit(NLTK) and input the word vectors of the two sepa-
rately into the final representation. The encoding of the entire
sentence is consistent with the code side. First, additional
information about the comment is obtained through Multi-
Attention, then these vectors are concatenated to the original
vector, and finally, the average is taken.

C. Match Layer

The presentation layer has coded the code and the comment
into a vector respectively, and the function of the matching
layer is to score the similarity of the two vectors representing
the code segment and the natural language comment. For
two vectors with equal dimensions, we generally use cosine
similarity for calculation. The higher the cosine similarity
score, the closer the two vectors are. The calculation formula
of cosine similarity is as follows:

cos(θ) =
A ·B
‖A‖‖B‖

=

∑n
i=1Ai ×Bi√∑n

i=1 (Ai)
2 ×

√∑n
i=1 (Bi)

2
(3)

Among them, A and B respectively represent a vector, Ai

represents the i-th element in the A vector, and Bi represents
the i-th element in the B vector.

IV. EXPERIMENT

A. Dataset

a) Data Collection: We first obtain Java projects with a
stat greater than or equal to 10 on GitHub through the crawler.
Then we parse each Java file in the project through the AST
parser of Java Development Tools(JDT) to get information
such as comment, method name, return type, parameter list,
and method body. Among them, each function corresponds to
a piece of data. We finally get 158,201 pieces of data, and
then randomly selected 500 pieces of data as the test set.

b) Preprocessing: Because the naming convention in
Java follows the camel case principle, and the actual semantics
is a single word in the variable name instead of the entire,
so we also de-camelize the function name and variable name
according to the regular expression and keep the content Words
with precise semantics. At the same time, to be more stable in
the subsequent training of word vectors, we convert all words
to lowercase.

c) Data set training: In the training phase, our training
set is a triple which consists of the following parts: a code
segment, a natural language description, and an integer tag.
The value of this tag is either 1 or 0. 1 means that the code
segment and the natural language description are the data in
the original data set. And 0 means that this code segment does
not match the natural language description, which is generated
by random negative sampling. In our experimental data, the
number of our negative samples is equal to the number of
original samples.

B. Experimental Setup

In our experiment, our data set is trained for 10 epochs,
and the batch size is set to 100. In the setting of the count of
Multi-Attention, we find that 30% of the number of original
embedding vector sets is the best. If the original vector set
has 100 vectors, then 30 vectors will be generated after the
Multi-Attention. The code segment and the Word2Vec vector
described by natural language are trained separately, and the
dimension of the word vector of both is 128. Our model is
implemented on the TensorFlow framework, and the optimizer
selected during training is Adam.

Our similarity is calculated by cosine similarity. For a
training data triple <code, description, flag>, our loss function
is defined as follows:

L(θ) =
∑n

i=1 (cos (ai, bi)− flagi)2

N
(4)

Where N represents the number of training samples, cos(·)
is the cosine similarity mentioned above, the value of the flag
is 0 or 1, 0 means randomly sampled data, 1 means original
sample data.

C. Evaluation Index

In the test indicators, we adopt the commonly used Success-
Rate@k and MRR. MRR is the average value of the inverse of
the ranking of all test data in the sample, and SuccessRate@k
is the ratio of the number of all samples ranked before K.

530

D. Baseline

We chose UNIF, a classic model among the code search
models. The model is very lightweight. On the code side,
UNIF transmits the token vector of the entire code to the
encoder in the form of a bag of words. The encoder completes
the final representation of the code through the attention
mechanism; on the comment side, UNIF directly averages the
word vectors of all words to get the final representation of the
comment. Because the model is relatively simple, the actual
effect of each sub-module of our model can be observed more
clearly in the experiment.

E. Results

We set up two comparative experiments, one of which is
used to prove the effectiveness of the module we designed,
and the other experiment is used to compare the degree of
improvement of each artificially extracted core attribute on the
model effect. The first experiment is to prove the effectiveness
of manually extracting core attributes and Multi-Attention
separately:

TABLE I
EFFECT OF EACH MODALITY. (BEST SCORES ARE IN BOLDFACE.)

Model SR@1 SR@5 SR@10 MRR
UNIF 0.536 0.764 0.796 0.632

MACA(Multi-Attention) 0.57 0.754 0.8 0.652
MACA(Core Attributes) 0.608 0.79 0.85 0.691

MACA(MA+CA) 0.656 0.808 0.868 0.727

It can be seen from the experimental data from table I that
our model performs better than the UNIF model. In terms of all
indicators, our model is 10% higher than UNIF as a whole. In
particular, on the SuccessRate@1 indicator, our model effect
has increased by 12%, and on the MRR indicator, our model
effect has increased by 9.5%. , Which shows that our model is
very accurate in calculating the similarity between comments
and code.

Then we remove the core attributes and Multi-Attention
respectively. We find that the effect of removing these core
attributes is worse than removing Multi-Attention, but the
effect of the two is still better than UNIF. After removing the
core attributes, MRR dropped by 7.5%; after removing Multi-
Attention, MRR dropped by 3.6%. Therefore, for the entire
model, human input of core attributes can greatly improve the
model’s effectiveness.

TABLE II
THE EFFECT OF REMOVING ONE OF THE ATTRIBUTES

Model SR@1 SR@5 SR@10 MRR
MACA 0.656 0.808 0.868 0.727

MACA-w/o.MethodName 0.598 0.774 0.816 0.676
MACA-w/o.ReturnType 0.644 0.806 0.856 0.718
MACA-w/o.Parameter 0.64 0.788 0.848 0.711

MACA-w/o.Verbs 0.65 0.802 0.858 0.721
MACA-w/o.Nouns 0.652 0.796 0.854 0.719

We finally set another comparative experiment, which was
to remove one of the core attributes to see how the model’s
effect declined. It can be seen from table II that when the core
attribute of the method name is removed, the MRR index drops
the most, up to 5.1%. When the parameter list is removed,
MRR drops by 1.6%. Among other core attributes, the decline
is minimal. This shows that it is necessary to input the two
core attributes of the method name and parameter list to the
model.

V. CONCLUSION

We propose a model based on the residual network, which
deliberately encodes the return type, parameter list, and
method name of the code on the basis of encoding the entire
code. The core attributes are entered separately to enhance
the modeling of the code by these attributes. In addition, in
the process of encoding the entire code and natural language
description, our model generates fresh vectors through Multi-
Attention, and these new vectors again input to the presen-
tation layer in the form of residuals as important content.
Our experiments show that adding these important contents
separately will enhance the effect of the model.

REFERENCES

[1] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, pp. 1 – 29, 2019.

[2] Y. Ye and G. Fischer, “Supporting reuse by delivering task-relevant and
personalized information,” in ICSE ’02, 2002.

[3] Lucene, https://lucene.apache.org/.
[4] Codase, https://www.codase.com/.
[5] Koders, https://www.koders.com/.
[6] Krugle, https://www.krugle.com/.
[7] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chandra, “Retrieval

on source code: a neural code search,” Proceedings of the 2nd ACM SIG-
PLAN International Workshop on Machine Learning and Programming
Languages, 2018.

[8] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[9] W. Frakes and R. Baeza-Yates, “Information retrieval: Data structures
and algorithms,” 1992.

[10] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019.

[11] X. Gu, H. Zhang, and S. Kim, “Deep code search,” 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pp. 933–944,
2018.

[12] R. Haldar, L. Wu, J. Xiong, and J. Hockenmaier, “A multi-perspective
architecture for semantic code search,” ArXiv, vol. abs/2005.06980,
2020.

[13] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
AAAI, 2016.

[14] Q. Chen and M. Zhou, “A neural framework for retrieval and summa-
rization of source code,” 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 826–831, 2018.

[15] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning
deep structured semantic models for web search using clickthrough
data,” Proceedings of the 22nd ACM international conference on In-
formation Knowledge Management, 2013.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” ArXiv, vol. abs/1310.4546, 2013.

531

Dynamically Detecting Invariants for Automatic
Testing PLC Programs

Zeyu Lu†, Xia Mao†, Yanhong Huang†§∗, Jianqi Shi†‡, Yang Yang†

†National Trusted Embedded Software Engineering Technology Research Center
East China Normal University, Shanghai, China

‡Hardware/software Co-Design Technology and Application Engineering Research Center, Shanghai, China
§Shanghai Key Laboratory of Trustworthy Computing, Shanghai, China

Email: {zeyu.lu, xia.mao, yang.yang}@ntesec.ecnu.edu.cn, {yhhuang, jqshi}@sei.ecnu.edu.cn

Abstract—Since programmable logic controllers (PLCs) con-
trol safety-critical infrastructures, examining the PLC software
satisfies the high-reliability specifications necessary to ensure
the safeness of PLCs. However, prior works have limitations
in finding defects in the PLC source code. Static verification
techniques suffer from notable false positives without capturing
runtime behavior. The symbolic execution and conformance
testing technique captures the relations of inputs and outputs.
It is not sufficient to consider only the data constraints as
the PLC operates in real-time. In this paper, we propose a
novel approach in the detection of the runtime behavior of
PLC programs with incorporated time constraints. This testing
approach automatically finds implementation errors in PLC
programs by mining invariants from runtime traces. As the
existing tools mine only data or time invariants which are
inadequate to test PLC programs, our approach focuses on the
interplay of data and time invariants. Dynamically detected data-
time invariants are then checked with the safety specifications.
We evaluate the usefulness of our approach in a real-life case.
The experimental results show that the proposed approach can
find errors in PLC programs effectively.

Index Terms—programmable logic controller, program invari-
ant, real-time system, interplay

I. INTRODUCTION

Industrial Control Systems (ICS) have been used widely
in many safety-critical domains, such as smart power grids,
nuclear power plants, and transportation systems. These areas
play an essential role in modern society. A programmable logic
controller (PLC) is an industrial computer that is capable of
being programmed to perform control functions. Now, PLCs
are the most widely-used industrial process control technology.
Since the PLC software controls safety-critical infrastructures,
its inherent defects may have severe consequences, such as
financial and property losses.

To ensure control logic safety, many previous studies [1]–
[4] statically verified PLC programs to discover security bugs.
These studies converted the PLC program to a model checker’s
input language, such as NuSMV [5] or UPPAAL [6], and the
model checker automatically checked whether the program
satisfied the given formal specification. However, these ap-
proaches suffer from notable false positives because the error
checking was performed statically without the program having

*Corresponding Author
DOI reference number: 10.18293/SEKE2021-105

been executed. These approaches found violation paths that
could not be executed at runtime. Besides, these approaches
are at the abstract model level, which is more suitable for
checking design defects rather than implementation errors.

In recent years, several studies [7], [8] used symbolic
execution and concolic testing to automatically generate test
cases for PLC programs. In addition, Provost et al. [9] used
conformance testing to test whether the execution code of the
PLC conforms to the specification. Although these studies can
perform white box testing by using symbolic execution or
black-box testing based on the conformance testing technique,
these techniques focus only on the relationship of inputs and
outputs. It is sufficient to capture data value relations for
typical software without considering the timing of the system
under test. However, it is inadequate for the testing of time-
constrained software since PLC is a real-time system.

To address the difficulties in detecting the runtime behavior
of PLC programs with incorporated time constraints, we
propose a novel approach to test PLC programs. Our approach
is at the code level. It mines program invariants from runtime
traces of the program under test. A program invariant, or
property, is a condition that holds at a given point. Mining
invariants from runtime traces eases the notable spurious
warnings result from the static analyzers. Our technique further
mines time invariants, considering PLCs operate in real-time.

However, existing dynamic invariant detection tools extract
one-dimensional models, such as data or time, without cap-
turing the interplay of them. Both data and time models are
useful in that PLCs to operate in real-time and the data values
of variables also express events that occur in the system. In this
paper, we focus on the interplay of data and time invariants to
find source code defects in PLC programs. Different program
invariants capture different runtime behaviors during execu-
tion. Data Invariant expresses the range of values assigned to
the variables and the relation of values of different variables.
Time Invariant describes the time boundary of events that
occur in a system. Data-Time Invariant illustrates the timing
constraints of data invariants.

Our automatic testing approach is threefold. First, we in-
strument the program under test with the input and output
relations. Second, we mine data-time invariants to observe the
time performance of the implemented control logic. Third,

532

the dynamically detected data-time invariants are compared
with the manually crafted specification, which expresses the
expected behavior of the PLC software. Besides, we mutate
the existing test suites to obtain adequate test cases to improve
the quality of invariants derived. Once the PLC program has
been tested and satisfies the safety requirements, it will be
downloaded to real PLCs.

We evaluate the effectiveness of our proposed approach on a
real-life case, i.e., cosmetic packing process. The experimental
results show that the dynamically discovered invariants are
efficient to help test PLC programs. We have found a latent
error that is not easy to discover by using the existing approach
such as symbolic execution in our implementation of the
cosmetic packing system. To the best of our knowledge, we are
the first to mine data-time invariants of programs dynamically
in the context of ICS. In summary, this paper makes the
following contributions:

1) We propose a testing technique that uses dynamically
detected invariants to discover implementation errors in PLC
programs at the code level.

2) We propose methods to derive data-time invariants from
execution traces of PLC programs. The data-time invariants
express the runtime behavior of the PLC programs more
accurately.

3) We perform static analysis of the program under test to
derive data invariants specifically tailored to PLC programs.

The rest of the paper is organized as follows. Section
II provides some background and a motivational example.
Section III illustrates our approach. Section IV presents the
evaluation results of our approach. Section V discusses related
work. Section VI concludes the paper.

II. PRELIMINARY AND MOTIVATION

A. Programmable Logic Controller

The program of PLC is executed continuously and each
execution is called a scan cycle. Each scan cycle of a PLC
consists of the following three processes: (1) sensor measure-
ments are read to input variables, (2) the control commands are
computed based on sensor values and the control logic, and (3)
the control commands are sent to actuators which change the
physical processes. The PLC sits in the closed-loop to perform
control functions.

PLC Programming Languages. IEC 61131-3 standard is
the third part of the IEC 61131 standard which provides stan-
dards to programmable controllers. There are five program-
ming languages included in the IEC 61131-3 standard: namely,
ST, IL, LD, FBD, and SFC. The five programming languages
share many common elements and can be transformed with
each other [10]. In this paper, we focus on the Structured
Text (ST) language which offers a flexible way of expressing
complex functionality.

B. Motivation Example

We present an example of a flashing light to illustrate
that the runtime properties detected by existing tools cannot
accurately reflect the behavior of a program. It is essential to

Fig. 1. Code Snippet of a Flashing Light Program

mine the combined data and time properties of PLC programs
to deal explicitly with time measures.

The expected behavior of the PLC program is as follows: if
the weight on the conveyor exceeds a pre-defined constant
value for some time, a warning light PL1 will begin to
flash. Additionally, the solenoid is de-energized. The light PL1
flashes with the time interval of one second. If there is no
anomalous situation, the PL1 light will keep off state. If the
start button is pressed, the motor will start one second later.

The snippet of the implemented ST program is shown in
Figure 1. The program has three input variables, i.e., Weight,
OnOff, and Start, and three output variables, i.e., PL1, Motor,
and Solenoid. The output variable PL1 is connected to a lamp.
The state of PL1 can be judged from whether the lamp lights
up (line 7). The delayed start of the motor is controlled by a
timer (lines 8-9). The state of Solenoid is affected by whether
the weight exceeds the preset value or not (line 10).

To test whether the implemented program satisfies the
expected behavior, we first use Daikon [11] to detect runtime
invariants. After running Daikon, the derived data invariant
of variable PL1 is “Weight >= MaxValue” ==> PL1 one
of {false, true}. Besides, if we specify the MaxValue as 26
and use the approach in [12] to find Weight equals 26 in
the execution trace manually, Perfume [13] will infer the
invariant Weight=26 → PL1 [1s, 2s]. However, Daikon can
only detect invariants of data value relations. It cannot express
the time boundary of the relations. The invariant mined only by
Perfume cannot describe the relationship of predicate Weight
>= MaxValue with variable PL1.

In this example, the derived data-time invariant by applying
our approach is Weight >= MaxValue → PL1 [1s, 2s] when the
scan cycle of the program is 50 milliseconds. This invariant
expresses that, if the weight exceeds a preset value, the light
PL1 will stay off for at least 1 second and will then turn to on
for 1 second. Besides, it shows that the runtime behavior is
correct in the existence of timers, which delays the operation
for one second.

III. APPROACH

A. Overview
Figure 2 shows the core workflow of our approach. The

process of the test workflow can be summarized as follows:

533

Fig. 2. Automated Test Workflow for PLC Programs

We first use an open-source PLC compiler named matiec
[14] to compile the PLC program to ANSI C code. The
C code is semantically equivalent to PLC programs, and
there are existing works [7], [12] using the matiec compiler
to test PLC programs. For the translated C program, we
instrument it using static analysis to leverage Daikon mining
data invariants. Daikon’s front-end produces a trace file that
records the values of the variables, and Daikon dynamically
detects data invariants based on the trace file. After data
invariants have been derived, we combine Perfume to capture
the time constraints of data invariants. The detected data-time
invariants are checked with the manually crafted specifications.
The mismatches between the detected invariants and the
specifications indicate that the PLC program contains errors.
In addition, to improve the quality of detected invariants, we
mutate test cases generated by symbolic execution to produce
adequate test cases.

B. Instrument ANSI C Programs

To leverage Daikon to detect invariants tailored to PLC
programs, we instrument C code with additional program
points, i.e., instrument code with dummy procedures [11]. The
dummy procedures do not affect the normal execution of the
program and can help Daikon detect invariants concerning
specific variables. The arguments of a dummy procedure
include the variables of which we want Daikon to detect
invariants and the timestamp that records the calling time of
the dummy procedure.

For C or Java program, Daikon infers invariants at the
granularity of function. However, the PLC program is not
composed of functions. There are three types of program
organization units (POUs) in PLC, i.e., Program, Function
Block, and Function. Each PLC program may be comprised
of several POUs. If the invariants are detected at the level of
POU, the granularity is too coarse as there may be hundreds
of lines of code in one POU. By contrast, if the invariants
are generated at the statement granularity, then the number of
detected invariants is huge and some of them do not make
sense. We detect the invariants at the granularity of several
correlated statements. The granularity is coarser compared to
the statement level and finer compared to the POU level. These
statements start with the one that input variables lie in and end
with the one that the output variable sits. The change of the

inputs impacts the output. We perform static analysis to obtain
all input-output relations and instrument the ANSI C code with
these relations.

We first generate the control-flow graph (CFG) of the
PLC program. Every statement in the program is represented
as a node in the CFG. The control-dependence and data-
dependence are computed from the CFG. We then obtain the
program dependence graph (PDG) based on the computed
control and data dependence. We start from each node contain-
ing input variables and then traverse the PDG by depth-first
search (DFS). If the traverse reaches a node that contains the
definition of an output variable, the statements both in the node
and the start node will be output. The traversal will output
all of the input-output node pairs in the form of “if-then”
relations. The statement in the input node is the condition and
the output variable is the return variable. We pass the variables
in the two nodes as arguments to the dummy procedure and
add the “if-then” relations in the dummy procedure body.
For example, the dummy procedure body of the two nodes
“Weight >= MaxValue” and “PL1:= Flash 1.FlashOut” in
the motivation example is:

if (Weight >= MaxValue)
return PL1;

return PL1;
Specifically, there exists a case where a node contains

both input and output variables. In this case, we simply pass
the output variable in the node as arguments to the dummy
procedure.

C. Invariant Types

Perfume mines property types based on the execution log
and formalizes the mined properties using timed propositional
temporal logic (TPTL) [15]. TPTL is a real-time specification
language for the specification of real-time systems.

By default, Perfume mines seven property types, and we
focus on four of them:
◻x.(p→ (◇y.(q ∧ y − x ⩽ t))) / ◻x.(p→ (◇y.(q ∧ y − x ⩾

t))) whenever there is p in a trace, p is followed by q in the
trace at time y with a time difference of at most/least t.
◻x.(p U (◇y.(q∧y−x ⩽ t))) / ◻x.(p U (◇y.(q∧y−x ⩾ t)))

whenever there is q in a trace, p is preceded by q in the trace
at time y with a time difference of at most/least t.

For the motivation example in Figure 1, the TPTL formula
of the detected invariant is
◻x.(Weight >= MaxValue → (◇y.(PL1 ∧ y - x ⩾ 1s))).
In this paper, we use shorthand notations to represent the

TPTL formulae. For the first two TPTL formulae, the notation
is p → q [tmin, tmax]. Similarly, the notation p U q [tmin,
tmax] corresponds to the last two formulae.

Besides the four TPTL property types above, we also lever-
age Perfume to derive other types of invariants as presented
in Table I.

Type 1. The first invariant represents a variable that is
assigned a certain value and kept for the duration of tmax.
The second and the third invariants express that under the
predicate expr, the output holds for the duration of tmax.

534

TABLE I
TYPE OF DERIVED DATA-TIME INVARIANTS

Type Data-Time Invariant

1 var = [] tmax

expr → var = [] tmax

expr U var = [] tmax

2 var = [] tmin, tmax

3 var = [] → var = [] tmin, tmax

var = [] U var = [] tmin, tmax

4 expr → var = [] tmin, tmax

expr U var = [] tmin, tmax

Type 2. This invariant denotes the time interval that a
variable takes a specific value.

Type 3. The two invariants describe a variable that is
assigned different values with the time bounded by tmin and
tmax.

Type 4. These two invariants express the relationship be-
tween the condition expr and the corresponding variable
assignments in the time difference tmin and tmax.

D. Generate Data-Time Invariants

The invariants dynamically detected by Daikon provide
the relations of values of variables. After data invariants are
generated, we process the trace file produced by Daikon’s
front-end and apply Perfume to derive data-time invariants.

Trace Process. For each data invariant, we first extract all
related data-trace records from the trace file. Each data-trace
record includes runtime value information in one scan cycle.
For the data invariant “Weight >= MaxValue” ==> PL1 one
of {false, true} in the motivation example, we only extract the
data-trace records corresponding to the predicate Weight >=
MaxValue and the variable PL1 from the trace to detect the
time boundary of the data invariant.

Given that the trace only contains the extracted
data-trace records, we convert each record to a tuple
pk = [(name1=value1, name2=value2, ⋯, timestamp),
(name=value, timestamp)], where name1=value1,
name2=value2, ⋯, is the variables’ names and values
in predicate expr, name=value is the name and value of the
output variable var. For convenience, we denote tuple pk as
pk = [expr, var].

A tuple pk contains the values of the variables contained in
both expr and var in one scan cycle. The trace τ comprised of
tuples p1, p2, ⋯, pk, ⋯, represents all possible values that the
variables in both expr and var obtain in one execution. expr
and var will be evaluated true when particular combinations
of input conditions are met.

Deriving Invariants. We propose four methods to derive
different types of data-time invariants. If the predicate expr
evaluates true, we replace name1=value1, name2=value2,
⋯, with the predicate. For instance, the tuple [(Weight=27,
MaxValue=26, timestamp), (PL1=true, timestamp)] is replaced
with [(Weight >= MaxValue, timestamp), (PL1=true, times-
tamp)].

Method 1: We extract sub-trace sn which is comprised of
the tuples p1, p2, ⋯, pk that the output variable var keeps a
certain value and the predicate expr evaluates true. We pass
all of the sub-traces s1, s2, ⋯, sn to Perfume to obtain the
maximum time that the causal relation expr -> var holds.

Method 2: We extract sub-trace sn which is comprised of
the tuples p1, p2, ⋯, pk that the output variable var keeps a
certain value and the predicate expr evaluates true. For the two
consecutive sub-traces (s1, s2), we keep the last tuple pk in s1
and the first tuple p1 in s2. Similarly, for the two consecutive
sub-traces (s2, s3), we keep the last tuple pk in s2 and the
first tuple p1 in s3. The remaining sub-traces are processed so
on and so forth. For the pairs of tuples (s1.pk, s2.p1), (s2.pk,
s3.p1), etc., we pass them to Perfume and obtain the time
interval that the causal relation expr -> var holds.

Method 3: We process the whole trace and only keep
the tuples that represent state transitions. Formally, for the
two consecutive tuples pi−1=(expri−1, vari−1) and pi=(expri,
vari), if one of the values changes in pi compared to pi−1,
then tuple pi keeps; otherwise, it will be removed. After the
process finishes, we extract sub-trace sn which is comprised of
the tuples p=[(expr, var)] and p’=[(expr’, var’)] that the expr
evaluates true and var’ represents the occurrence of output
event. In addition, expr’ does not necessarily evaluate true and
var does not necessarily represent the occurrence of output
event. We pass all of the sub-traces s1, s2, ⋯, sn to Perfume
to mine data-time invariants. The time boundary mined by this
method corresponds to the time of state transition.

Method 4: We extract the sub-trace (sn, tn) which is
comprised of the tuples ps=[(expr, var)] and pt=[(expr’, var’)]
that the expr evaluates true and var’ represents the occurrence
of output event. In addition, expr’ does not necessarily evaluate
true and var does not necessarily represent the occurrence of
output event. We exclude all var from sub-trace sn and exclude
all expr’ from sub-trace tn.

1) The minimum time boundary tmin between expr and
var: for sub-trace (sn, tn), we only keep the first tuple in sn.
The remained tuples in (sn, tn) are (sn.p1, tn.p1, ⋯, tn.pk).
We pass all of the sub-traces (s1, t1), (s2, t2), ⋯, (sn, tn) to
Perfume to mine data-time invariants.

2) The maximum time boundary tmax between expr and
var: for sub-trace (sn, tn), we only keep the first tuple in tn.
The remained tuples in (sn, tn) are (sn.p1 , ⋯, sn.pk , tn.p1).
We pass all of the sub-traces (s1, t1), (s2, t2), ⋯, (sn, tn) to
Perfume to mine data-time invariants.

In particular, there exists a case where the data invariant
only includes one variable. In this case, the tuple pk =
[(name=value, timestamp)], and the above methods also hold.
The trace process is simpler with only one variable involved.
Take the data invariant GreenNS one of {false, true} for
example, we use Method 1 to derive the first Type 1 invariant
and use Method 2 to derive the Type 2 invariant.

E. Specification Mismatch

The data-time invariants are more useful for describing the
runtime behavior of the PLC program because they capture the

535

TABLE II
MUTATION OPERATORS USED IN MUTATING TEST CASES

Mutation Operator Example

boolean constant replacement var=true −> var=false
numeric constant replacement var = 1.0 −> var = 2.0

unary operator insertion var=5 −> var=-5

time constraints of data invariants. The dynamically detected
invariants describe the behavior of the system, while the
specifications express the expected behavior of a system. After
deriving the data-time invariants, we check the dynamically
detected invariants for errors against manually crafted specifi-
cations.

To examine whether there exists a mismatch between the
observed and expected behavior of a program, for every
generated data-time invariants φi corresponding to the spec-
ifications, we manually check σi ⊧ φi, where σi ∈ Σ is the
actual specifications of PLC programs.

F. Test Case Generation

To generate test cases, we follow the approach of SYMPLC
[7]. The test suites generated by symbolic execution guarantee
the instruction coverage. However, dynamic invariant detection
requires adequate test cases to improve the quality of detected
invariants. In the motivation example, if the automatically
generated test case for the variable Weight is 27, Daikon will
infer data invariant Weight == 27. If there are various values
assign to the variable Weight like 47, -27, 87, 21, 28, 17, 23,
57, etc., the detected data invariant will not include Weight ==
27, which is too concrete and makes no sense.

In this paper, we mutate existing test suites to make it
suitable for dynamic invariant detection. The mutation oper-
ators are shown in Table II. Once the mutated test suites are
generated, we remove the test cases which do not conform
to the variable’s type and allowed value ranges. In addition,
redundant test cases are discarded from the mutated test suites.

IV. EVALUATION

We apply our testing approach to a representative real-life
case study, i.e., cosmetic packing. The production process is
common to find in the automation industry. A code error has
been found in the program of cosmetic packing. The case study
is conducted on the Ubuntu 18.04 LTS operating system.

A. Experimental Setup

The matiec project provides the iec2c compiler which
generates ANSI C code equivalent to the original PLC pro-
gram. Multiple C files are generated after code translation. To
produce basic test suites, we employ KLEE [16] to perform
symbolic execution in the translated C code. We use Python
to create mutated test suites. During the instrument step, we
employ ANTLR [17] to perform static analysis of the PLC
program and then instrument translated ANSI C code with the
result of static analysis. We use the gcc compiler to compile
them into an executable softplc file. The executable softplc

Fig. 3. Cosmetic Packing Process

TABLE III
DETECTED INVARIANTS OF COSMETIC PACKING

Specification Data-Time Invariant

I reached=true [1.5s, 3s]
reached=false U reached=true [1.5s, 1.5s]

II full box → send box [1.57s, 1.57s]

can simulate the run of the PLC program without running on
a real PLC. We write a Python script to process trace files
generated by Daikon’s front-end and apply Perfume to the
processed trace file to derive data-time invariants. The source
code of our implementation is available online [18].

B. Cosmetic Packing

The cosmetic packing system packs cosmetics in a box and
then puts the packed box into a hopper. Figure 3 shows the
whole operation process. There are two conveyor belts C1 and
C2. C1 sends cosmetics to the packing region and C2 sends
the packed box to a hopper. The cosmetics move on C1 at a
constant speed. Once a cosmetic reaches the packaging area,
it will be put into a box. If there are three cosmetics in a box,
the box will be packed one second later and C2 will transmit
the box to a hopper. There are three switches Start, Pause, and
Reset, which start, pause, and reset the process, respectively.

The specifications of the automated packing system are:
I. The time interval for two consecutive cosmetics to reach
the packaging area is 1.5 seconds since the packing process
consumes time. II. The packed box should be present in C2
within one second after the third cosmetic is put into the box.

We execute the code in the simulator for 3000 cycles and
repeats five times. Each scan cycle lasts for 50 milliseconds.
There are total of 7 data-time invariants obtained, and the in-
variants corresponding to the specifications are listed in Table
III. In Table III, the first invariant associated with Specification
I represents that the two consecutive cosmetics reaches the
packaging area for at least 1.5 seconds. The second invariant
associated with Specification I denotes that the minimum time
duration that cosmetics arrive in the packaging area is 1.5
seconds. These two invariants satisfy the specification.

An implementation error has been detected by applying our
approach. In the process of cosmetic packing, it takes one
second to pack the box after the third cosmetic reaches the
packing area. However, for the data-time invariants derived
in one simulation, the time of box packing lasts for nearly
two seconds. As shown in Specification II of Table III, the

536

detected packing time violates the specification. Issues might
occur since cosmetics repeatedly approach the packing area
every 1.5 seconds.

We analyze the implemented program and simulator to find
the cause of specification violations. The reason is that the
timer of box packing returns to zero when we pause the
packing process after the system operates for 6.5 seconds.
After restarting the system, the timer starts to time from zero,
which is inaccurate since the box packing process can keep
its operation after restarting the system. We update the im-
plementation and the detected invariant full box → send box
[1s, 1s] satisfies the specification. Concretely, in the original
implementation, we use an on-delay timer (TON) to time the
box packing. However, TON does not retain the elapsed time
if the input goes false. We switch TON to retentive on-delay
timer (RTO) which retains the elapsed time when the pause
switch is pressed.

C. Discussion
The scalability problem arises when the number of program

points instrumented increases during performing dynamic in-
variant detection. In addition, the number of scan cycles exe-
cuted also brings time and space costs. To improve scalability
in the automatic testing process, one could reduce either the
number of program points instrumented or the number of
scan cycles. Reducing the number of cycles executed in one
execution and repeating several times execution can tackle the
scalability issue.

V. RELATED WORK

Sallai et al. [19] generate x86-representations of PLC pro-
grams to test, simulate, and visualize PLC programs. They
transform PLC programs into C, Scilab, and Java programs.
The semantically equivalent x86 representation which can
execute on personal computers overcomes the lack of advanced
tools to help PLC programming. Our work converts PLC
programs into C to simulate the execution of the PLC code.

PLCInspector [20] mines either linear temporal logic (LTL)
specification using Texada or data invariants using Daikon
from runtime traces of PLC programs. PLCInspector does not
combine Texada with Daikon to detect data-temporal proper-
ties. Besides, the mined LTL specification cannot describe the
runtime behavior of PLC programs properly. As PLC runs in
real-time, LTL is not suitable to quantitatively express the time
boundary of the event occurring.

The work most related to ours is VETPLC [12], which
infers events from traces based on value changes then uses
Perfume to mine temporal invariants to uncover time intervals
between different events. VETPLC uses mined invariants to
generate timed event sequences that serve as inputs for auto-
mated safety vetting PLC code. Our approach uses Perfume
to find time bounds for the data invariants from the execution
traces.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel approach to test PLC
programs by mining invariants from execution traces. Our

approach dynamically detects combined data-time invariants
to observe the time performance of implementation programs.
The derived invariants expressing the runtime behavior of
the PLC programs are checked with the specifications. We
evaluate our approach in a representative real-life scenario.
The evaluation results show that our approach is useful for
discovering implementation errors that are difficult to find
using existing methods.

The dynamic detection technique proposed in this paper
to derive data-time invariants is dedicated to the test of
PLC programs. Since timing constraints are essential in many
embedded systems or cyber-physical systems, we plan to apply
this paper’s method to test a broader class of systems beyond
the scope of industrial control systems as one of the future
works.

Acknowledgment. This work is partially supported by
NKRDP (2019YFB2102602).

REFERENCES

[1] M. Rausch and B. H. Krogh, “Formal verification of PLC programs,”
in Proceedings of the 1998 American Control Conference. ACC (IEEE
Cat. No. 98CH36207), vol. 1. IEEE, 1998, pp. 234–238.

[2] O. Pavlovic, R. Pinger, and M. Kollmann, “Automated formal verifi-
cation of PLC programs written in IL,” in Conference on Automated
Deduction (CADE), 2007, pp. 152–163.

[3] V. Gourcuff, O. De Smet, and J.-M. Faure, “Improving large-sized PLC
programs verification using abstractions,” IFAC Proceedings Volumes,
vol. 41, no. 2, pp. 5101–5106, 2008.

[4] B. F. Adiego, D. Darvas, E. B. Viñuela, J.-C. Tournier, S. Bliudze, J. O.
Blech, and V. M. G. Suárez, “Applying model checking to industrial-
sized PLC programs,” IEEE Transactions on Industrial Informatics,
vol. 11, no. 6, pp. 1400–1410, 2015.

[5] “NuSMV: a new symbolic model checker,” http://nusmv.fbk.eu/.
[6] “UPPAAL Home,” http://www.uppaal.org/.
[7] S. Guo, M. Wu, and C. Wang, “Symbolic execution of programmable

logic controller code,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, 2017, pp. 326–336.

[8] H. Simon and S. Kowalewski, “Mode-aware concolic testing for PLC
software,” in International Conference on Integrated Formal Methods.
Springer, 2018, pp. 367–376.

[9] J. Provost, J.-M. Roussel, and J.-M. Faure, “Generation of single input
change test sequences for conformance test of programmable logic
controllers,” IEEE Transactions on Industrial Informatics, vol. 10, no. 3,
pp. 1696–1704, 2014.

[10] D. Darvas, I. Majzik, and E. B. Viñuela, “PLC program translation
for verification purposes,” Periodica Polytechnica Electrical Engineering
and Computer Science, vol. 61, no. 2, pp. 151–165, 2017.

[11] “The Daikon Invariant Detector User Manual,”
http://plse.cs.washington.edu/daikon/download/doc/daikon.html.

[12] M. Zhang, C.-Y. Chen, B.-C. Kao, Y. Qamsane, Y. Shao, Y. Lin, E. Shi,
S. Mohan, K. Barton, J. Moyne et al., “Towards Automated Safety
Vetting of PLC Code in Real-World Plants,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 522–538.

[13] “Perfume,” https://github.com/ModelInference/perfume-frontend.
[14] “MATIEC-IEC 61131-3 compiler,” https://github.com/nucleron/matiec.
[15] R. Alur and T. A. Henzinger, “A really temporal logic,” Journal of the

ACM (JACM), vol. 41, no. 1, pp. 181–203, 1994.
[16] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems
Programs.” in OSDI, vol. 8, 2008, pp. 209–224.

[17] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[18] “Supplementary Material,” https://figshare.com/s/6603090ab26eb5b0e1f6.
[19] G. Sallai, D. Darvas, and E. Blanco, “Testing, simulation, and visualisa-

tion of plc programs using x86 code generation,” CERN, Techical report
EDMS, vol. 1844850, 2017.

[20] J. Xiong, G. Zhu, Y. Huang, and J. Shi, “A User-Friendly Verification
Approach for IEC 61131-3 PLC Programs,” Electronics, vol. 9, no. 4,
p. 572, 2020.

537

Optimal Conjunctive Normal Form Encoding for
Symbolic Execution

1stWeiyu Pan∗
College of Computer

National University of Defense Technology
Changsha, China

panweiyu@nudt.edu.cn

2nd Ziqi Shuai
College of Computer

National University of Defense Technology
Changsha, China
szq@nudt.edu.cn

3rd Ke Ma
School of Computer Science

WuHan University
Wuhan, China

2017302580024@whu.edu.cn

4th Luyao Liu
College of Computer Science and Electronic Engineering

Hunan University
Changsha, China

liuluyao@hnu.edu.cn

Abstract—Constraint solving is a key challenge in symbolic
execution. Usually, symbolic execution uses the fixed-size bit-
vector theory to precisely model the program’s behavior and
generates the bit-vector formula to query the SMT solver. To
solve such bit-vector formula, SMT solvers usually adopt a bit-
blasting and conjunctive normal form (CNF) conversion step,
transforming the original formula into a equi-satisfiable CNF
formula, and then check the formula’s satisfiability. However, the
different CNF conversions can significantly affect the efficiency
of SAT solving. We observe that each CNF encoding algorithm
has its suitable applications, while adopting a specific CNF
conversion algorithm for all formulas is often not optimal.
Therefore, we propose to intelligently select a suitable CNF
encoding algorithm for each logical formula. We have integrated
our selection algorithm into the symbolic execution framework
based on KLEE and STP, which are the state-of-the-art symbolic
execution engine for C programs and its default underlying
constraint solver, respectively. The experimental results, based
on extensive evaluation of 86 real-world C programs in Coreutils
benchmark, indicate that our method can effectively improve
the efficiency of symbolic execution. On average, our method
increases the number of the explored paths by 27.2%.

Index Terms—CNF, SAT, Machine learning, Symbolic execu-
tion

I. INTRODUCTION

Symbolic execution [8], [11] is a widely used program
analysis technique to systematically explore the path space
of programs. Its applications covers many fields of software
engineering, including automated test generation, software ver-
ification and bug detection. Symbolic execution is processing
on symbolic inputs instead of concrete inputs. Therefore, the
operations in program are recorded as the computation be-
tween symbolic expressions. For each program path, symbolic
execution maintains a path condition (PC) that is updated
whenever a branch instruction is encountered. Only if cur-
rent branch is reachable is the corresponding path condition
updated. Otherwise, the branch is unreachable and symbolic

∗Corresponding author
DOI reference number:10.18293 / SEKE2021-113

execution terminates the exploration. Note that the feasibility
of a program path is determined by the result of constraint
solving, i.e., determining whether the path condition which
is a quantifier-free first-order logic formula [13] is satiable. In
this way, symbolic execution can explore the path space of the
program systematically and understand the program precisely.
Due to these advantages, many successful symbolic execution
engines emerge, such as KLEE [3], Pex [23], and SPF [18],
to name a few.

Obviously, constraint solving is a critical component of
symbolic execution, as it is used to check the feasibility of
a path and generate the test to execute the corresponding path
if feasible. However, there exists many obstacles for constraint
solving, which further limits the development of symbolic
execution. On the one hand, the number of paths to be explored
grows exponentially with the increase of program size and
some syntactic constructs like loops can even lead to infinite
paths. Therefore, symbolic execution engines will issue a bulk
of queries to the underlying solver for complex programs.
On the other hand, because of complex features in real
world programs, i.e., non-linear arithmetic and array operation,
symbolic execution engines will build complex queries which
are quite hard to solve. In brief, constraint solving is the most
time-consuming part and limits the scalability of symbolic
execution.

In general, symbolic execution uses bit-vector arithmetic
SMT theory combining with other SMT theories (e.g., array
theory) to precisely model the behavior of program. When
solving the bit-vector formula, bit-blasting is a key step in
most SMT solvers which reduces a bit-vector formula into
a pure propositional SAT formula. Unfortunately, such SAT
formula won’t be solved by SAT solvers immediately. Modern
SAT solvers [7] mainly take the input as a conjunctive normal
form (CNF) formula in which the solver is able to apply highly
efficient solving algorithms. Consequently, SMT solvers have
to convert the SAT formula after bit-blasting into an equi-
satisfiable CNF formula, which can be efficiently solved by

538

SAT solver.
Currently, there are two common CNF transformation al-

gorithms: Tseitin algorithm [25] and the algorithm based on
technology mapping [6]. The former adds a new variable to
each logic gate of the original formula, and then constrains
the variable with a new clause to form a new CNF. This
algorithm has a lower complexity, but the generated CNF
is often huge and difficult to solve. The latter divides AIG
(And Inverter Graph) into logical nodes wherein there is no
more than K inputs for each node, and extracts CNF for each
node based on a look-up table. The algorithm has a higher
complexity, but it can generate CNF that is more concise and
easier to solve. We have the following key observation of
CNF conversion in SMT solvers: almost every SMT solver of
QF BV logic always uses one of the specific CNF conversion
algorithms above. However, each CNF conversion algorithm
has its suitable applications, and the efficiency of using a
specific CNF conversion algorithm as the solution of all
formulas is often not optimal.

If the propositional formulas can be classified according
to their suitable CNF conversion algorithm, then the solving
efficiency of SMT solver can be improved distinctly. There-
fore, an intuitive idea is to extract the features of propositional
formulas, and divide propositional formulas into two different
categories, the one with higher efficiency of SMT solving
using Tseitin algorithm and the one using Technology mapping
algorithm. Then using machine learning to train a model which
well classify such two different categories. Machine learning
[12], [29] is a branch of artificial intelligence that focuses
on building models that learns from data and improve their
accuracy over time. In machine learning, models are trained
to find the law of large amounts of training data, so that
the model’s predictions on new data can be made as correct
as possible. Machine learning algorithms can be divided into
supervised learning, unsupervised learning and reinforcement
learning according to learning methods. In real world, the
application of machine learning is very extensive, such as:
data mining and analysis, pattern recognition and many other
fields. As for SMT solving, machine learning also has many
combined applications [1], [21].

This paper proposes to select a suitable CNF encoding
algorithm for each given formulas. Our key idea is to use
the existing SMT formulas in the SMT-LIB benchmark repos-
itory [2] as training data to train a machine learning model
offline, so as to automatically choose a more appropriate CNF
encoding algorithm for the formula in the process of SMT
solving, hoping to improve the efficiency of SMT solving. We
have implemented our approach on KLEE and STP, which are
the state-of-the-art symbolic execution engine for C programs
and its default underlying constraint solver, respectively. The
experimental results, based on extensive evaluation of 86 real-
world C programs in Coreutils benchmark, indicate that our
method can effectively improve the efficiency of symbolic
execution. On average, our method increases the number of
the explored paths by 27.2%

The remainder of the paper is organized as follow. Section

2 shows the related work. Section 3 illustrates our method in
details. Section 4 gives the evaluation and Section 5 discuss
the limitation. Finally we draw a conclusion of the paper.

II. RELATED WORK

Our work is closely related to the constraint solving opti-
mizaitons in symbolic execution and machine learning tech-
niques in constraint solving. We will discuss them in detail.

A. Constraint Solving Optimizaitons in Symbolic Execution

The ability of constraint solving is the main bottleneck
for the scalability of symbolic execution. Therefore, lots of
research focus on accelerating constraint solving in symbolic
execution. A typical idea is optimizing constraint solving in
the context of symbolic execution, which mainly focuses on
the optimizations of symbolic expression and invokes the
underlying solver in a black-box manner [3], [10]. CUTE [22]
has implemented a mechanism of fast unsatisfiability check
based on the syntactical contradiction of symbolic expression,
which reduces invocations of constraint solver by 60-95%.
KLEE [3] uses three kinds of optimizations to speed up
constraint solving, including caching the counter-examples to
avoid calling the underlying solver in certain situations, rewrit-
ing the constraint into simpler one, e.g. strength reduction
and linear simplifications, just like what a compiler does,
and splitting the constraint into disjoint sets of independent
constraints for better reusing. Aiming at array constraint,
KLEE-Array [20] proposes some novel optimizations based
on repeated values in constant arrays to simplify the symbolic
expressions. In addition, there exists some works which syn-
thesize symbolic execution and constraint solving and then
use the constraint solver in a white-box manner. For example,
multiplex symbolic execution (MuSE) [31] collects all partial
solutions generated by the underlying constraint solver in
one time of solving and constructs multiple program inputs
according to these solutions.

B. Machine Learning Techniques in Constraint Solving

Recently, machine learning is a hot topic in academia
and industry, with new methods invented all the time. Re-
searchers in different research areas benefit from emerging
machine learning techniques a lot. In constraint solving, some
researchers try to improve the ability of constraint solver
by combining machine learning techniques. Portfolio-based
approach is an well-known way to improve the efficiency
of constraint solver with machine learning methods, such
as SATZilla [27], CPHydra [17] and MachSMT [21]. The
basic idea is picking a solving algorithm from a set of
solving algorithms, which is a typical classifier problem that
machine learning method is good at. MLB [15] transforms
the feasibility problem of the path condition in symbolic
execution into optimization problem and employs an opti-
mization solver which implements a machine learning guided
sampling and validation method. FastSMT [1] is designed
to generate a faster solving strategy for SMT solving. First,
it uses a combining method of random search and neural

539

network to learn a set of candidate solving strategies. Then it
synthesizes a combined solving strategy with branches based
on the candidates. Besides, Petr Somol et al. proposed a
search principle for optimal feature subset selection using the
Branch & Bound method [26], which can be used to improve
performance of SAT solvers. Earlier research [14] accelerated
the SMT solving by learning to select branching rules in DPLL
algorithm.

III. THE PROPOSED APPROACH

This section presents the details of our intelligent selection
method. The framework will be introduced first. Then, the
extraction of formula features and the CNF encoding selection
are explained in the next two sub-sections.

A. Framework

Algorithm 1 shows details of our intelligent selection
method of CNF encoding. The inputs are a logical formula
formula represented in the SMT-LIB format [2]. The algo-
rithm first employs AST to translate input formula to Ab-
stract Syntax Tree representation, T (Line 1). Then, we apply
MERGE to merge the leaf nodes of T (Line 2) which represent
same variables or constants. MERGE returns a directed acyclic
graph (DAG) D. Next, the algorithm carries out EXTRACT
(c.f. Algorithm 2) on D. EXTRACT returns the corresponding
feature F . Finally, we use an intelligent selection method on
F to select the most effective CNF encoding for given logical
formula.

Algorithm 1 ISCE(formula)
Input: The SMT formula formula.
Output: The CNF encoding method Result.

1: T = AST(formula)
2: D = MERGE(T)
3: F = EXTRACT(D)
4: Result = SELECT(F)
5: return Result

B. Feature Extraction

Algorithm 2 gives the details of feature extraction from the
original formula. The input is a DAG which represents a logic
formula compactly, the output is the representation in bag of
word model [30].

Specifically, The algorithm considers nodes in DAG as
words, and uses the type of nodes to distinguish them, and
count the number of nodes in different types. Consider the
following example,

x1 =⇒ (x2 ∧ x3) (1)

There are three kinds of node types, i.e. variable, =⇒ and ∧.
The corresponding BoW representation is,

{variable : 3,=⇒: 1,∧ : 1} (2)

which keys are node types and values are the number of nodes
in different types.

Algorithm 2 EXTRACT(D)
Input: The DAG of formula D.
Output: The BoW representation BoW .

1: N = NODES(D)
2: for node ∈ N do
3: BoW [node]← BoW [node] + 1
4: end for
5: return BoW

C. Intelligent Selection

The Algorithm 1 uses SELECT to get the most suitable CNF
encoding algorithm, which improves the solving efficiency
of SMT solver apparently. The input is feature of a logical
formula, which is generated by III-B. The output is Tseitin
algorithm or Technology mapping algorithm which improves
the solving efficiency most of SMT solver.

We employ an offline trained learning model to predict
a CNF encoding algorithm for an logical formula. To train
the model, we generate the training data from the existing
SMT formula in the SMT-LIB benchmark repository [2]. Each
element in the training data is a tuple (E(ϕ), t) consisting
of four parts: E(ϕ) is the embedding feature of the current
formula ϕ, t is the specific CNF encoding algorithm which
improves the speed of SMT solving more than other (c.f. t = 0
means Technology mapping is better and t = 1 means Tseitin
algorithm). Since we are interesting in analyzing computer
programs, we choose the formulas in QF BV and QF ABV
logic, and generate the corresponding embedding feature by
III-B. For t of each element in the training data, we use STP
[7] as SMT solver under Technology mapping and Tseitin
algorithm simultaneously, then set t to the algorithm that
spending less time when solve formula ϕ.

D. Symbolic Execution Framework

This sub-section depicts how our intelligent selection
method can be integrated into the symbolic execution frame-
work. Algorithm 3 gives the symbolic execution framework.
The input is the program under symbolic execution. Our
framework adopts a state-based symbolic execution [11] and
employs a worklist based implementation. In the beginning,
there is only initial state si in the worklist (c.f. Line 1).

The main loop is a worklist based procedure. When ex-
ploring the state space, the symbolic executor selects a state
from the worklist to explore the state space (Line 5). During
symbolic execution, logical formula of corresponding path
condition is generated (Line 6). Then we use our intelligent
selection method to decide which CNF encoding algorithm
should be used so that SMT solver may be speed up (Line
8). Finally, the CNF encoding algorithm Encnf is applying
to speedup the SMT solver and the symbolic executor would
append new states into worklist (Line 18).

The intelligent selection needs to balance the effectiveness
and selection overhead. In principle, we can have a trained
learning model that can recommend the best CNF encoding
algorithm for each logical formula in validation set. However,

540

Algorithm 3 SE(P)
Input: A program P .

1: worklist = {si}
2: T = 0
3: Saveen = default
4: while worklist 6= ∅ do
5: s = Choose(worklist)
6: C = GenConstraints(P, s)
7: if T < K then
8: Encnf = ISCE(C)
9: if Encnf is Saveen then

10: T = T + 1
11: else
12: T = 1
13: Saveen = Encnf

14: end if
15: else
16: Encnf = Saveen
17: end if
18: worklist← worklist ∪ Execute(s, Encnf)
19: end while

the selection introduces more overhead which consist of fea-
ture extraction and learning model prediction. This balance
is controlled by a variable K. A variable T is initialize to 0.
We use T to count the times our method continuously predicts
the same CNF encoding algorithm. We use Saveen to save the
previous prediction. When T grows to K, we no longer use
our selection algorithm but use the Saveen to reduce overhead.
In our experiments, we set K to 100.

IV. EXPERIMENTS

We have implemented our method on KLEE [3] (i.e. a state-
of-the-art engine for C programs). KLEE’s version is 2.3-pre.
We use STP as the backend solver and bit-vector SMT theory
for encoding the path constraints. STP’s version is 2.3.3. We
train the intelligent selection model by XGBoost [4]. We
implement the AST translation and Bag of Word embedding
based on jSMTLIB [5].

We have conducted extensive experiments to answer the
following two research questions:

• RQ1: what is the performance impact of the XGBoost
intelligent selection algorithm?

• RQ2: how effective is our intelligent selection algorithm?
Here, effectiveness means exploring more paths during
symbolic execution.

A. Experimental Setup

To evaluate the effectiveness of our method, we use Core-
utils as the benchmark. Coreutils is the mainstream benchmark
for the symbolic execution researches whose implementations
are based on KLEE. The used Coreutils’s version is 6.11.
There are 89 programs (46746 SLOCs) in total.

We train the XGBoost model for intelligent selection as
follows. We use the QF BV, QF ABV SMT-LIB2 benchmarks

[2] for generating the data set. We filter the formulas whose
ASTs contain more than 50,000 nodes. We use the bag
of words (BoW) model [30] and the one-hot encoding [9]
as the embedding feature of the logical formulas and the
CNF encoding algorithm, respectively. We use STP [7] under
Tseitin and Technology mapping algorithm to find the most
suitable CNF encoding for every formula in our benchmarks.
The timeout threshold is set to 30 seconds. If timeout occurred
both Tseitin and Technology mapping algorithm, we would
filter the corresponding formula.

We compare our method (which implements based on
XGBoost) with the one employing Multi-layer Perceptron
classifier from sklearn [19], to show what is the performance
impact of the XGBoost algorithm. We have 18,782 formulas
after filtered in above way. We select 50% for training dataset
and the others for validation sets. XGBoost uses default
settings. For MLP in sklearn, we use adam as solver, the
hidden layer sizes is (30, 60, 30, 10) and the activation function
is logistic.

We compare our symbolic execution framework with in-
telligent selection integrating, with baseline KLEE under two
search heuristics, i.e., DFS and BFS. We analyze each Core-
utils program in 30 minutes. We set the end condition of
intelligent selection (c.f. Algorithm 3 Line 8) as intelligent
selection generating same continuous results more then K
times. K is a threshold that we set it to 100 in our experiments.
We used the same options as KLEE mentions in [3]. But
we close three optimizations, i.e., constraint independence,
counterexample cache and branch cache, to generate more
queries to smt solver.

All the experiments were carried out on a Server with
64GB memory and 16 3.1 GHz cores. The operating system
is Ubuntu 14.04.

B. Experimental Results

Answer to RQ1. To answer the first question, we evaluate
our XGBoost based intelligent selection by comparing with
MLP (Multi-layer Perceptron classifier) classifier based ver-
sion in three aspects: accuracy, recall and confusion matrix
[24].

TABLE I
ACCURACY & RECALL.

Model accuracy recall
XGBoost 91% 89%
MLP 91% 83%

Table I shows the accuracy and recall of different machine
learning model. XGBoost has the same accuracy as MLP
but higher recall. Our dataset consists of 3,025 formulas that
is suitable for Technology mapping algorithm and 15,757
formulas for Tseitin algorithm. As our data is imbalance,
where there are different number of samples in each class,
the recall is more important than accuracy.

Table II and III are confusion matrix of XGBoost and MLP,
respectively. The column names and row names, Map or

541

Tseitin, means the number of formulas that solved efficiently
when encoding to CNF by Technology mapping or Tseitin
algorithm. In Table II, of 3,000 formulas classified to Map
(c.f., first line), XGBoost judged that 2,618 were Map. But
In Table III, MLP judged 2,095 were Map of the same 3,000
formulas. XGBoost predicts 523 samples correctly more than
MLP, which is 17% in Map class.

TABLE II
XGBOOST CONFUSION MATRIX.

Predicted
Map Tseitin

A
ct

ua
l Map 2618 407

Tseitin 1357 14400

TABLE III
MLP CONFUSION MATRIX.

Predicted
Map Tseitin

A
ct

ua
l Map 2095 930

Tseitin 670 15087

Answer to RQ1: XGBoost have better performance than
MLP on recall in the imbalance dataset. More specifi-
cally, XGBoost correctly predicts 17% of the samples on
the minority class.

Answer to RQ2. To answer the second research question,
we compare our symbolic execution framework with intelli-
gent selection integrating, with baseline KLEE. We evaluate
them in path number which have been explored during sym-
bolic execution.

Figure 1&2 show the comparison results of new paths in
BFS and BFS, respectively. The X-axis shows the benchmark
programs ordered by the values in Y-axis. The Y-axis shows
the relative increasing of the explored paths, which is defined
as follows, where NOPT denote the number of paths explored
after employing our method, and NBASELINE represents the
number of original symbolic execution.

NOPT −NBASELINE

NBASELINE
(3)

As shown by Figure 1, our method can improves the
number of explored paths on 62(73%) programs. On the other
hand, there are 24(27%) programs on which we decrease the
number of paths because of the feature extraction overhead;
however, the decreasing is slight, i.e., -2.81% (-5.2%∼-0.14%)
on average. Our method can on average improves the number
of explored paths by 27.2% (-5.2%∼469%).

Figure 2 depicts the corresponding results in DFS. we
improve the number of explored paths on 60(69%) programs.
Our method decreases the number of the explored paths on
26(31%) programs since the feature extraction overhead. The
decreasing is still slight as BFS, -6.1%(-36%∼-0.5%) on

1 15 24 30 45 60 75 86
−6%

100%

200%

300%

400%

500%

O
u
r
v
s
.
K
L
E
E
(%

)

Fig. 1. Relative increasing of Path number in BFS.

1 15 26 45 60 75 86
−36%

100%

200%

300%

400%

522%

O
u
r
v
s
.
K
L
E
E
(%

)

Fig. 2. Relative increasing of Path number in DFS.

average. Our method improves the number of explored paths
by 26.7% (-36%∼522%).

Answer to RQ2: Our method is effective to improve sym-
bolic execution’s ability of path exploration. On average,
our method increases the number of paths by 27.2%.

V. THREAT TO VALIDITY

The external validity is a major threat to our experimental
results. It is mainly due to the limited benchmark we used
and the generalization of machine learning model. For the
former, although the number and type of benchmark may
be insufficient, Coreutils is a widely used benchmark for
evaluating the performance of symbolic execution [3], [16],
[28], and the current experimental results have demonstrated
the effectiveness of our method. However, we plan to evaluate
our prototypes on more benchmarks in the next step.

VI. CONCLUSION

In this paper, we propose a method to intelligently select a
suitable CNF encoding algorithm for a given logical formula,
which is more efficient for constraint solving than the one
using a specific CNF encoding algorithm for all formulas. Our

542

approach leverages offline trained machine learning models to
predict the suitable CNF encoding algorithm for a given logical
formula. We integrate our selection algorithm into the sym-
bolic execution framework based on KLEE and STP, which are
the state-of-the-art symbolic execution engine for C programs
and its default underlying constraint solver, respectively. The
experimental results, based on extensive evaluation of 86 real-
world C programs in Coreutils benchmark, indicate that our
method can effectively improve the efficiency of symbolic
execution. On average, our method increases the number of
the explored paths by 27.2%.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (No.61632015)

REFERENCES

[1] M. Balunovic, P. Bielik, and M. T. Vechev, “Learning to solve SMT
formulas,” in Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, S. Bengio,
H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds., 2018, pp. 10 338–10 349.

[2] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[3] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in 8th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,
Proceedings, R. Draves and R. van Renesse, Eds. USENIX Association,
2008, pp. 209–224.

[4] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016, B. Krishnapuram, M. Shah, A. J. Smola, C. C.
Aggarwal, D. Shen, and R. Rastogi, Eds. ACM, 2016, pp. 785–794.

[5] D. R. Cok, “jsmtlib: Tutorial, validation and adapter tools for smt-libv2,”
in NASA Formal Methods - Third International Symposium, NFM 2011,
Pasadena, CA, USA, April 18-20, 2011. Proceedings, ser. Lecture Notes
in Computer Science, M. G. Bobaru, K. Havelund, G. J. Holzmann, and
R. Joshi, Eds., vol. 6617. Springer, 2011, pp. 480–486.

[6] N. Eén, A. Mishchenko, and N. Sörensson, “Applying logic synthesis for
speeding up SAT,” in Theory and Applications of Satisfiability Testing -
SAT 2007, 10th International Conference, Lisbon, Portugal, May 28-31,
2007, Proceedings, ser. Lecture Notes in Computer Science, J. Marques-
Silva and K. A. Sakallah, Eds., vol. 4501. Springer, 2007, pp. 272–286.

[7] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in Computer Aided Verification, 19th International Conference,
CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, ser. Lecture
Notes in Computer Science, W. Damm and H. Hermanns, Eds., vol.
4590. Springer, 2007, pp. 519–531.

[8] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementation, Chicago, IL,
USA, June 12-15, 2005, V. Sarkar and M. W. Hall, Eds. ACM, 2005,
pp. 213–223.

[9] I. J. Goodfellow, Y. Bengio, and A. C. Courville, Deep Learning, ser.
Adaptive computation and machine learning. MIT Press, 2016.

[10] X. Jia, C. Ghezzi, and S. Ying, “Enhancing reuse of constraint so-
lutions to improve symbolic execution,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015,
Baltimore, MD, USA, July 12-17, 2015, M. Young and T. Xie, Eds.
ACM, 2015, pp. 177–187.

[11] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[12] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, “Machine learning:
a review of classification and combining techniques,” Artif. Intell. Rev.,
vol. 26, no. 3, pp. 159–190, 2006.

[13] D. Kroening and O. Strichman, Decision Procedures - An Algorithmic
Point of View, Second Edition, ser. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2016.

[14] M. G. Lagoudakis and M. L. Littman, “Learning to select branching
rules in the DPLL procedure for satisfiability,” Electron. Notes Discret.
Math., vol. 9, pp. 344–359, 2001.

[15] X. Li, Y. Liang, H. Qian, Y. Hu, L. Bu, Y. Yu, X. Chen, and X. Li,
“Symbolic execution of complex program driven by machine learning
based constraint solving,” in Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2016,
Singapore, September 3-7, 2016, D. Lo, S. Apel, and S. Khurshid, Eds.
ACM, 2016, pp. 554–559.

[16] K. Ma, Y. P. Khoo, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in Static Analysis - 18th International Symposium, SAS 2011,
Venice, Italy, September 14-16, 2011. Proceedings, ser. Lecture Notes
in Computer Science, E. Yahav, Ed., vol. 6887. Springer, 2011, pp.
95–111.

[17] E. OMahony, E. Hebrard, A. Holland, C. Nugent, and B. OSullivan,
“Using case-based reasoning in an algorithm portfolio for constraint
solving,” in Irish conference on artificial intelligence and cognitive
science, 2008, pp. 210–216.

[18] C. S. Pasareanu and N. Rungta, “Symbolic pathfinder: symbolic exe-
cution of java bytecode,” in ASE 2010, 25th IEEE/ACM International
Conference on Automated Software Engineering, Antwerp, Belgium,
September 20-24, 2010, C. Pecheur, J. Andrews, and E. D. Nitto, Eds.
ACM, 2010, pp. 179–180.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[20] D. M. Perry, A. Mattavelli, X. Zhang, and C. Cadar, “Accelerating array
constraints in symbolic execution,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
Santa Barbara, CA, USA, July 10 - 14, 2017, T. Bultan and K. Sen,
Eds. ACM, 2017, pp. 68–78.

[21] Preiner, Mathias, Niemetz, Aina, Scott, Joseph, and Ganesh, Vi-
jay, “Machsmt: A machine learning-based algorithm selector for smt
solvers,” 2020.

[22] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, 2005, Lisbon, Portugal,
September 5-9, 2005, M. Wermelinger and H. C. Gall, Eds. ACM,
2005, pp. 263–272.

[23] N. Tillmann and J. de Halleux, “Pex-white box test generation for .net,”
in Tests and Proofs - 2nd International Conference, TAP 2008, Prato,
Italy, April 9-11, 2008. Proceedings, ser. Lecture Notes in Computer
Science, B. Beckert and R. Hähnle, Eds., vol. 4966. Springer, 2008,
pp. 134–153.

[24] K. M. Ting, Confusion Matrix, 2017.
[25] G. S. Tseitin, On the Complexity of Derivation in Propositional Calcu-

lus, 1983.
[26] Y. Vizel, G. Weissenbacher, and S. Malik, “Boolean satisfiability solvers

and their applications in model checking,” Proc. IEEE, vol. 103, no. 11,
pp. 2021–2035, 2015.

[27] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla: Portfolio-
based algorithm selection for SAT,” J. Artif. Intell. Res., vol. 32, pp.
565–606, 2008.

[28] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018, W. Enck and A. P. Felt, Eds. USENIX Association,
2018, pp. 745–761.

[29] G. P. Zhang, “Neural networks for classification: a survey,” IEEE Trans.
Syst. Man Cybern. Part C, vol. 30, no. 4, pp. 451–462, 2000.

[30] Y. Zhang, R. Jin, and Z. Zhou, “Understanding bag-of-words model: a
statistical framework,” Int. J. Mach. Learn. Cybern., vol. 1, no. 1-4, pp.
43–52, 2010.

[31] Y. Zhang, Z. Chen, Z. Shuai, T. Zhang, K. Li, and J. Wang, “Multiplex
symbolic execution: Exploring multiple paths by solving once,” in 35th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE,
2020, pp. 846–857.

543

Graph queries for analyzing the coverage of requirements by test cases

Shingo Ariwaka, Hiroyuki Nakagawa, Tatsuhiro Tsuchiya

Graduate School of Information Science and Technology, Osaka University

Abstract

We study the applicability of graph queries to the cov-
erage analysis of test cases for requirements specifications.
First we show that when the similarity degrees between re-
quirements specifications and test cases are available, they
can be represented in the form of a graph. Then we iden-
tify several queries that are useful for extracting coverage
information and show that all these queries can be writ-
ten in the Cypher query language, a common graph query
language. In a case study we apply these queries to data
obtained from a real-world project in industry. The results
of the case study show that coverage information can be
retrieved in reasonable time. We also compare the graph
queries with SQL queries with respect to conciseness and
processing time.

1. Introduction

In this paper we study the applicability of graph queries
in the field of software engineering. A graph query is
a query for accessing a graph database which manages
data with a graph structure. Graph databases and graph
queries are becoming popular since they are specially tai-
lored to handle data with graph structures, such as social
networks [1]. On the other hand, applications of graph
databases and graph queries to software engineering prob-
lems have not been studied sufficiently. This paper aims to
investigate whether or not graph queries can be effectively
used in analyzing the test coverage of requirements speci-
fications in software system development. In our context,
coverage means how many of the requirements specifica-
tions are tested by the test cases and the extent to which
each of the requirements specification is tested.

There has already been a body of research that can be
used to automatically compute the relevance or similarity
between software artifacts, such as test cases and require-
ments specifications (for example, [2, 3]). In these previ-
ous studies, the similarity degree between two artifacts is
estimated using natural language processing. The obtained
similarity degrees can be used to, for example, infer the ex-

istence of traceability link between them.
In this paper, we assume that using some of these tech-

niques similarity degrees have already been computed be-
tween test cases and requirements specifications. Under the
assumption, we first identify several information items that
are useful for system developers to perform coverage anal-
ysis. Then we show that these items can be naturally speci-
fied in the form of graph queries which are in turn used to re-
trieve coverage information from a graph database. Further-
more we demonstrate practical applicability of these graph
queries through a case study using data obtained from a
real-world industrial product.

The structure of this paper is as follows. In Section 2, we
introduce graph databases and Cypher, a well-known query
language for graph databases. In Section 3, we describe
the basic assumptions about requirements specifications and
test cases and show how they can be represented in the form
of a graph. In Section 4, we list information items that can
be useful for developers to perform coverage analysis. We
also show that these items can be retrieved using Cypher
queries. In Section 5, we show the results of a case study
where a data set from an industrial product is used. In Sec-
tion 6 we describe related research. In Section 7 we discuss
potential threats to validity of the study. Finally, in Sec-
tion 8, we summarize the paper and discuss future research
directions.

2. Graph database and query languages

2.1. Graph database

A graph database is a database that manages data with a
graph structure. In this paper we adopt the model of graph
structures used by Neo4j, a well-known graph database [1].
In the Neo4j’s model, a graph structure consists of nodes,
relationships, and properties. Nodes refer to vertices and
relationships refer to direct edges in graph theoretical terms.
Properties are attributes assigned to nodes and relationships
and can hold data such as numbers and strings in a key-
value format. Furthermore, labels can be assigned to nodes
and relationships. When searching the database, the labels
are useful for specifying data items to be retrieved.

DOI 10.18293/SEKE2021-122

544

2.2. Cypher query language

In database management systems, accesses to databases
are performed through execution of queries written in a
query language. Cypher is a common query language for
graph databases [1]. For example, Neo4j uses Cypher as
its query language. Cypher allows for expressive querying
of graph databases. Queries in Cypher create, read, update,
and delete data items. In this paper we basically focus on
read queries since our interest is in analysis over a set of
requirements specifications and test cases that have already
been provided. Read queries in Cypher start with keyword
MATCH followed by a search pattern for finding nodes or
relationships. Additional constraints to the pattern can be
added using keyword WHERE.

Figure 1 shows a graph data representing relationships
among three peoples which represents that Smith is known
to Williams and Johnson. The nodes correspond to the peo-
ple and represent their names by property name. For ex-
ample, a query to retrieve a list of people who know Smith
from this data can be written as follows.

1 MATCH (a:Person)-[:Knows]->(b:Person)
2 WHERE b.name = "Smith"
3 RETURN a

Williams JohnsonSmithKnows Knows

Figure 1: A graph data representing human relationships

3. Requirements specifications and test de-
scriptions

3.1. Traceability data

In this study we assume that a set of requirements spec-
ifications, a set of test cases, and the similarity degrees be-
tween them are available. We collectively call these data
traceability data. Below we formally describe the taceabil-
ity data we assume and show that the data can be repre-
sented as a graph structure.

We consider traceability data that consists of a set R of
requirements specifications, a set T of test cases, and the
similarity degrees between them: The similarity degree is
a real value ranging from 0 to 1 and is defined between
any two requirements specifications and between any pair
of a requirements specification and a test case. Formally,

Table 1: Example of traceability data consisting of seven
requirements specifications and ten test cases. Entities with
0 similarity are omitted.

(a) Requirements
specifications-pairs
r0 r1 0.14
r0 r5 0.08
r0 r6 0.59
r1 r4 0.97
r1 r5 0.84
r2 r3 0.2
r2 r4 0.94
r2 r6 0.34
r4 r5 0.93

(b) Test case and
requirements

specification-pairs
t0 r0 0.13
t1 r0 0.57
t1 r1 0.82
t2 r2 0.35
t3 r2 0.16
t4 r2 0.59
t4 r4 0.21
t5 r4 0.01
t5 r5 0.03
t7 r1 0.91
t7 r2 0.41
t7 r4 0.09
t8 r0 0.06
t8 r1 0.28
t8 r2 0.48
t8 r5 0.5
t9 r1 0.21
t9 r2 0.66
t9 r5 0.54

the similarity degree between a requirements specification
pair is represented as the map S1 : R × R → [0, 1], and
the similarity degree between a test case and a requirements
specification is represented by the map S2 : T ×R → [0, 1]
where [0, 1] is the set of real numbers between 0 and 1.
In this paper, we assume that S1(r, r

′) = S1(r
′, r) for any

requirements specifications r, r′ ∈ R
Table 1 shows a small example of traceability data,

whereR = {r0, r1, . . . , r6} and T = {t0, t1, . . . , t9}.

3.2. Graph structure as traceability data

The traceability data can be represented in a graph struc-
ture as follows. The test cases and requirements specifica-
tions correspond to nodes. Nodes of test cases and nodes of
requirements specifications are distinguished by assigning
different labels to them. We call the node corresponding to a
test case a test case node and the node corresponding to a re-
quirements specification a requirement node. The similarity
degree between requirements specifications pair or between
test cases and requirements specifications is represented by
a property assigned to the relationship defined between the
requirement nodes or between the test case node and the
requirement nodes. An exception is when the similarity de-
gree between two nodes is 0, in which case no relationship
is defined between them.

545

It should be noted that the directions of relationships are
irrelevant to the traceability data we consider. Hence we
set at most one relationship of either direction between two
nodes. This is a standard treatment of undirected edges in
the graph model of Neo4j.

Figure 2 shows a visualization of the above example, ob-
tained using Neo4j’s functions.

Figure 2: Visualization of the example traceability data

3.3. Table representation of traceability data

Compared to graph databases, relational databases have
been much more widely used for a variety of applications.
In a relational database, data are stored in tables which
are rigorously designed to ensure data consistency. SQL
queries are used to retrieve necessary information spanning
across these tables. Here we explain how the traceability
data can be represented as the form of tables here.

We use a total of four tables: two node tables and two
edge tables. One of the node tables stores the requirement
nodes, while the other node table stores the test case nodes.
Each row of the node tables consists of a unique ID and
a name of the corresponding node. The edge tables store
relationships and their attributes, including similarity. One
of the tables stores the similarity degrees between require-
ments specifications, whereas the other manages those be-
tween test cases and requirements specifications. Each row
of the edge table contains the IDs of the end nodes of the
corresponding relationship, as well as the similarity. The
end nodes’ IDs must appear in the node tables and this con-
straint can be imposed with FOREIGN KEY constraints,
which are usually supported by relational database manage-
ment systems.

4. Database queries for coverage analysis

In this section, we list some information items that may
be useful for developers to know how well the test cases
test the requirements specifications. We wrote queries both
in Cypher and SQL for retrieval of all these items. For space
limitations we select two items as examples and present
Cypher queries and SQL queries for extracting them. In
addition the conciseness of the queries is evaluated in terms
of character count.

4.1. Coverage information to be extracted

We identify a total of seven information items that can
be useful for coverage analysis as follows:

1. List of test cases that directly test requirements speci-
fication R

2. List of test cases that directly and indirectly test re-
quirements specification R

3. List of requirements specifications that are directly
tested by test case T

4. List of requirements specifications that are directly or
indirectly tested by test case T

5. List of requirements specifications that are directly
tested by at least one test cases

6. List of requirements specifications that are directly or
indirectly tested by at least one test cases

7. List of requirements specifications that are not tested

Here we say that a test case t directly tests a require-
ments specification r if t and r have similarity degree equal
to or greater than the threshold X . Also we say that a test
case t indirectly tests a requirements specification r1 if r1
and another requirements specification r2 have the similar-
ity degree equal to or greater than the threshold Y and r2 is
directly tested by at least α test cases including t.

In the following of the paper, we set X=0.5, Y =0.7, and
α=2 and hard-code these values in queries for presentation
simplicity.

4.2. Queries for retrieval of coverage information

For each of the above items, we created a Cypher query
and an SQL query to extract it. Due to the limit of space, we
only present the queries for the first and sixth items. Note
that the $s and %s in the queries serve as formal parameters
and are replaced with actual arguments at runtime.

Query 1, the query for the first item, receives the name
of a requirements specification as an actual argument and

546

returns a list of test cases that directly test that requirements
specification. When the query is executed with r1 being
the actual argument for the running example shown in Sec-
tion 3.1, the query should return two test cases, t1 and t7.

Below we show two queries written in Cypher and SQL.
From the description of the query in Cypher, it is seen
that the Cypher query very succinctly describes the pattern
that matches relationships the target test cases must posses.
On the other hand, the SQL implementation of Query 1 is
slightly more complicated because it requires joining the
node tables and the edge tables in order to obtain the simi-
larity between test cases and the requirements specification.

Cypher query 1
1 MATCH (r:Requirement)-[s:Similarity]-(t

:Testcase)
2 WHERE r.name = $s AND s.value >= 0.5
3 RETURN t.name AS test_name
4 ORDER BY test_name

SQL query 1
1 SELECT test.name AS test_name
2 FROM edge_req_to_test edge
3 JOIN node_req req
4 ON edge.from_id = req.id
5 JOIN node_test test
6 ON edge.to_id = test.id
7 WHERE req.name = %s AND edge.similarity

>= 0.5
8 ORDER BY test_name;

Query 6 for the sixth item obtains a list of all require-
ments specifications that are tested directly or indirectly by
at least one test case. For the running example, the query
yields a set of five requirements specifications: r0, r1, r2,
r4, and r5. In the Cypher implementation of this query, even
more complex pattern matching than Query 1 is described in
an intuitive way. On the other hand, the SQL query is long
and difficult to understand, because many JOIN operation
are performed and similar descriptions need to be repeated
for matching requirements specifications.

Cypher query 6
1 CALL {
2 MATCH (r:Requirement)-[s:Similarity

]-(t:Testcase) WHERE s.value >=
0.5

3 RETURN r.name AS req_name
4
5 UNION
6
7 MATCH (r1:Requirement)-[s1:

Similarity]-(t:Testcase) WHERE
s1.value >= 0.5

8 WITH r1, count(t) AS count WHERE
count >= 2

9 MATCH (r1:Requirement)-[s2:

Similarity]-(r2:Requirement)
WHERE s2.value >= 0.7

10 RETURN r2.name AS req_name
11 }
12 RETURN req_name
13 ORDER BY req_name

SQL query 6
1 (SELECT req.name AS req_name
2 FROM edge_req_to_test edge
3 JOIN node_req req
4 ON edge.from_id = req.id
5 JOIN node_test test
6 ON edge.to_id = test.id
7 WHERE edge.similarity >= 0.5
8 GROUP BY req.id
9 HAVING count(*) >= 1

10
11 UNION
12
13 SELECT req.name AS req_name FROM (
14 SELECT id1, id2 FROM (
15 SELECT edge.from_id AS id1,

edge.to_id AS id2
16 FROM edge_req_to_req edge
17 WHERE edge.similarity >= 0.7
18
19 UNION
20
21 SELECT edge.to_id AS id1, edge.

from_id AS id2
22 FROM edge_req_to_req edge
23 WHERE edge.similarity >= 0.7
24) AS rr
25 JOIN edge_req_to_test rt
26 ON rr.id2 = rt.from_id
27 JOIN node_test test
28 ON rt.to_id = test.id
29 WHERE rt.similarity >= 0.5
30 GROUP BY rr.id1, rr.id2
31 HAVING count(*) >= 2
32) AS r
33 JOIN node_req req
34 ON r.id1 = req.id)
35
36 ORDER BY req_name;

Table 2 compares the Cypher and SQL queries in terms
of character count. The queries in SQL are approximately
1.5 to 1.9 times longer than those in Cypher.

5. Case study

In this section, we describe the results of executing the
queries shown in the previous section. For the experiment,
we obtained traceability data by analyzing artifacts docu-
mented in a real-world project. The dataset is in a text
format and contains 3,855 test cases and 260 requirements
specifications.

The experiment was conducted on a Windows 10 PC

547

Table 2: Number of characters in each query

Query type Cypher SQL
Query 1 116 179
Query 2 415 724
Query 3 114 177
Query 4 413 795
Query 5 110 192
Query 6 325 599
Query 7 514 639

with an AMD Ryzen 5 3600 CPU and 16GB of memory.
We used Neo4j graph database management system and
PostgreSQL relational database management system.

To load the traceability data into these databases, we im-
plemented Python scripts which parse given data and call
database APIs to update the databases accordingly. This
process required about 47 minutes for Neo4j and about 4
minutes for PostgreSQL.

Using the databases loaded with the traceability data, we
measured the processing time of the queries. Table 3 shows
the processing time for each query. Since Queries 1 to 4
take a test case or a requirements specification as input, we
measured the processing times for all test cases or require-
ments specifications and averaged them.

For Neo4j, the longest execution time was observed
when Query 7 was executed. This query obtains the list
of specifications that are not tested at all. Considering the
fact that the query has to exhaustively check all require-
ments specifications, the processing time, which was about
13 seconds, is sufficiently permissible. In addition, Queries
1 to 4, which are queries concerning a specific requirements
specification or test case, were all executed in less than 0.6
seconds. For PostgreSQL, on the other hand, the longest ex-
ecution time was observed when Query 4 was executed; but
the time was only approximately 0.1 seconds. PoestgreSQL
exhibited shorter processing time than Neo4j for all cases.

Table 3: Execution time (seconds)

Query type Neo4j PostgreSQL
Query 1 0.004 0.056
Query 2 0.054 0.075
Query 3 0.002 0.054
Query 4 0.047 0.125
Query 5 0.359 0.048
Query 6 5.086 0.098
Query 7 13.440 0.098

6. Related work

Studies that consider the applicability of graph queries in
the area of software engineering include [4, 5, 6]. In refer-
ence [4], four query languages including SQL and Cypher
were compared for test case traceability queries. The re-
sults show that Cypher is superior in terms of expressive-
ness and understandability. Although their work and ours
both concern the applicability of graph queries, the sorts
of data and the purposes of using the queries are signif-
icantly different. For example, [4] considers traversal of
traceability links whereas ours concerns the coverage of re-
quirements specifications by test cases. Reference [5] uses a
network to represent the traceability links between require-
ments, code, and test cases and compares the conciseness of
the SQL and Cypher representations of two types of simple
queries. Their work also considers traversal of trasability
links; they did not deal with the kind of coverage analysis
we did. Reference [6] analyzed the performance of query
processing for large-scale software artifact data: it is shown
that querying a relational database running on Spark, which
is a cluster computing framework, with SQL is more effi-
cient than using Neo4j and Cypher. On the other hand, in
this paper, we showed that even querying Neo4j running on
a single computer exhibited sufficiently practical process-
ing time for a real-world data set. The result does not con-
flict with ours, where PostgreSQL exhibited better perfor-
mance than Neo4j on a single computer; but our results also
show that graph queries can be executed sufficiently fast for
a real-world data set.

In [3, 7] we developed an approach to automatically
find traceability links between test cases and requirements
specifications. This approach first estimates the similarity
degree between two artifacts using natural language pro-
cessing techniques and then infers the existence of trace-
ability links using the estimates. The dataset used in the
case study of this paper was obtained using the first step
of this approach. The problem of measuring similarity or
relevance between software artifacts have also been studied
elsewhere, especially in the context of automatic construc-
tion of traceability links between artifacts. Examples of this
line of studies include, for example, [8, 9, 2, 10, 11].

7. Threats to Validity

A major internal threat to validity stems from the expres-
siveness of Cypher and SQL. In general queries in these lan-
guages have different representations; thus the queries we
presented here might have more intuitive or concise alterna-
tives. Another threat lies in how to compare the conciseness
of the queries. In this paper we measured the conciseness in
terms of character count; but another measure, for example,
the number of tokens, might be more appropriate.

548

An external threat of validity concerns the representa-
tiveness of the data we used in the case study. Although the
data was obtained from one of the largest projects lead by
our industrial partner, there should be projects that need to
manage data of larger size. Other characteristics of data, es-
pecially, the distribution of similarities can also vary from
projects to projects. In view of these, a care should be taken
when generalizing the findings about query processing per-
formance.

8. Conclusion

In this paper we discussed the applicability of graph
databases and graph queries to coverage analysis between
test cases and requirements specifications. We showed that
traceability data can be represented as a graph database and
that coverage information can be easily retried from the
database with graph queries. We also demonstrated that the
graph queries, which are written in the Cypher query lan-
guage, are often more concise than those in SQL, while the
processing performance is comparable between the graph
database and the SQL database.

Future research include many possible directions. The
case study of this paper concerned a single product. Data
sets from other systems, particularly larger ones, should be
considered in future. Extending the list of queries for cover-
age analysis also deserves further research. To this end we
plan to interview developers from industry to find out other
queries that are useful in practice.

Acknowledgment This work was supported by JSPS
KAKENHI Grant Number JP20K11747.

References

[1] I. Robinson, J. Webber, and E. Eifrem, Graph
Databases: New Opportunities for Connected Data,
2nd ed. O’Reilly Media, Inc., 2015.

[2] J. Cleland-Huang, B. Berenbach, S. Clark, R. Set-
timi, and E. Romanova, “Best practices for automated
traceability,” Computer, vol. 40, no. 6, pp. 27–35,
2007.

[3] H. Nakagawa, T. Hasegawa, S. Matsui, and
T. Tsuchiya, “Visualization of specification cover-
age: A case study of a web application development
in industry,” in 2017 IEEE International Symposium
on Software Reliability Engineering Workshops (ISS-
REW), 2017, pp. 77–80.

[4] M. Rath, D. Akehurst, C. Borowski, and P. Mäder,
“Are graph query languages applicable for require-
ments traceability analysis?” in Joint Proceedings of

REFSQ-2017 Workshops, Doctoral Symposium, Re-
search Method Track, and Poster Track, ser. CEUR
Workshop Proceedings, vol. 1796, 2017, p. (unas-
signed).

[5] R. Elamin and R. Osman, “Implementing traceabil-
ity repositories as graph databases for software qual-
ity improvement,” in 2018 IEEE International Con-
ference on Software Quality, Reliability and Security
(QRS), 2018, pp. 269–276.

[6] J. Lin, Y. Liu, and J. Cleland-Huang, “Supporting pro-
gram comprehension through fast query response in
large-scale systems,” in Proceedings of the 28th In-
ternational Conference on Program Comprehension,
ser. ICPC ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 285–295.

[7] H. Nakagawa, S. Matsui, and T. Tsuchiya, “A visual-
ization of specification coverage based on document
similarity,” in Proceedings of the 39th International
Conference on Software Engineering Companion, ser.
ICSE-C ’17. IEEE Press, 2017, p. 136–138. [Online].
Available: https://doi.org/10.1109/ICSE-C.2017.117

[8] F. Erata, M. Challenger, B. Tekinerdogan, A. Mon-
ceaux, E. Tüzün, and G. Kardas, “Tarski: A
platform for automated analysis of dynamically con-
figurable traceability semantics,” in Proceedings of
the Symposium on Applied Computing, ser. SAC ’17.
New York, NY, USA: Association for Computing
Machinery, 2017, p. 1607–1614. [Online]. Available:
https://doi.org/10.1145/3019612.3019747

[9] A. Goknil, I. Kurtev, and K. Van Den Berg, “Genera-
tion and validation of traces between requirements and
architecture based on formal trace semantics,” Journal
of Systems and Software, vol. 88, pp. 112 – 137, 2014.

[10] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor,
“Software traceability with topic modeling,” in 2010
ACM/IEEE 32nd International Conference on Soft-
ware Engineering, vol. 1, 2010, pp. 95–104.

[11] C. Mills, J. Escobar-Avila, and S. Haiduc, “Automatic
traceability maintenance via machine learning classi-
fication,” in 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2018,
pp. 369–380.

549

Using the Normalized Levenshtein Distance to Analyze Relationship between
Faults and Local Variables with Confusing Names: A further Investigation

Carmine GravinoH Alessandra OrsiH Michele RisiH

H Department of Computer Science
University of Salerno, Italy
{gravino, mrisi}@unisa.it

Abstract

This paper exploits further uses of NLD (Normalized
Levenshtein Distance), proposed in a recent study, to quan-
tify the level of confusion of variables with the aim of ver-
ifying if they can provide indications about the presence
of faults. We provide further evidence that fault prediction
models based on the considered NLD measures can provide
accurate estimations.

1 Introduction

This paper presents a further investigation about the use
of the Normalized Levenshtein Distance (NLD) proposed
by Tashima et al [1]. NLD allows to quantify the string
similarity between local variables by exploiting the Leven-
shtein distance. In particular, it determines the minimum
number of modifications in the characters to change one
string to another string. NLD allows to quantify the con-
fusion of local variables [1] and verify if the presence of
not easily distinguishable variables in a method can sug-
gest that the method is fault prone. In addition, we propose
further uses of NLD: NLD1, which represents the sum of
all the NLD values calculated for each pair of variables de-
clared in a method; NLD2, which represents the average
of all the NLD values for each pair of local variables; and
NLD3, which is defined as the sum of all the NLD values
for each pair of local variables multiplied by the number of
LOCs of the method.

To assess all the considered confusing measures, we have
performed an empirical study by considering the same soft-
ware systems employed in [1]. The results confirm and ex-
tend the ones of previous study about the relationships be-
tween the presence of faults and local variables with con-
fusing names and how fault prediction models (built using
the Random Forest) based on the considered distances can
provide accurate estimations.

Organization of the paper: In Section 2 we summa-
rize related work and recall the definition of NLD [1]. The
design and the results of the performed empirical study are
presented in Section 3 and Section 4, respectively. Conclu-
sion concludes the paper.

2 Background
2.1 Related work

Software fault prediction has been widely investigated,
aiming at identifying source code information that can help
to accurately predict the presence of faults (e.g., [2] [3]). A
few papers have investigated how the choices of develop-
ers when naming local variables can impact software qual-
ity. We can start mentioning the indications provided by
Kernighan and Pike [4], who state that local variables have
restricted role being used in a limited scope, thus it is un-
necessary to use long and descriptive names for these iden-
tifiers. Some years later, Lawrie et al. [5] have performed a
quantitative survey to investigate the impact of the variable
composition on software comprehension. In their analysis
they take into account three types of identifiers: a fully-
word, abbreviated word, and a single character. The anal-
ysis of results reveals that understandability of identifiers
decreases from full-words to single-character words. How-
ever, no significant difference can be highlighted between
the use of full-words and abbreviated identifiers in terms of
source code comprehension. More recently, a large-scale
experiment performed by Scanniello et al. [6] has achieved
similar results. They conducted a qualitative study to under-
stand how identifier names either abbreviated or full-word
the values, impact on fault fixing. Furthermore, it seems
that even if variables with long names can help to better un-
derstand their use, the overall source code readability can
be reduced [7]. Another study by Aman et al. [8] has also
revealed that long local variable names are change-prone.

Binkley et al. [9] performed a study to compare the
impact on the program comprehension when programmers
use different naming styles. They compared the use of the
camel case against the use of the snake case. The results
show that the camel case improves the source code compre-
hension for developers at the beginning of their career while
there is no significant difference for expert developers.

Regarding the relationship between the naming style and
the presence of faults, the findings of a study performed by
Kawamoto and Mizuno [10] reveal that the source code re-
sults to be fault-prone when classes contain long identifier
names. With the aim of showing good practices when nam-
ing the identifiers, Butler et al. [11] have defined and as-

DOI reference number: 10.18293/SEKE2021-124

550

sessed 12 naming rules. The results of the performed anal-
ysis show that the use of identifiers not following the pro-
posed rules increases the presence of faults.

Differently from the above mentioned contributions,
Tashima et al. [1] have recently focused their attention on
pairs of local variables with similar and confusing names.
The aim of their investigation is to verify the relationships
between the presence of such confusing variables and the
fault-proneness at method level.

2.2 Normalized Levenshtein Distance

The motivation of Tashima et al. [1] is that the pres-
ence of local variables with high similarity names implies
the possibility to confuse their use in the source code. To
this aim, the Levenshtein distance is used to evaluate how
much two names are confusing. The Levenshtein string edit
Distance (LD) algorithm is one of most important models
for string matching [12]. This edit distance is defined as the
minimum number of insert, delete, and replace operations
required to transform a source string x into a target string
y. The approach assumes that insert and delete operations
have cost 1, while the replacement has cost 2 (it is equiva-
lent to a sequence of delete and insert operations). However,
to evaluate more precisely the degree of confusion between
two strings (local variables’ names) s1 and s2, Tashima et
al. propose a normalized LD, which is computed by divid-
ing the distance by a factor that depends on the length of the
considered local variables:

NLD(s1, s2) =
LD(s1, s2)

max{λ(s1), λ(s2)}

where LD(s1, s2) is the Levenshtein distance between the
two strings s1 and s2, and the function λ computes the
length of the corresponding string. In particular, Tashima
et al. adopted the following definition:

NLDT (s1, s2) = min
∀s1,s2∈M,s1 6=s2

(NLD(s1, s2))

3 Study design
We have formulated the following research question:

RQ Can information on variables with confusing names
help to predict the presence of faults?

To answer RQ we have built different prediction mod-
els based on the considered distance measures and assessed
their accuracy in prediction. We also decided to build a pre-
diction model exploiting the Line of Code (LOC) metric
as independent variable, to verify whether the predictions
achieved with NLD based measures are better than those
obtained using only LOC.

3.1 Exploited NLD based measures

We considered further uses of NLD proposed in [1],
starting from two considerations: Why lower confusion val-
ues are excluded? Can the use of other software size mea-
sures (like the size of the module being analyzed) improve
the effectiveness of NLD? To this aim, we consider three
further NLD based measures:

• NLD1: is a “cumulative” measure computed by simply
adding all the values of NLD for each pair of variables
(i.e., we performed all the possible permutations of the
identifiers defined in a method):

NLD1 =
∑

∀s1,s2∈M,s1 6=s2

NLD(s1, s2)

where s1 and s2 can be all the local variables defined
in a method M of the analyzed software class.

• NLD2: it is based on NLD1. In particular, the cumu-
lative value of all the obtained distances is normalized
by a factor depending on the number of all the local
variables in the method M : NLD1/n, where n is the
overall number of local variables defined in M .

• NLD3: it is obtained by multiplying the NLD2 value
by the number of LOCs present in the method under
consideration (i.e., LOCM): NLD2 * LOCM

3.2 Datasets

We considered the same five open source projects em-
ployed by Tashima et al. [1] for different reasons. We were
interested in analyzing software implemented in Java and
managed with Git in order to identify useful information
such as the presence of faults. And more important, we se-
lected the same software since our aim was to further assess
the accuracy of NLD based measures (including NLDT)
given that NLDT provided good results on these software
as reported in the original work of Tashima et al. [1]. In
particular, the systems are: Apache Tomcat v. 9.0.12, Birt
v. 4.8.0, Eclipse JDT User Interface v. 4.10.0, Eclipse Plat-
form User Interface v. 4.10.0, Eclipse SWT v. 4.9.

In order to conduct the study, it was necessary to col-
lect data from different sources. In particular, the collec-
tion of information to calculate the confusing measures,
i.e., NLDT , NLD1, NLD2, and NLD3, was computed by
analyzing the local variables of the methods of the source
code of the considered projects. To this aim, we exploited
a parser written in Java that makes use of the Eclipse JDT
core library to extract information on methods and their lo-
cal variables. We computed the values for NLD for each
pair of local variables and then the values of each NLDi

(i ∈ {T, 1, 2, 3}) as described above. Then, we add data
about the presence of faults for each method by exploit-
ing information from Promise repository [13], also used by

551

Tashima et al. but for different versions of the software
projects, and by manually analyzing information provided
in Git. This was the only strategy to adopt since the ver-
sions of the five projects we considered are among the most
recents and are not the same as in the previous study by
Tashima et al. [1]. Thus, the fault recovery was made
by making an intersection at method and class levels be-
tween the datasets used by Tashima et al., containing also
the faults, and those used in our study. Whenever there was
a correspondence of modules between the old and the new
versions of a given project, the fault related to that module
in our dataset for the project was added. In particular, in
our analysis NLDT , NLD1, NLD2, NLD3 have been used
as independent variable while Fault (the presence of fault,
i.e., 1, or not, i.e., 0) as dependent variable.

3.3 Prediction models and accuracy evaluation

To build our fault prediction models, we employed the
Random Forest that is a popular method for various ma-
chine learning tasks. It exploits a classifier as specified
above, however it constructs more classification trees in-
stead of a single tree [14]. As for its implementation, we
exploited the tool Weka that offers widely used estimation
techniques [15]. In particular, for our analysis we used the
Classify module by selecting: i) all the parameters neces-
sary for the construction of the model, ii) the Random Forest
algorithm, iii) the independent variable (i.e., a measure of
confusion), iv) the dependent variable (Fault) and the type
of the validation method to be used.

To verify whether or not the obtained fault estimations
are useful predictions of the actual faults we exploited 10-
fold cross validation [16] with k = 10, which requires the
splitting of the dataset in k−1 training sets and 1 validation
test for k times. Each time the training set is employed to
define the estimation models, with the selected estimation
techniques, while the corresponding validation test is used
to validate the predictions obtained with the built models.

To evaluate the accuracy of the fault predictions, we em-
ployed F-measure defined as the weighted harmonic mean
of the Precision and Recall [17]. Since the fault estimations
have been computed on a dependent variable representing
two classes with a very different number of observations,
the Matthews correlation coefficient (MCC) can be gener-
ally adopted to measure the quality of a binary classifier.
MCC represents a correlation coefficient between the ob-
served and predicted binary classifications [18]. The MCC
measure ranges from +1 for a perfect classifier through 0
for a random classifier to -1 for a weak classifier.

3.4 Threats to Validity

Some threats could affect the validity of our analysis.
We considered five software projects developed in Java, and
so the number and type of software can introduce a bias
with respect to external validity. Thus, further investiga-

Table 1. Prediction accuracy achieved by the
built fault estimation models

System
Employed Correctly Incorrectly

F-measure MCCmeasure classified classified
instances (%) instances (%)

Apache Tomcat

NLD1 75 25 0.75 0.503
NLD2 77.5 22.5 0.77 0.548
NLD3 72.5 27.5 0.72 0.441
NLDT 85 15 0.85 0.698
LOC 52.5 47.5 0.53 0.055

Birt

NLD1 74.97 25.03 0.71 0.153
NLD2 76.28 23.72 0.76 0.033
NLD3 73.7 26.3 0.72 0.179
NLDT 76.70 23.30 0.68 0.118
LOC 76.2 23.8 0.69 0.115

JDT ui

NLD1 65.77 34.23 0.60 0.148
NLD2 65.94 34.06 0.57 0.127
NLD3 67.01 32.99 0.64 0.206
NLDT 65.83 34.17 0.61 0.159
LOC 64.1 35.9 0.51 0.043

Platform ui

NLD1 62.1 37.9 0.51 0.041
NLD2 62.91 37.09 0.50 0.034
NLD3 66.7 33.3 0.66 0.266
NLDT 64 36 0.55 0.122
LOC 66.1 33.9 0.63 0.214

SWT

NLD1 69.6 30.4 0.7 0.392
NLD2 56.65 43.35 0.56 0.118
NLD3 72.2 27.8 0.72 0.440
NLDT 54.9 45.1 0.52 0.071
LOC 62.9 37.1 0.63 0.251

tions with different type of software projects and a greater
number of projects should be carried out. However, to mit-
igate this threat we considered software projects whose in-
formation are publicly available and employed in previous
investigations. Regarding the collection of information we
employed Eclipse JDT to analyze source files to calculate
the confusing measures, by analyzing the local variables of
the methods of the source code of the considered projects.
Eclipse JDT is a widely used tool for accomplishing such
kind of work. As for the collection of fault data, possible
threat is related to the fact that the fault recovery was made
by making a intersection at method and class level between
the datasets of the Promise used by Tashima et al. [1], con-
taining also the faults, and those used in our study.

Other threats can regard the data analysis performed. As
for the technique applied to obtain the prediction model we
exploited Random Forrest since it is widely used for classi-
fication problems similar to ours. Furthermore, it was also
used in the original work by Tashima et al. [1]. As for
the assessment of the achieved fault predictions, other mea-
sures could be used, such as accuracy, however F-measure
and MCC are widely employed in studies similar to ours.

4 Results
First of all, for two of the confusing measures, i.e., NLD1

and NLD3, we have observed a specific relationship be-
tween the presence of faults and local variables with con-
fusing names, namely, as the value of confusing measures
increases (i.e., the distance between local variables increase
and so they are less confusing) the value of the fault rate

552

increases as well. For the other two considered confusing
measures we cannot provide a clear trend.

Table 1 reports the results in terms of Correctly classi-
fied instances (%), Incorrectly classified instances (%), F-
measure, and MCC for each software systems and the built
estimation models (i.e., based on NLD1, NLD2, NLD3,
NLDT , and LOC) obtained by averaging the results of the
10-fold cross validation as designed in Section 3.3.

We can note that F-measure values range from 0.5 to
0.85. The greatest values were obtained with Apache Tom-
cat (which is smaller in size with respect to the others) while
the worst values were obtained with Platform ui. A similar
consideration can be provided for MCC values.

The NLD based measures used as independent variables
in fault prediction models built with the Random Forest that
allowed to obtain better predictions are NLD1 and NLD3.
NLDT provided results similar to NLD1 and in one case
(i.e., Apache Tomcat) provided better predictions than the
others. For the other 4 systems the measure that allowed
to obtain better predictions is NLD3. Let us remember that
NLD1 is the sum up NLDs of all the pairs, thus as a long
method or a complicated method tends to have more vari-
ables its NLD1 tends to be larger. NLD3 is NLD2 multiplied
by LOC, so greater LOC greater NLD3. So, both NLD1

and NLD3 are influenced by the source code size and one
can image that the size measure has a large influence on
the defect prediction performance. However, we can note
from Table 1 that the good results in terms of NLD3 for the
systems JDT ui and Apache Tomcat are mainly due to the
contribution of NLD2, which is not related to size, or to the
interaction between size and the confusion of variable (i.e.,
NLD2). In two cases (i.e., Birt and Platform ui) LOC seems
to have contribute more to the results achieved in terms of
NLD3. Moreover, it is important to note that NLD3 allowed
to obtain better results than LOC for all the software sys-
tems. In particular, for JDT ui, SWT, and Apache Tomcat
the predictions achieved with NLD1 and NLD3 are partic-
ularly better than those obtained with LOC. Thus, we can
positively answer RQ2 because information on variables
with confusing names can help to predict the presence of
faults. However, given that the our study is conducted on
source code developed in open-source projects, our answer
is cautious though. Indeed, observe that predictions are
more accurate on some systems (i.e., Apache Tomcat) than
on others independently from the confusing measures used.

5 Conclusions and Future Work
Our results and those of the original work by Tashima et

al [1] can provide evidence of the usefulness of knowledge
of variables with confusing names to improve the quality of
the source code. In the future we intend to further investi-
gate the relationship between faults and local variables with
confusing names by considering different datasets and other

combinations of NLD based and source code measures.

Acknowledgment
The authors would like to thank Hirohisa Aman [1] for

the suggestions provided for the identification of the case
studies used in the empirical analysis.
References
[1] K. Tashima, H. Aman, S. Amasaki, T. Yokogawa, and M. Kawahara,

“Fault-prone java method analysis focusing on pair of local variables
with confusing names,” in Procs. of the Euromicro Conf. on Softw.
Eng. and Adv. Applications (SEAA), 2018, pp. 154–158.

[2] T. Menzies, A. Butcher, D. R. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann, “Local versus global lessons for
defect prediction and effort estimation,” IEEE Trans. on Softw. Eng.,
vol. 39, no. 6, pp. 822–834, 2013.

[3] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class level
fault prediction using software clustering,” in Procs. of Intl. Conf. on
Automated Softw. Eng. (ASE), 2013, pp. 640–645.

[4] B. W. Kernighan and R. Pike, The Practice of Programming.
Addison-Wesley, 1999.

[5] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name?
a study of identifiers,” in Procs of the IEEE Intl. Conf. on Program
Compreh. (ICPC), 2006, pp. 3–12.

[6] G. Scanniello, M. Risi, P. Tramontana, and S. Romano, “Fixing
faults in c and java source code: Abbreviated vs. full-word identi-
fier names,” ACM Trans. on Softw. Eng. Meth., vol. 26, no. 2, pp.
6:1–6:43, 2017.

[7] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identifier length
and limited programmer memory,” Science of Computer Program-
ming, vol. 74, no. 7, pp. 430–445, 2009.

[8] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Empirical anal-
ysis of change-proneness in methods having local variables with long
names and comments,” in Procs. of the ACM/IEEE Intl. Symp. on
Emp. Softw. Eng. and Measurement (ESEM), 2015, pp. 1–4.

[9] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and
B. Sharif, “The impact of identifier style on effort and comprehen-
sion,” Emp. Softw. Eng., vol. 18, no. 2, pp. 219–276, 2013.

[10] K. Kawamoto and O. Mizuno, “Predicting fault-prone modules using
the length of identifiers,” in Procs. of the Intl. Workshop on Emp.
Softw. Eng. in Practice (IWESEP), 2012, pp. 30–34.

[11] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier
naming flaws and code quality: An empirical study,” in Procs. of the
Working Conf. on Reverse Eng. (WCRE), 2009, pp. 31–35.

[12] V. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Sov. Phys. Doklady, vol. 10, pp. 707–710, 1966.

[13] T. Menzies, R. Krishna, and D. Pryor, “The promise repository of
emp. softw. eng. data,” 2015.

[14] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 20, no. 8, pp. 832–844, 1998.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: An update,” SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[16] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Ma-
chine Learning Tools and Techniques, 3rd ed. Morgan Kaufmann
Publishers Inc., 2011.

[17] R. Baeza-Yates and B. Ribeiro-Neto, Modern Inf. Retrieval.
Addison-Wesley, 1999.

[18] B. W. Matthews, “Comparison of the predicted and observed sec-
ondary structure of t4 phage lysozyme,” Biochimica et Biophysica
Acta (BBA) - Protein Structure”, vol. 405, no. 2, pp. 442–451, 1975.

553

A Framework for Mutation Testing of Machine

Learning Systems

Raju Singh

Department of Computer Science & Information Systems

BITS Pilani

Pilani, India

p20200106@pilani.bits-pilani.ac.in

Mukesh Kumar Rohil

Department of Computer Science & Information Systems

BITS Pilani

Pilani, India

rohil@pilani.bits-pilani.ac.in

Abstract—In this paper, we provide an insight journey of Testing

of Machine Learning Systems (MLS), its evolution, current

paradigm, and we propose a machine learning mutation testing

framework with scope for future work. Machine Learning (ML)

Models are being used even in critical applications such as

Healthcare, Automobile, Air Traffic control, Share Trading, etc.,

and failure of an ML Model can lead to severe consequences in

terms of loss of life or property. To remediate this, the ML

community around the world, must build highly reliable test

architectures for critical ML applications. At the very foundation

layer, any test model must satisfy the core testing attributes such

as test properties and its components. These attributes should

come from the software engineering discipline but the same cannot

be applied in as-is form to the ML testing and in this paper, we

explain why it is challenging to use Software Engineering

Principles as-is when testing any MLS.

Keywords-Machine Learning, Software Testing, Quality

Attributes, Deep Learning, Model Mutation Testing.

I. INTRODUCTION

In the current context of software development and machine

learning (ML), it is inevitable, not to come across an ML

scenario in day to day life. It spans across business critical

applications such as share trading, insurance and banking,

medical applications such as drug manufacturing, identification

of disease and medical imaging, and safety critical applications

such as autonomous driving and robotics [1]-[3]. Software

testing [4] of mathematical software [5] and Intelligent systems

[6] has adopted some of the software testing methodologies.

Applications of ML in several critical sectors make ML testing

[7] a reliable way to ensure quality and minimize failure

scenarios. An adoption of testing framework from traditional

software testing with the addition of key ML quality attributes

[7] makes more sense. Testing framework that covers

performance (for critical real time systems), security (for

business applications and health care applications) and safety

(for system of systems) increases its trustworthiness.

To better understand the testing challenges for ML systems
[8]-[10], we need to deep dive as how ML systems are different
from traditional software system. Traditional software is more
deterministic in nature, lacks dynamicity in terms of varied
inputs. On the other hand, ML systems are dynamic, non-
deterministic and expected to learn from data (labels), and
predict the output accordingly.

For instance, a rover has to determine the path on a rocky
terrain based on the imaging data that it gathers from the
surrounding, the forest fire alert systems have to generate a
prediction based on the environmental data such as air humidity,
wind, temperature and climatic conditions. The model tends to
evolve and learn from historical data.

Oracle Problem [11]: Machine learning models are difficult
to test because they are designed to solve problem based on
learning from past experience (label data, supervised learning),
without past experience (unsupervised learning) or through re-
enforcement. Attempts have been made to draw parallel between
the ML testing approach with Software Testing. By
understanding the process of software development, we should
be able to break down the software stack into components
(unifiable units), and build test cases around it. In other
approaches, we have Test Driven Development (TDD) to setup
in testing framework. This approach might not work well with
ML models. It is because, machine learning models are mostly
monolith, and components may not reflect the true nature of the
ML model as a whole. Again, breaking ML model into unifiable
components or developing with TDD is a cumbersome task.

In order to understand and design a test framework for ML
system, we need to understand the behaviour [4] of the model,
and how the model interacts with the surroundings. Studying
behaviour of the ML model, gives limited insight into the model.

Further the paper is organized as: Section II summarises the
background and related work, Section III summarizes Machine
Learning Testing Scenarios in terms of faults, failures and
Oracle problem, Section IV explains machine learning testing by
considering dynamicity of MLS, Section V describes proposed
framework for machine learning system testing, Section VI
describes prediction mutation testing to explore the possibility
of testing machine learning models such as Deep Neural
Network (DNN) models, Section VII summarizes model
mutation testing, Section VIII presents the major challenges,
Section IX lists the assumptions and hypothesis for set of
transformation rules to yield mutated DNN models, Sections X
brings out some approaches for mutation testing, and Section XI
furnishes conclusion and scope for future work.

II. BACKGROUND AND RELATED WORK

Mutation testing in traditional software predates any similar

testing framework in Machine Learning and DNNs specifically.

Here, the mutation testing is a proven tool and has higher

DOI reference number: 10.18293/SEKE2021-155

554

accuracy. Mutant operators form a well-researched area that has

its implementation in several high level programming

languages for traditional software. With time and increasing

complexity of traditional software, the mutation testing

framework has been extended well. Use of mutation testing in

machine learning, is being extensively researched and several

researchers have established milestones for most of the known

DNN models. One such approach is DeepMutation.

Machine Learning: Machine learning is a field of study that
gives the ability to computers to learn without being explicitly
programmed. A computer program is said to learn from
experience E with respect to some task T and some performance
measure P, if its performance on T, as measured by P, improves
with experience E [12], [13].

Machine learning is a phased approach. The first phase is the
learning phase. In this phase, data is gathered and bucketed as
training and test data sets. Training data set is identified by
attributes and label. The outcome of this phase is a model that
is drawing the relationship between the attributes and the label.
The subsequent phase deals with applying the model to different
dataset (test data). There are several algorithms to accomplish
this, such as classification algorithms, ranking algorithms, etc.
There are several attempts and general-purpose availability of
model based mutation testing, which depends upon comparing
results from different test scenarios.

Terms used in machine learning domain:

Dataset: An ingredient for machine learning model, consists
of sets of instances for building or evaluating the model. It is
further categorized as:

Training Data: This data is obtained from the sources
(sensors, data collection devices, etc. aggregated and cleaned up
to exclude bias and noise) and is used for the purpose of training
a machine learning model. This model is basically an organic
algorithm which learns from the training data and performs a
particular task.

Validation data: This data is from the training data, used to
tune the hyper-parameters of learning algorithm.

Test data: This data is the part of training data, for which
machine learning model has not been trained yet. Based on the
performance of the ML model and its behaviour with the test
data, we can attribute the machine learning model maturity.

Sub Definitions:

Instance is an information record about the object. Feature
is a measurable property. Errors are also an important aspect of
machine learning, and it is this property that the model behaviour
depends on. Test error is mainly focused on deviation measure
between the obtained value and the expected value.

Let us classify Machine Learning.

Supervised Learning [9]: The goal is to predict the value of
an outcome measure based on the number of input measures. It
is commonly referred to as regression [14] problem since its
outcome measurement is quantitative.

Unsupervised Learning [15]: The goal is to describe the
association and patterns in a set of input measures. We only
observe the feature and have no measurement about the
outcome.

Reinforcement Learning [16]: In this approach, agent
(learning system) can observe an environment, selectively
perform actions, and get rewards (or penalties). The key here is,
it must learn by itself, and accordingly respond in actions for the
good. This approach is referred to as policy, to get most reward
over a period of time. In nutshell, a policy defines what actions
the agent should take when subjected to a condition.

III. MACHINE LEARNING TESTING SCENARIOS

Fault and Failures [17], [18]: The following discussion

involves classification of the faults and failure scenarios of the

ML systems. Since most of the ML systems deal with uncertain

components, faults and failures are possible in ML models.

These can be handled by creating counter measures to prevent

failure scenarios, however, we can have inevitable scenarios.

Definitions in the IEEE Standard Glossary (IEEE 1990)

[19]:

Fault: An incorrect step, process, or data definition in a

computer program.

Failure: The inability of a system or component to perform

its required functions within specified performance

requirements.

Data Sensitive Fault: A fault that causes a failure in

response to some particular pattern of data.

Program Sensitive Fault: A fault that causes a failure when

some particular sequence of program steps is executed.

The core of the testing system is to find the deviation of ML

models from the expected outcome.

Oracle: Oracle tests are basically intended towards the
Behaviour test. This is a challenging aspect as the behaviour of
ML systems is unpredictable, and this unpredictability makes
sure sense to build oracle tests. In MLS context, Metamorphic
Oracles have gained ground as a feasible approach to infer oracle
information from data. Metamorphic oracles insight
metamorphic relations between input values, i.e. if a
metamorphic relation exists between the inputs, the
corresponding MLS outputs must satisfy a pre-existing relation
(ideally, equality or equivalence relation). Input data and its
dimension poses a greater instability towards the ML testing
realm. So, it is vital to choose adequate test data in order to cover
impactful dimensions.

IV. MACHINE LEARNING TESTING

Software testing techniques, such as unit, integration and

system testing [20], can be used in ML testing domain.

Additionally, in order to address the dynamicity of the ML

systems, additional recommendation has been made for ML

testing domain which includes input, model and integration

testing.

555

Input Testing: These tests are concentrated on the input data

which is used to train the ML model. The core reason of using

input test is to minimise the risk of faults. It can be either offline

testing or online testing. During the offline testing, it detects

faults by alerting the bias in the training data. In online testing,

where ML models are expected to predict for unlabelled data,

this testing helps on input validation.

Model Testing: Model testing tests the function aspects of

the system under test (SUT) (ML model in isolation, without

taking any other component into account). It tries to find the

faults in the model architecture, training process, etc. It uses

accuracy (for classifier) or mean squared error (for regressions

[14], [21]). It is sometimes considered as unit testing.

Integration Testing: Integration testing considers the

integration aspect of ML models, hardware systems, software

systems and their interactions.

System Testing: System testing is a holistic test to evaluate

the system’s measures under a given requirement.

Black-box and White-box Testing: Black-box testing [22]

screens the internal structure of the design, code and its

implementation, of ML systems, without having access to the

core while white-box testing is crucial as it knows the internal

structure of the code, design, implementation and behaviour of

the ML systems. This way it makes more sense to use white-

box testing in ML model. In contemporary software, source

code is the main source of faults or defects. Mutation testing

injects modified program code to introduce defects or faults,

and this enables the qualitative measurement of test data by

detecting manual changes. With the knowledge on such

mutation testing framework, we can suggest a Deep Learning

(DL) based mutation testing framework with two stage process.

Source level mutation: DL systems depend on the training

program and training data. Training process is defined as the

articulation of training program on training data. The master

source code of training program and master record of the

training data is mutated over a period of time during the testing

and the deviation of the Model is recorded. The new evolved

model, result from the mutation exercise, is set to run through

the training set in order to determine the quality of the test data.

The mutation operator can be categorized as: data mutation

operator and program mutation operator.

Data Mutation Operators: DL model depends heavily on

training data. We know that DL model’s robustness depends on

the underlying data quality. Error introduces at any stage of data

collection, data aggregation and data cleaning, and skews the

DL model as the data contains noise.

Program Mutation Operators: Training programs in DL

systems are coded using high level languages, and use problem

specific programming framework. Injection faults in the

program would cause unexpected behaviour in the DL systems.

This requires us to carefully craft mutant operations to inject

faults into the training program. The kind of fault we can think

of now is like, addition and removal of layers from DL models,

pass on skewed weights and activation function while training

process.

Model Mutation Testing for DL Systems:

Most of the mutation testing frameworks which work

efficiently in traditional software systems do not hold ground

with the DL models. The problem is, most of the mutation

testing from traditional system is written on the source code, or

its low level representation such as byte-code. However, model

mutation testing can be a better approach and we will show it.

In source level mutation testing, the algorithm injects

modifications in the training data and training program, while

in model level mutation testing, the algorithm updates the DL

model obtained from the training program. As the expectation

remains intact for both approaches, i.e. to evaluate effectiveness

and weakness of the test data set, model level mutation testing

leads the way forward by directly mutating the DL model.

ML System Attributes:

Security: ML systems are as vulnerable as any other

software systems, along with few inherited vulnerability, given

the model footprint. Security reciprocates to the robustness.

Efficiency: ML system efficiency reciprocates to accuracy

of its prediction.
Fairness: ML systems suffer from statistical problems such

as bias, deviations and skewness.

V. MACHINE LEARNING TESTING FRAMEWORK

Behaviour Framework: ML system might behave

differently given similar data. The main challenge is to identify

the extreme boundaries for a given input space. This is similar

to boundary-value analysis.

Test Adequacy Criteria: Any test suite woven around an ML

system, should satisfy the quality attributes. As the classical

approaches (based on the source code control flow [23]) are not

relevant to the ML systems, researchers are trying to find out

new domain in order to satisfy the test adequacy.

Mutation: In contemporary software testing domain,

mutation testing is gaining grounds. It has become an efficient

tool to find the faults in the ML systems, by injecting mutants.

DeepMutation fundamentally works at the model level, iterates

through varying mutation within the boundary space.

DeepMutation: DNNs have gained ground in several critical

applications such as healthcare, autonomous vehicle and

robotics. Any DNN system can either be a Feedforward Neural

Network (FNN) or a Recurrent Neural Network (RNN) system.

An FNN system processes the input information at each layer

and forwards it to the next layer. This process continues until

the decision is reached. This way, the FNN model preserves the

local properties of each layer. On the other hand, the RNN

extends the Long-Short Term Memory (LSTM) or memory

cells and partially propagates the information backward to

secure temporal information of sequential inputs. This way, the

decision at any stage not only depends on the given input, but

also on the current state. This makes RNN reliable for handling

556

sequential data, for instance, Natural Language Processing

(NLP). The spirit of mutation in DNN [24], [25] is similar to

that of traditional software. The main idea behind

DeepMutation is to introduce adequate number of mutants or

operators. The mutants must satisfy the quality attributes for the

testing framework, such as input (test) data analysis.

Traditional software is built upon decision logic. This logic

is implemented in the form of program code, whereas the DL

models and systems are guided by the underlying DNN

structures and their weights.

The weight of DL system is generally obtained from

executing training program on a given training data, and DNN

structure is defined as the code of the training program. These

are two potential reasons, a deviation in which cause

behavioural issue in the DL systems. The mutation operator can

be inflicted in either training data set of training program or

both. Once the mutant operators are injected, training program

is executed on training data to generate mutated DL models.

DeepMutation Testing Framework:

DNN uses high level languages such as Python and R,

however DNN is represented as hierarchical data structure. We

are going to shortly lay down on to discuss on the mutation

testing framework for DL systems. The first step is to design

source level mutation testing operators. These operators can

modify the training data and training program. The basic idea

behind this is to improve the data quality evaluation. The fault

might be injected manually, or might naturally occur in the

training data or in training program. This framework must

address the mutated DL models efficiently and address issues

such as computation resource requirements, security

vulnerability issues. Given this, we must work backward to

generate efficient mutant operators. Before we deliver further,

we need to elaborate model-level testing.

Model Level Testing: A model is used to represent the
desired behaviour of the system under test (SUT), or to represent
the testing strategies and a test environment. A model
representation of SUT is at abstraction or partial behaviour. We
can derive only functional test cases from SUT. The idea here is
to come up to the conclusion that how many model level
mutation operators would result in the efficient generation of a
set of mutations without inducing model level problem.

VI. PREDICTION MUTATION TESTING

Prediction Mutation Testing topic tends to attract two sorts

of discussion – Mutation Testing approach in Machine learning,

and – Machine learning approach in mutation testing. We will

talk a little about the latter part, and then resume the discussion

on the primary topic which is related to exploring the possibility

of testing machine learning models such as DNN using

mutation testing, its framework, challenges, pros and cons,

future works, etc.

When we discuss the approach of machine learning and its

impact on mutation testing, we consider that here mutation

testing can be again applied to a software system or machine

learning system. However, applying mutation testing in

software system is inherently different from applying mutation

testing in machine learning, and it is because of the behavioral

changes that software systems and machine learning systems

exhibit when subjected to mutation testing.

Testing, in general is a powerful and unified (yet

distributed) way to evaluate the quality of underlying systems,

be it traditional software systems or machine learning systems.

In this approach, we tend to generate a large number of mutants

and execute against a test suite to check the ratio of killed

mutants. This makes mutation testing computationally

expensive. So, it is worthwhile to invest some time to learn

about predicting behavior of mutation testing. It is important to

note here that this approach is based on the classification model.

This model predicts whether mutants are killed or survived

during the testing without executing it. However, unlike several

predicted problems, this approach also suffers from accuracy

loss (which we can ignore as it is minimalistic).

In general, mutants are a set of program variants (or training

program in machine learning). A set of transformation rules

generates mutants from the original program. These mutants are

called mutation operator, that seed logic and syntactic changes

into the program one at a time.

Killed Mutants: A mutant, killed by a test-suite, if at least of

the test from the source has a varied execution behavior on the

mutants and original program. Such mutants are called killed

mutants. Elsewise, the mutant is known to have survived. The

ratio of killed mutants to all mutants (non-equivalents) is

referred as mutation score. It is usually used to evaluate the test

suite’s effectiveness.

Other areas, where use of mutation testing is prevalent are

simulation testing, localizing faults, model transformation and

guided test generation.

As mentioned earlier, mutation testing is an extremely

expensive approach. It requires generating and executing each

mutant on the test suite. Both of these activities – generation of

mutations and execution of mutants, are expensive operations

on hardware of scale. In recent times, however, we have seen

phenomenal progress to bring down the operational cost for

mutant generation, though executions remain expensive in spite

of several refinement techniques such as selective mutation

testing, weak mutation testing, high-order mutation testing,

optimized-mutation testing, etc.

Due to the problems faced for the expense versus

effectiveness, predictive mutation testing is gaining ground.

Mutation testing enables machine learning to build a predictive

model by means of collecting a series of features. These features

can be test-suite coverage or mutation operators on already

executed mutants of earlier versions of the project or even other

projects.

Earlier versions of same projects are commonly referred to

as cross-version prediction. Cross project predictions are

referred to other projects under test.

Tradeoff - Efficiency versus Effectiveness:
Any prediction model inherently suffers from accuracy

problem. However, several experimental approaches in
predication mutation testing domain have shown positive signs

557

as it improves efficiency and accuracy of mutation testing. This
is a clear indication of how prediction mutation testing stands
out of traditional mutation testing. It will be worthwhile to look
into the class probability distribution provided by the classifier,
with which developer may choose the mutant with proper
probability distribution in order to get better prediction result. It
is a considerable improvement over traditional mutation testing,
as it is light weight, in-expensive comparatively, with relatively
high accuracy. In this article, it is assumed that mutation testing
refers to prediction mutation testing.

VII. MODEL MUTATION TESTING

Models are common in software testing. It is used to select
test suites. Applications of mutation testing at a model level can
contribute to reliable and early assessment of the quality of the
test suits. This can also help in defining a test suite which has
high fault detection rates. One of the issues which we observed
while using mutation testing [18] at the early development stage,
is related to its reliability and quantifying it.

VIII. CHALLENGES

Contemporary coding for functional requirements is

different from programming a DL model. The basic difference

is, in contemporary programming, we break down the monolith

requirements into small chunks of programmable units. Each

unit is programmed separately and satisfies the software quality

attributes such as correctness, fairness, security, etc. and then

the units can be combined together with other modules to form

the holistic program. In this approach, each unit or module has

its own logic, an aggregation of which comply with the integrity

attributes of the whole program.

While in DL systems, which are fundamentally data driven
models, the logic that we can drive at the highest may be of
abstraction. It might not be same when we try to modularize it.
It is so because the logic is guided by the weight and activation
functions. Moreover, DL systems are behaviour-driven systems
which are built by executing training program on training data.
Here, underlying logic is guided by the training data and not the
requirement (as in traditional software).

IX. HYPOTHESIS

Let us make some assumption about the samples,

adversarial samples and normal samples. In testing, adversarial

samples are those samples which are vulnerable to any changes

and show far more deviation in behaviour with respect to usual

samples. Consider a scenario where the original DNN models

have undergone a set of transformation rules to yield mutated

DNN models. These mutated DNNs usually tend to label an

adversarial data with a different label (label generated by

original mutated DNN). We would assume this state, and try to

measure the crucial factors such as model uncertainty estimate,

density estimate, model sensitivity to the input changes.

Even before we can create a procedure for our hypothesis,
we need an efficient way to generate the mutants. The
fundamental approach is to generate or seed several program
level mutations (mutants). This would require program under
consideration to go through set of mutation operators by
applying set of transformation rules. To the core of which lies,

the process to define mutant operators. As it is known that
traditional software systems are logic oriented, structured, while
DNN models are behaviour and model oriented, therefore
mutation operators’ application to the former scenario
(Traditional Software Systems) does not work for the latter
(DNN Systems). There are quite a few techniques which work
independently and using mutation testing in order to establish
the testing framework.

X. APPROACH

Initialization

One of the initial approaches would be a way to build

foundation steps to measure Label Change Rate (LCR) for the

adversarial samples and normal samples. This is measurable

when we inject these samples into a set of already mutated DNN

models.

TABLE I. MODEL MUTATION OPERATOR

Mutation

Operator

Level Description

Gaussian Fuzzing
(GF)

Weight Fuzzy weight by Gaussian
Distribution

Weight Shuffling

(WS)

Neuron Shuffle selected weights

Neuron Switch (NS) Neuron Switch two neurons within a layer

Neuron Activation
Inverse (NAI)

Neuron Change the activation status of a
neuron

Let x: input sample (adversarial sample or normal sample).

Let f: DNN model (post mutation operators are applied).

Now, we go through the model mutation operator as

provided in the Table 1 (sequence wise) and select the mutation

models. Quite a few times, the output mutated model is of

moderate to low quality (assuming high precision and

confidence as measure of high quality mutated models). This

means that the accuracy and effectiveness on the training data

work well, however on the test data, it significantly deprecates.

We let go or ignore these low quality mutated models. Only

mutated models with high accuracy are considered. We can

adopt the scale based on our experience and historical data

obtained from mutated models. Ideally, any model with more

that 90% accuracy of the original model is part of the set. This

is to make sure that we meet the decision boundary [25]

conditions and they are not impacted much. Upon segregating

the mutated models, we further obtain a label of the input

sample on each mutated model.

Building a Model

In this stage, we follow the hypothesis to create a model.

This model validates (on certain criteria) the observation. If we

recount, earlier we mentioned that adversarial samples are

generated in such a way that it tends to minimize the mutated

behaviour on normal samples, while, it is being able to jump the

decision boundary [25]. There are different ways of mutation to

achieve this behaviour. As per the hypothesis, the effective

adversarial samples are closer to the decision boundary. This

minimizes the restricted modification in the model. With this,

558

adversarial samples would be considered as a case of crossing

the decision boundary, unlike randomly selected mutated

model. This implies, if we inject mutated adversarial sample

into the mutated model, the outcome of the label tends to change

it from its original label.

Algorithm Design

Experiments and test results show that LCR can be a
distinguisher between adversarial samples and normal samples.
We can discuss on the algorithm which can be designed to detect
samples at runtime based on LCR measures of the provided
samples. This algorithm would delete the LCR, and would keep
on generating more effective and accurate mutated models. For
this to happen, we must define a stopping condition on the
mutation model generation algorithm that could be satisfied.
Prediction algorithm can help us get a set of mutated models
with higher accuracy beforehand.

XI. CONCLUSION AND FUTURE WORK

In this work, we proposed the machine learning mutation

testing framework, its usefulness and approach to detect

adversarial samples for DNN at runtime. We laid down the

details of source level mutation techniques on datasets (training

and test) and training (or test) programs. This required us to

further the details of the process and techniques involved in

designing source level mutation operators, and feed faults into

the DNN models during their development and testing process.

This accompanied the details of model level mutation

technique. Model level mutation technique differs from the

source level mutation technique in the approach that it adopts

to inject the faults. Model level mutation technique directly

feeds the faults into the DNN system. It is also noteworthy how

to measure the quality of these mutation models.
We also briefly touched upon how to predict the mutant

operators even before we can analyse the same by executing.
This is primarily done as mutants’ generation is a
computationally expensive approach. In the end, we proposed a
hypothesis and an approach to build the problem set, analyse it
and proceed under certain assumption to mitigate the same.

REFERENCES

[1] G. Litjens et al., “A survey on deep learning in medical image analysis,”
Medical Image Analysis, vol. 42, pp. 60–88, 2017.

[2] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated Whitebox

Testing of Deep Learning Systems,” in 26th Symposium on Operating
Systems Principles, 2017, pp. 1–18.

[3] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning

Affordance for Direct Perception in Autonomous Driving,” in 2015 IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 2722–

2730.

[4] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed., New
York: Cambridge University Press, 2016.

[5] M. Pacula, “Unit-Testing Statistical Software,” Maciej Pacula. Updated

February 17, 2011. [Blog]. Available: http://blog.

mpacula.com/2011/02/17/unit-testing-statistical-software.

[6] A. Ramanathan, L. L. Pullum, F. Hussain, D. Chakrabarty, and S. K. Jha,
“Integrating symbolic and statistical methods for testing intelligent

systems: Applications to machine learning and computer vision,” in 2016

Design, Automation & Test in Europe Conference & Exhibition (DATE),

2016, pp. 786-791.

[7] S. Amershi, A. Begel, C. Bird, R. DeLine, H. G., E. Kamar, N. Nagappan,
B. Nushi, and T. Zimmermann, “Software Engineering for Machine

Learning: A Case Study,” 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP),

2019, pp. 291-300.

[8] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine

Learning, 2nd ed., Cambridge: The MIT Press, 2018.

[9] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives,
and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[10] T. M. Mitchell, Machine Learning, New York: McGraw-Hill, 1997.

[11] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The Oracle
Problem in Software Testing: A Survey,” IEEE Transactions on Software

Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,

“Scikit-learn: Machine Learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[13] J. Shawe-Taylor and N. Cristianini, “Kernel Methods for Pattern

Analysis,” Cambridge: Cambridge University Press, 2004.

[14] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE Transactions on Systems, Man, and Cybernetics,

vol. 21, no. 3, pp. 660–674, 1991.

[15] M. Liu, T. Breuel, and J. Kautz, “Unsupervised Image-to-Image
Translation Networks,” in 31st International Conference on Neural

Information Processing Systems (NIPS 2017), 2017, pp. 700–708.

[16] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to Real Reinforcement
Learning for Autonomous Driving,” arXiv:1704.03952 [cs.AI], 2017.

[17] D. Clark and R. M. Hierons, “Squeeziness: An information theoretic

measure for avoiding fault masking,” Information Processing Letters, vol.
112, no. 8–9, pp. 335–340, 2012.

[18] Y. Jia and M. Harman, “Constructing Subtle Faults Using Higher Order

Mutation Testing,” in 2008 Eighth IEEE International Working
Conference on Source Code Analysis and Manipulation, 2008, pp. 249-

258.

[19] “IEEE Standard Glossary of Software Engineering Terminology,”

in IEEE Std 610.12-1990, pp.1-84, 1990.

[20] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine Learning Testing:
Survey, Landscapes and Horizons,” IEEE Transactions on Software

Engineering, 2020.

[21] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman, “Applied
Linear Statistical Models,” 4th ed., Chicago: Irwin, 1996.

[22] M. Wicker, X. Huang, and M. Kwiatkowska, “Feature-Guided Black-Box

Safety Testing of Deep Neural Networks,” in 24th International
Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS 2018), 2018, pp. 408–426.

[23] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N.
Nagappan, B. Nushi, and T. Zimmermann, “Software Engineering for

Machine Learning: A Case Study,” in 2019 IEEE/ACM 41st International

Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2019, pp. 291–300.

[24] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y.

Liu, J. Zhao, and Y. Wang, “DeepMutation: Mutation Testing of Deep
Learning Systems,” in 2018 IEEE 29th International Symposium on

Software Reliability Engineering (ISSRE), 2018, pp. 100-111.

[25] W. Shen, Y. Li, Y. Han, L. Chen, D. Wu, Y. Zhou, and B. Xu, “Boundary
sampling to boost mutation testing for deep learning models,” Information

and Software Technology, vol. 130, Article ID 106413, 2021.

559

DOI reference number: 10.18293/SEKE2021-194

A Case Study of Testing an Image Recognition

Application
Chuanqi Tao

①②
, Dongyu Cao

①
, Hongjing Guo

①
, Jerry Gao

③

① College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

②Ministry Key Laboratory for Safety-Critical Software Development and Verification, Nanjing University of Aeronautics and

Astronautics, Nanjing, China

③Department of Computer Engineering, San Jose State University, USA

Correspondence to: taochuanqi@nuaa.edu.cn

Abstract—High-quality Artificial intelligence (AI) software in

different domains, like image recognition, has been widely

emerged in our lives. They are built on machine learning models

to implement intelligent features. However, the current research

on image recognition software rarely discusses test questions,

clear quality requirements, and verification methods. This paper

presents a case study of a realistic image recognition application

called Calorie Mama using manual and automation testing with a

3D decision table. The study results indicate the proposed method

is feasible and effective in quality evaluation.

Keywords-image recognition; testing AI software; AI software

quality validation

I. INTRODUCTION

With the rapid development of big data analysis and
artificial intelligence technology, AI software and applications
have been widely accepted in our daily life. At present, AI
software and applications are based on the most advanced
machine learning models, and various artificial intelligence
features are realized through large-scale data training.

The most important implementation of Artificial
Intelligence is the imitation of human interactions—vision.
Nowadays, there is an abundance of digital images captured by
high-quality equipment. Most images are captured with phones.
Artificial Intelligence is often used to process these images to
extract knowledge, categorization, and labeling along with other
advantages. Typical applications of image recognition include
object recognition, face recognition, text parsing.

Detecting bugs and errors in software can be very costly.
Sometimes bugs can be even deadly if it is a real-time
application of software, such as some software that is used to
help with surgeries in the hospital. Therefore, testing the
software is very important to verify that the product meets
requirements and specifications. Software testing ensures the
correctness, integrity, and high quality of the software by
checking errors or bugs and fixing them in the initial design.

This paper focused on testing an image recognition
application called Calorie Mama utilizing both manual testing
and automation testing. Calorie Mama is a smartphone app that
runs on Android and IOS devices. It uses deep learning to
recognize food from food images and track nutrition based on
the food in the image. It calculates the calorie based on that. We
evaluated the performance, correctness, and quality of the app
using both manual testing and automation testing.

This paper is written to provide our perspective views on
image recognition software testing and quality evaluation. The
paper is organized as follows. Section 2 discusses the review of

AI software testing and image recognition. The third part shows
a case study of testing Calorie Mama APP using manual testing
and automation testing. Section 5 gives the conclusion finally.

II. RELATED WORK

Traditional software is implemented by developers with
carefully designed specifications and programming logic. It is
tested with test cases that are designed based on specific
coverage criteria. However, the current practice of testing AI
applications lags far behind the maturity of testing traditional
software applications [1].

More and more work focused on testing AI-based software.
Gao et al. [2] explained the various testing methods of AI
software testing Various functional and non-functional quality
parameters such as correctness, reliability, and scalability are
discussed to better understand the concepts. Besides, the authors
discussed the issues and challenges of AI testing. The different
models of the AI system were discussed in [3]. The authors
discussed building testable AI systems, limiting the AI system
to propositional logic, and intervening variables in reducing
testing. King et al. [4] discussed issues and challenges in
software testing. They thought non-determinism is a huge issue.
The same input to the system can produce different outputs.
Testing has fuzzy oracles that determining the correctness can
be a challenging task. Ramanathan et al. [5] used symbolic
decision procedures coupled with statistical hypothesis testing
to validate machine learning algorithms for studying the
correctness of intelligent systems. They also used algorithms to
analyze the robustness of a human detection algorithm built
using the OpenCV open-source computer vision library.

In the field of image recognition, most of the researchers
focus on recognition algorithms. Girshick et al. [6] proposed the
R-CNN algorithm, which added selective search operations to
the CNN network to identify candidate regions. He K et al. [7]
proposed the SPP-Net algorithm, which reduced the process of
image normalization and solved the problem of image
information loss and storage. Girshick [8] proposed the Fast R-
CNN algorithm, which refers to the Region of Interest and the
multi-task loss function method, and replaces SVM
classification and linear regression with Softmax and
SmoothLoss to realize the unification of classification and
regression and reduce the disk space.

However, the evaluation of the image recognition system is
relatively less but important. In [9], the implementation of Yolo-
v2 image recognition and other test benches for a deep learning
accelerator was presented. Tao et al. [10] performed a case study

560

on a realistic facial age recognition provided by Alibaba
Company using metamorphic testing.

III. A CASE STUDY

A. Test Experiment

This paper took the test Calorie Mama APP as an example,
using manual testing and automated testing respectively. The
test data is a mix of various sources: images from Google,
images clicked in real-time using a smartphone camera. The
experiments were performed with a high-resolution and high-
quality camera.

(1) Manual Test

In this approach of manual testing, we selected conventional
decision tables to test. A decision table is a table with various
conditions and their corresponding actions. It is divided into
four parts, condition stub, action stub, condition entry, and
action entry.

1)Detection of non-food items: To test Calorie Mama,
different non-food items are input into the application. The
pictures of the non-food items were analyzed by the application
and the results were shown on the user interface. A summary of
the detection of the non-food items can be seen in the following
decision table. The condition stub is designed as two conditions,
including the state of the Internet and access to the Camera,
which is essential for the image recognition software.

As we can see, the application detected artificial pumpkin
and artificial cake as food items. In contrast, it could not
correctly identify the butter block. As a result, it failed in some
of the cases. Besides, when not turning on WIFI or Cellular, and
not allowing access to the Camera, image recognition will not
work.

TABLE I. DECISION TABLE OF THE NON-FOOD ITEMS

Test

Conditions
R1 R2 R3 R4 R5 R6 R7 R8 R9

Turn on

WIFI or

Cellular

T T T T T T T T F

Allow access

to Camera
T T T T T T T T F

Food item Pen Apple
Artificial

Pumpkin

Butter

Block

Banan

a

Chicken

Wings

Clarified

Butter

Artificial

Cake

Glass of

Water

Detected as

food
F T T F T T T T -

Not detected

as food
T F F T F F F F -

2)Detection of food items: We divided the generic term of
food items into four categories which are Indian cuisine, raw
fruits and vegetables, variety of apples and eggs, and food items
in different backgrounds. Take food items in different
backgrounds as an example, the background of food is a very
important aspect and we decided to test the application with
images of food items with different backgrounds.

As seen in table 2, the Calorie Mama application was able to
correctly recognize the food items when given inputs with red,
blue, and wooden backgrounds. However, the application
detected wrong when the egg is in a tray.

TABLE II. DECISION TABLE OF FOOD ITEMS IN DIFFERENT

BACKGROUNDS

Test

Conditions
R1 R2 R3 R4 R5 R6 R7 R8 R9

Turn on

WIFI or

Cellular

T T T T T T T T T

Allow access

to Camera
T T T T T T T T T

Food

item(Egg)

Blue

Back-

ground

Red

Back-

ground

Wooden

Background

Egg in

a bowl

Egg on

a plate

Egg on

a pan

Egg in

the glass

Egg in

a jar

Eggs in

a tray

correct

choices
T T T T T T T T F

wrong

choices
F F F F F F F F T

After conducting the manual testing, we experienced its
various drawbacks, and it is time-consuming. Also, load testing
and performance testing are not possible under manual testing.
Besides, regression test cases are very costly. Due to these
drawbacks, we decided to shift to automation testing.

(2) Data Modeling

The three-dimensional (3D) classification decision table is
influenced by the concept of conventional decision tables to
conduct classification-based test requirement analysis and
modeling for any given mobile apps powered with AI functions
using a 3D tabular view. The major testing focus for a 3D
classification table is the mappings among classified disjoint
context conditions, classified input selections, and classified AI
function outputs. These mappings are known as image
recognition function classification rules. Each of them
represents the conjunction among three different views. Test
case design and generation based on a 3D classification decision
table must cover these image recognition classification rules.
Adequate image recognition function testing coverage could be
assessed. Next, we introduce the construction of each one-
dimensional model in the 3D decision table.

1) Input Modeling

The input classification refers to the parameters and their
values that represent the different test case scenarios. Each
parameter has multiple possible values which when combined
with context values gives us the final set of test cases. The
following figure shows Calorie Mama's input classification tree,
which contains information about the type of food being clicked,
such as what the food is, and the physical appearance of the food,
such as quality, size, shape, consistency, etc.

Figure 1. Input Classification Tree

561

2) Context Modeling

The context classification tree contains information about
the image context. It is basic information about the image itself
and not specifically about the item in the image. For example,
the context classification tree contains information like if the
image is blurry or not well illuminated, what is the angle of the
camera while clicking the image, if the image is rotated or so,
etc. The following figure shows Calorie Mama's context
classification tree.

Figure 2. Context Classification Tree

3) Output Classifications

The output classification tree contains information about the
output. Various parameters regarding the output obtained from
the application will be considered. This can be modified based
on the requirements and results expected from the application.
The following figure shows Calorie Mama's output
classification tree.

Figure 3. Output Classification Tree

(3) Automation Test

After data modeling, we performed automation testing with
minimal human assistance on top of the model. Automation
testing can increase coverage for test data and come up with
more concluding test results for the selected mobile app. We
used Appium as an automation tool to perform automation on
the mobile app. Appium acts as a server that launches the app
into the simulator or a real device and can access the elements

for processing the actions triggered by the automation script
which we wrote in Java. Steps to perform the automation were:

1. Install Appium server.
2. Create the automation environment for Android.
3. Create the automation environment for iOS.
4. Launch simulator/ Connect a real device.
5. Install Eclipse.
6. Create a maven project in Eclipse to write and run the

automation script.

We provide the dependencies of Appium, Selenium,
TestNG in the Project Object Model and then start writing the
scripts. We use TestNG to run our automation tests. Soon after
the execution of tests, test results are visible in the Eclipse
console.

For the algorithm of the app automation, one image which is
selected from the gallery of the phone is fed as an input into the
target app, and the result of the execution is compared with the
expected output. If the output from the target app is as expected,
then the test case is displayed as passed or else failed. Also,
when the app produces the output, more options, as provided by
the app are taken into account. While showing the output to the
user, there is an option to see more options from the suggestions
coming from the app. The algorithm considers all those options
as the output from the app and then decides if the test case is
passed or failed.

B. Test Result

After applying manual testing and automation testing, we
compare the coverages for both manual and automation tests. In
manual testing, the coverage of the test case was limited due to
timing. It was difficult to cover a larger set of data without the
use of tools or scripts. On the other hand, automation testing has
higher coverage because the tools and script helped us to cover
more test cases. Figure 4 below shows that in automation testing
we were able to cover more test sets of data than the manual
testing over the same time. Approximately, in the automation
testing, we were able to cover twice of what we covered in the
manual testing.

Figure 4. Test Coverage for Manual and Automation Test

The app was able to detect objects, recognize them, and
classify them with its name. However, it does not tell the count
or sub-classification of the food item. Moreover, testing Calorie
Mama App, required a lot of time to do both manual testing and
automation testing. Manual testing needs to take more time to

562

generate all decision tables, analyze different test causes and test
manually. On the other hand, in automation testing, we spend
days to get the script working correctly and program it to do the
testing automatically.

The following figure shows the results of the manual testing
and automation testing of the Calorie Mama APP. In manual
testing, the total test food item across different cuisines was 400
items and each cuisine has 80 food items. The 132 of them were
wrongly detected they were bugs in the app. This gives us a 33
failed percentage and the passing percentage is 67. The diagram
below shows the failing and passing results.

Figure 5. Manual Testing

In Automation testing, we tested 400 different images in
different cuisines similarly. We found out that out of the 400
images, 175 failed and 225 passed. This gives us a failure
percentage of 43.75 and a passing percentage of 56.25 as shown
in figure 6.

Figure 6. Automation Testing

Comparing the manual testing with automation testing, we
can see that the errors that were found in the automation testing
are higher than the errors that were found by the manual testing
because the automation test allows us to test different inputs in
a short time. Also, in manual testing, it is more likely to make
human mistakes because doing repeated tasks over time
generates more errors by humans. However, doing a repeated
test using automation by writing a script and let the machine
discover the error is more efficient. Therefore, automation
testing discovers more errors than manual testing.

IV. CONCLUSION

To sum up, we mainly leverage two methods to test the
image recognition system, namely manual testing, and
automation testing. In manual testing, the test is conducted by
human testers inputting the use cases one by one, and observing
the results. Manual testing can be expensive and time-
consuming. Moreover, it is subject to human error; therefore, it
is not one hundred percent accurate. On the other hand, in
automation testing, the testers use tools and scripts to help them
conduct the test among the image recognition software, which
can save labor and time cost, thus improving testing efficiency.
It helps them find errors without the need of performing
redundant tasks. However, it needs talented and experienced
people to do that, which is expensive. Besides, it is difficult to
automate all kinds of testing where not everything can be
redundant and reusable.

ACKNOWLEDGMENT

This work is supported by the Foundation of Graduate
Innovation Center in Nanjing University of Aeronautics and
Astronautics (kfjj20201603).

REFERENCES

[1] H. Zhu, D. Liu, I. Bayley, R. Harrison, and F. Cuzzolin: Datamorphic
Testing: A Method for Testing Intelligent Applications. In: IEEE
International Conference On Artificial Intelligence Testing (AITest), pp.
149-156. Newark, CA, USA (2019).

[2] Gao, J., Tao, C., Dou, J., Lu, S., 2019, “Invited paper: What is AI software
testing? and why,” 13th IEEE International Conference on Service-
Oriented System Engineering, SOSE 2019, San Francisco, CA, USA,
April 4-9, 2019, pp 27-36.

[3] G. Liu, Q. Liu and W. Zhang, “Model-based testing and validation on
artificial intelligence systems,” Second International Multi-Symposiums
on Computer and Computational Sciences (IMSCCS 2007), Iowa City,
IA, 2007, pp. 445-449.

[4] T. M. King, J. Arbon, D. Santiago, D. Adamo, W. Chin and R.
Shanmugam, “AI for Testing Today and Tomorrow: Industry
Perspectives,” 2019 IEEE International Conference On Artificial
Intelligence Testing (AITest), Newark, CA, USA, 2019, pp. 81-88.

[5] A. Ramanathan, L. L. Pullum, F. Hussain, D. Chakrabarty and S. K. Jha,
“Integrating symbolic and statistical methods for testing intelligent
systems: Applications to machine learning and computer vision,” 2016
Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, 2016, pp. 786-791.

[6] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation,”
2014 IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, 2014, pp. 580-587.

[7] K. He, X. Zhang, S. Ren and J. Sun, "Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition," in IEEE Transactions
on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.

[8] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on
Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1440-1448.

[9] C. Kim et al., "Implementation of Yolo-v2 Image Recognition and Other
Testbenches for a CNN Accelerator," 2019 IEEE 9th International
Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany,
2019, pp. 242-247.

[10] C. Tao, J. Gao and T. Wang: Testing and Quality Validation for AI
Software–Perspectives, Issues, and Practices. IEEE Access 7, 120164-
120175 (2019).

563

A Novel Text Classification Approach based on
Meta-path Similarities and Graph Neural Networks

Huan Wang, Jiang Li*, Qing Zhou*, Liang Ge
College of Computer Science, Chongqing University, Chongqing, China

{whuan, lijfrank, tzhou, geliang}@cqu.edu.cn
*Corresponding authors: Jiang Li (lijfrank@cqu.edu.cn) and Qing Zhou (tzhou@cqu.edu.cn)

Abstract—With the rise of neural networks, studies on text
classification have transitioned from traditional methods to deep
learning, especially to graph neural networks on text graphs
constructed from corpora. In this paper, we model the com-
plex instances and rich interactions in text classification as
a heterogeneous graph. Nevertheless, due to the overlook of
indirect relations between documents, graph neural networks
have not been fully exploited for the heterogeneous text graph
with different types of nodes and links. Consequently, we propose
a Meta-Path-based Text Graph Neural Network (MPTGNN) for
text classification. Specifically, we first construct a heterogeneous
text graph from corpora; we then transform the text graph into
several homogeneous weighted graphs via some pre-defined meta-
paths; we also propose a Two-stage Multi-graph Information
Fusion method (TMIF) for document representation. Empirical
results on multiple benchmark datasets have proved that our pro-
posed method outperforms state-of-the-art graph-based methods
like Text GCN.

Keywords—heterogeneous graph, text classification, natural
language processing, graph neural networks, meta-path.

I. INTRODUCTION

Natural Language Processing (NLP) is a significant research
direction in the field of computer science and artificial in-
telligence, in which text classification is one of crucial and
classical tasks. The purpose of text classification is to annotate
a given text sequence with one (or multiple) class label(s)
describing its textual content [1]. Traditional text classification
methods rely heavily on feature engineering and have stringent
requirements on the input text data. Recently, neural network
models have been exploited for text classification such as
Convolutional Neural Networks (CNNs) [2] and Recurrent
Neural Networks (RNNs) [3]. In order to increase the represen-
tation flexibility of such models, the attention mechanism has
been introduced as a component of text classification model.
Although these methods are effective, they cannot directly
process graph-structured data, which leads to the loss of link
information in a corpus.

Graph Neural Networks (GNNs), as deep learning tech-
niques for graph-structured data, have shown superior per-
formance and have attracted widespread attention [4]. For
text classification based on GNNs, researchers need to first
construct a graph from the text corpus. Zhang et al. [5]
improved Defferrard et al.’s [6] work by applying word
co-occurrence and document-word relations. However, this

DOI reference number: 10.18293/SEKE2021-006

method ignores the document-document relationships and fails
to capture semantic information in the heterogeneous network.
The constructed text graph is usually a heterogeneous graph
containing different types of vertices and links. Such text het-
erogeneous graphs integrate complex objects and rich semantic
information, and are not fully considered in general GNNs,
e.g., Graph Convolutional Network (GCN) [7] and Simplifying
Graph Convolutional Network (SGC) [8] are only suitable for
homogeneous graphs.

Taking into account the limitations of existing solutions,
we hold the opinion that it is of critical importance to
propose a method that can be used to heterogeneous text
graph classification. In this work, we propose a novel text
classification method based on meta-path similarities and
graph neural networks, which is equipped with the following
steps to effectively tackle the challenge of heterogeneous text
graph classification: 1) we construct a heterogeneous text
graph, which integrates rich semantic relations and structural
information from the text corpus; 2) we transform the text
graph into several homogeneous weighted-graphs based on
some pre-defined meta-paths, where the edge weights de-
pend on the document similarities of each meta-path; and
3) we propose a Two-stage Multi-graph Information Fusion
method (TMIF) for document representation, which contains
node-level and semantic-level aggregation. In the node-level
aggregation, the graph convolution network is employed to
integrate the neighboring document representations by weight;
in the semantic level aggregation, the attention mechanism is
adopted to fuse the document representations from different
homogeneous graphs by weight.

Our proposed model named MPTGNN can flexibly utilize
the rich interactive and semantic information in heterogeneous
graph due to the consideration of meta-path. The overall
model can be optimized via backpropagation in an end-to-end
fashion. Our main contributions in this paper are as follows:
• We propose a Meta-Path-based Text Graph Neural Net-

work (MPTGNN) for text classification, the complex
heterogeneous text graph is converted into multiple ho-
mogeneous weighted graphs. In addition, the homoge-
neous graphs based on meta-path contain rich structural
information and semantic relations.

• A Two-stage Multi-graph Information Fusion method
(TMIF) is proposed for document representation, in
which multiple weighted homogeneous graphs are used

564

as inputs of GCN to obtain multiple document represen-
tations, and an attention mechanism is employed to fuse
multiple document representations by weight in semantic-
level aggregation.

• Results on several benchmark datasets have demonstrated
that our proposed method is of effectiveness and out-
performs state-of-the-art graph-based approach for text
classification. It promotes the development of text classi-
fication method based on graph model.

II. RELATED WORK

A. Text Classification

Traditional text classification studies mainly focus on fea-
ture engineering and classification algorithm [9]. For feature
engineering, the most commonly used methods are one-hot
encoding, TF-IDF and word2vec. Some recent studies [10],
[11] convert texts into graphics and extract path-based features
for classification. For classification algorithm, the frequently
used methods are K-Nearest Neighbor, Naive Bayes, Support
Vector Machines and so on. Although these traditional tech-
niques have succeeded in carefully edited and formal texts,
they perform worse for general texts.

The research of text classification based on deep learning
revolves around word embedding model and deep neural
network. Several recent studies [1], [12] have shown that the
success of text classification based on deep learning depends
largely on the effectiveness of word embedding. Some authors
aggregate unsupervised word embeddings as document embed-
dings [13], while others jointly learn word, document and label
embeddings [14]. For deep neural networks, the most repre-
sentative models are Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs). Kim et al. [15] uses
a single-layer CNN for sentence-level classification tasks to
achieve promising results. Conneau et al. [16] verify the pos-
sibility of character-level CNN to complete text classification
tasks. Zhang et al. [17] use LSTM, a specific type of RNN,
to learn text representation. Nevertheless, these methods rely
heavily on the amount of training data and are insufficient to
capture complex semantic information due to the overlook of
the relations among documents or words.

Yao at al. [5] take inspiration from the recent developments
of GNNs to propose a method termed Text GCN for text
classification. They turn text classification problem into a node
classification problem, which captures high order neighbor-
hoods information. The work of Text GCN mainly includes
two parts: 1) they regard words and documents as nodes and
construct a large graph from an entire corpus; and 2) they put
this graph as input into GCN to train a model. According to
Text GCN, its adjacency matrix A is defined as follows:

Aij =

PMI(i, j) i, j are words, PMI(i, j) >0
TF − IDFij i is document, j is word
1 i = j

0 otherwise

(1)

where Aij represents the weight of edge between node i and
node j. They employed point-wise mutual information (PMI)
to calculate the weights between two word nodes, and treated
term frequency-inverse document frequency (TF-IDF) as the
weight of the edge between a document node and a word node.
They actually constructed a heterogeneous graph, but simply
fed it into the GCN as a homogeneous graph. Therefore,
Text GCN may cause inaccurate classification accuracy due
to missing rich semantic and structural information.

B. Graph Neural Networks

Recently, Graph Neural Networks (GNNs) have achieved
success in processing graph-structured data, which has cer-
tificated its virtue on modeling behaviors in networks [18].
Li et al. [19] presented a propagation model that incorporates
gated recurrent units to propagate information across all nodes.
Kipf et al. [7] proposed a spectral approach, called Graph
Convolutional Network (GCN), which designs a graph neural
network model via a localized first-order approximation of
spectral graph convolutions. GCN is a multi-layer neural
network, which directly operates on a homogeneous graph and
obtains the node’s embedding vector by learning its neigh-
borhood information. More formally, consider an undirected
graph G = (V, E), where V and E are sets of nodes and edges,
respectively. Let X ∈ Rn×m be a matrix containing node
features xv ∈ Rm. The layer-wise propagation rule for GCN
is as follows:

H(l+1) = σ(ÂH(l)W (l)) (2)

where Â = D̃−
1
2 ÃD̃−

1
2 is the symmetric normalized adja-

cency matrix, Ã = A + I , D̃ii =
∑

j Ãij , and W (l) is
a layer-specific trainable weight matrix, and σ(·) denotes an
activation function. H(l) ∈ Rn×m is the hidden representation
matrix for nodes in the l-th layer. Initially, H(0) = X .

Wu et al. [8] presented a simple linear model, named Simpli-
fying Graph Convolutional Network (SGC), which repeatedly
eliminates the nonlinearity between GCN layers and folds the
resulting function into a linear transformation. These graph
neural networks can only be applied to homogeneous graphs,
and cannot fully deal with heterogeneous graphs containing
various types of nodes and links.

C. Meta-path

A meta-path P is defined as a path in the form of O1
R1−−→

O2
R2−−→ . . .

Rl−1−−−→ Ol (abbreviated as O1O2 . . . Ol), which
describes a composite relation R = R1 ◦ R2 ◦ . . . ◦ Rl−1

between the pair of types O1 and Ol. The commuting matrix
is defined by Sun et al. [20] to compute the frequencies of all
the paths related to a meta-path. Given a graph G = (V, E),
a commuting matrix MP for a metapath P = (O1O2 . . . Ol)
is defined as MP = AO1O2

AO2O3
. . .AOl−1Ol

, where AOiOj

is the adjacency matrix between types Oi and Oj . MP(i, j)
represents the number of path instances between objects xi
and yj .

Given a user-specified meta-path P = (O1O2 . . . Ol), we
should calculate the similarity of a pair of objects x ∈ O1 and

565

y ∈ Ol. There are several straightforward similarity measures:
path count, random walk or pair-wise random walk. These
measures, however, are biased towards highly visible objects or
highly concentrated objects, so they cannot capture equivalent
semantics [20]. According to Sun et al., PathSim between two
objects of the same type x and y is suitable and defined as
follows:

s(x, y) =
2× |{px y : px y ∈ P}|

|{px x : px x ∈ P}|+ |{py y : py y ∈ P}|
(3)

where px y is a path instance between x and y.

III. METHODOLOGY

A. Overall Framework

In order to make full use of the rich interactive information
between objects in the text graph, we propose a Meta-Path-
based Text Graph Neural Network (MPTGNN) to learn the
structural feature representation of documents. The method
proposed in this paper converts a heterogeneous text graph into
multiple homogeneous graphs through meta-path, which can
flexibly capture the rich structural and semantic information
in Heterogeneous Information Network (HIN). The entire
framework of our proposed method is shown in Figure 1.
The method mainly includes four steps: 1) we construct a
heterogeneous text graph from corpora, which contains various
types of nodes and links; 2) based on several pre-defined
meta-paths, we transform the text graph into several homo-
geneous weighted-graphs, where the edge weights depend on
the document similarities from each meta-path; 3) we propose
a Two-stage Multi-graph Information Fusion method (TMIF)
for document representation; and 4) we apply a multi-layer
perceptron for text classification.

1

4

2

5

3

1

4

2

5
3

1

4

2

5
3

… … …

GCN

… … …

GCN

…
…

Semantic
Attention

…

MLP

Classifier

(a) Heterogeneous text graph (b) Homogeneous weighted-graphs (c) Two-stage multi-graph information fusion (d) Text classification

Fig. 1. The framework of this method. (a) Constructing a heterogeneous
text graph containing document-nodes (green circular) and word-nodes (gray
circular). (b) Transforming heterogeneous text graph into various homo-
geneous weighted-graphs. (c) Two-stage Multi-graph Information Fusion
(TMIF) considers both of node-level and semantic-level aggregation. (d) A
multi-layer perceptron for text classification.

B. PathSim-based Homogeneous Weighted-graphs

As proposed method by Yao et al. [5], we build a single het-
erogeneous text graph G = (V, E ,A,X) for the corpus based
on word co-occurrence and document word relations, where
V, E ,A and X denote node-set, edge-set, adjacency matrix
and feature-set, respectively. The set of nodes V contains all

documents D and unique words W , i.e., V = D∪W . The set
of edges E includes two major types of relations, which are
word-word edges and document-word edges. Aij represents
the weight of node i and node j in the heterogeneous text
graph.

In our work, we introduce meta-path similarities to trans-
form a heterogeneous text graph into several homogeneous
weighted-graphs. In a heterogeneous information graph, two
objects can be connected through different paths. For example,
in the text graph we established, two documents can be
connected through the meta-path of document → word →
document(DWD), or through the meta-path of document→
word → word → document(DWWD). Therefore, we
can capture the relationship between documents, which is
helpful to fully capture the rich semantic information in the
original heterogeneous graph. We use meta-path similarities
to represent the weights of document-document connections
to construct a new adjacency matrix. Since the meta-paths in
the text graph we established are all symmetrical, we adopt
PathSim to capture the subtlety of peer-to-peer similarities.
Given a symmetric meta-path P , PathSim between two objects
xi and xj from the same type can be calculated as:

SP(i, j) =
2MP(i, j)

MP(i, i) +MP(j, j)
(4)

where MP is the commuting matrix for the meta-path P ,
MP(i, i) and MP(j, j) are the visibility for xi and xj in the
network given the meta-path.

The adjacency matrix A can be divided into ADW , AWD
and AWW , where ADW is the adjacency matrix between type
D (documents) and type W (words). We define a commuting
matrix MP for each meta-path in the text graph:

MP=(DWD) = ADWAWD (5a)
MP=(DWWD) = ADWAWWAWD (5b)

where commuting matrix MP=(DWD) is a weight matrix, each
element denotes the sum of the weights of pair-documents with
the co-owned words.

For the purpose of the reduction in time and space resources,
we utilize top-k similarity search for an object xi ∈ O1 is to
find sorted k objects in the same type, such that SP(xi, xj) ≥
SP(xi, x̄j), for any x̄j not in the returning list and xj in the
returning list. The top-k similarity search is shown as follows:

SP = ranki(SP(xi, ·), k) (6)

where rank(SP(xi, ·), k) is a ranking operation, which keeps
k-largest values for the object xi in SP(xi, ·) and assigns 0 to
the rest. We can convert the heterogeneous text graph to sev-
eral homogeneous weighted-graphs via meta-path similarity,
obtaining SP=(DWD) and SP=(DWWD) for all the document
nodes.

C. Two-stage Multi-graph Information Fusion
We propose a Two-stage Multi-graph Information Fusion

method (TMIF) for document representation, including node-
level aggregation and semantic-level aggregation. The node-
level aggregation integrates the influence from neighboring

566

document representations via graph convolutional network,
while the semantic-level aggregation integrates the influence
from different homogeneous graphs through the attention
mechanism.

1) Node-level Aggregation: For node-level aggregation, we
perform the weighted integration of neighboring document
representations based on weighted graph convolutional net-
work, which can fully extract the interactive information of
objects in the text graph. Considering the node-level aggrega-
tion in our homogeneous weighted-graphs, a single-layer GCN
based on different meta-paths can be described as follows:

HP = ŜPXWP (7)

where ŜP = D−
1
2SPD

− 1
2 is the symmetric normalized

similarity matrix based on meta path P , and WP is the node-
level trainable weight matrix based on the meta-path P . X is
the feature matrix for all the document nodes.

2) Semantic-level Aggregation: Through node-level aggre-
gation, we can get the node embedding of each type of meta-
path, which can only denote the document representation of
specific semantics. In order to learn node embedding which
has more rich semantic information, we use an attention
mechanism to automatically learn the importance of different
meta-paths and fuse the document representations by weight
in the semantic-level aggregation. With the learned weights
as coefficients, we can fuse all the semantic-specific node
embeddings to obtain the final embedding Z as follows:

Z =
∑
P∈Ψ

αPHP (8)

where αP represents the learned weight vector under the meta-
path P for all the node embeddings, and Ψ is the set of
meta-path types. Z is the final representation matrix for all
the document nodes.

To learn the importance of node representation in each
meta-path, we perform nonlinear transformation and employ
a semantic-level attention vector µ. The importance of node
representation in each meta-path is calculated as follows:

eP = µTσ(WhP + b) (9)

where W is the weight matrix, b is the bias vector, and µ is
the semantic-level attention vector. hP , a column from HT

P ,
is a learned node embedding from the node-level aggregation.
For the meaningful comparison, all the above parameters are
shared for the semantic-specific node embeddings in all meta-
paths.

After obtaining the importance of node representation in
each meta-path, we normalize them through a softmax func-
tion. The weight of node representation in the meta-path P ,
denoted as αP , is calculated as follows:

αP =
exp(eP)∑
P̄∈Ψ exp(eP̄)

(10)

where Ψ is the set of meta-path types, and αP can be
interpreted as the contribution of the meta-path P for the
learned node embedding.

For document classification tasks, we first feed the final
representation matrix to a log softmax layer; then we exploit
the negative log likelihood loss over training data with the L2-
norm. The details are defined as follows:

V = log softmax(Z(l)) (11a)

L = −
∑

i∈Dtrain

Vim + η‖Θ‖2 (11b)

where Z(l) denotes the l-th layer document embedding. Dtrain

is the set of document node indices for training, Vim is the
predicted value, Θ denotes other learnable parameters in the
model, and η is regularization factor.

IV. DATA AND EXPERIMENT

A. Datasets and Baselines

We conduct extensive experiments on 5 benchmark text
datasets including MR, Ohsumed, R8, R52 and AGNews. The
statistics for preprocessed datasets are summarized in Table I.

TABLE I
STATISTICS OF TEXT BENCHMARK DATASETS.

Dataset #Documents #Train #Test #Words #Classes Average Length
MR 10,662 7,108 3,554 18,764 2 20.39
Ohsumed 7,400 3,357 4,043 14,157 23 135.82
R8 7,674 5,485 2,189 7,688 8 65.72
R52 9,100 6,532 2,568 8,892 52 69.82
AGNews 6,000 4,000 2,000 9,402 4 7.62

• MR: A movie review dataset for binary sentiment clas-
sification, in which each movie review contains only one
sentence [21]. The corpus has 5,331 positive and 5,331
negative reviews.

• Ohsumed: It is a bibliographic database of important
medical literature maintained by the National Library of
Medicine, which is from the MEDLINE database. We
divide training set and test set according to text GCN.

• R8 and R52: They are two subsets of the Reuters 21578
dataset, which is a collection of documents that appeared
on Reuters newswire in 1987.

• AGNews: We randomly selected 6,000 pieces of news
from AGNews, evenly distributed into 4 classes. The ratio
of training set and test set is 2:1.

In order to evaluate our method comprehensively, we com-
pare it with the following methods. Text GCN and SGC are
graph-based techniques.
• CNN: CNN [2] with and without pre-trained word em-

beddings, named CNN-rand and CNN-pretrain, respec-
tively.

• LSTM: LSTM [3] with and without pre-trained word
embeddings, named LSTM-rand and LSTM-pretrain, re-
spectively.

• fastText: FastText [22] is a simple and efficient approach
for representation learning, which treats the average of

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://disi.unitn.it/moschitti/corpora.htm
https://www.cs.umb.edu/∼smimarog/textmining/datasets/
http://www.di.unipi.it/∼gulli/AG corpus of news articles.html

567

TABLE II
TEST ACCURACIES (%) OF DIFFERENT METHODS ON BENCHMARK DATASETS. WE RUN EACH MODEL FOR 10 TIMES AND RECORD ITS MEAN ±

STANDARD DEVIATION. THE BEST RESULTS ARE IN BOLD, AND THE SECOND-BEST RESULTS ARE UNDERLINED.

Model MR Ohsumed R8 R52 AGNews
CNN-rand 72.11 ± 0.70 51.85 ± 1.72 96.27 ± 0.24 92.00 ± 0.51 57.66 ± 0.98
CNN-pretrain 75.96 ± 0.32 68.60 ± 0.39 97.10 ± 0.09 93.57 ± 0.20 76.72 ± 0.65
LSTM-rand 70.05 ± 0.77 31.68 ± 1.27 93.77 ± 0.51 88.20 ± 0.60 60.71 ± 0.90
LSTM-pretrain 75.00 ± 0.50 45.55 ± 2.01 95.90 ± 0.85 88.62 ± 1.81 72.00 ± 1.19
fastText-pretrain 76.00 ± 1.36 58.16 ± 0.78 96.23 ± 0.31 90.50 ± 0.31 76.85 ± 0.68
fastText-pretrain
-bigrams 73.22 ± 0.56 46.60 ± 0.88 94.98 ± 0.28 88.70 ± 0.79 62.39 ± 0.95

Text GCN 76.62 ± 0.13 68.26 ± 0.30 97.18 ± 0.09 93.68 ± 0.09 76.52 ± 0.14
SGC 76.91 ± 0.02 69.50 ± 0.02 96.39 ± 0.04 94.17 ± 0.05 70.05 ± 0.00
MPTGNN 77.23 ± 0.33 69.63 ± 0.45 97.13 ± 0.11 93.81 ± 0.29 77.60 ± 0.30

word/n-grams embeddings as document representations,
then feeds document representations into a linear classi-
fier.

• Text GCN: Text GCN [5] builds a graph for the corpus
based on word co-occurrence and document word rela-
tions, then applies GCN for text classification.

• SGC: SGC [8] is a simple linear model by simplifying
the graph convolutional network. We apply SGC with the
text graph established by Text GCN for text classification.

B. Experimental Settings

In the construction of heterogeneous text graph part, we set
the window size as 20. In the meta-path similarities part, we
set k = rate×#Documents for the top-k similarity search,
where the rate is 0.4 for MR and R52, the rate is 0.45 for
Ohsumed, and the rate is 0.55 for R8 and AGNews. In the
node-level aggregation part, we set the hidden dimension as 64
and the dropout rate as 0.5. In the semantic-level aggregation
part, we set the dimension of the semantic-level attention
vector µ to 64, and the dropout rate as 0.1. Furthermore, we
set the layer number l of MPTGNN as 1, set the regularization
factor η = 1e−5, use Adam algorithm with learning rate 0.03
to train MPTGNN up to 500 epochs, and stop training if the
validation loss does not decrease for 10 consecutive epochs.
For baseline methods using pre-trained word embeddings, we
use 300-dimensional Google’s word2vec word embeddings.

C. Experimental Results and Analysis

The node classification accuracies of different methods on
benchmark datasets are shown in Table II. We can see that
our method termed MPTGNN outperforms all the baselines on
MR, Ohsumed and AGNews. Our method achieves the second-
best results in the other two datasets i.e., R8 and R52, and its
performance is very close to the best model.

Whether using randomly initialized word embeddings or
pre-trained word embeddings, CNN performs much better than
LSTM on MR, Ohsumed, R8, and R52. FastText-pretrain with-
out bigrams performs well, outperforming CNN and LSTM on
MR and AGNews, and even achieves the second-best result for
AGNews. Text GCN based on graph neural network is a little

https://code.google.com/archive/p/word2vec/

better than CNN-pretrain on MR, R8, and R52, getting the
best result for R8. The simplified neural network model SGC
performs slightly better than Text GCN on MR, Ohsumed, and
R52, achieving the best result for R52.

Our method outperforms all the methods on a lot of datasets,
which showcases the effectiveness of our proposed method.
The reasons why MPTGNN works well include that 1) we
propose a method based on meta-path similarity to effectively
capture the indirect relationships between documents; 2) the
homogeneous weighted-graphs we constructed contains rich
interactive and semantic information; 3) the top-k similarity
search can select the top-k document nodes with the largest
edge weight with the current node, which can reduce the noise;
and 4) the attention mechanism can be helpful for weighted
fusion of multiple document representations based on different
meta-paths.

D. Ablation Study

1) Effect of the meta-path similarities: To test the effec-
tiveness of the meta-path similarities, we compare MPTGNN
with its simplified version, i.e, the meta-path similarities
are removed and only GNN is applied. As shown in Table
III, MPTGNN performs better than GNN, demonstrating the
importance of meta-path similarities for our method.

TABLE III
TEST ACCURACIES (%) OF MPTGNN AND ITS SIMPLIFIED VERSION,

GNN. WE RUN EACH MODEL FOR 10 TIMES AND REPORT ITS MEAN ±
STANDARD DEVIATION.

Model MR Ohsumed R8 R52 AGNews
GNN 76.95 ± 0.61 69.30 ± 0.61 97.01 ± 0.30 93.13 ± 0.73 77.25 ± 0.29
MPTGNN 77.23 ± 0.33 69.63 ± 0.45 97.13 ± 0.11 93.81 ± 0.29 77.60 ± 0.30

2) Effect of the attention mechanism: In order to test the
validity of attention mechanism in the semantic-level aggrega-
tion part, we compare our model with some variants. As shown
in Table IV, we compare MPTGNN with two variant models.
In the semantic-level aggregation part, the concatenation and
average instead of attention mechanism in MPTGNN con
and MPTGNN ave are considered respectively. We can no-
tice that MPTGNN performs better than MPTGNN con and
MPTGNN ave on most datasets, demonstrating the effective-

568

0.7500

0.7550

0.7600

0.7650

0.7700

0.7750

0.7800

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
cc

u
ra

cy

Rate

0.6700

0.6750

0.6800

0.6850

0.6900

0.6950

0.7000

0.7050

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
cc

u
ra

cy

Rate

Fig. 2. Test accuracies with different rates. The left subgraph is the result of MR, and the right subgraph is the result of Ohsumed.

ness of attention mechanism in the semantic-level aggregation
part.

TABLE IV
TEST ACCURACIES (%) OF MPTGNN AND ITS VARIANTS. WE RUN EACH
MODEL FOR 10 TIMES AND REPORT ITS MEAN ± STANDARD DEVIATION.

Model MR Ohsumed R8 R52 AGNews
MPTGNN con 76.91 ± 0.27 69.28 ± 0.52 96.87 ± 0.16 93.58 ±0.24 77.89 ± 0.30
MPTGNN ave 76.99 ± 0.28 68.94 ± 0.52 96.78 ± 0.17 93.51 ± 0.15 78.03 ± 0.33
MPTGNN 77.23 ± 0.33 69.63 ± 0.45 97.13 ± 0.11 93.81 ± 0.29 77.60 ± 0.30

3) Effect of the top-k similarity search: Test accuracies
with different rates (k = rate×#Documents) for the top-k
similarity search on MR and Ohsumed are shown in Figure
2. The test accuracy affected by the rate is fluctuating, and
the rate that is too close to 0 or 1 does not result in the best
test accuracy. The test accuracy of MR reaches the best result
when the rate is 0.4. For Ohsumed, the test accuracy reaches
the best result when the rate is 0.45.

V. CONCLUSION

In this paper, we propose a Meta-Path-based Text Graph
Neural Network (MPTGNN) for text classification. The pro-
posed method can effectively capture the structural and se-
mantic information in heterogeneous text network. The meta-
path similarities are regarded as the weights of document-
document connections. We also apply a Two-stage Multi-graph
Information Fusion method (TMIF) to learn the embedding of
each document. The attention mechanism can be productive
for weighted fusion of multiple document representations
based on different meta-paths. Experiments on public datasets
demonstrate that our proposed method can improve the perfor-
mance of text classifiers. In our future work, we will consider
integrating external knowledge into heterogeneous text graph,
such as text topics and knowledge graphs.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation Project of CQ CSTC (No. cstc2020jcyj-
msxmX0554).

REFERENCES

[1] G. Wang, C. Li, W. Wang, Y. Zhang, D. Shen, X. Zhang, R. Henao, and
L. Carin, “Joint embedding of words and labels for text classification,”
arXiv: Computation and Language, 2018.

[2] K. Shimura, J. Li, and F. Fukumoto, “Hft-cnn: Learning hierarchical
category structure for multi-label short text categorization,” pp. 811–
816, 2018.

[3] D. Wang, J. Gong, and Y. Song, “W-rnn: News text classification based
on a weighted rnn.” arXiv: Information Retrieval, 2019.

[4] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchezgonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner
et al., “Relational inductive biases, deep learning, and graph networks,”
arXiv: Learning, 2018.

[5] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text
classification,” vol. 33, no. 01, pp. 7370–7377, 2019.

[6] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” pp. 3844–3852,
2016.

[7] T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv: Learning, 2016.

[8] F. Wu, T. Zhang, A. Souza, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” arXiv: Learning, 2019.

[9] F. Sebastiani, “Machine learning in automated text categorisation: a
survey,” ACM Computing Surveys, 1999.

[10] F. Rousseau, E. Kiagias, and M. Vazirgiannis, “Text categorization as a
graph classification problem,” vol. 1, pp. 1702–1712, 2015.

[11] K. Skianis, F. Rousseau, and M. Vazirgiannis, “Regularizing text cate-
gorization with clusters of words,” pp. 1827–1837, 2016.

[12] J. Bian, B. Gao, and T. Liu, “Knowledge-powered deep learning for
word embedding,” pp. 132–148, 2014.

[13] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents,” arXiv: Computation and Language, 2014.

[14] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding through
large-scale heterogeneous text networks,” pp. 1165–1174, 2015.

[15] Y. Kim, “Convolutional neural networks for sentence classification,” pp.
1746–1751, 2014.

[16] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep
convolutional networks for text classification,” vol. 1, pp. 1107–1116,
2017.

[17] Y. Zhang, Q. Liu, and L. Song, “Sentence-state lstm for text represen-
tation,” vol. 1, pp. 317–327, 2018.

[18] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” arXiv:
Learning, 2018.

[19] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” arXiv: Learning, 2016.

[20] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks,” vol. 4,
no. 11, pp. 992–1003, 2011.

[21] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales,” in Proceedings of
the 43rd Annual Meeting of the Association for Computational Linguis-
tics (ACL’05). Ann Arbor, Michigan: Association for Computational
Linguistics, Jun. 2005, pp. 115–124.

[22] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” vol. 2, pp. 427–431, 2017.

569

Model-Agnostic Local Explanations with Genetic
Algorithms for Text Classification

Qingfeng Du
School of Software Engineering

Tongji University
Shanghai, China

du cloud@tongji.edu.cn

Jincheng Xu
School of Software Engineering

Tongji University
Shanghai, China

xujincheng@tongji.edu.cn

Abstract—The interpretability of black-box text classification
models has been receiving widespread attention in recent years
accompanying the growing popularity of artificial intelligence.
To garner user trust on the model’s decision-making process, it
is imperative to provide faithful instance-wise justifications and
rationalize the prediction in a human-readable way. In this paper,
we address this challenge by introducing Locally Universal Rules
(LURs) as model-agnostic local explanations. LURs are a subset
of input words sufficient for the model to arrive at a particular
prediction, even if the rest of words are perturbed slightly. We
show the identification of the optimal LUR is NP-complete.
Consequently, we propose a population-based algorithm LUR-
Locator to perform the constrained optimization efficiently. We
conduct extensive experiments to evaluate our algorithm on a
cross product of well-established text classification datasets and
models. The empirical results demonstrate that LURLocator can
efficiently generate high-quality local explanations, as compared
to existing explanatory methods.

Index Terms-Model-Agnostic Explanations; Local Explana-
tions; Genetic Algorithms; Text Classification

I. INTRODUCTION

In the era of Artificial Intelligence (AI), machine learning or
deep learning models have been widely deployed in a variety
of real-world applications. However, due to the increasingly
complex architectures, most models act as a black box without
any clear explanations. The lack of interpretability can pose
potential threats to the lives of individuals in today’s AI
systems [1]. To establish widespread public trust on model’s
behaviors, it is necessary to develop explanatory methods to
provide insights into these opaque model.

One of the simplest ways to understand the decision-
making process is to select a subset of input features as local
explanations [2], such as a list of words for texts, a group
of super-pixels for images or a set of if-else rules for tabular
data, where the slight perturbations on the rest of features can
hardly change the current prediction. These local explanations
are presented in a feature-selective way [3], where a subset
of input features responsible for the model’s prediction are
selected. Compared to feature-additive local explanations [3]
which compute the numerical weights for each input feature

This work was supported by National Key R&D Program of China (Grant
No. 2020YFB2103300)

DOI reference number: 10.18293/SEKE2021-040

as their separate contributions to the model’s decision and
provide too much redundant information, the feature-selective
local explanations are very concise and straightforward. They
are easy to understand even by non-expert users. For example,
users may want to understand why their comments on social
medias are judged as offensive sentences by the AI system,
and by feature-selective local explanations they can quickly
locate the key words and modify them.

In this paper, we introduce Locally Universal Rules (LUR)
as model-agnostic local explanations from the perspective of
feature-selection for text classification tasks, where “locally”
means these explanations can only approximate the model in
the neighborhood of a particular data point rather than keep
faithful globally [4][5], and “universal” means the model pre-
diction will keep the same in the perturbed distribution as long
as these local explanations hold. Subsequently we propose
a population-based optimization algorithm, LURLocator, to
reduce the search space greatly when identifying the optimal
LUR. We shed light on Natural Language Processing (NLP) as
the driving domain here to present LURs and LURLocator in
details, but our work can be easily extended to other domains,
such as image data or tabular data.

II. RELATED WORK

Interpretable AI systems have been gaining the spotlights
due to its significant value in human trust nowadays [4].
Some work perform a deep investigation on the important
building blocks of model architectures such as attention [6],
or on a specific family of models, such as RNN [7] and
CNN [8]. Usually, model-specific explanations are more ap-
plicable for AI experts to learn the intrinsic mechanisms and
debug the model [2]. The second group offer transparency
on any deep learning models. They are either implemented
with full access to internal parameters [9][10], or in a black-
box scenario [11]. The third group zoom in on model-agnostic
explanations [4][12], and they can be used to interpret either
machine learning models or deep learning models.

Local explanations are closely related to model-agnostic
explanatory methods. However, when the term of local ex-
planations is mentioned in literature, it usually reflects diverse
motivations when dealing with user-specific requirements, and
consequently researchers establish different but sometimes

570

t1

t2

X3

X2

X1

Fig. 1. A toy prediction function for classification. The two axes are separate
input dimensions, the black curve is the decision boundary, and the blue or
red circles are documents belonging to two different classes.

overlapping definitions. In [13], local explanations are referred
to as rationales which are short and coherent, yet sufficient
pieces of text for predictions in NLP, and an encoder-generator
framework is proposed to automatically generate rationales to
regularize the model during training. In [4], LIME is presented
to learn an interpretable model by locally approximating a
particular data point. In [14], local explanations are con-
sidered as prediction interpretability (as opposed to model
interpretability), and a variety of local explanatory methods
are evaluated with human judgements. Anchors are formally
introduced in [12] as local and sufficient conditions so that the
slight perturbations on the rest of the features have negligible
effects on the prediction. sufficient input subsets are presented
in [2] as a minimal input pattern to make sure that the model
can produce the same prediction even though all other feature
values are lost. Among all the previous work, the definition
of LURs is most similar to that of anchors [12]. We will
demonstrate the comparison between them in experiments.

III. PROBLEM SETUP AND ANALYSIS

Firstly we present the definition of perturbation distribution:

Definition 1 (Perturbation Distribution). Let X =
(t1, t2, · · · , tn) be an input document consisting of n words,
and A = X ∗ I be a set of words where I = {0, 1}n indicates
the presence or absence of each word. The perturbation dis-
tribution DX(·|A) is a conditional distribution of documents.
Suppose we have a document X ′ = (t′1, t

′
2, · · · , t′n) sampled

from DX(·|A). For each t ∈ X ∧ t ∈ A, we have ti = t′i
where i is the position of t in X . For each t ∈ X ∧ t 6∈ A, we
have L(ti, t′i) < ε where L is the distance of words and ε is
a numerical threshold.

Refer to Figure 1 for an example. In the neighborhood of
X3, the vertical dashed line is the perturbation distribution
DX(·|A = {t1}) and the hollow circles are possible docu-
ments X ′ sampled from DX(·|A = {t1}).

In perturbation-based local explanations, L(ti, t′i) should be
treated as the distance of words in a semantically meaningful
space even when the words are embedded in another represen-
tation space in the model, since the perturbation distribution

DX(·|A) should be interpretable to human eyes [4][12]. In
reality, when drawing samples from DX(·|A), we have a set of
candidate synonyms in the vicinity of t. It is worth mentioning
that a candidate word at the edge of the chosen area is likely
to have a large semantic distance from t, and consequently the
sampling noise will be introduced. To improve the robustness
of DX(·|A) against the sampling noise, we use the softmax
function parameterized by temperature T to compute the
normalized probability of words sampling:

p(t′i|ti) =
exp(L(ti, t

′
i)/T)∑

exp(L(tj , t′j)/T)
(1)

Based on DX(·|A), the LUR can be defined as follows:

Definition 2 (LUR). Let F : X → R1 be a function
representing a text classification model. Suppose D′A =
{X ′|X ′ ∼ DX(·|A)} is a dataset approximating the true
distribution of DX(·|A). The locally universal rule (LUR),
denoted by A, is such a set of words satisfying Acc(A) =
ED′

A
[F (X) = F (X ′)] ≥ τ , where Acc(A) denotes the perfor-

mance achieved by A and τ ∈ [0, 1] is a specified threshold
serving as the lower bound on the expected performance.

We show the existence of the LUR as follows:

Proposition 1. For a document X , a text classification model
F and a threshold τ , at least one LUR exists.

Proof: Assume to the contrary that no LUR exists for some
X , F and τ . Assign X to A, and we have Acc(A) =
ED′

A
[F (X) = F (X ′)] = E{X}[F (X) = F (X ′)] = 1 ≥ τ .

Therefore A is a valid LUR, and the original assumption must
be false. So Proposition 1 is true.

Refer to Figure 1 for better understandings. Suppose τ =
0.9. For X1, since Acc(A = {t2}) ≈ 0.5 < τ , {t2} is not a
valid LUR. There only exists one LUR A = {t1}. Similarly,
A = {t1} or {t2} for X2, and A = {t1, t2} for X3.

Subsequently, we define the optimal LUR as follows:

Definition 3 (The Optimal LUR). Suppose S : A → R1

be a function representing the number of words in A. For an
optimal LUR A, it should satisfy the following conditions: (1)
Acc(A) ≥ τ (2) @A∗, Acc(A∗) ≥ τ ∧ S(A∗) < S(A).

The LUR with a shorter length is preferred as the optimal
LUR for two reasons: (1) Local explanations should be concise
for users to understand [2]. (2) A shorter local explanation is
expected to cover more instances in realistic settings [12].

Now we present the identification of the optimal LUR as a
constrained optimization problem formally:

Definition 4 (The Identification Problem). For an input doc-
ument X , the identification of the optimal LUR is to find such
a minimal set of words A, so that A = argminA⊆X S(A),
subject to Acc(A) ≥ τ .

We show this problem is computationally intractable:

571

Proposition 2. The identification of the optimal LUR is an
NP-complete problem.

Proof: We prove that a simpler version of the original problem
can be reduced to the NP-complete subset sum problem [15].
The simpler problem is A = argmaxA⊂X Acc(A). Let the
set of non-negative values be {v1, v2, · · · , vn}, and the target
be K. Let the embedding of ti ∈ X be E(ti) = (vi, 0, · · · , 0)
and the embedding of its synonym t′i ∈ X ′ be E(t′i) =
(0, 0, · · · , 0). The classifier is defined as follows:

F (X) = g(
n∑

i=0

∑
j

E(ti)j)

g(a) =

{
0 a 6= K
1 a = K

(2)

where g(x) is a step function. To solve the problem, we have
to find a set of words as A, so that the sum of all the values in
the embedding space equals to K exactly. Now the simplified
problem suffices the subset sum problem. Hence, we have that
the original identification problem is NP-complete.

IV. THE PROPOSED ALGORITHM

The possible search space of different combinations of
words grows exponentially with the document length if we
aim to identify the optimal LUR, and it is impossible to
deal with the heavy computational burden in practice. Instead
of an exhaustive search, we develop a heuristic algorithm,
LURLocator, following the principle of genetic algorithms,
to search for a near-optimal solution efficiently. The key
operators include initialization, fitness, selection, crossover
and mutation. The pseudo-code of LURLocator is shown in
Algorithm 1, and the framework is illustrated in Figure 2.

The first step of our algorithm is to initialize an empty set
D′ (line 1), which is the set of instances sampled from the
perturbation distribution and will be iteratively expanded later.
All the LURs will be evaluated on D′ to estimate the accuracy.

Line 2-3 implements the initialization operator, returning an
array of chromosomes as the initial population P0. We select
one word ti%n (% is the modular operation) as the LUR Ai

in each chromosome P0
i . The chromosome is encoded as a

binary vector of length n, where the words in Ai take the
value of 1 and others take 0.

The evolution continuous for kgen generations in an iterative
process to search for the near-optimal LUR (line 4).

In the fitness operator (line 5-8), we measure the quality
of the population Pi−1 in accuracy. Suppose D′ has also
been encoded with binary vectors, where the words in X
take the value of 1 and others take 0. Firstly we count the
number of X ′ ∈ D′Aj

in D′, and at least B1 instances are
expected to estimate the accuracy of Aj (line 8). If there
are not enough instances, we sample B1 instances from the
perturbation distribution DX(·|Aj) immediately to expand D′

(line 6-7). The prediction results through F will be recorded,
so that we do not have to perform repetitive predictions for
the same instance in the subsequent iterations.

Algorithm 1 The LURLocator Algorithm
Input: Input document X = (t1, t2, · · · , tn); The function

F as the text classification model; The function S as the
number of words in a LUR; Batch sizes B1, B2; The
expected performance τ ; Number of generations kgen;
Size of the population kpop; Number of parents kpar;
Number of mutations kmut

Output: The near-optimal LUR A.
1: D′ = ∅
2: for i = 1, 2, · · · , kpop do
3: P0

i ← Encode Ai = {ti%n} ⊆ X as a binary vector
4: for i = 1, 2, · · · , kgen do
5: for all Aj ∈ Pi−1 do
6: if D′Aj

.size < B1 then
7: D′Aj

← Sample B1 instances from DX(·|Aj)

8: Acci(Aj)← ED′
Aj
[F (X) = F (X ′)]

9: Fiti ← {Pi−1
j |Acci(Aj) ≥ τ}

10: if Fiti.size ≥ kpar then
11: Fiti ← Sort Fiti so that ∀j1 ≤ j2, S(Aj1) ≤

S(Aj2)
12: Parenti ← Fiti1, F it

i
2, · · · , F itikpar

13: else
14: Pi−1 ← Sort Pi−1 so that ∀j1 ≤ j2, Acci(Aj1) ≥

Acci(Aj2)
15: Parenti ← Pi−1

1 ,Pi−1
2 , · · · ,Pi−1

kpar

16: for j = 1, 2, · · · , (kpop − kpar) do
17: Childij ← Randomly select two individuals from

Parenti and recombine them
18: Childij ← Randomly flip kmut genes in Childij
19: Pi ← Parenti + Childi

20: for all A ∈ Parentkgen do
21: D′A ← Sample B2 instances from DX(·|A) to D′

22: Acc(A)← ED′
A
[F (X) = F (X ′)]

23: A← argminA∈ParentkgenS(A), subject to Acc(A) ≥ τ
24: return A

When we attempt to select D′Aj
from D′, we have to com-

pare each instance in D′ with the encoded chromosome Pi−1
j

to see whether they match with each other. The comparison
of 0/1 bits runs in O(n ×D′.size) time. Given a large n or
D′.size, the process will be time-consuming. To decrease the
number of comparisons and accelerate the selection of D′Aj

,
we propose an alternative approach based on inverted index.
We transpose the matrix of D′, so that each row represents
a word in X and each column represents an instance in D′.
For each word in Aj , we select the corresponding rows in the
transposed matrix and multiply these 0/1 rows in an element-
wise manner. In the resulting vector of length D′.size, the
elements are equal to 1 only if all of its multiplicators are
equal to 1. Refer to the second subgraph of the second row
in Figure 2 for an example, where Aj = {t4, t5}. When we
compute the element-wise multiplication of t4 = (0, 1, ..., 0)

572

1.Initialization

0P ={1 0 0 0 0 A={t1}

0 1 0 0 0 A={t2}

…

0 0 0 0 1 A={t5}

2.Fitness

iAcc (Aj)

3.Selection

={ 0 1 0 0 0

0 0 0 0 1

…

iParent

5.Mutation 4.Crossover

={0 1 0 0 1

0 0 0 0 0

…

iChild
0 1 0 0 0

0 0 0 0 1={0 1 1 0 1

0 1 0 0 0

…

iChild
0 1 0 0 1

0 0 0 0 0

P i= Parenti + Childi

t1 t2 t3 t4 t5

0 0 1 0 0

0 0 0 1 1

…

1 1 0 0 0

t1: 0 0 … 1

t2: 0 0 … 1

t3: 1 0 … 0

t4: 0 1 … 0

t5: 0 1 … 0

Aj={the, food}={t4, t5}

D′ Aj
= {

t4,* t5 = (0 1 … 0)

Encode

Inverted

Index

D′ 2 , ⋯}

D′ 2

D′ 2
D′ 1

D′ 1

D′ =
“He didn’t like this bread”

“She didn’t enjoy the food”

…

“I don’t love that lunch”
{

Select D′ Aj From D′

X = “I don't like the food”
Perturbed

Distribution

Fig. 2. The framework of LURLocator

and t5 = (0, 1, ..., 0) in the transposed matrix and get the
result of (0, 1, ..., 0), only the second element (indicating D′2)
is equal to 1, meaning that D′2 matches Aj = {t4, t5} and
belongs to D′Aj

. In other words, the index of the element
equal to 1 in the resulting vector is the position of the instance
in D′ that belongs to D′Aj

. This alternative approach runs
in O(S(Aj) × D′.size) time and achieves a speed-up of
(n/S(Aj)−1)x compared to the original implementation. The
gains in efficiency is especially significant when S(Aj)� n.

We implement the selection operator in line 9-15. We filter
out the chromosomes whose LURs reach the performance
threshold of τ , denoted as Fiti (line 9). If the size of Fiti

is larger than kpar, it means that we already have enough
chromosomes as parents, from which we can select the ones
encoded with the kpar shortest LURs as Parenti for futural
breeding (line 10-12). Otherwise, we sort all the chromosomes
in Pi−1 according to Acci, and retrieve the ones achieving the
kpar best accuracies (line 13-15). This branch is to make sure
that if there are not enough qualified chromosomes achieving
the expected fitness, we can still preferentially select more fit
individuals with as high accuracy as possible.

In crossover (line 17), a set of children will be generated by
randomly choosing pairs of parents and performing crossover
operations where the cut point is at the center of each parent. In
this way, the new offspring has the genes from two different
parents whose characteristics can be partly inherited. In the
stage of mutation (line 18), kmut genes in the children in the
representation of binary vectors will be flipped (1 to 0 or 0 to

1). Both crossover and mutation operators ensure the diversity
of individuals in the subsequent new population, so that we
can explore more candidate solutions.

Both Parenti and Childi will be added together as the ith
generation of the population (line 19), for the purpose that both
the qualified solutions (Parenti) and the possible candidate
solutions (Childi) can be safely preserved.

After kgen generations, we select the optimal LUR from
Parentkgen with the shortest length and the expected accuracy
(line 20-24). To avoid over-fitting on D′, we re-sample B2

instances as D′Ai
to evaluate each possible LUR. If no LUR

satisfies the expected τ , we return A = X as the near-optimal
LUR according to Proposition 1. If more than one LUR meets
the criteria, we return the LUR with the highest accuracy.

V. EXPERIMENTS

A. Experimental Setup

Datasets: We prepare four different benchmarking datasets
widely used in the task of text classification, including the
sentence polarity dataset from Rotten Tomatoes web pages
(RT) [16], AG’s News (AG), DBPedia (DBP) and Yahoo
Answers (Yah) [17].
Machine Learning Models: We train three different machine
learning models, including logistic regression (LR), multino-
mial naive bayes (NB) and support vector machine (SVM).
We use Anchor [12] as the baseline to generate the local
explanations here. As we will show later, Anchor is very
inefficient when dealing with long documents, so we perform
the comparisons on RT whose documents are shorter.
Deep Learning Models: We choose two popular text clas-
sification models, including FastText and TextCNN, as the
target deep learning models. Later, we will evaluate some
gradient-based explanatory methods specially designed for
neural networks, so we distinguish the experiments on deep
learning models from the traditional machine learning models.
Algorithm Details: We set B1 = 100, B2 = 500, kgen =
10, kpop = 10 ∗ n, kpar = n, kmut = 1, where n is the length
of the document. For Yah dataset, we set kgen = 20 since
it consists of longer documents. We present some practioners’
guides for the fine-tuning of parameters: B1 and B2 are closely
related to the trade-off between the algorithm’s efficiency and
the LUR’s accuracy estimation. A larger kgen improves the
possibility of identifying the near-optimal LUR whose natural
length is long; A larger kpop contributes to finding the LUR
as short as possible; The size of kpar should be at least n
to ensure a good start point; We suggest setting kmut = 1
to ensure a steady evolution. We use the 100 nearest words
in the pre-trained embedding space from the vocabulary of
each dataset to generate the perturbation distribution instead
of setting a fixed ε. The performance threshold τ is set to 0.9.

B. Evaluating LURs in Machine Learning

On the test set of RT, we generate LURs with our proposed
LURLocator algorithm. We also generate anchors [12] with
their original implementations, including the greedy-search

573

TABLE I
COMPARISONS BETWEEN LUR AND ANCHOR EXPLANATIONS IN MACHINE LEARNING.

Model LUR Anchor (Greedy Search) Anchor (Beam Search)
Accuracy Length Time Accuracy Length Time Accuracy Length Time

LR 93.31% 3.15 2.02s 92.19% 2.93 4.26s 91.38% 2.88 15.26s
NB 94.02% 3.46 2.03s 93.04% 3.55 5.36s 92.54% 3.39 21.94s

SVM 92.90% 3.63 1.99s 92.01% 3.43 5.21s 91.21% 3.34 22.01s

TABLE II
EXEMPLARY LOCAL EXPLANATIONS FROM THE TEST SET OF RT.

Document Model LUR Anchor (Greedy Seach) Anchor (Beam Seach)
Two generations within one family
test boundaries in this intelligent

and restrained coming-of-age drama.

LR intelligent family, intelligent intelligent, age
NB boundaries boundaries within

SVM drama within, boundaries, drama within, boundaries, intelligent
The beautiful, unusual music
is this film’s chief draw, but

its dreaminess may lull you to sleep.

LR beautiful beautiful,films beautiful, may
NB chief unusual, chief beautiful, chief

SVM beautiful beautiful, music, draw beautiful, draw

algorithm and the beam-search algorithm. For each local ex-
planation A, we evaluate it on D′A which consists of 10000 test
instances sampled from DX(·|A)}. The average test accuracy
has been reported in Table I. Besides, we also report the
average length of local explanations as well as the average
time for the generation of one local explanation. The time cost
of searching synonyms in the vocabulary has been excluded
from the reported time, because synonyms can be identified
in advance and saved in a hash table.

It can be clearly seen that our algorithm produces reasonable
accuracy gains compared to the two baselines. The average
length is comparable for LURs and anchors while significantly
shorter than the average document length, so both local expla-
nations achieve a similar level of conciseness and coverage in
practical use. In terms of the running time, LURLocator leads
to better efficiency compared to the two baselines.

Since genetic algorithms are stochastic and it is impossible
to report the average-case complexity for LURLocator, we
analyze it in the worst case. The time overhead mainly depends
on model predictions. If we need to sample a new batch of
instances every time, model predictions run in O(kgen ∗kpop ∗
B1 + kpar ∗ B2) time. Given our suggested parameters, O
scales linearly with the document length n.

To further investigate the relationship between the document
length and the required time, we report the distribution of time
cost in Figure 3. For anchors, we only report the greedy-
search algorithm since the beam-search algorithm requires
much more time. Along the vertical direction, most green
markers are above the red markers, and the distribution of
green markers is more discrete. We attribute this observation
to the fact that LURLocator is more efficient and stable when
dealing with a fixed-length document. Along the horizontal
direction, while the time cost of both algorithms keeps increas-
ing with document length, our algorithm shows slower growth
definitely with a higher Pearson’s correlation coefficient. The
results demonstrate that our algorithm has better scalability
when dealing with longer documents.

We display some examples in Table II. Interestingly, the

0 5 10 15 20 25 30 35 40 45 50
Document Length

0

10

20

30

40

Ti
m

e
Co

st
 (s

)

LURLocator for LURs
Greedy Search for Anchors

Fig. 3. The required time for the generation of local explanations on the test
set of RT. The model is LR here. Each scatter point represents a test sample.
The horizontal axis represents the document length, and the horizontal axis
represents the time cost. (LURLocator: Pearson ρ = 0.797, p-value=1.27e-23;
Greedy Search: Pearson ρ = 0.589, p-value=1.52e-98)

selected words from LURs and anchors are often overlapped
with each other. A possible explanation is that these words
contain the most important information for the current predic-
tion. Besides, the local explanations across different models
vary a lot. In fact, local explanations only reflect the model’s
decision-making process rather than human reasoning, and
different models can have their own views on the decision
boundary, which results in different local explanations for
the same instance. It is worth mentioning that the examples
themselves can not indicate which explanatory method is more
faithful, since the objective judgments does not necessarily
align with the true model views.

C. Evaluating LURs in Deep Learning

We compare LURLocator with one perturbation-based ex-
planatory method LIME [4] and three feature-additive meth-
ods popular in deep learning, including sensitivity analysis
(SA) [9], gradients × inputs (GI) [10] and leave-one-out
(LOO) [11]. Since the last three methods assign importance
scores to every input features, we select the most salient words

574

TABLE III
COMPARISONS BETWEEN LURS AND OTHER LOCAL EXPLANATIONS IN DEEP LEARNING.

Dataset Model Length LURLocator LIME Rand SA GI LOO

RT. FastText 1.79 99.04% 44.64% 44.92% 45.21% 45.50% 45.21%
TextCNN 1.71 98.47% 58.62% 54.69% 60.34% 64.94% 64.37%

AG. FastText 2.42 95.48% 58.65% 57.15% 57.54% 62.31% 63.29%
TextCNN 2.29 96.52% 75.43% 71.40% 76.82% 78.60% 77.95%

DBP. FastText 2.24 97.47% 92.89% 92.38% 92.71% 94.29% 93.92%
TextCNN 1.96 97.05% 92.07% 91.19% 92.64% 93.67% 93.89%

Yah. FastText 6.88 93.64% 40.17% 38.96% 39.17% 41.83% 40.70%
TextCNN 7.95 93.77% 75.86% 71.25% 78.89% 80.87% 79.18%

as sufficient conditions whose length is the same as LUR. We
also set a Rand baseline to randomly select words as local
explanations. Table III reports the average test accuracy and
the average length of LURs.

We can observe that the average length of LURs on Yah
is longer than other datasets because the average document
length on Yah is much longer. In fact, if we increase kgen or
kpop, the search space of the optimal LUR will be expanded,
and consequently a shorter average length can be achieved.
Another interesting observation is that the average length of
LURs on RT here is significantly shorter than the results in
Table I. A possible reason is that the deep learning models
based on neural networks are more robust to perturbations than
the traditional machine learning models, so a shorter LUR is
enough to achieve a high accuracy.

In terms of test accuracy, LURLocator always outperforms
alternative solutions by a large margin. The results can be
further improved if we increase the threshold τ . The Rand
baseline achieves a remarkable result (over 90%) on DBP. The
intuitive explanation is that the decision boundary to segment
the data points on DBP is extremely robust (Refer to Figure 1
where X2 safely locates inside the decision boundary), so
that slight perturbations can hardly change the prediction.
In fact, the accuracy achieved by Rand will be decreased
if we increase the number of synonyms in the perturbation
distribution intentionally. From the results, it can be concluded
that LURs excel at providing sufficient justifications, while
existing feature-additive explanatory methods have trouble
selecting such a set of words.

D. Conclusions

In this paper, we shed light on the problem of model
interpretabilty for text classification and introduce locally
universal rules (LURs), which are a minimal set of input
features sufficient to rationalize the instance-wise predictions.
We propose LURLocator based on genetic algorithms to iden-
tify the optimal LUR. Extensive experiments are performed
on a variety of models and datasets to evaluate the proposed
algorithm as well as the generated LURs. The results show
that our algorithm leads to better performance.

REFERENCES

[1] V. D. S. Silva, A. Freitas, and S. Handschuh, “On the
semantic interpretability of artificial intelligence models,” CoRR,
vol. abs/1907.04105, 2019.

[2] B. Carter, J. Mueller, S. Jain, and D. K. Gifford, “What made you do
this? understanding black-box decisions with sufficient input subsets,”
in The 22nd International Conference on Artificial Intelligence and
Statistics, AISTATS 2019, 2019, pp. 567–576.

[3] O. Camburu, E. Giunchiglia, J. Foerster, T. Lukasiewicz, and
P. Blunsom, “Can I trust the explainer? verifying post-hoc explanatory
methods,” CoRR, vol. abs/1910.02065, 2019.

[4] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should I trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 1135–1144.

[5] G. Plumb, D. Molitor, and A. S. Talwalkar, “Model agnostic supervised
local explanations,” in Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, 2018, pp. 2520–2529.

[6] S. Serrano and N. A. Smith, “Is attention interpretable?” in Proceedings
of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, 2019, pp. 2931–2951.

[7] W. J. Murdoch, P. J. Liu, and B. Yu, “Beyond word importance:
Contextual decomposition to extract interactions from lstms,” in 6th
International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, 2018.

[8] A. Jacovi, O. S. Shalom, and Y. Goldberg, “Understanding convolutional
neural networks for text classification,” in Proceedings of the
Workshop: Analyzing and Interpreting Neural Networks for NLP,
BlackboxNLP@EMNLP 2018, 2018, pp. 56–65.

[9] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen,
and K. Müller, “How to explain individual classification decisions,” J.
Mach. Learn. Res., vol. 11, pp. 1803–1831, 2010.

[10] M. Denil, A. Demiraj, and N. de Freitas, “Extraction of salient
sentences from labelled documents,” CoRR, vol. abs/1412.6815, 2014.

[11] J. Li, W. Monroe, and D. Jurafsky, “Understanding neural networks
through representation erasure,” CoRR, vol. abs/1612.08220, 2016.

[12] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision
model-agnostic explanations,” in Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), 2018, pp.
1527–1535.

[13] T. Lei, R. Barzilay, and T. S. Jaakkola, “Rationalizing neural
predictions,” in Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2016, 2016, pp.
107–117.

[14] D. Nguyen, “Comparing automatic and human evaluation of local expla-
nations for text classification,” in Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers),
2018, pp. 1069–1078.

[15] K. G. Murty and S. N. Kabadi, “Some np-complete problems in
quadratic and nonlinear programming,” Mathematical Programming,
vol. 39, no. 2, pp. 117–129, 1987.

[16] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales,” in ACL 2005,
43rd Annual Meeting of the Association for Computational Linguistics,
University of Michigan, USA, 2005, pp. 115–124.

[17] X. Zhang, J. J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Annual Conference on Neural
Information Processing Systems, 2015, pp. 649–657.

575

Towards a Better Understanding of Gradient-Based
Explanatory Methods in NLP

Qingfeng Du
School of Software Engineering

Tongji University
Shanghai, China

du cloud@tongji.edu.cn

Jincheng Xu
School of Software Engineering

Tongji University
Shanghai, China

xujincheng@tongji.edu.cn

Abstract—To grasp what makes the deep learning models
arrive at a particular prediction, gradient-based explanatory
methods have been widely used in Natural Language Processing
(NLP) recently. While the saliency maps of images can be
computed directly in the pixel-level input space, the continuous
gradient vector for words has to be reduced to a single value to
indicate the word-level importance, and existing methods such as
Sensitivity Analysis (SA) and Gradient × Input (GI) are either
tricky or short of a deep investigation. In this paper, we review the
family of gradient-based explanatory methods and discuss their
practical implications. Specially, we propose the signed version of
GI, namely SignedGI, while some previous work may have mis-
understandings on its signedness. We also show the weakness of
SA-based methods. We conduct extensive experiments to evaluate
these explanatory methods both qualitatively and quantitatively.

Index Terms—Gradient-based Explanatory Methods; Sensitiv-
ity Analysis; Gradient × Input; Text Classification

I. INTRODUCTION

In the era of Artificial Intelligence (AI), deep learning
models have been widely deployed in a variety of applications
in Natural Language Processing (NLP), but are often criticized
for the inability to explain their decisions. To afford trans-
parency on the nested non-linear structure of the black box and
shed light on interpretable AI models, a plethora of explana-
tory methods have been developed in literature [1] nowadays.
Among existing work, gradient-based methods [2][3][4] have
been gaining the spotlight recently because they can be easily
used in any off-the-shelf neural networks.

It is straightforward to compute the pixel-level gradient in
images [5][6], indicating how much the pixel contributes to the
final prediction. However, things are different in NLP. Words
are usually embedded in a continuous space, and a scalar value
rather than a vector of gradients has to be derived for the
word-level importance score. Consequently, many variations
of gradient-based explanatory methods have been proposed in
NLP to compute the scalar value, such as the sum of gradients
in raw values [7], the L1 norm [3], the L2 norm [8][9][10],
or the dot product between the vector of gradients and the
word embedding itself [2][11][4]. For brevity, we refer to the

This work was supported by National Key R&D Program of China (Grant
No. 2020YFB2103300)

DOI reference number: 10.18293/SEKE2021-045

first three variations as SA-based (Sensitivity Analysis [6])
methods, and the last one as GI (Gradient × Input [4]).

Even though we have a sophisticated theory for gradient-
based explanatory methods in images, our current understand-
ing on them in NLP is still rudimentary. On the one hand, the
SA-based methods are very tricky. The gradient measures the
local effect of a particular dimension in the word vector and
it does not hold water to sum up the effects along the vector
as the word-level importance score, since the true changes
in the embedding space are discrete rather than continuous
when a word is removed or replaced. On the other hand, the
correctness of GI has not been strictly proved yet, especially
its signedness (A word-level importance score is signed if it
can distinguish between positive and negative impacts).

In this paper, we shed light on the aforementioned gradient-
based explanatory methods. We propose the signed version of
GI, namely SignedGI, based on the chain rule and the back-
propagation algorithm [12]. The SignedGI score is the opposite
of the dot product, whereas some previous work [2][4] neglect
the signedness. Besides, we show the weakness of SA-based
method. We conduct extensive experiments to evaluate these
explanatory methods both qualitatively and quantitatively.

II. RELATED WORKS

There has been a remarkable series of work for explainable
artificial intelligence in NLP [1]. In [13], Leave-One-Out
(LOO) estimates the word importance by observing the change
of the log-likelihood when a particular word is removed. It
has been widely used as a black-box explanatory method
in NLP [7][4]. In the white-box settings, gradient-based ex-
planatory methods have attracted great interest. As described
previously, we mainly consider SA-based methods [3] and
GI [2] in this paper. They aim to compute the gradient w.r.t.
the word to indicate the word-level importance score. There
is another popular gradient-based explanatory method named
Integrated Gradients [14], which integrates over all gradients
on a linear interpolation between the original input and the
baseline input masked with zeros. However, the Lp norm in
SA-based methods or the dot product in GI are still a prereq-
uisite for the use of integrated gradients in NLP [15][16], so
we exclude it from the scope of our work.

576

The weakness of SA-based methods (in the L2 norm) has
already been noticed in the experiments of some previous
work [8][15]. They attribute this observation to the fact that
the L2 norm can only measure the word importance with the
inability to distinguish between positive and negative impacts.
We will address the deeper cause in the section below, that
the overall impact on the loss is uncertain when we mask the
word identified by SA-based methods with all-zero paddings.
Furthermore, we will display a interesting counterexample
model to show the weakness of SA-based methods in the
experiments, where the words of the same frequency can have
the same gradient vector in the embedding space, albeit with
different contributions to the final prediction.

III. METHODS

Let x = (w1, w2, · · · , wm) be the document consisting of
m words, where w = (e1, e2, · · · , en) is the continuous word
representation in the n-dimensional embedding space. Let ly :
x→ R1 be the loss function w.r.t. the legitimate label y.

A. Sensitivity Analysis

Sensitivity analysis has been a popular method for inter-
preting non-linear neural networks in images [5][6], where
the sensitivity of a particular pixel p for the color channel c
can be computed as follows:

sp,c =

(
∂

∂p, c
ly(x)

)
c∈(r,g,b)

(1)

Recently this method has been extended to the domain of
NLP, and the sensitivity of a particular dimension e in the
embedding space can be represented as follows [3]:

se =
∂

∂e
ly(x) (2)

where the score se tells us how much the change in one
specific dimension e would exert an influence on the results.

However, words are embedded in the continuous space with
more than one dimension. With se for each dimension, the Lq

norm operation is usually performed to transform the vector
into the word-level importance score:

sw = ‖(se1 , se2 , · · · , sen)‖Lq
(3)

where the norm usually takes the value of q = 1 [3][17] or
q = 2 [8][9][4][10]. We denote the two variations as |SA|1 and
|SA|2. As far as we know, there is no current work in NLP use
q =∞. However, q =∞ is a common practice in images [5],
and we decide to consider |SA|∞ in our experiments. Apart
from the norm, some work directly use the raw value of the
gradient [7]. We denote it as |SA|raw.

B. Gradient × Input

Gradient × Input (GI) computes the dot product of the
word embedding and the gradient of the output w.r.t the
embedding itself. It is firstly proposed in [2], where the formal
representation of GI is presented with the first-order Taylor
expansion of the loss function. However, it only extracts the
salient scores without distinguishing between the positive and

negative impacts. In this section, we provide the theoretical
augments to the deduction of GI from a new perspective, and
specially analyze its signedness for SignedGI.

Suppose E ∈ Rv∗n is the embedding layer, where v is the
vocabulary size. Let Ix ∈ Rm∗v be the matrix embedding the
input document x, where each row Iwi = (0, · · · , 1, · · · , 0) is
a v-dimensional one-hot vector for the input word wi. Now,
we are interested in the gradient of the value “1” in the one-hot
vector, which indicates how much the existence of the word
wi locally affect the network output.

We show how to compute the word-level gradient in Ix
now. For brevity, we assume that Ix is a document consisting
of only one word (or m = 1), and the one-hot representation is
Ix = (t1, · · · , tv) ∈ R1∗v where ti = 0 or 1. Assume WLOG
that t1 = 1 in Ix, then t2 to tv are all zeros. In other words, we
assume that the only one word in Ix corresponds to the first
word in the vocabulary. Then, the output of the embedding
layer OE in a neural network can be computed as follows,
where OE = (e1, · · · , en) ∈ R1∗n is the embedding for the
only one word in Ix:

OE = Ix × E (4)

Let ly : x → R1 be the loss function w.r.t. the legitimate
label y. We compute the word-level gradient in Ix using the
chain rule and the back-propagation algorithm [12]:

∂ly
∂Ix

=
∂ly
∂OE

∂OE

∂Ix

= (
∂ly
∂e1

, · · · , ∂ly
∂en

)(
∂OE

∂t1
, . . .

∂OE

∂tv
)

= (
∂ly
∂e1

, · · · , ∂ly
∂en

)

∣∣∣∣∣∣∣∣
∂e1
∂t1

· · · ∂e1
∂tv−1

∂e1
∂tv

...
. . .

...
...

∂en
∂t1

· · · ∂en
∂tv−1

∂en
∂tv

∣∣∣∣∣∣∣∣
= (

∂ly
∂e1

, · · · , ∂ly
∂en

)

∣∣∣∣∣∣∣
e1 · · · 0 0
...

. . .
...

...
en · · · 0 0

∣∣∣∣∣∣∣
= (
∑n

i=1

∂ly
∂ei
∗ ei, · · · , 0, 0) ∈ R1∗n (5)

The word-level gradient of t1 in Ix is exactly the dot
product between the word embedding and the gradient w.r.t.
the embedding itself. The proof here can be easily extended
to the case where Ix consists of more than one word.

Let the gradient of the word w be gw. The SignedGI scores
are defined as the opposite of gw, or more formally:

sw = −gw = −
∑n

i=1

∂ly
∂ei
∗ ei (6)

Now we explain the reasons. According to the algorithm of
gradient descent, the parameters should move in the direction
of steepest descent as defined by the negative of the gradient
to minimize the loss. Here, the parameter t1 can only take the
value of 1 or 0, indicating the existence or non-existence of
the word w respectively. Hence, in the case of gw > 0, the
change of t1 from 1 to 0 follows the gradient descent direction

577

and thus decreases the loss lx. In other words, the removal
of the word w has a positive impact on the performance, or,
the existence of the word w has a negative impact on the
performance when gw > 0. Similarly, the existence of the word
w has a positive impact on the performance when gw < 0. By
convention, the word-level importance score should be positive
if the word contributes to the current prediction, so we arrive
at the final representation for SignedGI as in Equation 6. Note
that the signedness of GI has been neglected in its original
publication [2], and been misunderstood in the subsequent
work [4].

We can also analyze the SA-based methods in a similar
way. Let us take |SA|2 as an example. The removal of a word
identified by |SA|2 can be interpreted as masking its word
embedding with all-zero paddings. In the original embedding
space, the word is represented as a n-dimensional vector,
and the values in various dimensions can be larger than 0 or
smaller than 0. The mask of 0 will make them either follow
or go against the gradient descent direction. As a result, the
overall impact on the loss becomes uncertain, which leads
to the weakness of SA-based methods. In summary, SA-based
methods compute the gradients in the embedding level and the
sum of them to indicate the word importance is inaccurate. In
contrast, SignedGI computes the gradient in the word level
directly, so it should be more faithful than SA-based methods.

IV. EXPERIMENTS

A. Preliminaries

Datasets We use two publicly available text classification
datasets: (1) AG’s News: A topic classification dataset con-
sisting of four categories, including World, Sports, Business,
and Sci/Tech. (2) Internet Movie Database (IMDB): A binary
sentiment analysis dataset on movie reviews.
Models We consider three popular text classification models,
including a linear classifier FastText [18], a convolutional
neural network TextCNN [19] and a bi-directional recurrent
neural network BiLSTM.
Baselines Apart from the gradient-based explanatory methods
as mentioned previously, we introduce two more baselines,
namely Random (RD) and Leave-One-Out (LOO) [13]. The
first baseline simply generates a random permutation of words
to simulate the decreasing order of word importance. It can
be considered as a very uninformative approach. The second
baseline estimates the importance scores by erasing each word
from the input and tracking the effect. The variations of LOO
can be found in [13][20]. In our implementation, we compute
the difference in loss:

sw = ly(x)− ly(x|w=0) (7)

where ly(x) is the original loss and ly(x|w=0) is the loss when
masking the word embedding of w with all-zero paddings.
LOO is very similar to the perturbation experiment itself
(which will be introduced later). Similar baselines have also
been set up in [7][4]. With the possible upper bound and
lower bound on the explanatory ability, we can show the
results of gradient-based methods in a more intuitive way.

The word “possible” means LOO may not produce the best
explanatory ability among existing methods, but it is faithful
enough. Taking it as an upper bound is helpful for us to see
the difference between the results of gradient-based methods
and faithful explanations. So it is with RD.
Metrics In order to evaluate the explanatory ability of different
methods, existing work usually perform the perturbation-based
experiment [7][4], which perturbs the original input in a
word level (e.g., the mask of zero paddings, or the deletion
operation), and subsequently measures the changes on the
performance (e.g., the changes on accuracies, probabilities, or
losses). The word importance increases monotonically with
the change. Based on this observation, an objective quality
measure, AOPC, is proposed in [6] to evaluate ordered collec-
tions of features quantitatively. While originally designed for
images, AOPC can be easily extended to NLP [7]:

AOPC=
1

K + 1

〈
K∑

k=0

fy(x
(0))−fy(x(k))

〉
avg

(8)

where x(k) is the perturbed input with the most important k
words masked with zero paddings, fy(x) is the probability of
the legitimate label y, K is the cut-off point w.r.t. the top-K
important words, and 〈·〉avg represents the average over all
the documents. The perturbation of the most important words
implies a steep decreases of fy(x), so the method with the
better explanatory ability has a larger AOPC.

In fact, AOPC values measure the absolute word impor-
tance. We can also describe the word importance in a relative
way. We take LOO as a well-established benchmark because it
provides the possible upper bound on the explanatory ability,
and we report the Pearson correlation coefficient between the
results of LOO and gradient-based methods.

ρ =

∑m
i=1(ai − a)(bi − b)√∑m

i=1 (ai − a)
2
√∑m

i=1 (bi − b)
2

(9)

where a = (a1, a2, · · · , am) and b = (b1, b2, · · · , bm) are
the score vectors. a and b denote the average operation. If ρ is
close to 1, there is a strong positive linear association between
a and b, indicating that the estimated word importance in b is
as faithful as a and vice versa. On the contrary, if ρ is close
to −1, the relationship is strongly negative.
Others When computing the word importance with explana-
tory methods, existing work use either the predicted class [7]
or the legitimate class [4] as the target class. Since we already
have the ground-truth labels, we use the latter approach.

B. Quantitative Comparison of Explanatory Methods

We quantitatively compare the explanatory methods and
compute their AOPC values varying the cut-off point K from 0
to the maximum document length. Fig. 1 illustrates the results.

Generally speaking, all the SA-based methods suffer perfor-
mance decline definitely compared to SignedGI. The curves of
|SA|1, |SA|2 and |SA|∞ are almost overlapped and indicate
the similar explanatory abilities. This is mainly because the

578

0 10 20 30 40 50
0.0

0.2

0.4

0.6
AG-FastText

0 10 20 30 40 50
0.0

0.2

0.4

0.6
AG-TextCNN

0 10 20 30 40 50
0.0

0.2

0.4

AG-BiLSTM

0 40 80 120 160 200
0.00

0.25

0.50

0.75
IMDB-FastText

0 40 80 120 160 200
0.00

0.25

0.50

0.75
IMDB-TextCNN

0 40 80 120 160 200
0.0

0.2

0.4

IMDB-BiLSTM

SignedGI |SA|raw |SA|1 |SA|2 |SA| RD LOO

Fig. 1. Comparison of the considered explanatory methods in terms of AOPC values. The horizontal axis represents the cut-off point K, and the vertical axis
represents the AOPC value. For each K, a larger AOPC value indicates the better explanatory ability of the top-K important words.

-1.0 -0.5 0.0 0.5 1.0
0%

20%

40%

60%
Sig. Frac. = 99.88%
Sig. Frac. = 74.64%

AG-FastText

-1.0 -0.5 0.0 0.5 1.0
0%

10%

20%

30% Sig. Frac. = 98.76%
Sig. Frac. = 74.64%

AG-TextCNN

-1.0 -0.5 0.0 0.5 1.0
0%

10%

20% Sig. Frac. = 92.92%
Sig. Frac. = 47.93%

AG-BiLSTM

-1.0 -0.5 0.0 0.5 1.0
0%

20%

40% Sig. Frac. = 100.0%
Sig. Frac. = 17.58%

IMDB-FastText

-1.0 -0.5 0.0 0.5 1.0
0%

10%

20%

30%
Sig. Frac. = 89.89%
Sig. Frac. = 50.63%

IMDB-TextCNN

SignedGI |SA|1

-1.0 -0.5 0.0 0.5 1.0
0%

10%

20%
Sig. Frac. = 83.83%
Sig. Frac. = 58.31%

IMDB-BiLSTM

Fig. 2. Histogram of Pearson correlation coefficient ρ between LOO and gradient-based methods. The horizontal axis represents ρ and the vertical axis
represents the distribution. |SA|1 is selected to represent SA-based methods since the results of others are similar. The fraction of instances whose correlation
is statistically significant (p-value <= 0.05) has been reported in the top-left corner. Note that the p-value here largely depends on the document length, so
the correlation is prone to be weak.

highest gradient magnitude in a particular dimension that
decides the value of |SA|∞ usually contributes most to the
value of |SA|1 and |SA|2. These three methods outperform
the RD baseline by a moderate margin on AG-TextCNN and
AG-BiLTSM, but only tie RD in the other cases. It seems that
their performance are heavily affected by the model or the
dataset. |SA|raw performs worse than other SA-bsed methods.
Sometimes even the RD baseline can beat |SA|raw.

LOO and SignedGI always demonstrate the larger AOPC
values. In other words, they better identify the important
words. Even though we assume that LOO provides the up-
per bound on the explanatory ability in our perturbation-

based experiments, SignedGI outperforms LOO in TextCNN
interestingly. We attribute this observation to the weakness of
LOO, that it computes the contribution of words independently
without considering their mutual effects. Hence, it might result
in a sub-optimal explanation [7]. In most cases, the AOPC
values of SignedGI and LOO are generally comparable, except
for IMDB-BiLSTM where LOO surpasses SignedGI by a
large margin. A possible reason is that the long document
length of IMDB causes the vanishing gradient problem in
the recurrent structure, which exerts a negative impact on the
SignedGI performance. Note that a deep investigation into the
performance difference between LOO and SignedGI is not the

579

0 10 20 30 40 50

This
is
a

great
movie.

Too
bad

it
is

not
available

on
home
video.

IMDB-FastText

-0.01

-0.00

0.00

0.01

0.01

0 10 20 30 40 50

This
is
a

great
movie.

Too
bad

it
is

not
available

on
home
video.

IMDB-TextCNN

-1.00

-0.50

0.00

0.50

1.00

0 10 20 30 40 50

This
is
a

great
movie.

Too
bad

it
is

not
available

on
home
video.

IMDB-BiLSTM

-0.01

-0.00

-0.00

0.00

0.00

0.00

0.01

0.01

(a) Visualization of gradient information. Each row represents the continuous word representation, where each cell is the gradient of a particular dimension in
the embedding space.

LOO This is a great movie. Too bad it is not available on home video.
SignedGI This is a great movie. Too bad it is not available on home video.

|SA| This is a great movie. Too bad it is not available on home video.
|SA|2 This is a great movie. Too bad it is not available on home video.
|SA|1 This is a great movie. Too bad it is not available on home video.

|SA|raw This is a great movie. Too bad it is not available on home video.
IMDB-FastText

LOO This is a great movie. Too bad it is not available on home video.
SignedGI This is a great movie. Too bad it is not available on home video.

|SA| This is a great movie. Too bad it is not available on home video.
|SA|2 This is a great movie. Too bad it is not available on home video.
|SA|1 This is a great movie. Too bad it is not available on home video.

|SA|raw This is a great movie. Too bad it is not available on home video.
IMDB-TextCNN

LOO This is a great movie. Too bad it is not available on home video.
SignedGI This is a great movie. Too bad it is not available on home video.

|SA| This is a great movie. Too bad it is not available on home video.
|SA|2 This is a great movie. Too bad it is not available on home video.
|SA|1 This is a great movie. Too bad it is not available on home video.

|SA|raw This is a great movie. Too bad it is not available on home video.
IMDB-BiLSTM

0.2 0.1 0.0 0.1 0.2 0.3 0.4

5 0 5 10 15

0.2 0.0 0.2 0.4 0.6 0.8 1.0

(b) Visualization of instance-wise explanations. Each row displays the word-level importance scores for the instance, and the used explanatory
method is indicated on the left.

Fig. 3. Qualitative comparison of explanatory methods. The instance is selected from the test set of IMDB and the target class is “positive”. The red color
indicates a positive score, and the blue color indicates a negative score. The maximum value of IMDB-BiLSTM has been reduced from 5.0 to 1.0 for better
visualizations, otherwise the negative color bar will be overwhelmed.

scope of our paper, and the important thing is that SignedGI
can achieve a good explanatory ability

C. Correlation Between LOO and Gradient-based Methods

The full distributions of the Pearson correlation coefficient
ρ have been illustrated in Fig. 2. The general observation from
the figures is that SignedGI does tend to have a strong positive
association with LOO, and a statistically significant correlation
can be consistently established. The association on IMDB-
BiLSTM seems to be less strong, which is consistent with
the results in Fig. 1 that the difference between SignedGI and
LOO is a bit pronounced on on IMDB-BiLSTM. On the other
hand, the centrality of densities for |SA|1 lies in the range
of 0.2∼0.5 on the dataset of AG, which shows a very weak
positive association with LOO. On the dataset of IMDB, the

centrality hovers around 0.0, indicating almost no association.
The results here further support the fact than SignedGI shows
better explanatory ability compared to SA-based methods.

D. Qualitative Comparison of Explanatory Methods

In this section, we illustrate the gradient information in the
embedding space in Fig. 3 (a), and we visualize the instance-
wise explanations in Fig. 3 (b).

Now we take a look at the results of IMDB-FastText in
Fig. 3 (a). Interestingly, the gradients keep the same in each
dimension, except for the word “is”, whose gradient values
are exactly twice as much as other words. In fact, in the
architecture of FastText, the word embeddings are averaged
into an internal representation, followed by the output layer
directly. As a result, the gradient value of a specific dimension

580

in the embedding space is always proportional to the word
frequency in the input document. As we can see, FastText
is a pretty compelling counterexample to the effectiveness of
SA-based methods. The words of the same frequency will
always be assigned with the same SA-based scores, but they
are embedded in various continuous representations and go
through the same linear layer, meaning that their contributions
to the final prediction are different in reality.

In Fig. 3 (a), the results does not have a clear focus in the
heatmap of IMDB-TextCNN. In IMDB-BiLSTM, the words
“bad”, “home” and “video” stands out, but the target label is
“positive” and the model attaches almost zero emphasis on
the positive sentiment word “great”. Note that the explanatory
methods only reflect the model’s own “view” on the model
prediction rather than human reasoning, so it is possible that
“great” does not play an important role in the binary sentiment
analysis task. However, as we will show later, “great” does
have a strong positive impact in this model, and the heatmap
here indeed fails to capture the relevant information.

In Fig. 3 (b), let us focus on the results of LOO firstly.
It can be clearly seen that “great” has a large positive score
across all three models, meaning that “great” contributes a lot
to the target label. On the contrary, “bad” is always assigned
with a large negative score, indicating that it has a negative
impact to the current prediction. The results agree with human
observations, that “great” has a positive impact and “bad” has
a negative impact on the prediction of positive sentiments.
Not surprisingly, the results of SignedGI are very close to
LOO, except for the case on BiLSTM where SignedGI misses
the word “great”, which also agrees with previous results
that SignedGI works less well on BiLSTM. Nevertheless,
SignedGI still filters out the important words in the qualitative
experiments and provides the reasonable signed explanations.
On the other hand, the results of SA-based methods are less
focused. Sometimes they cannot select the important words
correctly, or cannot distinguish between negative and positive
impacts.

V. CONCLUSION

Gradient-based explanatory methods have been widely used
in NLP nowadays. In this paper, we review existing methods
and discuss their practical implications. We propose the signed
version of GI, namely SignedGI, and show the weakness of
SA-based methods. We conduct comprehensive experiments to
evaluate different methods, and the empirical results demon-
strate that SignedGI significantly outperforms SA-based meth-
ods in explanatory ability. We hope our work helps researchers
to obtain the more accurate instance-wise explanations via
gradient-based explanatory methods in NLP.

REFERENCES

[1] A. Alishahi, G. Chrupala, and T. Linzen, “Analyzing and interpreting
neural networks for NLP: A report on the first blackboxnlp workshop,”
CoRR, vol. abs/1904.04063, 2019.

[2] M. Denil, A. Demiraj, and N. de Freitas, “Extraction of salient
sentences from labelled documents,” CoRR, vol. abs/1412.6815, 2014.

[3] J. Li, X. Chen, E. H. Hovy, and D. Jurafsky, “Visualizing and
understanding neural models in NLP,” in NAACL HLT 2016, The
2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2016,
2016, pp. 681–691.

[4] L. Arras, A. Osman, K. Müller, and W. Samek, “Evaluating recurrent
neural network explanations,” CoRR, vol. abs/1904.11829, 2019.

[5] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
in 2nd International Conference on Learning Representations, ICLR
2014, 2014.

[6] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. Müller,
“Evaluating the visualization of what a deep neural network has
learned,” IEEE Trans. Neural Networks Learn. Syst., vol. 28, no. 11,
pp. 2660–2673, 2017.

[7] D. Nguyen, “Comparing automatic and human evaluation of local
explanations for text classification,” in Proceedings of the 2018
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-
HLT 2018, 2018, pp. 1069–1078.

[8] L. Arras, F. Horn, G. Montavon, K. Müller, and W. Samek, “Explaining
predictions of non-linear classifiers in NLP,” in Proceedings of the 1st
Workshop on Representation Learning for NLP, Rep4NLP@ACL 2016,
2016, pp. 1–7.

[9] L. Arras, G. Montavon, K. Müller, and W. Samek, “Explaining recurrent
neural network predictions in sentiment analysis,” in Proceedings of the
8th Workshop on Computational Approaches to Subjectivity, Sentiment
and Social Media Analysis, WASSA@EMNLP 2017, Copenhagen,
Denmark, September 8, 2017, 2017, pp. 159–168.

[10] E. Wallace, J. Tuyls, J. Wang, S. Subramanian, M. Gardner, and
S. Singh, “Allennlp interpret: A framework for explaining predictions
of NLP models,” in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP
2019, 2019, pp. 7–12.

[11] S. Feng, E. Wallace, A. G. II, M. Iyyer, P. Rodriguez, and J. L. Boyd-
Graber, “Pathologies of neural models make interpretation difficult,” in
Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, 2018, 2018, pp. 3719–3728.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
696–699, 1988.

[13] J. Li, W. Monroe, and D. Jurafsky, “Understanding neural networks
through representation erasure,” CoRR, vol. abs/1612.08220, 2016.

[14] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, 2017, pp. 3319–3328.

[15] N. Pörner, H. Schütze, and B. Roth, “Evaluating neural network
explanation methods using hybrid documents and morphosyntactic
agreement,” in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL 2018, 2018, pp.
340–350.

[16] S. Jain and B. C. Wallace, “Attention is not explanation,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, 2019, pp. 3543–3556.

[17] H. Liu, Y. Zhang, Y. Wang, Z. Lin, and Y. Chen, “Joint character-level
word embedding and adversarial stability training to defend adversarial
text,” in The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020. AAAI Press, 2020, pp. 8384–8391.

[18] E. Grave, T. Mikolov, A. Joulin, and P. Bojanowski, “Bag of tricks for
efficient text classification,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics,
2017, pp. 427–431.

[19] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, 2014, pp. 1746–1751.

[20] Á. Kádár, G. Chrupala, and A. Alishahi, “Representation of linguistic
form and function in recurrent neural networks,” Computational
Linguistics, vol. 43, no. 4, 2017.

581

Relation Extraction Model Based on Keywords

Attention

Yu Chen

School of Computer Science

Hubei University of Technology

Hubei, China

1148848330@qq.com

Jianxia Chen

School of Computer Science

Hubei University of Technology

Hubei, China
 chenjianxiawh@gmail.com

Chang Liu

School of Computer Science

Hubei University of Technology

Hubei, China

1323821376@qq.com

Qi Liu

School of Computer Science

Hubei University of Technology

Hubei, China

260129443@qq.com

Abstract—Recently, most relational extraction models usually

mitigate the adverse effects of noise in sentences for the prediction

results, utilizing different tools of natural language processing that

to capture high-level features in sentences combined. However,

these attention mechanisms do not manage to exploit as much as

possible the semantic information of certain keywords that have

relational expressive information in the sentence. Therefore, this

paper proposes a model based on the keyword’s attention

mechanism, which is a novel attention mechanism based on the

keywords of relational expression related. In particular, the

proposed attention mechanism utilizes a linear-chain conditional

random field that combines entity-pair features, similarity

features between entity-pair features, and its hidden vectors to

compute each word’s marginal distribution defined as the

attention weight. Experimental results show that the method can

focus on keywords with relational expression semantics in

sentences without using sophisticated tools and achieves

performance improvements on the SemEval-2010 Task 8 dataset.

Keywords-relation extraction; keywords attention; Hidden

similarity; Bi-GRU

I. INTRODUCTION

RE(Relation extraction) is critical to NLP (natural language
processing). To improve the performance of the models,
researchers have tried several methods to remove the effects of
noise [1, 2], including the removal of irrelevant words and
methods based on attention mechanism. In contrast to traditional
classification tasks, this task has to deal with noise in sentences.

In this paper, we propose an end-to-end bidirectional
recurrent neural network-based model [3], called the REKA (RE
Based on Keyword Attention) model, which uses a keyword-
based attention mechanism. At the same time, our model avoids
the accumulation of errors by not using any NLP tools, we use
Gate Recurrent Unit (GRU) [4] to build a recurrent neural
network to get the contextual information of the sentences. The
keywords attention in the REKA model consists of two
components: entity pair attention and segment attention,
respectively. The paper utilized a linear-chain CRF (Conditional
Random Field) [5] incorporating entity pair similarity
calculations to calculate the marginal distribution of each state
variable and consider it as an attention weight.

 DOI reference number: 10.18293/SEKE2021-073

II. RELATED WORK

Recently, the models based on CNN (convolutional neural
networks) [6, 7, 8] and RNN (recurrent neural network) [9] have
become a major method for the RE research. The purpose of a
CNN is to capture the local and continuous contextual content
of a target, whereas an RNN accumulates contextual information
in the input sentences via storage units. Socher et al. [10]
proposed a RNN method that allows each node in the analysis
tree to have a vector and a matrix, where the vector captures the
intrinsic meaning of the component and the matrix captures how
it changes the meaning of adjacent words or phrases. This
matrix-vector RNN[10] can learn the meaning of operators in
propositional logic and natural language, solving the problem
that single word vector space models cannot capture the
compositional meaning of long phrases, which prevents them
from under-standing language in greater depth.

Hashimoto et al. [11] proposed a RNN model based on
syntactic trees in 2013. Unlike the model proposed by Socher et
al. [10], Hashimoto et al. did not use word dependency matrices,
which are computationally expensive, but used additional
features such as lexical (Part-of-Speech) labels, phrase
categories, and syntactic heads, and introduced into the RNN
model Hashimoto's model demonstrates the effectiveness of
adding features and introducing averaging parameters to the
RNN model to add weight to important phrases for the target
task.

III. METHODOLOGY

As shown in Fig. 1, the proposed REKA is composed of the
following four layers:

A. Input Layer

The input layer of the REKA model aims to convert the
semantic and positional information of the input sentences into
vectors. We uses 1 2{ , ... , }nw w w, to denotes the input sentences
and 1 2{ , ... , }j j je e e

np p p, denotes a vector of the relative position
of every words to the entity pair je where {1, 2}j .

To enable the model to capture more accurate semantic
information, the paper used wd dimensional ELMo (Embedding
from Language Model) word embedding pre-training model.
Unlike previous work in which one word corresponds to a

582

mailto:1148848330@qq.com
mailto:%20chenjianxiawh@gmail.com
mailto:%20chenjianxiawh@gmail.com
mailto:1148848330@qq.com
mailto:1148848330@qq.com

vector that is stationary [12, 13], ELMo word vectors are no
more just a vector correspondence, a real trained model [14].

1h 2h
3h nh

1h 2h
3h nh

2eh

1e
h

() ()1 2

1 21 1 2, exp ; ; ; ; ;
e eH E

i i i i e ez W h p p W h t h t b = + + H

z

2x 3x nx
1x

1

2

1

1

e

e

p

p

1

2

2

2

e

e

p

p

1

2

3

3

e

e

p

p

1

2

e

n

e

n

p

p

1m 2m
3m

nm

1w 2w
3w

nw

Classification

Keyword Attention

Bi-GRU Network

Self -Attention

Inputs

Figure 1. The systematic architecture of REKA model.

B. Multi-Head Attention Layer

We add a multi-headed attention mechanism after the input
layer to better allow the model to understand the meaning of the
context and to improve the performance of the model to solve
the long-term dependencies problem [15, 16].

The calculation process for the multi-headed attention
module is shown in the following equation:

 1Concat head ; ; headMultiHead (, ,) []MQ K V W r= (1)

 ()where head Attention , ,
Q K V

i i i iW Q W K W V= (2)

 Attention (, ,) softmax

w

QK
Q K V V

d
=

 (3)

Where ere d dw wMW , /Q d r dw w
iW , /d r dK w w

iW ,
/d r dV w w

iW is the learn-able parameter of the multi-headed
attention module, MW is the output of the scaled dot-product
attention when calculated and connected in series, Q

iW denote
query, K

iW denote key, and V
iW denote value of ith head [15].

The inputs Q, K, V in the multi-head attention are all
equivalent to the word embedding vector 1 2, ... ,{ }nx x x, . The
output vectors of the multi-head attention layer is feature
vectors that contain contextual information about the input.

C. Bi-GRU Network

The Bi-GRU network layer is utilized to obtain contextual
information about the output sequence of the multi-head
attention layer which unit has fewer parameters and converges
faster than the LSTM unit. For simplicity, the processing of im
by the GRU unit is denoted in this paper as ()iGRU m . The
calculation process is shown as follows:

 ()t th GRU m= (4)

 ()t th GRU m= (5)

 ;t t th hh
 = (6)

The input tm of Bi-GRU is the output of the multi-head
attention layer. To make effective use of both past and future
features at a given time, the paper concatenates the hidden state
vectors of the forward GRU network dh

th at each time step
with the hidden state vectors of the backward GRU network

dh
th , the hd is the dimension of the hidden state vector of

the GRU network unit, and we use 1 2{ , ... , }nh h h, to denote the
hidden state vector of every word and use arrows to indicate the
direction.

D. Keyword Attention

The keyword attention mechanism proposed in this paper
aims to perform a soft selection of hidden layer vectors, and the
attention weights are also a linear combination of a set of scalars.
The weights are utilized to indicate the degree of attentions that
the model should focus on a word of the sentence and it takes
values between 0 and 1 in keyword attention mechanism. The
proposed model defines a state variable z, in which it means that
the corresponding word is irrelevant to the relational
classification when z is equal to 0, or the word required for the
relational expression in the sentence if z is equal to 1.Thus each
sentence has its corresponding sequence of binary state
variables z. According to this definition, the expected value of
a hidden state N, will be selected and is calculated as follows:

 ()1 i
i

p zi== HN h (7)

To derive ()1ip z = H , the CRF is introduced here to calculate
the sequence of weights for the hidden sequence

1 2{ , ... , }nh h h=H , , in which H represents the input sequence
and ih represents the hidden output of GRU for the ith word. In
particular, CRF provides a probabilistic framework for the
computation of conditional probabilities from a sequence to
another sequence. The linear-chain CRF defines a family of
conditional probability ()1ip z = H given H with the following
equation:

 ()
1

() ,
() c C

p
Z

= c
z H z H

H
 (8)

 ()() ,
c C

Z

= c

z

H z H (9)

Where denotes the set of state sequences z, ()Z H is the
normalization constant and cz denotes the subset of z given by
individual clique c, (), cz H is the potential function of this
clique shown as the following equation:

() () ()
1

1 2 1

1 1

, , ,
n n

i i i i

c C i i

z z z
−

+

 = =

= cz H h (10)

This paper utilized two types of feature function for calculation,
the vertex feature function ()1 ,iz H and the edge feature
function ()2 1,i iz z + . 1 represents the mapping of the output
h of GRU to the state variable z, and 2 simulates the transition

583

of two state variables at adjacent time steps. The equations for
their definitions are shown as follows respectively:

 () ()1 1 2, exp H E
iz F F b = + +H W W (11)

 1

2 1 21 2 2 1 2][; ; ; ; ; ; ;] [e
i e e eipF h h t F h t h t= = (12)

 () ()
12 1 ,

, exp
i i

t

i i z z
z z

++
= W (13)

Where
HW and EW are learnable parameters of a linear

transformation, and b is a bias term. They map the contextual
information in the sentence into feature scores for each state
variable, which makes use of the relative entity position features

1e
ip 2e

ip in the sentence and keyword features (entity pair
features 1eh , 2eh and entity pair hidden similarity features 1t
and 2t).

1) Entity position feature:Relative location features 1e
ip ,

2e
ip are utilized to jointly represent contextual information as

well as entity location relationships by concatenating them with
the hidden layer outputs ih , as shown by F1 in Equation 12.
There is a definition such as 1 2, p

e e d
i ip p , {1, 2}je .

Positional embedding is similar to word embedding vectors
in which it transforms a relative positional scalar into a vector
by traversing through the embedding matrix (2 1)pd L

posW − ,
where L is the length of each piece of data in the dataset, and

pd is the dimension of the position vectors.

2) Entity hidden similarity features: Since entity words in

sentences are inherently strong cues for relational classification,

most of NLP tools were utilized in Zeng et al. [7] to obtain

linguistic features of entity words, however, this approach is not

an end-to-end model anymore. Therefore, this paper proposes a

method to extract entity features that avoid the use of traditional

NLP tools, and such features are named entity hidden similarity

features in this paper, the calculation procedure is shown in

Equation 14, 15.

()()
()()

1

exp

exp

j

j

e i
j

i K

e k

k

h c

a

h c
=

=

 (14)

{1,2}

1

K
j

j i i

i

t a c

=

= (15)

In this paper, entity words are categorized based on the
similarity between the embedding vector and the hidden vector
of the entity words. Where 2 hd Kc is a potential vector
constructed in the potential vector space to represent the classes
of similar entities, where K is the number of classes in which
entities are classified by their hidden similarities.

The hidden similarity feature jt of the jth entity is calculated
by weighting the similarity of c with the output jeh of the
hidden layer based on the jth entity. Entity features are
constructed by cascading the hidden states corresponding to the
entity location and the potential type representation of the entity
pair, as shown by F2 in Equation 12.

E. Classification Layer

To calculate the probability p of the output distribution of
the state variable (the conditional probability of all relations), a
softmax layer has been added after the keyword attention layer,
which is calculated as shown in the Equation 16.

 ()() y yp y softmax b= +N W N (16)

Where | |R
yb is a bias term, | |R is a number of

relationship categories, yW maps the expected value of a
hidden state N to the feature score for relation labels.

F. Training

With the introduction of the keyword attention mechanism,
the model in this paper is shown in Fig. 1. This attention is
calculated about to with concerning the cross-entropy loss of
the RE. This loss function is defined as shown in Equation 17.

 ()
| |

() ()

1

log ,
D

i i

i

p y S
=

 = − (17)

Where | |D is the size of the training data set, () ()(,)i iS y is the

ith sample in the data set. In this paper, the AdaDelta optimizer

is used to minimize the loss calculation parameter .

L2 regularization is added to the loss function to prevent

overfitting, and 1 , 2 are hyper-parameters of regularizes.

The second regularizer tries to force the model to process the

few words that matter and returns a sparse weight distribution.

The final objective function is shown in Equation 18.

 ()
2

1 22
1

n

i

i

p z = + + = H (18)

IV. EXPERIMENTS

A. Dataset and Metric

Our experiments were evaluated on the SemEval-2010 Task
8 dataset. The dataset has 19 relationship types 10717 sentences,
including 8000 samples for training and 2717 samples for testing.
The evaluation metrics used in this paper are based on the
macro-averaged F1.

B. Implementation Details

In this paper, the word embeddings used as input in the
REKA model are trained using the publicly available pre-trained
EMLo model, and all other parameters in the model are
randomly initialized by the zero-mean Gaussian distribution, the
hyperparameters are shown in Tab. I.

C. Comparison Models

The proposed REKA model is compared with the following
benchmark model such as SVM [6], MV-RNN [10], CNN [7],
BLSTM [18], DepNN [19], FCM [20], SDP-LSTM [21].

584

TABLE I. HYPERPARAMETERS SETTING.

Hyper-parameter Description Value

dropout rate

Keyword attention layer 0.5

Bi-GRU layer 0.6

Word embedding layer 0.8

Multi-head attention layer 0.8

1
Regularization coefficienta [0, 0.2]

2

r Number of Heads 4

batch size Size of mini-batch 50

 Initial learning rate 4

rd
 The decay rate of leaning 0.5

ad
 Size of attention layer 50

hd
 Size of hidden layer 512

K
Number of the similar entities’

classes
4

pd

Size of position embeddings 50

a. (The regularization coefficient values of
1

 and
2

 are selected from 0 to 0.2 using grid search.)

D. Experimental Results

To further evaluate the proposed model, we selected the
RNN-based model from the above models for comparison. The
average precisions (AP) of REKA compared with RNN methods
are shown in Tab. II. The results of REKA model compared to
other models are shown in Tab. III, From the experimental
results, the proposed REKA model outperforms the existing
model using the smaller number of features, with a relative
improvement of 1.1%, indicating that the keyword attention
mechanism can improve the performance of the model.

TABLE II. AVERAGE PRECISION SCOREFOR OUR MODEL AND COMPARED

METHODS (MICRO-AVERAGED OVER ALL CLASSES)

a BLSTM SDP-LSTM REKA

1% 0.26 0.47 0.55

20% 0.60 0.68 0.76

100% 0.73 0.70 0.81

a. (The first columns show how much of testing data has been used. Performance is on the SemEval-

2010 task dataset)

TABLE III. COMPARATIVE RESULTS ON SEMEVAL-2010 TASK 8 TEST

DATASET.

Model Additional Featuresa F1

SVM[6] POS, WN, etc. 82.3

MV-RNN[10] POS, NER, WN 82.4

CNN[7] PE, WN 82.7

BLSTM[18]
None, 82.7

+ PF, POS, etc. 84.3

DepNN[19] DEP 83.6

FCM[20] SDP, NER 83.0

SDP-LSTM[21] SDP 83.7

REKA Model PE 84.8

a. (Where WN, DEP, SDP, PE are WordNet, dependency features, shortest dependency path, position

embeddings, respectively)

V. CONCLUSION

In this paper, we propose an end-to-end Bi-GRU network
model based on a keyword attention mechanism. The model
fully extracts the features available in the dataset using the
keyword attention mechanism and achieves an F1 of 84.8
without the use of other tools for natural language processing. In

the keyword attention mechanism, we use the relative position
vectors of entity pairs and the similarity between entity pairs and
their hidden vectors for computing the marginal distribution of
each word, which is chosen as the attention weight. In the future,
we will further investigate attention mechanisms that can better
extract key information from sentences and plan to use them for
the recognition of relationships between multiple entities.

REFERENCES

[1] Zhang, Y.; Zhong, V.; Chen, D.; Angeli, G.; Manning, C.D. Position-
aware attention and supervised data improve slot filling. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, Copenhagen, Denmark, 7–11 September 2017; pp. 35–45.

[2] Liu T, Zhang X, Zhou W, et al. Neural RE via inner-sentence noise
reduction and transfer learning[J]. arXiv preprint arXiv:1808.06738, 2018.

[3] Lee J, Seo S, Choi Y S. Semantic relation classification via bidirectional
lstm networks with entity-aware attention using latent entity typing[J].
Symmetry, 2019, 11(6): 785.

[4] Lee J, Seo S, Choi Y S. Semantic relation classification via bidirectional
lstm networks with entity-aware attention using latent entity typing[J].
Symmetry, 2019, 11(6): 785.

[5] Lafferty J, McCallum A, Pereira F C N. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data[J]. 2001.

[6] Rink B, Harabagiu S. Utd: Classifying semantic relations by combining
lexical and semantic resources[C]//Proceedings of the 5th International
Workshop on Semantic Evaluation. 2010: 256-259.

[7] Zeng D, Liu K, Lai S, et al. Relation classification via convolutional deep
neural network[C]//Proceedings of COLING 2014, the 25th international
conference on computational linguistics: technical papers. 2014: 2335-
2344.

[8] Santos C N, Xiang B, Zhou B. Classifying relations by ranking with
convolutional neural networks[J]. arXiv preprint arXiv:1504.06580, 2015.

[9] Zhang D, Wang D. Relation classification via recurrent neural network[J].
arXiv preprint arXiv:1508.01006, 2015.

[10] Socher R, Huval B, Manning C D, et al. Semantic compositionality
through recursive matrix-vector spaces[C]//Proceedings of the 2012 joint
conference on empirical methods in natural language processing and
computational natural language learning. 2012: 1201-1211.

[11] Hashimoto K, Miwa M, Tsuruoka Y, et al. Simple customization of
recursive neural networks for semantic relation
classification[C]//Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. 2013: 1372-1376.

[12] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word
representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.

[13] Pennington J, Socher R, Manning C D. Glove: Global vectors for word
representation[C]//Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP). 2014: 1532-1543.

[14] Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word
representations[J]. arXiv preprint arXiv:1802.05365, 2018.

[15] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv
preprint arXiv:1706.03762, 2017.

[16] Shen T, Zhou T, Long G, et al. Disan: Directional self-attention network
for rnn/cnn-free language understanding[C]//Proceedings of the AAAI
Conference on Artificial Intelligence. 2018, 32(1).

[17] Tan Z, Wang M, Xie J, et al. Deep semantic role labeling with self-
attention[C]//Proceedings of the AAAI Conference on Artificial
Intelligence. 2018, 32(1).

[18] Zhang S, Zheng D, Hu X, et al. Bidirectional long short-term memory
networks for relation classification[C]//Proceedings of the 29th Pacific
Asia conference on language, information and computation. 2015: 73-78.

[19] Liu Y, Wei F, Li S, et al. A dependency-based neural network for relation
classification[J]. arXiv preprint arXiv:1507.04646, 2015.

[20] Yu M, Gormley M, Dredze M. Factor-based compositional embedding
models[C]//NIPS Workshop on Learning Semantics. 2014: 95-101.

[21] Xu Y, Mou L, Li G, et al. Classifying relations via long short term memory
networks along shortest dependency paths[C]//Proceedings of the 2015
conference on empirical methods in natural language processing. 2015:
1785-1794.

585

Chinese Sentence Semantic Matching With Multi-

Granularity Based on Siamese Neural Network

Xuan Wen

School of Computer Science
Hubei University of Technology

Hubei, China

1595159972@qq.com

Jianxia Chen

School of Computer Science

Hubei University of Technology

Hubei, China

chenjianxiawh@gmail.com

Yu Chen

School of Computer Science

Hubei University of Technology

Hubei, China

1148848330@qq.com

Shirui Sheng

School of Computer Science

Hubei University of Technology

Hubei, China

1606472332@qq.com

Abstract—Sentence semantic matching is one of critical research

in various NLP tasks such as natural language inference,

paraphrase identification, and question answering, in which

similarity of input sentences has always been a key aspect to

determine the semantic relations of sentences. One of the most

popular models is to utilize single word granularity to address the

semantic similarity. However, it is not appropriate for Chinese

sentences semantic matching. This is because there are various

meanings following various granularities such as characters or

word segmentation in a Chinese sentence. In addition, it is

difficult for the sentence semantic matching due to its own short

contents and sparse features. Inspired by Siamese Neural

Network, an artificial neural network that uses the same weights

while working in tandem on two different input vectors to

compute comparable output vectors, this paper proposes a Multi-

Granularity Fusion neural network, which enables preserving

semantic features from both the character-granularity and the

word-granularity in Chinese sentences. The paper evaluates the

proposed architecture on highly competitive benchmark datasets

related to sentence matching. Experimental results show that the

proposed architecture, which retains both characters and words

features of sentences, and achieves state-of-the-art performances

for most of the tasks.

Index Terms: Siamese Network; Multi -Granularity; Chinese

Sentence; Semantic Matching

I. INTRODUCTION

 Semantic matching plays a critical role in many NLP
(natural language processing) tasks, such as question and
answer (QA) [1], machine translation (MT) [2], information
retrieval [3], etc. As a widely existing text representation over
the Internet, sentence semantic matching has been gradually
showing its strong research values. How to effectively excavate
and analyze the sentence semantic has become a research
hotspot in the field of NLP.

Usually, the most serious issues of sentences semantic
matching are resulted from their short contents and sparse
features. To solve this problem, traditional methods often mine
information according to the original text, such as using
semantic dictionary HowNet [4] or introducing topic model
LDA [5] to assist sentences semantic matching. However, these

DOI reference number : 10.18293/SEKE2021-074

methods often carry out semantic matching only by weighting
the method of the original sentences. Obviously, the rich
semantic information of the sentences in Chinese texts has not
been fully utilized to improve the matching performance. This
is because Chinese texts have its own particularity, the
semantic matching of Chinese sentences is often affected by
their word segmentations.

The common semantic matching methods usually
calculated similarities from the aspect of the word granularity,
however, ignored the extraction of semantic features of the
sentence. With the rapid development of deep learning, many
deep learning models based on the word granularity have been
proposed in the research of sentence semantic matching, such
as DeepMatch tree [6], Match-Pyramid [7], ARC-I [8], etc.
However, these models do not obtain the rich characteristics of
the sentence itself via only the single word granularity. It may
even become worse only depending on a single word
granularity calculation. Therefore, some researchers design a
novel neural network model that can combine words with
characters together to form a new sequence such as Lattice
CNNs [9]. Although this network has achieved better results in
QA (question and answer), such a simple combination may
introduce the noise and even lose its original meaning.

Inspired by SNN (siamese neural network) [10], an
artificial neural network that uses the same weights while
working in tandem on two different input vectors to compute
comparable output vectors, this paper proposes a novel
architecture, named MGFSN which is an abbreviation for
Multi-Granularity Fusion Siamese neural Network. The
MGFSN enables preserving semantic features from both the
character-granularity and the word-granularity in Chinese
sentences. In particular, the proposed MGFSN architecture is
composed of three components including the word embedding
layer, the multi-granularity coding layer, and the semantic
interaction layer. The paper evaluates the proposed architecture
on a highly competitive benchmark LCQMC dataset related to
sentence matching. Experimental results show that the
proposed architecture achieves state-of-the-art performances
for most of the tasks.

The rest of this paper is structured as follows. The paper
introduces the related work about semantic matching of
Chinese sentences in Section II, and describes the proposed

586

Multi-Granularity Fusion based on the Siamese Network model
in Section III in detail. Section IV provides the experimental
results and related analysis, Section V summarizes the
contributions of the paper and the future work.

II. RELATED WORK

A. Sentence similarity calculation

Sentence similarity calculation is the basis of natural
language understanding tasks. Sentence similarity refers to the
degree of interchangeability of words between two sentences
and the degree of consistency of word meaning [11], which is
an index used to evaluate the sentences similarity. From the
perspective of information theory, Lin et al. [12] believe that
sentence similarity is related to the commonality among
sentences. The greater the commonality, the smaller the
difference and the higher the similarity. Therefore, the
calculation of similarity of two sentences, including S1 and S2,

shown in Eq. (1).

 1 2
1 2

1 2

log ((,))
(,)

log ((,))

P common S S
sim S S

P description S S
= (1)

Since there are many infect factors in the sentence
similarity calculation such as sentence structure, language,
syntax, etc., there are various ways to research sentence
similarity. The classification methods recognized by most
scholars are string-based method, corpus-based method, and
knowledge-based Library methods, knowledge-based methods
and hybrid methods [13-15]. Among them, this paper utilizes a
corpus-based method, specifically a neural network-based
method. The neural network-based method takes a corpus to
convert a sentence into a vector representation with semantic
information as in input for learning. Compared with other
methods, the biggest advantage of this method is that it can
represent complex contexts.

B. Convolutional Neural Network

Convolutional neural network (CNN) is a classic deep
learning algorithm. Its basic idea is to use parallel multi-level
convolution to perform multi-layer representation of input data,
extract feature information of data, and obtain better feature
robustness. It was first used in computer vision (CV). With its
mature application in the field of computer vision, people have
also begun to apply it to text processing, such as the model
proposed by Kim et al. in 2014 [16].

After the first success of Convolutional Neural Network in
NLP field, more and more people apply CNN in NLP field. Kal
et al. [17] proposed a Network model named DCNN (Dynamic
Convolutional Neural Network), whose delicacy lies in the use
of Dynamic pooling method which can process input of
variable length. The network contains two types of layers,
namely the one-dimensional convolutional layer and the
dynamic k-max pooling layer. The structure of DCNN is
shown in Fig. 1. The convolution layer of the network adopts
the way of wide convolution, followed by the dynamic k-max
pooling layer, which retains the first k maximum values with
certain position information. Then, the pooled features are
folded, mainly to consider some relation between two adjacent
rows, and the model adopts the RAE model idea to extract

features hierarchically. The advantage of DCNN is that it does
not need any prior information input, nor does it need to
construct very complex artificial features.

Figure 1. The Framework Of DCNN [17]

Wang et al. [18] proposed a network structure based on
similar and dissimilar information, which considered the
similarity and dissimilarity of sentences by decomposing and
combining the semantics of words, and decomposed two
sentences into similar matrix and dissimilarity matrix. He et al.
[19] proposed a network structure with multiple perspectives
and granularity, which fully excavates the characteristic
information of the sentence and improves the performance of
the model, but at the same time it makes the model more
complex and time-consuming. Ma et al. [20] took into account
the dependency information of the sentence and integrated the
dependency information into the sentence.

Although the above methods have made some progress in
the application of CNN, there is still a lack of consideration of
sentence granularity and the problem of long time consumption.
Therefore this paper proposes the corresponding sentence
vector, extract the character granularity and the word
granularity feature respectively.

C. Siamese Neural Network

Siamese neural network is a neural network architecture
composed of two or more identical subnets, which is widely
used in the task of determining the consistency of two kinds of
data and measuring the relationship between things [21-23].
One of the architecture of Siamese network is shown in Fig. 2 .

587

Figure 2. Siamese Network Architecture [24]

The parameters and weights are shared among the subnets,
and the parameters are updated at the same time. The main idea
is to use the network or function to map the input to the target
space, and then use distance calculation formulas such as
cosine distance or Euclidean distance to compare the similarity
in the target space. If the mapping network or function is
 𝐺𝑤(𝑋) and the parameter is W, the similarity measurement
result is:

1 2 1 2(,) ((), ())w w wE x x f G x G x= (2)

Due to the sharing parameters between Siamese network
subnets, the proposed model training requires fewer parameters,
which means that less data is required to train the model to
reduce the possibility of over-fitting.

III. MGFSN MODEL

A. Framework Overview

As shown in Fig. 3, the proposed MGFSN architecture is
composed of the three components: (1) the word embedding
layer, (2) the multi-granularity coding layer, and (3) the
semantic interaction layer.

The paper denotes two input Chinese sentences as P = { Pw1,
Pw2, ... , Pwi, ... , Pc1, Pc2, ... , Pcj } and Q = { Qw1, Qw2, ... ,
Qwi, ... , Qc1, Qc2, ... , Qcj }, where wi is the ith word of the
sentence P/Q , i is the word length of P/Q, cj is the jth
character of the sentence P/Q and j is the character length of
P/Q.

B. Embedding Layer

To construct the appropriate sequence representation, the
paper concatenates words embedding including both Chinese
words segment representations and characters representations.
Using jieba tool [25] to segment sentences, the paper obtains
the sequence of the word granularity, and divides it directly
through characters to obtain the sequence of the character
granularity.

In the word embedding, each word is represented as a d-
dimensional vector by using a pre-trained word embedding
method such as Word2Vec [26]. In the MGFSN model, a word
embedding vector can be divided into two types including word
granularity and character granularity.

Figure 3. Model Architecture of Sentence Matching

C. Multi-Granularity Fusion Encoding Layer

As the most critical component in MGFSN model, multi-
granularity fusion encoding layer, named MGFE layer in
abbreviation, will extract features both of word granularity and
char granularity via the SNN, in which no external resources
are being introduced thus the semantic coding performance can
be improved effectively.

As illustrated in Fig. 4, the proposed MGFE layer consists
of two different Siamese network that have the same network
structure with various weight training. Each Siamese network
consists of two identical sub-networks in which P-ew/Q-ew and
P-ec/Q-ec means the results of sentence P/Q passing through the
embedding layer.

Firstly, for word vector, this paper utilizes self-attention as
an attention mechanism,and chooses dot product to calculate
the attention matrix in the equation (3-4):

 (,) T

t s t sf m m m m= (3)

 (,) max((,))t t s t s va Attention m m soft f m m m= = (4)

Where , f(.) is the
matmul operation and softmax is normalized difference index
function. This is done after the vectors in order to fully
consider the semantic and grammatical connections between
the different words in the sentences. And then extracts its
features through two convolution neural networks in the
equation (5-8):

1 ()tc Conv a= (5)

1 1()m MaxPool c= (6)

588

2 1()c Conv m= (7)

2 2()m MaxPool c= (8)

Where at is the vector after Attention function，ci is the the

result of ith convolution function and mj is the result of jth
MaxPool function.

Meanwhile, for the character vectors, this paper adopts the
same network structure with the same operation

Finally, both the character and word granularity are
concatenated to obtain more semantic representation
information.

Figure 4. Multi-Granularity Fusion Encoding Layer

D. Semantic Interaction And Matching Layer

Semantic interaction and matching layer take multi-

granularity fusion encoding layer output feature vector (P ，Q)
that combined word and char granularity as the input as shown
in Fig. 5.

During the semantic interaction process, this paper utilizes
various ways to compare the similarity of the semantic feature
vectors for P and Q. The initial operations are described in the
equation (9-11) as follows:

 | |S P Q= − (9)

 M P Q= (10)

 | , |Concatenate S M= (11)

Where P , Q is the output of multi-granularity fusion

encoding layer, S is the absolute value of P minus Q , M

is the value of P multiply Q and Concatenate is the

result of concatenating S and M .

Figure 5. Semantic Interaction And Matching Layer

As shown in Fig. 5, P-feature and Q-feature are handled by
Eq. (9) and Eq. (10) to obtain the vector S and M. Then the
paper concatenates both vector S and vector M via Eq. (11).
After that, the results of concatenating are extracted using two
dense layers, whose dimensions are 256 and 512 respectively.
At the same time, P-feature and Q-feature are extracted by two
dense layers, whose dimensions are 256 respectively.
Afterward, this paper adds the two vectors resulted from the
above operation with the superposition effect to generates the
final matching representation of input sentences, the matching
degree, which will be transferred into Sigmoid function.

IV. EXPERIMENT AND ANALYSIS

A. Data-set

The data set used in this paper is LCQMC [27]，which has

a large-scale Chinese question matching corpus contains
260,068 problem pairs with manual annotations. In this paper,
it is divided into three parts with the same proportion as in [27],
that is, the training set containing 238,766 problem pairs, the
development set containing 8,802 problem pairs, and the test
set containing 12,500 problem pairs.

Illustrated in TABLE I, each data sample has three
attributes: "sentence1", "sentence2" and "Label", sentence 1
and sentence 2 are text pairs. If Label is equal to 1 , it means
that the semantics for sentence 1 and sentence 2 is similar, or 0,
it means the semantics for sentence 1 and sentence 2 are not
similar.

TABLE I. EXAMPLES IN LCQMC CORPUS.

Sentence Pairs Semantic Match

Q1: 求一款网页游戏

EN: Ask for a web game

Q2: 找一款网页游戏
EN: Find a web game

1

Q3:在家带小孩怎么赚钱

EN: How do you make money raising kids at home

Q4:有什么工作适合在家带孩子做的

EN: What kind of jobs are suitable for stay at home

parenting

0

589

B. Experimental enviornments

The proposed MGFSN model implements all experiments
on a 2080Ti GPU with 11G explicit memory programming by
Python based on the Keras and TensorFlow2.0 framework. The
parameters are defined as follows.

TABLE II. PARAMETERS OF SIAMESE NETWORK WITH MULTI-
GRANULARITY FUSION

Parameters value

Embedding layer 300

CNN

filters 128

kernel_size 3

activation Tanh

Dropout 0.3

Maxpooling 3

Batch size 512

Loss function binary_crossentropy

The Adam method and its learning rate reduction
mechanism have been utilized [28]. The learning rate is
initially set to 0.0001. If the accuracy rate on the development
set does not increase after 5 epochs, the learning rate will be
reduced. In the optimization, epochs is 100, and batch size is
512. In particular, the paper establishes an stop mechanism, in
which the training process will automatically stop and verify
the performance of the model on the test set, if the accuracy
rate on the development set is not improved after 10 epochs.

C. Baseline &Metric

Liu et al.[27] have implemented eight relevant and
representative state-of-the-art methods in LCQMC. Those
methods have been used as baselines for evaluating the models
in this paper.

Unsupervised Methods: word mover distance (WMD),
word overlap (Cwo), n-gram overlap (Cngram), edit distance
(Dedt), and cosine similarity respectively (Scos) [27].

Supervised Methods: convolutional neural network (CNN),
bidirectional long short term memory(BiLSTM), bilateral
multi-Perspective matching (BiMPM)[27].

This paper evaluates the Accuracy, Precision, Recall, F1 of
all methods. Before calculating, this paper defines: True
Positive is abbreviated as TP, FP is abbreviated as False
Positive, TN means True Negative, FN means False Negative.

So the calculation formulas are described in the equations
(12-15) as follows:

 Accuracy=(TP+TN)/(TP+TN+FP+FN) (12)

 Precision=TP/(TP+FP) (13)

 Recall=TP/(TP+FN) (14)

 F1-score=2*Precision*Rcall/(Precision+Recall) (15)

High accuracy and F1-score indicate better performance of
the model. Both of them are used in this paper.

D. Performance comparison

Compared to unsupervised methods as shown in TABLE III,
WMDchar, WMDword, Cwo, Cngram, Dedt, Scos, the
proposed model MGFSN improves the precision metric by
34.75% at the highest and 14.25% at the lowest, recall by
10.87% at the highest and 0.17% at the lowest, F1-score by
24.67% at the highest and 11.77% at the lowest and accuracy
by 32.11% at the highest and 13.71% at the lowest.

In contrast to the unsupervised approach, the proposed
MGFSN model is a supervised model. MGFSN model can use
the error between the real label and the prediction to carry out
backpropagation, so as to correct and optimize the massive
parameters in the neural network. In additon, since MGFSN
model uses multiple granularities, there are more features that
are good for similarity judgment. Therefore, the MGFSN has
made great progress compared with the unsupervised method.

Compared with the supervised and neural network approach
as shown in TABLE III, CBOWchar, CBOWword, CNNchar,
CNNword, BiLSTMchar, BiLSTMword, BiMPMchar,
BiMPMword, MGFSN improves the precision metric by
14.75% at the highest and 3.55% at the lowest, recall by 6.67%
at the highest and -4.43% at the lowest, F1-score by 11.37% at
the highest and 0.17% at the lowest and accuracy by 13.81% at
the highest and 1.01% at the lowest.

 In contrast to the above supervised and neural network
approach, MGFSN model not only uses multiple granularity to
obtain richer features, but also can extract richer and deeper
semantic features because of its deeper network structure.

Figure 6. The Histogram of Experiments on LCQMC Sorted by Accuracy

590

TABLE III. EXPERIMENTS ON LCQMC

Methods Precision Recall F1 Accuracy

WMDchar 67.0 81.2 73.4 70.6

WMDword 64.4 78.6 70.8 60.0

Cwo 61.1 83.6 70.6 70.7

Cngram 52.3 89.3 66.0 61.2

Dedt 46.5 86.4 60.5 52.3

Scos 60.1 88.7 71.6 70.3

CBOWchar 66.5 82.8 73.8 70.6

CBOWword 67.9 89.9 77.4 73.7

CNNchar 67.1 85.6 75.2 71.8

CNNword 68.4 84.6 75.7 72.8

BILSTMchar 67.4 91.0 77.5 73.5

BILSTMword 70.6 89.3 78.9 76.1

BIMPMchar 77.6 93.9 85.0 83.4

BIMPMword 77.7 93.5 84.9 83.3

MGFSN 81.25 89.47 85.17 84.41

V. CONCLUSION

Here is an explanation to a novel approach based on
Siamese Network with Multi-Granularity Fusion for Chinese
sentence semantic matching. The MGFSN model in this paper
is based on Siamese architecture which reduces the parameters
of the model, calculating not only the word granularity of
Chinese but also the character granularity of Chinese. In
particular, multi-granularity fusion is utilized to obtain more
features for similarity matching.

Extensive experiments are carried out on the latest
similarity matching benchmark LCQMC. Experimental results
show that the proposed approach achieves excellent
performances for most of the tasks. In the future, the paper
would like to look for various features granularities such as
clauses to enrich the features of the sentence, or take different
other pre-trained contextual embeddings such as ELMo or
BERT to improve performance of the approach.

REFERENCES
[1] Jiang, N.; de Marneffe, M.C. Do you know that Florence is packed with

visitors? Evaluating state-of-the-art models of speaker commitment. In
Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp.

4208–4213.

[2] Wang, Q.; Li, B.; Xiao, T.; Zhu, J.; Li, C.; Wong, D.F.; Chao, L.S.

Learning deep transformer models for machine translation. arXiv 2019,

arXiv:1906.01787.

[3] Li, H.; Xu, J. Semantic matching in search. Found. Trends Inf. Retr.

2014, 7, 343–469.

[4] HUANG X, ZHANG J, LIU Y, et al. Short text similarity algorithm

based on term mapping with semantic[J]. Computer Engineering and

Design, 2015 (6): 21. (Chinese)

[5] ZHANG Xiao-chuan, YU Lin-feng, ZHANG Yi-hao. Multi-feature

Fusion for Short Text Similarity Calculation Based on

LDA[J].Computer Science, 2018, 45(9): 266-270. (Chinese)

[6] Wang, M., Lu, Z., Li, H., Liu, Q.: Syntax-based deep matching of short

texts.In: Proceedings of the Twenty-Fourth International Joint

Conference on Artificial Intelligence, pp. 1354–1361

[7] Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., Cheng, X.: Text matching as

image recognition. In: Proceedings of the Thirtieth AAAI Conference on

Artificial Intelligence, pp. 2793–2799 (2016)

[8] Hu, B.; Lu, Z.; Li, H.; Chen, Q. Convolutional neural network

architectures for matching natural language sentences. In Proceedings of
the Advances in Neural Information Processing Systems, Montreal, QC,

Canada,8–13 December 2014; pp. 2042–2050.

[9] Lai, Y., Feng, Y., Yu, X., Wang, Z., Xu, K., Zhao, D.: Lattice CNNS for

matching based Chinese question answering 33, pp. 6634–6641 (2019)

[10] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1994).
Signature verification using a" siamese" time delay neural network. In

Advances in neural information processing systems,pp. 737-744

[11] Wang Chunliu. Yang Yonghui, Deng Sin, et al. A review of text

similarity calculation methods.Information Science, 2019,37(03) : 158-

168.

[12] Deking Lin. An Information Theoretic Definition of Similarity Semantic

distance. WordNat Proceedings of the Fiftenth International Conference

on Machine Learning,1998

[13] Goma WH,Fahmy A A. Short Answer Grading Using String Similarity

And CoruBaed Similarity.Internationl. Journl of Advanced Computer

Science and Application,2012.3(11):114-121

[14] KadupitiyaJ,Ranathunga S.Dis G,Short Sentence Similarity Calculation

using Corpus-Based and Knowledge-Based Similarity Meaures//
Proceeding of the 26th Intermationl Conference on Computational

Linguistics. Oaka,2016.

[15] Goma W H.Fahmy AA. A Survey of Text Similarity
Approaches .International Journal of Computer

Applicatioms,2013.68(13):13-18.

[16] Kim Y. Convolutional ncural networks for sentence classifiation .arXiv

preprint arXiv:1408.582,2014.

[17] Kalchbrenner, N. , E. Grefenstette , and P. Blunsom . "A
Convolutional Neural Network for Modelling Sentences." Eprint Arxiv

1(2014).

[18] Z. Wang, H. Mi, A. Ittycheriah, Sentence Similarity Learning by Lexical
Decomposition and Composition, in: Proceedings of the 26th

International Conference on Computational Linguistics, COLING 2016

Technical Papers, 1340–1349, 2016.

[19] Hua, H. , K. Gimpel , and J. Lin . "Multi-Perspective Sentence

Similarity Modeling with Convolutional Neural Networks." Proceedings
of the 2015 Conference on Empirical Methods in Natural Language

Processing 2015.

[20] Ma, M. , et al. "Dependency-based Convolutional Neural Networks for
Sentence Embedding." Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 2: Short Papers)

2015.

[21] A.He, C. Luo, X. Tian and W. Zeng, "A Twofold Siamese Network for
Real-Time Object Tracking," 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Salt Lake City, UT, 2018, pp. 4834-

4843, doi: 10.1109/CVPR.2018.00508.

[22] Zhao Yuan & Sun Jun.(2020).Siamese Network cooperating with Multi-

head Attention for semantic sentence matching .Proceedings of 2020
19th International Symposium on Distributed Computing and

Applications for Business Engineering and Science (DCABES 2020) ;

pp.241-244

[23] Fe Rnando, S. , and M. Stevenson . "A Semantic Similarity Approach
to Paraphrase Detection." Computational Linguistics Uk Annual

Research Colloquium (2008).

[24] Chicco D. (2021) Siamese Neural Networks: An Overview. In:
Cartwright H. (eds) Artificial Neural Networks. Methods in Molecular

Biology, vol 2190. Humana, New York, NY.

https://doi.org/10.1007/978-1-0716-0826-5_3

[25] Junyi S. jieba. https://github.com/fxsjy/jieba

[26] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. Efficient

Estimation of Word Representation in Vector Space. arXiv preprint

arXiv: 1301.3781. 2013

[27] Liu, X., et al.: LCQMC: a large-scale Chinese question matching corpus.

In: Proceedings of the 27th International Conference on Computational

Linguistics, pp.1952–1962 (2018)

[28] Kingma, D. , and J. Ba . "Adam: A Method for Stochastic

Optimization." Computer Science (2014).

591

Complementary Representation of ALBERT for
Text Summarization

Wenying Guo, Bin Wu, Bai Wang, Lianwei Li, Junwei Sun, Maham Nazir
Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia

Beijing University of Posts and Telecommunications, Beijing, China
{gwy, wubin, wangbai, llw, junweisun, maham}@bupt.edu.cn

Abstract—Pretraining has proved to be an effective strategy to
learn the parameters of the deep neural network. It captures the
world knowledge that can be adapted to downstream tasks. Text
summarization based on ALBERT [1] outperformed previous
work by a large margin. However, they only use the final layer
as a contextualized representation of the input text. Multiple
studies have proven that intermediate layers also encode the rich
hierarchy of linguistic information. In this paper, we propose
a Fast Complementary Representation Network (FCRN), which
dynamically incorporates linguistic knowledge spread across the
entire ALBERT for extractive selection. Different from previous
work, we measure the importance of hidden layers by all sentence
representations rather than all token embeddings, which can filter
nonsignificant words and takes six times less time during training.
FCRN first obtains the importance of each layer by sentence
embeddings and then automatically absorbs the supplementary
information to ALBERT’s output. We conduct experiments on
CNN/DailyMail and XSum datasets. The results show that our
model obtains higher ROUGE scores.

Index Terms—Text summarization, Pretrained Language
Model, Fast Complementary Representation network

I. INTRODUCTION

Text summarization is the task of condensing the essence
of a document to converse the main information contents and
main ideas quickly. There are two paradigms to generate a
summary: extractive summarization and abstractive summa-
rization. Extractive summarization generates the summary by
scoring and extracting the high-score sentences (or more fine-
grained units) from source documents generally, such as [2],
[3]. In contrast, abstractive summarization is an ideal form of
summarization since it generates the novel sentence required to
have recourse to world knowledge. Abstractive summarization
generates a summary in a human-written way.

Extractive summarization remains more reliable than ab-
stractive summarization since the summary is composed of
the text span (like sentence) in the source document. In
this paper, we primarily focus on extractive summarization.
The pretrained language model has recently brought Natural
Language Processing (NLP) to a new era since the emergence
of BERT [4].

Numerous summarization approaches have achieved state-
of-the-art results based on the pretrained language models.
BERTSUMEXT [5] built a BERT-based minimum-requirements
model, which outperformed previous work by a large margin.

DOI reference number: 10.18293/SEKE2021-084

DISCOBERT [6] extracted sub-sentential discourse units based
on BERT and Graph Convolutional Network. MATCHSUM [7]
adopted a Siamese-BERT architecture to select the candidate
summary, which was the most similar to the target summary.
TSEM [8] showcased the effectiveness of ALBERT to handle
text summarization. However, the improvement on automatic
metrics like ROUGE has reached a bottleneck. They only use
the final layer of the pretrained language model as contex-
tualized representations of the input text. The popularity of
transformer-based models has driven researchers to study what
was behind their success.

Multiple studies [9]–[11] have proven that transformer-
based models composed a hierarchy of linguistic signals
ranging from surface to semantic features. Intermediate layers
also encode the rich hierarchy of linguistic information. Taking
the output of the pretrained language model restricts the power
of pretrained representation when fine-tuning [9], [12], [13].
ALBERT has fewer parameters and focuses on modeling inter-
sentence coherence. Meanwhile, TSEM has achieved better
performance based on ALBERT than BERTSUMEXT based on
BERT in the summarization task. In this paper, we propose an
architecture stacked on ALBERT, namely Fast Complementary
Representation Network (FCRN), which can leverage the rich
linguistic knowledge to enhance the power of ALBERT. There
is no research to study the effectiveness of the fused represen-
tation of the ALBERT on text summarization. In our model,
The ALBERT’s embeddings of hidden layers are complemen-
tary to the output of ALBERT. To capture the information
hierarchically, different from previous work [12], [13], We first
obtain the sentence embedding in the document to capture the
gist of the individual sentence. The number of sentences is
far more than tokens, which can reduce training time. The
embeddings of sentences that contain the main information
are input to FCRN to catch a complementary representation
of the final output. We highlight our contributions as follows:

• We proposed FCRN to capture more language infor-
mation of sentence. We also study the performance of
different language knowledge on text summarization. To
our knowledge, we are the first ones to dynamically fuse
the rich information spread across the entire model on
ALBERT.

• In our model, We propose taking sentence embeddings
rather than all token embeddings as the input of FCRN.

592

It shortens the training and inference time with better
performance. Our model can generate a better ground-
truth to train the MATCHSUM.

• We identify the importance of linear word order, syntactic
rule, and semantic information for the summarization
task.

II. RELATED WORK

A. Pretrained Language Model
The state-of-the-art result has been achieved by pretrained

language models in many NLP tasks. Pretrained language
models have advanced downstream NLP tasks by learning
universal language representation. In earlier research, the pre-
trained language model aims to learn good word embeddings
containing semantic meaning. Those pretrained representa-
tions are added to downstream tasks as additional features.
For BERT, ALBERT, and RoBERTa [14], they obtain the
embedding of the token with context. Unlike the earlier
pretrained language models, they can capture syntactic struc-
tures, semantic rules, and context-dependent natures of words.
The representation of a given token in vocabulary depends
on the whole text. Those models are stacked with a deep
network, fine-tuned on downstream tasks with a better model
initialization.

Currently, the transformer-based pretrained language model
has drawn more attention. The best known transformer-based
model is BERT. The curiosity about transformer-based models
has driven over 150 studies of the popular BERT model.
Based on this knowledge, many enhanced versions of BERT
are proposed. The backbone of their architecture is similar
to BERT. RoBERTa improves BERT by dynamic masking.
ALBERT replaces the next sentence prediction with sentence
order prediction to model inter-sentence coherence. All of
them can be fine-tuned to adapt to special downstream tasks.

B. Abstractive Summarization
Neural abstractive summarization models conceptualize the

task as a sequence-to-sequence problem, where an input se-
quence is mapped into another output sequence. In 2015, Rush
et al. [15] applied the neural encoder-decoder architecture to
abstractive summarization and thus paved the way for using
neural networks for abstractive summarization. Nallapati et
al. [16] and See et al. [17] applied a pointer generator network
which generates words from a fixed vocabulary or copies
from the source document, which is an effective method to
handle Out of Vocabulary (OOV). See et al. presented a
coverage mechanism to discourage repetition. To solve the
mismatch between the learning object and the evaluation
criterion, reinforcement learning-based models trained by op-
timizing the ROUGE metric achieved higher performance.
Encoder-decoder transformers have shown great successes for
abstractive summarization.

C. Extractive Summarization
Extractive summarization has gained more attention with its

simplicity and facticity. It is often defined as a binary classifi-
cation. The label of the text span indicates whether it should be

included in the summary. Initially, statistical methods generate
summaries leveraging the similarity between sentences. They
consider statistical features, including sentence position, term
frequency (TF), and the inverse document frequency (IDF).

Neural networks are primarily introduced to text summa-
rization by modeling the semantic meaning of sentences [18].
Recently, deep neural networks have achieved great success in
summarization tasks. Neural text summarization generally ob-
tains the sentence representation by a neural encoder. Nallapati
et al. [19] instantiated the encoder by recurrent neural network
(RNN). Zhong et al. [20] leveraged transformer to encode the
semantic meaning by interacting between sentences.

Graph Neural Networks (GNN) can learn from complex
structured data. Xu et al. [6] presented how GNN can be use-
fully applied in text summarization. NEUSUM [21] was a neu-
ral extractive document framework that jointly learnt to score
and select sentences. The reinforcement learning-based model
trained by directly optimizing the ROUGE metric achieved
state-of-the-art results [22], [23]. Pretrained language models
have achieved state-of-the-art results on extractive summa-
rization. HIBERT [3], BERTSUMEXT, MATCHSUM are based
on BERT, and TSEM [8] explored the potential of ALBERT
on text summarization. It showed ALBERT performed better
than BERT with fewer parameters. The pretrained language
model was fine-tuned to adapt to text summarization in the
above work. They only use the final layer as a contextualized
representation of the input text.

Compared to the models outlined above, we explore the
potential of fusing the representation of multiple layers as
complementary to the last layer. It makes sentence embed-
dings capture more language knowledge. Moreover, sentence
embeddings are used to weight all hidden embeddings which
can take less time and capture the sense of sentence.

III. MODEL

A. Overview

Fig. 1 presents an overview of our model, which consists
of a Sentence Encoder and FCRN. For the Sentence Encoder,
a pretrained ALBERT is used to output the representation of
each sentence in all hidden layers. FCRN takes the output of
the Sentence Encoder as input and dynamically summarizes
the hidden representation based on the output of Bi-LSTM,
which enhances the power of the final output. The outputs of
FCRN are used to predict the label of the sentence.

Let D = [sent1, sent2,..., sentn] denote a document with
n sentences, where senti is the i-th sentence. We formulate
extractive summarization as a sequence labeling task, in which
the label sequence Y= [y1, y2,..., yn] ∈ {0, 1} indicates
whether the corresponding sentence is included in the sum-
mary or not. We will calculate the final predicted score ŷi.
The loss of our model is the binary classifier entropy between
the prediction and the gold label.

L = −
n∑

i=1

(yi · log(ŷi) + (1− yi) · log(1− ŷi)) (1)

593

ALBERT

FCRN

Classifier

[CLS] sent1 [SEP][CLS] sent2 [SEP]…[CLS] sentn [SEP]

[CLS]1 [CLS]2

FCRN

Linear layer

Bi-LSTM Bi-LSTM Bi-LSTM

Com layer12

Concat
Yn-1 Yn

σ×

layer12layer1 layer2

layer2

layer1

layer12

Y2Y1

[CLS]n

[CLS]1 [CLS]2 [CLS]n

[CLS]1 [CLS]2 [CLS]n

[CLS]1 [CLS]2 [CLS]n

Fig. 1. (left) is an overview of our model, FCRN is stacked on ALBERT encoder. (right) is the architecture of FCRN. σ is a softmax function to calculate
the importance of each layer.

B. Sentence Encoder

ALBERT is a transformer-based encoder, which can gener-
ate the contextual representation of words based on tokens,
segment tokens, and position ids. ALBERT is pretrained
on a sentence or sentence pair, and a special classification
token ([CLS]) is used as the aggregate representation for the
classification task. Given Document D is a document with
multiple sentences needing to be classified, we insert [CLS],
and [SEP] at the beginning and the ending of each sentence.
[CLS] is to capture the meaning of an individual sentence and
[SEP] is viewed as the boundary of the sentence. Segment
token {0, 1} indicates the position of sentences is odd or even
in the document. For document D, the input tokens are [CLS],
sent1, [SEP], [CLS], sent2, [SEP], ..., [CLS], sentn, [SEP]],
and the segment tokens are [0, 1, 0, 1, ...]. We input D as the
input to ALBERT like in Fig. 1. All hidden-state embeddings
are computed by ALBERT, The formula is as follows:

T1, ...Tl=ALBERT([CLS],sent1,[SEP],...,
[CLS],sentn,[SEP])

(2)

s1, ...sl = Extractor(T1, ..., Tl) (3)

where Ti is the output of the i-th layer, and l denotes the
number of layers in ALBERT. However, Ti contains the
embedding of each token in the document. We select the
embeddings of [CLS] as the sentence embeddings by the
Extractor in each layer. The sentence embeddings of i-th layer
si ∈ Rn×d, where n is the number of sentences and d is the

hidden size of the encoder. They will be sent to FCRN to
generate the final sentence representation.

C. FCRN

FCRN is proposed to generate a more powerful represen-
tation. We can select a different number of input layers for
FCRN. To capture the long-range dependency of sentences,
a single-layer bidirectional Long Short Time Memory (Bi-
LSTM) are used to weight all hidden sentence embedding.
We apply Layer Normalization (LayerNorm) to Bi-LSTM to
stabilize the training. The formulation of Bi-LSTM are as
follows:

Fi

Ii
Oi

Gi

 = LNh(WhHi−1) + LNx(Wxxi) (4)

Ci = σ (Fi)� Ci−1 + σ (Ii)� tanh (Gi−1) (5)

Hi = σ (Oi)� tanh (LNc (Ci)) (6)

Where Hi is the hidden state at time i, Ci is the cell state
at the time i, and Ii, Fi, Gi, Oi are the input, forget, cell, and
output gates, LNh, LNx, LNc are different layer normalization
operations. The bias is ignored in the formulation. xi is the
input in step i.

The input to the FCRN is s1, s2, ..., sl. We take si to Bi-
LSTM. Bi-LSTM will obtain a fixed-sized embedding Ki to
capture the knowledge in i-th layer. We take the concatenation

594

TABLE I
THE RESULTS OF OUR PROPOSED MODELS ON CNN/DAILYMAIL

DATASET. MODELS WITH SUBSCRIPT * WERE TRAINED AND TESTED ON
THE ANONYMIZED-VERSION DATASET. FCRN(w/o)∗ ((w)∗) MEANS THE

MODEL WITHOUT (WITH) * LAYERS.

Model R1 R2 RL
ORACLE 51.64 30.48 47.88
LEAD-3 40.37 17.44 36.61
Rnn-ext+RL* 40.55 18.42 36.84
NEUSUM 41.86 19.16 38.20
BERTSUMEXT 43.32 20.32 39.71
FCRNCom 43.43 20.36 39.78
TSEM-sentence 43.54 20.47 39.93
FCRN 43.66 20.54 40.03
MATCH-ORACLE 51.08 26.94 46.99
MATCH-ORACLE-FCRN 51.29 27.15 47.39
MATCHSUM-BERT 44.22 20.62 40.38
MATCHSUM-FCRN 44.36 20.70 40.51
FCRN(w/o)high 43.48 20.36 39.85
FCRN(w/o)middle 43.34 20.27 39.71
FCRN(w/o)low 43.61 20.51 40.01
FCRN(w)high 43.28 20.22 39.65
FCRN(w)middle 43.64 20.53 40.04
FCRN(w)low 43.05 19.98 39.40

of each direction’s final state as a knowledge of the current
layer.

Ki = ReLU (LayerNormLSTM (si)) (7)

The importance of each layer will be calculated as:

αi = softmax (Ki) (8)

Given the importance of each layer, we calculate the comple-
mentary representation Com to the final output of the encoder,
and we concatenate them as the representation of all sentences
which captures more language information.

Com =
n∑

i=1

αisi (9)

S = [sl | Com] (10)

A classifier is stacked on FCRN to calculate the label ŷi.
The classifier is instantiated by a linear layer and a sigmoid
function.

ŷi = σ(WeSi + bi) (11)

IV. EXPERIMENTS

In this section, we present our experiments from text
summarization datasets, evaluative criteria, the implementation
details of our model, comparison with multiple previous
approaches, hierarchy linguistic knowledge analysis and the
compute efficiency studies.

A. Datasets

We evaluate our model on two benchmark datasets, namely
CNN/DailyMail and XSum. These datasets possess diverse
summary characteristics. The proportion of novel n-grams
represents the level of abstraction of the dataset. The highly
abstractive dataset can reflect the potential of the model to
capture the semantic information of text span. We used a

TABLE II
THE RESULTS OF OUR PROPOSED MODELS ON XSUM DATASET.

Model R1 R2 RL
ORACLE 28.96 8.19 21.86
LEAD 19.66 2.39 14.80
BERTSUMEXT 23.53 4.54 17.80
TSEM-sentence 23.91 4.69 18.11
FCRN 24.14 4.74 18.27
MATCH-ORACLE 29.54 7.40 22.55
MATCH-ORACLE-FCRN 30.10 7.38 23.08

greedy algorithm similar to [19] to obtain an oracle summary
for each document to train extractive models.

1) CNN/DailyMail: CNN/DailyMail dataset is generated
by modifying a question answering dataset, including 93K
articles from CNN and 200k articles from Daily mail web-
sites. Following previous work, we conduct experiments
on the non-anonymized version and split the dataset into
287,226/13,368/11,490 for training, validation, and testing.
Due to the limitations of the memory and the model, the
document is truncated to 512 tokens.

2) XSum: XSum dataset consists of 226,711 BBC articles
with single-sentence summaries. It has more novel n-grams
in the target summaries that do not appear in their source
document than CNN/DailyMail dataset. Following Narayan
et al. [24], we split XSum into 204,045/11,332/11,334 for
training, validation, and testing.

B. ROUGE

ROUGE is a package for the automatic evaluation of
system-generated summaries by counting the number of over-
lapping units between the generated summary and the refer-
ence summary. There are three ROUGE metrics extensively
used in text summarization, namely the F1 score of ROUGE-
1, ROUGE-2, and ROUGE-L. (R1 and R2 are shorthands
for ROUGE-1, ROUGE-2; RL is ROUGE-L). R1 and R2
evaluate the summary by counting the overlapping uni-grams
and bi-grams, respectively. RL assesses by longest common
subsequence. Following previous work, we report R1, R2, RL
as a means of assessing fluency.

C. Experimental Setup

1) Implementation details: We implemented our model
based on the “albert-based-v2” version of ALBERT1. We set
the hidden size of LSTM to 384 due to the Layer Normal-
ization. Following Guo et al. [8], the Adam optimizer with a
learning rate of 2e−3, β1 = 0.9, β2 = 0.999 is used during
training. The warmup strategy increases the learning rate from
0 to 2e−3 on the first 15000 steps:

lr = 2e−3 ·
(
step−0.5, step · warmup−1.5

)
(12)

We conduct our experiments on 3 GPUs (RTX 2080 Ti) with
50000 steps. The gradient accumulation with two steps is used
to enlarge the batch size. Model checkpoints are evaluated on

1https://github.com/huggingface/transformers/tree/master/src/transformers/
models/albert

595

https://github.com/huggingface/transformers/tree/master/src/transformers/models/albert
https://github.com/huggingface/transformers/tree/master/src/transformers/models/albert

TABLE III
THE RESULTS OF COMPUTE EFFICIENCY STUDIES ON CNN/DAILYMAIL,
INCLUDING SPEED COMPARISON WITH FCRN-TOKEN AS THE BASELINE

Model R1 R2 RL Speeduptrain Speedupinf

FCRN-token 43.58 20.48 39.97 1.0 1.0
FCRN 43.66 20.54 40.03 5.9x 1.65x

the validation set per 1000 steps. We saved the three best
checkpoints on evaluated losses and record the performance
of the best checkpoints on the test set.

We obtained the scores of the candidate sentences and sorted
the sentences in descending order based on these scores. Top-3
sentences are selected to form the summary.

2) Trigram Blocking: This is a simple but effective ap-
proach to improve performance during inference. Given a
selected summary set and a sentence, the sentence will be
selected into the summary set when it has no trigram overlap-
ping with the selected summary. We also apply this approach
to this work.

D. Experimental Results and Analysis

A comprehensive experiment is conducted on
CNN/DailyMail and XSum. We use the official ROUGE
script (version 1.5.5) to evaluate the generated summaries.
The results are reported as follows.

1) CNN/DailyMail: Table I summarizes our results on
the CNN/DailyMail dataset. We list strong baselines with
different learning approaches. LEAD-3 is a commonly used
and strong extractive baseline. It simply selects the first three
sentences as a summary. Rnn-ext+RL [22] applies policy-
based reinforcement learning to the extractor. NEUSUM [21]
extracts the summary by jointly learning to score and select
a sentence. BERTSUMEXT [5] extends BERT to text sum-
marization by inserting multiple [CLS], segment information,
and stacking a linear layer. TSEM-sentence [8] is the first
stage of TSEM to assign relevance scores to sentences. We
change it as a baseline by choosing three top-ranked sentences
to compose a summary. FCRNCom predicts the score of a sen-
tence only by complementary representation Com. MATCH-
ORACLE [7] extracted by BERTSUMEXT is the ground-
truth used to train MATCHSUM. This model has achieved the
state-of-the-art extractive result on CNN/DailyMail. MATCH-
ORACLE-FCRN extracts the ground-truth by our model.
MATCHSUM-FCRN is trained on MATCH-ORACLE-FCRN,
while MATCHSUM-BERT is trained on MATCH-ORACLE.

From the first block of Table I, we observed that our
approach outperformed the baseline models. As compared to
TSEM-sentence and FCRNCom, which only used the final out-
put of ALBERT and the complementary embedding, respec-
tively, our model improved the ROUGE score. It means that
the knowledge of the hidden layers as complementary to the fi-
nal layer indeed achieves better performance. TSEM-sentence
performs than FCRNCom means semantic information is more
critical for text summarization. The fusion representation of
hidden layers can weaken semantic information of a sentence.

FCRN provides syntactic and surface information as comple-
mentary to semantic features. This further confirms that text
summarization requires comprehensive linguistic knowledge.

The second block in Table I presents that the MATCHSUM
ground-truth extracted by our model provides a stronger oracle
than BERTSUMEXT. The MATCHSUM approach performs
better with the MATCH-ORACLE-FCRN.

2) XSum: Our main results on the XSum dataset are
shown in Table II. Again, we report the performance of
ORACLE, LEAD, MATCH-ORACLE-FCRN, MATCH-
ORACLE, and BERTSUMEXT where LEAD baseline simply
selects the first two sentences from the document. XSum
has a lower ROUGE score than CNN/DailyMail because its
summary is more abstractive. Following previous work [5], [8],
we process the XSum dataset with a greedy algorithm and then
conduct experiments on TSEM-sentence. The experiment re-
sults demonstrated the effectiveness of ALBERT on the XSum
dataset. We can observe that our model with complementary
information to the final layer again is superior to all baselines.
MATCH-ORACLE-FCRN generates a better ground-truth to
train the MATCHSUM.

3) Hierarchy Linguistic Knowledge Analysis: Previous
work has proven that surface features are most prominent in
lower layers, syntactic features in middle layers, and semantic
features in higher layers. In this work, we split all hidden lay-
ers of ALBERT into low layers (1-4), middle layers (5-8), high
layers (9-12). We take them as the input of FCRN, respectively.
It can change the linguistic knowledge complementary to the
output of ALBERT. A comprehensive experiment is conducted
to detect the effect of different layers on CNN/DailyMail
dataset. The results are reported in the third block of Table I.

We observe that the model without middle layers is the
worst, and high layers are more effective than low layers. It
means that complementary syntactic knowledge improves the
overall system performance better than semantic knowledge on
CNN/Daily Mail dataset. The reason is due to the similarity
between the gold and sentences in the generated summary.
Meanwhile, the final layer of ALBERT has included semantic
information. It makes no difference whether or not the lower
layers are added since the lower layers possess the most in-
formation about linear words. We also observe the knowledge
of all hidden layers as the input to FCRN can achieve better
performance.

E. Compute Efficiency

We conduct experiments on CNN/DailyMail dataset to
verify the compute efficiency. We trained models with all token
embeddings and sentence embeddings, namely FCRN-token
and FCRN, respectively. We report the running time, inference
time, and the performance of models in Table III. FCRN is
about 6 times faster than token-level in iterating through the
data during training and about 1.65 times during inference.
Compared to FCRN-token, FCRN will require significantly
less time to train since a sequence of inputs passes through
LSTM cell, one at a time. The performance of FCRN-token
does not improve with fusion based on token embeddings but,

596

using sentence embeddings achieves better performance. The
above phenomena suggests that using sentence embedding is
more compute-efficient and capture the more comprehensive
knowledge of each layer. The model performance poorly
removing the complementary information, demonstrating the
complementary representation is crucial for predicting the
summary of a document.

V. CONCLUSION

In this paper, we propose FCRN to showcase how to fuse all
linguistic knowledge in hidden layers and enhance the power
of ALBERT. Experiments demonstrate constant improvement
over baselines on two benchmark datasets. Furthermore, Using
sentence embeddings not only achieved better results but
also decreased training and inference time. We find that the
syntactic information is worthy of note in our model. We plan
to consider more syntactic information and import more world
knowledge as a part of our future work.

VI. ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China (2018YFC0831500), the
National Natural Science Foundation of China under Grant
No.61972047 and the NSFC-General Technology Basic Re-
search Joint Funds under Grant U1936220.

REFERENCES

[1] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions,” in International Conference on Learning Representations, 2020.

[2] D. Wang, P. Liu, Y. Zheng, X. Qiu, and X. Huang, “Heterogeneous graph
neural networks for extractive document summarization,” in Proceedings
of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, Jul.
2020, pp. 6209–6219.

[3] X. Zhang, F. Wei, and M. Zhou, “Hibert: Document level pre-training
of hierarchical bidirectional transformers for document summarization,”
arXiv preprint arXiv:1905.06566, 2019.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186.

[5] Y. Liu and M. Lapata, “Text summarization with pretrained encoders,”
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 3730–3740.

[6] J. Xu, Z. Gan, Y. Cheng, and J. Liu, “Discourse-aware neural extractive
text summarization,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for
Computational Linguistics, Jul. 2020, pp. 5021–5031.

[7] M. Zhong, P. Liu, Y. Chen, D. Wang, X. Qiu, and X. Huang, “Extractive
summarization as text matching,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, Jul. 2020, pp. 6197–6208.

[8] W. Guo, B. Wu, B. Wang, and Y. Yang, “Two-stage encoding extractive
summarization,” in 2020 IEEE Fifth International Conference on Data
Science in Cyberspace (DSC), 2020, pp. 346–350.

[9] G. Jawahar, B. Sagot, and D. Seddah, “What does BERT learn about the
structure of language?” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, Jul. 2019, pp. 3651–3657.

[10] I. Tenney, D. Das, and E. Pavlick, “BERT rediscovers the classical
NLP pipeline,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, Jul. 2019, pp. 4593–4601.

[11] A. Rogers, O. Kovaleva, and A. Rumshisky, “A primer in bertology:
What we know about how BERT works,” Trans. Assoc. Comput.
Linguistics, vol. 8, pp. 842–866, 2020.

[12] Y. Goldberg, “Assessing bert’s syntactic abilities,” arXiv preprint
arXiv:1901.05287, 2019.

[13] C. Zhu, M. Zeng, and X. Huang, “Sdnet: Contextualized attention-based
deep network for conversational question answering,” arXiv preprint
arXiv:1812.03593, 2018.

[14] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[15] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model
for abstractive sentence summarization,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
Lisbon, Portugal: Association for Computational Linguistics, Sep. 2015,
pp. 379–389.

[16] R. Nallapati, F. Zhai, and B. Zhou, “Summarunner: A recurrent neural
network based sequence model for extractive summarization of docu-
ments,” in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA, S. P.
Singh and S. Markovitch, Eds. AAAI Press, 2017, pp. 3075–3081.

[17] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization
with pointer-generator networks,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Vancouver, Canada: Association for Computational
Linguistics, Jul. 2017, pp. 1073–1083.

[18] M. Kågebäck, O. Mogren, N. Tahmasebi, and D. Dubhashi, “Extractive
summarization using continuous vector space models,” in Proceedings
of the 2nd Workshop on Continuous Vector Space Models and their
Compositionality (CVSC). Gothenburg, Sweden: Association for Com-
putational Linguistics, Apr. 2014, pp. 31–39.

[19] R. Nallapati, F. Zhai, and B. Zhou, “Summarunner: a recurrent neural
network based sequence model for extractive summarization of docu-
ments,” in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, 2017, pp. 3075–3081.

[20] M. Zhong, D. Wang, P. Liu, X. Qiu, and X. Huang, “A closer look
at data bias in neural extractive summarization models,” arXiv preprint
arXiv:1909.13705, 2019.

[21] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking sentences for extrac-
tive summarization with reinforcement learning,” in Proceedings of the
2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers). New Orleans, Louisiana: Association for Computational
Linguistics, Jun. 2018, pp. 1747–1759.

[22] Y.-C. Chen and M. Bansal, “Fast abstractive summarization with
reinforce-selected sentence rewriting,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Melbourne, Australia: Association for Computational
Linguistics, Jul. 2018, pp. 675–686.

[23] Q. Zhou, N. Yang, F. Wei, S. Huang, M. Zhou, and T. Zhao, “Neural
document summarization by jointly learning to score and select sen-
tences,” in Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Melbourne,
Australia: Association for Computational Linguistics, Jul. 2018, pp.
654–663.

[24] S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just
the summary! topic-aware convolutional neural networks for extreme
summarization,” in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Brussels, Belgium: Associ-
ation for Computational Linguistics, Oct.-Nov. 2018, pp. 1797–1807.

597

BEHIND: a 4W-oriented Method for Event
Detection from Twitter
Kang Zeng, Yujia Liu, Xin Song, and Bin Zhou∗

College of Computer, National University of Defense Technology
Changsha, China

Email: {zengkang, liuyujia, songxin, binzhou}@nudt.edu.cn

Abstract—Event detection from Twitter has attracted attention
from researchers in the past decade due to the widespread
use of social media. By leveraging the knowledge derived from
these events, it is possible to understand what consumers are
interested in and give the opportunity for organizations to make
better decisions. Numerous studies have proven the advantage of
burst detection methods in detecting events in Twitter streams.
However, some burst detection methods mainly focus on the
bursty characteristics caused by events while the elements in
events are not fully utilized. In this paper, we focus on the
elements in When, Where, Who, and What (4W) dimensions
of events and propose a 4W-oriented event detection method
called BEHIND. BEHIND jointly uses Bursty Elements and
Heterogeneous Information Network(HIN) for event detection.
Bursty Elements are calculated through probability distribution
and they are used to select tweets with bursty elements. HIN is
used to enhance relevance judgment in 4W dimensions between
tweets to help cluster tweets. The tweet clusters are corresponding
to events we detected. We used a benchmark dataset to evaluate
our method. Experimental results demonstrate that our method
achieves higher precision and less duplication rate, and detects
more events than the state-of-the-art methods.

Index Terms—data mining, Twitter, event detection, event
summarization, 4W

I. INTRODUCTION

Recently, social media has overtaken print media as the
main source of news gathering for consumers [1]. In the
past decade, automatically detecting events from Twitter has
attracted much attention from researchers.

Burst detection methods [2] [3] [4] [5] have been widely
studied and applied for Twitter event detection. They focus
on detecting events with bursty characteristics (i.e., breaking
news). Those methods can help track topics of general interest
and detect events in early stages. However, they still introduce
some issues that can affect the results of event detection. We
present two cases as examples of such issues as follows.

Case 1: There were two events happened at the same time:
“Chinese author Mo Yan won 2012 Nobel Prize in Literature”
and “The European Union was awarded the 2012 Nobel Prize
in Peace”. Both were hotly discussed on Twitter. However,
some methods reported an event about “Mo Yan” and “The
European Union”, while there was no event happening be-
tween them at that time.

∗Corresponding author
DOI reference number:10.18293 / SEKE2021-092

Case 2: There were three presidential debates between
Barack Obama and Mitt Romney in 2012. Some methods all
reported them as “presidential debate”. Those reports could
not identify which presidential debate it is.

The first case shows that some burst detection methods
confuse two co-occurring and related events, thus reporting
an event that is not actually happened at all. The second
case shows that these methods cannot discriminate between
multiple occurrences of the same type of event.

In order to get more interpretable event detection results,
[6] and [7] borrowed the definition of events from journalism.
They defined social media events as: a social media event
can be represented by When, Where, Who and What (4W)
dimensions. This definition can help identify an event by
multiple different aspects of information, while it is generic
enough to generalize most social media events. Nevertheless,
it is still not fully utilized in Twitter event detection. Some
methods [7] using this definition simply incorporate features
in 4W dimensions into their process.

To better deal with the issues that may be caused by
burst detection methods and better use of the 4W represen-
tation, we propose a 4W-oriented (When, Where, Who, What)
method called BEHIND for event detection. BEHIND jointly
uses Bursty Elements and Heterogeneous Information Net-
work(HIN) [8] to Detect events in Twitter stream. We firstly
extract elements in 4W dimensions from tweets. Then we
select bursty elements of each dimension and use them to
filter tweets. This can filter out noisy data in early stages and
improve the precision of event detection. Bursty Elements will
be discussed in more detail in Section III-A2.

In addition, we build a HIN on the filtered tweets. The nodes
in HIN are tweets, and the types of edges in HIN include
When, Where, Who and What (4W). We discuss this in Section
III-B for more details. We use HIN to help reconstruct the
feature representation of tweets to strengthen the connection
between tweets based on elements in 4W dimensions. We use
Tweet Clustering based on HIN to make it easier to cluster
tweets discussing the same event into the same cluster. Tweet
Clustering based on HIN will be discussed in Section III-C.
This not only reduces repeated reports of the same event, but
also increases the possibility of detecting more events. Then
we cluster tweets based on the new feature representation. The
resulting clusters are the events we detected.

Finally, we concatenate the top elements in 4W dimensions

598

of those events to generate event summaries. The summaries
can make the detected events more interpretable and discrimi-
native. Because elements in 4W dimensions can jointly verify
an event and present more comprehensive information about
the event.

To sum up, the contributions of our work are:
• We propose a 4W-oriented (When, Where, Who, What)

method called BEHIND to detect events in the irregular
text stream of tweets.

• BEHIND jointly uses bursty elements and HIN to detect
events. The former is used to effectively select event
tweets, while the latter is used to enhance relevance judg-
ment in 4W dimensions between tweets for clustering.

• Comparative experiments show that BEHIND can achieve
higher precision and less duplication rate, and can detect
more events.

• The events detected by BEHIND are summarized by the
top elements in 4W dimensions, which make the detected
events more interpretable and discriminative.

II. RELATED WORK

Twitter event detection has been extensively studied over
the past decade. For the purpose of better understanding the
existing related work, we classify the existing event detection
methods based on the common traits they share.

A. Bursty-term-based Methods

Generally speaking, the occurrence of an event always
triggers people to discuss it in Twitter. A relevant number
of methods detected events by extracting bursty terms from
tweets and clustering such terms to get events. Twevent [9] and
SEDTWik [3] used tweet segment, which is defined as one or
more consecutive words appearing in a tweet to help detecting
events. They extracted bursty tweet segments and clustered
them to get events. TopicSketch [2] relied on the concept
of word acceleration to detect trending topics on Twitter. It
calculated the occurrence rate of pairs or triples of words as
the word velocity. The change in velocity within the two time
windows is calculated as the acceleration.

However, the textual contents of tweets are sparse and
informal, detecting events by bursty terms may detect clusters
of terms that are weakly correlated with realistic events.

B. Social-aspect-based Methods

The way people discuss interesting events on Twitter is
much more different from the way people share things in
their daily lives. Social aspect information can be utilized
for event detection. [10] built the relationship between tags
to get a graph of related tags and detected bursty tagging
events by extracting subgraphs. Generative Latent Dirichlet
Allocation Model (MGe-LDA) [11] is a hashtag-based Mutual
for detecting events in Twitter. MGe-LDA emphasized the role
of hashtags in the semantic representation of the corresponding
tweets. MABED [12] is a statistical method that relied solely
on the creation frequency of user mentions that users insert
into the tweets to detect important events.

Event detection methods focus on the social aspects of
Twitter may only detect the most influential events and ignore
the small-scale events. Meanwhile, they may require more
hyper-parameter, such as the number of top events to detect.

C. Entity-based Methods

Entities are always considered to contain great event infor-
mation and can help detecting events more efficiently. [13]
examined the roles of entities on event detection. They par-
titioned and clustered documents based on the entities which
contained to represent an event. [7] defined semantic categories
based on 4W dimensions, which included named entity, men-
tion, location, hashtag, verb, noun and embedded link. They
aggregated tweets discussing the same event into one cluster
by the similarity measure between those semantic categories.
[14] used entities on Twitter Trends to help clustering and used
entity clusters to represent events. It addressed scaling issues
with new design choices that link event clusters and enable
real-time event detection through evolutionary tracing.

Those entity-based methods usually require lots of compu-
tational resources and labeled data. furthermore, most of them
did not make full use of the textual semantic features of tweets.

III. METHODOLOGY

Fig. 1 shows the architecture of BEHIND. It consists of
four components: data processing, tweet HIN building, tweet
clustering and event summarization.

A. Data Processing

1) Elements Extraction: We filter tweets by bursty elements
in 4W dimensions. This can greatly reduce the computational
cost and improve precision of event detection. We use a
few advanced NLP tools12 to extract relevant elements from
tweets. We consider “time” extracted from tweets as elements
in When dimension, “country” and “location” as elements in
Where dimension, “person”, “organization” and “@username”
as elements in Who dimension. Generally speaking, elements
in What dimension are very diversified. Inspired by the concept
of text segment from [9] and [3] which refer to one or more
consecutive words, we use text segments to represent the What
dimensional elements of Twitter events.

2) Tweets Filtering by Bursty Elements: Thousands of
tweets are generated every day, and most of them (i.e., spam,
self-promotion, pointless babble) do not contain information
to help event detection. Therefore, after extracting event ele-
ments, we calculate the bursty elements that may be related
to events and discard the remaining ones.

Bursty Element
[9] introduced the concept of bursty segment to detect Twit-

ter events. Bursty segment refers to one or more consecutive
words that abnormally burst in tweets within a time window.
We only consider the elements in 4W dimensions of events and
we only extract the burst elements in 4W dimensions, which

1https://github.com/OpenSextant/Xponents
2https://github.com/FraBle/python-sutime

599

Data Processing

...

tweets

filter

Tweet HIN Building

extra Tweets

OtherWho

When

Tweet Clustering

JP

Feature aggregation

Where

Where
When

Who

What

What

clustering

Cluster

Event Summarization

Tweet HIN meta-schema

Merging

Fig. 1. An overview of BEHIND: Input data consists of Twitter data sorted by time. We extract elements in 4W dimensions from input data and calculated
the bursty elements to filter the event tweets. Then, we build a HIN with edges as elements in 4W dimensions of filtered tweets. We use the initial embedding
generated by BERT and feature aggregation based on HIN to generate new embedding of tweets. We cluster tweets through new embeddings to get events.
Finally, we extract the top elements in 4W dimensions in event clusters to get the event summaries.

alleviate the misleading effect of useless bursty segments (e.
g., thank god, every day).

Let NT denotes the total number of tweets and fele,T
denotes the number of element ele in time window T . fele,T
can be considered as a Binomial distribution B(NT , pele) and
pele denotes as the expected probability of ele in any random
time window. Since NT is large enough, it can be considered
that E[ele|T] = NT pele and σ[ele|T] =

√
NT pele(1− pele).

We use a formula for the bursty probability Pb(ele, T) for ele
in time window T defined by [9] as given in (1), where S(·)
is the sigmoid function.

Pb(ele, T) = S(10
fele,T − (E[ele|T] + σ[ele|T])

σ[ele|T]
) (1)

Taking into account the social aspect of Twitter, srcele,T
denotes the sum of retweet count of all tweets containing ele
in T and uele,T denotes the number of users who use the ele
in T. Both of them also affect the precision of event detection.

Finally, we define the bursty weight of the element ele as:

wb(ele, T) = Pb(ele, T)log(uele,T)× log(srcele,T) (2)

We sort the elements by their bursty weights. The top
√
NT

elements in each dimension are called bursty elements.
After repeatedly comparative experiments, we only keep

tweets containing at least two dimensional bursty elements,
which can use reasonable computing resources to achieve great
event detection results. Besides, Nf denotes as the number of
remaining tweets.

B. Tweet HIN Building

We use Heterogeneous Information Network (HIN) in BE-
HIND to enhance relevance judgment between tweets for
clustering. Here we introduce some basic definitions based
on previous work [8].

Definition 3.1 Heterogeneous Information Network
(HIN) A Heterogeneous Information Network (HIN) is a graph
G = (V,E) with a object mapping function Φ : V → A and
a link mapping function ϕ : E → R while the type of objects
|A| > 1 or the type of relations |R| > 1. V denotes the object
set ,A denotes the object type set, E denotes the link set and
R denotes the link type set.

Definition 3.2 Meta-schema Given a HIN G, the meta-
schema TG = (A,R) for G is a graph with nodes as object
types from A and edges as relations type from R.

We show an example of the HIN meta-schema in Fig. 1.
The object type in A is tweet and the relation types in R
include 4W(When,Where,Who,What) and Other(e. g., social
aspect relations).

Definition 3.3 Meta-path Meta-path P is defined on the
network schema TG = (A,R), the specific form is:A1

R1−−→
A2

R2−−→ · · · Rl−−→ Al+1.
The meta-path P defines a combination relationship R =

R1 ·R2 · ·Rl between node types A1 and Al+1, while · denotes
the combination operation between relations.

tweet when tweet

tweet where tweet

tweet who tweet

tweet what tweet

tweet user tweet

tweet link tweet

Fig. 2. Example of Meta-paths

According to the definitions given above, we use the filtered
tweets to build a tweet HIN. We show a few meta-paths
instances in Fig. 2. For example, tweet ti and tweet tj contain
the same element in 4W dimensions or contain the same link,
these can be used to establish meta-paths between ti and tj .

C. Tweet Clustering based on HIN
After the HIN is built, we reconstruct the feature represen-

tation of tweets to better cluster tweets discussing the same
event. We introduce pre-trained BERT [15] embeddings as the
initial embeddings of tweets. We define the initial embedding
of tweet ti as hi.

1) Feature Aggregation: We reconstruct the embeddings of
tweets by feature aggregation in HIN. We use a path-count
[16] strategy as the initial similarity measure of two tweets in
HIN, which is the number of meta-paths between tweet i and
tweet j: ei,j = |p : p ∈ P|.

Moreover, if there are meta-paths between two tweets, the
two tweets are neighbors of each other. Note that tweet itself
is also its own neighbor. The neighbors of ti is defined as:

Ni = {tj |ei,j > 0} (3)

600

Finally, we aggregate the features from Ni to tweet ti
through the normalized similarity measure, so that we get the
new embedding zi of tweet ti:

zi =
∑
j∈Ni

ei,j∑
k∈Ni

ei,k
· hj (4)

2) Jarvis-Patrick (JP) Clustering: After getting the new
embeddings of tweets, we can get the final similarities between
all tweets and all their neighbors by cosine similarities. Then
we sort them to get the k-nearest neighbors of each tweet.

Finally, all tweets can be clustered by JP algorithm [17]. In
this, we treat all tweets as separate nodes initially, an edge is
added between tweet ti and tweet tj if k-nearest neighbors of
ti contains tj and vice versa. After traversing all nodes, all
connected components can be considered as candidate event
clusters in time window T , and the remaining nodes without
any edges are discarded.

3) Cluster Merging: We extract 4W dimensional elements
from tweets in the candidate event clusters. Some candidate
clusters without elements in When, Where and Who dimen-
sions are discarded to get better results. To better manage
these candidate event clusters, we not only query the event
clusters of the current time window T , but also query the
event clusters of the time window T − 1. We compare the
elements in When, Where and Who dimensions of each two
clusters. The What dimension are not considered here because
the number of elements in the What dimension is usually too
large. If the elements coincidence rate is greater than 50%, we
merge these two events. The remaining clusters are the events
BEHIND finally detected.

TABLE I
RESULTS OF BEHIND AND BASELINES

No. event Precision DERate
MABED 21 74.00 71.62

SEDTWik 28 70.59 22.22
BEHIND-noAgg 31 82.16 18.42

BEHIND-tfidf 36 72.58 20.00
BEHIND 52 83.12 18.75

D. Event Summarization

Reasonable event summaries can be used to query and man-
age events. Existing Twitter event detection methods mainly
use a keyword set [9] [14] or a representative tweet [18] to
describe an event. The former may generate some keyword
sets that are not associated with one realistic event. The latter
also struggle to find a representative tweet that sums up the
whole event due to the brevity of tweets.

We support that a Twitter event may have corresponding 4W
dimensional elements. These elements in different dimensions
can jointly identify an event, and make events more effec-
tively queried and managed. Therefore, we sort the count of
elements in each dimension of those events. Then, we select
the top three elements of each dimension for an event and
concatenates them to describe the event.

For example, we use “2012-10-17 | us, america, new york |
mitt romney, obama | debate, middle class, president obama”
to summarize the event of “Second Presidential Debate be-
tween Obama and Romney in 2012”. This allows us to observe
that there is a debate between Barack Obama and Mitt Romney
in New York on October 17, 2012.

IV. EVALUATION

A. Dataset and Setup

1) Dataset: To evaluate the performance of BEHIND, we
use a huge Twitter dataset called Events2012 [19] to evaluate
BEHIND. The entire dataset includes 120 million tweets.
Since Events2012 only contains tweet IDs, we use a crawler
to get this corpus. Meanwhile, the results of Twitter event
detection need to be manually examined, we confirm that
it would cost a lot of time to use the entire data set for
experiments. For the time constraint and the volume limitation
of Twitter, we use the corpus from October 11 to October 17
in Events2012 to evaluate BEHIND in our work.

2) Baselines:

• SEDTWik: SEDTWik [3] is an extension of Twevent
[9]. SEDTWik identifies event based on bursty segments
and clusters these segments to get the important events.
Experiments in [3] have shown that SEDTWik achieves
better results than Twevent.

• MABED: MABED [12] is a method of event detection
using social aspect feature, which is based on mention
anomaly to detect events.

• BEHIND-noAgg: It is a variant of BEHIND, which
removes the feature aggregation module and uses the
initial embedding generated by BERT for clustering.

• BEHIND-tfidf: It is a variant of BEHIND, which uses
TF-IDF instead of BERT pre-training model to generate
the initial embedding of tweets. Most of event detection
methods use TF-IDF for their clustering module.

3) Experimental Setup: We use three metrics to evaluate
results of event detection, which are Number of events (No.
events), Precision, Duplicate Event Rate (DERate). all three
metrics are referred from [3] and [9] .

• No. events: the number of detected events that can be
correlated with realistic events.

• Precision: the percentage of detected events that can be
correlated with realistic events.

• DERate: the percentage of repeated detected events
among all realistic events detected.

For the proposed BEHIND, we remove all retweets from
the Twitter stream. Meanwhile, we set a time window T to
be 24 hours, which can be adjusted according to the number
of tweets. For the initial embeddings of tweets, we use the
BERT model trained by Sentence Transformers [20], which
are tuned specifically meaningful sentence embeddings such
that sentences with similar meanings are close in vector space.
We set the k used in Jarvis-Patrick algorithm as Nf/1000 to
get the best experimental results.

601

TABLE II
A SAMPLING OF EVENTS DETECTED AND SUMMARIED BY BEHIND AND BASELINES

Event Event detected by BEHIND, MABED and SEDTWik

New music video by Justin Bieber and Nicki Minaj
performing Beauty And A Beat

2012-10 | canada | justin bieber, nicki minaj | beauty beat, music video, youtube –BEHIND
video, youtube, beat, justin (bieber, amp, liked, playlist, i’m, uploaded, favorited,
added, ass, music) –MABED
good morning, youtube, vp debate, justin bieber, beauty and a beat video, paul ryan,mitt romney,
joe biden, thank god, tcot –SEDTWik

Red Bull Stratos

NULL | stratos | red bull, youtube, felix baumgartner | edge space, red bull stratos,
liked video –BEHIND
livejump (redbullstratos, jump, space, baumgartner) –MABED
felix baumgartner, red bull stratos, livejump, stratos, edge space, record breaking, thank much,
try best, felix, apple maps –SEDTWik

Second Presidential Debate between Barack Obama
and Mitt Romney

2012-10-17 | us, america, new york | mitt romney, obama | debate, middle class,
president obama –BEHIND
question, debates, romney (president, ask, answering, don’t, amp, answer, obama, mitt) –MABED
(Not Detected) –SEDTWik

Cowboys vs Ravens on Oct 14, 2012

2012-10-14 | dallas, baltimore, detroit | dallas cowboys, baltimore ravens, fox | field goal,
baltimore ravens, dallas cowboys –BEHIND
cowboys (ravens, game, lose, win, fan, dallas, fuck) –MABED
(Not Detected) –SEDTWik

Hilary Mantel’s novel Bring Up the Bodies won
the 2012 Booker Prize for the second time

2012 | NULL | hilary mantel, booker prize | man booker prize, bring bodies, second time –BEHIND
(Not Detected) –MABED
milk, news, breaking news, rt two, gary mckinnon, male thoughts, man booker prize,
fox news, wise man, hilary mantel –SEDTWik

Space Shuttle Endeavour Embarks on L.A.
Road Trip

2012-10-12 | los angeles, wells, fargo | angeles, wells fargo, branch manager | los angeles ca,
space shuttle, greater los angeles –BEHIND
(Not Detected) –MABED
(Not Detected) –SEDTWik

Chinese author Mo Yan wins Nobel Prize
in Literature

2012-10-11 | academy of sciences, china | mo yan, swedish academy, nobel prize | nobel prize
literature, nobel literature prize, christian science –BEHIND
(Not Detected) –MABED
(Not Detected) –SEDTWik

Megan Fox Gives Birth to First Child With
Brian Austin Green

2012-09 | NULL | megan fox, brian, megan | birth baby, first child, american actress –BEHIND
(Not Detected) –MABED
(Not Detected) –SEDTWik

For both SEDTWik and MABED, we use the implementa-
tion provided by the authors. The number of top events to be
detected is the hyper-parameter of MABED. We set it to 100,
which get the best experimental results.

B. Result
1) Event Detection Results: All methods follow experi-

mental setting in IV-A3. Specifically, we used Google News
and Wikipedia Page Titles datasets to identify an realistic
event. The detailed comparison is shown in table I. From the
comparison results, we have the following observations and
analyses:
• BEHIND achieves the best performance in No. event

and Precision metrics and second-best performance in
DERate metric, which shows BEHIND can cluster tweets
discussing the same event better.

• MABED has weak performance in the experiments. By
analyzing the results of MABED, we find that most of
the results are related the event of “Second Presidential
Debate between Barack Obama and Mitt Romney” and it
always has been one of the most discussed events. Once
a hot event occurs, MABED may not be able to detect
other smaller-scale events that occur at the same time.

• Despite using the same experimental setup, SEDTWik
does not perform as good as in [3]. We suggest that

because some tweets cannot be crawled anymore, which
affects the results of event detection. [21] also agrees
with it, they reported that about 50% of tweet relevance
judgments were deleted in Events2012. This also demon-
strates BEHIND’s ability to capture relevant judgments.

2) Ablation Experiments: Through the results of variants of
BEHIND, we can get the following observations and analyses:

• On the whole, Both BEHIND-noAgg and BEHIND-tfidf
perform worse than BEHIND. Nevertheless, they perform
overall better than SEDTWik and MABED.

• BEHIND-tfidf achieves the second-best performance in
the No. event and DERate metrics, while the result is
poor in the Precision metric. We observe some results
of BEHIND-tdidf, which aggregates the elements of
different events into a cluster. This shows that the initial
embedding generated by BERT can be better used to
capture semantic relations between tweets in large corpus.

• BEHIND-noAgg achieves poor performance in No.
Events metric. This shows that HIN can help capture
more relevance judgment between tweets. It brings closer
the representation of two tweets that describe different
aspects of the same event, though not nearly as similar
semantically.

602

3) Event Summarization: We show a sampling of results
detected in Table II. The first column is the manually labeled
events and the second column is the automatically generated
event summaries by BEHIND, MABED and SEDTWik.

Event summaries generated by MABED include main words
and common words. MABED assigns weights to those com-
mon words. To make the summaries more concise, we remove
the weights of them. For each event in SDETWik, we only take
the top ten segments as the event summary. Note that “Not
Detected” means that the method does not detect this event,
“NULL” in the event summaries generated by BEHIND means
that elements of this dimension is not detected.

Next, we discuss two examples in Table. II to better demon-
strate that our method can get interpretable and discriminative
event summaries. The event of “Chinese author Mo Yan wins
Nobel Prize in Literature” detected by BEHIND is summa-
rized by “2012-10-11 | academy of sciences, china | mo yan,
swedish academy, nobel prize | nobel prize literature, nobel
literature prize, christian science”. The summary gives a more
holistic picture about an event by elements in 4W dimensions.
MABED did not report this event, while SEDTWik only
reported a result that contained “Mo Yan”, “EU” and a few
irrelevant segments. This corresponds to Case 1 of Section I.

The event of “Second presidential debate between Obama
and Romney in 2012” detected by BEHIND is summarized by
“2012-10-17 | us, america, new york | mitt romney, obama |
debate, middle class, president obama”. SEDTWik does not
report this event, while MABED reports it as: “question, de-
bates, romney (president, ask, answering, don’t, amp, answer,
obama, mitt)”. The summary in MABED cannot determine
which presidential debate it is, but the summary in BEHIND
can confirm that this is the second presidential debate held
in New York through “2012-10-17” and “new york”. This
corresponds to Case 2 of Section I.

From results in Table I and Table II, we argue that using
4W dimensional elements for event detection can both im-
prove detection performance and make detected events more
interpretable and distinguishable. While due to the sparsity
and irregularity of tweets, we can observe that the elements
of some dimensions are missing. But in most cases, the
given elements about an event have been able to identify and
understand the event.

V. CONCLUSION

Twitter event detection has attracted great interests from
both academia and industry. In this paper, we proposed a
method called BEHIND for detecting events from Twitter,
which mainly included filtering tweets by burst elements and
clustering tweets based on HIN to figure out most relevant
events. The evaluation based on benchmark dataset shows
that BEHIND achieved higher precision and less duplica-
tion rate, and detects more events than the state-of-the-art
methods. Meanwhile, BEHIND can derive interpretable event
summaries. For potential future work, we consider using
natural language generation to improve the readability of event
summaries.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China under Grants (No.2018YFC0831703).

REFERENCES

[1] “Social networks finally bypassed print newspapers as
a primary source of news,” 2018. [Online]. Avail-
able: https://www.adweek.com/digital/social-networks-finally-bypassed-
print-newspapers-as-a-primary-source-of-news

[2] W. Xie, F. Zhu, J. Jiang, E.-P. Lim, and K. Wang, “Topicsketch:
Real-time bursty topic detection from twitter,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, no. 8, pp. 2216–2229, 2016.

[3] K. Morabia, N. L. B. Murthy, A. Malapati, and S. Samant, “Sedtwik:
segmentation-based event detection from tweets using wikipedia,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Student Research
Workshop, 2019, pp. 77–85.

[4] D. Paul, Y. Peng, and F. Li, “Bursty event detection throughout histo-
ries,” 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pp. 1370–1381, 2019.

[5] C. Comito, A. Forestiero, and C. Pizzuti, “Bursty event detection in
twitter streams,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 13, pp. 1 – 28, 2019.

[6] X. Chen and Q. Li, “Event modeling and mining: a long journey toward
explainable events,” The VLDB Journal, vol. 29, no. 1, pp. 459–482,
2020.

[7] Q. Li, A. Nourbakhsh, S. Shah, and X. Liu, “Real-time novel event de-
tection from social media,” in 2017 IEEE 33Rd international conference
on data engineering (ICDE). IEEE, 2017, pp. 1129–1139.

[8] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, “A survey of
heterogeneous information network analysis,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 1, pp. 17–37, 2016.

[9] C. Li, A. Sun, and A. Datta, “Twevent: segment-based event detection
from tweets,” in Proceedings of the 21st ACM international conference
on Information and knowledge management, 2012, pp. 155–164.

[10] J. Yao, B. Cui, Y. Huang, and Y. Zhou, “Bursty event detection from
collaborative tags,” World Wide Web, vol. 15, no. 2, pp. 171–195, 2012.

[11] C. Xing, Y. Wang, J. Liu, Y. Huang, and W.-Y. Ma, “Hashtag-based sub-
event discovery using mutually generative lda in twitter,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

[12] A. Guille and C. Favre, “Event detection, tracking, and visualization in
twitter: a mention-anomaly-based approach,” Social Network Analysis
and Mining, vol. 5, no. 1, p. 18, 2015.

[13] A. J. McMinn and J. M. Jose, “Real-time entity-based event detection
for twitter,” in International conference of the cross-language evaluation
forum for european languages. Springer, 2015, pp. 65–77.

[14] M. Fedoryszak, B. Frederick, V. Rajaram, and C. Zhong, “Real-time
event detection on social data streams,” in Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data
mining, 2019, pp. 2774–2782.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[16] Y. Sun and J. Han, “Mining heterogeneous information networks:
Principles and methodologies,” in Mining Heterogeneous Information
Networks: Principles and Methodologies, 2012.

[17] R. A. Jarvis and E. A. Patrick, “Clustering using a similarity measure
based on shared near neighbors,” IEEE Transactions on computers, vol.
100, no. 11, pp. 1025–1034, 1973.

[18] M. Hasan, M. Orgun, and R. Schwitter, “Real-time event detection from
the twitter data stream using the twitternews+ framework,” Inf. Process.
Manag., vol. 56, pp. 1146–1165, 2019.

[19] A. J. McMinn, Y. Moshfeghi, and J. M. Jose, “Building a large-scale
corpus for evaluating event detection on twitter,” in Proceedings of
the 22nd ACM international conference on Information & Knowledge
Management, 2013, pp. 409–418.

[20] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 11 2019.

[21] Ø. K. Repp, “Event detection in social media-detecting news events from
the twitter stream in real-time,” Master’s thesis, NTNU, 2016.

603

ATFE: A Two-dimensional Feature Encoding-based
Sentence-level Attention Model for Distant

Supervised Relation Extraction
Shiyang Li1, Qianqian Ren*1, Zechao Liu2

1Department of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
2School of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China

*Email: renqianqian@hlju.edu.cn

Abstract—Distant supervised relation extraction has recently
attracted researchers attention in the knowledge graph. However,
the current feature encoding model of sentences can not fully rep-
resent the features in sentences, which poses a challenge. To solve
this problem, we propose a two-dimensional feature encoding-
based sentence-level attention model for relation extraction. In
this model, we first employ bidirectional long short-term memory
networks(BiLSTM) to capture the temporal dependency of the
words in the sentence. Then we employ multi-dilated convolution
to obtain the higher-level semantic units hidden in the sentence.
Afterwards, we combine the above two-dimensional features to
embed the encoding of sentences, which is expected to enhance
the model’s ability to express sentence features. Finally we build
sentence-level attention to complete the relation extraction task.
Compared with other excellent methods, the proposed approach
provides a significant performance improvement.

Index Terms—Deep learning, Attention, Distant supervision,
Relation extraction

I. INTRODUCTION

In recent years, the growing commercial interest in artificial
intelligence related fields has spurred the development of
knowledge graphs. Many knowledge graphs related techniques
have been proposed and applied. Among them, the knowl-
edge base widely used for natural language processing(e.g.
Freebase, Wikidata) related issues such as search engines and
question answering systems. Some existing large-scale knowl-
edge bases are composed of a large number of triples (e.g.
<Jack Ma, founder, Alibaba>), which implement information
storage in a structured manner etc[2, 4]. These triples concisely
reflect the two objective entities and the relation between them.
However, these existing knowledge bases are not sufficient to
cover all the facts in the real world. We need to continuously
expand our knowledge base to increase its integrity. Many
researches focus on the study of relation extraction, which can
automatically obtain unknown relations in knowledge bases
from plain text.

Relation extraction is the process of obtaining two entities
and the relation between them from an unknown text. This
is meaningful during the expansion of the knowledge base.
The initial extraction is performed in a supervised manner,
requiring people to manually label the training data, which is
a time-consuming and very expensive task[3, 5]. Until 2009,

DOI reference number: 10.18293/SEKE2021-107

the concept of distant supervision is proposed. This method
automatically generates relational training data by aligning
entities in the text with the known triples in the knowledge
base. Distant supervision can effectively avoid the tedious and
time-consuming manual annotation process [13]. However,
this method can also mislabel and generate a lot of noise
during the experiment. To solve the problems caused by distant
supervision, multi-instance learning is proposed and widely
used [6]. Lin et al propose a sentence-level attention method
to make full use of the relation information in all sentences
[10]. In this method, the weighted sum of all sentences in
the package is used to express the relation between entity
pairs. Guo et al add entity recognition on the above method
to further obtain entity background knowledge to improve
relation extraction performance [9].

In recent years, various deep learning architectures have
been proposed to replace traditional natural language to encode
sentence features. Convolutional neural networks(CNN) are
proposed to code sentence semantic [1, 11, 14, 18]. On
this basis, deep convolutional neural networks(DCNN) and
residual networks are proposed to enhance the model’s ability
to express sentence features [7]. Recurrent neural networks
(RNN) and long short-term memory networks (LSTM) are
generally adopted to model the temporal dependency of words
in the sentence and achieved certain results [19, 20]. These
techniques along with other tricks are usually combined to
improve the effectiveness of models.

In this paper, we propose a two-dimensional feature en-
coding -based sentence-level attention model(ATFE) for dis-
tant supervised relation extraction. We first build a two-
dimensional feature encoder to embed the encoding of sen-
tences, which is expected to combine the temporal depen-
dency of the words and the higher-level semantic units in
sentences to enhance the model’s ability to express sentence
features. Afterwards, we use the result of two-dimensional
feature encoding to built sentence-level attention to complete
the relation extraction task. Experiments on real data sets
show that compared with baseline models, our model can
perform sentence feature encoding more precisely, moreover
further improve the performance of relation extraction related
algorithms.

The contributions of the paper are as follows:

604

• We propose ATFE, a new sentence feature encoding
model to obtain the two-dimensional feature representa-
tion of the sentence.

• We incorporate the sentence-level attention mechanism
with our model to calculate the extracted relation proba-
bility.

• We implement experiments on real data sets to validate
the performance of our proposed model. The experimen-
tal results show that our model can encode sentences
feature better. It can be more effectively used in the
distant supervision relation extraction mo-
del to improve task accuracy.

II. RELATED WORK

Most existing relation extraction methods can be roughly
divided into two categories: one is based on word sequence,
and the other is based on the dependency tree. The method
based on the dependency tree is to model the dependency
tree of the sentence instance as the input data, which will
not be described in detail here. The method based on the
word sequence is to use the word sequence to build a model.
The model is used to encode sentence features to obtain the
semantic representation of sentences. Since deep learning was
proposed, neural network models have brought tremendous
changes to the research on feature extraction. Nowadays, using
neural networks to automatically learn features in sentences for
relation extraction tasks has been widely studied. Some classic
models for feature encoding of sentences have been proposed,
such as the piecewise convolutional neural network(PCNN)
model [17]. The researchers applied piecewise max-pooling
to the model to make it better encode sentence structure
information.

Although the method effectively improves the effect of
the relation extraction task. However, due to the influence
of the CNN network structure, the small size convolution
kernel cannot capture the temporal dependency of the words
in the sentence and perform more accurate sentence feature
coding. In subsequent works, the researchers introduced RNN
to the task of relation extraction and obtained long-term
dependency by capturing the time sequence information of the
words in the sentence. Among them, long short-term memory
networks(LSTM) is an excellent RNN model that is composed
of computing units.

These works actively promote the improvement of the
accuracy of the relation extraction model, and achieve great
success. However, they all ignore the higher-level semantic
unit information in the sentence. The semantic unit is shown
in figure 1:

Different from word-level information, it is higher-level
information hidden in phrases or sentences. They are combined
to express the semantics of sentences. Therefore, we believe
that accurately capturing the representation of semantic units
in a sentence is the key to enhance the model’s ability to
express sentence features.

Encoding based on semantic information in sentences has
attracted many researchers in natural language processing(nlp)

Fig. 1. The text ”Mike and Dan are playing basketball with great excitement
and apparently they enjoy the fun of competition” contains two important
points, ”game of Mike and Dan” and ”happiness of playing basketball game”.
These information are called semantic units.

recently. The diversity of models based on deep learning
enables them to try different methods to improve the effective-
ness of various nlp tasks, such as semantic segmentation, text
emotion analysis and machine translation. To the best of our
knowledge, this is the first effort to adopt the two-dimensional
feature encoding model including BiLSTM and multi-dilated
convolution in distant supervised relation extraction.

III. METHODOLOGY

For n sentences {x1, x2, x3,. . . , xn}, each sentence consists
of m words, denoted as xi ={ a1, a2, a3,. . . ,am}, which
contains two entities (head entity and tail entity). The purpose
of our model is to calculate the probability of each relation r.
For the entire relation extraction model, we divide it into two
parts:

• Two-dimensional feature encoder: Given n sentenc-
es{x1, x2, x3,. . . , xn}, use our proposed model to
perform feature encoding on sentence vectors.

• Sentence-level attention: We make full use of the multi-
instance learning idea, extract sentence information of
the target entity pair through all contained relation to
predicting the relation probability of the target entity pair.

A. Two-dimensional Feature Encoder

The structure of the two-dimensional feature encoder is
shown in figure 2. The model is composed of vector represen-
tation, network layer, piecewise max pooling. The following
describes how the model is implemented:

Vector representation. Since the neural networks cannot
directly recognize the words in the sentence, we should use
the encoding tool to transform the words into low- dimensional
vectors. Considering that the length of each sentence is dif-
ferent, and important information may be contained anywhere
in the sentence, we pad zeros around sentences to make them
equal in length, which is in order to facilitate the model encode
the sentence vector. And we add the position information of
the given entity pair.

Word embedding and position embedding. Word embed-
ding is distributed representations of words. It can map words
in texts to a low-dimensional vector that can capture syntactic
and semantic meanings. Position embedding is an important
part of the model. It is defined as the combination of the
relative distances from each word in a sentence to two given
entities, as shown in figure 3. The final embedding method is
shown in Vector Representation in figure 2. If the specified

605

Fig. 2. Two-dimensional feature representation sentence encoder.

word embedding is dw and the position embedding is dp ,
given the vector sequence xi={ a1, a2, a3,. . . , am }, the length
of ai, denoted as dai=dw + 2* dp. In our model, we set dw=5
and dp=1, then dai=5 + 2* 1=7.

Fig. 3. The distance from ”co-founder” to the head entity ”Jack Ma” in the
sentence is 4, and the distance to the tail entity ”Alibaba” is 2.

Network layer. The matrix containing sentence word em-
bedding and position embedding is input into the network for
feature encoding. First, BiLSTM is used to capture the timing
information of the words in the sentence to obtain long-term
dependencies. The essence of BiLSTM is a two-way LSTM
structure.

Temporal dependency capturing. LSTM is a kind of
recurrent neural network and has been widely used. By adding
control gates (including input gates, output gates and forget
gates) to the network, the network can eliminate unnecessary
words in sentences and retain important words. However, due
to the structural characteristics of LSTM, it is impossible
to encode the information from back to front. It makes the
network unable to carry out more fine-grained encoding. To
solve this problem, BiLSTM first performs a LSTM from front
to back, and then performs a LSTM from back to front, and
next combines two results to obtain the final feature encoding.
In the model, we input sentences into the network in word
order and use the characteristics of the words that enter the
network first, which is calculated together with the next word
that enters the network. This process is repeated until the last
word is processed. The process is shown in figure 4.

Semantic information capturing. Based on the repre-
sentation generated by BiLSTM, we introduce multi-dilated
convolution to capture the semantic unit representation in

Fig. 4. First we input ”Jack Ma”, ”is”, ”the”, ”earliest”, ”co founder”, ”of”,
”Alibaba” in turn to get three hidden vectors and then input ”Alibaba”, ”of”,
”co founder”, ”earliest”, ”the”, ”is”, ”Jack Ma” in turn to get three hidden
vectors. Finally, the hidden vectors are spliced to get the encoding of the
sentence.

the sentence or phrase through the temporal dependency in
the sentence. Dilated convolution is actually a special CNN
design. By adding ”holes” to the convolution, the receptive
field can be expanded exponentially without adding additional
parameters. To prevent the dilated segments of the convo-
lutional kernel from causing the missing of vital local cor-
relation, we design the network as a two-layer convolution
with different dilation rates, as shown in figure 5.

Fig. 5. Multi-dilated convolution structure.

In the proposed model, the scale of the convolution kernel
is 3, and the dilation of the two-layer dilated convolution is
1 and 2, respectively. In this way, each convolution kernel in
the highest layer can observe 7 inputs from BiLSTM from left
to right. While expanding the receptive field, it also prevents
the highest level from processing sentence information that is
too long, and reduces the noise in the sentence caused by the
influence of some irrelevant information. At the same time, to
remain the sentence vector sequence dimension of the input
and output of each network layer, we set the different padding
size to make the same length of the convolution process.
In this way, we can capture the semantic unit representation
from phrase-level information with a smaller dilation rate and
sentence-level information with a larger dilation rate.

Two-dimensional feature representation. Finally, we will
perform one-dimensional splicing of the results obtained by
two-layer convolution to obtain feature vectors containing
sentence timing information and semantic units. The feature
vector is passed through a convolutional layer with a convo-
lution kernel 1 to output the two-dimensional features of the
final sentence.

The convolution process with convolution kernel 1 is equiv-
alent to the calculation process of full connection. It can

When setting the dilation rate of different layers of dilation convolution,
you should note that the dilation rate of each layer has no other common
factors other than 1. Otherwise, the grid effect will be generated by adding
”holes” in the convolution.

606

increase the nonlinearity of the network by changing the
vector dimension, thus the network can express more complex
features.

Piecewise max pooling. According to the given entity pair,
the sentence is divided into three parts (pi1, pi2, pi3), and
then the maximum pooling operation is performed on each
part (the piecewise max pooling part is in figure 3, the gray
block represents the position of the entity pair in the sentence).
The process can be defined as:

[x]ij = [max(pi1),max(pi2),max(pi3)] (1)

B. Sentence-level Attention

To make full use of the relation information expressed in
each sentence in multi-instance learning, we use sentence-
level attention to complete the relation extraction task[8]. Its
structure is shown in the figure 6:

Fig. 6. Sentence-level Attention.

Given a set of entity pairs < eh, et >, the set S consists
of all sentences containing this entity pair, denoted as S =
{x1, x2, x3,. . . , xn}. We perform weighted summation on the
feature encodes of all sentences in the set to get the feature
encode of set S:

s =
∑
i

wixi (2)

To measure the contribution of the sentence containing the
entity pairs in predicting whether the entity pair has a relation
r, we first match the vector representation of the relation r
with xi, we calculate their similarity:

fi = ||xi − r|| 2 (3)

Here, due to the nature of word embedding, we use en-
tity vector difference to represent the relation characteristics
between entity pairs[12, 16]:

r = eh − et (4)

Then fi represents the score using the sentence to predict
whether the entity pair has a relation r, and we calculate wi

according to the following formula:

wi =
exp (fi)

Σkexp (fk)
(5)

In this way, we get a vector representation of the set s
of sentences containing a given entity pair. We use a linear

function to represent the score of each possible relation r, it
is the final output of the neural network.

O = RS + d (6)

Where R is the representation matrix of the relation, and d
is the deviation vector. Then we get the scores for i possible
relations. We calculate the probability of each relation r
accordingly:

p (r| s, θ) =
exp (or)

Σnr

k=1exp (ok)
(7)

Where nr is the total number of distant supervised align-
ments.

IV. TRAINING AND EXPERIMENT

This section introduces the optimization process, data set,
experimental environment, and parameter setting of our model
respectively. Finally, the performance of the model is com-
pared with some baseline methods.

A. Model Optimization and Training

For the entire relation extraction model, we use cross
entropy to define the objective function as:

J(θ) =
s∑

i=1

logp(ri|si, θ) (8)

We use Adam to optimize the objective function. Adam
has a great advantage in non-convex optimization problems
and is an extension of Stochastic Gradient Descent (SGD).
It uses the first-order moment estimation and the second-
order moment estimation of the gradient to dynamically adjust
the learning rate of each parameter. It can maintain high-
efficiency calculations while occupying a small amount of
computer memory. When training the model, we introduce
dropout to prevent the model from overfitting to get the best
model training results[15].

B. Datasets and Preprocessing

Here we use Nyt10 data set for the relation extraction task.
The word2vec tool is used for sentence vectorization.

Nyt10. The nyt10 data set is maintained by Tsinghua
University and is used for relation extraction experiments. It
is generated by adjusting the New York Times Corpus and
Freebase. A total of 53 kinds of relations are included, among
which there is a relation NA, which indicates that the head
entity and the tail entity in the sentence have no relation. We
use the nyt10 data set for model training and verification. The
training set includes 466876 sentence examples. The test set
consists of 172448 sentence examples.

Parameter settings. In order to determine the optimal
settings of each parameter of the model, based on the data
provided by [10, 11, 18], we made more attempts on the
sentence embedding size, window size, learning rate, and other
parameters. In the process of multi-dilated convolution, try the
window size and the number of convolution layers between {2,

607

TABLE I
EXPERIMENTAL PARAMETER SETTINGS.

Window size 3
1

Hidden size Bilstm
Dilated convolution
CNN

60
230, 60
230

Word embedding 50
Position embedding 5
Batch size 160
Dropout probability 0.5

3}, the feature map size of different networks is selected in
{30, 60, 120, 200, 230, 256}, and the batch size is selected
in {100, 160, 180, 220}. Finally, the parameters used in our
experimental model are listed in Table 1.

C. Evaluation Metric

The purpose of our experiment is to prove that a more
accurate sentence feature coding model can improve the per-
formance of the relation extraction method based on remote
supervision. Finally, the model is evaluated through the Pre-
cision -Recall curve and the AUC and F1 values of the model
on the test set verification set.

We compare our model with several previous works, figure
7 clearly shows the Precision-Recall curve of all methods.

Fig. 7. Precision-Recall curve of each method in the comparison experiment.

As can be seen from figure 7, the neural network-based
models (ATFE, APCNN, PCNN) are significantly better than
other baseline models and have higher precision and recall.
At the same time, among these three models, the performance
of our model (ATFE) is significantly better than the other two
neural network models. It is clear that improving the neural
network’s ability to express the characteristics of sentences
can have a positive effect on the task of relation extraction.
Furthermore, In the entire P-R curve range, ATFE achieves
higher precision than all baseline models.

In addition, in order to verify the effectiveness of two-
dimensional feature representation for the final performance
improvement of relationship extraction. We conducted step-by-
step experiments on our proposed model. When the input data
and the sentence-level attention method are unchanged, the
ATFE model is compared with the ABiLSTM model and the
dilated convolution model (ADNN) to verify its effectiveness.

The result is shown in figure 8. It can be seen from the
figure that due to the limitations of the network structure,
the final results of the ABiLSTM and ADNN models are not
satisfactory, and the two-dimensional feature representation
model (ATFE) that combines sentence time information and
higher-level semantic representations produce a satisfactory
result.

Fig. 8. Step-by-step experiment results.

Furthermore, the AUC and F1 values of our proposed ATFE
model in the validation set and test set are further compared
with the APCNN model. The result is shown in figure 9:

Fig. 9. Performance comparison of ATFE and APCNN on the validation set
and test set, using different colors to distinguish the two methods.

Through the above evaluation, we can find that the per-
formance of our proposed ATFE model on the test set and
verification set is significantly higher than the APCNN model.
In the validation set, the highest AUC value of the ATFE model
can reach 0.6404, and the highest F1 value can reach 0.6213.
The APCNN model only has an AUC value of 0.5952 and an
F1 value of 0.5686. Similarly in the test set, the final AUC
and F1 values of the ATFE model are 0.3642 and 0.3443,
respectively. The AUC and F1 values of APCNN are 0.3162
and 0.3078, which are lower than the ATFE model.

The above several experiments show that our model has
better performance than other baseline models. It shows that
capturing higher-level semantic representations through the
temporal dependency of words in sentences, obtain the two-
dimensional feature encoding of the sentence can improve the
model’s ability to encode sentence features, and accordingly
enhance the performance of relation extraction tasks based on
remote supervision. It played a positive role in promoting the
development of this research work.

608

Experiment summary and questions. It can be seen from
figure 7 that when the recall is low (less than 0.05), the preci-
sion of our model has a rapid decline. It is because the heldout
evaluation suffers from false negative in Freebase. Although
this problem can be eliminated by manual evaluation, it will
inevitably lead to huge labor costs as the size of the data
set increases. So whether or this false negative label can be
eliminated or corrected through the autonomous learning of
the model will become a direction for future researchers to
improve the performance of the model.

V. CONCLUSION

In this paper, we propose an ATFE model to solve the
problem that the feature encoding model of sentences in the
previous distant supervised relation extraction method cannot
adequately represent the features in sentences. We first use
BiLSTM to capture the time dependence of words in sentences
by bidirectional encoding. On this basis, we design multi-
dilated convolution to further acquire the higher-level semantic
units hidden in sentences. Finally, the feature encoding ability
of the model is maximized by fusing the captured two-
dimensional features, We build sentence-level attention to
complete the relation extraction task. Compared with similar
methods, our proposed method has significant performance
improvement.

ACKNOWLEDGEMENT

This work was supported by the Basic Research Program
(no. JCKY2019604B002).

REFERENCES

[1] Adel, H., Schütze, H., 2017. Global normalization of
convolutional neural networks for joint entity and relation
classification. arXiv preprint arXiv:1707.07719 .

[2] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyga-
niak, R., Ives, Z., 2007. Dbpedia: A nucleus for a web
of open data, in: The semantic web. Springer, pp. 722–
735.

[3] Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C., 2003.
A neural probabilistic language model. Journal of ma-
chine learning research 3, 1137–1155.

[4] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor,
J., 2008. Freebase: a collaboratively created graph
database for structuring human knowledge, in: Proceed-
ings of the 2008 ACM SIGMOD international conference
on Management of data, pp. 1247–1250.

[5] Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., Kuksa, P., 2011. Natural language
processing (almost) from scratch. Journal of machine
learning research 12, 2493–2537.

[6] Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, Luke
Weld, D.S., 2011. Knowledge-based weak supervision
for information extraction of overlapping relations, in:
Proceedings of the 49th annual meeting of ACL: human
language technologies, pp. 541–550.

[7] Huang, Y.Y., Wang, W.Y., 2017. Deep residual learning
for weakly-supervised relation extraction. arXiv preprint
arXiv:1707.08866 .

[8] Ji, G., He, S., Xu, L., Liu, K., Zhao, J., 2015. Knowledge
graph embedding via dynamic mapping matrix, in: Pro-
ceedings of the 53rd annual meeting of the association for
computational linguistics and the 7th international joint
conference on natural language processing (volume 1:
Long papers), pp. 687–696.

[9] Ji, G., Liu, K., He, S., Zhao, J., et al., 2017. Distant
supervision for relation extraction with sentence-level
attention and entity descriptions., in: AAAI.

[10] Lin, Y., Shen, S., Liu, Z., Luan, H., Sun, M., 2016.
Neural relation extraction with selective attention over
instances, in: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 2124–2133.

[11] Liu, C., Sun, W., Chao, W., Che, W., 2013. Convolution
neural network for relation extraction, in: International
Conference on Advanced Data Mining and Applications,
Springer. pp. 231–242.

[12] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S.,
Dean, J., 2013. Distributed representations of words and
phrases and their compositionality. Advances in neural
information processing systems 26, 3111–3119.

[13] Mintz, M., Bills, S., Snow, R., Jurafsky, D., 2009. Distant
supervision for relation extraction without labeled data,
in: ACL, pp. 1003–1011.

[14] Santos, C.N.d., Xiang, B., Zhou, B., 2015. Classifying
relations by ranking with convolutional neural networks.
arXiv preprint arXiv:1504.06580 .

[15] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever,
I., Salakhutdinov, R., 2014. Dropout: a simple way to
prevent neural networks from overfitting. The journal of
machine learning research 15, 1929–1958.

[16] Wang, Z., Zhang, J., Feng, J., Chen, Z., 2014. Knowledge
graph and text jointly embedding, in: Proceedings of
the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1591–1601.

[17] Zeng, D., Liu, K., Chen, Y., Zhao, J., 2015. Distant super-
vision for relation extraction via piecewise convolutional
neural networks, in: Proceedings of the 2015 conference
on empirical methods in natural language processing, pp.
1753–1762.

[18] Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J., 2014. Rela-
tion classification via convolutional deep neural network,
in: COLING 2014, pp. 2335–2344.

[19] Zhang, D., Wang, D., 2015. Relation classification via re-
current neural network. arXiv preprint arXiv:1508.01006
.

[20] Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., Xu,
B., 2016. Attention-based bidirectional long short-term
memory networks for relation classification, in: Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp.
207–212.

609

Extracting information from driving data using k-means clustering ∗

Nour Chetouane†‡, Lorenz Klampfl and Franz Wotawa
Christian-Doppler Laboratory for Quality Assurance Methodologies for Autonomous

Cyber-Physical Systems, Institute for Software Technology, Graz University of Technology
Inffeldgasse 16b/2, Graz, Austria

{nour.chetouane, lklampfl, wotawa}@ist.tugraz.at

Abstract

There is an increasing availability of data, but for mak-
ing decisions and other tasks we need information. Hence,
we require to analyze the data and extract parts or come up
with relations between different pieces. In this paper, we fo-
cus on information extraction within the automotive indus-
try. In particular, we report on applying k-means clustering
for identifying episodes in vehicle data. An episode is con-
sidered to be a time interval where a vehicle is performing
an activity worth being distinguished. The underlying idea
is to cluster the data such that we are able to extract such
similar situations like breaking before a crossing only con-
sidering vehicle data. We discuss a method that allows ex-
tracting such episodes capturing actuator and sensor read-
ings over time. Besides introducing the underlying method,
we present obtained empirical results making use of a freely
available dataset showing that the extracted episodes have
indeed a meaningful interpretation.

1 Introduction

We live in a world of increasing availability of data.
However, for obtaining information, i.e., data with uncer-
tainty of interpretation removed, required to fulfill certain
tasks, we need to analyze available data and set it in relation
to a context. This may also lead to removing redundancies
as well as coming up with relations between different pieces
of data worth being considered in a given application con-
text. In this paper, we focus on the automotive domain. Cur-
rent vehicles produce a lot of data obtained during driving.
Data include vehicle speed, breaking pressure, or the posi-

∗The financial support by the Austrian Federal Ministry for Digital and
Economic Affairs, the National Foundation for Research, Technology and
Development and the Christian Doppler Research Association is gratefully
acknowledged.
†Authors are listed in alphabetical order.
‡DOI reference number: 10.18293/SEKE2021-118

tion of the steering wheel, and can be obtained when mon-
itoring the respective bus systems of a car. When driving,
however, we see a limited amount of situations worth being
distinguished. This includes braking before a crossing or
accelerating after stopping. The question now is, whether
we are able to ”see” such distinguishable situations also in
vehicle data.

In order to answer the question, we propose an ap-
proach utilizing clustering for obtaining time intervals we
call episodes, and to evaluate whether those episodes can be
assigned a meaningful interpretation. The underlying idea
behind the approach can be summarized using the overall
considered data analysis process depicted in Figure 1. We
start with time series data and apply clustering. Ideally, the
clusters comprise data points that are falling within a cer-
tain time interval. In a second step, we are considering time
episodes for clusters and select one of these as representa-
tive.

In order to show that the approach really work in prac-
tice, we carried out an experimental evaluation relying on
the freely available dataset from Audi [2]. This dataset com-
prises vehicle data but also images from attached cameras
allowing us to interpret obtained episodes. Besides a de-
tailed description of the evaluation, we discuss the obtained
results.

Applications of our approach in the automotive industry
include extracting episodes for testing and in particular test
case generation. We can use the episodes in two different
ways. First, we make use of episodes for concretizing ab-
stract test cases. An abstract test case state a sequence of
actions like accelerating, braking, turning left or right, or
driving constant speed. The episodes themselves allow to
concretize those abstract actions considering the concrete
values for acceleration, braking, etc. Second, the episodes
provide means for basic behavior that shall be considered in
testing. The extracted episodes in a more abstract meaning
provide situations that occur during driving. Hence, we may
use these episodes as basic actions for generating arbitrary
sequences of actions to be executed for testing.

610

Dataset Clustering Episode Extraction Episodes

Figure 1: Underlying architecture showing the overall process from the initial dataset to episodes extraction.

The paper is organized as follows. In the next section,
we discuss and formalize our episode extraction approach in
detail. Afterwards, we introduce the processes carried out
for evaluating the approach and present the obtained eval-
uation results. Finally, we conclude the paper and discuss
future research.

2 Information extraction using k-means

In the following, we outline our clustering and episode
extraction algorithm in detail. We start discussing the data
and requirements on them. For the approach, we assume
a set of data D over time provided for given attributes
a1, . . . , an. We assume D is of the form {vt0 , . . . , vtm}
where vt is a tuple (v1, . . . , vn) at time point t storing val-
ues of their corresponding attributes. We, furthermore, as-
sume that the given dataset is already cleansed and attribute
values are available for all points in time. In addition, and
for simplification, we assume that the delta time between ti
and ti+1 is ∆t > 0 for all i from 0 to m− 1.

It is worth noting that in practice data may not fulfill
these requirements and need to be cleansed and modified.
For example, vehicle data often does not follow the require-
ments regarding time. There maybe no centralized clock,
which would be necessary to assure that values are captured
at specific points in time. Hence, we need procedures for
mapping the original data to the form that is required. This
may include making approximations or assumptions, e.g.,
using splines for interpolating values or assuming that val-
ues do not change unless otherwise stated. For vehicle data
these modifications seem not to be a problem, because of
the frequency used to obtained sensor data.

In this study we propose an approach mainly based on
clustering analysis, the general principle behind clustering
is to maximize the similarity between elements of the same
cluster and to also maximize the dissimilarity of elements
from different clusters. The main advantage of clustering
analysis is procured especially when labeled data is unavail-
able. Clustering application has been revealed useful in
various domains, such as text mining, information retrieval
and data annotation. We can find a large survey about ap-
plications of clustering analysis in [6]. In the automotive

domain, clustering analysis has been largely applied to ex-
plore different datasets. Here, we state some of the stud-
ies like [3] where the authors introduced a density-based
clustering algorithm to cluster vehicle trajectories. In [5]
a framework was proposed to automatically label conges-
tion patterns using hierarchical clustering. Also, in [1], the
authors investigated how clustering can be used to extract
real-world manoeuvers for autonomous vehicle validation
and compared it to other machine learning techniques. In
the first step of the approach, we apply clustering and in
particular k-means clustering, which is a well known ma-
chine learning algorithm [4] that is simple, easy to use and
has been shown effective for serving several machine learn-
ing and data mining purposes. It mainly consists in splitting
a set of unlabeled data into a fixed number k of clusters. K-
means clustering works as follows: First, k initial centroids
are randomly chosen from the original dataset. At each iter-
ation, the algorithm goes through the data points and com-
putes the distance between each point and the k centroids.
The distance can be computed using for example Euclidian
distance for numerical data or other types of distance mea-
sures depending on the type of data to be clustered. Each
data point is then assigned to the cluster having the nearest
centroid. After partitioning all data points, each centroid
is re-calculated as the mathematical mean of each cluster,
i.e. the sum of all the data points belonging to that cluster
divided by the number of elements in the group. The pro-
cess of data points partitioning and centroid adjustment is
repeated until each centroid value is stable giving the final
clustering of the input data.

Using k-means and given a certain value for the num-
ber of clusters k to be computed, we obtain the clusters
C1, . . . , Ck where i ∈ {1, . . . , k} : Ci ⊆ D. Note that
all clusters are distinct, i.e., for all i, j ∈ {1, . . . , k} where
i 6= j: Ci ∩ Cj = ∅. It is worth noting that we are not
considering time as an attribute when clustering. Further-
more, clusters may provide partitions over time that are not
connected. We assume to points of data vt and vt′ from D
to be connected if and only if |t − t′| = ∆t. We call these
two points approximately connected if |t − t′| ≤ m · ∆t
for any integer value m. A subset of a dataset is said to
be (approximately) connected if all data points in there are

611

(approximately) connected. In the second step we select a
cluster Ci and extract a connected subset. A connected sub-
set of a cluster Ci can be formally defined as follows: Cc

i ⊆
Ci such that ∀vt ∈ Cc

i → ∃vt′ ∈ Cc
i : |t− t′| ≤ m ·∆t

Note that such a subset Cc
i may not comprise all data

points of the original set D between the minimum time and
the maximum time of Cc

i . Hence, we need to complete
such a set using missing data points from D resulting in
an episode of Cluster Ci. An episode of an approximately
connected subset is a set comprising all elements of the sub-
set and all elements of the original datasetD that fall within
the time interval of the subset but have not been consid-
ered. Formally we define a function E on approximately
connected subset returning an episode as follows: E(Cc

i) =
Cc

i ∪ {vt|∃v′t′ , v′′t′′ ∈ Cc
i , t
′ < t < t′′ : vt ∈ D \ Cc

i }
In this case, we also write Ei for referring to an episode

that belongs to the connected subset Cc
i , i.e., Ei = E(Cc

i).
The algorithm EE summarizes the discussion on how

episodes for a given dataset are computed:

Algorithm 1 EE(DI ,m, k)

Input: An initial dataset DI , the value m used for computing
approximately connected subsets, and the number of clusters k
Output: a set of k episodes.

1: Let Sols be {}
2: Let D be the cleansed and modified set of data originating

from DI .
3: Let C1 to Ck be the k clusters obtained calling k-means.
4: for i = 0 to k do
5: Let Cc

i be one approximately connected subset of cluster
Ci considering the parameter m.

6: Let Ei be E(Cc
i).

7: Add Ei to Sols.
8: end for
9: return Sols

Algorithm EE obviously terminates. Its computational
complexity is determined by k-means clustering. Hence, in
the worst case the runtime is exponential.

3 Experimental evaluation

The objective behind the experimental evaluation out-
lined in this section is to show whether k-means clustering
works on real world driving data and allows deriving dis-
tinguished driving scenarios having a meaningful interpre-
tation, like braking before stopping in front of a crossing.
In the following, we discuss the setup of the evaluation and
results obtained.

Setup: In order to carry out the experiments, we make
use of the public available Audi Autonomous Driving
Dataset (A2D2) [2]. It includes images and 3D point clouds,
semantic segmentation, instance segmentation, plus auto-
motive bus data. In this study, we focus on the vehicle bus

data which corresponds to three different driving scenarios
recorded in three cities in Germany: Gaimersheim, Ingol-
stadt and Munich. The data comprises 22 attributes with
corresponding timestamps and units. Several sensors are
used to measure for example; acceleration pedal, (angular)
velocity, GPS coordinates, brake pressure, pitch and roll an-
gles, steering angle, vehicle speed, etc. A2D2 dataset also
includes sequential camera images corresponding to each
city, we have made use of the camera front images in a
second step of our experiment in order to map clustered
episodes to sequences of videos and check whether the clus-
tering is capable of finding similar scenarios.

The approach is implemented in Python 3 and for run-
ning the k-means clustering algorithm, we make use of
python-weka-wrapper3 1 package which runs different ma-
chine learning algorithms from the open source library
WEKA 2. For carrying out the experimental evaluation we
use a MacBook Pro (2017) with a 2.8 GHz Intel Core i7 pro-
cessor running under Mac OS High Sierra Version 10.13.

Before conducting the clustering, we first perform a data
pre-processing step. As in the original dataset, each at-
tribute a (sensor) values were recorded in a different time
axis. To carry out clustering on data points, we per-
formed data interpolation using same time axis for all at-
tributes. Therefore, we looked for the minimum and max-
imum recorded timestamps for all sensors, then, created a
common time line for all attributes by setting t0 as the min-
imum recorded timestamp and continue to add the small-
est time difference |t− t′| between all recorded timestamps
of all the data sensors, until reaching the maximum times-
tamp recorded in the data. To make the data interpolation,
we used a Cubic Spline function which calculates an inter-
polating polynomial that has small error. The interpolation
simulates each function corresponding to an attribute a with
the original values recorded at an initial different ∆t, to be
used afterwards to compute new data points given as input
the new created timeline for all the data attributes. For map-
ping bus signals to corresponding camera images, we have
also performed an interpolation on images timestamps to
synchronize them with the bus signals. Further on, in order
to achieve clearer interpretation and obtain more precise re-
sults, we have carried out data cleansing where all values of
the brake pressure attribute which are <= 0.2 were set to 0.

Results: During experiments, we focused on four at-
tributes: acceleration pedal [%], brake pressure [bar], steer-
ing angle [◦], and vehicle speed [km/h]. We run experi-
ments with different values of k. After several trials, we
noticed that clustering with k = 6 yielded to a better sepa-
ration of clusters. We have also made our choice by evalu-
ating the similarity between the obtained episodes in every
cluster. For this, we computed the Pearson correlation co-

1see https://pypi.org/project/python-weka-wrapper3/
2see https://www.cs.waikato.ac.nz/ml/weka/

612

Figure 2: Extracted episodes for attributes: vehicle speed,
acceleration pedal, braking pressure, and steering angle in
cluster number 5 in the Gaimersheim example.

efficient to measure the strength of the linear relationship
between each pair of episodes. In the following, we report
the results for an example of the obtained clusters when per-
forming k-means with k = 6 on the Gaimersheim dataset.
Figure 2 represents the obtained driving episodes in clus-
ter 5 when performing k-means with k = 6. It shows, for
each of the four selected attributes, graphs of the data points
which get clustered in cluster 5. This cluster includes highly
similar episodes and represents a turning maneuver. As we
can notice in Figure 2, most episodes are showing pedal ac-
celeration values and vehicle speed progressively increas-
ing, basically no braking is occurring, and a parabolic curve
corresponding to the steering angle showing episodes val-
ues increasing from 100◦ to approximately 350◦ and de-
creasing back to around 150◦ which highly indicates a turn-
ing maneuver.

We computed Pearson coefficient between each pair of
episodes as the covariance of the two episodes values di-
vided by the product of the standard deviation of each
episode. A score close to 1 shows a large positive correla-
tion, whereas a score close to -1, indicates a large negative
correlation and equal to 0 means no significant correlation
exists between the two variables. Figure 3 presents four
heatmaps, each corresponds to one attribute. The color red
indicates a high Pearson correlation coefficient between ma-
jority of the episodes, for the attributes: acceleration, steer-
ing angle and vehicle speed. For the braking pressure at-
tribute, some of the coefficient values obtained show high
correlation, noting that several correlation scores were not
computed since the Pearson coefficient cannot be measured
if one of the variables is 0 which is the case for braking
pressure attribute as all values <= 0.2 were set to 0 in the
data cleansing step. When performing clustering using the
Gaimersheim dataset example, we mainly noticed high cor-
relation for the vehicle speed attribute mostly for all clusters
which results of the fact that k-means is mostly using vehi-

Figure 3: Heatmaps representing Pearson Coefficient be-
tween episodes for attributes: acceleration pedal, vehicle
speed, braking pressure, and steering angle, in cluster num-
ber 5 in the Gaimersheim example.

cle speed as the dominant attribute in clustering the data.
This also can be explained by the fact that there is more
variation in vehicle speed values in the used dataset than the
other selected attributes values (see Figure 4). We have also
measured the probability density distribution for episodes
in each cluster. Figure 5 shows four histogram plots corre-
sponding to each attribute in cluster 5 for k = 6. We can
see that the majority of episodes pedal acceleration values
are more or less similarly distributed, as they are mostly ar-
ranged between 0% and 30%. Regarding the speed, the ma-
jority of episodes have a maximum value reaching 20km/h.
Vehicle speed values in this cluster are slowly elevating
from 5km/h to around 20km/h. Similarly with the steer-
ing angle, as the values are equally spread as they are in-
creasing from 100◦ and the majority of episodes values ex-
ceed 250◦, and some of them even reach 350◦ as shown in
Figure 2. For the brake pressure, it is 0 for all episodes.

In Table 1 we report and interpret information extracted
from each cluster for the three dataset examples. Based on
the changes in the graphs of episodes for every attribute, we
could see that k-means clustering could actually separate, to
a certain level, different driving situations in different clus-
ters and we were able to observe and interpret similar driv-
ing scenarios represented by the episodes in the same clus-
ter. It is worth noting that we further verified our interpre-
tations by mapping episodes to sequences of videos created
using corresponding front camera images. When observing
clustered episodes, we could distinguish several driving sce-
narios, for example, an increase of vehicle speed from 0 to

613

Figure 4: Frequency distribution of attributes: acceleration
pedal, vehicle speed, braking pressure, and steering angle
in the original dataset in the Gaimersheim example.

Figure 5: Probability Density Distribution of episodes for
attributes: acceleration pedal, vehicle speed, braking pres-
sure, and steering angle, in cluster number 5 in the Gaimer-
sheim example.

a certain value indicates that the vehicle was stopping and
starting back again, a high decrease in vehicle speed that
reaches 0 along with a brake pressure occurring shows that
the car is braking before stopping in a crossroad or a traffic
light, also a progressive decrease of vehicle speed and ac-
celeration pedal indicates that the vehicle is approaching an
obstacle or a crossroad. A high decreasing or increasing in
steering angle refers to the vehicle turning.

For the Munich and Ingolstadt dataset examples, we have
noticed some clusters describing similar driving scenarios
as these two datasets were recorded in a high traffic environ-
ment, for example the vehicle braking when approaching
an obstacle like a pedestrian crossing the street or another
car during traffic jam. We also found new driving situa-
tions for instance a car completely stopping at a red traffic

light (cluster 0 in Munich dataset) which didn’t occur in the
first Gaimersheim example as this one was recorded in low
traffic, noting that Gaimersheim example does not include
crossroads with traffic lights.

Nevertheless, some similarities were seen between clus-
ter 0 and cluster 2 in the Ingolstadt example which led to
few misclassifications. Cluster 1 represents the vehicle driv-
ing after making a turn in a crossroad as it shows a sud-
den decrease in steering angle values while in cluster 2,
episodes show the vehicle after crossing or stopping in a
traffic light with no turning occurring however we could see
two episodes from cluster 2 showing the car driving after
making a turn. Also, another limit, is that we couldn’t dif-
ferentiate for instance in cluster 1 in Munich example and
cluster 2 in Ingolstadt example, whether the car was stop-
ping in a traffic light or in a traffic jam or because of an
obstacle. Yet, we plan to tackle this issue in future work
by adding additional information to the clustering algorithm
with the use of an object detector.

In summary, we state the k-means clustering was to a
certain level able to group together similar driving scenar-
ios. Some clusters included highly correlated episodes such
as the ones representing turning, stopping and braking be-
fore stopping. We were also able to analyze the clusters
results based on the changes in the values of each attribute
and come up with reasonable interpretations using the avail-
able camera images.

Threads of validity: Regarding internal threads we have
to say that the analysis regarding the interpretation of clus-
ters was done manually. Hence, the reported results are
to an extent subjective. However, two of the authors car-
ried out the analysis separately to mitigate this thread. Fur-
thermore, we did data cleansing and modifications before
carrying out the study to assure that the data meets the re-
quirements. We believe that these changes as described in
this paper are reasonable and should not influence the out-
come of the evaluation. External threads include the use of
a particular dataset and, hence, generalizability of conclu-
sions may be in question. However, the dataset comprises
at least different driving routes and situations. Nevertheless,
further studies also including different application areas are
required.

4 Conclusions

In this paper we introduced an approach for extracting
information from real world driving data based on k-means
clustering. We mainly try to answer the question whether
k-means clustering is able to partition similar time episodes
of driving into same groups, each describing a distinct driv-
ing scenario. We also tried to investigate whether it is pos-
sible to deduce meaningful scenarios interpretations based
on the clustered episodes and verified them using camera

614

Table 1: Number of episodes (#) in each cluster (C) and description of corresponding driving scenarios using the attributes:
acceleration pedal [%], braking pressure [bar], steering angle [◦] and vehicle speed [km/h] for every dataset example.

Gaimersheim Munich Ingolstadt
C/# Scenario description C/# Scenario description C/# Scenario description
C0/2 Driving straight on a state highway C0/8 Car stopping C0/38 After crossing or after stopping at red traffic light

Accelerator pedal (avg=17.245) No acceleration pedal occurring (avg=0) Acceleration pedal (avg=7.804)
No braking pressure (avg=0.006) High braking pressure (avg=32.288) No braking occurring (avg=0)
Steering angle (avg=2.998) Steering angle (avg=13.209) Steering angle decreasing (∼150→∼0, avg=13.344)
Vehicle speed (avg=64.34) Vehicle speed (avg=0.134) Vehicle speed progressively increasing (∼5→∼25,

avg=18.848)
C1/18 Braking before a crossroad C1/29 After crossing or after stopping at red traffic light or at traffic

jam
C1/
9

Turning

Very low acceleration pedal (avg=0.008) Acceleration pedal (avg=15.988) Acceleration pedal (avg=4.603)
Brake pressure (avg=10.218) No braking occuring (avg=0) Brake pressure (avg=1.545)
Steering angle (avg=35.172) Steering angle decreasing (∼200→∼0, avg=63.297) Parabolic curve in steering angle(∼150→∼450 &

∼450→∼150, avg=318.256)
Vehicle speed decreased (∼30→∼0, avg=7.842) Vehicle speed increasing progressively (∼5→∼25,

avg=14.063)
Vehicle speed (avg=10.235)

C2/10 Turn in a roundabout C2/38 Approaching a crossroad or an obstacle (another car, pedes-
trian, traffic jam)

C2/17 After stopping at a red traffic light or at traffic jam / after
surpassing an obstacle (e.g, pedestrian crossing the street)

Acceleration pedal (avg=15.214) Acceleration pedal is low (avg=2.268) Acceleration pedal (avg=18.117)
Braking pressure (avg =0.0011) Slow Braking pressure (avg=1.465) Very low braking pressure (avg=0.0001)
Steering angle (avg=107.8886) Steering angle (avg=23.687) Steering angle (avg=26.130)
Vehicle speed(avg=28.120) Vehicle speed progressively decreasing (∼35→∼15,

avg=23.905)
Vehicle speed increasing (avg=11.737)

C3/30 Approaching a crossroad C3/32 Car driving straight in a clear road (no stopping before) C3/17 Car driving straight after crossing (no stopping before)
Low acceleration pedal (avg=2.968) Acceleration pedal (avg=15.262) Acceleration pedal (avg=14.904)
Slow braking occurring (avg=0.569) No brake pressure (avg=0) Brake pressure (avg=0.012)
Steering angle (avg=7.966) Steering angle (avg=11.334) Steering angle (avg=9.223)
Vehicle speed progressively decreasing (∼40→∼20,
avg=29.413)

Vehicle speed increasing (∼20→∼37.5, avg=28.642) Vehicle speed is progressively increasing
(∼20→∼35,avg=29.503)

C4/27 After turning C4/8 Turning C4/43 Approaching a crossroad or an obstacle (another car, pedes-
trian)

Pedal acceleration increasing(avg=23.551) Acceleration pedal (avg=3.174) Acceleration pedal is low (avg=0.447)
No braking occurring (avg=0) Slow brake pressure (avg=3.558) Slow Brake pressure (avg=1.675)
Steering angle decreased(∼150→∼0, avg= 11.8949) Parabolic curve of steering angle (∼150→∼400 &

∼400→∼200, avg=303.403)
Steering angle (avg=17.999)

Vehicle speed increasing (∼10→∼40, avg=29.351) Vehicle speed (avg=5.674) Vehicle speed progressively decreasing (∼35→∼12,
avg=20.391)

C5/12 Turning C5/22 Braking before stopping at a traffic light or a crossroad C5/18 Braking before stopping at a traffic light or a crossroad
Pedal acceleration increasing progressively (avg=18.554) Very low acceleration pedal (avg=0.160) Very low acceleration pedal (avg=0.023)
Brake pressure (avg=0.162) Braking occurring (avg=8.994) Braking occurring (avg=12.328)
Parabolic curve in Steering angle (∼100→∼350 &
∼350→∼100, avg=260.541)

Steering angle (avg=20.861) Steering angle (avg=13.051)

Vehicle speed (avg=12.757) Vehicle speed decreased (∼14→∼0, avg=2.215) Vehicle speed decreased (∼20→∼0, avg=1.672)

images that we mapped to each driving scenario. In or-
der to evaluate the similarity between extracted episodes
we measured the Pearson correlation and their probability
distribution. We conducted an empirical evaluation using
vehicle bus signals of mainly four vehicle sensors measur-
ing the acceleration pedal, braking pressure, steering angle
and the vehicle speed. For future work, we intend to im-
prove this approach by considering object detection using
artificial neural networks to provide additional inputs to the
clustering and be able to come up with more detailed inter-
pretations. We also plan to try other clustering algorithms
and to compare the obtained outcome.

References

[1] Ahmetcan Erdogan, Burak Ugranli, Erkan Adali, Ali
Sentas, Eren Mungan, Emre Kaplan, and Andrea Leit-
ner. Real-world maneuver extraction for autonomous
vehicle validation: A comparative study. In 2019 IEEE
Intelligent Vehicles Symposium (IV), pages 267–272.
IEEE, 2019.

[2] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi,
Xavier Ricou, Rupesh Durgesh, Andrew S. Chung,
Lorenz Hauswald, Viet Hoang Pham, Maximilian
Mühlegg, Sebastian Dorn, Tiffany Fernandez, Martin

Jänicke, Sudesh Mirashi, Chiragkumar Savani, Mar-
tin Sturm, Oleksandr Vorobiov, Martin Oelker, Sebas-
tian Garreis, and Peter Schuberth. A2D2: Audi Au-
tonomous Driving Dataset, 2020.

[3] Jiwon Kim and Hani S. Mahmassani. Trajectory clus-
tering for discovering spatial traffic flow patterns in
road networks. In TRB 94th Annual Meeting Com-
pendium of Papers, Washington DC, United States,
2015.

[4] James MacQueen et al. Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 5.1, pages 281–297.
Oakland, CA, USA, 1967.

[5] Tin T Nguyen, Panchamy Krishnakumari, Simeon C
Calvert, Hai L Vu, and Hans Van Lint. Feature ex-
traction and clustering analysis of highway congestion.
Transportation Research Part C: Emerging Technolo-
gies, 100:238–258, 2019.

[6] Dongkuan Xu and Yingjie Tian. A comprehensive sur-
vey of clustering algorithms. Annals of Data Science,
2(2):165–193, 2015.

615

RoBF: An Auto-Tuning Bloom Filter for Mixed
Queries on LSM-tree

Ruicheng Liu, Peiquan Jin, Shouhong Wan, Bei Hua
1School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

2Key Lab. of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei, China
jpq@ustc.edu.com

Abstract—Bloom filter is an efficient technique to improve
query performance in LSM-tree-based databases, such as
RocksDB, HBase, and Cassandra. However, the original Bloom
filter uses a fixed false positive rate (FPR), which makes it ineffi-
cient for mixed queries that involve both point and range queries.
To solve this problem, in this paper, we present an improved
Bloom filter called RoBF (Range-Query-Oriented Bloom Filter),
which uses a mixture of Bloom filters and can process mixed
queries on LSM-tree efficiently. We design an efficient algorithm
for generating the solution based on the query distribution. We
compare our proposal with the trie-based filter and find out that
each has its own advantages for various scenarios. Therefore,
we propose to use different filters with varied sizes for different
levels on LSM-tree. Following this idea, we present an algorithm
to generate specific filters with a specific size for different levels
on LSM-tree to optimize the performance of mixed queries under
limited memory space. We conduct comparative experiments
and compare the proposed RoBF with various competitors, and
the results show that RoBF can improve the performance of
evaluating mixed queries by up to 6x to 30x, compared to the
original Bloom filter in RocksDB.

Keywords—Mixed query, Bloom filter, LSM-tree

I. INTRODUCTION

LSM-tree [1] has been widely used in many key-value data
stores due to its high write performance. There are many
database based on LSM-tree, for example, Cassandra [2],
HBase [3], and Rocksdb [4]. One of the main challenges
for such databases is to avoid query performance degradation
caused by the multi-level write buffers of LSM-tree [5].

To accelerate the query performance of LSM-tree, many
researchers proposed to add Bloom filters into the LSM-tree
structure. Bloom filter is an effective scheme with only false
positive errors and no false negative errors, which is ideal
for reducing the query amplification in the LSM-tree [6].
Presently, Bloom filters have been used in many index struc-
tures to accelerate query performance, such as BloomTree [7].

However, although Bloom filters can improve query perfor-
mance for point queries that aim to retrieve individual key-
value pairs, they are not efficient for evaluating range queries.
So far, researchers have proposed the Prefix Bloom filters [8]
to record a fixed-length prefix for each key to respond to range
queries. For example, if we want to know if an SST (Sorted
String Table) contains a key between [Hello, Henry], we can

DOI reference number: 10.18293/SEKE2021-142

simply return false if we are certain that the SST does not
contain a string that begins with ”He”. However, the PBF
scheme will lower the accuracy of point queries.

In this paper, we study the limitations of Bloom filters in
handling mixed queries and propose a new solution. Briefly,
the contributions of this study are four-fold.

(1) First, we found that using both of these filters can
produce better results for mixed queries, and we call this
filtering scheme DBF (Double Bloom Filter). Thus, we pro-
pose an algorithm to dynamically determine the parameters of
the DBF, including the length of the prefix and the memory
usage ratio of the two filters, which achieve ideal results on a
particular query distribution.

(2) Second, to achieve high performance on a more general
query distribution, we propose RoBF (Range-Query-Oriented
Bloom Filter), which extends the number of prefix bloom
filters from one to many. We extend the previous algorithm
to be used to determine the parameters of RoBF. Similar to
DBF, RoBF supports both point and range queries, and in
most scenarios comprehensive queries are nearly twice as good
as DBF. In comparison with SuRF, a trie-based hybrid query
filter, RoBF has a significant performance advantage in small
memory.

(3) Third, we found that for the same LSM-tree and the
same query distribution, different levels of SST actually have
completely different data and query distribution, meaning that
different filters with different sizes should be applied to the
data of different levels. Based on this idea, we propose an
algorithm to determine the filter parameters for each level,
including filter types and memory consumption.

(4) Finally, we conduct comparative experiments on a
100GB dataset and compare the proposed RoBF with various
competitors, and the results show that RoBF can improve the
performance of evaluating mixed queries by up to 6x to 30x,
compared with the original Bloom filter of RocksDB.

II. RELATED WORK

There are several optimizations for range queries for Bloom
filters, such as the Prefix Bloom Filter (PBF) [8]. Compared
with Bloom Filter, PBF uses a fixed-length key prefix to query
keys, reducing the performance of point queries in exchange
for support for range query filtering. PBF has long existed
in RocksDB as an experimental function, and has officially
become one of the main functions of RocksDB in recent years.

616

Unlike Bloom filters, PBF hashes each prefix of key length
L in the set, rather than the entire key. PBF queries the prefix
of target key length L in the point query, which reduces the
accuracy of the point query to some extent. However, PBF
fails to support prefix queries with the prefix length greater
than L.

We compare the performance of RoBF with that of PBF
in our experiments, and find that in most cases, the filtering
performance of PBF is at least half of that of RoBF, and in
many cases even close to that of RoBF. Because PBF has
fewer parameters and is easy for database administrators to
adjust, we think it is a useful filter.

SuRF is a recently proposed filter that employs fast succinct
tries [9]. SuRF is a trie-based filter whose basic idea is
to store the exponentially expanded part of trie and other
parts separately to achieve higher compression rate. SuRF has
the highest performance of trie-based filters that I know of.
We regard SuRF as the representative of trie-based filters.
Therefore, we often compare RoBF and SuRF in experiments.

Trie-based filters generally save prefix information with
length not less than y, that is, for every key in S, the prefix with
key length L will be fully recorded in the trie-based filter. In
this way, the filter will always correctly answer interval queries
[a,b] if neither a nor b is longer than L; Even if the length of
a or b exceeds L, the filter can be replaced with the result of
[a’,b’], where a’ and b’ are prefixes for the length of a and b
not exceeding L, respectively.

The disadvantages of this filter are twofold. On the one
hand, if the filter wants to answer a prefix query with length
L, it needs to keep the L bits before each key completely,
which sometimes consumes unnecessary space. On the other
hand, trie-based filter performance is very sensitive to space,
and its accuracy will be low if the space does not reach a
certain threshold. In general, trie-based filters perform well
when space exceeds a threshold, but not all scenarios tolerate
such a high memory consumption filter.

Monkey [10] is another Optimal navigable key-value store.
Monkey discusses the need to apply memory filters of different
sizes to different levels. According to the characteristics of
Bloom Filter, Monkey provides the optimal solution for point-
only query scenarios. We extend this idea to the mixed query
scenario and select different filters for different levels to
optimize the mixed query performance.

III. DESIGN OF ROBF

A. Motivation

We have mentioned the design of two filters. The first one
is Hash-based filters, such as PBF [8], which record the hash
information of prefixes to support prefix queries with length no
less than L. This kind of filters is designed for small memory
scenarios. Another one is trie-based filters, such as SuRF [9],
which record the complete information of prefixes to support
range queries for large memory scenarios.

We show the differences between the two filters in Fig. 1(a),
which shows the distribution of mixed queries consisting of
three types of prefix queries and point queries. Each horizontal

partition represents a prefix query or a point query, and the
horizontal width represents its percentage in the query. In a
partition, the top half represents the hit rate of the query, and
the bottom half represents the miss rate, which means that a
good filter always covers as much of the lower part of the
figure as possible. Figure 1(f) shows a trie-based filter that
can accurately answers queries with a prefix length less than
L, but it has an error rate for queries with a prefix length
greater than L. Figure 1(b) shows a hash-based filter that can
answer a prefix query with length greater than L, but it cannot
answer a prefix query with length less than L.

Note that the range query filter may have three types of
errors:
(1) Trie-based filter will generate false positives when answer-

ing queries with length greater than L, but the frequency
of such false positives will decrease with the increase of
memory;

(2) Hash-based filters generate false positives due to hash con-
flicts.The frequency of such false positives also decreases
as memory increases;

(3) Hash-based filters generate false positives when replacing
interval queries with prefix queries.Such false positives are
inherent and cannot be corrected by adding more memory.
This type of errors cause hash-based filters to encounter
performance bottlenecks when memory is large enough.

B. Data Structure

Before introducing RoBF, we first explain the working
process of of hash-based filters.

Figure 1(c) shows how PBF works. It can only respond
to point queries and prefix queries with length L or greater.
Figure 1(d) shows how a DBF works, which is essentially
a hybrid filter consisting of a PBF and a BF. Range queries
need to be tested by PBF, while point queries need to pass both
PBF and BF tests. RoBF is an improved version of DBF that
contains multiple PBFs and one BF. Figure 1(e) shows how
RoBF works. RoBF can be regarded as a number of prefix hash
filters with different lengths, each of which has a prefix length
ranging from 1 to a threshold Lmax. Here, Lmax represents
the upper bound of the key length. Similar to Bloom filters,
each test uses a different hash function, and all test results are
stored in the same hash table.

In general, BF is more suitable for scenes with a large pro-
portion of point queries, and PBF is more suitable for scenes
with a fixed width of range queries. In addition, DBF can
be dynamically adjusted according to the proportion of point
queries and range queries. RoBF needs to decide the filter
parameters according to the query distribution information.
Generally, BF, PBF, and DBF can be considered as a special
case of RoBF. In practical applications, we need to choose a
right filter according to the load characteristics and determine
the parameters of the filter.

C. Algorithm of Generating RoBF

In this section, we present the algorithm of generating
RpBF, which is named RoBF-generator. Basically, the opti-

617

(a) Query Distribution (b) Bloom Filter (BF) (c) Prefix Bloom Filter (PBF)

(d) Double Bloom Filter (DBF) (e) RoBF (f) Trie-Based Filter

Fig. 1. Performance of different filters - Each column represents one type of query. The width of each column represents the weight of the query. The
height of the gray rectangle represents the percentage of queries that are hit, and the height of the white rectangle represents the percentage of queries that
are missed. The shaded portion represents the filtered query. Each shaded section, except for Figure 1(f), represents a hash test.

Fig. 2. Four kinds of hash-based filters with seven hash tests. Each grid
represents a test, the number represents the prefix length of the test, and L
represents the length of the key. For example, DBF contains four hash tests
for prefixes with length 13 and three hash tests for the full key.

mization of filters means that there are as few false positives as
possible, that is, the lower half of Fig. 1(e) should be covered
as much as possible. For this purpose, we need to not only
understand the distribution of the query, but also collect the
characteristics of the dataset. For the sake of efficiency, we
always assume that for any queries with prefixes whose length
is p, the total number of the prefixes with length p is always
close to the total number of the keys. Such an assumption
allows us to make a general filter parameter recommendation
without knowing the key distribution for each different SST.

We first use a simplified version of RoBF-generator to set

the parameters of the DBF. When we try to set length p as
the prefix length for DBF, we need to determine how much
memory PBF and BF use. Here, the theoretical FPR is a
convex function relative to the memory usage of a filter, and
this conclusion can be used to speed up the search speed of
the algorithm.

Furthermore, in the LSM-tree, each write buffer level actu-
ally has a separate distribution of query requests, even though
the global query is the same for each level. For example, in the
LSM-tree, it is likely that all keys in an SST of the underlying
buffer share the same 10-byte prefix, which means that prefix
queries with length less than 10 will be filtered out during
range checking. However, this case will not happen in the
upper buffer.

D. BPK-Balancer Algorithm

We present a new algorithm called BPK-balancer to search
filter parameter combinations for each write buffer level for
finding the best parameter balance. The term BPK is the
abbreviation of BitsPerKey. At the beginning of the algorithm,
we provide an optimal solution to accelerate the search speed,
and this solution is based on the conclusion in Monkey [10].

618

Algorithm 1: RoBFGenerator (Current, Tests, Fil-
tered)

input : Queries
output: BestSolution

1 Function Search(Current, Tests, Filtered):
2 if Current = Length then
3 X =

Solution.Set(Queries, Current, Tests);
4 if Solution > BestSolution then
5 BestSolution = Solution;
6 end
7 return X;
8 end
9 MaxCovered = 1;

10 TernarySearcher.Set(0, T ests);
11 for i ∈ TernarySearcher do
12 X = Solution.Set(Current, i);
13 Covered = X * Missed.Sum(Current,Length);
14 Rest = Search(Current+1, Test-i,

Filtered+X);
15 Covered = Covered + Rest;
16 TernarySearcher.AddSolve(i, Covered);
17 if Covered > MaxCovered then
18 MaxCovered = Covered;
19 end
20 end
21 return MaxCovered;

IV. PERFORMANCE EVALUATION

A. Workload

The workload we used in the experiment is similar to
the workload in YCSB [11], except that the queries in our
workload include half point queries and half range queries.

The maximum interval length of the range query is set t0
100 by default, and the interval length distribution is uniform.
The keys used in the database are strings with length 16,
and the values of the keys are set to no more than 1014

positive integers. All the keys follow a uniform distribution.
In addition, we set the size of the LSM-tree to contain 39

key-value pairs, with a total key size of about 50GB.
In the test of a single SST, we set the hit rate of point query

and range query at about 10%. In the test of the LSM-tree,
we set the global point query hit rate and range query hit rate
at about 10%. When testing a single SST, we set the BPK
(BitsPerKey) to 24, which is three times the default value,
because it is convenient for us to compare the characteristics
of RoBF and SuRF. For the global testing, we set the BPK to
8-16, which is 1-2 times the default value.

B. Filters Compared

We mainly compare our RoBF with the following filters in
the experiment.

• Prefix Bloom Filter (PBF) [8]. We will not use the basic
Bloom Filter as a comparison, because our test contains

Algorithm 2: BPK-Balancer (Current, Bits)
input : BitsPerKey
output: BestSolution

1 Function WaitForTest(Level, Bits):
2 if

FilterRecord.Lookup(Level, Bits) = False
OR FilterRecord.T ime(Level.Bits) >
TimeLimit then

3 for type ∈ FilterSet do
4 SetF ilter(Level, type,Bits);
5 FPR = RealWaitForTest(Level);
6 FilterRecord.Update(Level, Bits, FPR)
7 end
8 end
9 return FilterRecord.Latest(Level, Bits)

10 Function Balancer(Level, Bits):
11 if Current = 0 then
12 X = Solution.Set(Current,Bits);
13 if Solution > BestSolution then
14 BestSolution = Solution;
15 end
16 return X
17 end
18 MinFPR = 1;
19 TernarySearcher.Set(0, Bits);
20 for i ∈ TernarySearcher do
21 X = Solution.Set(Current, i);
22 FPR = WaitForTest(Current, i);
23 Rest = Balancer(Current− 1, Bits− i);
24 TernarySearcher.AddSolve(i, FPR+

Rest);
25 if FPR+Rest < MinFPR then
26 MinFPR = FPR+Rest;
27 end
28 end
29 return MinFPR

a large number of range queries, and we will use PBF
instead.

• Double Bloom Filter (DBF). We use only one PBF and
one BF to explore whether it is necessary for RoBF to
use multiple parameters.

• Perfect Prefix Filter (PPF). PPF is a filter that can theo-
retically answer any prefix query accurately. We construct
such a Filter to observe the high performance limit of the
hash-based Filter.

• SuRF-Real (SuRF) [9]. SurF is a trie-based filter based
on FST (Fast Succinct Trie). For most SST, SuRF cannot
be created at the BPK value less than 15.

C. Results

Figure 3 shows the relationship between the false positive
rate of different filters and BPK.

619

Fig. 3. FPR of filters under different BPK. With the exception of the
Perfect Prefix Filter (PPF), each curve represents the performance change of
a Filter as the BPK increases. PPF’s FPR is theoretically fixed because it
always answers any prefix query accurately.

As we can see, only SuRF finally surpasses the Perfect
Prefix Filter (PPF) with the increase of memory.That is to
say, in this test, when the memory size of the filter exceeds
70 BPKs, that is, the average memory allocated per key is
greater than 8.4 bytes of space, the performance of the hash-
based filter will hardly surpass that of the trie-based filter.

This is due to the third type of false positives mentioned
earlier. Since hash-based filters can only process prefix queries,
there is an inherent false positives rate. With the increase of
BPK, the performance of RoBF gradually converges to PPF,
and the false positives rate cannot be further reduced, while
trie-based does not have such a problem.

After the BPK reached 70, the false positive rate of SuRF
decreased significantly, which is also the characteristic of trie-
based filter. Such a filter must increase the length of the stored
prefix in order to effectively support a small range of queries,
rather than simply adjusting the position of the test points as
with a hash-based filter, which often means higher memory
consumption.

In practice, most filters cannot provide more than 8 bytes per
key. It can be seen from the first half of the curve that the false
positive rate of PBF/DBF/RoBF decreases obviously when
BPK increases from 8 to 20, which reflects the feature that
the hash-based filter is suitable for small memory. In contrast,
DBF has relatively close performance to PBF and relatively
poor performance relative to RoBF, which means that RoBF
has more parameters than DBF that are not redundant.

As memory increases further, the false positive rate of PBF
and DBF no longer changes significantly, but the false positive
rate of RoBF can still decrease further, because RoBF can use
memory to support a range of queries of different lengths,
rather than only reducing the false positive rate of individual
prefix queries.

As shown in Fig. 1, We can see the advantages and
disadvantages of the two types of filters: the trie-based filter

Fig. 4. The performance of filters in different levels of LSM-tree

must continuously store the prefix information of the key,
otherwise it cannot be guaranteed that there is no false negative
error, so the trie-based filter always needs some space to store
the prefix information that is of no value for the reply; On
the other hand, the hash-based filter, even if it can answer
the prefix query perfectly, does not improve the hit ratio of
the range query further, thus causing performance bottlenecks
when memory is large enough.

Figure 4 shows the results of our second experiment. We
compared the false positive rates of different filters at different
levels of LSM-tree. In order to show the characteristics of the
filter more intuitively, we randomly selected a SST from each
level and showed its FPR.

As can be seen from the figure, the false positives rate of
SuRF decreases first and then rises with the increase of Level,
which means that the trie-based filter has poor performance in
both the upper and lower levels, but the reasons are different:
in the upper level, the distribution of keys is relatively sparse,
which means that SuRF needs more space to store prefix
information that is not helpful for query; In the lower level,
the range query requires the last few characters to respond
correctly, and the trie-based filter requires a higher BPK to
better support such a small range query.

The performance of RoBF is relatively stable, but there is
a significant drop in performance in the last two levels.This
is due to the fact that as the keys become denser, there are
fewer interval queries that can be filtered by the prefix, i.e. the
proportion of type 3 errors increases.

As mentioned earlier, allocating more memory for each filter
in the upper write buffer can improve query performance. This
is due to the fact that there is less data in the upper write buffer
and more queries, and the same amount of memory can reduce
more false positives for queries.

Taking the case of BPK=12 as an example, a basic scenario
is to assign a filter of 12 BPKs to each file, in which case
the average false positive rate per file is 0.6%; But if we
map the keys in levels 0-2 directly to memory, and use SuRF
filters with BPK of 78 and 34 in levels 3-4, respectively, and
RoBF filters with BPK of 9 in level 5, the average memory

620

Fig. 5. The optimal filter configuration scheme under different BPK - The figure shows optimal solutions for five scenarios. For example, when BPK is
12, Level-3 is recommended to use SuRF with 78 BPKs. ”MAP” represents a full mapping strategy, while 128 represents a total key length of 16 bytes.

consumption per file still does not exceed 12 BPKs, and Fig. 5
shows that the false positives rate drops to 0.11%, a reduction
of 79.74%.

This conclusion is consistent with the law of practice. In the
case of RocksDB, when RocksDB is configured, the index of
the upper SST tends to have higher access frequency, which
means that the index of the upper SST is actually resident in
memory as long as we can provide sufficient cache space.

Since the upper-level SST filters use more memory, the
memory usage of the lower-level SST is significantly lower
than average, and the performance benefits of RoBF in small-
memory scenarios are easier to realize. It is worth noting that
SuRF is used as a middle level filter, which is consistent
with our analysis in the previous section, i.e., trie-based filters
perform poorly when the key distribution is too sparse or too
dense.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a multi-parameter filter RoBF
to improve the range queries of Bloom filters in LSM-tree.
We propose an algorithm to determine the parameters of
RoBF based on query distribution. We conducted comparative
experiments to compare RoBF with various filters, and the
results suggested the efficiency of RoBF. RoBF adopts multi-
filter strategy, because we believe that different filters should
be used in different levels of LSM-tree. Particularly, the lower
the level, the higher the BPK provided for the filter should be.
We designed an algorithm to search for the optimal solution.
The results of this algorithm confirm our conjecture that the
optimal solution generated by the algorithm can reduce the
global FPR to 20% of the static solution.

At present, we determine the type and parameters of the
filter through the data distribution and the memory size of
each level in LSM-tree, while the memory size of filter in each
level is determined by another algorithm. Two independent
algorithms will lead to the calculation of the optimal solution
takes a long time, which may affect the real-time performance
of the parameters of the filter. In the future work, we plan to
integrate the two algorithms together and adjust the param-
eters with a faster algorithm, which can also provide better
theoretical support for the experimental results of this work.
Also, we will extend RoBF to make it suitable for persistent

memory-based key-value stores [12], e.g., integrating RoBF
with the persistent memory-friendly adaptive Radix tree [13]
or B+-trees [14].

ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion of China (No. 62072419). We also thank the anonymous
reviewers for for their suggestions and comments to improve
the quality of the paper. Peiquan Jin is the corresponding
author.

REFERENCES

[1] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[2] “Cassandra,” http://cassandra.apache.org/.
[3] “Hbase,” http://hbase.apache.org/.
[4] “Rocksdb,” http://rocksdb.org/.
[5] Y. Wang, P. Jin, and S. Wan, “Hotkey-lsm: A hotness-aware lsm-tree

for big data storage,” in Proc. of IEEE International Conference on Big
Data (Big Data), pp. 5849–5851.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[7] P. Jin, C. Yang, C. S. Jensen, P. Yang, and L. Yue, “Read/write-optimized
tree indexing for solid-state drives,” VLDB J., vol. 25, no. 5, pp. 695–
717, 2016.

[8] J. Lee, M. Shim, and H. Lim, “Name prefix matching using bloom
filter pre-searching for content centric network,” J. Netw. Comput. Appl.,
vol. 65, pp. 36–47, 2016.

[9] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton,
and A. Pavlo, “Surf: Practical range query filtering with fast succinct
tries,” in Proc. of the 2018 International Conference on Management of
Data (SIGMOD), 2018, pp. 323–336.

[10] N. Dayan, M. Athanassoulis, and S. Idreos, “Monkey: Optimal navigable
key-value store,” in Proc. of the 2017 ACM International Conference on
Management of Data (SIGMOD), 2017, pp. 79–94.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proc. of the 1st
ACM Symposium on Cloud Computing (SoCC), 2010, pp. 143–154.

[12] R. Liu, P. Jin, X. Wang, Z. Zhang, S. Wan, and B. Hua, “Nvlevel: A high
performance key-value store for non-volatile memory,” in Proc. of the
21st IEEE International Conference on High Performance Computing
and Communications (HPCC), 2019, pp. 1020–1027.

[13] J. Zhang, Y. Luo, P. Jin, and S. Wan, “Optimizing adaptive radix trees for
nvm-based hybrid memory architecture,” in Proc. of IEEE International
Conference on Big Data (Big Data), 2020, pp. 5867–5869.

[14] Y. Luo, P. Jin, Q. Zhang, and B. Cheng, “Tlbtree: A read/write-optimized
tree index for non-volatile memory,” in Proc. of the 37th International
Conference on Data Engineering (ICDE), 2021, pp. 1889–1894.

621

Using Surrounding Text of Formula towards More
Accurate Mathematical Information Retrieval

Cheng Chen1,2, Yifan Dai2, Yuqi Shen2, Jinfang Cai3, and Liangyu Chen1,2∗
1Engineering Research Center of Software/Hardware Co-design Technology and Application,

2Shanghai Key Laboratory of Trustworthy Computing,
3Institute of Vocational & Adult Education,

East China Normal University, Shanghai, China

Abstract—Formula retrieval is an important research topic in
Mathematical Information Retrieval (MIR). Most studies have
focused on comparing formulae to determine the similarity be-
tween mathematical documents. However, two similar formulae
may appear in completely different knowledge domains and
have different meanings. Based on N-ary Tree-based Formula
Embedding Model (NTFEM), we introduce a new hybrid
retrieval model combining formula with its surrounding text for
more accurate retrieval. Using keywords extraction technology,
we extract keywords from text around the formula which can
supplement the semantic information of formula. Then we get
the representation vectors of keywords by FastText N-gram
embedding model, and the representation vectors of formulae
by NTFEM. Finally, documents are first sorted according to
the similarity of keywords, and then the ranking results are
optimized by formula similarity. Experimental results show that
the accuracy of top-10 results is at least 20% higher than that
of NTFEM and can be 50% in some specific topics.

Index Terms—Mathematical Information Retrieval, Formula
Similarity, Formula Embedding, Word Embedding, Keywords
Extraction.

I. INTRODUCTION

Nowadays, the retrieval methods for linear sequence text
are widely developed and used, such as Google, Baidu,
Bing and other search engines [1]. However, these methods
do not work well for complex formulae that frequently ap-
pear in mathematical documents. In this case, formula-based
embedding models are proposed for solving the retrieval
problem of formulae with two-dimensional structures. The
models can capture the structural features of mathematical
formulae, but may lack semantic interpretation. Namely,
formulae with similar structure may appear in completely
different knowledge domains and have different meanings.
Therefore, the retrieval results may be unsatisfactory. It is a
difficult problem that need to be tracked.

Generally, the text around the formula is typically a very
good indication of what domain application the formula is
used for. In text-based retrieval methods, documents are rep-
resented by a group of keywords, as keywords can summarize
the information of text [2]. Then the similarity between two
documents is calculated by keyword matching algorithms.
More specifically, using keywords instead of long text as

*Corresponding author: Liangyu Chen (email:lychen@sei.ecnu.edu.cn).
DOI reference number: 10.18293/SEKE2021-143.

the retrieval units, can not only reduce the storage, but
also improve the retrieval accuracy. Therefore, the additional
semantic information of the formula can be supplemented
through the keywords of the text around the formula.

In this paper, we present a hybrid retrieval model combin-
ing the formula with its surrounding text for more accurate
Mathematical Information Retrieval (MIR). We first use
Rapid Automatic Keyword Extraction (RAKE) algorithm [3]
to extract the keywords from text around the formula, and
the representation vectors of the keywords are then obtained
by FastText N-gram embedding model [4]. Meanwhile, we
get the representation vectors of formulae by NTFEM [5].
Finally, the mathematical documents are first sorted based
on the similarity of the keyword vectors, then the retrieval
results are reordered according to the formulae similarity.
Experimental results on the dataset provided by TopicEq
[2] show our model has achieved more accurate retrieval
results than other retrieval models and can effectively capture
semantic features of formulae.

The remainder of this paper is organized as follows. We
first introduce the preliminaries and challenges of formula
retrieval in Section II. In Section III, we then present the
hybrid retrieval model combining the formula with its sur-
rounding text. In Section IV, we evaluate our model on
the dataset provided by TopicEq and compare with other
retrieval models. Section V reviews related work on formula
retrieval methods and keyword extraction methods. Finally,
we conclude this paper in Section VI.

II. FORMULA RETRIEVAL

A. Definition of Formula Retrieval

Most present information retrieval systems usually do not
consider mathematical notations and formulae in documents
because they cannot build effective indexes for them. Search
engines like Google mostly treat user inputs of symbols,
equations and formulae as normal text without understanding
their mathematical semantics [6]. They may be able to
find similar text, but are very often fail to find the exact
match. Given a query formula, the system should be able to
parse its structure and semantics and then find the matching
documents with similar formula. For instance, given an
incomplete equation enπ + 1, the formula retrieval system

622

should match to the Euler’s Identity formula: eiπ + 1 = 0.
The key issue is how to measure the similarity between two
formulae which is different from the text similarity. We need
extract features of math formulae so that we can distinguish
from different formulae, then get similar formulae.

B. Challenges of Formula Retrieval

Formulae are generally displayed in two-dimensions. How-
ever, the current representation ways, such as LATEX and
MathML, cannot reflect the structural characteristics of for-
mulae. Besides, formulae are highly abstract. Two similar
formulae may appear in completely different knowledge
domains and have different meanings, and this lead to un-
expected match [2]. Therefore, both structural and semantic
features of formulae should be considered in retrieval pro-
cess.

Fig. 1. Formulae and text snippets from Physics.

An interesting observation is, with text around the for-
mula, the meaning of the formula is determined more clearly.
As shown in Fig. 1, the highlighted words are keywords
extracted by keywords extraction algorithms, and the word
relativity and term gravitational clearly show the formula
is intended for Physics. This example shows that keywords
can greatly help formula retrieval, and the combination of
formula retrieval and context analysis can better capture the
semantics of documents and lead to more accurate match.

III. METHOD

The process of our hybrid retrieval model is shown in Fig. 2.
And the detail of process is explained as follows:

1) Processing of mathematical information: Formulae are
parsed into n-ary trees, and keywords are extracted from text
around the formula.

2) The representation vectors of formulae and keywords:
The representation vectors of keywords are obtained by an
n-gram word embedding model, while the representation
vectors of the formulae by NTFEM.

3) Processing of queries: In the same way, the represen-
tation vectors of keywords and formulae from input queries
are calculated respectively by above models.

4) Optimization for retrieval results: The mathematical
documents in the database are sorted based on the similarity
of the keywords vectors first, after that, the retrieval results
are sorted again on the basis of formulae similarity.

Science Doc

Formula
Extraction

Context
Extraction

Text
Preprocessing

Formula
Preprocessing

Keyword Embedding

NTFEM

Context

Formula

Document To Be
Queried

Ranking
Keyword Vector

Cosine Similarity

Ranking

Query
Result

Formula vector
Cosine Similarity

Mathematical extraction

and processing Model creation and training

Query front end

Result ranking

 Doc
Repository

Training

Keyword
Extraction

Fig. 2. Our hybrid retrieval model

A. Formula Embedding Model

NTFEM first transforms the mathematical formula from a
two-dimensional structure to a one-dimensional linear se-
quence. The transformation steps are listed as follows:

• Convert a formula (MathML) into an n-ary tree.
• Generate the tuple sequences and tokenize the tuples.

Fig. 3 shows the process of the formula a+ b× c+2× b× c
being converted from MathML notation to tree structures, in
which (b) is the binary tree, and (c) is the n-ary tree.

Fig. 3. Example of formula conversion

Then NTFEM sets labels for symbols in the formulae,
where these labels fall into the following categories:

• Numbers “N”.
• Identifiers such as variable symbols “V”.
• Commutative operators “U”.
• Non-commutative operators “O”.

As shown in the Table I, NTFEM uses a pair-based
method [7] to define "words" and generate "sentences" by
breadth-first traversal which is the input of the embedding
model.

In order to better represent the features of formulae,
NTFEM uses the weighting strategy based on FastText N-
gram embedding model [4].

623

TABLE I
TUPLES GENERATED FROM THE FORMULA REPRESENTED IN FIG. 3(C).

ID symbol pairs tree tuples

1 (+ , a) (U:ADD,V:a)
2 (+ , ×) (U:ADD,U:times)
3 (+ , ×) (U:ADD,U:times)
4 (× , b) (U:times,V:b)
5 (× , c) (U:times,V:c)
6 (× , 2) (U:times,N:2)
7 (× , b) (U:times,V:b)
8 (× , x) (U:times,V:x)

1) Level Weight: Taking depth and complexity into con-
sideration, the weight of tuple t can be expressed in the
formula sequence f with

Wf [t] =
(depth−D(t))

depth
× α+

L(D(t))∑depth
i L(i)

× β, (1)

where depth is the depth of the n-ary tree of f , D(t) is the
level of tuple t in the n-ary formula tree, and L(i) is the
number of tuples at the i-th level, and α, β are two tuning
parameters. Here we set α + β = 1, and adjust these two
parameters to get better results.

2) Frequency Weight: With consideration of tuple fre-
quency in the corpus, NTFEM combines SIF [8] with level
weight to get the final formula embedding vf :

vf =
1

|f |
∑
t∈f

γ

γ + pt
vtwt, (2)

where γ is hyperparameters, pt is the frequency of tuple t in
corpus, and vt is the formula tuple embedding.

B. Extract and Train the Keywords

In this paper, we use RAKE algorithm [3] to extract the
keywords from text around the formula. Contrary to other
methods that rely on Natural Language Processing (NLP)
technologies, RAKE can automatically extract keywords
from text with only one traversal. Moreover, it can extract
key phrases from mathematical text, especially longer tech-
nical terms, which is in line with the task scenario of this
paper. The algorithm first uses punctuation marks to break a
document into clauses, and then, for each clause, uses stop
words as delimiters to divide the clauses into phrases that
serve as candidates for the final extracted keywords. Next,
each phrase can be divided into several words by space. And
each phrase can be scored by the sum of its word scores.
The score of word w is calculated as follows:

WordScore(w) =
Degree(w)

Frequency(w)
, (3)

where Degree(w) is the degree of the word (a concept in
the network) and Frequency(w) is the frequency of the
word. Finally, the top third of candidate phrases are identified
as keywords, after the phrases are sorted by their scores in
descending order.

Like processing in NTFEM, FastText is also used for
keywords training in this paper. In order to better capture

the semantic features of keywords, we make the following
improvements to the training process:

1) Stop words adjustment: Stop words such as by,
allows, almost and everywhere appear frequently in docu-
ments and have little effect on reflecting useful information.
In most models, these words would be removed in order to
improve training efficiency. But for mathematical text corpus,
stop words may appear in the definition of mathematical
formula, the description of the mathematical theory, and other
text which is important for reflecting mathematical semantics.
Therefore, we have adjusted the stop words and preserved
some of them that may affect the mathematical semantics.

2) Negative Sampling: In the CBOW model, a word w is
predicted by its context. Namely, for a given Context(w),
the word w is a positive sample and the others are negative
samples. Generally, 5 negative sample words will be selected
for each Context(w). The probability that the sample wi is
selected is:

P (wi) =
f (wi)∑n

j=0 (f (wj))
. (4)

Then positive and negative samples are represented with 1
and 0 respectively. In this case, the results of the output layer
can be normalized between [0, 1]. Compared with a group of
negative samples obtained by random sampling, the objective
function of the model is listed as follows:

F =
N∑
n=1

log (1 + e−γ(sn,cj)
)
+

∑
m∈Mcj

log
(
1 + eγ(m,Cj)

) ,
(5)

where Mc represents a group of negative samples obtained
by negative sampling. And γ (S,C) is the evaluation function
related to the word S and its context C, it can be calculated
as follows:

γ(S,C) =
1

|C|
∑
s′∈C

us′vs. (6)

Here vs represents the word vector of the word S, and us′
is the word vector of the word s′ in the Context(S).

C. Similarity of Mathematical Documents

After obtaining the representation vectors of the formulae
and the surrounding text, we use cosine similarity of vectors
as the basic ranking. The documents is first sorted according
to the similarity between the keywords in the database and
the user input. For the query document q and a document p
in the database, with their text vector Vq and Vp respectively,
the similarity is measured as follows:

Sim(p,q) =
∑n
i=1(Vqi × Vpi)√∑n

i=1 (Vqi)
2 ×

√∑n
i=1 (Vpi)

2
. (7)

Then, top-k results are reordered according to the cosine
similarity of the formulae. The final results are the similar
candidate documents of the user input.

624

IV. EXPERIMENTS AND RESULTS

A. Dataset

For evaluation of our hybrid model, we use the dataset
provided by TopicEq [2], which includes nearly 100, 000
scientific and technological articles published in arXiv.org in
the past five years and generate 400, 000 pieces of data. Each
data consists of a formula in LATEX notation and ten sentences
around the formula, where five before the formula and the
rest after it. The dataset covers 10 topics and labels them with
T1, T2, . . . , T10, including astrophysics (T1), relativity (T2),
graph theory (T3), linear algebra (T4), machine learning (T5),
quantum physics (T6), particle physics (T7), number theory
(T8), optimization (T9) and probability (T10). We randomly
select 93, 051 pieces of data from 5 categories and used 90%
of the data as the training set and the rest as the test set. The
distribution of the data is listed as follows:

TABLE II
THE DISTRIBUTION OF DATA

Topic Training Set Test Set Total
astrophysics 18, 401 1, 816 20, 217

relativity 18, 826 1, 823 20, 649
graph theory 17, 469 1, 678 19, 147
linear algebra 16, 522 1, 652 18, 174

machine learning 13, 048 1, 240 14, 828

Note that we have made a tool to convert the formula with
notation from LATEX to MathML. In this case, we can obtain
the representation vectors of formulae through NTFEM.

B. Retrieval Results and Evaluation Standards

In this paper, we used P@k to calculate the accuracy of
retrieval results. For a query, P@k represents the proportion
of results related to user input among the top-k retrieval
results, and the calculation formula is:

P@k =
true positives@k

true positives@k + false positives@k
. (8)

Experimental results shows that the retrieval accuracies
after enhanced through the incorporation of surrounding
text are greatly improved, compared with pure formula
retrieval methods. As shown in Table III, for the topic of
astrophysics, the accuracy of top-10 retrieval results of
NTFEM-K is improved by 50% compared with NTFEM. Fur-
thermore, retrieval accuray in the topic of machine learning
is much lower than others of NTFEM retrieval model.This
may be because the field of machine learning intersects

TABLE IV
RETRIEVAL RESULTS OF NTFEM-T

Topic P@10 P@50 P@100 P@200 P@500
astrophysics 0.400 0.320 0.300 0.315 0.324

relativity 0.300 0.300 0.260 0.285 0.286
graph theory 0.300 0.300 0.310 0.260 0.262
linear algebra 0.300 0.220 0.250 0.180 0.188

machine learning 0.700 0.500 0.430 0.310 0.250

with other fields, and NTFEM has difficulty in distinguishing
formulae with similar structures, which can be solved through
the incorporation of the surrounding text.

(a) Precission

(b) MaxF

Fig. 4. Precison and MaxF indicators of the above three models

TABLE III
RETRIEVAL RESULTS OF NTFEM AND NTFEM-K

Topic P@10 P@50 P@100 P@200 P@500

NTFEM NTFEM-K NTFEM NTFEM-K NTFEM NTFEM-K NTFEM NTFEM-K NTFEM NTFEM-K

astrophysics 0.300 0.800 0.260 0.780 0.280 0.770 0.325 0.630 0.310 0.454
relativity 0.300 0.500 0.280 0.400 0.230 0.430 0.255 0.415 0.278 0.354

graph theory 0.300 0.500 0.240 0.480 0.250 0.400 0.225 0.345 0.228 0.316
linear algebra 0.200 0.900 0.220 0.740 0.170 0.680 0.165 0.675 0.158 0.598

machine learning 0.100 0.900 0.180 0.560 0.150 0.510 0.215 0.420 0.202 0.294

625

(a) Classification results of NTFEM (b) Classification results of NTFEM-K

Fig. 5. Confusion matrix heat map

In this paper, we also study the effect of embedding all
surrounding text without extracting keywords, which is called
NTFEM-T model. We find that the overall performance of
NTFEM-T is also better than NTFEM on retrieval accuracy.
As shown in Table IV, the retrieval accuracies of NTFEM-
K and NTFEM-T are much higher than that of NTFEM
for the machine learning topic. This means that the text
around the formula can supplement the semantics of the
formula. In addition, for retrieval tasks on topics relativity
and graph theory, the retrieval accuracies of NTFEM-T are
about 20% lower than those of NTFEM-K, which shows that
the keywords extraction method can efficiently capture the
semantic features of the formula.

We use two indicators Precision and MaxF to compare the
performance of the above models. As shown in Fig. 4, the
precision of NTFEM-K is much higher than other models,
especially in retrieval tasks of T1, T3 and T4 topics. MaxF is
the harmonic value of precision and recall, which can reflect
the overall performance of the model. It is easily observed
that the NTFEM-K model has best performance.

Finally, we evaluate the above models on the task of
document clustering. A heat map of confusion matrix (Fig. 5)
is used to visualize the clustering results. The diagonal
elements of the heat map indicate the number of documents
which are correctly labelled. According to the experiment
results, NTFEM-K has also achieved better performance on
the classification task compared to the NTFEM model.

V. RELATED WORK

The research on Math Information Retrieval has been a hot
topic in the fields of information retrieval and knowledge
engineering. In the early stage, formula-based methods used
various transformation algorithms to convert the formulae
into special notations, which are suitable for indexing and
retrieved by matching algorithms. Later, the text around the

formula were incorporated to supplement the information of
the formula.

A. Formula-based Retrieval

For pure formula retrieval, most previous studies can be
roughly categorized into text-based and tree-based mod-
els [9], [10]. In text-based methods, formulae are converted
to ordered strings, which can be considered as inputs with
the same processing in the traditional text retrieval mod-
els. Math Indexer and Searcher (MIAS) [11] implemented
formulae matching in three steps: ordering commutative
operations, variables unification and constants unification.
DLMF project [12] implemented the textualization of math
formulae through flattening and normalization process, in
which each formula generates a unique form for all possible
orders of operator symbols. Kumar et al. [13] applied the
largest common sub-string algorithm to calculate the sim-
ilarity between documents. Unfortunately, most text-based
methods are inefficient, and the retrieval accuracy is low
due to the inability to extract the two-dimensional structural
features of the formula.

In tree-based methods, the formulae are transformed into
trees and the partial matching methods are usually used for
retrieval tasks. For example, MathWebSearch (MWS) [14],
a model based on the substitution tree index, used term
indexing to minimize access time and storage. Moreover,
different representation trees of formulae also affect re-
trieval performance. Zanibbi et al. compared the performance
based on two hierarchical representations, Symbol Layout
Trees (SLTs) and Operator Trees (OPTs), and designed a
series of mathematical retrieval systems [15].

In recent years, some embedded models have been applied
to the field of mathematical information retrieval. Thanda et
al. [16] first used the Doc2Vec model on mathematical for-
mulae by representing the formula tree as a 100-dimensional

626

vector. Gao et al. [1] proposed symbol2vec and formula2vec,
where symbol2vec simply learns the symbols of formulae
in LATEX based on CBOW by using negative sampling, and
formula2vec treats the formulae as sentences and uses the
PV-DM to learn the characteristics of formulae.

B. Combination of Formula and Its Surrounding Text

Compared to the pure formula retrieval, we believe that the
retrieval model combining formula with text can learn more
useful features by extracting the mathematical semantics of
the text around the formula. Krstovski and Blei [6] proposed
a word embedding model for mathematical expressions. They
treated the entire equation as a word through the distributed
representation of the formula, and embeded it in conjunction
with the surrounding text. However, they ignored the internal
structure and symbolic semantics of formula. Yasunaga and
Laferty [2] designed a topic model for scientific documents
containing formulae. In this model, they used long and short-
term memory models (LSTM) [17] to learn the characteristics
of the formula sequence. Through a series of verifications,
the effect of the topic model that combines formula and the
surrounding text is better than that of a simple text topic
model. Most previous hybrid models handle formulae in a
rough way, so that they cannot capture the characteristics of
formulae well. Moreover, the research on the combination of
formula and the surrounding text is still in its early stage and
cannot be effectively applied to specific retrieval tasks.

C. Keywords Extraction

Keywords use a set of words to define the content of the text,
which can reduce storage space and streamline the calculation
of document similarity. Generally speaking, there are two
ways to generate keywords:
• Keyword allocation technique selects multiple words in

a given thesaurus as keywords to label a document.
• Keyword extraction technique extracts some words from

a document as keywords to label it.
At present, the more prevalent method is keyword extraction
technique, which can be mainly divided into two categories:

1) Supervised learning algorithm: A supervised learning
algorithm transforms the process of keyword selection into a
binary classification problem. The specific method is to set
a boolean label on the extracted candidate words to indicate
whether the candidate word is a keyword, and then train the
keyword classifier with a certain amount of datasets with
labels. For a document, all candidate words can be extracted
first, and then the trained keyword classifier is used to label
and classify, and finally all the keywords are obtained.

2) Unsupervised learning algorithm: An supervised
learning algorithm first extracts candidate words from the
document, and scores the candidate words according to
certain rules. Different scoring strategies focus on the features
of different dimensions of a text, and then output top-k
candidate words with the highest scores as the final keywords.
The common algorithms are TF-IDF, RAKE, LDA, and etc.

VI. CONCLUSION

In this paper, we present a hybrid model NTFEM-K in
corporation of surrounding text for mathematical information
retrieval. We use NTFEM to produce formula embeddings
and obtain the representation vectors of keywords by FastText
that captures mathematical semantics. Then we use quadratic
sorting method to obtain the retrieval results. Experiments
show that our model achieves higher retrieval accuracy than
previous models of formula retrieval.

ACKNOWLEDGEMENT

This work was partially supported by OneSmart Educa-
tion Group and the Open Research Fund of Engineering
Research Center of Software/Hardware Codesign Technology
and Application, Ministry of Education (East China Normal
University).

REFERENCES

[1] L. Gao, Z. Jiang, Y. Yin, K. Yuan, Z. Yan, and Z. Tang, “Prelimi-
nary exploration of formula embedding for mathematical information
retrieval: can mathematical formulae be embedded like a natural
language?” arXiv preprint arXiv:1707.05154, 2017.

[2] M. Yasunaga and J. D. Lafferty, “Topiceq: A joint topic and math-
ematical equation model for scientific texts,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.
7394–7401.

[3] S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic keyword
extraction from individual documents,” Text mining: applications and
theory, vol. 1, pp. 1–20, 2010.

[4] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[5] Y. Dai, L. Chen, and Z. Zhang, “An n-ary tree-based model for
similarity evaluation on mathematical formulae,” in SMC. IEEE, 2020,
pp. 2578–2584.

[6] K. Krstovski and D. M. Blei, “Equation embeddings,” arXiv preprint
arXiv:1803.09123, 2018.

[7] K. Davila, R. Zanibbi, A. Kane, and F. W. Tompa, “Tangent-3 at the
ntcir-12 mathir task.” in NTCIR, 2016.

[8] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline
for sentence embeddings,” in 5th International Conference on Learning
Representations, 2017.

[9] D. Stalnaker and R. Zanibbi, “Math expression retrieval using an
inverted index over symbol pairs,” in Document Recognition and
Retrieval XXII, 2015, p. 940207.

[10] R. Miner and R. Munavalli, “An approach to mathematical search
through query formulation and data normalization,” in Towards Mech-
anized Mathematical Assistants. Springer, 2007, pp. 342–355.

[11] M. Ružicka, P. Sojka, and M. Líška, “Math indexer and searcher
under the hood: History and development of a winning strategy,”
in Proceedings of the 11th NTCIR Conference on Evaluation of
Information Access Technologies, 2014, pp. 127–134.

[12] B. R. Miller and A. Youssef, “Technical aspects of the digital library
of mathematical functions,” Annals of Mathematics and Artificial
Intelligence, vol. 38, no. 1, pp. 121–136, 2003.

[13] P. P. Kumar, A. Agarwal, and C. Bhagvati, “A structure based approach
for mathematical expression retrieval,” in International Workshop on
Multi-disciplinary Trends in Artificial Intelligence, 2012, pp. 23–34.

[14] M. Kohlhase, S. Anca, C. Jucovschi, A. G. Palomo, and I. A.
Sucan, “Mathwebsearch 0.4, a semantic search engine for mathemat-
ics,” Manuscript at http://mathweb. org/projects/mws/pubs/mkm08. pdf,
2008.

[15] R. Zanibbi, K. Davila, A. Kane, and F. W. Tompa, “Multi-stage math
formula search: Using appearance-based similarity metrics at scale,”
in SIGIR, 2016, pp. 145–154.

[16] A. Thanda, A. Agarwal, K. Singla, A. Prakash, and A. Gupta, “A
document retrieval system for math queries.” in NTCIR, 2016.

[17] Z. Huang, X. Wei, and Y. Kai, “Bidirectional lstm-crf models for
sequence tagging,” Computer Science, 2015.

627

DOI reference number: 10.18293/SEKE2021-168

Automatic Comprehension of Geometry Problems

using AMR Parser

Anca-Elena Iordan

Department of Computer Science

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

anca.iordan@cs.utcluj.ro

Abstract—Automatic comprehension of geometry problems

described in natural language is a crucial and challenging stage

of numerous automatic geometry problem solvers. These systems

should comprehend the existing information in natural language

geometry problems with the purpose to extract the geometric

relationships between elements and to accomplish automatic

solutions using intelligent methods. Abstract Meaning

Representation is a popular framework for annotating whole

sentence meaning. This paper proposes the addition of a new

feature to an existing transition-based AMR parser that

constructs AMR graphs from statement of geometry problems

described in English language. The new feature consists in

explicit embedding of the coreference detection into the parser.

Integrating the automatic comprehension method with different

geometry systems will greatly enhance the efficiency and

intelligence in automatic solving. This approach shows

improvements over the best previously published systems for

extract information from statement of geometry problems

described in English language.

Keywords - Geometry Problems; Python; Natural Language

Processing; AMR Parser

I. INTRODUCTION

The Abstract Meaning Representation (abbreviated AMR)
[1] is a semantic representation of natural language text, which
attempts to catch the connotation of a sentence into a structured
AMR graph. The AMR domain retains who accomplishes what
to whom in a sentence, and because to this argument, the
collected information is kept in a rooted, directed, acyclic
graph, appointed the AMR graph [2]. AMR graphs have tags
on edges, which are acknowledged as relations, and the leaves
of an AMR graph are watched as notions. AMR cannot depict
coreferences which cross sentence limits and, likewise, it
cannot discern amongst hypothetical or real events. The
available mention-pair systems whichever identify coreferences
[3] do not analyze entity-level information when establishing if
a couple of mentions are referent or not. Therefore, beginning
from this ascertainment it was suggest an entity-centric
coreference resolution system, which composes coreference
chains step by step. This system fits in the pattern stowing type
as it engages a pipeline related architecture, where one stage
has the grouped mention-pair patterns, which forebodes some
rates, and the next stage holds the entity-centric pattern which
utilizes previously engendered rates.

A. Coreference Resolution with Neural Networks

In the paper [4] the authors introduce a coreference
resolution system using a neural network [5], whichever is
capable to create distributed appearances of pairs of
coreference groups. The appearances are used for the system to
train when to merge groups. The system trains when to take
alike decisions with the support of a simple first group-ranking
procedure. This procedure classifies, in a downward sequence,
the rates obtained from the group-ranking pattern with a design
to own the highest rate entrant coreference links chiefly, and
afterwards selects the ones with the highest rate. The group-
ranking system is composed by a single neural network, whose
architecture (Fig. 1) has the subsequent subcomponents:
mention-ranking pattern, mention-pair encoder, group-pair
encoder, and group-ranking pattern.

II. THEORETICAL FOUNDATION AND ANALYSIS OF THE

EXISTING SYSTEMS

A. Related Work

Viewed as a closed ensemble, the primary system can be
considered as just an application which, plighted as input an
English sentence from the statement of a geometry problem
[6], releases as output an Abstract Meaning Representation
graph (Fig. 2). The available solution can establish only in
some measure the wanted output, signifying it can just build an
AMR tree (AMR graph without coreferences) for the chosen
sentence. Nevertheless, it is not still possible to mark the AMR
nodes and relations with labels. Notwithstanding this model
can emerge to be rather humdrum in the situation when
considered the optimum solutions have under 70.0 out of 100.0
smatch f-scores from a simplistic view [7]. This implies that
the AMR area also affords a large possibility for investigation
and development.

Figure 1. Neural network coreference resolution arhitecture

628

Analyzing in profoundness, the primer solution is a
transition-based parsing system, whichever enforces a set of
transitions to the input sentence with a design to afford its
equivalent AMR graph. The transitions appertain to every of
the primary states of the system, beginning from the primary
state till the final one, are trained with a Stack Long Short-
Term Memory neural network [8]. Thereby, utilizing the
trained model engendered from the LSTM neural network, the
sequence of transitions can be automatically foreshadow
starting from a selected geometry sentence. AMR graph [2] is a
rooted, directed, acyclic graph, G = (Vx, A), whose edges and
leaves are marked. The starting solution transition system
includes the fundamental items of an arc-standard parser [9]: a
stack (S), a buffer (B) and a group of activities, whichever are
applique to the items of the stack and buffer with the purpose to
shift by one parser shape to another. A remarkable script
involves that the ending state has a blank buffer, a stack
holding just one node, which is the root of the AMR graph, and
the collection of applique activities on each transition [10]. The
parser is trained on data collections that just include English
sentences from the statement of a geometry problem and their
equivalent Abstract Meaning Representation graphs.

Figure 2. Example of the AMR parser

Figure 3. AMR parser structure

B. Preprocessing, Learning, Postprocessing

The primary system utilizes a preprocessing phase to refers
several from the attributes of the Abstract Meaning
Representation area and create various input models parsed.
Similar attributes are presented by Named Entities, Date
Entities, quantities, or have-org-roles. The preprocessing phase
rental consists in simplification of the learning models with the
purpose for the learning method [11] to be qualified to
generalize in the best possible way. The learning method
underlying on the Stack Long Short-Term Memory
architecture, as depicted in [12], and it constitutes the start
system's solution, to the tough assignment of transition-based
dependency parsing. It utilizes three distinct LSTMs: one for
the buffer, which keeps the tokens of the sentence; one to the
stack, which includes the AMR nodes; and one for the anterior
foreshadowed activities [13]. The postprocessing phase
signifies, in a large mode, the opposite of the preprocessing
phase, which supplants Named Entities, Date Entities,
quantities, have-org-roles, and is constituted from two
important activities: subtree reattachment and AMR graph
build from the foreshadowed sequence of actions. Furthermore,
this restriction is emphasized by the incidence of sentences
which include coreferences from our data collections: each data
collection comprises approximately 50% of data which
includes coreferences [14]. Precise coreferences [15] are
referring entities which are contain in the sentence. The
precedent selected situations all had clear co-references, from
all terms, which referenced a concrete entity, presented in the
sentence, and were not deducted.

III. DESIGN AND IMPLEMENTATION

The ascensive data-processing application comprised the
next modules: data extraction, preprocessing, action sequence
generation, training, postprocessing and evaluation. Data
extraction analyzes the input files and takes out the pairs
compound from sentence and gold regular AMR graph. The
utilized data collections contain files where are data which are
split into training, testing and development. They include AMR
graphs, their equivalent sentences, and some information such
as alignment, record id and annotator [16]. Fully, there are nine
collections of data and they were extracted from different
sources, such as forums, journals, and geometry books.
Compound, they include 18946 items, which are divided
amongst the training collection (16104), test collection (1515)
and development (1327).

The chosen programming language to develop this system
is Python. The main reasons why Python was chosen are
accessibility, and scientific and numeric computing. Python is
one of the most widely used programming languages for data
science and data statistics. Another tool used was spaCy, an
open-source library for Natural Language Processing (NLP),
written in Python and Cython. It was built to aid in the
construction of information extraction or Natural language
Understanding systems, or to preprocess text for machine
learning and deep learning. NeuralCoref [17] is a neural
network pattern for annotating and solving coreference groups
and represent an extent for spaCy. It is production-ready and
can be enlarged to novel training data collections. NeuralCoref
is an adjustment of a mention-pair pattern.

629

IV. TESTING AND VALIDATION

A. Evaluation

The assessment of the system is accomplished on the
ensued AMR graphs from the input attempt models. They are
resembled towards the Gold regular AMR graphs and a
likeness grade is achieved by this procedure. Inasmuch as the
AMR area is established on semantic parsing, this implies that
exist more AMR graphs which are correlate with a selected
sentence. Whereas the interpretations of the AMR graphs are
alike, their compositions are, in some extent, various by one to
another. Because there is no one exclusive text-to-AMR
conversion, the assessment side is sooner complicated. The
metric used by the Natural Language Processing collectivity is
one which estimates the degree of semantic overlap [17]. The
conclusive grade of the system is calculated as an f1 grade over
the entities, starting by the foreshadowed collection, which
fitted their equivalent gold regular AMR graphs [18].

The f-measure is calculated just once, at the final,
afterwards every fit elements and unfit elements were appended
simultaneously. The f1 grade is calculated at a great level with
the purpose not to distinguish amongst the measures of the
AMR graph. Besides from the smatch and f1 grade, it was
likewise computed the accuracy of the system as an assessment
metric. The accuracy is calculated on the foreshadowed
activities reported to the gold regular actions foreshadowed by
the Action Sequence Generation pattern. This metric likewise
has an analogous deficiency because manifold AMRs can be
correlate with an especial sentence. There are distinguished
arrangements of the activities which could build the identical
AMR graph. Therefore, for assessment, it was utilized the
further metrics: accuracy and smatch f-grade. For computing
the smatch f-grade were utilized the further three
characteristics, foreshadowed by the system starting by the test
items: M - the complete number of (parent, relation, child) trios
that fitted into the gold regular side of the AMR, T - the
complete number of (parent, relation, child) trios foreshadowed
through the system and G – the complete number of (parent,
relation, child) trios through the gold regular AMR. The
accuracy symbolizes the fragment of right activity sequence
predictions build from the system towards the gold regular one.
If every foreshadowed activity sequence fit in the gold regular
activity sequences, the accuracy is 1.0, else, if none of the
foreshadowed activity sequences fit the gold regular one, the
accuracy is 0.

B. Results and Comparison with Primary System

The purpose of this work was to increase the available
implementation of the parser. In this scope, it was attempted to
manipulate the principal restriction of the existing solution, the
reality that the existing system could not operate using
coreferences. The collection that the pattern was trained on
includes umpteen coreferences and, thanks to this fact, and its
other restrictions, the existing system could embrace benefit of
just 23.85% of the used information. The boarding utilized was
to manipulate coreferences in the preprocessing stage, which
would ensue in felling the parser with much divers training
items. Thereby, if the parser could be trained on much diverse
situations, afterwards, the pattern would be capable to

generalize in a superior way and meliorate its capability to
foreshadow action sequences. The principal argument
wherefore the existing system could parse not many items was
since in the collection occur many coreferences. By utilizing
the NeuralCoref instrument in this solution, it was identified a
fine proportion of the available precise coreferences, attendant
in the collection. For every sentence in which precise
coreferences were identified, it was enforced to the AMR graph
to tree conversion method. The outcomes of this process can be
viewed in Table 1. Besides the 4588 sentences in which we
established coreferences and enforced the AMR conversion
method, the Action Sequence Generation pattern was capable
to calculate action sequences for 630 of them, thus, we
generated 630 novel parsable items to supply the system. Since
the 4588 sentences with their equivalent AMR graphs, 2219
from them were throwed in the preprocessing phase from a
certain of the four patterns of the existing solution: nominated
entity substitute, data entity substitute or sizes substitute.
Accordingly, to the existing 4809 parsable items on which the
existing system was entrained, were appended another 630
items, which signified a 13.3% expand in the input
information. To calculate the ending outcomes, it was
beginning at the existing design of the system and learned it
manifold variants by modifying the value of epochs.

The activity sequence size and the word encapsulated scales
stand the same from 25 sequence size and from 200 word size.
Because the learning side uses so much time consuming, the
system was just instructed for next three epoch types: 15, 20
and 25 epochs. In the Table 2 it can notice the outcomes of the
system less the coreference manipulation. Established in
advance, the metrics utilized to assess the system are smatch f-
grade and the accuracy. Resembling the primer outcomes with
that which have incorporated the coreference manipulating, it
can observe that there is nearly a 5% growing in the smatch f-
grade and a 4% growing for the accuracy. It is simple to notice
that these ameliorations are firmly bound to the 630 novel
training examples generated by the coreference manipulation
solution.

TABLE I. OUTCOMES STATISTICS FOR AMR COREFERENCE

Models Corefe-

rences

Identified

corefe-

rences

Prepro-

cessing

models

throwed

Primary

parsable

models

Novel

parsable

models

926 540 178 153 179 19

1327 886 505 142 202 32

214 78 29 10 84 7

7281 3352 1150 1017 2057 229

689 111 45 11 394 28

6894 3163 2273 714 1445 259

204 140 76 31 22 8

866 484 253 79 216 30

345 86 48 39 156 11

18946 8930 4588 2219 4809 630

630

TABLE II. TRAINING OUTCOMES FOR 15, 20 AND 25 EPOCHS

Type Epochs Sequen-

ce size

Embe-

dding

size

Smatch

f-grade
Accu-

racy

Without

coreference 15 25 200 38.97 88.99

With

coreference 15 25 200 42.87 92.64

Without

coreference 20 25 200 39.78 89.76

With

coreference 20 25 200 44.36 93.07

Without

coreference 25 25 200 40.02 90.02

With

coreference 25 25 200 44.97 93.67

 Like a remark, the significant distinction among the
accuracy and the smatch f-grade it is a consequence of the
situation that the mean value for sequence size is 10, thereby,
for the network is more convenient to learn from the ultimate
side of the action, conversely of learning the complicacy of the
sequences of the parsing stages. In this way just grows the
accuracy and hold no effect on smatch, because the smatch just
handles by AMR graphs.

V. CONCLUSIONS

In this paper it was tried to improve the main limitation of
the primary system by coreferences manipulation. This goal
has been achieved in the preprocessing and postprocessing
stages of the system pipeline since replacing the parser would
have implicated beginning a whole novel project from scheme,
and not ameliorating the being one. The contribution for
ameliorating the system to manipulate coreferences can be
divided in two major stages. The first stage has the purpose to
discover an algorithm for detection of explicit coreferences in
the input sentences. For this purpose, it was used a tool named
NeuralCoref, which utilizes a mention pair pattern and two
neural networks for approximating grades. Starting from these,
two tokens are reported as being coreferent or not. It has
identified approximately 50% of the available coreferences
from the collections. It deserves emphasized the situation that it
was identified just portion of the explicit coreferences existent
in a data collection which included both implicit and explicit
coreferences.

The succeeding stage was to encapsulate into the AMR
parser the reveals from the above stage. In this scope, it was
designed a method which would convert an AMR graph within
an AMR tree, whensoever precise coreferences were establish
in the input sentence. Through this embedding, it was
succeeded to engender 630 novel training models to the 4588
being ones, as can be seen in Table 1. This 13.73% growing in
entrainment models aided the system to generalize in a better
percentage and ensued in a 5% growth of the universal smatch
f-grade and accuracy resembled to the primary system
outcomes as viewed in Table 2.

REFERENCES

[1] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, U. Hermjakob, and N.

Schneider, “Abstract meaning representation for sembanking”, 7th
Linguistic Annotation Workshop and Interoperability with Discourse,
pp.178-186, 2013.

[2] C. Lyu and I. Titov, “AMR parsing as graph prediction with latent
alignment”, 56th Annual Meeting of the Association for Computational
Linguistics, 2018.

[3] R. Mishra and T. Gayen, “Automatic Lossless-Summarization of News
Articles with Abstract Meaning Representation”, Procedia Computer
Science, vol. 135, pp. 178-185, 2018.

[4] K. Clark and C.D. Manning, “Improving coreference resolution by
learning entity-level distributed representations”, 54th Annual Meeting
of the Association for Computational Linguistics, pp. 643–653, 2016.

[5] I. Muscalagiu, A. Iordan, D.M. Muscalagiu, and M. Panoiu, “The effect
of synchronization of agents' execution in randomly generated networks
of constraints”, European Computing Conference, pp. 285-290, 2011.

[6] M. Sachan and E. Xing, “Learning to solve geometry problems from
natural language demonstrations in textbooks”, 6th Joint Conference on
Lexical and Computational Semantics, pp. 251–261, 2017.

[7] J. Buys and P. Blunsom, “Neural AMR parsing with pointer-augmented
attention”, 11th International Workshop on Semantic Evaluation, pp.
914–919, 2017.

[8] G.Van Houdt, C. Mosquera, and G. Napoles, “A review on the long
short-term memory model”, Artificial Intelligence Review, vol. 53, pp.
5929–5955, 2020.

[9] Y. Liu, W. Che, B. Zheng, B. Qin, and T. Liu, “An AMR aligner turned
by transition-based parser”, Conference on Empirical Methods in
Natural Language Processing, pp. 2422-2430, 2018.

[10] I. Muscalagiu, H.E. Popa, and V. Negru, “Improving the performaces of
asynchronous search algorithms in scale-free networks using the nogood
processor technique”, Computing and Informatics, vol. 34, pp. 254-274,
2015.

[11] A. Iordan, M. Panoiu, I. Baciu, and C.D. Cuntan, “Design of an
intelligent system for the automatic demonstration of geometry
theorems”, International Conference on Telecommunications and
Informatics, pp. 221-226, 2010.

[12] C. Wei, “Development of Stacked Long Short-Term Memory Neural
Networks with Numerical Solutions for Wind Velocity Predictions”,
Advances in Meteorology, vol. 2020, article number 5462040, 2020.

[13] M. Damonte, S. B. Cohen, and G. Satta, “An incremental parser for
abstract meaning representation”, 15th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 536–546,
2017.

[14] C. Wang and N. Xue, “Boosting transition-based AMR parsing with
refined actions and auxiliary analyzers”, 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, pp. 857–862, 2015.

[15] K. Werling, G. Angeli, and C. D. Manning, “Robust subgraph
generation improves abstract meaning representation parsing”, 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing,
pp. 982–991, 2015.

[16] L. Nguyen, V. Pham, H. Minh, D. Dinh, and T. Manh, “Integrating amr
semantic graphs to convolutional neural machine translation“, ICIC
Express Letters, vol. 12, pp. 133-141, 2021.

[17] K. Lee, L. He, M. Lewis, and L. Zettlemoyer, “End-to-end neural
coreference resolution”, Conference on Empirical Methods in Natural
Language Processing, pp. 188–197, 2017.

[18] N. Stylianou and I. Vlahavas, “A neural Entity Coreference Resolution
review”, Expert Systems with Applications, vol. 168, article number
114466, 2021.

631

https://www.aclweb.org/anthology/volumes/P16-1/
https://www.aclweb.org/anthology/volumes/P16-1/
https://www.aclweb.org/anthology/people/m/mrinmaya-sachan/
https://www.aclweb.org/anthology/people/e/eric-xing/
https://www.aclweb.org/anthology/S17-1029.pdf
https://www.aclweb.org/anthology/S17-1029.pdf
https://www.aclweb.org/anthology/volumes/S17-1/
https://www.aclweb.org/anthology/volumes/S17-1/
https://link.springer.com/journal/10462
https://www-scopus-com.am.e-nformation.ro/record/display.uri?eid=2-s2.0-79952652944&origin=resultslist&sort=plf-f&src=s&nlo=&nlr=&nls=&sid=d93131f8cbbbf051c55450b39ce8b250&sot=b&sdt=cl&cluster=scoafid%2c%2260001317%22%2ct&sl=21&s=AUTHOR-NAME%28iordan+a%29&relpos=10&citeCnt=0&searchTerm=
https://www-scopus-com.am.e-nformation.ro/record/display.uri?eid=2-s2.0-79952652944&origin=resultslist&sort=plf-f&src=s&nlo=&nlr=&nls=&sid=d93131f8cbbbf051c55450b39ce8b250&sot=b&sdt=cl&cluster=scoafid%2c%2260001317%22%2ct&sl=21&s=AUTHOR-NAME%28iordan+a%29&relpos=10&citeCnt=0&searchTerm=
https://www-scopus-com.am.e-nformation.ro/record/display.uri?eid=2-s2.0-79952652944&origin=resultslist&sort=plf-f&src=s&nlo=&nlr=&nls=&sid=d93131f8cbbbf051c55450b39ce8b250&sot=b&sdt=cl&cluster=scoafid%2c%2260001317%22%2ct&sl=21&s=AUTHOR-NAME%28iordan+a%29&relpos=10&citeCnt=0&searchTerm=
https://www.aclweb.org/anthology/volumes/P15-1/
https://www.aclweb.org/anthology/volumes/P15-1/
https://www.aclweb.org/anthology/volumes/P15-1/

AutoCom: Automatic Comment Generation for C Code
Zhikang Tian

Shenzhen Foreign Language School
China

Yuekang Li
Nanyang Technological University

Singapore

ABSTRACT
Code comments improve program comprehension and program
maintenance. However, the lack of comments is a common problem
in industry. It is time- and manpower-consuming to add comments
for large code bases. Thus, it is desirable to develop techniques
for automatic comment generation. Previous works for automatic
comment generation use deep learning or machine learning tech-
niques. These techniques require a large amount of training data
which is often unavailable or hard to acquire. This paper proposes
a light-weight approach called AutoCom for automatic comment
generation. In AutoCom, we first analyze the source code to extract
key information. Then, we use the extracted information to search
and filter for appropriate text from a large programming Question
and Answer (Q&A) site. Lastly, we use NLP techniques to convert
the search result into code comments. In addition to the generated
code comment, we also add predefined comments for library func-
tion usage in the source code. With AutoCom as the back-end, we
built a web service which allows the user to upload source code
and get it commented.

KEYWORDS
automated comment generation; documentation; program compre-
hension

1 INTRODUCTION
Comments play a very important role in code comprehension in
program development and maintenance, especially after codes are
created by programmers. As it is common for developers to shift
between projects or departments, codes without comments would
be hard to modify by programmers who take over. In the meantime,
regularly commenting the codes would be distracting for program-
mers, as writing comments will break the train of thought of writing
codes. Thus, the efficiency of the programmers might be brought
down, and the codes written not fluent or even not functioning
well. If the comments can be written automatically, it will save the
programmers from writing comments and also help the successors
in understanding previous codes. This thought leads to the birth
of AutoCom, which is a program that can automatically match the
codes with useful comments.

Existing automatic comment generation methods are not flaw-
less: Most of them mainly focus on deep learning and machine
learning. These techniques require a large amount of training data
to fully function, but the data are hard to acquire. Thus, human la-
bor is still not fully emancipated from the onerous process, because
the large number of training data must be written by programmers
based on their experience. Besides it also requires large amount
of time to get these data. Secondly, those training data are com-
plex, and it is hard to guarantee that no error has been made when

DOI reference number: 10.18293/SEKE2021-202

writing. If any errors exist in the data, the result of commented
codes will be wrong and useless. Thirdly, the large amount of new
training data are continuously increasing, and they need to have a
large database to save them, which requires money and space.

To address these issues, we proposed a new approach — Auto-
Com, a light-weight and full functioning tool in automatic C code
comment generation. In AutoCom, we take down all the source
code apart and extract out the key information of the source code.
Then, we use the extracted key information to form the appropri-
ate key words or filters and further establish a search on a large
Question and Answer (Q&A) Site StackOverflow, which contains
large number of source code and code description written by pro-
grammers. These Q&A work as the source to extract comments.
After this, we analyze these sentences using Natural Language Pro-
cessing (NLP) techniques, giving each sentence a weighting. We
also convert the search results into useful comments. Lastly, we
insert the comments into the source code. Additionally, we also add
predefined comments for C Standard Library function usages in
the source code, which requires fewer source code to be searched
on StackOverflow. This novel design can save a lot of time when
generating codes.

We implemented AutoCom as a Python-based commandline
tool and wrapped it with a web-server to provide service: http:
//tianzhikang.pythonanywhere.com/. We also prepared an intro-
duction video for AutoCom at: https://youtu.be/jxP389kFb7U.

2 METHODOLOGY & IMPLEMENTATION
In this section, we introduce details about the design of AutoCom.
Figure 1 shows an overview of AutoCom’s workflow. The input
is C program source code and the output is the source code with
comments added. The workflow of AutoCom has four steps:
❶ We need to extract key information from the source code. To
do so, we first convert the convert the source code into abstract
syntax tree (AST) to identify the different components. Then we
extract function names and constant strings as individual pieces of
key information from the AST.
❷ We conduct a fuzzy search on the Q&A site for each piece of
extracted information. After searching, we merge all the searching
results (questions on the website) and rank them according to the
sum of vote up/down scores and number of answers. More up votes
and answers lead to a higher rank, and then the searching results
with ranks higher than a threshold (the threshold can be specified by
the user) will be kept and used to generate comments. Algorithm 1
shows the how the search results are filtered and retained. Note
that here we discard the results of the keywords with more than 30
search results. The rationale is that if a keyword produces too many
search results, it means the keyword is too general to represent the
features of the code. For example, the function name "main" is a
bad keyword for searching with. Here, we set 30 as the threshold
after some experiments.

632

http://tianzhikang.pythonanywhere.com/
http://tianzhikang.pythonanywhere.com/
https://youtu.be/jxP389kFb7U

Extract Information from source code

Generate AST of the
Source Code

Extract function
names/constant strings

Search Q&A site for results

Search & Results parsing

Rank and retain the most
suitable result

Generate comment with search result

Summarize the question
text

Insert the comments

Insert predefined library
function comments

Insert the generated
comments

Figure 1: Overview of the workflow of AutoCom

❸ After the most suitable search results have been recognized and
retained, we then apply text summary techniques to generate the
summaries of the searched text. In AutoCom, we allow the users
to choose either Latent Semantic Analysis (LSA) summarizer [8]
or Edmundson Heuristic Method (EHM) summarizer [9]. For LSA,
users only need to input the original text as well as a list of stop
words to get the summary. For EHM, users need to provide two
additional lists of bonus words and stigma words. In EHM, the
additional words (cue phrases, keywords, title words) will increase
the weight of a sentence while the stigma words shall decrease
it. As for the additional words, we reuse the keywords to search
the results. This means that sentence containing the keywords for
searching are more likely to be included into the summary. As for
the stigma words, we provide a list of words which are commonly
used in the Q&A context of the website, such as what, why, error,
warn, etc. This ensures that the commonly used sentences related
to the question asking/answers or descriptions of the errors are
excluded from the summary.
❹ Last but not least, the generated summaries are inserted back into
the code as comments. The summarywill serve as a comment for the
entire code. During this process, we also add predefinedcomments
for standard C library function calls. This is achieved bymaintaining
a dictionary of standard library functions and their descriptions and
by adding the corresponding descriptions as comments for each
occurrence of the library function call in the code.

The key logic of AutoCom is implemented with around 400
lines of Python code. We use Py-StackExchange [6] to query the
StackOverflow API. We use Beautiful Soup [3] for parsing the Q&A
webpage and extracting the text content. We use pycparser [7] to
parse the C code and produce the abstract syntax tree of the input
code. Lastly, we use nltk [5] and sumy [2] to summarize the text.

Algorithm 1: Algorithm for Retaining Search Results
input :A set of keywords K , Top n search results to keep
output :A list of search results for comment generation L

1 L ← ∅;
2 foreach k ∈ K do
3 R ← search(k);
4 if |R | > 30 then
5 continue;

6 R .sort();
7 L.insert(R[0 : n]);

8 return L;

Moreover, we wrap the key logic of AutoCom with a webserver
based on Django [4]. In other words, we make AutoCom a web-
service so that everyone can try and use it. AutoCom is currently
hosted on PythonAnywhere [1]:http://tianzhikang.pythonanywhere.
com/.

3 FUTUREWORK
In the future, we have three directions to improve the performance
of AutoCom. First, we can improve the quality of information ex-
traction from the source code. Currently we are using syntactic
information like function names or constant strings as the key-
words for searching. First, we plan to take a further step to extract
some basic semantic understanding about the code. Second, we
plan to apply finegrained analysis for the search result. Currently
we are extracting only the text of the question. We can also ex-
tract the code fragments from the question if the question contains
some. Then we can analyze the semantic of the extracted code
fragment to see if it matches our original source code. If the code
fragment matches our original source code, it means the question
is suitable to generate comments. Third, we can use more advanced
NLP techniques to generate comments. Currently, we are using
traditional text summarization methods like LSA or EHM. In the
future, we are planning to adopt more advanced text summarization
techniques [10–12] in AutoCom.

REFERENCES
[1] Automatic comment addition, 2020.
[2] Automatic text summarization, 2020.
[3] Beautiful soup, 2020.
[4] django: the webframeworks for perfectionists with deadlines, 2020.
[5] Natural language toolkit, 2020.
[6] Py-stackexchange: An api wrapper for python, 2020.
[7] pycparser, 2020.
[8] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and

Richard Harshman. Indexing by latent semantic analysis. Journal of the American
Society for Information Science, 41(6):391–407, 1990.

[9] H. P. Edmundson. New methods in automatic extracting. J. ACM, 16(2):264–285,
April 1969.

[10] Yaser Keneshloo, Naren Ramakrishnan, and Chandan K. Reddy. Deep transfer
reinforcement learning for text summarization. CoRR, abs/1810.06667, 2018.

[11] Abdullah Al Munzir, Md. Lutfor Rahman, Sheikh Abujar, Ohidujjaman, and
Syed Akhter Hossain. Text analysis for bengali text summarization using deep
learning. In 10th International Conference on Computing, Communication and
Networking Technologies, ICCCNT 2019, Kanpur, India, July 6-8, 2019, pages 1–6.
IEEE, 2019.

[12] Shengli Song, Haitao Huang, and Tongxiao Ruan. Abstractive text summarization
using LSTM-CNN based deep learning. Multim. Tools Appl., 78(1):857–875, 2019.

2

633

http://tianzhikang.pythonanywhere.com/
http://tianzhikang.pythonanywhere.com/

Water-Wheel: Real-Time Storage with High
Throughput and Scalability for Big Data Streams

Yanqi Lv, Ruicheng Liu, Peiquan Jin
1School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

2Key Lab. of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei, China
jpq@ustc.edu.com

Abstract—In this demonstration, we present a real-time stor-
age system called Water-Wheel for big data streams. Big data
streams involve rapid and continuous data flows, which will
overwhelm the bandwidth capacity of conventional disk storage
systems. The new Water-Wheel system proposes a new storage
model that employs multiple nodes (servers) to accept data flows
using a rotation way, like a traditional water wheel. When a node
becomes full, it is transformed into a data-dumpling state that
will flush the data in the node to durable storage, after which
the node will become empty again to accept new data flows. We
demonstrate that the Water-Wheel system can offer higher and
more scalable storage bandwidth than existing big data storage
systems that use a master-slave architecture to handle big data
streams. After an introduction to the architecture and key designs
of Water-Wheel, we present a case study to demonstrate Water-
Wheel.

Keywords—Big data, Real-time storage, Throughput, Scalabity

I. INTRODUCTION

The rapid development of the Internet of Things (IoT) [1]
leads to big data streams in many applications. For example,
there will be over 100 millions data inputs every second in
a smart-grid monitoring application. Such highly-arriving big
data makes it difficult to persist data in the data center using
existing approaches [2], [3].

In this paper, inspired by the ancient water wheel in China,
which can transport water from one spot to another through
some rotating buckets, we propose a new real-time storage
system called Water-Wheel for big data streams. We devise a
rotation storage model [4] that can distribute data flows among
multiple data nodes. This approach can make full use of each
node in the data center and maximize the write throughput
of the data center. Briefly, the Water-Wheel system has the
following unique features:

(1) High Throughput. It employs a rotation storage model
to deal with the conflict between highly-arriving data stream
and low write throughput of the underlying storage. According
to the rotation storage model, we set the memory of each node
as a data bucket and all data buckets are rotated from the state
of idle waiting to data filling, write waiting, and data dumping.
With this mechanism, we can use a few data buckets to meet
the high-throughput need required by big data streams.

(2) High Scalability. Water-Wheel is implemented based
on the share-nothing architecture. New data nodes can be

DOI reference number: 10.18293/SEKE2021-204

easily appended to the system and its storage capacity will be
automatically added to the system. In case of increasing data
flows, Water-Wheel offers high scalability by adding nodes
seamlessly.

II. ARCHITECTURE OF WATER-WHEEL

The key design of Water-Wheel is a rotation storage
model [4], which consists of a set of data buckets. A data
bucket corresponds to a buffer in a data node in a cluster. All
data nodes form a huge storage space that can be regarded
as a ring because each data node is used with a round-robin
manner.

All the buckets work according to the process indicated by
arrows in Fig. 1. We can see that the Water-Wheel works in
memory and the underlying storage nodes provide persistent
storage service. When a bucket is filled in memory, it will
be persisted to some storage node. We manage the states of
all buckets and develop a state-transition scheme to make each
bucket work at a right manner. As shown in Fig. 1, each bucket
has one specific state at every moment. There are four states
designed for buckets:

• State 1: Idle Waiting.
• State 2: Data Filling.
• State 3: Write Waiting.
• State 4: Data Dumpling.
Note that each bucket changes its state according to the

given sequence, i.e., from State 1, 2, 3, and 4. Then, it will
repeat the state transition from State 1 to 4. With such a
mechanism, if one bucket becomes full, it will be changed into
the state of Data Dumpling. And after we write the bucket to
persistent storage, we can reuse the bucket, meaning that we
can put the bucket into the waiting queue and let it wait to
accept new data insertions. This is done by setting the bucket’
state to Idle Waiting.

Water-Wheel is deployed as a middle layer between the data
stream and the underlying storage node. Combined with the
state transition of data buckets, we give the general workflow
of Water-Wheel in Fig. 2:

(1) When the data stream arrives, Water Wheel will first
save the data in the data buckets in the state of data filling.
Note that the number of the data buckets in the state of data
filling can be configured in advance. Generally, more data-
filling buckets can accept a bigger data stream. However, it
will also incur higher pressure when dumping the data from

634

Fig. 1. The state transition of a data bucket

Storage Node

Storage Node

Storage Node

back to wait

dispatch

fillingfilling

data stream

full bucket

empty bucket

Fig. 2. The working process of Water-Wheel

memory to persistent storage. We set the number of data-filling
bucket to one by default.

(2) The a data-filling bucket becomes full, we change its
state from data filling to write waiting to let the bucket not
accept newly-arriving data streams.

(3) all the buckets in the state of write waiting will be
dispatched to some storage nodes, which will be responsible
for moving the data from memory to persistent storage.

(4) When a storage node gets a bucket in the state of
write waiting, it will change the state of the bucket into data
dumpling. Then, the storage node starts to move the data in the
write-waiting bucket to files in persistent storage, e.g., SSDs
or HDDs.

(5) After a storage node has completed the data dumpling of
a bucket, which means that all the data in the bucket has been
persisted, it will change the bucket’s state from data dumpling
into idle waiting. And all idle-waiting buckets are organized
into a queue. When newly-arriving data streams come to the
system, we will select one ore more idle-waiting buckets from
the queue to accept data streams. Meanwhile, those selected
buckets will be marked as the state of data filling.

The above process will be executed repeatedly when the
data stream comes to the system continuously. As all data
buckets are reused to accept newly-inserted data, we can infer
that the system can deliver a high write throughput. Even when
the data stream becomes extremely fast, e.g., more than 10GB
data written in one second, we can configure more data-filling
buckets and let each bucket be equipped with large memory
(e.g., using persistent memory [5], [6]), so that the system can
absorb more than 10GB data in one second.

III. DEMONSTRATION

We implemented Water-Wheel on top of MongoDB [3]. We
designed a graphical user interface for Water-Wheel, as shown
in Fig. 3. User can monitor the real-time write throughput of
the system. Users can also monitor the state of each node,
such as the CPU utilization and write throughput. Water Wheel
provides high scalability, meaning that we can easily add a
new node into the system. Figure 4 shows the interface of
adding a new node to the system. In the future, we will deploy
our system to a cloud storage platform, so that it can support
experiments running on hundreds of nodes.

Fig. 3. The main interface of Water-Wheel

Fig. 4. Adding a new node to the system

ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion of China (62072419). Peiquan Jin is the corresponding
author.

REFERENCES

[1] D. Jung and et al., “Vibration analysis for iot enabled predictive mainte-
nance,” in ICDE, 2017, pp. 1271–1282.

[2] X. Hao and et al., “Efficient storage of multi-sensor object-tracking data,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 10,
pp. 2881–2894, 2016.

[3] MongoDB, 2021. [Online]. Available: https://www.mongodb.com/
[4] Y. Lv and P. Jin, “Rotaryds: Fast storage for massive data streams via a

rotation storage model,” in CIKM, 2020, pp. 3305–3308.
[5] Z. Wu, P. Jin, C. Yang, and L. Yue, “APP-LRU: A new page replacement

method for pcm/dram-based hybrid memory systems,” in Proc. of NPC,
2014, pp. 84–95.

[6] K. Chen, P. Jin, and L. Yue, “A novel page replacement algorithm for
the hybrid memory architecture involving PCM and DRAM,” in Proc. of
NPC, 2014.

635

https://www.mongodb.com/

DOI reference number: 10.18293/SEKE2021-205

MT4ImgRec:A Metamorphic Testing Tool for Image

Recognition Software
Dongyu Cao

①
, Hongjing Guo

①
, Chuanqi Tao

①②

① College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

②Ministry Key Laboratory for Safety-Critical Software Development and Verification, Nanjing University of Aeronautics and

Astronautics, Nanjing, China

Correspondence to: taochuanqi@nuaa.edu.cn

Abstract—Although data-driven image recognition software has

widely emerged in various fields, they suffer from quality issues.

Metamorphic testing has been successfully applied to AI software

for alleviating test oracle problems. Nevertheless, metamorphic

testing still relies on manual methods in most cases, which is time-

consuming. To improve test efficiency, a testing tool called

MT4ImgRec is designed to automatically perform metamorphic

testing for image recognition software.

Keywords-metamorphic testing; image recognition testing; tool

I. INTRODUCTION

The major challenge in testing image recognition software
lies in the lack of a test oracle, which checks the correctness of
the test execution [1]. Metamorphic testing is an effective
manner that generates new test cases using the MRs
(Metamorphic Relations) and determines whether the test passes
by verifying whether the MRs are meet [2]. However,
metamorphic testing is mostly performed manually. Thus, this
paper implemented MT4ImgRec, a testing tool of image
recognition software using metamorphic testing, which reduces
the expenses in the test and enhances the test efficiency.

II. FUNCTION MODULES

MT4ImgRec consists of five modules. Figure 1 shows the

interface of MT4ImgRec. The current version could be found in

https://github.com/Miracy/MT4ImgRec.

Figure 1. Interface of MT4ImgRec

A. Original Test Data Management Module
After receiving the path of the test case folder, the module

checks the original test cases for format and validity one by one.
If passing the inspection, its file information is recorded.

B. Test Data Augmentation Module
The test data augmentation module aims to amplify the

original test data by using segmentation mutation and adding the
rainy effect. Segmentation mutation is realized by a YOLACT
algorithm [3], which can quickly detect and divide the part of
the target object of an image. Adding rainy effect is achieved by
generating different densities of random noise, and elongating
and rotating them.

C. Test Execution Module
For the original test data after amplification, the

corresponding MRs are selected to automatically generate
follow-up test data. MT4ImgRec implements six MRs for the
image recognition software, including brightness, rotation,
translation, cropping, scale, and blurring (averaging, gaussian,
median, and bilateral). After generating follow-up test data,
MT4ImgRec runs the program with a pair of test inputs (the
original image and follow-up image) and records the output
recognition result for each image.

D. Test Oracle Checking Module
The test oracle checking module judges the metamorphic

test results by comparing the execution results of the original
and follow-up test data. If two results are consistent, the
metamorphic test result is displayed as passed, and the converse
is not passed.

E. Test Result Analysis Module
The test result analysis module sorts and analyzes the test

results. Different MRs and the number of test error cases of each
parameter will be displayed. This tool also visualizes test results
by using bar charts, including every MR-error recognition ratio
and every parameter of MR-error recognition ratio.

III. CONCLUSION

MT4ImgRec is designed to test image recognition software
using metamorphic testing, which can automate repetitive
testing activities to enhance test efficiency. In the future, we will
develop the testing tool for other intelligent software.

ACKNOWLEDGMENT

This work is supported by the Foundation of Graduate
Innovation Center in Nanjing University of Aeronautics and
Astronautics (kfjj20201603).

REFERENCES

[1] Gao, J., Tao, C., Dou, J., Lu, S., “Invited paper: What is AI software
testing? and why,” IEEE International Conference on Service-Oriented
System Engineering, 2019, pp 27-36.

[2] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic Testing: A New
Approach for Generating Next Test Cases[R]. 1998.

[3] D. Bolya, C. Zhou, F. Xiao and Y. J. Lee, "YOLACT: Real-Time Instance
Segmentation," IEEE/CVF International Conference on Computer Vision
2019, pp. 9156-9165.

636

mailto:taochuanqi@nuaa.edu.cn
https://github.com/Miracy/MT4ImgRec

Post2Event: Extracting Key Events from Microblogs

Chongwei Wang a, Xujian Zhao a*, Peiquan Jin b, Hui Zhang a, Chunming Yang a, Bo Li a

a Southwest University of Science and Technology, Mianyang 621000, China
b University of Science and Technology of China, Hefei 230027, China

* jasonzhaoxj@gmail.com

Abstract— This paper demonstrates a prototype system called
Post2Event that aims to extract key events from microblogs. While
many events are hidden in microblogs, people may only care about
those critical events, which are named key events in Post2Event.
Specially, we propose to model the topic-related significance of an
event and integrate the influence with the temporal characteristics
of the event to measure the event's importance. We briefly present
the architecture and technical details of Post2Event. Then, we
report the comparative results of Post2Event on a real dataset.
Finally, we demonstrate the running process of the system.

Index Terms—Event extraction, Social influence, Temporal
distribution, Microblog

I. INTRODUCTION
Nowadays, social events occur every day and spread globally,

forming a vast information source of social events. Meanwhile,
news hotspots propagate through social networks and develop
time-varying topics. This paper presents a prototype system
called Post2Event to detect the key events in time-varying topics.
Such a system can help users quickly understand the
development of events and help decision-makers analyze the
public situation on microblogging platforms.

Previous solutions to event extraction from microblogs relied
on textual similarity, e.g., the TF-IDF similarity. However, the
TF-IDF model always represents an event by some keywords
and can only reflect the word-level textual importance of an
event. Other graph-based approaches proposed to model events
as graphs and use dominating set algorithm [1] or clustering
coefficient information [2] of graph nodes to extract key events,
but they failed to capture the time dimension of events, i.e., the
importance of event may vary with time and evolution of topics.

Differing from existing approaches, We propose a new way
to measure the importance of events. Specially, we propose to
model the topic-related social influence of an event and integrate
the influence with the temporal characteristics of the event to
measure the event's importance. Following this idea, we develop
the Post2Event system and demonstrate that it has higher
effectiveness of key-event detection than existing methods.

II. DESIGN AND IMPLEMENTATION OF POST2EVENT
The architecture of Post2Event is shown in Fig. 1. It consists

of three modules. The Preprocessing module is to clean data
and generate candidate event set. The Social Influence module
is to model the significance of events, and the Temporal
Distribution module is to model the temporal distribution of
events and extract key events.

Preprocessing

Social Influence

Post streams

Temporal Distribution
...

e

e
e
e

e

e

e
User

Interface

Query

User
Interaction

Fig. 1. The architecture of Post2Event

The input of the system is a set of microblogs, 𝑃𝑃 =
{𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑖𝑖 , … , 𝑝𝑝𝑛𝑛}, and each 𝑝𝑝𝑖𝑖 is a timestamped microblog.
The output of the system is a time-ordered list of key events.

A. Social Influence

Key events need to be able to represent the important
information of topics on different timestamps fully. For social
networks, opinion leaders are more influential to information
diffusion because they usually deliver more critical information
than ordinary users. To this end, microblogs posted by opinion
leaders are more likely to be key events. Therefore, the
forwarding number, commenting number, and the total number
of likes are used to calculate an event's representativeness.
Specifically, the social influence of an event can be represented
by Eq. 1.

𝑆𝑆𝑆𝑆(𝑒𝑒𝑖𝑖) = log(𝛼𝛼 ∙ 𝑓𝑓𝑛𝑛 + 𝛽𝛽 ∙ 𝑐𝑐𝑛𝑛 + 𝛾𝛾 ∙ 𝑙𝑙𝑛𝑛 + 𝜀𝜀) (1)

Here, the numbers of forwards, comments, and likes are
denoted as 𝑓𝑓𝑛𝑛, 𝑐𝑐𝑛𝑛, and 𝑙𝑙𝑛𝑛, respectively. The symbol 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾
are the corresponding weights, and 𝜀𝜀 refers to the Euler number.

B. Temporal Distribution
Time is one of the essential characteristics of events. By

modeling the time characteristics of events, it can effectively
reflect the evolution of events with time. For events happening
simultaneously, users may have limited attention, which means
that users usually focus on events with high social influence.
Temporal expressions in an event are regularized by the
normalizing algorithm [3] and we consider the social influence
of an event in different timestamps to extract key events.

For an event sequence 𝐸𝐸 = {𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑖𝑖 , … , 𝑒𝑒𝑛𝑛}, we record
the events at each timestamp, obtaining the recording series of
events 𝐸𝐸𝑡𝑡 = �𝑇𝑇1: [⋯ , 𝑒𝑒𝑖𝑖−1, 𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖+1 ⋯],𝑇𝑇2: �⋯ , 𝑒𝑒𝑗𝑗−1, 𝑒𝑒𝑗𝑗 , 𝑒𝑒𝑗𝑗+1 ⋯ �,⋯� .
The social influence 𝑆𝑆𝐼𝐼(𝑇𝑇𝑖𝑖) in 𝑇𝑇𝑖𝑖 is defined as:

𝑆𝑆𝐼𝐼(𝑇𝑇𝑖𝑖) = �𝑆𝑆𝑆𝑆(𝑒𝑒𝑖𝑖)
𝑒𝑒𝑚𝑚

𝑒𝑒1

(2)
DOI reference number: 10.18293/SEKE2021-206

637

The number of events extracted at timestamp 𝑇𝑇𝑖𝑖 is defined as:

𝑁𝑁(𝑇𝑇𝑖𝑖) = �
𝑆𝑆𝐼𝐼(𝑇𝑇𝑖𝑖) −𝑀𝑀𝑀𝑀𝑛𝑛_𝑆𝑆𝐼𝐼
𝑀𝑀𝑀𝑀𝑥𝑥_𝑆𝑆𝐼𝐼 −𝑀𝑀𝑀𝑀𝑛𝑛_𝑆𝑆𝐼𝐼 ∗ 𝑛𝑛� (3)

Here, 𝑆𝑆𝐼𝐼(𝑇𝑇𝑖𝑖) is the sum of social influence in 𝑇𝑇𝑖𝑖 . 𝑀𝑀𝑀𝑀𝑥𝑥_𝑆𝑆𝐼𝐼
and 𝑀𝑀𝑀𝑀𝑛𝑛_𝑆𝑆𝐼𝐼 represent the maximum and minimum of social
influence at each timestamp, respectively. 𝑛𝑛 is a constant that
indicates the maximum value of key events extracted from each
timestamp. And the outermost bracket denotes a rounding down
function.

III. PERFORMANCE OF POST2EVENT
We evaluate the performance of Post2Event a real dataset

collected from Sina Weibo (https://weibo.com). Three baseline
algorithms are selected for comparison:

(1) TF-IDF [4]. It selects the events with a high TF-IDF
score as key events.

(2) MWDS [1]. It constructs a graph representing the
similarity among events and uses the Minimum-Weight
Dominating Set to detect key events.

(3) DCCI [2]. It is also a graph-based approach that is similar
to MWDS but uses the Degree and Clustering Coefficient
Information to detect key events.

We use ROUGE and Redundancy as the metrics [5]. The
redundancy of an event is defined as the similarity of the two
events that have the highest similarity in the key-event set, and
the redundancy of the key-event set is the sum of the redundancy
of each event.

The results are shown in Table 1, indicating that Post2Event
achieves the best performance among all algorithms

Table 1. Performance comparison of key-event extraction

Algorithm ROUGE-1 ROUGE-L Redundancy
TF-IDF 0.82 0.47 39.20
MWDS 0.68 0.44 41.48
DCCI 0.68 0.43 44.36

Post2Event 0.83 0.70 27.81

IV. DEMONSTRATION
The framework of key event extraction is a web application

developed using Python 3.8 and Flask framework. In the
demonstration, we will demonstrate the use of some critical

functionalities of Post2Event, including Data View and Event
View. Figure 2 shows a snapshot of Post2Event.

Data View. Figure 2(a) shows the Data View. It displays
the local dataset by default and the popularity of some ongoing
datasets crawled by our system. Users can explore the local
datasets, check the events, and visualize each data's details in
the interface. We show a preview of the ZTE Incident event in
Fig. 2(a). Also, Post2Event provides a query interface for users
to retrieve relevant events.

Event View. Figure 2(b) shows the Event View. When
users select a dataset and click the "View" button, Post2Event
will perform the event extraction and display the extracted key
events. As shows in Fig. 2(b), Zone 1 shows the key events of
"2020 U.S. President Election", Zone 2 shows the keywords of
each key event, and Zone 3 displays the distribution of the
keywords.

ACKNOWLEDGEMENTS
This work is partially supported by the Humanities and

Social Sciences Foundation of the Ministry of Education (No.
17YJCZH260), the National Science Foundation of China (No.
62072419), the Sichuan Science and Technology Program,
China (2020YFS0057) and the CERNET Innovation Project
(NGII20180403). Xujian Zhao is the corresponding author.

REFERENCES
[1] C. Lin, C. Lin, J. Li, D. Wang, Y. Chen, and T. Li,

"Generating event storylines from microblogs," in CIKM, ,
2012, pp. 175–184.

[2] R. Yuan, Q. Zhou, and W. Zhou, "dTexSL: A dynamic
disaster textual storyline generating framework," World
Wide Web, vol. 22, no. 5, pp. 1913–1933, 2019.

[3] X. Zhao, P. Jin, and L. Yue, "Discovering topic time from
web news," Inf. Process. Manag., vol. 51, no. 6, pp. 869–
890, Nov. 2015.

[4] Y. Ouyang, B. Guo, M. He, Z. Yu and X. Zhou. Event
sensing and vein presentation leveraging microblogging.
JOURNAL OF ZHEJIANG UNIVERSITY, vol. 50, no. 6,
pp. 1176–1182, 2016.

[5] C. Y. Lin, "ROUGE: A Package for Automatic Evaluation
of summaries," Jan. 2004, p. 10.

 (a) Data View (b) Event View

Fig. 2. A snapshot of Post2Event

1

2

3

638

CASTR: Assisting Bug Report Assignment Recommender Creation

Disha Devaiya, John Anvik, Farjana Yeasmin Omee, Meher Bheree

Department of Mathematics and Computer Science
University of Lethbridge, Alberta, CANADA

E-mail: devaiya86@gmail.com, [john.anvik, omee, bheree]@uleth.ca

Issue tracking systems are used to make a software de-
velopment process more manageable, especially for a geo-
graphically dispersed team. However, for each bug report,
a decision-making process called bug report triage needs to
be performed. A common bug report triage decision is the
assigning of a developer to a specific bug report.

Bug report triage can take significant time and resources.
Bug report assignment recommenders have been proposed
for reducing the workload of a project member. However,
creating a recommender is complex, as project members
have to perform several steps such as data preparation and
selection of a machine learning algorithm. Although previ-
ous work has sought to find specific answers for aspects of
the assignment recommender creation process, to the best
of our knowledge, only a few other works have examined
assisting with this recommender creation process.

CASTR (Creation Assistant for Supporting Triage Rec-
ommenders) [1, 2] is a platform-independent multi-tier web
application. It allows a project member to analyze the
dataset using a graphical representation and also assists
in configuring project-specific parameters for a machine
learning algorithm. This demonstration shows how to use
CASTR to create a bug report assignment recommender,
which consists of the following steps:

1. Download the dataset from the project’s issue track-
ing repository. CASTR provides an interface that al-
lows a user to set parameters, such as a date range
and number of reports, for downloading a dataset using
the Bugzilla REST endpoints. For the demonstration,
we will be using a data set from a large open-source
project, such as Firefox, PlasmaShell or LibreOffice.

2. Configure and create the recommender. Informa-
tion about the collected dataset is displayed by the
Configuration tab. This tab assists a user in
performing data filtration by setting project-specific

This work was funded by the Natural Sciences and Engineering Re-
search Council of Canada.

DOI reference number: 10.18293/SEKE2021-207

heuristics for report labelling and a minimum activ-
ity threshold value for which labels (i.e. developers) to
recommend. Also, the user selects a machine learning
algorithm (SVM, Multinomial Naı̈ve Bayes, C4.5, or
rule-based) to use for recommender creation. Finally,
the user can select an algorithm to handle data imbal-
ance (oversampling using SMOTE, undersampling us-
ing clusters, or manual oversampling). Once the user
has set the recommender configuration parameters, the
user clicks the “Create Recommender” button and is
taken to the Analysis tab.

3. Analysis of recommender. The Analysis tab
presents evaluation results for the created recom-
mender. It displays the Top-1, Top-3, and Top-5 preci-
sion and recall values for a testing set of 100 randomly
selected reports that are not used for training. Also,
the Analysis tab displays an example of possible
labels and predictions for some randomly selected bug
reports from the testing set. A History panel al-
lows a user to select a previous recommender config-
uration. The Confusion Matrix tab displays for
each developer name, the distribution of correct and
incorrectly predicted class values from the testing set.

4. Retrain the recommender. If needed, the user can then
return to the Configuration tab, adjust the con-
figuration parameters, and create a new recommender.
This process continues until the user is either satisfied
with the created recommender, or the user has deter-
mined that an assignment recommender cannot be cre-
ated with a high enough accuracy to benefit the project.

References

[1] D. T. Devaiya. Castr: A web-based tool for creating bug re-
port assignment recommenders. Master’s thesis, University
of Lethbridge, Lethbridge, Alberta, CANADA, 2019.

[2] D. T. Devaiya, J. Anvik, and M. Bheree. Evaluating a tool
for creating bug report assignment recommenders. In Pro-
ceedings of the 33rd International Conference on Software
Engineering and Knowledge Engineering, 2021.

1

639

640

Authors
Authors: Pages:
A
Abhijit Mondal 359
Adrián Bernal 211
Agnieszka Ławrynowicz 437
Aimin Yu 510
Alberto Núñez 211
Aless 550
Alex 195, 223, 429
Alireza Javadian Sabet 429
Alok Ratnaparkhi 98
Amal El Fallah Seghrouchni 21
Amani Ibrahim 303
Amit Kumar Mondal 7
Anca-Elena Iordan 628
André Sousa 217
Angelo Perkusich 223, 229, 235
Arnault Lapitre 291
Arndt Lüder 37
Arthur Freire 223
Assia Belbachir 21
Aya Zaki Ismail 303
B
Bai Wang 592
Banani Roy 7, 241
Bei Hua 616
Beichuan Zhang 315, 321
Bharavi Mishra 516
Bin Wu 592
Bin Zhou 417, 598
Bing Li 86
Binghua Song 79
Bixin Li 423
Bo Li 637
Bohao Wang 166
Boutheina Bannour 291
Bowen Du 160
C

A-1

Carmine Gravino 550
Chang Liu 582
Chen Yang 57
Cheng Chen 622
Chi Yu 499
Chongwei Wang 637
Chuanqi Tao 560, 636
Chuantao Yin 451
Chunming Yang 637
D
Dan Li 15
Dan Meng 510
Danilo Santos 229
Danyllo Albuquerque 229
Daryl Stone 67
David Dampier 261
Dawid Wiśniewski 437
Deming Sheng 189, 399
Diego Avila 340
Dietmar Winkler 37
Dionysis Athanasopoulos 369
Disha Devaiya 271
Disha Thakarshibhai Devaiya 639
Dong Wang 183
Dong Yang 528
Dongrui Fan 387
Dongyu Cao 560, 636
Duong Dinh Tran 120, 126, 138
E
Elena Gómez-Martínez 199
er Nemirovskiy 429
Everton Guimaraes 229
F
Famei He 79
Fanshu Shang 487
Faouzi Mhamdi 346
Farjana Yeasmin Omee 271, 639
Fatma Outay 261
Franz Wotawa 610
G

A-2

Ganghua Zhang 447
Gelin Zhang 166
Gleyser Guimarães 229, 235
Guang Yang 499
Guangdong Bai 172, 249
Guillaume Giraud 291
Guisheng Fan 75
Guoai Xu 458
Guosheng Xu 458
H
Haiyang Wang 417
Haiying Sun 183
Hanzhong Zheng 45
Hao Chen 92
Haoyu Wang 249
Haroon Malik 261
Harshit Singhal 516
Hernán-Indibil De la Cruz 211
Hiroyuki Nakagawa 544
Hong Zhou 451
Hongjian Jiang 31, 108
Hongjing Guo 560, 636
Hongqin Zhang 102
Huan Wang 564
Huawei Cao 387
Hui Zhang 637
Huibiao Zhu 102, 154
Huiqun Yu 75
Hujun Shen 205
Hyggo Almeida 223, 229, 235
J
Jahnavi Jonnalagadda 309
Jamy Chahal 21
Jan Herzog 37
Jedrzej Potoniec 437
Jerry Gao 560
Jian Wang 86
Jiang Li 564
Jianhui Zheng 464
Jiankun Cao 458
Jianqi Shi 166, 532A-3

Jianxia Chen 582, 586
Jiaqi Yin 102, 154
Jiaxin Liu 528
Jiaxin Zhu 249
Jie Deng 458
Jie Yan 67
Jiexiang Kang 183
Jin Lv 108
Jin Xu 160, 183
Jincheng Xu 570, 576
Jinfang Cai 622
Jing Liu 183
Jing Yang 487
Jingling Yuan 189, 399
Jinyang Liu 451
Jiwen Luo 381
John Castro 275, 281
John Anvik 271, 334, 639
John Grundy 303
João Faria 217
João Moreira 217
Jun Jiang 79
Junfeng Li 15
Junfeng Zhao 1
Junsheng Chang 381
Junwei Sun 592
Justin Kramer 45
K
Kang Shi 470
Kang Zeng 417, 598
Karina Villela 340
Kazuhiro Ogata 114, 120, 126, 138
Kazutoshi Sakakibara 114
Ke Ma 538
Kentaro Waki 138
Kevin Schneider 7
Kirthy Kolluri 297
Kristof Meixner 37
Kui Xiao 375
Kunyang Wang 451

A-4

Kyller Costa Gorgônio 235
Kyller Gorgônio 223
L
Lan Lin 51
Lawrence Chung 297
Lian Gu 528
Liang Ge 564
Liang Hao 51
Liangyu Chen 622
Lianwei Li 592
Liu Wang 249
Long Chen 411
Lorenz Klampfl 610
Lucineia Heloisa Thom 340
Luyao Liu 538
M
Maham Nazir 592
Mahdi Hashemi 309, 441
Manuel Neto 223
María-Emilia Cambronero 211
Masaki Nakamura 114
Mathilde Arnaud 291
Matteo Giovanni Rossi 429
Maxime Savary-Leblanc 327
Md Nurul Ahad Tawhid 255
Meher Bheree 271, 639
Men Huichao 481
Meng Fan 510
Meng Sun 132, 150, 172
Mengbo Xiong 79
Mersedeh Sadeghi 429
Miaomiao Zhang 160
Michele Risi 550
Miguel Marroyo 199
Mingyu Yan 387
Minyang Yi 75
Mirko Perkusich 223, 229, 235
Mohamed Abdelrazek 303
Mohamed Osama 303
Moumita Asad 255
Mourad Elloumi 346A-5

Mraidha Chokri 285
Mukesh Kumar Rohil 554
N
Nadia Nahar 255
Naoki Asae 126
Naoual Guannoni 346
Nazlie Shahmir 63
Ning Wang 475
Ningning Chen 102
Nour Chetouane 610
O
Onyeka Ezenwoye 98
P
Pablo Cañizares 211
Pankaj Kamthan 63, 365
Peian Yang 79
Peiquan Jin 25, 616, 634, 637
Peng Liang 57
Ping Sun 475
Q
Qi Chen 393
Qi Liu 582
Qi Zhang 464
Qianqian Ren 604
Qing Zhou 564
Qingfeng Du 570, 576
Qingsong Cai 464
R
ra Orsi 550
Rafed Muhammad Yasir 255
Raju Singh 554
Ramakrishnan 15
Ranci Ren 275, 281
Raniel Silva 195
re Costa 223
re Maciel 195
Robert Ahn 297
Rodrigo Rodrigues 195
Rong Yan 393
Roxanne El Baff 265

A-6

Rubens dos Santos 340
Rui Feng 1
Ruicheng Liu 616, 634
Ruiqing Li 249
Ruizhi Xiao 92
S
Safia Kalwar 429
Sameer Kulkarni 15
Sebastien Gerard 327
Sergei Shcherban 57
Shaoze Chen 352
Shayla Bhuyan 334
Shenghua Zhong 315, 321
Shihab Shahriar Khan 255
Shihui Wang 375
Shikuo Chang 45
Shingo Ariwaka 544
Shingo Takada 522
Shirish Singh 516
Shirui Sheng 586
Shiyang Li 604
Shouhong Wan 25, 616
Shuai Li 285
Shubai Chen 405
Shuho Fujii 120
Shuo Wang 411
Shuo Yang 411
Shuyuan Jin 92
Sijun Tan 108
Silvia Acuña 199, 275, 281
Siqing Yang 205
Sivasurya Santhanam 265
Siyi Li 458
Song Wu 405
Sristy Sumana Nath 7, 241
Stefan Biffl 37
Su Wang 352
Swapna Gokhale 359
Sébastien Gerard 285
T
Takwa Kochbati 285A-7

Tao Wang 381
Tatsuhiro Tsuchiya 544
Thet Wai Mon 120
Tian-Ming Bu 470
Tianyuan Hu 423
Tobias Hecking 265
Tom Hill 297
V
Valentín Valero 211
Vitória Mendes 195
W
Wang Botao 481
Wei Dong 528
Wei Xuan 387
Wei Zhang 487
Weidi Sun 172
Weifeng Xu 67
Weihang Su 249
Weiwei Xu 503
Weiyu Pan 538
Wenxin Hu 352
Wenying Guo 592
Wenzhi Wang 510
X
Xavier Le Pallec 327
Xia Mao 532
Xiang Chen 499
Xiaochun Ye 387
Xiaofang Zhang 503
Xiaokun Luan 132
Xiaoping Che 447
Xiaoting Guo 381
Xiaoxiao Sun 205
Xiaoyan Zhang 451
Xin Song 417, 598
Xin Sun 51
Xin Zhang 189, 399
Xingguang Yang 75
Xinjun Mao 411
Xiyue Zhang 132

A-8

Xuan Wen 586
Xujian Zhao 637
Xuren Wang 79
Y
Yan Lin 458
Yang Yang 532
Yanhong Huang 166, 532
Yanlin Zhou 499
Yanqi Lv 634
Yating Zhang 528
Yi Liu 98
Yi-Chun Feng 150
Yifan Dai 622
Yinyuan Zhang 411
Yongjian Li 108
Yongping Luo 25
Yongqiang Liu 86
Yongxin Zhao 31, 108
Yu Chen 405, 582, 586
Yuan Yuan 405
Yuekang Li 632
Yujia Liu 417, 598
Yuke Ying 205
Yuki Moriguchi 522
Yuki Okura 114
Yuqi Shen 622
Yuteng Lu 150, 172
Yuyuan Zhang 31
Z
Zekun Zhang 86
Zengyang Li 57
Zeqing Qin 375
Zesong Wang 375
Zeyu Lu 532
Zhaole Chu 25
Zhe Hou 166
Zheng Wang 31
Zhengwei Jiang 79
Zhenyu Pan 423
Zhijiao Xiao 315, 321
Zhikang Tian 632A-9

Zhimin Tang 387
Zhiming Hu 31
Zhiru Hou 154
Zihan Xiong 79
Zihui Wang 528
Zinat Ara 441
Ziqi Shuai 538
Zishan Li 160

A-10

Keywords
Keywords: Pages:
A
Abstract Meaning Representation 628
abstract syntax tree 503
activity suffix prediction 205
advanced persistent threat 67
Adversarial Robustness 160
Agile 223
Agile Software Development 223
AI software quality validation 560
algebraic specification language 120, 126
Alice&Bob specifications 108
AMR Parser A 628
Anomaly detection 86
anti-patterns 98
APTER-SENT 79
ATT&CK framework 67
Attention 604
attention mechanism 352, 475
Attention Mechanism 399
authentication protocol 120
automated mapping 429
Automatic Refactoring 1
auxiliary variable 126
axiology 63
B
Bayesian method 309
Bayesian Network 235
Bi-GRU 582
Big data 634
Bloom filter 616
Bounded Sampling Ratio 387
C
Camur 346
characteristic 15
Chatbots 275, 281
Chunking Representation 321
City Similarity 447

B-1

Classification 217
classoverlap 75
Climate anomalies 309
Cloud-native system 86
clustering 285
code representation 516
code review 7
Collaborative Filtering 315
collusion and plagiarism 365
community 487
compiler optimization 516
component 261, 285
Computation Tree Logic 183
conceptextraction 7
conceptual model 365
conceptual modeling 63
Consensus Protocol 150
Construct 223
convolutional neural network 475
Cross-level attention 405
CSP 102, 154
Cyber physical system 31
D
data protection regulation 199
deep convolutional neural network 441
Deep Learning 57, 92, 321, 503, 528, 554
Deep Neural Network 172
deep reinforcement learning 458
DeepAuto 172
defect detection 423
degree discount 393
Design Pattern Analysis 45
Developer Contribution 249
Developer reply 261
digital forensics 67
distance education 365
Distant supervision 604
Dolev-Yao 108
Dot-product 321
Drones 261

B-2

Dropout 189
dynamic allocation 138
E
e-learning 365
educational planning 375
EducationalData Mining 399
ENSO events 309
ethical dilemma 63
event detection 598
eventsummarization 598
Extraction 622
Extractive text summarization 241
F
Family of Experiments 275, 281
Fast Complementary Representation network 592
Fine-grained similarity criterion 405
finite state machine 67

Fold Operation ；Parallelism 1
Formal notations 303
Formalization 154
Formalsemantics 31
formative and summative assessment 365
Formula Embedding 622
function-as-a-large scale and low cost 15
G
GCN 79
Genetic Algorithms 570
Geometry Problems 628
Github 249
Google Play Store 261
Gradient × Input 576
graph coarsening 487
Graph Convolutional Network 315
graph neural networks 564
GraphSearch 183
H
heterogeneous graph 564
heuristic method 346
Hidden similarity 582
hierarchical structure 487

B-3

human-centered agile methodology 63
Hybrid Memory 25
I
image recognition 560
image recognition testing 636
IMPA 346
Model-Agnostic Explanations 570
Agile Software Development 235
anomaly detection 92
Architectural change 7
CKB 150
cloud computing 15
CNF 538
code clones 516
code search 528
code smell 503
concept extraction 381
concolic execution 510
COVID-19 249
crack detection 458
data mining 598
Deep cross-modal hashing 405
Deep learning 604
Dubbo 154
Evolving Graph Streams 387
Formal Verification 172
Go 255
Gradient-based Explanatory Methods 576
Human Aspects 229
Hybrid systems 31
ICN 102
influence maximization 393
Just-in-time software defect prediction 75
Knowledge Graph 411
Model Checking 183
MOOC 189, 399
multi-event prediction 417
Multiple solution 346
Murphi 108
programmable logic controller 532
Reluplex Algorithm 160B-4

repository mining 265
Requirements engineering 303
Risk Management 217
smart contract 423
Software release notes 241
software vulnerabilities 98
Teamwork 223
Textsummarization 592
Transfer Learning 447
transformer 352
Tree Ensemble 166
Industry 4 37
Industry4 37
Informal notation 303
intelligent preprocessing decision system 458
interactive system 63
interplay 532
Interpretable Model 189
IoT Middleware 102
J
Java 255
joint extraction model 352
K
K-Means clustering 75
keywords attention 582
knowledge graph 423
Knowledge Tracing 399
knowledge-aware attention 417
L
Lightweight Pipeline 189
linguistic similarity 429
Local Explanations 570
log analysis 92
LSM-tree 616
LSTM 205
M
Machine Learning 217, 554
Machine learning 538
MapReduce 1
MCS protocol 138

B-5

Merit 346
meta-path 564
metamorphic testing 636
Micro-services 45
Microservice 86
Mixed query 616
Mobile App 261
Model Checking 150
Model Mutation Testing 554
Model verification 31
Modeling 102
Modelling 275
MOOC 451
Multi-Attention 528
multi-sensor fusion 475
Multiclass Classification 57
Multiple Part 346
mutual exclusion 138
mutual exclusionprotocol 126
N
natural language processing 265, 285, 429
Natural Language Processing 628
naturallanguage processing 564
network embedding 487
Neural Network 57
NLP 411
Non-Volatile Memory 25
NYT 352
O
online education resources 375
online learning 381, 451
online teaching and learning 365
Ontology 297, 429
Open Source Software 249
P
PageRank 393
PAT 102
patch testing 510
performanceserverless 15
personal data 199
Personality 229B-6

prediction 441
prerequisite relations 375
Pretrained LanguageModel 592
privacy requirements 199
Probabilistic forecast 309
Probe Machine 183
process discovery 205
Production Systems Engineering 37
Program comprehensibility 255
program invariant 532
Program Transformation 1
proof assistant 120
proof generator 120
proof score 126
propagation probability 393
Property Verification 166
Psychometric Instruments 229
Python 628
Q
Quality Attributes 554
QuestionnaireSurvey 235
Queuing Network Modelling 45
R
Real-time storage 634
real-time system 532
Recommender System 315, 321
recommender system 451
recoverable 138
Recurrent Neural Network 315
recurrent neural network demand travel learning 441
relation extraction 79, 582
Relation extraction 604
Requirements Engineering 297
residual network 528
Reuse 37
reverse-engineering 516
Risk 297
Risk Analysis 297
Risk Assessment 217
RNN 451

B-7

Root cause analysis 86
ROS package searching 411
S
SAT 538
Scalabity 634
Scale Prediction 447
SDP-VP 79
Search strategies 510
securedesign patterns 98
Security Protocol 108
Semi-formal notation 303
Sensitivity Analysis 576
Sentence-BERT 79
sequence matching 205
Sequence Modeling 399
service 15
Similarity 622
smart learning 451
Social Aspects 229
social network 487
Software Architecture Evaluation 45
Software Engineering 229
Software maintenance and documentation 241
software quality 63
software requirement 285
Software Testing 554
Softwaremaintenance 255
SoftwareProjects 217
solving 628
SortingAlgorithm 25
Spatial-temporal forecast 309
Strand Space 108
structural similarity 429
Structured Threat Information Expression 67
Student Behaviours 189
Symbolic execution 538
T
technical capability evaluation model 381
temporal Graph Convolutional Network 417
Testing 166
testing AI software 560B-8

text classification 7, 564
Text Classification 570, 576
The Reference Model (WRSPM Model) 297
Thematic Network 223
This approach in automatic 628
threat detection 67
threat intelligence 79
Throughput 634
Timed Automata 172
Tomek-link 75
tool that generates new 636
trace replay 205
Transformation 303
Transformer 321
Triangle Counting 387
Twitter 598
U
UAV 261
UML Diagrams 57
unified software development process 199
UPPAAL 150
Usability 275, 281
V
Variational inference 309
Verification 102, 154
Verification Framework 160
W
wait-free algorithm 138
WebNLG 352
word embedding 285
Word Embedding 622

B-9

Proceedings of the 33rd
International Conference on

Software Engineering and
Knowledge Engineering

	Blank Page
	seke21foreword.pdf
	CONFERENCE CHAIR
	STEERING COMMITTEE CHAIR
	STEERING COMMITTEE
	ADVISORY COMMITTEE
	PROGRAM COMMITTEE
	Silvia Teresita Acuna, Universidad Autonoma de Madrid, Spain Shadi Alawneh, Oakland University, USA Hyggo Almeida, Federal University of Campina Grande, Brazil Dionysios Athanasopoulos, Queen's University of Belfast, United Kingdom Doo-Hwan Bae, Korea...
	BEST DEMO AWARD COMMITTEE
	PUBLICITY CHAIR AND CO-CHAIRS
	ASIA LIAISON
	EUROPE LIAISON
	INDIA LIAISON
	Quantum Software Models: Instantiating Abstractions

	Blank Page
	Blank Page

